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ABSTRACT 
 
 
 
 The popularity of autonomous mobile robots have been rapidly increasing due to 
their new emerging application areas, from room cleaning, tourist guidance to space 
explorations. However, the development of a satisfactory control algorithm that will 
enable the autonomous mobile robots to navigate safely especially in dynamic 
environments is still an open research problem. 
 In this work, a newly proposed potential field based control method is 
implemented, analyzed, and improvements are suggested based on experimental results 
obtained from a real robot. 
 The experimental system, planned to be the groundwork for robot soccer team, 
consists of an overhead global vision camera, personal computer, wireless module, and 
a non-holonomic mobile robot, which is supposed to navigate safely among obstacles 
and reach its goal point. Images of the robot’s operating area are acquired by the 
camera, color processed by the PC in real-time to retrieve the required position and 
orientation information of the robot, goal, and obstacles. Then, the control algorithm is 
applied, and resulting reference wheel velocities are sent to the robot via wireless link. 
Finally, robot has to drive with these reference velocities for safe navigation and goal 
tracking. 
 Experimental results in the form of motion history images, graphs and movies are 
presented to demonstrate the successful as well as problematic aspects of the 
implemented algorithm and the setup. 
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ÖZET 
 
 
 
 
 Otonom gezer robotların, oda temizliği ve turist rehberliğinden uzay 
araştırmalarına kadar değişik uygulama alanlarında kullanılmaya başlanması 
popülerliklerini artırmıştır. Ancak, bu robotların özellikle dinamik ortamlarda güvenle 
hareket etmesini sağlayabilecek tatmin edici düzeyde kontrol  algoritmalarının 
geliştirilmesi hala araştırma konusudur. 
 Bu çalışmada, önceden önerilmiş “potansiyel alan” tabanlı bir kontrol metodu 
analiz edilmiş ve gerçek bir robot ile yapılan deneysel verilere dayanarak iyileştirmeler 
önerilmiştir. 
 Bir robot futbol takımı için altyapı olarak planlanan deneysel sistem bütün ortamı 
görmeyi sağlayacak bir kamera, bilgisayar, telsiz iletişim modülü ve holonom olmayan 
iki tekerlekli, ve engeller arasında güvenle dolaşıp hedefine ulaşmyı amaçlayan bir 
robottan oluşmaktadır. Robotun çalışma alanının görüntüleri kamera tarafından alınıp, 
robotun ueri, hedef ve engellerin uzaklık ve yönünü bulmak için bilgisayar tarafından 
gerçek zamanlı renkli görüntü işlemeye tabi tutulur. Daha sonra, elde edilen hedef ve 
engel bilgilerine kontrol algoritması uygulanıp bulunan referans tekerlek hızları, telsiz 
iletişimle robota gönderilir. Engellerden sakınarak hedefe ulaşmak için robotun bu 
referansları takip etmesi gerekr. 
 Uygulanan algoritmanın kuvvetli ve zayıf yönleri elde edilen deneysel sonuçlarla 
ortaya konulmuştur. Veriler resim, grafik ve video film şeklinde sunulmuştur. 
Zayıflıkların düzeltilmesi için bazı emprik yöntemler de önerilmiştir.  
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ABSTRACT 
 
 
 
 The popularity of autonomous mobile robots have been rapidly increasing due to 
their new emerging application areas, from room cleaning, tourist guidance to space 
explorations. However, the development of a satisfactory control algorithm that will 
enable the autonomous mobile robots to navigate safely especially in dynamic 
environments is still an open research problem. 
 In this work, a newly proposed potential field based control method is 
implemented, analyzed, and improvements are suggested based on experimental results 
obtained from a real robot. 
 The experimental system, planned to be the groundwork for robot soccer team, 
consists of an overhead global vision camera, personal computer, wireless module, and 
a non-holonomic mobile robot, which is supposed to navigate safely among obstacles 
and reach its goal point. Images of the robot’s operating area are acquired by the 
camera, color processed by the PC in real-time to retrieve the required position and 
orientation information of the robot, goal, and obstacles. Then, the control algorithm is 
applied, and resulting reference wheel velocities are sent to the robot via wireless link. 
Finally, robot has to drive with these reference velocities for safe navigation and goal 
tracking. 
 Experimental results in the form of motion history images, graphs and movies are 
presented to demonstrate the successful as well as problematic aspects of the 
implemented algorithm and the setup. 
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ÖZET 
 
 
 
 
 Otonom gezer robotların, oda temizliği ve turist rehberliğinden uzay 
araştırmalarına kadar değişik uygulama alanlarında kullanılmaya başlanması 
popülerliklerini artırmıştır. Ancak, bu robotların özellikle dinamik ortamlarda güvenle 
hareket etmesini sağlayabilecek tatmin edici düzeyde kontrol  algoritmalarının 
geliştirilmesi hala araştırma konusudur. 
 Bu çalışmada, önceden önerilmiş “potansiyel alan” tabanlı bir kontrol metodu 
analiz edilmiş ve gerçek bir robot ile yapılan deneysel verilere dayanarak iyileştirmeler 
önerilmiştir. 
 Bir robot futbol takımı için altyapı olarak planlanan deneysel sistem bütün ortamı 
görmeyi sağlayacak bir kamera, bilgisayar, telsiz iletişim modülü ve holonom olmayan 
iki tekerlekli, ve engeller arasında güvenle dolaşıp hedefine ulaşmyı amaçlayan bir 
robottan oluşmaktadır. Robotun çalışma alanının görüntüleri kamera tarafından alınıp, 
robotun ueri, hedef ve engellerin uzaklık ve yönünü bulmak için bilgisayar tarafından 
gerçek zamanlı renkli görüntü işlemeye tabi tutulur. Daha sonra, elde edilen hedef ve 
engel bilgilerine kontrol algoritması uygulanıp bulunan referans tekerlek hızları, telsiz 
iletişimle robota gönderilir. Engellerden sakınarak hedefe ulaşmak için robotun bu 
referansları takip etmesi gerekr. 
 Uygulanan algoritmanın kuvvetli ve zayıf yönleri elde edilen deneysel sonuçlarla 
ortaya konulmuştur. Veriler resim, grafik ve video film şeklinde sunulmuştur. 
Zayıflıkların düzeltilmesi için bazı emprik yöntemler de önerilmiştir.  
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CHAPTER 1 
 
 

           INTRODUCTION 
 
 
 
 

1.1 Motivation 
 
 
With the exponential increase in the scientific knowledge and thus technology in 

recent years and in particular with the advent of computers, stories in science fiction 

books started to become true, and robots started to appear in daily life. 

Robots can help human beings; they can clean the room, clean sewerage pipes, 

disarm land mines, dig for oil, make explorations on the Moon, help surgeons in 

operations, work in factory environments, run production lines doing the jobs hard, 

dangerous or boring for humans. They can even be companions, interacting with 

humans, entertaining them; guiding tourists in museums. Therefore, there has been an 

ever-growing interest in autonomous mobile robots for their applicability in everyday 

life as well as in specific missions. However, autonomous mobile robotics is still in its 

infancy, and extensive research is going on for improvements to make their widespread 

use possible. 

One of the fundamental problems of autonomous mobile robots is safe navigation 

in especially dynamic environments. It is still an open research problem to develop a 

satisfactory control algorithm for autonomous mobile robots that will enable them to 

navigate safely in dynamic environments, where obstacles are moving around or the 

goal of the robot is changing its position. 

For navigation, robots utilize several sensors to monitor the external world. 

Cameras have started to draw a growing attention from the mobile robotics research 

community, due to its ability to supply the robot with rich information about its 

environment, which may not be provided even by combination of several sensors, or it 

may be too costly. Being analogous to the eye, which is probably the most important 
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sensor for living beings, the popularity of using cameras as sensors will increase 

especially with improved techniques to retrieve information from the images, and with 

increasing computational power. 

In the light of what have been mentioned above, this work aimed to contribute to 

the efforts to develop a satisfactory control algorithm for autonomous mobile robots. 

For this, an experimental setup, using a camera as the primary sensor, has been prepared 

to implement, analyze, and improve a potential field mobile control algorithm.  

 
 
 

1.2 Literature Survey: Mobile Robot Servoing, Methods, and Applications 
 
 
One of the fundamental challenges in robotics is motion or path planning, which 

means to generate a continuous path for a given robot between an initial and a goal 

configuration of the robot. Along this path, the robot must not intersect given forbidden 

regions, which are usually obstacles. Different versions of the motion planning problem 

correspond to the cases where the obstacles are stationary or moving and where the 

system of objects consists of a point, polygonal object, a single polyhedral object or a 

set of polygonal or polyhedral objects. Practical instances of the motion-planning 

problem occur frequently in robot-based assembly operations where a continuous 

trajectory must be planned for a robot such that collision with neighboring objects and 

other robots in the same workspace is avoided and the structural limits of the joint 

actuators are not violated. Similar problems are also encountered in the automatic 

navigation of vehicles in constrained environments, missile guidance, VLSI circuit 

layout and aircraft routing. Due to its widespread application, there is a lot of interest in 

this problem in the academic community and various approaches to its solution have 

been proposed [28]. 

 
 
 

1.2.1 Deliberative Control 
 
 
 A robot employing deliberative control requires relatively complete knowledge 

about its world and uses this knowledge to predict the outcome of its actions, an ability 

that enables it to optimize its performance relative to its world model. The knowledge 

must be consistent, reliable, and certain. In a dynamic world, where the objects are 
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moving arbitrarily, it is dangerous to rely on past information that may no longer be 

valid. Representational world models are therefore generally constructed from both 

prior knowledge about environment and incoming sensor data in support of deliberation 

[1]. It has the following characteristics: 

 

� Hierarchical in structure with a clearly identifiable subdivision of    

functionality, therefore, it is also named hierarchical control. 

� Communication and control occur in a predictable and predetermined 

manner, flowing up and down the hierarchy, with little or no lateral 

movement. 

� Higher levels in the hierarchy provide sub goals for the lower levels. 

� It relies heavily on symbolic representation of world models. 

 

Using deliberative control strategy, Albus (1991) developed a robotic system 

having a layered structure, each layer consisting of 4 components: sensory processing, 

world modeling, task decomposition, and value judgment. All layers are joined by a 

global memory through which representational knowledge is shared. Perception is the 

correspondence between the internal world model and external world. Thus, perception 

is not directly tied to action, which is the property of deliberative reasoning [1]. 

Parallel with this, researchers at Drexel University have focused on the theory of 

intelligent hierarchical control, consisting of 6 levels. The set of nested hierarchical 

controllers consists of a high-level planner, navigator, pilot, path monitor, controller, 

and low-level control system [1]. 

In yet another representative of the intelligent controls community, research at the 

Rensselaer Polytechnic Institute restricted the hierarchy to three primary levels: 

organization level (conducts high level planning and reasoning), coordination level 

(provides integration across various hardware subsystems), and execution level 

(supports basic control and hardware). This approach implements the principle of 

increasing precision with decreasing intelligence as one descends down the hierarchy 

[1]. 

Hierarchical control is well suited to structured and highly predictable 

environments (e.g., manufacturing systems). Reactive systems were developed in 

response to several apparent drawbacks associated with the hierarchical design 

paradigm including a perceived lack of responsiveness in unstructured and uncertain 
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environments due both to requirements of world modeling and the limited 

communication pathways [1]. 

An example is the robot Xavier of Carnegie Mellon University (figure 1.1), with a 

deliberative architecture capable of integrating a priori map knowledge into a behavior-

based control. A topological map of the robot environment is generated from floor 

plans, representing the world model; Markov models (specialized probabilistic models) 

encode the actions that a robot can take at different locations within the model. The 

planner uses   an A* search algorithm to specify the actions to be taken at each point 

within the topological model. The Markov model based planner issues directives to the 

robot for turning right, left, moving forward or stopping. It is reported to have 

successfully completed 88 percent of its missions using this strategy with more than 

one-kilometer distance traveled [29]. 

 

 
Figure 1.1 Xavier of CMU [29]. 

 
 
 

1.2.2 Reactive Control 
 
 
Reactive control is a technique for tightly coupling perception and action, 

typically in the context of motor behaviors, to produce timely robotic response in 

dynamic and unstructured environments. Use of abstract representational knowledge is 

avoided in the generation of a response, and the robot reacts directly to the world as it is 

sensed. This is of particular value in dynamic and hazardous environments, where 

unpredictability and potential hostility are inherent. Constructing abstract world models 
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is a time consuming and error-prone process and thus reduces the potential correctness 

of a robot’s action in all but the most predictable worlds [1]. 

Reactive control is inherently modular from a software design perspective, which 

enables the designer to expand the robot by adding new behaviors without redesigning 

or discarding the old. Mapping between the stimulus domain and response range is 

achieved by discrete encoding in the form of if-then-else; or continuous functional 

encoding allowing a robot to have infinite space of potential reactions to its world. 

Instead of having a set of enumerated responses that discretizes the way in which the 

robot can move (e.g., {forward, backward, right, left, etc.}), a mathematical function 

transforms the sensory input into a behavioral action [1]. One of the most common 

methods for implementing a continuous response is based on a technique referred to as 

the potential fields, which will be discussed later. 

The originator of the method is Rodney Brooks, who developed subsumption 

architecture in mid 80s at MIT, a purely reactive behavior based approach. He argued 

that the sense-plan-act paradigm used in some of the first autonomous robots was in fact 

detrimental to the construction of real working robots. He further argued that building 

world models and reasoning using explicit symbolic representational knowledge at best 

was an impediment to timely robotic response and at worst led robotics researchers in 

the wrong direction [1]. 

 

 
Figure 1.2 Sense-plan-act (left), and subsumption (right) model [1]. 
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1.2.3 Hybrid Systems 

 
 
Reactive behavior based robotic control can effectively produce robust 

performance in complex and dynamic environments. In some ways, however, the strong 

assumptions that reactive systems make can serve as a disadvantage. These assumptions 

are: 

� The environment lacks temporal consistency and stability. 

� The robot’s immediate sensing is adequate for the task at hand. 

� It is difficult to localize a robot relative to a world model. 

� Symbolic representational world knowledge is of little or no value. 

 

These assumptions may not be valid all the time. Therefore, purely reactive 

robotic systems are not appropriate for all robotic applications. Hybrid 

deliberative/reactive robotic architectures have recently emerged combining aspects of 

traditional AI symbolic methods and their use of abstract representational knowledge, 

but maintaining the goal of providing the responsiveness, robustness, and flexibility of 

reactive systems. 

 

 
Figure 1.3 Robot Control Spectrum [1]. 
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 Two example architectures based on hybrid systems are AuRA (Autonomous 

Robot Architecture) built by Arkin (1986, 1987b), and Atlantis built at the Jet 

Propulsion Laboratory (JPL) by Gat in 1991. 

 

 
Figure 1.4 Atlantis architecture [1]. 

 

Atlantis, (or A Three-Layer Architecture for Navigating Through Intricate 

Situations), like the subsumption architecture, is built in layers. In Atlantis, however, all 

instantiations of the architecture have the same three layers, each of which always 

performs the same duty. The Control Layer directly reads sensors and sends reactive 

commands to the effectors based on the readings. The stimulus-response mapping is 

given to it by the sequencing layer which has a higher level view of robotic goals than 

the control layer. It tells the control layer below it when to start and stop actions. The 

deliberative layer responds to requests from the sequencing layer to perform 

deliberative computations [30]. 

 
 
 

1.2.4 Robot Navigation, Path Planning 
 
 
Navigation is not just driving from one location to a specified location; it depends 

on the particular task to be carried out. For example, are the destination points known or 
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do they have to be searched, are the dimensions of the driving environment known (will 

the robot drive on a flat plane or fly in 3D space), are all objects in the environment 

known, are they moving or stationary, and so on [2]? 

There are a number of well-known navigation algorithms, some of which will be 

discussed here briefly. Some of these algorithms are of a more theoretical nature and do 

not closely match the real problems encountered in practical navigation scenarios. For 

example, some of the shortest path algorithms require a set of node positions and full 

information about their distances, but in many practical applications there are no natural 

nodes or their location or existence is unknown, like partially or completely unexplored 

environments [2]. 

 
 
 

1.2.4.1 Dijkstra’s Algorithm 
 
 
Dijkstra’s Algorithm [Dijkstra 1959] is for computing all shortest paths from any 

node to any other node in a fully connected graph. Relative distance information 

between all nodes is required; distances must not be negative. Obviously, it requires 

complete knowledge of the robot’s environment and is not suitable for dynamic cases, 

in which case robot has to recalculate the shortest paths at each sampling interval, 

which, due to processing power and speed limitations, makes the algorithm 

inappropriate for real time applications [2].  

 
 
 

1.2.4.2 A* Algorithm 
 
 
A* [Hart, Nilsson, Raphael 1968], pronounced “A-Star”, heuristic algorithm is 

developed to compute the shortest path from one given start node to one given goal 

node. Like the previous algorithm, relative distance information between all nodes as 

well as the direct distance estimate from each node to goal are required, meaning that 

the robot must have global knowledge of the environment [2]. 
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1.2.4.3 Certainty Grids Method 
 
 
 Certainty grids method [H. Movarec, 1987] produces an obstacle map of the 

environment using probabilistic representation of obstacle locations in order to 

overcome the inaccuracies coming from sensory data. The robot creates a two 

dimensional array representing its environment; each element of the array is a cell 

containing the certainty values – measure of confidence that an obstacle exists within 

the cell area or not. The content of each cell is updated continuously according to the 

sensor readings with a probabilistic method considering the characteristics of the 

sensors used. Obviously, this method assumes a static environment without any moving 

obstacles; otherwise, due to the additive nature of the method all grids might be filled 

due to moving obstacles and there will be no free space left in the resulting map for the 

robot to move [2]. 

 
 
 

1.2.4.4 Potential Fields Method 
 
 
 Probably none of the robot navigation methods has attracted so great an interest 

from researchers as potential fields method [Khatib 1985, Krough 1984], such that so 

many variations of the method have been developed and used. 

 The method was developed as a basis for generating smooth trajectories for both 

mobile and manipulator robotic systems. Separate attractive and repulsive potential 

fields are constructed to represent the relationship between the robot and each of the 

objects within the object’s sensory range. These fields are then combined to yield a 

single global field. A smooth trajectory is computed based upon the gradient within the 

globally computed potential field. 

 Drawing from the field theory concept in physics, this method models obstacles as 

emitting a repellant force and the goal point as emitting an attractive force on the robot. 

Navigation is performed by moving the robot so as to minimize the potential energy. 

This approach assumes knowledge of the type of obstacles in the environment and 

in the planning phase polygons or spheres approximate these known obstacles. The 

environment in the original formulation of this idea was assumed to be static; however 

there have been adaptations to use this approach for dynamic environments. Potentials 

are associated with the objects in the environment as and when it is encountered. 
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This method is designed to work with only a single goal. If more than one goal is 

required than there exists an implicit stack of goals that is popped once the current 

target is reached. There is no change in behavior if a sequence of waypoints is specified. 

 

 
Figure 1.5 Potential field generated by an obstacle and a goal [1]. 

   

 Recent potential field based approaches incorporate dynamic sensing feedback 

into robot control and hence try to overcome the limitations of being computationally 

heavy and unable to react to unexpected obstacles in the environment that optimization 

based approaches suffer from. The potential is calculated at each point along the 

trajectory and the robot then moves down the gradient of the potential field till it 

reaches a minimum, local or global [28].  

 Being one of the most successful methods developed, potential field is not without 

its problems.  Koren and Borenstein analyzed the potential field method; in their work 

[4] they explained its inherent limitations with experimental results obtained using a 

three-wheel drive robot (CARMEL). The problems can be summarized as follows: 

� Trap situations due to local minima: Perhaps the best-known and most often-

cited problem of potential field method is local minima or trap situations. A 

trap situation may occur when the robot runs into a dead end (e.g., inside a 

U-shaped obstacle). It can be resolved by heuristic or global recovery. 
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� No passage between closely spaced obstacles: Figure 1.6 shows a mobile 

robot at an attempt to pass through two closely spaced obstacles. The 

repulsive forces due to obstacle 1 (Fr1) and obstacle 2 (Fr2) add up to a force 

(Fr) pointing away from the passage. Depending on the relative magnitudes 

of attractive force (Ft) and total repulsive force, the robot will either 

approach the passage further or it will turn away. 

 

 
Figure 1.6 Under potential field method, the robot does not pass through closely  

spaced obstacles [4] 
 

� Oscillatory motion in narrow passages, corridors: When the robot travels in 

narrow corridors (figure 1.7), it experiences repulsive forces from opposite 

sides. A sudden change in the width of a narrow corridor excites the robot 

into unstable oscillations and eventually a collision. 

Another problem of potential fields that is usually overlooked is the fact that the 

robot cannot reach its goal if the goal is located in such position that the repulsive force 

is larger than the attractive force resulting in a motion away from the goal instead of 

reaching it [20]. 

 With these problems in mind, Borenstein developed new algorithms (VFF, VFH, 

etc.) based on potential fields in an effort to eliminate, or at least reduce the problems, 

as many researchers have been doing [8, 11, 12, 13, 14, 15]. 
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Figure 1.7 Stable and unstable motion in corridors [4]. 

 
 

 
1.2.4.5 Virtual Force Field (VFF) Method 

 
 
 Developed by Koren and Borenstein, virtual force field (VFF) method can be 

considered to be a combination of certainty grids and potential fields method. A virtual 

window moves with the robot and overlays a region of a histogram grid. The window is 

called the active window and covers an area of ws by ws; the cells within the active 

window are called active cells. Each active cell applies a virtual repulsive force on the 

robot similar to the potential field method; the magnitude of the force being 

proportional to the certainty value of the cell, and inversely proportional to the square of 

the distance between the cell and the robot. All virtual repulsive forces are added to a 
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constant attractive force from the target point to obtain a resultant force vector; and the 

robot’s steering is aligned with this resultant force to avoid the obstacles. 

 

 
Figure 1.8 Virtual Force Field Method. [8,11]. 

 

 Since it is based on the potential field method, it also has similar problems; but it 

helps reduce the sensor inaccuracies due to its probabilistic nature. Moreover, sensor 

data influences the steering immediately whenever a new obstacle is detected, and a fast 

reflexive behavior is obtained. Main drawback of the method is caused by the size of 

the cells; increasing the cell size causes drastic changes in force magnitudes resulting in 

a non-smooth trajectory, decreasing the cell size increases the required computational 

power [8,11,12,13]. 

 
 
 

1.2.4.6 Vector Field Histogram (VFH) Method 
 
 
 To remedy the shortcomings of VFF method, Koren and Borenstein came up with 

the vector field histogram method built on VFF. This method uses a two-stage data 
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reduction rather than one, which was the case in VFF. It has three levels of data 

representation: 

� The highest level holds the detailed description of the robot’s environment. 

The two-dimensional Cartesian histogram grid is continuously updated in 

real-time, similar to VFF method. 

� At the intermediate level, a one-dimensional polar histogram is constructed 

around the robot’s momentary location. 

� The lowest level is the output of the VFH method, giving the reference 

values for the drive and steering controllers of the robot. [12,13].  

This method solved the data reduction problem of VFF, but it still has the 

limitations of potential field method. 

 
 
 

1.2.4.7 Wandering Standpoint Algorithm 
 
 
 Wandering Standpoint Algorithm [Puttkamer 2000] is a local path planner 

algorithm, requiring local distance measurements. The robot tries to reach the goal in 

direct line, when it encounters an obstacle; it measures the avoidance angle for turning 

left and right, and turns to the smaller angle. Then it continues with boundary following 

around the object, until goal direction is clear again [2]. 

 The algorithm can lead to an endless loop for extreme obstacle placements. In this 

case the robots continues driving but never reaches the goal [2]. 

 
 
 

1.2.4.8 DistBug Algorithm 
 
 
 This algorithm [Kamon, Rivlin 1997] combines the local path planning with 

global information and guarantees convergence. Therefore, it requires local sensor data 

and global information. It is similar to the wandering standpoint algorithm, but 

boundary following stops only if goal is directly reachable or if future hit point with 

next obstacle would be closer to goal. This global information together with detection of 

unreachable goal if robot has turned 360 degrees guarantees convergence [2]. 
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Although it has very nice theoretical properties, it is not always usable in practice, 

since it requires global information in the form of path intersection points of future 

possible collision points with objects [2]. 

 
 
 

1.2.4.9 Overview of Navigation Methods 
 
 
Some of the well-known methods have been discussed until now. There are other 

methods developed to improve the existing methods. For example, new variations of 

VFF, VFH were developed by their original authors. Since this is not an exhaustive 

study of all methods, there are some other methods not discussed here, such as edge 

detection. 

 No perfect method has been developed until now, therefore, research is going on, 

and new methods or refinement of existing methods are being proposed. Some of the 

discussed methods require knowledge of the robot’s environment being on the side of 

deliberative control, while some of them are trying to avoid the requirement of prior 

knowledge as much as possible being closer to reactive control. It is of course 

advantageous not to require knowledge of the environment as reactive control is trying 

to do, but this will not be 100 percent satisfied in all of the methods, because at least the 

location the target point relative to robot is required in all algorithms if the robot is 

trying to go to a target location rather than just wandering around. The requirement of a 

priori knowledge should be kept at a minimum due to the memory and processing 

power requirements of today’s robots. Even if there is no memory or processing power 

constraints, as will be the case in the near future, complete knowledge of the robot’s 

environment is impossible to achieve, especially for outdoor applications. Besides, the 

world is dynamic, and changing continuously that invalidates most of the prior 

knowledge. As a result, the reactive control methods will keep their popularity, while 

researchers are trying to solve their shortcomings. On the other hand, hybrid systems, 

combining deliberative and reactive methods started to gain increased attention from the 

scientific world, in an effort to get the best of two worlds. However, the interface 

between deliberation and reactivity is not completely understood and serves as the focus 

of research in this area. 

In summary, both deliberative and reactive systems have limitations when each is 

considered in isolation.  
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1.2.5 Brief Overview of Robot Sensors 
 

 
For a robot to function properly, it is crucial for it to interpret the information 

about its immediate surroundings. Because it is not possible to react to external events 

without perceiving them, and most of the time only partial knowledge of the 

environment is available or any information available may be inaccurate or obsolete. 

Perception in robotics is tightly coupled to actions. Robotic perception can be 

categorized as follows [1]: 

� Action-oriented perception: perception is tuned according to the action 

requirements of the robot. 

� Expectation-based perception: Prior knowledge of the environment can 

constrain the interpretation of what is perceived. 

� Focus-of-attention methods: Prior knowledge can constrain where things 

may appear. 

� Active perception: perceptual requirements determine the robot’s actions [1]. 

 

Rapidly advancing sensor technology enabled robots to utilize low-cost high 

quality sensors. However, improvements are still essential to get better or even 

satisfactory performance in some cases. 

 
 
 

1.2.5.1 Shaft Encoders 
 

 
Shaft encoders provide information regarding how far a robot has traveled based 

on the rotation of its motors, or wheels. Using the output of the encoders, the present 

location of the robot can be estimated, a method called ‘dead reckoning’, which can be 

extremely misleading due to slippage on the wheels or locomotion mechanism of the 

mobile robots, finite resolution and sampling of encoders. Therefore, they have to be 

supplemented with environmental sensing to produce reliable results when determining 

the robot’s actual position. They are primarily used as the fundamental feedback sensor 

for motor control of the wheels, although there have been attempts to reduce the dead 

reckoning errors and thus utilized for position estimation. 
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1.2.5.2 Position Sensitive Devices (PSD), Orientation Measurement 
 

 
 Among the most important sensors in mobile robotics are the ones for distance 

measurement, especially to measure the distance to obstacles around for navigation. 

Sonar, laser, and infrared sensors are heavily used for this purpose. They are active 

sensors in that they emit a signal and calculate the distance to the nearby objects by 

processing the reflected signal. 

 Compass is used to determine the robot’s absolute orientation. A further step 

could be interfacing to a receiver module for the satellite-based global positioning 

system (GPS), which is very useful to get global knowledge about the world, but it is 

complex and can only work outdoors in unobstructed areas [2]. 

 Gyroscope, accelerometer, inclinometer are orientation sensors to determine a 

robot’s orientation in 3D space, and are useful for tracked, walking, balancing, and 

flying robots. 

 
 
 

1.2.5.3 Camera (Computer Vision) 
 
 
 Cameras are probably the most complex sensors utilized in robotics. They have 

not been used extensively in robotics until recently due to high computational and 

memory requirements, as well as high cost. Extensive research are going on to 

incorporate vision into robotics, since robots of future cannot be thought of a sense of 

visual perception of environment like human beings or animals. 

 Currently robots are using either global vision or local vision. In global vision, the 

camera is external to the robot, placed in such a way that it can see a region large 

enough to enclose both the robot and its environment. In local vision, robot has its own 

camera doing all the vision processing onboard. The latter approach is more difficult to 

implement especially for small robots due to space, memory, and processing power 

constraints. However, it is natural to have visual perception onboard, since no animal or 

human has global vision; rather every living being has its own sensors. Therefore, the 

trend is to have local vision on the robots, which will get easier with ever-increasing 

memory and processing capacity being embedded in them. On the other hand, global 
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vision is much easier to realize, and also has some implementations, such as in factory 

environments, and the popular competition of robot soccer.  

 It should be noted that vision is still in its infancy and has to be improved 

tremendously to be employed in robotics more effectively. Thinking of ourselves with 

great visual ability to see, recognize objects, and differentiate them from one another in 

a matter of milliseconds with great accuracy, computer vision turns out to be quite far 

behind to provide high quality information for the robots at the required speed, 

especially for real-time applications. 

 
 
 

1.2.5.4 Combining Sensor Outputs 
 
 
 There are different approaches as to how to combine the outputs of different 

sensors for a robot. Inspired of the living things, robots have different kinds of sensors, 

e.g., camera, laser scanner, etc to get more information about their environments. 

However, combining the outputs of sensor, termed sensor fusion, is not a trivial job. 

The incoming information from different sensors might be complementary (in support 

of each other), or competitive (contradicting with each other).  Further, they might be 

arriving asynchronously, since some sensors take longer to process than others. 

Therefore, it is imperative to design the sensory system carefully considering the types 

of sensors employed, and this is still an open research area how to effectively combine 

sensor outputs. 

 
 
 

1.2.6 Representative Examples 
 
 
 There are numerous examples of autonomous mobile robot applications, few of 

which will de summarized in the next sections. 

 
 
  

1.2.6.1 Robot Soccer 
 
 
 One of the most interesting and exciting examples of robotics is probably soccer 

playing robots. There are currently two well-known initiatives to organize robot soccer 
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competitions, RoboCup and FIRA. RoboCup is an international research and education 

initiative. Its goal is to foster artificial intelligence and robotics research by providing a 

standard problem where a wide range of technologies can be examined and integrated 

[31]. 

 The concept of soccer-playing robots was first introduced in 1993. Following a 

two-year feasibility study, in August 1995, an announcement was made on the 

introduction of the first international conferences and football games. In July 1997, the 

first official conference and games were held in Nagoya, Japan. From then on, the 

competitions are held in a different country each year with more and more participants 

from around the world with more and more advanced robot teams [31]. 

 

 
Figure 1.9 Robots playing soccer (RoboCup small-size league) [32]. 

 

The main focus of the RoboCup activities is competitive football. The games are 

important opportunities for researchers to exchange technical information. They also 

serve as a great opportunity to educate and entertain the public. There are different 

leagues: 

� Simulation league: Independently moving software players (agents) play 

soccer on a virtual field inside a computer. 
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� Small-size robot league (f-180): Small robots of no more than 18 cm in 

diameter play soccer with an orange golf ball in teams of up to 5 robots on a 

field with the size of bigger than a ping-pong table. 

� Middle-size robot league (f-2000): Middle-sized robots of no more than 50 

cm diameter play soccer in teams of up to 4 robots with an orange soccer 

ball on a field with a size of 12x8 meters. 

� Four-legged robot league: Teams of 4 four-legged entertainment robots 

(Sony’s AIBO) play soccer on a 3 x 5 meter field. 

� Humanoid league: This league was introduced in 2002 RoboCup. Biped 

autonomous humanoid robots compete in "walking" and "shooting". The 

robots play also in "penalty kick," and "1 vs. 1" matches. "Free style" 

competitions are to be expected as well [31]. 

 

The ultimate goal of RoboCup project is stated in official RoboCup website [31] 

as “By 2050, develop a team of fully autonomous humanoid robots that can win against 

the human world champion team in soccer”. 

Looking at the small-size league as an example will demonstrate how robot soccer 

works. A small-size robot soccer game takes place between two teams of five robots 

each. Each robot must conform to the dimensions as specified in the F180 rules: The 

robot must fit within a 180mm diameter circle and must be no higher than 15cm unless 

they use on-board vision. The robots play soccer on a green-carpeted field that is 2.8m 

long by 2.3m wide with an orange golf ball. Robots come in two flavors, those with 

local on-board vision sensors and those with global vision. Global vision robots, by far 

the most common variety, use an overhead camera and off-field PC to identify and track 

the robots as they move around the field. The overhead camera is attached to a camera 

bar located 3m above the playing surface. Robots, ball, goal, and field are identified by 

their differing colors. Local vision robots have their sensing on the robot itself. The 

vision information is either processed on-board the robot or is transmitted back to the 

off-field PC for processing. An off-field PC is used to communication referee 

commands and, in the case of overhead vision, position information to the robots. 

Typically the off-field PC also performs most, if not all, of the processing required for 

coordination and control of the robots. Communications is wireless and typically uses 

dedicated commercial FM transmitter/receiver units although at least one team has used 

IRDA successfully. 
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Figure 1.10 Robot Soccer setup [34]. 

 

 Building a successful team requires clever design, implementation and integration 

of many hardware and software sub-components into a robustly functioning whole 

making small-size robot soccer a very interesting and challenging domain for research 

and education [31]. It is apparent how crucial it is for each robot in the team to navigate 

safely, tracking its goal (the ball) and avoiding stationary and dynamic obstacles (walls, 

other robots) around it. 

 
 
 

1.2.6.2 Autonomous Road Following 
 
 
Many research centers have been working on developing systems that can drive 

on the road autonomously at high speeds. VaMoRS developed at Military University of 

Munich, Terregetor, SCARF, RALPH, ALVINN, and NAVLAB series at CMU are 

some examples being able to cruise at maximum speeds 100 km/hour. Vision systems 

are used to detect the road and nonroad regions to drive safely without human 

intervention. RALPH was developed for The No Hands Across America Navlab 5 USA 

tour, being one of the most ambitious exhibitions of autonomous driving. It has a simple 

control process: 

� An image is acquired, irrelevant portions are trimmed, remaining portion of 

the image is subsampled to yield 30x32 image array, which includes 

important road features. 
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� The road curvature and the vehicle’s lateral offset to road’s centerline are 

computed. 

� A steering command is issued and the process is repeated. 

� The vehicle was able to drive almost 3000 miles from Pittsburgh to 

Pennsylvania autonomously. 

The CMU Navlab group builds computer-controlled vehicles for automated and 

assisted driving. Since 1984, they have built a series of robot cars, vans, SUVs (Sport 

Utility Vehicle), and buses. The latest in the Navlab family is the Navlab 11 (figure 

1.11), a robot Jeep Wrangler equipped with a wide variety of sensors for short-range 

and mid-range obstacle detection. 

 

 
Figure 1.11 NAVLAB 11 of CMU [29]. 

   

 Another interesting example is the AVENUE (Autonomous Vehicle for 

Exploration and Navigation in Urban Environments) project of University of Colombia 

(figure 1.12), targeting the automation of urban site planning. The main goal is to build 

not only realistically looking but also geometrically accurate and photometrically 

correct models of complex outdoor urban environments. The models are needed in a 

variety of applications, such as city planning, urban design, historical preservation and 
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archeology, fire and police planning, military applications, virtual and augmented 

reality, geographic information systems and many others [33]. 

 The task of the mobile robot is to go to desired locations and acquire requested 3-

D scans and images of selected buildings. The locations are determined by the sensor 

planning (view planning) system and are used by the path planning system to generate 

reliable trajectories, which the robot then follows. When the robot arrives at the target 

location, it uses the sensors to acquire the scans and images and forwards them to the 

modeling system. The modeling system registers and incorporates the new data into the 

existing partial model of the site (which in the beginning could be empty). After that, 

the view planning system decides upon the next best data acquisition location and the 

above steps repeat. The process starts from a certain location and gradually expands the 

area it covers until a complete model of the site is obtained. 

 
Figure 1.12 Mobile platform of AVENUE project [33]. 
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1.2.7 Problem Definition 
 
 
As has been discussed until now with real projects going on around the world, the 

fundamental problem of mobile robotics is safe navigation in known or unknown 

environments. The task becomes easier if the environment is known or it is static, in 

which case deliberative methods can be utilized. On the other hand, if the robot has no 

prior information, or if it has to navigate in a dynamic world, then it is indispensable to 

employ a reactive control strategy for real-time performance since pure deliberative 

control methods have computational overhead that can significantly hinder real-time 

operation. Or, depending on the situation some hybrid control structure might be 

necessary to get the best performance. 

Unfortunately there is no widely accepted control method for mobile robots that 

can solve all the problems. In fact, the algorithms developed until now are not even 

satisfactory, and only performing well under restricted conditions. Therefore, a well 

performing method with as few as limitations as possible is needed, and research is 

going on to suggest remedies for the problem. 

To develop solutions, many researchers have focused on the potential field 

method as a reactive control strategy due to its simplicity and promising features, 

working on different variations and suggesting solutions for the problematic cases 

discussed earlier (section 1.2.4.5). A new variation of potential field is suggested in [6] 

claiming good performance with some solutions to the problematic cases, supported 

with simulation results, which in many cases might be misleading. In this work, the 

suggested algorithm is implemented on a real system with modifications for 

applicability and improvement, and its performance, problems and potential 

improvements are analyzed.  

The actual goal of this work is, in fact, to develop a system that will be the 

groundwork for a robot soccer team. Since navigation of robots in such an application is 

crucial, the system naturally turns out to be a good test bed for experimenting mobile 

robot control algorithms. The suggested method, setup, and implementation details will 

be given in the next chapters. 
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1.2.8 Organization of the Thesis 
   
 

 The proposed algorithm and modifications are explained in chapter 2; the 

experimental setup and implementation details are described in chapter 3, experimental 

results are presented in chapter 4, and conclusions with chapter 5.   
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CHAPTER 2 
 
 

PROPOSED SOLUTION 
 
 
 
 

2.1 A Brief Problem Definition 
 
 
 In chapter 1, it was stated that a widely accepted mobile robot control algorithm is 

still an open research problem, and it is crucial in all mobile robot applications such as 

robots designed to navigate in outside terrain for different purposes, or robot soccer. 

 The aim of this work is to develop a setup that can be the groundwork for robot 

soccer, and also test bed for experimenting mobile robot navigation algorithms; as well 

as implement, analyze and improve the potential field based control method presented 

in [6]. 

 
 
 
2.2 Suggested Solution 
 
 
 As a solution, an experimental setup is developed and the proposed potential field 

based control algorithm is implemented on this system with modifications for 

applicability and better performance. In the following sections and chapters, the details 

of the experimental system and the method implemented are presented.  

 
 
 
2.3 Potential Field With a New Approach 
 

 
In the previous chapter the potential field concept was described along with its 

problems; and it was stated that lots of variations have been proposed to eliminate or at 

least relieve these problems. Such a new approach is suggested in [6], and it will be 
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described in this chapter with some modifications for applicability and improvements as 

part of this work. 

 
   
       
2.3.1 Mathematical Model of Robot 
 
 
 The robot used in this work is differential drive mobile robot. It is nonholonomic, 

having restrictions in the way it can move, due to kinematic or dynamic constraints, 

such as limited turning ability or momentum at high velocities [1]. Assuming no slip at 

the tires, the kinematic model of such a robot is given by, 
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where v and ω are the translational and rotational velocities of the robot, VR and VL are 

the right and left wheel velocities, L is the interwheel distance, and ф denotes the 

orientation of the robot as shown in figure 2.1. 

 

  
Figure 2.1 Kinematic model of the robot [6]. 
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2.3.2 Sensors 
 
 
 Robots have two kinds of sensors. The fist type is for monitoring the internal state 

of the robots, such as measuring the motor shaft position or velocity using encoders. 

The other type is for perceiving the state of their environments, such as ultrasonic 

distance sensors and cameras to detect obstacles or to locate them in a coordinate frame. 

A robot can only perceive its environment to the extent that its sensors enable it; 

therefore, there is always a range outside which the robot is not aware of what is going 

on. In typical applications, distance sensors are placed around the robot to scan a 

sufficient area in the vicinity of the robot. If the robot is designed to go only in one 

direction (forward), then the sensors are usually placed at the front covering an angle of 

180 degrees. Figure 2.2 illustrates the sensor range of a robot; the robot can perceive the 

parts of the obstacles lying within this range. 

 

 
Figure 2.2 Sensor range of the robot. 
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2.3.3 Formulation of Potential Field 
 
 
 As described in the previous chapter, the main idea of potential field method is to 

assume repulsive forces from obstacles and attractive forces from the goal to the robot. 

The repulsive force is inversely proportional to the square of the distance and calculated 

as, 
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where A is a constant scaling factor, n is the number of obstacles, di is the distance 

between obstacle i and the robot, ir̂  is the direction vector from robot to representative 

point of obstacle (e.g., center of obstacle, point of obstacle closest to the robot). This is 

the original repulsive force formulation of the potential field and it requires the 

knowledge of all obstacles in the environment. The magnitude of the repulsive force 

increases significantly when the robot is close to the obstacle, which is the main idea for 

avoiding the obstacle. 

 

 The attractive force of the goal is in the form,  

     rdBFgoal ˆ2 ⋅⋅=
r

       (2.2) 

where B is similarly a scaling factor, d is the distance from robot to the goal, and r̂  is 

the direction vector from robot to the goal.  

 Many different forms of these forces are adapted in literature [6, 7, 16, 17, 20]. 

For example, an exponential function can be used for the repulsive force, and a constant 

attractive force may be assumed for the goal. 

 In applications, only the forces due to the obstacles which can be detected by 

robot sensors contribute to the potential field, that is, robot only feels an egocentric 

potential field due to objects in its vicinity, and this continuously changing field is 

recalculated at each sampling interval of the robot’s sensors. Incidentally, the coordinate 

system in [6] is a global xw-yw system, while in this work a local rw-θw system (figure 

2.3) is preferred for the sake of simplicity in the application. 
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Figure 2.3 Potential field forces on the robot. 

   

 After calculating each repulsive and attractive force, the total force on the robot is 

calculated by the vector sum of these individual forces, and robot moves in the direction 

of the resultant force vector (figure 2.3). The limitations of this formulation were 

discussed in chapter 1.  

 
 

 
2.4 Design of a Layered Control System 

 
 

 In the proposed new approach a layered structure is adopted, such that instead of 

adding up the attractive and repulsive forces as in classical potential field method, these 

forces are treated separately in parallel layers, Obstacle Avoidance (OA) and Drive 

Toward Goal (DTG) layer (figure 2.4).  

 Each layer produces its own output using potential field method and these outputs 

are later combined by the behavior arbitration layer to result in the reference orientation 

of the robot for obstacle avoidance and goal tracking. 
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Figure 2.4 Layered control structure [6]. 

  
 
 

2.4.1 Obstacle Avoidance Layer 
 
 
 Using the outputs of the distance sensors, the net repulsive force is calculated and 

decomposed to its components, one along the direction of motion of the robot and one 

perpendicular to it. 
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 For safe navigation, the robot should try to keep the force component along its 

direction of motion, Fr, minimum or ideally zero. This can be achieved by changing the 

orientation of the robot, since the force components are dependent on the orientation. To 

this end, a controller can be used for the optimization. The rate of change of the force 

components with respect to the obstacle angle is, 
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Then the controls can be chosen as, 

        rr Fu &=      ,     θθ Fu &=                                                  (2.5) 
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Figure 2.5 Obstacle force components. 

 

and errors to be minimized are, 
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Now, any suitable control method can be utilized for the control of this first order 

system. In [6], sliding mode controller is used with positive definite Lyapunov function 

02 ≥⋅= eeTγ . In this work, a simple proportional controller is used, resulting in the 

following controls. 
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where Kpr and Kpθ are proportional control gains. 

Finally, using equations (2.4) and (2.7) together, the desired orientation of the 

robot for an obstacle free path can be calculated. 
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Obviously due to the function arctan(), the output will be in the range –900 to +900.  
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2.4.2 Drive Toward Goal (DTG) Layer 
 
 
 Similar to the obstacle avoidance layer, an attractive force is calculated and 

decomposed to its components in the direction of motion and perpendicular to it. 
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Figure 2.6 Goal force components. 

 

Contrary to obstacle avoidance layer, this time the force along the motion 

direction must be maximized and the perpendicular force must be minimized.  
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In this way the robot is attracted to its goal point. Calculations are the same as the 

OA layer afterwards. 

The rate of change of the force components with respect to the goal angle is 
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The controls are chosen as 

rr Fu &=      ,  θθ Fu &=                                          (2.12) 

 Errors in force components are calculated 
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 The controls are computed 
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 Finally, the desired orientation of robot for goal tracking is obtained using 
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2.4.3 Behavior Arbitration Layer 
 
 
 Having calculated two reference orientations, one for obstacle avoidance and the 

other for goal tracking, the resultant reference orientation of robot should be calculated 

by the combination of these references, which will be done by the behavior arbitration 

layer being central to the success or failure of the algorithm. The two outputs might be 

conflicting. However, the behavior arbitration should combine them in such a way that 

both obstacle avoidance and goal tracking are partially fulfilled. Dynamic weights that 

are calculated from the geometric relations between the robot, goal and obstacle are 

assigned to the outputs of the two layers, and the overall reference orientation is 

calculated by the addition of them.  

    ref
DTG

ref
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ref GTrOA θθθ ⋅+⋅= 22     (2.16) 

The weights OA and GTr in equation (2.11) are complementary, 1=+GTrOA , 

and are calculated by considering the angle between the direction of velocity vector of 

the robot and repulsive force vector on the robot (figure 2.7). 
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Figure 2.7 Behavior arbitration, calculation of weights. 
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 This formulation shows that when the obstacle is directly in front of the robot 

(θturn=1800), the weight of obstacle avoidance layer is one (OA = 1), while the weight of 

goal tracking is zero (GTr = 0). On the other hand, if the robot is moving parallel to the 

obstacle or away from the obstacle (in which case the obstacle will not probably be in 

the sensor range of the robot), the weight OA becomes zero and GTr becomes one and 

gains full priority. 

 
 
 
2.4.4 Motion Control Layer 
 
 
 Now that the reference orientation of robot has been calculated, it is time to drive 

the robot according to this reference for safe navigation. The obstacle avoidance and 

drive toward goal parallel layers give only the reference orientation of the robot and 

does not tell anything related to speed of the robot. In [6], velocity reference is taken 

constant, but it is also stated that an acceleration or deceleration can be implemented 

depending on how free of obstacles robot’s path is.  
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In the original form of potential field method, the velocity is taken to be 

proportional to the magnitude of the resultant force. If the attractive force is chosen to 

be proportional to the square of the distance from robot to goal point, the velocity 

becomes proportional to the distance to the goal. Accordingly, robot should drive fast 

when it is far away, and should naturally stop when it reaches the goal. There is of 

course an upper limit for the velocity for safe navigation. A different approach is 

implemented in this work, and it will be discussed later in this chapter. 

Having the reference orientation, θref, and velocity, Vref, a motion controller can be 

implemented according to the local coordinate system of the robot to calculate the 

individual wheel velocities assuming the robot is as defined in section 2.1.1. 

Similar to the θref calculations, separate controls are implemented in rw and θw 

components. Proportional controller is used instead of sliding mode controller. First, 

errors are calculated. 
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Where r is the distance from robot to goal point, 0=refr , since the desired 

distance is zero; θ is the reference orientation generated by behavior arbitration layer, 

and θref is zero. Figure 2.8 illustrates the parameters. 

Controls are chosen as 
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where VR and VL are right and left wheel velocity references to be used by the controller 

on the robot, L is the robot’s interwheel distance. Then the controls are calculated using 

a proportional controller. 
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where Kpr and Kpθ are the proportional control gains. Finally, wheel velocity references 

can be calculated. 
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On the robot, one more controller is required to drive the robot with these 

reference velocities. 
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Figure 2.8 Wheel velocities. 

 
  
 

2.4.5 Robot Velocity Controller 
 
 
 On the lowest level, robot should follow the velocity references sent by the upper 

layer. Open loop control is not enough due to disturbances, especially static and 

dynamic frictional effects. In fact, integrator action is required to overcome the friction. 

Therefore, a PI (Proportional + Integral) controller (figure 2.9) is used to control the 

velocity of each wheel separately. 

 

 
Figure 2.9 PI wheel velocity control. 
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2.5 Modifications, Improvements 
 
 
 The proposed solution is first implemented as it is with little change and later 

some modifications are applied for improvements or to eliminate some problems 

encountered in the experiments.  

 
 
 
2.5.1 Modified Behavior Arbitration 
 
 
 The weights of the obstacle avoidance (OA) and drive toward goal (DTG) layers 

are calculated as being proportional to the angle between the velocity vector direction 

and repulsive force direction. This might be working well in the simulations where 

inertia of the robot is probably not considered, time delay between successive samples 

is small, and there is no noise. 

 

 
Figure 2.10 Problem in the behavior arbitration. 

 

Considering a scenario as in figure 2.10 where a robot is turning around an obstacle to 

reach the goal, which is behind the obstacle, the problem occurs as follows: At the 

instant shown, the robot is moving parallel to the obstacle, in which case the output of 

OA layer has no importance since its weight is zero. However, due to the position of the 
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goal, the DTG layer produces a large output as orientation reference, and since its 

weight is, GTr=1, the resulting reference orientation for the robot will be large and in 

the direction of the goal. This will cause the robot to turn fast in the reference direction. 

If the robot has large inertia and the sampling time of sensor is also large, this situation 

will cause the robot to hit the obstacle, or at best will cause severe directional 

oscillations. 

 The modification is to change the definition of θturn in equation (2.18) to make the 

arbitration more conservative in such cases, which actually occurs frequently. 

 

 
Figure 2.11 New turning angle in behavior arbitration. 

 

 The new turning angle is calculated as the difference between the angle to 

obstacle and angle to goal point, as shown in figure 2.11 for goal point 1. New 

formulation of the weights becomes, 
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In this case, the weight of obstacle will be large since the turning angle is small 

according to equation 2.17, and the robot will continue to turn around it until it comes to 

a position where the goal is directly in front of it, like goal point 2.  
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 Another problem, which is also inherent in potential field method, is that the robot 

can not reach the goal if it is located too close to an obstacle, due to large repulsive 

forces in the vicinity of obstacle resulting in large reference orientation changes 

calculated by the OA layer. This can be relieved if the behavior arbitration layer takes 

into account the obstacle and goal distances.  

 

 
Figure 2.12 Goal is located too close to an obstacle. 

 

In figure 2.12, goal is close to an obstacle. Since the robot is approaching the 

obstacle, it will be repelled and forced to go away even though the goal is in front of it. 

In such a case, if behavior arbitration layer sets the weight of OA layer to zero, the robot 

will be able to reach the goal. This approach only relieves the problem, since for 

example, if the goal were on the other side of the obstacle, the distance to the goal 

would not be smaller while the robot is turning around the obstacle, and it will enter an 

infinite loop turning around the obstacle forever and never reaching the goal. 
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2.5.2 Velocity Reference Calculation 
 
 
 In [6], a constant velocity reference is suggested, and in classical potential field 

velocity is proportional to the distance to the goal.  

 

 
Figure 2.13 Turning ability of robot. 

 

Taking velocity constant, or proportional to the distance to the goal means there is 

always a linear velocity (V in figure 2.13) of the robot which restricts the maneuvering 

capability of the robot; for example robot cannot turn around itself or even in small arcs. 

In figure 2.13 obstacles directly in front of the robot will require the robot to take a 

sharp turn, but if the linear velocity is large, due for example to large goal distance, it 

may not be able to turn enough before hitting the obstacle. Therefore, it is necessary to 

change the velocity of the robot whenever required; for example when robot is close to 

an obstacle, slowing it down will let it safely avoid the obstacle. This requires 

establishing a relationship between the linear velocity of the robot and reference 

orientation it should turn. Although individual wheel velocity references are related to 

the reference orientation, linear velocity is not, as can be seen from equations 2.19 and 

2.21.  

In this work, the velocity reference is taken to be proportional to the goal distance 

and cosine of the reference orientation. Then equation 2.18 will be 
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act
ref

r rre −=  where )cos( ref
act rr θ⋅=    (2.23) 

 

where r is the distance from robot to the goal. This way the linear velocity of the robot 

will automatically decrease when it should take a sharp turn, providing the robot more 

flexibility. However, the robot must always have a nonzero linear velocity otherwise the 

robot might oscillate around one point continuously. Therefore, the reference 

orientation in equation 2.23 needs to be saturated, for example between [-800, +800], so 

that the robot will have a small linear velocity when it should take a sharp turn (e.g., 

when an obstacle is directly in front of it), and large linear velocity when it is going 

straight.  

 
 
 
2.5.3 Obstacle Modeling 
 
 

For simplicity obstacles are usually modeled as circles in 2D or cylinders in 3D 

space, as shown in figure 2.14, or as simple geometric shapes like rectangles. The idea 

is to treat the obstacle as a point object and put a safe distance as the radius of the 

representative circle between the point obstacle and the robot. 

  

 
Figure 2.14 Simplistic obstacle modeling. 
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Although this approach is useful in modeling simple obstacles, which are really 

nearly circular in shape (e.g., modeling other robots as circular obstacles in robot 

soccer), or in modeling complex shapes by combining circles (fig 2.14) in simulation, it 

is not appropriate in modeling complex shaped obstacles in real life as in figure 2.15.  

 

 
Figure 2.15 Complex shaped obstacle.  

 

 How should the robot perceive the continuous and complex shaped obstacle in 

figure 2.15? Putting a large representative circle around it is obviously not the solution, 

which will actually enclose the goal as well. Therefore a continuous obstacle modeling 

is necessary. Heuristics can be developed from this point on. 

 One approach could be to represent the continuous obstacle as its closest point to 

the robot, assuming closest point is the most critical for the robot to avoid.  

Another approach is to divide the sensor range of robot into discrete pies (e.g., at 

15 degrees interval) similar to VFF method (discussed in chapter 1) and taking the 

closest point in each pie as the representative of the portion of obstacle lying within that 

pie as shown in figure 2.16. Then, reference robot orientation change for each pie is 

calculated, and the maximum is selected, since maximum indicates that it is most 

critical for the robot according to the algorithm implemented. Further, the closest point 

among all the pies can be calculated and according to on which side of the robot (left, 

right) closest point lies, the maximum reference orientation on that side is taken as the 
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reference. Thus, the closest point of an obstacle does not necessarily lead to the 

maximum reference orientation change of the robot depending its angle to the robot. 

These are all heuristics, and new approaches can be developed and tested on the 

experimental system to see their performance, as is done in this work. 

 

 
Figure 2.16 Discretizing the sensor range of robot to model continuous obstacles. 
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CHAPTER 3 
 
 

       EXPERIMENTAL SETUP 
 
 
 
 

3.1 Overview 
 
 
 The heart of this work is the experimental setup, which is specially designed to be 

extended for robot soccer. It is also a very useful setup to test the mobile robot 

navigation algorithms, by just plugging in the algorithm to be tested into the software 

developed. In the following sections, the components of the setup and how it works will 

be explained. 

 
 
 
3.1.1 System Components 
 
 
 System components can be grouped into two: hardware, and software components. 

Hardware components are: 

� Camera and frame grabber 

� Personal Computer (PC) 

� Mobile robot platform  

� Wireless module 

Software components are: 

� Application running on PC 

� Application running on the robot  

� Control algorithms implemented within the applications 
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Figure 3.1 Setup hardware overview. 

 

As it is, the system is a typical robot soccer setup, described in chapter 1. 

 

 
Figure 3.2 Typical robot soccer setup [34]. 

 

These components will be discussed in detail in the following sections. 
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3.2 Data Acquisition, Image Processing 
 
 
 In order to implement the control algorithm described in chapter 2 for mobile 

robot servoing, certain parameters have to be known by sensor measurements. These are 

the distance and angle of the goal and obstacles to the robot assuming a local coordinate 

frame located at the center of the robot. These parameters can be obtained in different 

ways: ultrasonic distance sensors for obstacle detection and GPS for goal position 

information, or an overhead global vision camera for both obstacle and goal 

information. In this application a camera is used due to its advantages over the other 

methods. 

 Basically, the system acquires an image of the scene containing the robot, the goal 

and possibly some obstacles all having different colors as shown in figure 3.3. Then, 

color image processing is done to retrieve the required information (distances, angles to 

the robot) out of this image by first finding the center or representative coordinates of 

these objects. Then, the control algorithm is applied using the acquired information, and 

resulting reference wheel velocities are sent to the robot via wireless link. 

 

 
Figure 3.3 Robot, goal, and obstacles to be detected by camera. 

 

All this processing has to be done in real-time to be able to control the robot, which is 

operating in real-time. 

 The application running on the PC, and doing the required processing is written in 

C language and on windows operating system. It has a Graphical User Interface (GUI) 
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created with win32 libraries. The image processing, being central to the 

implementation, is done using Intel® Open Computer Vision (OpenCV). OpenCV is a 

cross-platform middle-to-high level Application Programming Interface (API) 

consisting of more than 300 C functions and few C++ classes that implement image 

processing operations and some popular image processing algorithms. It is free for 

commercial and noncommercial use.  

 The software will be discussed more in detail later in this chapter. 

 
 
 
3.2.1 PC Hardware 
 
 
 The main processing power of the system is a PIII 1.0 GHz PC with 512 MB of 

RAM running Windows 2000. It has a frame grabber installed for image acquisition. 

The serial port is necessary for wireless communication module and also for 

downloading the programs to the robot. 

 
 
 
3.2.2 Camera and Frame Grabber 
 
 
 Cameras have started to be extensively utilized in robotics (e.g., the main sensor 

used in robot soccer applications is a local or global vision camera), since they can 

provide extensive information that can only be acquired using a combination of several 

other sensors. For example, to implement the potential field algorithm, the position of 

the goal has to be known. This can be achieved using a GPS (global positioning 

system). Moreover, to detect the obstacles, some kind of distance sensor has to be used 

as well. In a system using a global vision camera, all the required information is 

acquired by interpreting the incoming images. On the other hand, mobile robots cannot 

use global vision except for some specific examples; therefore, other sensors will 

always be necessary to complement the deficiencies. One more disadvantage of using 

camera as a sensor is its large memory and processing power requirements, which will 

hopefully decrease in near future.  

 Unlike the one shown in figure 3.1, the camera used in this setup is a simple 

analog color camera, that can deliver images of maximum 640 by 480 pixel resolution 
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to the frame grabber, which has a maximum frame rate of 30 frames per second (fps), 

for the images to be digitized and be ready for processing in PC. 

 Camera is placed at the top of the field, therefore orthographic projection can be 

assumed, such that the distances measured at the center and sides of the image will have 

approximately the same scale. 

 
 
 
3.2.3 Color Models 
 
 
 There are several color models in use to represent digitized images, RGB, HSI, 

CMY, CMYK, YIQ, YUV, etc. RGB is the best-known and most widely used color 

model, especially in monitors and cameras. In RGB model, each color is represented by 

3 values; red (R), green (G) and blue (B), positioned along the axes of the Cartesian 

coordinate system (figure 3.4). The values of RGB are assumed to be in the range of 

[0,1] or [0-255]. This way, black is represented as (0, 0, 0), white is represented as (1, 1, 

1) or (255, 255, 255).  

 
Figure 3.4 RGB Cartesian coordinate system. 

 

 The HSI color space is a very important and attractive color model for image 

processing applications because it represents colors similar to the way that the human 

eye senses colors, and it is robust to lighting changes, contrary to RGB model, which is 

very much effected by changing light intensities. 
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 The HSI color model represents every color with three components: hue (H), 

saturation (S), and intensity (I). Figure 3.5 illustrates how the HSI color space 

represents colors. 

 The Hue component describes the color itself in the form of an angle between 

[0,360] degrees. The Saturation component signals how much the color is polluted with 

white color. The range of the S component is [0,1]. The Intensity represents the amount 

of light and its range is between [0,1] and 0 means black, 1 means white. 

 The conversion between the RGB and HSI color models is somewhat complex; 

therefore, it is not given here. OpenCV library has functions to do the conversion 

automatically. 

 
Figure 3.5 The HSI color space. 

  
 
 
3.3 Image Acquisition and Processing Details 
 
 
 As was discussed above, robot, goal and obstacles all have different colors for 

easy identification. Two patches of different colors (e.g., green, blue) on the robot are 

used to find its direction, since two points are required to define a direction vector. 
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 Images from analog color camera are digitized by the frame grabber. The digitized 

images are then converted from RGB to HSI color space. 

  After conversion to HSI color space, the individual hue and saturation channels 

are retrieved and segmented by thresholding and a logical ‘AND’ operation is applied to 

resulting two images to get the desired connected components for the desired color. A 

connected component in an image is defined as the region with pixels having the same 

values. Four-connected or eight-connected regions are formed if pixels on the four or 

eight neighbors of each pixel have the same value respectively. The process of 

acquiring the connected components is named segmentation, segmenting the image into 

regions with the same properties (e.g., same color, edge). Segmentation of an HSI 

image is described in figure 3.6. 

 

 
Figure 3.6 Segmentation of HSI image. 

 

 
Figure 3.7 Processing sequence. 
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 The sequence of operations from acquisition of an image from camera to wheel 

velocity calculations are summarized in figure 3.7 as, 

� Acquire an RGB image 

� Convert the RGB image to HSI image  

� Apply segmentation (figure 3.6) 

� Retrieve connected components 

� Apply area thresholding to get rid of spurious objects (noise) 

� Find the center coordinates of connected components (robot, goal, 

obstacles) 

� Calculate the required distances and angles 

� Apply the control method discussed in chapter 2. 

� Obtain the wheel velocity references and send them to the robot 

 These sequences of operations will now be illustrated step by step with a sample 

image in figure 3.8 taken from the experimental setup, as the system is working in real-

time. 

 
Figure 3.8 An RGB image of robot, goal and obstacle scene. 

 
 
 
3.3.1 Finding the Robot Position 
 
 
 The segmentation procedure described above is applied to one of the colored areas 

on the robot to determine the robot’s position within the image. In this case, it is applied 

to the green patch (on the back side of the robot), and the result is shown in figure 3.9. 
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 In addition to the desired green area, some noise is also acquired. To get rid of this 

noise an area threshold is applied, such that only areas larger than a threshold are 

accepted. Connected component analysis, implemented in OpenCV, is used for getting 

all the connected areas (connected components) in the threshold image, calculating their 

areas, and finding their center of gravity using moments. Then, the center coordinates of 

the green area found. Now the other patch (blue in this case) is to be found to locate the 

robot’s position and orientation in the image. 

 

 
Figure 3.9 HSI image is threshold for green to find 

the location of robot (color is inverted). 
   

 Instead of searching the entire image for blue, a window is placed around the 

green (figure 3.10) with size proportional to the image size, and only this window is 

processed. 

 
Figure 3.10 Window placed around the robot  

(RGB image for better visualization, magnified 2X). 
 

 This will not only make processing fast, but will also prevent false alarms. The 

system is not fooled if green or blue is placed in the scene unless they are placed next to 

each other as on the robot. In multiple robot soccer teams, the positions of all robots can 

be determined using a data association rule [18, 32]. Knowing the initial positions of all 
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robots and maximum velocities they can attain, a robot will be searched in a circle with 

center at the previous position and radius proportional to their maximum velocity, in the 

current image frame. This way all the robots can be identified without any problem. 

 The windowed HSI image is segmented using the same procedure (figure 3.6), 

and the result is shown in figure 3.11. Then, area thresholding is applied, and center 

coordinates of blue area are found. 

 

 
Figure 3.11 Threshold for blue. 

 

 Having found the coordinates of the two patches (green, blue), the center 

coordinates of robot are calculated by taking the midpoint of green and blue center 

coordinates; the direction of the robot is determined by the vector from center of green 

to center of blue. 

 Incidentally, the distance between the two colored patches on the robot serves as a 

reference to relate the distances from image pixels to actual distances approximately, 

assuming orthographic projection with the camera at the top. The actual distance in 

millimeters is measured and a scaling factor is calculated by dividing the distance in 

terms of pixels to the actual distance. This is important for distance calculations (e.g., 

robot’s radius is proportional to this distance) and wheel velocity calculations. When the 

camera distance to the field is changed, distance values in pixels also changes. Then a 

new scaling factor is calculated, thus making the system robust to camera distance 

changes. 
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3.3.2 Finding the Goal Position 
 
 
 Next, the coordinates of the goal point are calculated in a similar way by 

processing the entire image for the predefined color of the goal (e.g., orange). If the goal 

were static, then calculating its position only once would be enough. However, since 

both goal and obstacles are not assumed to be static (they can be static or moving), 

processing for all has to be carried out for each frame. 

  The distance from robot to goal is calculated between the center point of the robot 

and center of the goal; the radius of robot and goal is subtracted to find the net distance. 

The angle to the goal is calculated as the angle between the robot’s direction vector and 

vector from robot to goal, being positive in clockwise direction (figure 3.12).  

  

 
Figure 3.12 Robot and goal, distances, angles. 

 
 
 
3.3.3 Obstacle Detection 
 
 
  In the simplistic model of assuming obstacles as point objects and putting a 

circle around to represent their size, above-mentioned segmentation procedure is 

applied to the whole image for the color of the obstacles (e.g., red). Centers of all 

obstacles are found, then distances and angles to the robot are calculated; those within 

the sensor range of robot affect the robot, while the rest are discarded. 
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 In figure 3.13, an example of simple obstacle segmentation is given. In this 

approach, only the closest obstacle is taken into account in calculations to apply a 

repulsive force on the robot.   

 

 
Figure 3.13 Simplistic obstacle modeling. An arc shaped obstacle 

is decomposed into simple circular obstacles. 
   

 Later, a more realistic and a more efficient obstacle modeling is implemented. 

Knowing the position of the robot and its visibility range (simulating the sensor range of 

the robot), a window is placed around this visibility range and only this portion of the 

image is processed for the obstacles. 

 

 
Figure 3.14 A window is fit around the  

visibility range of robot. 
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 In figure 3.14, the semi circle around the robot demonstrates the limits of robot’s 

sensor range, and only obstacles within this circle are detected.  Same segmentation 

procedure is applied to this window for obstacles; resulting segmented image is shown 

in figure 3.15. After segmentation, several approaches are possible as discussed in 

chapter 2. 

 

 
Figure 3.15 Segmentation result of obstacle image. 

 

 
Figure 3.16 Discretizing the sensor range of robot. 
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3.3.4 Reference Orientation and Velocity Calculations 
 
 
 After calculating the distances and angles to goal and obstacles, and selecting an 

appropriate method for obstacle representation, the reference orientation of robot is 

calculated using the formulations given in chapter 2, with a proportional controller 

implemented as the force controller. Then the reference wheel velocities are calculated 

using again a proportional controller and sent to the robot via wireless link. 

 
 
 
3.3.5 Result 
 
 
 To show the results of calculations visually, a snapshot from the running program 

is given in figure 3.17. As can be seen, there are the robot, goal, and an obstacle in the 

scene. After image processing and control calculations mentioned above, actual and the 

resulting reference orientation of robot, reference wheel velocities are shown 

graphically as well as numerically on the image. Numeric values V, VL, VR show the 

linear, left and right wheel reference velocities of the robot in mm/sec; G, O, and 

TetaRef show the reference orientations from the DTG, OA and the resulting orientation 

after the behavior arbitration layer respectively. 

 

 
Figure 3.17 A snapshot from the running program, 
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 showing the results of calculations on the image. 
 

 Figure 3.17 shows the implementation result, considering the closest point of the 

obstacle.  

 

 
Figure 3.18 Discretizing the sensor range of robot. 

 

 Figure 3.18 shows the discretization of sensor range of robot. In this case, instead 

of considering the ‘closest point’ (shown in the image), most critical point on the side of 

the closest point (left of the robot in this case) is considered in the calculations. 

 Experimental results demonstrating the performance of different approaches are 

presented in chapter 4. 

 
 
 
3.4 Communicating with the Robot 
 
 
 Communication is achieved through wireless link, using wireless modules 

connected to the serial ports on the PC and robot, having 433 MHz carrier frequency 

and a baud rate of 9600 bits per second (bps). 

 Miniature UHF radio modules capable of half duplex data transmission at speeds 

up to 40 kbit/s, manufactured by BiM, are used on both the robot and PC side connected 
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to the serial ports. Thus, RS232 data is transmitted and received. Data must be 

packetised with no gaps between the bytes. Packets must be formed with the following 

rules: 

� Data must be preceded with >3ms of preamble (with the value of 55h or 

AAh) to allow the data slicer in the receiver to settle. 

� Follow by 1 or 2 bytes of value FFh to allow the receive UART to lock. 

� Follow by a unique start of message byte (of value 01h). 

� The actual data bytes 

� The CRC or checksum. 

 

 
Figure 3.19 Wireless communication packet structure. 

 

 In this work, data consists of only 3 bytes: 1 control byte, and one byte for left and 

right wheel velocities each. This brings a restriction on the largest velocity that can be 

sent, (-128 mm/s to +128mm/s), which is practically enough for this application. Larger 

values can be achieved (e.g., maximum 127 cm/s) in return for lower speed resolution.  

 
 
 
3.5 Robot 
 
 
 A picture of the original robot used in the experiments is shown in figure 3.14. It 

is designed for robot soccer, having an onboard vision camera integrated to the 

controller board, EyeCon, of the robot. However, the frame rate is so low (2-3 fps) that 

it is not satisfactory, since it cannot move at relatively high speeds due to the speed limit 

of the camera. Therefore, this camera, as well as the PSD distance sensors in front of the 

robot are not used; instead a global vision camera provides all the information to the 

robot, as has been discussed above.  
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Figure 3.20 Original robot, Eyebot [27]. 

 

 The robot has a 25 MHz 32 bit controller (Motorola M68332), 1 MB RAM, 512 

KB ROM (divided into three slots of 128 KB), 1 parallel port, 3 serial ports, 128 by 64 

pixels graphics LCD and 4 input buttons integrated on its controller board [2]. 

 The EyeCon controller of the robot runs its own operating system named RoBIOS 

(Robot Basic Input Output System) that resides in controller’s flash ROM. RoBIOS 

combines a small monitor program for loading, storing, and executing programs with a 

library of user functions that control the operation of all on-board and off-board devices. 

The library functions include displaying text graphics on the LCD, reading push-button 

status, reading sensor data, reading robot position data (very important for the control of 

the robot), driving motors, etc. It also supports thread based multitasking system with 

semaphores for synchronization [2].  
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Figure 3.21 EyeCon schematics. [27]. 

 

 The program running on the robot side is written in C language, utilizing the 

libraries provided to interface the robot hardware and software. It is compiled for the 

Motorola processor, and hex code is downloaded to the robot RAM. To keep the 

program for later use, it can be saved to one of the 3 slots of ROM. 

  

 
Figure 3.22 Wheel Velocity Control. 

 

 The program has two main purposes: it reads the incoming data continuously and 

at the same time implements a PI (Proportional + Integral) controller for each wheel 
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velocity to keep them at the desired level, taking as reference the data sent from the PC 

(figure 3.22). 

 A timer interrupt calls the controller function to implement the PI controller every 

10 milliseconds.  

 
 
 
3.6 Software Details 
 
 
 The heart of the setup is the software developed (on both the PC and robot side) to 

do all the processing.  

 
 
 
3.6.1 Application Running on the PC Side 
 
 
 The application running on the PC side does all the processing work from image 

acquisition and processing, through control algorithm implementation to sending the 

final wheel velocity references to the robot (figure 3.23). 

 

 
Figure 3.23 Processing on PC and Robot side. 

 

 The software is developed on windows 2000 platform, using Microsoft Visual 

Studio 6.0 Integrated Development Environment (IDE), compiler, linker, etc. The 
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Graphical User Interface (GUI) is created using win32 API, and image processing is 

performed using OpenCV. OpenCV dynamic link libraries (dll) have to be installed on 

the system for the program to work. 

 The software can be ported to Unix/Linux environment by changing the operating 

system related portions of the code, e.g., GUI, serial port handling. OpenCV has exactly 

the same libraries for Unix/Linux; therefore, image processing part need not be 

changed. 

 
 
 
3.6.1.1 Structure and Flow of Program 
 
 
 The program consists of different modules, each having different tasks. A 

snapshot showing the different modules is given in figure 3.24. The program is an 

example of event-driven programming. After the creation of application instance and 

GUI, the program enters an endless loop waiting for user input to process. When the 

user starts the camera, it enters the image acquisition and processing loop and at the 

same time monitors and processes user input in the background. 

 

 
Figure 3.24 A snapshot of file view of project 

from Microsoft Visual Studio 6.0 IDE. 
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� RoboCup.cpp: The entry point of the program, where the application 

instance and GUI (windows, menus, toolbar, status bar, etc.) are created. 

� vision.cpp: This file contains the main loop of the program which  starts 

running when the camera is activated by the user. It initializes, starts and 

stops the camera. It has a callback function that acquires each incoming 

image, and does all the processing by calling the functions in other modules 

(e.g., obstacle.cpp, wireless.cpp). 

�  Dialogs.cpp: processes all the inputs from the user (from menus, toolbar, or 

accelerator keys), creates dialog boxes to acquire input from the user to 

change the parameters while the program is running or idle. 

� obstacle.cpp: implements the robot control algorithm and calculates 

reference orientation and reference wheel velocities of the robot. 

� wireless.cpp: responsible for the wireless communication between the PC 

and the robot. It opens and closes the serial port; and creates the packets 

according to the requirements, and sends them whenever called from other 

modules. 

� FileOperations.cpp: responsible for creation, opening, saving, closing of files 

(e.g., text files, image files, AVI files). 

 
 
 
3.6.1.2 Graphical User Interface (GUI) 
 
 
 Much effort has been spent on the program to make it as interactive as possible 

for easy use during the experiments. The complete GUI of the program is shown in 

figure 3.25.  

 The GUI enables the user to interact with the program while it is running; for 

example, to change the control parameters online and see the result immediately. For 

this purpose, dialog boxes are created to get inputs from the user. The program allows 

the user to do the following: 

� Start, stop the camera. 
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Figure 3.25 A snapshot from the GUI of the PC side application. 

 

 

 
Figure 3.26 Serial port menu and dialog box. 
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� Change serial port options, stop the robot, exit the program running on the 

robot (figure 3.26). 

� Capture: take image snapshots at any time while the program is running, 

capture the motion history of robot, capture AVI movies with various 

compression options, save the values of some variables (forces, orientations, 

and errors used in the control algorithm) to text files for further processing. 

These capabilities are accessible through both menus and toolbar buttons 

(figure 3.27). 

 

 
Figure 3.27 Capture abilities of the program. 

 

� Change control parameters (figure 3.28). 

 

 
Figure 3.28 Control parameters dialog box. 
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� Change image processing parameters (threshold values). These changes take 

effect immediately when the user selects to apply them (figure 3.29). 

 

 
Figure 3.29 Image processing parameters dialog box. 

 
 
 
3.6.2 Robot Side Application 
 
 
 The application running on the robot side is also written in C language, utilizing 

the C libraries (RoBIOS libraries) provided by the manufacturer of the robot. A simple 

development environment emulating Linux on windows using cygwin1.dll is also 

provided, having GNU cross compiler for C/C++ and assembly, a script (gcc68) to 

compile the code for robot’s microprocessor (Motorola M68332), a utility program 

(transhex) to download the hex code to robot. The code is compiled for the 

microprocessor of the robot using the script gcc68 and downloaded to robot’s RAM by 

transhex. For later use, the program can be saved to ROM before running it. 
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The program flow is as follows: 

� Initialize the right and left wheel motors. 

� Initialize the serial port, select the serial port, set the baud rate, etc. 

� Initialize the right and left wheel motor encoders. 

� Initialize the timer for implementing a timer based interrupt for speed 

control. 

� Enter an infinite loop, continuously reading the data coming from the serial 

port. Check the control byte of the incoming data and exit if it requires. 

� While reading the incoming data, implement speed control on each motor at 

10 ms intervals, based on the timer interrupt, by getting the reference values 

from the incoming data and calculating the actual values from the encoders. 

� When exit is requested, stop the robot, release the motors, encoders, and 

timer.  
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CHAPTER 4 

 
 

    EXPERIMENTAL RESULTS 
 
 
 
 

 In this chapter, experimental results in the form of motion history images 

(showing the path of the robot from start to finish), graphs, and movies (on the attached 

CD) obtained using the setup and algorithms discussed in the previous chapters will be 

presented. Various cases will be studied to demonstrate the successful aspects as well as 

shortcomings of the algorithms and the setup. 

  
 
 
4.1 Experiment Environment 
 
 
 The robot with obstacles and goal are placed on a flat surface as shown in the 

images to follow. The images are taken at the beginning of the experiment and the 

center of the robot is marked on the image at each sampling time, thus obtaining the 

motion history of the robot.  

The workspace of the experimental setup was not large enough to try as many 

configurations as possible. No special illumination is used; experiments are carried out 

under the laboratory illumination conditions. The image processing is done at 10 fps 

due to processing power limitation; therefore the system has an effective sampling time 

of 100 ms, which is large for typical control applications.  As a result, the maximum 

speed of the robot has to be kept below a threshold (13 cm/s, which is in fact larger than 

what can be sent within a byte through wireless link) to avoid problems due to 100 ms 

delay. 
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4.2 Discrete Obstacle Modeling 
 
 

In these experiments, obstacles are modeled as point objects with a radius 

representing their size. Complex obstacles are represented by a combination of discrete 

circular obstacles. 

 
 
 
4.2.1 Experiment 1, 2 

 
 
Robot is placed behind an arc shaped obstacle, while goal point is within the arc. 

At the startup, obstacle is within the sensor range of the robot; and since the robot is 

oriented to the left of arc shape, it turns to the left continues its way on the left due to 

the nature of the algorithm. That is, direction of motion (whether from left or right) is 

determined by the initial orientation of the robot with respect to the obstacle, or vice 

versa. The robot considers only one of the discrete obstacles, the closest one, 

representing the whole obstacle. The discontinuous obstacle modeling is reflected in the 

robot’s path in the form of a low frequency oscillation around the arc. 

 

 
Figure 4.1 Avoiding an arc shaped obstacle modeled as discrete circles. 

 

This time, the closest obstacle is to the left of the robot causing the robot to follow 

on the right of the obstacle, showing the dependence on the initial orientation. 
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 In both experiments, the effect of behavior arbitration is clearly visible. 

Robot first wants to directly go to the goal; but it detects the obstacle and OA (obstacle 

avoidance) layer produces a new reference orientation which conflicts with what DTG 

(drive toward goal) layer produces. The behavior arbitration layer combines the two 

outputs by calculating a weight for each of them considering the geometric relations.  

     ref
DTG

ref
OA

ref GTrOA θθθ ⋅+⋅= 22   (Equation 2.16) 

 

 
Figure 4.2 Demonstrating the effect of initial orientation. 

Robot goes from right of the arc shaped obstacle. 
     

When the robot is heading directly towards the obstacle, ( 00=obsθ ), the OA gains full 

priority ( 0,1 == GTrOA ); when the robot’s way is clear of obstacles or 090≥obsθ  

then the DTG gains full priority ( 1,0 == GTrOA ). 

 
 
 
4.2.2 Experiment 3: Passing Through Passages 
 
  
 One of the problems of classical potential field method is that the robot cannot 

pass through closely spaced obstacles even though the passage is large enough to pass. 

This experiment shows how the implemented algorithm performs under such a case. 

 Figure 4.3 shows how the robot can successfully pass through 2 obstacles. The 

reason is that the robot considers only one obstacle (closest) at a time contrary to the 
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classical potential fields method. This approach thus offers a solution, but it has also a 

problem. When the robot is going parallel to a wall and there is a passageway on its 

side, it may be repelled away depending on how close to obstacles and where the goal 

is. 

 
Figure 4.3 Passing through passages. 

 

In figure 4.4, there is a potential passage to the goal between A and B. Since the 

closest obstacle is considered, the robot will first consider A, and then will start to 

detect B. Obstacle B will repel the robot to away from the passage due to its angle to the 

robot. Depending on the magnitudes of the references generated from OA and DTG, the 

robot may or may not pass through. In particular, if the robot is following the wall too 

closely it will not be able to pass through, since the reference orientation produced by 

OA will be large due to small distance between the robot and obstacle. 

One important problem with discrete obstacle modeling becomes apparent when 

the robot and goal position changes positions in the previous obstacle configurations 

(e.g., robot is inside the arc, goal is on the opposite side). In such a case, due to the 

discreteness and considering closest obstacle, the robot tries to go through the small 

gaps in between the small obstacles instead of perceiving the whole obstacle as an arc 

and turning around it. 
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Figure 4.4 Problem in the passageways. 

 
 
 
4.3 Modeling Continuous Obstacles 
 
 
 In these experiments, obstacles are not represented with discrete circular 

obstacles; rather, they are taken as they are. But a representative point on the continuous 

obstacle is selected as a heuristic solution. This enables the robot to see any obstacle, 

and is more realistic. 

 In figure 4.5, the closest point of all obstacles in the sensor range of robot is taken 

as the representative of all obstacles, assuming it is the most critical point for the robot. 

This is just a heuristic and its performance will be discussed. 

 The maximum speed of the robot in the following experiments is about 13 cm/sec. 

The speed is modified according to the reference orientation of the robot as discussed 

before. 

 

 



 75

 
Figure 4.5 Instantaneous image illustrating choosing the closest point as the 

representative of obstacle. 
 
 
 
4.3.1 Experiment 4: Circular Obstacles 
 
 
 Although it seems similar to the discrete obstacle case, this time instead of taking 

the center of each obstacle, the closest point is considered as in figure 4.5. Figure 4.6 

shows how smoothly the robot reaches its goal. 

 
Figure 4.6 Circular obstacles. 
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4.3.2 Experiment 5, 6,7: Complex Shaped Obstacles 
 
 
 In this experiment, the robot is placed among complex shaped obstacles as shown 

in figure 4.7. As can be seen, the path of the robot reflects the outer boundaries of the 

obstacles, showing that the robot is following the boundaries. The obstacle boundaries 

as well as the robot’s motion are quite smooth. 

 

 
Figure 4.7 Continuous complex shaped obstacles. 

 

 
Figure 4.8 An interesting path showing the maneuvering capability of robot. 
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Figure 4.8 shows the superiority of continuous modeling over discrete modeling; 

since in such a situation, robot does not follow around the obstacle in discrete modeling 

case, but tries to go in between. In continuous modeling, since there is no perceived gap, 

there is no such problem. Robot followed the obstacle boundary and finally reached the 

goal. 

Choosing the closest point of a continuous obstacle as the representative turned 

out to have one obvious problem. When the closest point is on the side of the obstacle 

as shown in figure 4.9, the OA layer will produce a reference orientation change close 

to zero, while the DTG layer will require the robot to turn right, and since the weight of 

DTG (GTr) will be significant in such situation the robot might hit the obstacle. This 

happens especially while turning around sharp edges, and the goal is placed behind the 

obstacle. 

 

 
Figure 4.9 The problem of representing an obstacle as its closest point. 

 

Figure 4.10 shown an experimental result taken for such a case, where the robot 

slightly touches the edge of the obstacle. If the goal were placed further up, then the 

result would be worse. This discussion suggests the usage of a heuristic that considers 

all the obstacle boundary and chooses the most critical point or an average of them as 

the representative in term of robot’s possibility of hitting that obstacle. 
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Figure 4.10 Experimental result showing the problem of representing 

an obstacle as its closest point. 
 
 
 
4.3.3 Experiment 9,10: Goal is too Close to Obstacle 
 
 
 One of the problems of classical potential fields, and potential field based 

methods was that when goal is placed too close to an obstacle the robot cannot reach it 

due to very large repulsive force in the vicinity of the obstacle. 

 

 
Figure 4.11 Goal is too close to an obstacle. 
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Figure 4.11 shows such an experiment, in which robot is repelled away when it is 

getting close to the goal. In the same situation, if the behavior arbitration layer considers 

the distances from robot to goal and obstacle while calculating the weights of OA and 

DTG the problem is eliminated as shown in figure 4.12. 

 

 
Figure 4.12 Solution to the problem when goal is too close to an obstacle. 

 
 
 

4.3.4 Experiment 12: An Unsolvable Problem (Inside a U-Shaped Obstacle) 
 
 
 One of the problematic cases that is not solvable with the implemented pure 

reactive control method is illustrated in figure 4.13. The robot is placed inside a U-

shaped obstacle, and goal is behind the obstacle. The robot follows the sides of obstacle 

going towards the goal until reaches the bottom of U-shape where it returns back. While 

going back the goal becomes situated either on its right or left (both goal and obstacle 

produces a reference orientation in the same direction), and it turns to that direction 

again reaching to the bottom of U-shape. This motion continues forever, as shown in the 

figure, and cannot be solved by this method. Some heuristics can be employed to get the 

robot out of the U-shape. For example, sub goal positions can be defined when such a 

situation is detected. Thus robot first gets out of the U-shape by reaching the sub goals 

and then it can proceed to reach its actual goal. 
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Figure 4.13 Robot is got stuck in a U-shaped obstacle. 

 
 
 
4.3.5 Forces Acting on the Robot 
 
 
 To illustrate the forces acting on the robot while avoiding obstacles and reaching 

goal, the following simple case is selected. 

 

 
Figure 4.14 A simple case to illustrate the forces on the robot. 
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Figure 4.15 Attractive forces from the goal. 

 

 
Figure 4.16 Repulsive forces from the obstacles. 
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 In figure 4.15, the attractive force components from the goal are shown. The 

control algorithm is trying to keep the force component in the direction of motion, Fr, 

maximum, while the force in the perpendicular direction, Fθ, minimum. The opposite is 

valid for the obstacle force components shown in 4.16. Excessive oscillations are visible 

in obstacle forces, which is expected due to the nature of the algorithm. However, these 

oscillations are not reflected to the motion of the robot this much, since the robot’s 

motion is not solely dependent on the obstacle forces, and also because robot has some 

inertia. 

 
 
 
4.3.6 Experiment 11: An Improved  Approach to Obstacle Modeling 
 
 
 In the previous approach, where obstacles were represented by their closest point 

to the robot, there were some problems in obstacle avoidance. Therefore, a new 

heuristic in which the sensor range of the robot was discretized in the form of pies (at 

10-15 degrees) and the closest point in each pie was chosen as the representative in that 

pie, is also implemented to propose a solution  (figures 2.16, 3.16). The result is shown 

in figure 4.17. This is a rather difficult obstacle configuration for the previous 

approaches since the robot is placed inside a sharp edge obstacle while the goal is 

behind it. The robot is able to successfully avoid the obstacle and reach the goal. 

 

 
Figure 4.17 Sensor range of robot is discretized in the form of pies. 
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4.3.7 Dynamic Environment 
 
 

One of the most important advantages of using a reactive control strategy is its 

ability to cope with dynamic environments; obstacles or goal may be moving. 

 

 
Figure 4.18 Robot’s path in case of moving obstacles (1). 

 

Figure 4.18 shows the motion history of the robot when one of the obstacles is 

manually moved at about the speed of the robot in the direction of the arrow. When the 

robot encountered the obstacle, it changed its direction, when its way got free it 

continued its way to reach the goal.  

Another example is shown in figure 4.19, where again one of the obstacles is 

manually moved in the direction of the arrow shown. As in the previous case, the robot 

successfully avoided the moving obstacle and reached its goal. 

There is of course a limit on the speed of the moving obstacles for which the 

algorithm can work successfully, depending on the sampling time of the system, robot’s 

speed and inertia. 
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Figure 4.19 Robot’s path in case of moving obstacles (2). 

 
 
 
4.4 Evaluation of Experimental Results 
 
 
 Experimental results have shown that some modifications and improvements have 

to be made to get satisfactory results from the implemented algorithm, which was 

claimed to work well in simulations. This is almost always the case, because it is 

usually impossible to have a complete model of the real world in simulations, or the 

model adopted in simulations may be too simple to faithfully represent the real system. 

Therefore, some modifications and improvements are suggested with experimental 

results analyzing their successful and problematic aspects. 

 The performance of the last approach, discretizing the sensor range of robot, is 

promising and is also well suited to sensors other than camera, such as ultrasonic 

distance sensors, which provide the robot with discrete model of its immediate 

environment. Therefore, the implementation is not specific to a system that uses a 

camera as sensor. 

 The overall performance of the experimental system and algorithm is satisfactory 

providing solutions to problematic cases of the similar methods in literature (e.g., 

passing through closely spaced obstacles). However, this method also has an inherent 

oscillation problem due to the discrete nature in the detection of obstacles (e.g., there is 
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an obstacle in the sensor range or not), or switching between different points on 

different obstacles. This is especially more pronounced at high speeds. All the same, the 

oscillation problem is not as pronounced as in the classical potential field method, and if 

the robot’s environment is not too much crowded with complex shaped obstacles, the 

robot’s path is smooth, and it has less oscillations as shown in the results above. 

 The large sampling time of the system, and noise from the camera and image 

processing are factors adversely affecting the performance of the system. The sampling 

time can be reduced by using a more powerful computer and optimizing the code for 

better performance, or by implementing the time consuming part of the processing 

(image processing) in hardware. Noise, on the other hand, is inherent in all sensors and 

has to be coped with within the algorithm to some extent. It can also be reduced by 

using a higher quality camera, since the camera used in the setup was of low quality. 
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   CHAPTER 5 

 
 

 CONCLUSIONS AND FUTURE WORK 
 
 
 
 
5.1 Conclusions 
 
 

In this work, a potential field based mobile robot navigation algorithm is 

implemented on a real system. Modifications for improvements, and better performance 

are suggested in the light of experimental results. The results are evaluated and the 

shortcomings of the experimental setup and algorithms used are stated. 

The performance of the system is satisfactory proposing solutions to the 

problematic cases of especially potential field based robot navigation algorithms and 

implementations, such as reducing oscillations, ability to pass through closely spaced 

obstacles, and navigation among complex shaped obstacles. 

The setup prepared is similar to a typical small-size robot soccer setup, planned to 

be the groundwork for a future robot soccer team. As it is, the setup is also very useful 

to test the mobile robot navigation algorithms. 

The only external sensor used to perceive the robot’s environment is an overhead 

global vision camera, which has started to be extensively utilized in robotics due to its 

ability to provide rich information about the environment. Due to its promising features 

and increasing performance it will be an indispensable sensor in mobile robotics. This 

work, with other similar (e.g., robot soccer), demonstrates the good performance of a 

camera as a sensor for mobile robots. 
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5.2 Future Work 

 

Stability analysis is one of the major concerns in control. Therefore, a stability 

analysis for predefined robot, goal and obstacle configurations should be done to see 

whether the implemented algorithm coupled with the experimental setup can provide a 

stable motion for the robot. Moreover, analysis of whether the robot can reach its goal 

in finite time with an appropriate controller should be done. 

The robot’s perception of the obstacles can be studied further to increase the 

performance of the robot; to cope with complex shaped obstacles better, to reduce the 

oscillations. The calculation of weights in the behavior arbitration layer to combine the 

obstacle avoidance and goal tracking might also be improved to account for problematic 

cases, like when the goal is placed too close to an obstacle. 

The implemented method is purely reactive; therefore the robot is not guaranteed 

to reach its goal in all configurations. Problematic cases exist, where robot enters an 

infinite loop unaware of its situation. In such cases, it becomes necessary to utilize 

artificial intelligence to reason and get out of deadlock situations. 

The system is designed to be the groundwork for robot soccer; thus, it can be 

easily extended by adding multiple robots, and implementing required algorithms like 

strategy development for a good game. 

Using an overhead camera as a sensor can only be implemented in special cases 

like robot soccer, and factory environments. The trend is to have local onboard vision 

capability for mobile robots, as in the living beings in nature. Therefore, the algorithms 

should be implemented on mobile robots having onboard camera and processing 

coupled with other sensors. In this case, only the processing of input data coming from 

the sensors will change since the algorithm and implementation in this work are 

developed to be compatible with such a case. 

Methods of integrating other sensors on board the robot to the algorithm should be 

considered, since such an augmentation might improve the performance of the robot. 

Finally, it is worthwhile to consider a distributed computation approach  where 

the image processing and explained algorithm work together with an onboard decision 

making algorithm on the robot which has significantly lower sampling time than vision. 
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