
I

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI

INTERFACE FOR EMBEDDED SYSTEMS

by

CİHAN TUZCU

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of Master Science

Sabancı University

May 2004

II

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI

INTERFACE FOR EMBEDDED SYSTEMS

APPROVED BY:

Assist. Prof. Dr. Ayhan BOZKURT ………………………….

(Thesis Advisor)

Assist. Prof. Dr. İlker HAMZAOĞLU ………………………….

(Jury Member)

Assist. Prof. Dr. Erkay SAVAŞ ………………………….

(Jury Member)

DATE OF APPROVAL: …………………………………

III

 Cihan TUZCU 2004

All Rights Reserved

IV

ABSTRACT

This thesis presents digital design and implementation of a controller module for

serial flash memories.

Firstly, the platform including the serial flash memory controller, flash memories

and SPI (Serial Peripheral Interface) protocol have been investigated to solve the current

problems related with controlling of serial flash memories. Then, in the implementation

part of the thesis, the Serial Flash Memory Controller module has been designed by

using VHDL (VHSIC Hardware Description Language-VHDL) and synthesized in

CMOS 0.35 µm technology. Functional and gate-level simulations have been done with

Cadence simulator. Lastly the final gate level netlist has been placed and routed with

Cadence Silicon Ensemble.

A great deal of attention has been given to design a generic controller that needs

simple software and minimum processor access cycle. It is programmed from the

processor for different operations of serial flash memories. The structure of the frame,

control data and timings are controlled by hardware according to the programmed

operation. In addition to this, our Serial Flash Memory Controller module can be used

with different flash memories. This is very important property for reusability of the

module.

The Serial Flash Memory Controller module is capable to work up to 20 MHz

serial communication speed and it can be integrated to processor platforms that have

AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus)

interface.

V

ÖZET

Bu tez seri flaş belleklerin kontrolünü sağlayan devrenin sayısal olarak tasarımı,

ve uygulanması aşamalarından oluşmuştur.

İlk olarak seri flaş bellek kontrolör bloğunun da içerisinde bulunduğu işlemci

platformu, seri flaş bellekler ve SPI (Serial Peripheral Interface) protokolu, seri flaş

belleklerin kontrolündeki mevcut problemler için araştırılmıştır. Tezin uygulama

bölümünde seri flaş bellek kontrolör bloğu VHDL (VHSIC Hardware Description

Language-VHDL) kullanılarak sayısal olarak tasarlanmış, 0.35 µm sayısal CMOS

teknolojisi kullanılarak sentezlenmiş, fonksiyonel ve kapı seviyesinde test edilmiştir.

Tezin son aşamasında, sentezlenmiş blok yerleştirme ve yol atama işlemlerinden

geçirilmiştir.

Seri flaş bellek kontrolör bloğunun jenerik olarak tasarlamasının yanında bloğun

basit bir yazilima ve minimum işlemci kontrolüne ihtiyaç duymasına büyük önem

verilmiştir. Seri flaş belleğe transfer edilecek bilginin içeriği ve SPI (Serial Peripheral

Interface) protokolüne uygun olarak gönderilmesi, seri flaş bellek kontrolör bloğu

tarafından, işlemcinin programlandığı operasyona göre kontrol edilir. Seri flaş bellek

kontrolör bloğu farklı seri flaş belleklerle kullanılabilir. Blok, işlemci tarafından seri

flaş belleklerin farklı operasyonları için programlanabilir.

Seri flaş bellek kontrolör bloğunun maksimum 20 MHz seri transfer hızına kadar

çıkabilmektedir. Blok AMBA (Advanced Microcontroller Bus Architecture) APB

(Advanced Peripheral Bus) arayüzü bulunan işlemci platformlarına entegre edilebilir.

VI

To my parents.

VII

ACKNOWLEDGEMENTS

This research begun while I was working in ST Microelectronics Istanbul Design

Center. Many, many people have helped me not to get lost during the development of

this thesis.

First, I would like to thank my Assist. Prof. Dr. Ayhan BOZKURT who

supervised and helped me so much. It was a great pleasure to me to conduct this thesis

under his supervision. I also acknowledge Assoc. Prof. Dr. Yaşar GÜRBÜZ who as my

second supervisor provided constructive comments during my thesis time.

I am very grateful to Alcatel Microelectronics and ST Microelectronics for

providing financial support to study at Sabancı University as part of a university

industry collaboration agreement.

My colleagues from ST Microelectronics supported me in my research work. I

want to thank them for all their help, support, interest and valuable hints.

Finally, I am grateful to my parents for their continuous encouragement, abundant

love and generous support they have given me throughout my life.

VIII

TABLE OF CONTENTS

1. INTRODUCTION..1

1.1. Motivation...1
1.2. Thesis Organization...2

2. PROCESSOR PLATFORM ...4

2.1. Introduction to the AMBA Buses...5
2.2. AMBA AHB ...5

2.2.1. Bus Interconnection ...7
2.2.2. Overview of AMBA AHB operation..8

2.3. AMBA APB..9
2.3.1. AMBA APB States ..11

2.4. Typical AMBA Based Microcontroller ...14
3. FLASH MEMORIES ...15

3.1. Flash Memory..15
3.1.1. NAND and NOR Flash Memories..17
3.1.2. Parallel and Serial Interface ...18

4. SPI PROTOCOL..20

4.1. SPI Protocol Signal Definition...20
4.2. SPI Functionality ...20
4.3. SPI Configuration..21
4.4. Peripheral Types..22

5. SERIAL FLASH MEMORY CONTROLLER..24

5.1. General Functional Description..25
5.1.1. APBIf ..25
5.1.2. SPIIf ..31
5.1.3. SPIClockLogic...44
5.1.4. RxFIFO ...45

5.2. Upload and Download Timings ...46
5.2.1. ATMEL: ..46
5.2.2. ST:...47
5.2.3. NEXFLASH: ...47

5.3. Functionality Comparison..48
6. SERIAL FLASH MEMORY CONTROLLER VERIFICATION........................53

6.1. Test Scenarios ...53
6.1.1. ATMEL Flash Test ..53
6.1.2. ST Flash Test:..55
6.1.3. NexFLASH Flash Test:..56

7. SERIAL FLASH MEMORY CONTROLLER SYNTHESIS..............................58

IX

7.1. Synthesis ...58
7.2. IO Timing Constraints ...59
7.3. Synthesis Results ...60
7.4. Gate-level Simulations...63

8. PLACE & ROUTE FOR SERIAL FLASH MEMORY CONTROLLER64

8.1. Floorplanning and Placement...64
8.2. Routing..65
8.3. Place&Route Results ...66
8.4. Post-layout Simulations ...69

9. FPGA IMPLEMENTATION..70

9.1. XS40 board ...70
9.2. Test Scenario for FPGA Implementation ...72
9.3. FPGA Implementation Results...75

10. CONCLUSIONS..77

11. APPENDIX A: FUNCTIONAL SIMULATIONS ..80

12. APPENDIX B: SYNTHESIS SCRIPT ...83

13. APPENDIX C: GATE-LEVEL SIMULATIONS ...85

14. APPENDIX D: BACKEND SCRIPT ...87

15. APPENDIX E: PIN DESCRIPTIONS AND SIMPLIFIED SCHEMATICS OF

XS40 BOARD ..91

16. APPENDIX F: SIMULATIONS FOR FPGA IMPLEMENTATION..................94

X

LIST OF FIGURES

Figure 2-1 Overview of processor platform ...4
Figure 2-2 Multiplexer Interconnection ...8
Figure 2-3 State Diagram ..12
Figure 2-4 Write transfer ...13
Figure 2-5 Read transfer..13
Figure 2-6 Typical AMBA Bus System...14
Figure 4-1 SPI Process ..21
Figure 4-2 SPI clocking waveforms...22
Figure 5-1Block Diagram of Serial Flash Controller Module.......................................24
Figure 5-2 Write to CTRLREG ...28
Figure 5-3 Generating StartRead signal ...29
Figure 5-4 Control of SPI operation ..30
Figure 5-5 SPIIf states...33
Figure 5-6 Internal states of ReadDataState...34
Figure 5-7 Internal states of GetPageState ...34
Figure 5-8 Internal states of WriteDataState ..35
Figure 5-9 Internal states of WritePageState..35
Figure 5-10 Internal states of WriteEnableState...36
Figure 5-11 Internal states of GetFlashStatusState...36
Figure 5-12 Internal states of SectorEraseState..37
Figure 5-13 Internal states of BulkEraseState ..37
Figure 5-14 GetFlashStatusState waveforms for Atmel Flash Memory........................39
Figure 5-15 WriteDataState waveforms for Atmel Flash Memory39
Figure 5-16 WritePageState waveforms for Atmel Flash Memory...............................39
Figure 5-17 GetPageState waveforms for Atmel Flash Memory40
Figure 5-18 ReadPageState waveforms for Atmel Flash Memory................................40
Figure 5-19 GetFlashStatusState waveforms for NexFlash Flash Memory...................41
Figure 5-20 WriteEnableState waveforms for NexFlash Flash Memory.......................41
Figure 5-21 Write to SRAM waveforms for NexFlash Flash Memory41
Figure 5-22 Transfer SRAM to Sector waveforms for NexFlash Flash Memory42
Figure 5-23 Transfer Sector to SRAM waveforms for NexFlash Flash Memory42
Figure 5-24 Read from Sector waveforms for NexFlash Flash Memory.......................42
Figure 5-25 GetFlashStatusState waveforms for ST Flash Memory43
Figure 5-26 WriteEnableState waveforms for ST Flash Memory.................................43
Figure 5-27 WriteDataState waveforms for ST Flash Memory43
Figure 5-28 WritePageState waveforms for ST Flash Memory44
Figure 5-29 ReadDataState waveforms for ST Flash Memory44
Figure 7-1 Scan cells linked to form a scan chain ..59
Figure 7-2 Synthesised SPIClockLogic block..60
Figure 7-3 Synthesised RxFIFO block...61

XI

Figure 8-1 Result of place&route ..68
Figure 9-1 Arrangement of components on XS40 board ..70
Figure 9-2 Block diagram for integration of ApbGen and ApbSPI...............................73
Figure 9-3 State machine controlling ApbGen...74
Figure 11-1 Write operation for NexFlash serial flash memory....................................80
Figure 11-2 Read operation for NexFlash serial flash memory.....................................80
Figure 11-3 Write operation for Atmel serial flash memory...81
Figure 11-4 Read operation for Atmel serial flash memory..81
Figure 11-5 Write operation for ST serial flash memory..82
Figure 11-6 Read operation for ST flash memory..82
Figure 13-1 WriteData operation for NexFlash serial flash memory85
Figure 13-2 WritePage operation for NexFlash serial flash memory85
Figure 13-3 Read Data operation for NexFlash serial flash memory86
Figure 15-1 Simplified schematic of XS40 board ..93
Figure 16-1 GetFlashStatus operation..94
Figure 16-2 Write operation ..94
Figure 16-3 Read operation ...95
Figure 16-4 WriteEnable, BulkErase and GetFlashStatus operations95
Figure 16-5 Output of logic analyzer ...96

XII

LIST OF TABLES

Table 2-1 AMBA AHB signal definitions..7
Table 2-2 AMBA APB signal definitions ..11
Table 4-1 SPI Modes...22
Table 5-1 List of I/O Interfaces for APBIf Block...26
Table 5-2 APBIf registers..27
Table 5-3 List of I/O Interfaces for SPIIf Block...32
Table 5-4 States and Opcodes Used In SPI Interface ...38
Table 5-5 List of I/O Interfaces for SPIIf Block...44
Table 5-6 List of I/O Interfaces for RxFifo Block..45
Table 5-7 Comparisons with other serial peripheral interface blocks............................48
Table 7-1 IO timing constraints for ATMEL flash memory ...59
Table 7-2 IO timing constraints for ST flash memory..60
Table 7-3Area report ...62
Table 7-4 Power report..62
Table 8-1 Design summary..66
Table 8-2 Utilization of rows...67
Table 8-3 Layer information..67
Table 8-4 Wire lengths..68
Table 9-1 Pin assignments for FPGA...72
Table 9-2 Device utilization summary...76
Table 15-1 Pin descriptions of XS40 board ...92

XIII

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

DAC Digital to Analog Converter

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read

Only Memory

HDL Hardware Description Language

LCD Liquid Crystal Display

MOS Metal Oxide Semiconductor

RAM Random Access Memory

RTC Real Time Clocks

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

I

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI

INTERFACE FOR EMBEDDED SYSTEMS

by

CİHAN TUZCU

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of Master Science

Sabancı University

May 2004

II

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI

INTERFACE FOR EMBEDDED SYSTEMS

APPROVED BY:

Assist. Prof. Dr. Ayhan BOZKURT ………………………….

(Thesis Advisor)

Assist. Prof. Dr. İlker HAMZAOĞLU ………………………….

(Jury Member)

Assist. Prof. Dr. Erkay SAVAŞ ………………………….

(Jury Member)

DATE OF APPROVAL: …………………………………

III

 Cihan TUZCU 2004

All Rights Reserved

IV

ABSTRACT

This thesis presents digital design and implementation of a controller module for

serial flash memories.

Firstly, the platform including the serial flash memory controller, flash memories

and SPI (Serial Peripheral Interface) protocol have been investigated to solve the current

problems related with controlling of serial flash memories. Then, in the implementation

part of the thesis, the Serial Flash Memory Controller module has been designed by

using VHDL (VHSIC Hardware Description Language-VHDL) and synthesized in

CMOS 0.35 µm technology. Functional and gate-level simulations have been done with

Cadence simulator. Lastly the final gate level netlist has been placed and routed with

Cadence Silicon Ensemble.

A great deal of attention has been given to design a generic controller that needs

simple software and minimum processor access cycle. It is programmed from the

processor for different operations of serial flash memories. The structure of the frame,

control data and timings are controlled by hardware according to the programmed

operation. In addition to this, our Serial Flash Memory Controller module can be used

with different flash memories. This is very important property for reusability of the

module.

The Serial Flash Memory Controller module is capable to work up to 20 MHz

serial communication speed and it can be integrated to processor platforms that have

AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus)

interface.

V

ÖZET

Bu tez seri flaş belleklerin kontrolünü sağlayan devrenin sayısal olarak tasarımı,

ve uygulanması aşamalarından oluşmuştur.

İlk olarak seri flaş bellek kontrolör bloğunun da içerisinde bulunduğu işlemci

platformu, seri flaş bellekler ve SPI (Serial Peripheral Interface) protokolu, seri flaş

belleklerin kontrolündeki mevcut problemler için araştırılmıştır. Tezin uygulama

bölümünde seri flaş bellek kontrolör bloğu VHDL (VHSIC Hardware Description

Language-VHDL) kullanılarak sayısal olarak tasarlanmış, 0.35 µm sayısal CMOS

teknolojisi kullanılarak sentezlenmiş, fonksiyonel ve kapı seviyesinde test edilmiştir.

Tezin son aşamasında, sentezlenmiş blok yerleştirme ve yol atama işlemlerinden

geçirilmiştir.

Seri flaş bellek kontrolör bloğunun jenerik olarak tasarlamasının yanında bloğun

basit bir yazilima ve minimum işlemci kontrolüne ihtiyaç duymasına büyük önem

verilmiştir. Seri flaş belleğe transfer edilecek bilginin içeriği ve SPI (Serial Peripheral

Interface) protokolüne uygun olarak gönderilmesi, seri flaş bellek kontrolör bloğu

tarafından, işlemcinin programlandığı operasyona göre kontrol edilir. Seri flaş bellek

kontrolör bloğu farklı seri flaş belleklerle kullanılabilir. Blok, işlemci tarafından seri

flaş belleklerin farklı operasyonları için programlanabilir.

Seri flaş bellek kontrolör bloğunun maksimum 20 MHz seri transfer hızına kadar

çıkabilmektedir. Blok AMBA (Advanced Microcontroller Bus Architecture) APB

(Advanced Peripheral Bus) arayüzü bulunan işlemci platformlarına entegre edilebilir.

VI

To my parents.

VII

ACKNOWLEDGEMENTS

This research begun while I was working in ST Microelectronics Istanbul Design

Center. Many, many people have helped me not to get lost during the development of

this thesis.

First, I would like to thank my Assist. Prof. Dr. Ayhan BOZKURT who

supervised and helped me so much. It was a great pleasure to me to conduct this thesis

under his supervision. I also acknowledge Assoc. Prof. Dr. Yaşar GÜRBÜZ who as my

second supervisor provided constructive comments during my thesis time.

I am very grateful to Alcatel Microelectronics and ST Microelectronics for

providing financial support to study at Sabancı University as part of a university

industry collaboration agreement.

My colleagues from ST Microelectronics supported me in my research work. I

want to thank them for all their help, support, interest and valuable hints.

Finally, I am grateful to my parents for their continuous encouragement, abundant

love and generous support they have given me throughout my life.

VIII

TABLE OF CONTENTS

1. INTRODUCTION..1

1.1. Motivation...1
1.2. Thesis Organization...2

2. PROCESSOR PLATFORM ...4

2.1. Introduction to the AMBA Buses...5
2.2. AMBA AHB ...5

2.2.1. Bus Interconnection ...7
2.2.2. Overview of AMBA AHB operation..8

2.3. AMBA APB..9
2.3.1. AMBA APB States ..11

2.4. Typical AMBA Based Microcontroller ...14
3. FLASH MEMORIES ...15

3.1. Flash Memory..15
3.1.1. NAND and NOR Flash Memories..17
3.1.2. Parallel and Serial Interface ...18

4. SPI PROTOCOL..20

4.1. SPI Protocol Signal Definition...20
4.2. SPI Functionality ...20
4.3. SPI Configuration..21
4.4. Peripheral Types..22

5. SERIAL FLASH MEMORY CONTROLLER..24

5.1. General Functional Description..25
5.1.1. APBIf ..25
5.1.2. SPIIf ..31
5.1.3. SPIClockLogic...44
5.1.4. RxFIFO ...45

5.2. Upload and Download Timings ...46
5.2.1. ATMEL: ..46
5.2.2. ST:...47
5.2.3. NEXFLASH: ...47

5.3. Functionality Comparison..48
6. SERIAL FLASH MEMORY CONTROLLER VERIFICATION........................53

6.1. Test Scenarios ...53
6.1.1. ATMEL Flash Test ..53
6.1.2. ST Flash Test:..55
6.1.3. NexFLASH Flash Test:..56

7. SERIAL FLASH MEMORY CONTROLLER SYNTHESIS..............................58

IX

7.1. Synthesis ...58
7.2. IO Timing Constraints ...59
7.3. Synthesis Results ...60
7.4. Gate-level Simulations...63

8. PLACE & ROUTE FOR SERIAL FLASH MEMORY CONTROLLER64

8.1. Floorplanning and Placement...64
8.2. Routing..65
8.3. Place&Route Results ...66
8.4. Post-layout Simulations ...69

9. FPGA IMPLEMENTATION..70

9.1. XS40 board ...70
9.2. Test Scenario for FPGA Implementation ...72
9.3. FPGA Implementation Results...75

10. CONCLUSIONS..77

11. APPENDIX A: FUNCTIONAL SIMULATIONS ..80

12. APPENDIX B: SYNTHESIS SCRIPT ...83

13. APPENDIX C: GATE-LEVEL SIMULATIONS ...85

14. APPENDIX D: BACKEND SCRIPT ...87

15. APPENDIX E: PIN DESCRIPTIONS AND SIMPLIFIED SCHEMATICS OF

XS40 BOARD ..91

16. APPENDIX F: SIMULATIONS FOR FPGA IMPLEMENTATION..................94

X

LIST OF FIGURES

Figure 2-1 Overview of processor platform ...4
Figure 2-2 Multiplexer Interconnection ...8
Figure 2-3 State Diagram ..12
Figure 2-4 Write transfer ...13
Figure 2-5 Read transfer..13
Figure 2-6 Typical AMBA Bus System...14
Figure 4-1 SPI Process ..21
Figure 4-2 SPI clocking waveforms...22
Figure 5-1Block Diagram of Serial Flash Controller Module.......................................24
Figure 5-2 Write to CTRLREG ...28
Figure 5-3 Generating StartRead signal ...29
Figure 5-4 Control of SPI operation ..30
Figure 5-5 SPIIf states...33
Figure 5-6 Internal states of ReadDataState...34
Figure 5-7 Internal states of GetPageState ...34
Figure 5-8 Internal states of WriteDataState ..35
Figure 5-9 Internal states of WritePageState..35
Figure 5-10 Internal states of WriteEnableState...36
Figure 5-11 Internal states of GetFlashStatusState...36
Figure 5-12 Internal states of SectorEraseState..37
Figure 5-13 Internal states of BulkEraseState ..37
Figure 5-14 GetFlashStatusState waveforms for Atmel Flash Memory........................39
Figure 5-15 WriteDataState waveforms for Atmel Flash Memory39
Figure 5-16 WritePageState waveforms for Atmel Flash Memory...............................39
Figure 5-17 GetPageState waveforms for Atmel Flash Memory40
Figure 5-18 ReadPageState waveforms for Atmel Flash Memory................................40
Figure 5-19 GetFlashStatusState waveforms for NexFlash Flash Memory...................41
Figure 5-20 WriteEnableState waveforms for NexFlash Flash Memory.......................41
Figure 5-21 Write to SRAM waveforms for NexFlash Flash Memory41
Figure 5-22 Transfer SRAM to Sector waveforms for NexFlash Flash Memory42
Figure 5-23 Transfer Sector to SRAM waveforms for NexFlash Flash Memory42
Figure 5-24 Read from Sector waveforms for NexFlash Flash Memory.......................42
Figure 5-25 GetFlashStatusState waveforms for ST Flash Memory43
Figure 5-26 WriteEnableState waveforms for ST Flash Memory.................................43
Figure 5-27 WriteDataState waveforms for ST Flash Memory43
Figure 5-28 WritePageState waveforms for ST Flash Memory44
Figure 5-29 ReadDataState waveforms for ST Flash Memory44
Figure 7-1 Scan cells linked to form a scan chain ..59
Figure 7-2 Synthesised SPIClockLogic block..60
Figure 7-3 Synthesised RxFIFO block...61

XI

Figure 8-1 Result of place&route ..68
Figure 9-1 Arrangement of components on XS40 board ..70
Figure 9-2 Block diagram for integration of ApbGen and ApbSPI...............................73
Figure 9-3 State machine controlling ApbGen...74
Figure 11-1 Write operation for NexFlash serial flash memory....................................80
Figure 11-2 Read operation for NexFlash serial flash memory.....................................80
Figure 11-3 Write operation for Atmel serial flash memory...81
Figure 11-4 Read operation for Atmel serial flash memory..81
Figure 11-5 Write operation for ST serial flash memory..82
Figure 11-6 Read operation for ST flash memory..82
Figure 13-1 WriteData operation for NexFlash serial flash memory85
Figure 13-2 WritePage operation for NexFlash serial flash memory85
Figure 13-3 Read Data operation for NexFlash serial flash memory86
Figure 15-1 Simplified schematic of XS40 board ..93
Figure 16-1 GetFlashStatus operation..94
Figure 16-2 Write operation ..94
Figure 16-3 Read operation ...95
Figure 16-4 WriteEnable, BulkErase and GetFlashStatus operations95
Figure 16-5 Output of logic analyzer ...96

XII

LIST OF TABLES

Table 2-1 AMBA AHB signal definitions..7
Table 2-2 AMBA APB signal definitions ..11
Table 4-1 SPI Modes...22
Table 5-1 List of I/O Interfaces for APBIf Block...26
Table 5-2 APBIf registers..27
Table 5-3 List of I/O Interfaces for SPIIf Block...32
Table 5-4 States and Opcodes Used In SPI Interface ...38
Table 5-5 List of I/O Interfaces for SPIIf Block...44
Table 5-6 List of I/O Interfaces for RxFifo Block..45
Table 5-7 Comparisons with other serial peripheral interface blocks............................48
Table 7-1 IO timing constraints for ATMEL flash memory ...59
Table 7-2 IO timing constraints for ST flash memory..60
Table 7-3Area report ...62
Table 7-4 Power report..62
Table 8-1 Design summary..66
Table 8-2 Utilization of rows...67
Table 8-3 Layer information..67
Table 8-4 Wire lengths..68
Table 9-1 Pin assignments for FPGA...72
Table 9-2 Device utilization summary...76
Table 15-1 Pin descriptions of XS40 board ...92

XIII

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

DAC Digital to Analog Converter

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read

Only Memory

HDL Hardware Description Language

LCD Liquid Crystal Display

MOS Metal Oxide Semiconductor

RAM Random Access Memory

RTC Real Time Clocks

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

1

 1. INTRODUCTION

 1.1. Motivation

An increasing number of embedded applications use in-circuit reprogrammable

memory chips. Embedded system designers have begun to use flash memory to hold a

system's code and its data, replacing solutions that include a combination of EPROM,

EEPROM, and/or flash. The flash memory included on chip allows data to be reloaded

whenever required, ie after assembly of the hardware or even after shipment at

customer’s site in case of a bug or new features. Therefore data can be loaded or

modified with the microcontroller installed in the application system.

The evolution of computer and peripherals market segment is driven by the

progress of semiconductor industry and in particular by the development of high-speed

processors that demand higher capacity, higher data processing time and faster

memories. Flash memories are ideal for the applications requiring fast code

programming and fast code downloading.

Parallel Access and Serial Access Parallel buses were primarily used to interface

flash memories with microcontrollers and microprocessors through an address bus, a

data bus and a control bus. By default, the term "Flash memory" refers to a parallel

interface memory. The data bus can be organized as x8 bits, x16 bits or x32 bits. In

some cases, address and data buses can be multiplexed.

The serial bus is used to connect a Flash memory to a microcontroller or an ASIC

equipped with a serial bus. Serial buses are input/output interfaces supporting a mixed

address/data protocol. The serial bus connectivity reduces the number of interface

signals required. For example, the SPI bus, the most popular serial bus for serial Flash,

memories, requires only 4 signals (data in, data out, clock and chip select) compared to

21 signals necessary to interface a 10-bit address parallel memory. As a result, the

2

number of pins of the memory package (memory and bus master) is reduced, as is the

number of PCB tracks. Consequently, a serial memory can fit into a smaller and less

expensive package. However, serial Flash memories are available in lower densities

than Flash memories. The communication throughput between serial Flash memory and

master processor is lower than the communication throughput between Flash memory

and master processor. Consequently, the time to download code into the serial memory

and execute it from the memory is longer. As a result, serial Flash memories are usually

used for small code storage associated with a cache RAM. This is called a code

shadowing architecture. The executable code is first programmed in the memory and it

is write protected. After power-up, it is downloaded from memory to RAM from where

it is executed by the master processor.

The main purpose of this thesis is to design a controller for serial flash memories

to be used in embedded applications. Moreover, it has been tried to design the whole IP

architecture as generic as possible. So that it can be used with different serial flash

memories.

 1.2. Thesis Organization

The goal of this thesis is to design a controller for fast and reliable communication

between the processor and the serial flash memories in embedded applications.

In order to understand where the serial flash memory controller module is used

and what the complete system looks like, we need to have a closer look to the structure

of a processor platform. Chapter 2 gives an introductory knowledge about on-chip

communications standard for designing high-performance embedded microcontrollers.

Chapter 3 gives an overview of flash memories. Firstly the structures of different

types of flash memories are explained and then parallel and serial interfaces for flash

memories are compared.

Serial Flash memories have serial peripheral interface to transfer data. Chapter 4

covers the serial peripheral interface protocol. Firstly the structure and the functionality

of SPI is introduced. Then the configuration parameters for serial peripheral interface

are explained. Lastly where SPI is used in practice is covered in this chapter.

Chapter 5 contains detailed explanation of serial flash memory controller module.

After introducing the properties of controller module, detailed functional descriptions

3

for each of subblocks are given. Then upload and download timings for different flash

memories are calculated. Also the comparison made between our serial flash memory

controller module and several different SPI master modules. The configuration of serial

flash memory controller module is also given in this part.

Chapter 6 covers the test scenarios, which we used to verify our design, for

different flash memories.

Synthesis results in terms of area and power consumption estimations for serial

flash memory controller are covered in chapter 7.

The results for place and route of serial flash memory controller is given in

chapter 8.

Chapter 9 includes the details for FPGA implementation of serial flash memory

controller. FPGA board used for this application and the test environment are explained

in this chapter.

Finally, some conclusions are drawn for the overall assessment of the study and

some possible future research topics are pointed in chapter 10.

4

 2. PROCESSOR PLATFORM

The hardware, including the Serial Flash Controller, is a clean and stable

processor platform that can be reused in different product lines. The kernel of the

platform is the AMBA AHB and APB bus system.

The platform can be based on any processor core, which has a direct AHB

interface or an appropriate wrapper for the AHB bus (ARM7 and ARM9 family).

The overview of the hardware platform is illustrated in Figure 2-1.

Figure 2-1 Overview of processor platform

The AMBA AHB is a multimaster multislave high-speed bus that is controlled via

an Arbiter and an Address Decoder. The AMBA APB bus is a single master multislave

low speed bus. Both busses, AHB and APB, are accessible from outside.

Processor platform includes a bridge from the AHB to the APB bus that is slave

on the AHB and a master on the APB side.

AHB to APB
BRIDGE

ARM
PROCESSOR

DPRAMROM

AHB

ADDRESS
DECODER

APB

APBSPIUARTTIMER

Serial Flash
Memory0

Serial Flash
Memory1

Serial Flash
Memory2

Serial Flash
Memory3

5

 2.1. Introduction to the AMBA Buses

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an

on-chip communications standard for designing high-performance embedded

microcontrollers [2].

Two distinct buses are defined within the AMBA specification:

• the Advanced High-performance Bus (AHB)

• the Advanced Peripheral Bus (APB)

The AMBA AHB is for high-performance, high clock frequency system modules.

The AHB acts as the high-performance system backbone bus. AHB supports the

efficient connection of processors, on-chip memories and off-chip external memory

interfaces with low-power peripheral macrocell functions. AHB is also specified to

ensure ease of use in an efficient design flow using synthesis and automated test

techniques.

The AMBA APB is for low-power peripherals. AMBA APB is optimised for

minimal power consumption and reduced interface complexity to support peripheral

functions. APB can be used in conjunction with either version of the system bus.

 2.2. AMBA AHB

AHB is a new generation of AMBA bus, which is intended to address the

requirements of high-performance synthesizable designs. AMBA AHB is a new level of

bus, which sits above the APB, and implements the features required for high-

performance, high clock frequency systems including:

• burst transfers

• split transactions

• single cycle bus master handover

• single clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

Table 2-1 contains an overview of the AMBA AHB signals.

6

Name Description

HCLK
Bus clock:
This clock times all bus transfers. All signal timings
are related to the rising edge of HCLK.

HRESETn
Reset:
The bus reset signal is active LOW and is used to reset
the system and the bus. This is the only active LOW
signal.

HADDR[31:0] Address bus:
The 32-bit system address bus.

HTRANS[1:0]
Transfer type:
Indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE
Transfer direction:
When HIGH this signal indicates a write transfer and
when LOW a read transfer.

HSIZE[2:0]

Transfer size:
Indicates the size of the transfer, which is typically
byte (8-bit), halfword (16-bit) or word (32-bit). The
protocol allows for larger transfer sizes up to a
maximum of 1024 bits.

HBURST[2:0]
Burst type:
Indicates if the transfer forms part of a burst. Four,
eight and sixteen beat bursts are supported and the
burst may be either incrementing or wrapping.

HPROT[3:0]

Protection control:
The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that wishes to
implement some level of protection. The signals
indicate if the transfer is an opcode fetch or data
access, as well as if the transfer is a privileged mode
access or user mode access. For bus masters with a
memory management unit these signals also indicate
whether the current access is cacheable or bufferable.

HWDATA[31:0]

Write data bus:
The write data bus is used to transfer data from the
master to the bus slaves during write operations. A
minimum data bus width of 32 bits is recommended.
However, this may easily be extended to allow for
higher bandwidth operation.

HSELx

Slave select:
Each AHB slave has its own slave select signal and
this signal indicates that the current transfer is intended
for the selected slave. This signal is simply a
combinatorial decode of the address bus.

HRDATA[31:0] Read data bus:
The read data bus is used to transfer data from bus

7

slaves to the bus master during read operations. A
minimum data bus width of 32 bits is recommended.
However, this may easily be extended to allow for
higher bandwidth operation.

HREADY
Transfer done:
When HIGH the HREADY signal indicates that a
transfer has finished on the bus. This signal may be
driven LOW to extend a transfer.

HRESP[1:0]
Transfer response:
The transfer response provides additional information
on the status of a transfer. Four different responses are
provided, OKAY, ERROR, RETRY and SPLIT.

Table 2-1 AMBA AHB signal definitions

2.2.1. Bus Interconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexer

interconnection scheme. Using this scheme all bus masters drive out the address and

control signals indicating the transfer they wish to perform and the arbiter determines

which master has its address and control signals routed to all of the slaves. A central

decoder is also required to control the read data and response signal multiplexer, which

selects the appropriate signals from the slave that is involved in the transfer.

Figure 2-2 illustrates the structure required to implement an AMBA AHB design

with three masters and four slaves.

8

Figure 2-2 Multiplexer Interconnection

2.2.2. Overview of AMBA AHB operation

Before an AMBA AHB transfer can commence, the bus master must be granted

access to the bus. The master starts this process by asserting a request signal to the

arbiter. Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer by driving the address and

control signals. These signals provide information on the address, direction and width of

the transfer, as well as an indication if the transfer forms part of a burst. Two different

forms of burst transfers are allowed:

• incrementing bursts, which do not wrap at address boundaries

• wrapping bursts, which wrap at particular address boundaries.

Master#1

Master#3

Master#2

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

Slave#1

Slave#2

Slave#3

Slave#4

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

Arbiter

Decoder

Address and
control mux

Write data mux

Read data mux

9

A write data bus is used to move data from the master to a slave, while a read data

bus is used to move data from a slave to the master.

Every transfer consists of:

• an address and control cycle

• one or more cycles for the data.

The address cannot be extended and therefore all slaves must sample the address

during this time. The data, however, can be extended using the HREADY signal. When

LOW this signal causes wait states to be inserted into the transfer and allows extra time

for the slave to provide or sample data.

During a transfer the slave shows the status using the response signals,

HRESP[1:0]:

• OKAY

The OKAY response is used to indicate that the transfer is progressing normally

and when HREADY goes HIGH, the transfer has completed successfully.

• ERROR

The ERROR response indicates that a transfer error has occurred and the transfer

has been unsuccessful.

• RETRY and SPLIT

Both the RETRY and SPLIT transfer responses indicate that the transfer cannot

complete immediately, but the bus master should continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular

burst before the arbiter grants another master access to the bus. However, in order to

avoid excessive arbitration latencies it is possible for the arbiter to break up a burst and

in such cases the master must re-arbitrate for the bus in order to complete the remaining

transfers in the burst.

 2.3. AMBA APB

The APB is part of the AMBA hierarchy of buses and is optimised for minimal

power consumption and reduced interface complexity. The AMBA APB appears as a

local secondary bus that is encapsulated as a single AHB slave device. APB provides a

low-power extension to the system bus, which builds on AHB signals directly. The APB

bridge appears as a slave module, which handles the bus handshake and control signal

10

retiming on behalf of the local peripheral bus. The AMBA APB should be used to

interface to any peripherals, which are low bandwidth and do not require the high

performance of a pipelined bus interface. All signal transitions are only related to the

rising edge of the clock.

An AMBA APB implementation typically contains a single APB bridge, which is

required to convert AHB transfers into a suitable format for the slave devices on the

APB. The bridge provides latching of all address, data and control signals, as well as

providing a second level of decoding to generate slave select signals for the APB

peripherals.

The APB bus is characterized by:

• a simple bus unpipelined architecture

• easy to implement with all the peripherals acting as slaves

• low gate count

• low power

• reduced loading of the main system bus by isolating peripherals behind the

bridge

• peripheral bus signals only active during low bandwidth peripheral transfers.

A simple APB interface is recommended for:

• simple register-mapped slave devices

• very low power interfaces where clocks cannot be globally routed

• grouping narrow-bus peripherals to avoid loading the system bus.

AMBA APB signal names with a description is given in Table 2-2.

11

Name Description

PCLK
Bus clock:
The rising edge of PCLK is used to time all transfers on
the APB.

PRESETn

APB reset:
The APB bus reset signal is active LOW and this signal
will normally be connected directly to the system bus reset
signal.

PADDR[31:0]
APB address bus:
This is the APB address bus, which may be up to 32-bits
wide and is driven by the peripheral bus bridge unit.

PSELx

APB select:
A signal from the secondary decoder, within the peripheral
bus bridge unit, to each peripheral bus slave x. This signal
indicates that the slave device is selected and a data
transfer is required. There is a PSELx signal for each bus
slave.

PENABLE

APB strobe:
This strobe signal is used to time all accesses on the
peripheral bus. The enable signal is used to indicate the
second cycle of an APB transfer. The rising edge of
PENABLE occurs in the middle of the APB transfer.

PWRITE
APB transfer direction:
When HIGH this signal indicates an APB write access and
when LOW a read access.

PRDATA

APB read data bus:
The read data bus is driven by the selected slave during
read cycles (when PWRITE is LOW). The read data bus
can be up to 32-bits wide.

PWDATA

APB write data bus:
The write data bus is driven by the peripheral bus bridge
unit during write cycles (when PWRITE is HIGH). The
write data bus can be up to 32-bits wide.

Table 2-2 AMBA APB signal definitions

2.3.1. AMBA APB States

Figure 2-3 shows AMBA APB state diagram.

12

Figure 2-3 State Diagram

IDLE state is the default state for the peripheral bus.

When a transfer is required the bus moves into the SETUP state, where the

appropriate select signal, PSELx, is asserted. The bus only remains in the SETUP state

for one clock cycle and will always move to the ENABLE state on the next rising edge

of the clock.

In the ENABLE state the enable signal, PENABLE is asserted. The address, write

and select signals all remain stable during the transition from the SETUP to ENABLE

state. The ENABLE state also only lasts for a single clock cycle and after this state the

bus will return to the IDLE state if no further transfers are required. Alternatively, if

another transfer is to follow then the bus will move directly to the SETUP state. It is

acceptable for the address, write and select signals to glitch during a transition from the

ENABLE to SETUP states.

2.3.1.1. Write Transfer

The waveform of write transfer is shown in Figure 2-4.

IDLE
PSELx = 0

PENABLE = 0

SETUP
PSELx = 1

PENABLE = 0

ENABLE
PSELx = 1

PENABLE = 1

TRANSFER

NO
TRANSFER

TRANSFER
NO

TRANSFER

13

Figure 2-4 Write transfer

The write transfer starts with the address, write data, write signal and select signal

all changing after the rising edge of the clock. The first clock cycle of the transfer is

called the SETUP cycle. After the following clock edge the enable signal PENABLE is

asserted, and this indicates that the ENABLE cycle is taking place. The address, data

and control signals all remain valid throughout the ENABLE cycle. The transfer

completes at the end of this cycle.

The enable signal, PENABLE, will be deasserted at the end of the transfer. The

select signal will also go LOW, unless the transfer is to be immediately followed by

another transfer to the same peripheral.

In order to reduce power consumption the address signal and the write signal will

not change after a transfer until the next access occurs.

2.3.1.2. Read Transfer

The waveform of read transfer is shown in Figure 2-5.

Figure 2-5 Read transfer

P C LK

P AD D R

P W R ITE

P S E L

P E N AB LE

P W D ATA

A D D R 1

P C L K

P A D D R

P W R IT E

P S E L

P E N A B L E

P W D A T A

A D D R 1

D A T A 1

14

The timing of the address, write, select and strobe signals are all the same as for

the write transfer. In the case of a read, the slave must provide the data during the

ENABLE cycle. The data is sampled on the rising edge of clock at the end of the

ENABLE cycle.

 2.4. Typical AMBA Based Microcontroller

An AMBA-based microcontroller typically consists of a high-performance system

backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory

bandwidth, on which the CPU, on-chip memory and other Direct Memory Access

(DMA) devices reside. This bus provides a high-bandwidth interface between the

elements that are involved in the majority of transfers. Also there is a bridge to the

lower bandwidth APB, located on the high-performance bus. Most of the peripheral

devices in the system are located on the APB. Figure 2-6 shows the structure of typical

AMBA bus system.

Figure 2-6 Typical AMBA Bus System

High Bandwidth
External Memory

Interface

High-Performance
ARM Processor

High-Bandwidth
On-Chip RAM

DMA Bus
Master

B
RIDG

E

UART

KEYPAD

TIMER

PIO

AHB

AHB to APB Bridge

APB

15

 3. FLASH MEMORIES

 3.1. Flash Memory

Flash memory is a type of electronic memory increasingly used in a wide range of

communications, consumer, computer and peripherals, and automotive applications, but

which relatively few semiconductor companies can produce in volume at the low cost

equipment manufacturers require.

Flash belongs to the class of semiconductor memories called non-volatile

memories, of which it is the most dynamic driving force. Semiconductor memories can

be divided into two different types: those that can only retain data stored in them while

they are connected to a battery or some other source of electrical power (volatile), and

those that retain their data even if their power supply is removed (non-volatile).

Flash memories can be electrically erased and it is not necessary to erase the

whole memory array in order to store new data in part of it.

Flash memory, EPROM and EEPROM devices all use the same basic floating gate

mechanism to store data, but they use different techniques for reading and writing data.

In each case, the basic memory cell consists of a single MOS transistor (MOSFET) with

two gates:

• control gate connected to the read/write control circuitry

• floating gate located between the control gate and the channel of the MOSFET

(the part of the MOSFET through which electrons flow between the so-called

Source and Drain terminals).

In a standard MOSFET, a single Gate terminal controls the electrical resistance of

the channel: electrical voltage applied to the gate controls how much current can flow

between the Source and Drain. The MOSFETs used in non-volatile memories include a

second gate that is completely surrounded by an insulating layer of silicon dioxide, i.e.,

16

it is electrically isolated from the rest of the circuitry. Because the floating gate is

physically very close to the MOSFET channel, even a small electric charge has an

easily detectable effect on the electrical behavior of the transistor. By applying

appropriate signals to the control gate and measuring the change in transistor behavior,

it is possible to determine whether there is an electrical charge on the floating gate.

Because the floating gate is electrically isolated from the rest of the transistor, special

techniques are required to move electrons to and from the floating gate.

One method is to fill the MOSFET channel with high-energy electrons by making

a relatively high current pass between the drain and the source of the MOSFET. Some

of these "hot" electrons have sufficient energy to cross the potential barrier between the

channels and reach the floating gate. When the high current in the channel is removed,

these electrons remain trapped in the floating gate. This is the method used to program

the memory cells in EPROM and Flash memories. This technique, known as Channel

Hot Electron (CHE) injection, can be used to load an electrical charge onto the floating

gate, but does not provide a way to discharge it. EPROM technology achieves this by

flooding the entire memory array with ultra-violet light; the high-energy light rays

penetrate the chip structure and impart enough energy to the trapped electrons to allow

them to escape from the floating gate.

The second method of moving a charge to a floating gate is the quantum

mechanical effect known as tunneling. In this method electrons are removed from the

floating gate by applying a voltage that is large enough to cause electrons to 'tunnel'

across the insulating oxide layer to the source between the MOSFET control gate and

the source or the drain. The number of electrons that can tunnel across an insulating

layer in a given time depends on the thickness of the layer and the value of the applied

voltage. To meet realistic voltage levels and erase-time constraints, the insulating layer

must be very thin, typically 7nm (70 Angstroms).

EEPROM memories use tunneling to charge and discharge the floating gate

according to the polarity of the applied tunneling voltage. A Flash memory can

therefore be considered to be a memory device that is programmed like an EPROM and

erased like an EEPROM, although there is much more to Flash technology than simply

grafting the EEPROM erase mechanism onto EPROM technology.

The most important difference between EPROM and the other two processes lies

in the thickness of the oxide layer that separates the floating gate from the source. In an

EPROM, this is typically 20-25nm, but this is far too thick to allow tunneling to take

17

place at an acceptable rate with a practical voltage level. For Flash memory, tunnel

oxide thickness of around 10nm is required, and the quality of this oxide layer has a

dramatic effect on the performance and reliability of the device. This is one of the

reasons that relatively few semiconductor manufacturers have mastered Flash

technology and even fewer have been able to reliably combine Flash technology and

mainstream CMOS processes to build products such as microcontrollers with embedded

Flash memory.

3.1.1. NAND and NOR Flash Memories

Although all flash memories use the same basic storage cell, there are a number of

ways in which the cells can be interconnected within the overall memory array. The two

most prominent architectures are known as NOR and NAND; these terms, derived from

traditional combinatorial logic, indicate the topology of the array and the manner in

which individual cells are accessed for reading and writing. Initially, there was a basic

distinction between these two fundamentally different architectures, with NOR devices

exhibiting inherently faster read times and NAND devices offering higher storage

densities (because the NAND cell is about 40% smaller than the NOR cell). NOR Flash

memories are considered to be the best choice for densities up to 256 Mbits, while

NAND types are preferred for 512-Mbits and up. This is the best compromise between

large data storage capacities and cell size - and consequently, final die size.

3.1.1.1. NOR Flash Memory

NOR-type Flash memories are based on technologies that evolved largely from the

first non-volatile memory technologies. They are typically organized as a number of

blocks between 16 Kbytes and 128 Kbytes, each of which can be individually erased or

programmed. The architecture can be either uniform if all of the blocks are the same

size or asymmetrical when the blocks vary in size. The array can be organized as a

single piece of memory or split into dual or multiple banks, and in some cases, one

block (called boot block) located at the top or the bottom of the address space, is

dedicated to the storage of the boot code. NOR Flash memories usually have a random

access for reading at byte/word level and sometimes a page access mode, allowing the

18

reader to view an entire page of 2 to 4 words in one go. When very rapid read

operations are required, the Flash memory is equipped with a burst read mode, which

allows data to be transferred on every clock cycle.

3.1.1.2. NAND Flash Memory

Flash Memories can also be organized in NAND arrays by connecting cells in

series. They feature parallel interface, higher storage densities (up to 1 Gbit), faster

erase time, and slower random access time compared with the NOR type. For these

reasons, they are used for storing large amounts of data, such as music files and digital

images, handled by digital consumer applications. NAND Flash memories are

organized into small blocks of 8 Kbytes to 16 Kbytes. Each block is divided into pages,

usually 512-Bytes long, which can be read and programmed as a whole. This

organization perfectly fits the data format widely used by mass storage systems such as

floppy disks and hard disks. NAND flash memories are not suitable for direct code

execution because of their slow access times, even if some of the last generation

microcontrollers equipped with integrated cache memory can use NAND Flash to

manage code and data storage. In addition, standard NAND Flash memories have a

multiplexed data/address bus that reduces the device pin count and enables density

upgrades within a single footprint.

3.1.2. Parallel and Serial Interface

Parallel Access and Serial Access Parallel buses were primarily used to interface

flash memories with microcontrollers and microprocessors through an address bus, a

data bus and a control bus. By default, the term "Flash memory" refers to a parallel

interface memory. The data bus can be organized as x8 bits, x16 bits or x32 bits. In

some cases, address and data buses can be multiplexed. They are available in densities

of up to 128 Mbits. Because of their rapid read times, Flash memories are traditionally

used for basic code or code-plus-parameter storage where greater flexibility compared

to EPROM is more important than the additional unit cost. More recently, they have

pervaded many new applications where their key functions are to store both code and

data. This was achieved by dual operations supported by dual or multiple bank

19

architecture, which enable programming/erasing operations in one bank while reading

from another bank.

The serial bus is used to connect a Flash memory to a microcontroller or an ASIC

equipped with a serial bus. Serial buses are input/output interfaces supporting a mixed

address/data protocol. The serial bus connectivity reduces the number of interface

signals required. For example, the SPI bus, the most popular serial bus for serial Flash

memories, requires only 4 signals (data in, data out, clock and chip select) compared to

21 signals necessary to interface a 10-bit address parallel memory. As a result, the

number of pins of the memory package (memory and bus master) is reduced, as is the

number of PCB tracks. Consequently, a serial memory can fit into a smaller and less

expensive package. However, serial Flash memories are available in lower densities

than Flash memories. The communication throughput between serial Flash memory and

master processor is lower than for traditional Flash memories. Consequently, the time to

download code into the serial memory and execute it from the memory is longer. As a

result, serial Flash memories are usually used for small code storage associated with a

cache RAM. This is called a code shadowing architecture. The executable code is first

programmed in the memory and it is write protected. After power-up, it is downloaded

from memory to RAM from where it is executed by the master processor.

20

 4. SPI PROTOCOL

The Serial Peripheral Interface (SPI) is a synchronous, serial data link that is

standard across microprocessors, microcontrollers and peripherals. It enables

communication between microprocessors, peripherals and inter-processor

communication, and is widely used to connect peripherals to each other and to

microprocessors.

 4.1. SPI Protocol Signal Definition

The interface uses a 3-wire bus plus a chip/slave select line for each device

connected to the bus. The three bus lines are as follows:

• SCLK - the clock signal used for synchronizing data transfers. It is generated

by the bus "Master"

• MISO - Master In Slave Out. Line used for sending data from a slave to the

master.

• MOSI - Master Out Slave In. Line used for sending data from the master to a

slave.

 4.2. SPI Functionality

Each device connected to the bus can be selected by the bus master using a

dedicated SS (Slave Select) line. It is possible to have more than one master hanging off

the bus, but only one master can be active at any given time. The implication of this

configuration is that the bus master has to have as many lines as there are devices to

drive each of the SS lines.

21

When the master initiates a data transfer, the master writes a bit to the MOSI line

and reads a bit from the MISO at the same time on every cycle of the SCLK signal. The

data is transferred through a simple shift register transfer scheme where the data is

clocked into and out of devices on a first-in, first-out basis. This means that every data

transfer results in an exchange of bits between the master and the slave (each device is

simultaneously a transmitter and a receiver), making it a full duplex serial interface.

When a device is not selected, it must tri-state (release) the output (MISO) line.

Through buffering, it would be possible to drive more than one receive-only device, but

not more than one transmit-only or receive and transmit device since there would be a

contention issue on the MISO line.

The block diagram of this process is shown in Figure 4-1.

Figure 4-1 SPI Process

Usually, in synchronous serial protocols, data is clocked out on one edge and

clocked in on the other edge to reduce clock skew errors.

 4.3. SPI Configuration

Because there is no official specification, what exactly SPI is and what not, it is

necessary to consult the data sheets of the components one wants to use. Important are

the permitted clock frequencies and the type of valid transitions.

There are no general rules for transitions where data should be latched. Although

not specified, in practice four modes are used. These four modes are the combinations

of clock polarity and clock phase. In Table 4-1, the four modes are listed.

Shift Register Shift Register

Clock
Generator

Master Slave

MOSI

MISO

SS

SCLK

22

SPI Mode Clock Polarity Clock Phase

0 0 0

1 0 1

2 1 0

3 1 1

Table 4-1 SPI Modes

If the phase of the clock is zero, data is latched at the rising edge of the clock with

polarity of the clock equals zero, and at the falling edge of the clock with polarity of the

clock equals one. If the phase of the clock is one, the polarities are reversed. Polarity of

the clock equals zero means falling edge and polarity of the clock equals one means

rising edge.

The waveforms are shown in Figure 4-2.

Figure 4-2 SPI clocking waveforms

 4.4. Peripheral Types

Peripheral types that can be connected to the host processor through the SPI

interface can be subdivided into the following categories:

• Converters (ADC and DAC)

MOSI B7 B6 B5 B4 B3 B2 B1 B0

MISO B7 B6 B5 B4 B3 B2 B1 B0

SCLK
PHA=0,POL=0

SCLK
PHA=0,POL=1

SCLK
PHA=1,POL=0

SCLK
PHA=1,POL=1

23

• Memories (EEPROM and FLASH)

• Real Time Clocks (RTC)

• Sensors (temperature, pressure)

• Others (signalmixer, potentiometer, LCD controller, UART, USB controller,

amplifier)

In the three categories, converters, memories and RTCs, there is a great variety of

components. Devices belonging to the last two groups are more rarely.

There are lots of converters with different resolutions, clock frequencies and

number of channels to choose from. (8, 10, 12 up to 24Bit with clock frequencies from

30ksps up to 600ksps).

Memory devices are mostly EEPROM variants. There are also a few SPI flash

memories. Capacities range from a couple of bits up to 64KBit. Clock frequencies up to

3MHz. Serial EEPROMS SPI are available for different supply voltages (2.7V to 5V)

allowing their use in low-voltage applications. The data retention time duration from 10

years to 100 years. The permitted number of write accesses is 1 million cycles for most

components. By cascading memory devices any number of bits/word can be obtained.

RTCs are ideally suited for serial communication because only small amounts of

data have to be transferred. There is also a great variety of RTCs with supply voltages

from 2.0V. In addition to the standard functions of a "normal" clock, some RTCs offer

an alarm function, non-volatile RAM etc.

The group of the sensors is yet weakly represented. Only a temperature and a

pressure sensor could be found.

USB controllers with SPI make it easier to use these protocols on a micro

controller and interfacing a LCD via SPI saves the troublesome parallel wiring.

24

 5. SERIAL FLASH MEMORY CONTROLLER

Serial Flash Memory Controller module provides four-wire synchronous, serial

communication with peripheral devices. It has the following features:

• Programmable through the AMBA APB bus by a host CPU.

• Master operation.

• Common data clock to receive and transmit data.

• Receive FIFO.

• SPI operation completed and FIFO overrun interrupts.

• Four external peripheral selects.

The Serial Flash Memory Controller module is split into four blocks:

• APB Interface

• SPI Interface

• SPIClockLogic

• RxFIFO

Block diagram of SPI block is depicted in Figure 5-1.

Figure 5-1Block Diagram of Serial Flash Controller Module

APB Interface

RxFIFO
4x32bit

SPIClock
Logic

SPI Interface

ResetNot

APBSelect
APBEnable

APBAddr(15:0)
APBWrite
APBDataWrite(31:0)

APBDataRead(31:0)

SPInCS(3:0)

DinSPI

DOutSPI

SPIClock_Out

FlashTypeSel(1:0)

25

 5.1. General Functional Description

5.1.1. APBIf

This block ensures the APB bus interfacing. It provides communication with the
controller.

5.1.1.1. Interfaces

Name Size Direction Description
APBClock 1 I Clock
APBResetNot 1 I Reset
APB Interface

APBSelect 1 I Chip select for APBSPI
module

APBEnable 1 I Enables APBSPI operation

APBAddr 16 I Address input to APBSPI
module

APBWrite 1 I Write/Read enable input
APBDataWrite 32 I Data input to APBSPI module

APBDataRead 32 O Data output from APBSPI
module

Intr 1 O Interrupt output
SPIIf Interface
WriteDataReg 32 O Data output to SPIIf

ReadLengthReg 10 O Length of the data that is read
from the flash

AddrReg 32 O Flash memory address of the
data

SPInCSReg 2 O Chip select output to SPIIf

StartRead_sig 1 O Enable signal to send read
opcode

GetPage_sig 1 O Enable signal to send GetPage
opcode

WriteData_sig 1 O Enable signal to send
WriteData opcode

WritePage_sig 1 O Enable signal to send
WritePage opcode

GetFlashStatus_sig 1 O Enable signal to send
GetFlashStatus opcode

26

WriteEnable_sig 1 O Enable signal to send
WriteEnable opcode

SectorErase_sig 1 O Enable signal to send
SectorErase opcode

BulkErase_sig 1 O Enable signal to send
BulkErase opcode

StartRead_captured 1 I Indicates that the Read
operation is started

GetPage_captured 1 I Indicates that the GetPage
operation is started

WriteData_captured 1 I Indicates that the WriteData
operation is started

WritePage_captured 1 I Indicates that the WritePage
operation is started

GetFlashStatus_captured 1 I
Indicates that the
GetFlashStatus operation is
started

WriteEnable_captured 1 I Indicates that the WriteEnable
operation is started

SectorErase_captured 1 I Indicates that the SectorErase
operation is started

BulkErase_captured 1 I Indicates that the BulkErase
operation is started

Busy 1 I Indicates that SPIIf is busy
RxFIFO Interface
Data_in 32 I Data input from RxFIFO
FIFORE 1 O Read Enable output to RxFIFO
EmptyFlag 1 I FifoEmpty input from RxFIFO
FullFlag 1 I FifoFull input from RxFIFO

Table 5-1 List of I/O Interfaces for APBIf Block

5.1.1.2. Detailed Functional Description

APBIf is synchronized with the rising edge of the APBClock input. The registers

inside APBIf block can be read or written via APB bus by looking at the values of the

APBSelect, APBWrite and APBAddr. If the block is selected for write operation by the

controller, the corresponding register will be written. If it is selected for read operation

by the controller, the corresponding register would be read. APBAddr input will be the

address of the register.

The registers inside APBIf block are shown in Table 5-2.

27

Register Name Address

Reset
Condition
(MSB to

LSB)

bits to
write/
read

Description

CTRLREG 0x1800e000 00000000 W: 6

Bit:
 0: selects StartRead state
 1: selects GetPage state
 2: selects Write Data state
 3: selects WritePage state
 4: selects GetFashStatus state
 5: selects WriteEnable state
 6: selects BulkErase state
 7: selects SectorErase state

STATUSREG 0x1800e010 100 R: 3

Bit:
0: indicates RxFifo is Full.
1: indicates RxFifo is not
empty
2: indicates SPI is not busy (it
is Done).

ADDRESSREG 0x1800e020 0x00000000 W: 32 Flash Memory, page and byte
addresses stored in this register.

WRITEDATAREG 0x1800e030 0x00000000 W: 32
Word that will be sent to the
flash memory is stored in this
register.

READLENGTHREG 0x1800e040 0000000000 W: 10
The number of words that will
be read is written in this
register.

RXFIFO 0x1800e050 0x00000000 R: 32
Words that are read in
ReadDataSate are stored in the
FIFO.

SPInCSREG 0x1800e060 00 W: 2

These two bits are used for
SPInCS(3:0) bit selection.
00 selects bit0 of SPInCS to be
active.
01 selects bit1 of SPInCS to be
active
10 selects bit2 of SPInCS to be
active
11 selects bit3 of SPInCS to be
active

Table 5-2 APBIf registers

CTRLREG, WRITEDATAREG, ADDRREG and READLENGTH registers can

only be written. Whereas STATUSREG can only be read.

Writing to CTRLREG initiates one of the ReadData, WriteEnable, GetPage,

WriteData, WritePage, GetFlashStatus, WriteEnable, BulkErase or SectorErase states.

After initiation of one of these states, CTRLREG will be reset automatically. Whenever

28

one of these states starts, SPI Interface becomes busy. After SPI finishes the current

state, Done signal becomes ‘1’ and it will be stored in the STATUSREG. Writing a new

data to CTRLREG during the busy period will cause the previous state to be completed

unproperly. So, it is suggested to observe the Done bit of the Status Register when there

is an interrupt from serial flash memory controller module (Any change in the content

of status register causes serial flash memory controller module to generate interrupt). If

it is '1', then the new state can be initiated by writing to CTRLREG. If the new state

starts, Done bit goes to '0'. One-cycle, active low interrupt is produced, when Done bit

goes '1'. Writing to CTRLREG is implemented as in Figure 5-2.

Figure 5-2 Write to CTRLREG

When CTRLREG(0) goes 1 from 0, StartRead signal is generated for SPIIf to start

read operation. SPIIf sends StartRead_captured signal with the StartRead signal coming

from APB Interface. After receiving the StartRead_captured signal, APBIf deasserts

StartRead. GetPage, WriteData, WritePage, GetFlashStatus, WriteEnable, SectorErase,

and BulkErase signals are asserted by checking CtrlReg(1), CtrlReg(2), CtrlReg(3),

CtrlReg(4), and CtrlReg(5), respectively, and deasserted by checking

GetPage_captured, WriteData_captured, WritePage_captured, GetFlashStatus_captured,

WriteEnable_captured, BulkErase_captured, and SectorErase_captured signals,

respectively. This operation is depicted in Figure 5-3.

APBAddr(15:0)
CtrlRegAddress

APBWrite
APBEnable
APBSelect

Q

Q
SET

CLR

D
Clock

APBDataWrite(7:0) CTRLREG(7:0)

ResetNot

29

Figure 5-3 Generating StartRead signal

The waveforms of the control signals generated by APBIf can be seen in Figure

5-4.

STATUSREG register holds Full Flag (FF) and notEmptyFlag (nEF) coming from

RxFIFO, as well. When RxFIFO is full, FF bit of STATUSREG goes '1' and a one-

cycle, active low interrupt is produced at the Interrupt signal. When RxFIFO is not

empty, nEF bit of STATUSREG goes '1' and a one-cycle, active low interrupt is

produced at the Interrupt signal.

When reading the RxFIFO, the bytes of RxFIFO are placed reversely into the

APBDataRead signal. That is the first byte of 32-bit RxFIFO data is assigned to the last

byte of 32-bit APBDataRead signal and the last byte of 32-bit RxFIFO data is assigned

to the last byte of 32-bit APBDataRead signal. As the same manner, the second byte

placed to third byte and the third byte placed to second byte.

Q

QSET

CLR

D

Q

QSET

CLR

D
Q

QSET

CLR

D

StartReadCaptured

StartRead

Clock
ResetNot

CTRLREG(0)

30

Figure 5-4 Control of SPI operation

C
lock

A
P

B
A

ddr

A
P

B
E

nable

A
P

B
S

elect

A
P

B
W

rite

C
trlR

eg

A
P

B
D

ataW
rite

A
P

B
D

ataR
ead

W
riteE

nable_sig

W
riteE

nable_captured

E
000

00000020

20

W
riteD

ata_sig

W
riteD

ata_captured

W
riteP

age_sig

W
riteP

age_captured

E
000

00000004

04

E
000

00000008

08

E
000

00000002

02

E
000

00000010

10

E
000

00000040

40

E
000

00000080

80

E
000

00000001

01

S
P

IE
nable

G
etP

age_sig

G
etP

age_captured

G
etF

lashS
tatus_sig

G
etF

lashS
tatus_captured

B
ulkE

rase_sig

B
ulkE

rase_captured

S
ectorE

rase_sig

S
ectorE

rase_captured

S
tartR

ead_sig

S
tartR

ead_captured

data

E
050

status

E
010

31

5.1.2. SPIIf

5.1.2.1. Interfaces

Name Size Direction Description
APBClock 1 I Clock
APBResetNot 1 I Reset
APBIf Interface
WriteDataReg 32 I Data input from APBIf

ReadLengthReg 10 I Length of the data that is read
from the flash

AddrReg 32 I Flash memory address of the
data

SPInCSReg 2 I Chip select input from APBIf

StartRead_sig 1 I Enable signal to send read
opcode

GetPage_sig 1 I Enable signal to send GetPage
opcode

WriteData_sig 1 I Enable signal to send
WriteData opcode

WritePage_sig 1 I Enable signal to send
WritePage opcode

GetFlashStatus_sig 1 I Enable signal to send
GetFlashStatus opcode

WriteEnable_sig 1 I Enable signal to send
WriteEnable opcode

SectorErase_sig 1 I Enable signal to send
SectorErase opcode

BulkErase_sig 1 I Enable signal to send
BulkErase opcode

StartRead_captured 1 O Indicates that the Read
operation is started

GetPage_captured 1 O Indicates that the GetPage
operation is started

WriteData_captured 1 O Indicates that the WriteData
operation is started

WritePage_captured 1 O Indicates that the WritePage
operation is started

GetFlashStatus_captured 1 O
Indicates that the
GetFlashStatus operation is
started

WriteEnable_captured 1 O Indicates that the WriteEnable
operation is started

32

SectorErase_captured 1 O Indicates that the SectorErase
operation is started

BulkErase_captured 1 O Indicates that the BulkErase
operation is started

Busy 1 O Indicates that SPIIf is busy
RxFIFO Interface
Data_out 32 O Data input from RxFIFO

FIFOWE 1 O Write Enable output to
RxFIFO

EmptyFlag 1 I FifoEmpty input from RxFIFO
FullFlag 1 I FifoFull input from RxFIFO
SPIClockLogic Interface

SPIEnable 1 I Indicates the rising edge of the
SPI clock

SPIEnableFall 1 I Indicates the falling edge of
the SPI clock

SPIClock 1 I SPI Clock output to SPIIf
block

Table 5-3 List of I/O Interfaces for SPIIf Block

5.1.2.2. Detailed Functional Description

The SPIIf is synchronized on the rising edge of the Clock signal when the

SPIEnable signal becomes high. It also uses the SPIEnableFall signal. The

SPIClock_Out clock is generated by the SPI Interface block and is a copy of SPIClock.

It only toggles when the SPI peripheral is activated by the SPInCS signal.

SPIIf sends opcode, address, data and control data to the peripheral devices.

According to the state initiated by APBIf, SPIIf selects the opcode for three different

types of flash memories (ATMEL, NEXFLASH, and ST). FlashTypeSel signal selects

the flash memory type ("00": ATMEL, ''01'': ST, "10": NEXFLASH).

There are Setup, Opcode, Address, DontCare, ReadData and Hold internal states

working successively in each of the states shown in Figure 5-5. Setup internal state is

used to assert the SPInCS signal for 5 SPIClock cycle before the operation begins. In

the Opcode State, opcode is sent serially to the flash memory. SPIClock_Out signal

starts to toggle with the first bit of the opcode. In the Address State, SPIIf sends the

address stored in the ADDRREG serially, right after the opcode. In the DontCare State,

some control bits needed for different types of flash memories (ATMEL, ST, and

NEXFLASH) are sent serially. In the ReadData State, SPI Interface starts to read the

33

data coming from the flash memory, as much as specified in the READLENGTHREG.

During this period, SPIIf sends dummy bits to DoutSPI. In the WriteData State SPIIf

sends 32 bit data serially to DoutSPI. In the Hold State the SPInCS is holded 5

SPIClock cycle without toggling the SPIClock_Out signal.

SPIIf states are shown in Figure 5-5.

Figure 5-5 SPIIf states

For ReadDataState, SPIIf sends ReadData opcode, address bits and control data.

Then it gets data from external peripheral device as much as specified in

READLENGTHREG. The CS pin must remain low during the loading of the opcode,

the address bits, the control bits, and the reading of data. When StartRead_sig goes '1',

current state changes from Idle to ReadDataState. Internal states of ReadDataState are

shown in Figure 5-6.

ReadData

Idle WriteDataSectorErase

WriteEnable

GetPageBulkErase

GetFlash
Status WritePage

StartRead_sig=1

GetPage_sig=1

WriteData_sig=1

GetPage_sig=1

WriteEnable_sig=1

GetFlashStatus_sig=1

SectorErase_sig=1

BulkErase_sig=1

34

Figure 5-6 Internal states of ReadDataState

For GetPageState (for ATMEL and NEXFLASH), SPIIf sends GetPage opcode,

address bits and control bits (only for NEXFLASH). The CS pin must be low while

toggling the serial clock pin to load the opcode and the address bits. The transfer of the

page of data from the main memory to the buffer will begin when the CS pin transitions

from a low to a high state. The internal states of GetPageState are shown in Figure 5-7.

 Figure 5-7 Internal states of GetPageState

For WriteDataState, SPIIf sends WriteData opcode, address bits, 32 bit data and

control bits (only for NEXFLASH) to the external peripheral device. While sending the

content of WRITEDATAREG, bytes are reversed. After the last address byte has been

clocked into the device, data can then be clocked in on subsequent clock cycles. Data

READDATASTATE

SETUP

OPCODE

ADDRESS

DONT
CARE

READ
DATA

HOLD

IDLE

IDLE

GETPAGESTATE

SETUP

OPCODE

ADDRESS

DONT
CAREHOLD

IDLE

IDLE

SPIFlashTypeSel=00 or
SPIFlashTypeSel=10

35

will continue to be loaded into the flash memory buffer until a low-to-high transition is

detected on the CS pin. Figure 5-8 shows the internal states of WriteDataState.

Figure 5-8 Internal states of WriteDataState

For WritePageState, SPIIf sends WritePage opcode (for ATMEL and

NEXFLASH), address bits (for ATMEL and NEXFLASH) and control bits (only for

NEXFLASH). When a low-to-high transition occurs on the CS pin, the data is stored in

the buffer into the specified page in main memory. The internal states of

WritePageState are shown in Figure 5-9.

Figure 5-9 Internal states of WritePageState

WRITEDATASTATE

SETUP

OPCODE

ADDRESS

WRITE
DATA

DONT
CARE

HOLD

IDLE

IDLE

SPIFlashTypeSel=01and
first WriteDataState
or
SPIFlashTypeSel=00 or
SPIFlashTypeSel=10

SPIFlashTypeSel=00

SPIFlashTypeSel=10

IDLE
SPIFlashTypeSel=01

IDLE

SPIFlashTypeSel=01and
except for first WriteDataState

WRITEPAGESTATE

SETUP

OPCODE

ADDRESS

DONT
CAREHOLD

IDLE

IDLE

SPIFlashTypeSel=00 or
SPIFlashTypeSel=10

IDLE
SPIFlashTypeSel=01

SPIFlashTypeSel=10

SPIFlashTypeSel=00

36

For WriteEnable state (for NEXFLASH and ST), SPIIf sends opcode and control

bits (only for NEXFLASH). The internal states of WriteEnableState are shown in

Figure 5-10.

Figure 5-10 Internal states of WriteEnableState

For GetFlashStatusState, SPIIf sends ReadStatus opcode. Status information

received from flash is sent to RxFIFO aligned to MSB. The status register can be used

to determine the flash memory’s ready/busy status. The internal states of GetFlashStatus

State are shown in Figure 5-11.

Figure 5-11 Internal states of GetFlashStatusState

For SectorEraseState (only for ST), SPIIf sends opcode and address of sector to be

erased. The internal states of SectorEraseState are shown in Figure 5-12.

WRITEENABLESTATE

SETUP OPCODE

DONT
CAREHOLD

IDLE

IDLE

SPIFlashTypeSel=01 or
SPIFlashTypeSel=10

SPIFlashTypeSel=10

SPIFlashTypeSel=01

GETFLASHSTATUSSTATE

SETUP OPCODE

READ
DATAHOLD

IDLE

IDLE

37

Figure 5-12 Internal states of SectorEraseState

For BulkEraseState (only for ST), SPIIf sends only opcode. The internal states of

BulkEraseState are shown in Figure 5-13.

Figure 5-13 Internal states of BulkEraseState

States and opcodes related to these states are described in Table 5-4. These

opcodes are different for each Flash type.

SECTORERASESTATE

SETUP OPCODE

ADDRESSHOLD

IDLE

IDLE

SPIFlashTypeSel=01

BULKERASESTATE

SETUP

OPCODE

HOLD

IDLE

IDLE

SPIFlashTypeSel=01

38

State Opcode Flash Type
0x68 ATMEL
0x03 ST

ReadDataState

0x50 NEXFLASH
0x53 ATMEL
- ST

GetPageState

0x53 NEXFLASH
0x84 ATMEL
0x02 ST

WriteDataState

0x72 NEXFLASH
0x83 ATMEL
- ST

WritePageState

0xF3 NEXFLASH
- ATMEL
0x06 ST

WriteEnableState

0x06 NEXFLASH
0x57 ATMEL
0x03 ST

GetFlashStatusState

0x84 NEXFLASH
- ATMEL
0xD8 ST

SectorEraseState

- NEXFLASH
- ATMEL
0xC7 ST

BulkEraseState

- NEXFLASH

Table 5-4 States and Opcodes Used In SPI Interface

The waveforms of SPIIf for Atmel flash memory are shown in following figures.

39

Clock

GetFlashStatus

SPInCS

SPIClk_Out

DoutSPI

setup opcode data

hold

Clock

SPInCS

SPIClk_Out

DoutSPI

Clock

Write Data

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

Clock

SPInCS

SPIClk_Out

DoutSPI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 6 5 4 3 2 1 07 6 5 4 3 2 1 07

Figure 5-14 GetFlashStatusState waveforms for Atmel Flash Memory

Figure 5-15 WriteDataState waveforms for Atmel Flash Memory

Figure 5-16 WritePageState waveforms for Atmel Flash Memory

Write Page

Clock

SPInCS

SPIClk_Out

DoutSPI

hold

Clock

SPInCS

SPIClk_Out

DoutSPI

setup

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode address

40

Figure 5-17 GetPageState waveforms for Atmel Flash Memory

Figure 5-18 ReadPageState waveforms for Atmel Flash Memory

The waveforms of SPIIf for NexFlash flash memory are shown in following
figures.

GetPage

Clock

SPInCS

SPIClk_Out

DoutSPI

hold

Clock

SPInCS

SPIClk_Out

DoutSPI

setup

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode address

Read Page

control

Clock

SPInCS

SPIClk_Out

DoutSPI

hold

Clock

SPInCS

SPIClk_Out

DoutSPI

Clock

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

data

41

Figure 5-19 GetFlashStatusState waveforms for NexFlash Flash Memory

Figure 5-20 WriteEnableState waveforms for NexFlash Flash Memory

Figure 5-21 Write to SRAM waveforms for NexFlash Flash Memory

Clock

GetFlashStatus

SPInCS

SPIClk_Out

DoutSPI

setup opcode data

hold

Clock

SPInCS

SPIClk_Out

DoutSPI

Clock

WriteEnable

SPInCS

SPIClk_Out

DoutSPI

setup opcode holdcontrol

Clock

Write to SRAM

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

control

Clock

SPInCS

SPIClk_Out

DoutSPI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 6 5 4 3 2 1 07

hold

42

Figure 5-22 Transfer SRAM to Sector waveforms for NexFlash Flash Memory

Figure 5-23 Transfer Sector to SRAM waveforms for NexFlash Flash Memory

Figure 5-24 Read from Sector waveforms for NexFlash Flash Memory

Clock

Transfer SRAM to Sector

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

Clock

SPInCS

SPIClk_Out

DoutSPI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

control

hold

Clock

Transfer Sector to SRAM

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

Clock

SPInCS

SPIClk_Out

DoutSPI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

control

hold

Clock

Read from Sector

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

control

Clock

SPInCS

SPIClk_Out

DoutSPI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

data hold

Clock

SPInCS

SPIClk_Out

DoutSPI

43

The waveforms of SPIIf for ST flash memory are shown in following figures.

Figure 5-25 GetFlashStatusState waveforms for ST Flash Memory

Figure 5-26 WriteEnableState waveforms for ST Flash Memory

Figure 5-27 WriteDataState waveforms for ST Flash Memory

Clock

GetFlashStatus

SPInCS

SPIClk_Out

DoutSPI

setup opcode data

hold

Clock

SPInCS

SPIClk_Out

DoutSPI

Clock

WriteEnable

SPInCS

SPIClk_Out

DoutSPI

setup opcode hold

Clock

Write Data

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

Clock

SPInCS

SPIClk_Out

DoutSPI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

data

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 6 5 4 3 2 1 07 6 5 4 3 2 1 07

44

Figure 5-28 WritePageState waveforms for ST Flash Memory

Figure 5-29 ReadDataState waveforms for ST Flash Memory

5.1.3. SPIClockLogic

5.1.3.1. Interfaces

Name Size Direction Description
APBClock 1 I Clock
APBResetNot 1 I Reset
RxFIFO Interface
FifoFullFlag 1 I FifoFull input from RxFIFO
SPIIF Interface

SPIEnable 1 O Indicates the rising edge of the
SPI clock

SPIEnableFall 1 O Indicates the falling edge of
the SPI clock

SPIClock 1 O SPI Clock output to SPIIf
block

Table 5-5 List of I/O Interfaces for SPIIf Block

Clock

Write to Page

SPInCS

SPIClk_Out

DoutSPI

hold

Clock

Read Data

SPInCS

SPIClk_Out

DoutSPI

setup opcode address

control

Clock

SPInCS

SPIClk_Out

DoutSPI

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

data hold

45

5.1.3.2. Detailed Functional Description

SPIClockLogic module produces SPIEnable, SPIEnableFall and SPIClock signals

for SPI Interface and RxFifo. SPIClock frequency is 1/4 of the Clock signal for ATMEL

Flash, ST Flash, and NexFlash Flash. SPIEnable signal is used for receiving the data

coming from DinSPI on the rising edge of Clock signal. It’s an active high one Clock

cycle signal. On the other hand, SPIEnableFall signal stands for the falling edge of the

SPIClock and it is used to send the data to DoutSPI. Its duration is also one Clock cycle.

5.1.4. RxFIFO

5.1.4.1. Interfaces

Name Size Direction Description
APBclk 1 I Clock
APBrst 1 I Reset
APBIf Interface
APBrd 1 I Read Enable input from APBIf
full 1 O FifoFull output to APBIf
empty 1 O FifoEmpty output to APBIf
APBDataRead 32 O Data output to APBIf
SPIIf Interface
SPIwr 1 I Write Enable input from SPIIf
full 1 O FifoFull output to SPIIf
SPIDataWrite 32 I Data input from SPIIf
SPIClockLogic Interface

full 1 O FifoFull output to
SPIClockLogic

SPIEnable 1 I Indicates the rising edge of the
SPI clock

Table 5-6 List of I/O Interfaces for RxFifo Block

46

5.1.4.2. Detailed Functional Description

RxFifo is a 32 bit wide 4 location deep receive first in first out memory buffer.

Received data from the serial interface are stored in the buffer until read out by the CPU

across the AMBA APB interface. SPI interface writes data into the RxFIFO on the

rising edge of Clock signal when SPIEnable is high. APB interface reads RxFIFO on

the rising edge of Clock signal when read enable is high. When RxFIFO is empty, it

produces empty flag and when it is full it produces full flag.

 5.2. Upload and Download Timings

Calculations of upload and download timings at 10 MHz for ATMEL, ST and

NexFLASH serial flash memories are given in following sections.

5.2.1. ATMEL:

Calculation for Upload Time:

WriteData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+24 cycle (address)+32 cycle (data) = 74 cycle

WritePage Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+24 cycle (address) = 42 cycle

Max PageProgram Time = 20ms

Upload Time =(WriteData Time x 1056/4 + WritePage Time) / (10x106) + Max

PageProgram Time = 21.96ms

Calculation for Download Time:

ReadData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+24 cycle (address)+32 cycle (control) = 74 cycle

Download Time = (ReadData Time + 1056 x 8) / (10x106) = 0.85ms

47

5.2.2. ST:

Calculation for Upload Time:

WriteEnable Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode) = 18 cycle

WriteData Time = 5 cycle (setup time for Chip Select)+8 cycle (opcode)+24 cycle

(address)+32 cycle (data) = 69 cycle (this timing is for first 32 bit (4 byte) data, 252

byte data remains. Except first WriteData operation (first 32 bit data), all the other

WriteData states send only 32 bit data serially to ST Flash)

WritePage Time = 5 cycle (hold time for Chip Select) = 5 cycle

Max PageProgram Time = 5ms

Upload Time =(WriteEnable Time + WriteData Time + WritePage Time + 32 x

252/4) / (10x106) + Max PageProgram Time = 5.21ms

Calculation for Download Time:

ReadData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+24 cycle (address) = 42 cycle

Download Time = (ReadData Time + 256 x 8) / (10x106) = 0.21ms

5.2.3. NEXFLASH:

Calculation for Upload Time:

WriteEnable Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+8 cycle (control) = 26 cycle (this state is required only

for first write operation. The remaining write data states don't require WriteEnable

State).

WriteData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select) +8 cycle (opcode)+16 cycle (address)+32 cycle (data)+8 cycle (control) =

74 cycle

WritePage Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+16 cycle (address)+16 cycle (control) = 50 cycle

48

Max PageProgram Time = 15ms

Upload Time =(WriteEnable Time + WriteData Time x 528/4 + WritePage Time)

/ (10x106) + Max PageProgram Time = 15.98ms

Calculation for Download Time:

ReadData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+32 cycle (address) + 32 cycle (control) = 82 cycle

Download Time = (ReadData Time + 528 x 8) / (10x106) =0.43 ms

 5.3. Functionality Comparison

The following table gives the comparison between several SPI blocks and our

serial flash controller block according to the functional features.

Serial Peripheral

Interface

APB

Compliance

SPI

Mode

Phase/

Polarity

FIFO

Size

Word

Size
Transmission Speed

Serial Flash

 Controller
Yes Master Only Mode0

32bit x 4

for Rx
32 bit 1/4 of system clock

Actel Yes
Master/

Slave
-

32byte for

Rx and Tx
-

Up to 1/8 of system

clock

Alma-Tech No
Master/

Slave

Not

Programmable
- 8 bit

Up to 1/2 of system

clock

Atmel Yes
Master/

Slave
Programmable -

Programmable up to

16 bit

Up to 1/2 of system

clock

Cadence Yes
Master/

Slave
Programmable

8byte for

Rx and Tx
- 1/2 of system clock

Palmchip No
Master/

Slave
Programmable

8byte for

Rx and Tx
8 bit -

Scenix No
Master/

Slave
Programmable -

Programmable up to

16 bit
Up to 1.72MHz

Sota Yes Master Programmable - Programmable Programmable

 Table 5-7 Comparisons with other serial peripheral interface blocks

Our serial flash memory controller module has APB interface. It’s an important

feature since the module can be easily adapted to processor platform. Our serial flash

49

memory controller module can only work in master mode. Actually working in slave

mode is not needed for our module, because the slave is always the serial flash memory.

Our serial flash memory controller module has a receive FIFO. This is necessary to

have faster download speed. Our module needs only one clock input. It produces the

SPI clock internally. Some of serial peripheral interface controllers need external SPI

clock.

Different serial peripheral interface controllers have different control schemes. In

general, the processor programs serial peripheral interface controllers to send the data

according to the frame format required by flash memory. The frame includes dummy

bits for setup and hold times, opcodes and data bits. Software should take care of all

these while sending data to flash memory. Serial peripheral interface controller only

serially sends the data to the serial flash memory. If different flash memory is used, then

software has to be changed completely according to new flash memory opcodes and

timings. Therefore the transfer is completely controlled by software. For example lets

assume that serial peripheral interface controller has 4x32 bit transmit FIFO. Then to

write 0x12345678 to first address of the buffer of Atmel serial flash memory, following

data should be written to transmit FIFO.

First address:

Opcode: 0x84, Address: 0x000000

10000100000000000000000000000000

Second address:

Data: 0x12345678

00010010001101000101011001111000

After the processor fills the transmit FIFO, it should start serial transfer by writing

control register of serial peripheral interface controller. The operation given in above

example is very simple one.

The serial peripheral interface controllers use the methods given below to transmit

the data serially to flash memory:

• It sends the contents of transmit FIFO continuously.

• It stops the serial data clock between the transfer of the data in first address

and the data in second address. Also it keeps the serial flash memory to be

selected until the transfer is completed.

Our serial flash memory controller module doesn’t need transmit FIFO, since it

works based on commands.

50

Also serial peripheral interface controllers should have a programmable chip

select time. This is required for the setup and hold time requirements of chip select

signal.

In our serial flash controller module, the processor doesn’t have to care about the

opcodes and the timings. Software only initiates the transfer by sending related

command to serial flash memory controller module. The transfer of data is completely

controlled by hardware. So it is simpler to program our module for the required

operation.

Serial flash controller module sends opcode and data according to setup and hold

time requirements of selected flash memory. When it finishes its operation, it generates

one cycle interrupt. While reading from flash memory, processor programs serial flash

controller for the length of data to be read and then it only waits for the interrupts. Each

time the processor receives interrupt from serial flash controller, it reads the FIFO. So

the processor needs less cycle to send and receive the data.

The serial flash memory performs steps below for different operations:

• Steps for Reading Data from Flash:

§ Software should follow the steps below:

⇒ Write starting page address to ADDRREG.

⇒ Write # of words to be read from Flash to READLENGTHREG.

⇒ Write 0x00000001 to CTRLREG to start the read operation.

⇒ An interrupt is produced when FIFO is not empty.

⇒ Read data from RxFIFO.

⇒ While reading, poll notEmpty bit of STATUSREG to avoid reading when

FIFO is empty.

⇒ When SPI fills # of data determined by READLENGTH, it sets Done bit of

STATUSREG to 1, and an interrupt is generated.

• Steps for Page to Buffer Transfer of Flash:

§ Software should follow the steps below:

⇒ Write page address to ADDRREG.

51

⇒ Write 0x00000002 to CTRLREG to start the GetPage operation.

⇒ When SPI sends the opcode related with GetPage, it fires Done bit of

STATUSREG to 1, and an interrupt is generated.

⇒ Check the flash status before starting a new operation.

• Steps for Writing Data into Flash Buffer:

§ Software should follow the steps below:

⇒ Write starting byte address to ADDRREG.

⇒ Write one word data to be sent to WRITEDATAREG.

⇒ Write 0x00000004 to CTRLREG to start the WriteData operation.

⇒ When SPI sends last byte of data, it fires Done bit of STATUSREG to 1, and

an interrupt is generated.

• Steps for Writing Flash Buffer into Page:

§ Software should follow the steps below:

⇒ Write page address to ADDRREG.

⇒ Write 0x00000008 to CTRLREG to start the WritePage operation.

⇒ When SPI sends the opcode related with WritePage, it fires Done bit of

STATUSREG to 1, and an interrupt is generated.

⇒ Check the flash status before starting a new operation.

• Steps for GetFlashStatus State:

§ Software should follow the steps below:

⇒ Write 0x00000010 to CTRLREG to start the GetFlashStatus operation.

⇒ An interrupt is produced when FIFO is not empty.

⇒ Read data from RxFIFO. The MSB contains Flash Status.

⇒ When SPI finishes GetFlashStatus operation, it fires Done bit of

STATUSREG to 1, and an interrupt is generated.

• Steps for WriteEnable State

52

§ Software should follow the steps below:

⇒ Write 0x00000020 to CTRLREG to start the write operation.

⇒ When SPI finishes WriteEnable operation, it fires Done bit of STATUSREG

to 1, and an interrupt is generated.

• Steps for Sector Erase State

§ Software should follow the steps below:

⇒ Write 0x00000040 to CTRLREG to start the Sector Erase operation.

⇒ When SPI finishes Sector Erase operation, it fires Done bit of STATUSREG

to 1, and an interrupt is generated.

⇒ Check the flash status before starting a new operation.

• Steps for Bulk Erase State

§ Software should follow the steps below:

⇒ Write 0x00000080 to CTRLREG to start the Bulk Erase operation.

⇒ When SPI finishes Bulk Erase operation, it fires Done bit of STATUSREG to

1, and an interrupt is generated.

⇒ Check the flash status before starting a new operation.

For setup and hold time requirements SPI sends extra 5 bits after making SPInCS

active and before making it inactive.

53

 6. SERIAL FLASH MEMORY CONTROLLER VERIFICATION

After the design has been captured in HDL, it is essential to verify that the code

matches the required functionality. Our verification environment consists of processor

platform, serial flash memory controller module (ApbSPI) and serial flash memory

models. To simplify the testbench development, the processor model is replaced by

SoftFrog model. SoftFrog is a mechanism to make a C-program communicate with the

VHDL-simulator. SoftFrog can handle the interrupts.

To verify the serial flash memory controller module, following tests were

executed:

• Verify of reset values of the control and status registers.

• Modify the control and status registers, and check the new values.

• Configure the serial flash memory controller for different serial flash

memories and perform read and write operations.

The following sections include the test scenarios for functional verification of

serial flash memory controller module for different flash memories. Verification

Navigator was used to specify the code coverage of testbenches. We have a statement

coverage about 98%.

 6.1. Test Scenarios

6.1.1. ATMEL Flash Test

AT45DB642 (64 Mbit) Denali Flash model is used to test SPI Block for ATMEL

Flash. Steps followed for testing the ATMEL Flash are listed below:

54

• Select Flash: Firstly, Flash type is selected by applying "00" to the

FlashTypeSel input of SPI block.

• Select SPInCS: The CS signal of 64Mbit ATMEL Flash is connected to the

SPInCS(0) pin of SPI block. In order to select this pin to be active, "00" is written

into the SPInCSREG.

• Write to Buffer1: Fill all the 1056 bytes of Buffer1 of the ATMEL Flash

with data. When writing the data into the Buffer1, the order should be like this:

First, write to the ADDRESSREG, then write to WRITEDATAREG, and last write

to CTRLREG.

• Transfer Buffer1 to Page1: After writing the data to the Buffer1, its content

is transferred to Page1 by writing to ADDRESSREG and CTRLREG. During

transfer, check the status of Flash whether it is busy or not.

• Fill Buffer1 with zeros: If the Flash is ready, Buffer1 is filled with zeros to

clear it.

• Transfer Page1 to Buffer1: Page1 is transferred back to Buffer1 by writing

to ADDRESSREG and CTRLREG. During transfer, check the status of Flash

whether it is busy or not.

• Change Buffer1: If the Flash is ready, change the content of Buffer1.

• Transfer Buffer1 to Page1: New Buffer1 content is transferred to Page1

again by writing to ADDRESSREG and CTRLREG. During transfer, check the

status of Flash whether it is busy or not.

• Write to Buffer1: If the Flash is ready, Buffer1 is loaded with a different

1056-byte data.

• Transfer Buffer1 to Page2: Buffer1 is transferred to Page2 by writing to

ADDRESSREG and CTRLREG. During transfer, check the status of Flash whether

it is busy or not.

• Read Two Pages Continuously: When Flash is ready, Page1 and Page2 are

read successively by writing to ADDRESSREG and CTRLREG. In continuous

reading mode FIFO becomes empty after each reading. If data is not continuously

read, FIFO becomes full after 4 words are stored in it. Both conditions (FIFO full

and FIFO empty) are tested for SPI verification.

55

6.1.2. ST Flash Test:

M25P80 (8 Mbit) VHDL model is used to test SPI Block for ST Flash. Each

SPInCS bits connected to one ST Flash. Steps followed for testing the ST Flash are

listed below:

• Select Flash: Firstly, Flash type is selected by applying "01" to the

FlashTypeSel input of SPI block.

• Select SPInCS: In order to select the second bit of the SPInCS output to be

active, "01" is written into the SPInCSREG.

• Send Write Enable Opcode: Send Write Enable opcode to the Flash to make

the Flash Pages writable. This operation is performed by writing to the CTRLREG.

Before every write operation, this opcode is required by ST Flash.

• Write to Page1: Write all the 256 bytes of Page1 of second Flash with data

by using WriteData state. When writing the first 32-bit of data into Page1, the order

should be like this: First, write to the ADDRESSREG (including page and byte

addresses), then write to WRITEDATAREG, and last write to CTRLREG. The

remaining 32-bit data must be sent successively by writing to WRITEDATAREG.

After sending all the data, set CTRLREG to start WritePage State. Before

performing new instruction after write page state, check the status of Flash whether

it is busy or not.

• Send Write Enable Opcode: If the Flash is ready, send again Write Enable

opcode to the Flash to make the Flash Pages writable. This operation is performed

by writing to the CTRLREG.

• Write to Page2: Write all the 256 bytes of Page2 of second Flash with

different data as described in "Write to Page1" paragraph. Check the status of Flash

whether it is busy or not.

• Read Two Pages Continuously: When Flash is ready, Page1 and Page2 of

second Flash are read successively by writing to ADDRESSREG and CTRLREG.

In continuous reading mode FIFO becomes empty after each reading. If data is not

continuously read, FIFO becomes full after 4 words are stored in it. Both conditions

(FIFO full and FIFO empty) are tested for SPI verification.

• Select SPInCS: In order to select the third bit of the SPInCS output to be

active, "10" is written into the SPInCSREG.

56

• Send Write Enable Opcode: Send WriteEnable opcode to the Flash.

• Write to Page1: Write all the 256 bytes of Page1 of the third Flash with data

as described in "Write to Page1" paragraph. Check the status of Flash whether it is

busy or not.

• Read Page1: If the Flash is ready, read Page1 of the third Flash.

Note: SectorErase and BulkErase tests are done partially. That is, we send only

Sector Erase and Bulk Erase opcodes to ST Flash and observe whether the ST Flash

receives these opcodes or not by checking the Flash Status.

6.1.3. NexFLASH Flash Test:

NX25F641C (64 Mbit) verilog model is used to test SPI Block for NEXFLASH

Flash and it is connected to SPInCS(3). Steps followed for testing the NEXFLASH

Flash are listed below:

• Select Flash: Firstly, Flash type is selected by applying "10" to the

FlashTypeSel input of SPI block.

• Select SPInCS: The CS signal of 64Mbit NEXFLASH Flash is connected to

the SPInCS(3) signal of SPI block. In order to select this signal to be active, "11" is

written into the SPInCSREG.

• Send Write Enable Opcode: Send Write Enable opcode to the Flash to make

the Flash Pages writable. This operation is performed by writing to the CTRLREG.

This operation should be performed only once after power on.

• Write to SRAM: Fill all the 528 bytes of SRAM of the NEXFLASH Flash

with data. When writing the data into the SRAM, the order should be like this: First,

write to the ADDRESSREG, then write to WRITEDATAREG, and last write to

CTRLREG.

• Transfer SRAM to Sector1: After writing the data to the SRAM, its content

is transferred to Sector1 by writing to ADDRESSREG and CTRLREG. During

transfer, check the status of Flash whether it is busy or not.

• Change the content of SRAM: If the Flash is ready, change the content of

SRAM with new data.

57

• Transfer SRAM to Sector2: SRAM is transferred to Sector2 by writing to

ADDRESSREG and CTRLREG. During transfer, check the status of Flash whether

it is busy or not.

• Read Two Sectors Continuously: When Flash is ready, Sector1 and Sector2

are read successively by writing to ADDRESSREG and CTRLREG. In continuous

reading mode FIFO becomes empty after each reading. If data is not continuously

read, FIFO becomes full after 4 words are stored in it. Both conditions (FIFO full

and FIFO empty) are tested for SPI verification.

• Transfer Sector1 to SRAM: Sector1 is transferred back to SRAM by writing

to ADDRESSREG and CTRLREG. During transfer, check the status of Flash

whether it is busy or not. (check transfer bit of Flash status)

• Change SRAM: If the Flash is ready, change the content of SRAM.

• Transfer SRAM to Sector3: New SRAM content is transferred to Sector3

again by writing to ADDRESSREG and CTRLREG. During transfer, check the

status of Flash whether it is busy or not.

• Read Sector3: If the Flash is ready, read Sector3 of the ST Flash.

Waveforms for the simulations of functional tests are given in Appendix A.

58

 7. SERIAL FLASH MEMORY CONTROLLER SYNTHESIS

 7.1. Synthesis

Synthesis provides a link between a HDL and a netlist similarly to the way that a

C compiler provides a link between C code and machine language. Once a HDL model

is complete two items are required to proceed: a logic synthesizer and a cell library that

is called the target library. The HDL code is mapped to cells from this library. It is

possible to effectively translate designs captured in high level languages to designs

optimized for area and speed by using of logic synthesis.

Serial Flash Memory Controller block was synthesized with Synopsys Design

Compiler Synthesis tool in CMOS 0.35 µm technology. A synthesis script, that includes

all necessary constraints, is used for synthesis. This script is given in Appendix B.

As a synthesis methodology, “top-down” synthesis way was used since it provides

a push-button approach and our design is not so large. All constraints were applied to

the top-level block, which is called ApbSPI.

Logic synthesis results in a netlist, which contains sequential non-scan cells and

other combinational gates from the technology library. Full scan methodology is used in

synthesis of Serial Flash Memory Controller block. In this methodology all the

sequential cells in the netlist are replaced by scan cells. Full scan designs achieve higher

fault coverage. Scan cells have two different modes of operation: normal and scan. In

normal mode, the scan cell’s functionality is same as that of sequential non-scan cell. In

scan mode, the scan cells are linked in the form of a shift register.

59

Figure 7-1 Scan cells linked to form a scan chain

When scan cells are linked to form a scan chain as shown in Figure 7-1, all the

scan cells are controllable and observable.

Scan insertion results in design overheads such as, the use of extra scan ports, an

increase in silicon area due to use of scan flops, and greater timing delays due to the

insertion of the scan cells for the sequential non-scan cells.

After inserting the test scan logic in the design, the ATPG algorithm is used to

generate test patterns.

 7.2. IO Timing Constraints

Atmel Flash
DoutSPI Setup Time (min) wrt ↑ of
SPIClk_Out 5 ns

DoutSPI Hold Time (min) wrt ↑ of
SPIClk_Out 10 ns

DinSPI Valid Time (max) wrt ↓ of
SPIClk_Out 20 ns

Table 7-1 IO timing constraints for ATMEL flash memory

TI Q

Q

TI Q

Q

TI Q

Q

TI Q

Q

Scan In

Clk

Scan Out

60

ST Flash
DoutSPI Setup Time (min) wrt ↑ of
SPIClk_Out 5 ns

DoutSPI Hold Time (min) wrt ↑ of
SPIClk_Out 5 ns

DinSPI Valid Time (max) wrt ↓ of
SPIClk_Out 15 ns

Table 7-2 IO timing constraints for ST flash memory

Timing values are at the flash interface. Board delays are not taken into account.

 7.3. Synthesis Results

Schematic view of synthesized SPIClockLogic module is shown in Figure 7-2.

Figure 7-2 Synthesised SPIClockLogic block

61

Schematic view of synthesized RxFIFO module is shown in Figure 7-3.

Figure 7-3 Synthesised RxFIFO block

80 MHz system clock frequency is used in synthesis of serial flash memory

controller module. The system has not any problem at this operation frequency in terms

of critical timing issues and we do not get any violations.

Results of area achieved for this synthesis can be seen in Table 7-3.

62

Block ApbIf SPIIf SPIClockLogic RxFIFO
ApbSPI

(Top Level)

µ2 26608.39 357138.59 709.79 46792.19 432668.59Combinational

Area Gates 487.3 6540.99 12.99 856.99 7924.3

µ2 48175.4 111839 2093 70343 232450.4Noncombinational

Area Gates 882.33 2048.33 38.33 1288.33 4257.33

µ2 5850 56772 198 306 132498Net Interconnect

Area Gates 107.14 1039.78 3.62 5.6 2426.7

µ2 74783.79 468977.59 2802.79 117135.2 665119
Total Cell Area

Gates 1369.67 8589.33 51.33 2145.33 12181.7

µ2 80633.79 525749.62 3000.79 117441.2 797617
Total Area

Gates 1476.8 9629.11 54.96 2150.93 14608.37

Table 7-3Area report

Power estimation reports given by Synopsys Design Analyzer for operating

frequency is shown in Table 7-4.

Operating Conditions WORST

Global Operating Voltage (V) 3.3

Library csx_3.3V

Power Consumption Estimation

Block ApbIf SPIIf SPIClockLogic RxFIFO
ApbSPI

(Top level)

Cell Internal Power mW 2.69 7.26 0.29 1.86 20.09

Net Switching Power mW 6.15 7.6 0.16 3.6 51.03

Total Dynamic Power mW 8.84 14.85 0.45 5.45 71.12

Cell Leakage Power

(Static Power)

nW 80.03 493.41 3.15 82.64 696.35

Table 7-4 Power report

63

 7.4. Gate-level Simulations

The netlist of the synthesised Serial Flash Memory Controller module was saved

in verilog format and then sdf (standard delay file) file was generated for the gate-level

simulations. This sdf file is generated by Synopsys Design Analyzer and it includes the

estimated timings for each of library elements.

In gate level simulations verilog model of NexFlash serial flash memory was used.

There is no special reason to select NexFlash serial flash memory for gate level

simulations. It was selected as a representative memory.

The waveforms for the gate level simulations are given in Appendix C.

64

 8. PLACE & ROUTE FOR SERIAL FLASH MEMORY CONTROLLER

Cadence Silicon Ensemble is used for place&route.

 8.1. Floorplanning and Placement

As it is said in Smith’s book, the input to a floorplanning tool is a hierarchical

netlist that describes the interconnection of the blocks, the logic cells within the blocks,

and the logic cell connectors [3]. The netlist is a logical description of the ASIC; the

floorplan is a physical description of an ASIC. Floorplanning is thus mapping between

the logical description (the netlist) and the physical description (the floorplan).

Floorplanning step helps to define the dimensions of the chip layout and place

modules of the design in specific regions. At this stage of the design flow, this is a very

rough estimate of the actual placement. Also, no actual routing is done at this stage.

Floorplanning allows us to predict interconnect delay by estimating interconnect length.

For floorplanning of serial flash memory controller module, the aspect ratio was

set to be 1, which was square. The distance of the IO to core was selected as 100 µm.

This distance was large enough to leave room to route power and ground wires. Flip

every other row and abut rows options were selected to create rows where VDD and

GND alternates. Block halo per side, the distance between blocks and the rows, was set

to be 20 µm. Row Utilization factor was selected as 90%. It indicates how densely

Silicon Ensemble will pack each row. Higher numbers give you more dense designs, but

smaller numbers will make it run faster.

After completing floorplan, placement of the logic cells begins. After

floorplanning and placement, we have more accurate estimates of the capacitive loads

that each logic cell must drive. The goal of a placement tool is to arrange all the logic

cells within the flexible blocks on a chip. Ideally, the objectives of the placement step

are:

65

• Guarantee the router can complete the routing step.

• Minimize all the critical net delays.

• Make the chip as dense as possible.

First step of placement of serial flash memory controller module was to place the

IO cells automatically. After this power planning was started. Power rings surrounding

all cells were generated and connected to power pads. Metal1 and metal2 were used for

the power ring. The width of core supply ring and channel were selected as 10 µm and 5

µm. After the power routing was planned, the cells were placed inside the rows.

 8.2. Routing

Once the designer has floorplanned a chip and the logic cells within the blocks

have been placed, it is time to make the connections by routing the chip. Routing is split

into global routing followed by detailed routing.

The input to the global router is a floorplan that includes the locations of all the

fixed and flexible blocks; the placement information for flexible blocks; and the

locations of all the logic cells. The goal of global routing is to provide complete

instructions to the detailed router on where to route every net. The objectives of global

routing are:

• Minimize the total interconnect length.

• Maximize the probability that the detailed router can complete the routing.

• Minimize the critical path delay.

The global routing step determines the channels to be used for each interconnect.

Using this information, detailed router decides the exact location and layers for each

interconnect. The goal of detailed routing is to complete all the connections between

logic cells. . The objectives of detailed routing are:

• The total interconnect length and area.

• The number of layer changes that the connections have to make.

• The delay of critical paths.

First step of the routing of serial flash memory controller module was to connect

all blocks to the power rings in the design. Block and allport options were selected in

this step. Block option connects pins to the closest rings. Allport option connects all

66

ports of the pins to the closest rings; otherwise only one port is connected. After

connecting rings, final and global routing was started. After routing, the gaps between

the cells were closed by placing filler cells.

The script, used in backend flow, is given in Appendix D.

 8.3. Place&Route Results

The number of components, models, pins, nets, instances of each model, and the

routing tracks available for our serial flash memory controller block are given below.

Number of macros 190

Number of components 6527

Number of pins 28412

Number of regular pins 15333

Number of special pins 8344

Number of unused pins 215

Number of nets 4585

Average number of pins per net 6.15

Number of subnets 0

Number of routing tracks available 1439

Number of GCELLS per layer 5250

Table 8-1 Design summary

Rows are locations for the placement of cells, either horizontally or vertically. A

row is a one-dimensional array of uniform placement grids in which to place of a

matching type. For maximum chip area utilization, the cells are placed as close as

possible to each other within each row and not violating design rules. Utilization of

rows for our design is given below.

67

Type Number Length Area % Row Space

Standard Rows 59 4551260 5916638000

Standard Cells 6432 4551260 5916638000 100.00

Table 8-2 Utilization of rows

Area of chip: 9431322600 (square DBU)

Area required for all cells: 5916638000 (square DBU)

Area utilization of all cells: 62.73%

Total layers: 7

Routing layers: 3

The area estimated after the synthesis was about 0.8 mm2. The final area at the end

of the place&route is 0.94 mm2. It is 17.5 % larger than the expected one. It’s not a big

difference. Moreover, since we don’t have any routing error, we can still reduce the

area.

Layer information given in Table 8-3.

Layer Routing Process
Order

Routing
Order

MET1 horizontal 6 3
MET2 vertical 4 2
MET3 horizontal 2 1
VIA can't route 5
VIA2 can't route 3
OVERLAP can't route 1
VIRTUAL can't route 7

Table 8-3 Layer information

Wiring information is given below.

Total vias in regular wiring: 19475
Total segments in regular wiring: 38897
Total vias in special wiring: 154
Total segments in special wiring: 227

Wire lengths for different layers given in Table 8-4.

68

MET1
(microns)

MET2
(microns)

MET3
(microns)

Total
(microns)

Length of regular
wires

40489.40 257515.70 288972.00 586977.10

Length of special
wires

95737.60 4960.80 .00 100698.40

Length of regular
and special wiring

136227.00 262476.50 288972.00 687675.50

Table 8-4 Wire lengths

The result of place& route is given in Figure 8-1.

Figure 8-1 Result of place&route

69

 8.4. Post-layout Simulations

Verilog netlist of Serial Flash Memory Controller module and sdf file was

exported at the end of place&route. These files were used in post-layout simulations.

Since NexFlash serial flash memory model was used in gate level simulations, we used

it also for post-layout simulations. Also the testbench is the one that was used in gate

level tests.

70

 9. FPGA IMPLEMENTATION

The serial flash memory controller module was implemented to FPGA for final

verification. XS40 FPGA board and M25P80 serial flash memory were used in this

application.

 9.1. XS40 board

The arrangement of components for XS40 board is shown in Figure 9-1.

Figure 9-1 Arrangement of components on XS40 board

71

XS40 board can be connected to PC from the parallel port. It has GXSLOAD,

GXSPORT, GXSTEST and GXSSETCLK utility programs.

XS40 board has a 100 MHz programmable oscillator (a Dallas Semiconductor

DS1075Z-100). The 100 MHz master frequency can be divided by factors of 1, 2, ... up

to 2052 to get clock frequencies of 100 MHz, 50 MHz, ... down to 48.7 KHz,

respectively. The divided frequency is sent to the rest of the XS40 board circuitry as a

clock signal. In our FPGA implementation, we programmed oscillator to get clock

frequency of 25 MHz. The divisor was stored into the oscillator chip by using the GUI-

based GXSSETCLK utility.

The FPGA used in XS40 board is XC4010XL with 84 pin.

Xilinx ISE 4.2 was used in our FPGA application. This program integrates all

Foundation tools into a unified environment. The final result of the project is a bit

stream file that can be downloaded into a reprogrammable FPGA device.

After the design was implemented to FPGA, the generated bit stream file was

downloaded from PC into XS40 board by using GXSLOAD utility.

The microcontroller and the RAM inside the XS40 board are not used in our

application. For this reason RAM and microcontroller are held in an inactive state. The

microcontroller is held in the RESET state by placing a high level on its RST pin. The

RAM is deactivated by placing a high level on its /CS input. We used FPGA pins

attached to the RAM and microcontroller as general-purpose I/O. Pin assignments of

FPGA for our application is given in Table 9-1.

72

Port Name Location

Clock p13

ResetNot p44

DinSPI p3

SPInCS p4

SPIClk_Out p5

DoutSPI p6

FlashWP p7

FlashHold p8

UCRst p36

SRAMcs p65

Led<0> p19

Led<1> p23

Led<2> p26

Led<3> p25

Led<4> p24

Led<5> p18

Led<6> p20

Table 9-1 Pin assignments for FPGA

XS40 board pin descriptions and its detailed schematic given in Appendix E.

 9.2. Test Scenario for FPGA Implementation

To verify the serial flash memory controller module, the block named as ApbGen

was designed. ApbGen block generates APB signals according to the test scenario. The

block diagram for the top level, which integrates ApbGen and ApbSPI, is given below.

73

Figure 9-2 Block diagram for integration of ApbGen and ApbSPI

The state machine controlling the operation of ApbGen block is shown in Figure
9-3

ApbGen

ApbSPI

ApbSelect

ApbAddr(15:0)

ApbWrite

ApbDataWrite(31:0)

ApbDataRead(31:0)

ApbEnable

Interrupt

Clock

ResetNot

Led(6:0)

DinSPI

DoutSPI

SPInCS

SPIClk_Out

FlashWP

FlashHold

UCRst

SRAMcs

74

Figure 9-3 State machine controlling ApbGen

Erased signal is the input of FSM that controls ApbGen block. This signal is set to

1, when the BulkErase operation is finished by serial flash memory.

In WriteEnable State, ApbSPI block is programmed for WriteEnable operation.

In BulkErase State, if ApbSPI is not busy, it is programmed for BulkErase

operation. There is a process inside ApbGen, to read the status register of ApbSPI when

Interrupt input is high. So ApbGen can detect whether the ApbSPI block is busy or not.

In GetFlashStatus State, if ApbSPI is not busy, it is programmed for

GetFlashStatus operation. After ApbSPI finishes GetFlashStatus operation, the status

Idle

GetFlashStatus

WriteEnable

WriteData

WritePage

ReadData

BulkErase

Erased='0'

ApbDataRead(0)='0'
and

Erased='0'

Erased='1'

DataCntr = c_PageWidth

DataCntr < c_PageWidth

ApbDataRead(0)='0'
and

Erased='1'

DataCntr= (c_PageWidth)

75

data is read from the FIFO. This will continue until the serial flash memory is ready for

new operation.

In WriteData State, if ApbSPI is not busy, it is programmed for WriteData

operation. The length of the data that is sent to serial flash memory is 256 byte. This

length equals to the length of one page of serial flash memory used for verification.

Because of the limited size of the FPGA that we used, we can only write one page of

data to the serial flash memory.

In WritePage State, if ApbSPI is not busy, it is programmed for WritePage

operation.

In ReadData State, ApbSPI is programmed for ReadData operation. ApbGen reads

the status of ApbSPI when the Interrupt input is high. If there is data written into the

FIFO, it will be read by ApbGen. ApbGen compares the received data with the data sent

to serial flash memory. If there is any difference between these, it sets Error_Detected

signal.

After all the data is read, if Error_Detected signal is high, ApbGen writes E to

seven-segment display on the XS40 board. Otherwise it writes C to seven-segment

display. This means that the data received is correct.

A simple pull up resistor (10 kohm) was connected to chip select pin of flash

memory to insure safe and proper power up and power down. Also 0.1 uF capacitor was

connected between Vcc and Gnd of serial flash memory to stabilise the Vcc feed [7].

The waveforms for RTL simulations given in Appendix F.

 9.3. FPGA Implementation Results

Device utilization summary for FPGA implementation is given in Table 9-2.

76

Number of External IOBs 16 out of 61 26%
Flops 7
Latches 0
Number of Global Buffer IOBs 1 out of 8 12%
Flops 0
Latches 0
Number of CLBs 400 out of 400 100%
Total Latches 0 out of 800 0%
Total CLB Flops 438 out of 800 54%
4 input LUTs 728 out of 800 91%
3 input LUTs 157 out of 400 39%
Number of BUFGLSs 2 out of 8 25%
Number of STARTUPs 1 out of 1 100%

Table 9-2 Device utilization summary

The main problem while implementing the design to the FPGA is the number of

CLBs. To fit the design into the FPGA some of the functionalities were given up. This

version of design can only work with ST serial flash memories. Also it has only one

chip select output.

77

 10. CONCLUSIONS

This thesis has presented the SPI protocol and the design, digital implementation,

functional and gate-level verification, synthesis and place&route of serial flash memory

controller block in digital CMOS 0.35µm technology.

While designing serial flash memory controller block, our main purpose was to

create easy programmable, easy adaptable module with minimum area. For this reason

we made research on current solutions for communication with serial flash memories,

SPI protocol and structure of processor platform.

The design consists of four main blocks:

• ApbIf block: APB interface that provides communication with the processor.

• SPIIf block: SPI interface, which provides communication with serial flash

memory.

• SPIClockLogic: Produces clock and enable signals for communication with

serial flash memory.

• RxFIFO: FIFO for continuos operation in receive mode.

Serial flash memory controller block can be programmed by the processor for the

required operation and the structure of receive or transmit frame. This block can easily

be integrated into the processor platform for embedded applications. Since the serial

flash memory controller block has a generic structure, it can be used with different types

of flash memories.

The synthesis of serial flash memory controller block was done for 80 MHz clock

speed. SPIClockLogic block produces 20 MHz SPI clock from this 80 MHz clock.

Serial flash memory controller block is tested and verified for all flash memory

access operations. All the tests were done from the top level by using model of

processor and flash memories.

78

REFERENCES

1. ARM, PrimeCell Synchronous Serial Port (PL022) Technical Reference Manual,

July 2001.

2. ARM, AMBA Specification (Rev 2.0), May 1999.

3. Michael John Sebastian Smith, Application Specific Integrated Circuits, 1997.

4. Pran Kurup, Taher Abbasi, Logic Synthesis Using Synopsys (Second Edition), 1997.

5. Atmel, 64-megabit 2.7-volt Only Dual-interface Data Flash AT45DB642, Rev.

1638D–11/01.

6. Atmel, 32-Bit Embedded Core Peripheral, Serial Peripheral Interface (SPI), Rev.

1244D-CASIC–01/03.

7. STMicroelectronics, 8 Mbit, Low Voltage, Serial Flash Memory with 25 MHz SPI

Bus Interface M25P80, December 2002.

8. NexFlash Technologies, 63M-bit Serial Flash Memory with 4 Pin SPI Interface

NX25F641C, April 2002.

9. Fred G. Martin, D.4 Serial Peripheral Interface, November 1995.

10. Motorola, MC68HC11 Reference Manual, Prentice Hall 1989.

11. Ohio State University, Information and Electronics Group, The Serial Peripheral

Interface, Nautilus Chip-Project DEEPSEA (Digital Exportation of an Established

Protocol from Sensing Encoded Analog), January 2001.

12. Andrew Chu, Chris Ohlmann, VHDL Implementation of Serial Peripheral Interface,

2002.

13. Cadence, Serial Peripheral Interface Technical (SPI) Technical Data Sheet,

December 2002.

14. Palmchip, Serial Peripheral Interface Controller, January 2002.

79

15. ST Microelectronics, SPI Communication Between ST7 and EEPROM, 1999.

16. Xilinx, CoolRunner Serial Peripheral Interface Master, December 2002.

17. Alma Technologies, SPI Master/Slave Core, 2002.

18. Dave Bursky, Serial Flash Memories Rise To Meet Changing System Needs, Marc

1999.

19. Brett Glass, There in a Flash: Flash Memory for Embedded Systems, CMP Media

Inc. 2000.

20. ST Microelectronics, Flash Memories, B979M - June 2003.

21. ST Microelectronics, Using Serial Flash Memories for Code Storage in Computer

and Peripherals Applications, May 2002.

22. XESS Corporation, XS40, XSP Board V1.4 XS40, XSP Board V1.4 XS40, XSP

Board V1.4 XS40, XSP Board V1.4 User Manual, 9/21/2001.

80

 11. APPENDIX A: FUNCTIONAL SIMULATIONS

Below figures shows write and read operations for NexFlash flash memories.

Figure 11-1 Write operation for NexFlash serial flash memory

Figure 11-2 Read operation for NexFlash serial flash memory

81

Below figures shows read and write operations for Atmel flash memories.

Figure 11-3 Write operation for Atmel serial flash memory

Figure 11-4 Read operation for Atmel serial flash memory

82

Below figures read and write operations for ST flash memories.

Figure 11-5 Write operation for ST serial flash memory

Figure 11-6 Read operation for ST flash memory

83

 12. APPENDIX B: SYNTHESIS SCRIPT

To synthesise ApbSPI following scripts should be run.

dc_shell -f analyze.scr
dc_shell -f ApbSPI.rtl.script

In the script called analyze.scr all the hdl files included in ApbSPI database are
analyzed.

ApbSPI.rtl.script is given below.

elaborate ApbSPI -arch "STR" -lib LIB_APB_SPI -update
set_scan_configuration -methodology full_scan
set_scan_configuration -style multiplexed_flip_flop

OPERATING_CONDITIONS = "WORST"
REF_DRIVER_PIN ="csx_HRDLIB/DFA/Q"
REF_DRIVER_CELL ="csx_HRDLIB/DFA"
REF_LOAD ="csx_HRDLIB/NA2/A"
DEFAULT_MAX_TRANSITION =2.6
CLOCK_NAME = "Clock"
CLOCK_PERIOD = "11.00"
CLOCK_PERIOD_1 = "40.00"
RESET_NAME = "ResetNot"
DEFAULT_INPUT_DELAY = "1"
DEFAULT_OUTPUT_DELAY = "5"
DEFAULT_LOAD = "1"
DEFAULT_MAX_CAPACITANCE = 5.0 * load_of(REF_LOAD)
DEFAULT_DRIVE = drive_of(REF_DRIVER_PIN)

create_clock CLOCK_NAME -period CLOCK_PERIOD
set_input_delay DEFAULT_INPUT_DELAY -clock CLOCK_NAME all_inputs()
remove_input_delay CLOCK_NAME -clock CLOCK_NAME
set_max_capacitance DEFAULT_MAX_CAPACITANCE all_inputs()
remove_attribute CLOCK_NAME max_capacitance
set_max_transition DEFAULT_MAX_TRANSITION find(design,"*")
set_load DEFAULT_LOAD all_outputs()
MAX_AREA_CONSTRAINT = "0.0"
set_max_area MAX_AREA_CONSTRAINT
set_operating_conditions OPERATING_CONDITIONS
set_fix_multiple_port_nets –all

84

compile -scan
write -hierarchy -output ApbSPI.db
write -hierarchy -format verilog -output ApbSPI.GAT.v
write_constraints -format sdf -output ApbSPI.sdf
report_area > ApbSPI.rtl.reports
report_timing >> ApbSPI.rtl.reports
report_reference >> ApbSPI.rtl.reports
check_design >> ApbSPI.rtl.reports
report_constraints -verbose >> ApbSPI.rtl.reports
report_hierarchy >> ApbSPI.rtl.reports
report_port >> ApbSPI.rtl.reports
quit

85

 13. APPENDIX C: GATE-LEVEL SIMULATIONS

Below figures show the results of gate level simulations for NexFlash serial flash

memories.

Figure 13-1 WriteData operation for NexFlash serial flash memory

Figure 13-2 WritePage operation for NexFlash serial flash memory

86

Figure 13-3 Read Data operation for NexFlash serial flash memory

87

 14. APPENDIX D: BACKEND SCRIPT

##---
##--
##-- Silicon Ensemble Macro File Template
##--
##---

##-- set colors to make vias visible
##--
set v DRAW.SWIRE.LAYERSET "1 2 3 4 5 6" ;
set v DRAW.WIRE.LAYERSET "1 2 3 4 5 6" ;

set v DRAW.SWIRE.4.COLOR 5 ;
set v DRAW.SWIRE.5.COLOR 6 ;
set v DRAW.WIRE.4.COLOR 5 ;
set v DRAW.WIRE.5.COLOR 6 ;

set v DRAW.LAYER.ORDER "4 1 2 3 5 6";

##-- Set Off Congestion Map Drawing
SET VAR DRAW.SCORE.GRAPHICS.AT OFF ;

##-- Set Design Directory
##--
SET VAR DB.DESIGN.DIR "./DB" ;
SET VAR VERIFY.TECHNOLOGY.MIN.FEATURESIZE 5 ;
SET VAR SROUTE.VIA.SNAPMANUFACTURINGGRID TRUE ;
SET VAR SROUTE.STRIPE.SNAP.RGRID "GRID" ;
SET VAR HYPEREXTRACT.RULES.FILE
"/usr/local/cds/lib/ams_v3.40/artist/HK_0.35/LEF/csd/csd_he.rules";

##-- Set Variables for VERILOG Import
##--
SET VAR INPUT.VERILOG.CREATE.IO.PINS FALSE ;
SET VAR INPUT.VERILOG.ADD.LEADING.DELIM FALSE ;
set var INPUT.VERILOG.GROUND.NET "gnd! gnd3r! gnd3o!" ;
set var INPUT.VERILOG.POWER.NET "vdd! vdd3o! vdd3r!";
set var INPUT.VERILOG.SPECIAL.NETS "vdd! vdd3o! vdd3r! gnd! gnd3o! gnd3r!" ;
set var INPUT.VERILOG.LOGIC.0.NET gnd! ;
set var INPUT.VERILOG.LOGIC.1.NET vdd! ;

##-- Import Library Data

88

##-- LEF
FINPUT LEF F /usr/local/cds/lib/ams_v3.40/artist/HK_0.35/LEF/csd/csd.lef ;
INPUT LEF F /usr/local/cds/lib/ams_v3.40/artist/HK_0.35/LEF/csd/HRDLIB_3M.lef ;
INPUT LEF F /usr/local/cds/lib/ams_v3.40/artist/HK_0.35/LEF/csd/IOLIB_3M.lef ;
INPUT LEF F <addional LEF files> ;

##-- CTLF Timing
##-- GCF File
INPUT CTLF INITFILE "./csd3.3V.gcf" ;

##-- Import Design Data
##-- Verilog
 INPUT VERILOG FILE ./VERILOG/csx_HRDLIB.v LIB DesignLib;
 INPUT VERILOG FILE ./VERILOG/ApbSPI.GAT.v LIB DesignLib
 REFLIB "DesignLib" DESIGN DesignLib.ApbSPI:hdl ;

##-- Import Timing Contraints
##-- INPUT GCF FILENAME "./constr3.3V.gcf" REPORTFILE "importgcf.rpt" ;

##-- To Set Rows On Grid
SET VAR PLAN.IOROW.SNAPGRID.X 10 ;
SET VAR PLAN.IOROW.SNAPGRID.Y 10 ;

##-- Save design
##--
SAVE loaded ;

##-- Initialize the floorplan
FINIT FLOORPLAN rowu 0.90 rowsp 0 blockhalo 2000 f a 1 abut xio 10000 yio
10000 ;
WINDOW FIT ;
##-- Place the Periphery Cells
IOPLACE AUTOMATIC STYLE EVEN ;

##-- Cut Rows around Blocks
CUT ROW BLOCKHALO 2000;
##-- Power Routing
##--
BUILD CHANNEL ;

##-- Add Power Stripes
##--
#ADD STRIPE NET vdd! NET gnd! DIRECTION Vertical LAYER MET2 WIDTH
500

##-- Add Power Rings
##--
CONSTRUCT RING NET "vdd!" NET "gnd!"
 LAYER MET1 CORERINGWIDTH 1000 SPACING CENTER
BLOCKRINGWIDTH 500

89

 LAYER MET2 CORERINGWIDTH 1000 SPACING CENTER
BLOCKRINGWIDTH 500;

SAVE power_plan ;
##-- Add Cap cells
SROUTE ADDCELL MODEL LCAP PREFIX lcap
 SPIN vdd! NET vdd! SPIN gnd! NET gnd!
 AREA (-43500 -43480) (43640 43610) PREENDCAP ;
SROUTE ADDCELL MODEL RCAP PREFIX rcap
 SPIN vdd! NET vdd! SPIN gnd! NET gnd!
 AREA (-43500 -43480) (43640 43610) POSTENDCAP ;

##-- Place Standard Cells
QPLACE NOCONFIG ;

SAVE qplaced ;
SET VAR SROUTE.LPR.VIASATCROSSOVER TRUE ;
SET VAR SROUTE.STACKVIASATCROSSOVER TRUE ;

##-- Finish Power Routing
##-- Connect Blocks
CONNECT RING NET "vdd!" NET "gnd!" BLOCK ALLPORT ;

##-- Connect Power Pads
CONNECT RING NET "vdd!" NET "gnd!" IOPAD ALLPORT WIDTH 1000
IORING;

##-- Route the Clock nets
##CLOCKROUTE ALL ;

##-- Route all the nets
SET VAR WROUTE.GROUTE.ONLY FALSE ;
SET VAR WROUTE.FINAL TRUE ;
SET VAR WROUTE.GLOBAL TRUE ;
SET VAR WROUTE.SEARCHREPAIR TRUE ;
SET VAR WROUTE.INCREMENTAL.FINAL FALSE ;
WROUTE NOCONFIG ;

##-- Add Feedthru Cells
##--
#EXEC fillcore.mac ;
SROUTE ADDCELL MODEL FEED25 PREFIX fillcore NO FS
 SPIN 'vdd!' NET 'vdd!' SPIN 'gnd!' NET 'gnd!'
 AREA (-43500 -43480) (43640 43610) ;
SROUTE ADDCELL MODEL FEED10 PREFIX fillcore NO FS
 SPIN 'vdd!' NET 'vdd!' SPIN 'gnd!' NET 'gnd!'
 AREA (-43500 -43480) (43640 43610) ;
SROUTE ADDCELL MODEL FEED5 PREFIX fillcore NO FS
 SPIN 'vdd!' NET 'vdd!' SPIN 'gnd!' NET 'gnd!'
 AREA (-43500 -43480) (43640 43610) ;

90

SROUTE ADDCELL MODEL FEED2 PREFIX fillcore NO FS
 SPIN 'vdd!' NET 'vdd!' SPIN 'gnd!' NET 'gnd!'
 AREA (-43500 -43480) (43640 43610) ;
SROUTE ADDCELL MODEL FEED PREFIX fillcore NO FS
 SPIN 'vdd!' NET 'vdd!' SPIN 'gnd!' NET 'gnd!'
 AREA (-43500 -43480) (43640 43610) ;

SET VAR DRAW.ROW.AT "OFF";
SET VAR DRAW.CELL.AT "OFF";
SET VAR DRAW.CELL.UNPLACED.AT "OFF";
SET VAR DRAW.PIN.AT "On";
SET VAR DRAW.SWIRE.AT "On";
SET VAR DRAW.SWIRE.GEOM "On";
SET VAR DRAW.WIRE.AT "On";
SET VAR DRAW.WIRE.GEOM "On";
SET VAR DRAW.BLOCKAGE.AT "On";
REFRESH

##-- Save the design
SAVE "final" ;

##-- Save the design as DEF
OUTPUT DEF FILENAME "./DEF/ApbSPI.def" ;
OUTPUT GDSII MAPFILE gds2.map STRUCTURENAME ApbSPI FILE
ApbSPI_se.gds2 ;
SET VAR OUTPUT.VERILOG.PWR.AND.GND.PORTS "TRUE";
OUTPUT VERILOG FILE "./VERILOG/ApbSPI.v" ;

##-- Write RSPF
REPORT RC FILE ApbSPI.rspf ;

##-- Write Logical SDF
SET VAR TIMING.RSPF.FILE "ApbSPI.rspf";
REPORT DELAY SDFOUTPUT FILENAME ApbSPI.sdf USERSPF;

91

 15. APPENDIX E: PIN DESCRIPTIONS AND SIMPLIFIED SCHEMATICS
OF XS40 BOARD

XS40 Pin Connects to Description
25 S0 BLUE0
26 S1 BLUE1
24 S2 GREEN0
20 S3 GREEN1
23 S4 RED0
18 S5 RED1
19 S6 HSYNCB

These pins drive the individual segments of the LED display
(S0-S6). They also drive the color and horizontal sync signals
for a VGA monitor.

13 CLK An input driven by the 100 MHz programmable oscillator
44 PC D0
45 PC D1
46 PC D2
47 PC D3
48 PC D4
49 PC D5
32 PC D6
34 PC D7

These pins are driven by the data output pins of the PC parallel
port. Clocking signals can only be reliably applied through pins
44 and 45 since these have additional hysteresis circuitry. Pins
32 and 34 are mode signals for the FPGA so you must adjust
your design to account for the way that the Foundation tools
handle these pins. Pins 32 and 34 are not usable as general-
purpose I/O on the Spartan FPGA on the XSP Board.

37 XTAL1 Pin that drives the uC clock input
36 RST Pin that drives the uC reset input
29 ALEB Pin that monitors the uC address latch enable
14 PSENB Pin that monitors the uC program store enable
7 P1 0
8 P1 1
9 P1 2
6 P1 3
77 P1 4 PC S4
70 P1 5 PC S3
66 P1 6 PC S5
67 P1 7 VSYNCB

These pins connect to the pins of Port 1 of the uC. Some of the
pins are also connected to the status input pins of the PC
parallel port. Pin 67 drives the vertical sync signal for a VGA
monitor.

69 P3 1(TXD) PC S6
68 P3 4(T0) PS/2 CLK
62 P3 6(WRB) WEB

27 P3 7(RDB)

These pins connect to some of the pins of Port 3 of the uC. The
uC has specialised functions for each of the port pins indicated
in parentheses. Pin 62 connects to the data write pin of the uC
and the write-enable pin of the SRAM. Pin 69 connects to a
status input pin of the PC parallel port and the PS/2 data line.
Pin 68 connects to the PS/2 clock line

41 P0 0(AD0) D0
40 P0 1(AD1) D1
39 P0 2(AD2) D2
38 P0 3(AD3) D3

These pins connect to Port 0 of the uC, which is also a
multiplexed address/data port. These pins also connect to the
data pins of the SRAM.

92

35 P0 4(AD4) D4
81 P0 5(AD5) D5
80 P0 6(AD6) D6
10 P0 7(AD7) D7
59 P2 0(A8) A8
57 P2 0(A9) A9
51 P2 0(A10) A10
56 P2 0(A11) A11
50 P2 0(A12) A12
58 P2 0(A13) A13
60 P2 0(A14) A14
28 P2 0(A15) A15
16 A16

These pins connect to Port 2 of the uC, which also outputs the
upper address byte. These pins also connect to the upper
address bits of the SRAM. Pins 28 and 16 are connected to the
128 KB SRAM address pins only on the XS40+ Board. Pins 28
and 16 do not connect to the 32 KB SRAM on the XS40 Board.

3 A0
4 A1
5 A2
78 A3
79 A4
82 A5
83 A6
84 A7

These pins drive the 8 lower address bits of the SRAM.

61 OEB Pin that drives the SRAM output enable
65 CEB Pin that drives the SRAM chip enable
75 PC S7 Pin that drives a status input pin of the PC parallel port

Table 15-1 Pin descriptions of XS40 board

93

Figure 15-1 Simplified schematic of XS40 board

94

 16. APPENDIX F: SIMULATIONS FOR FPGA IMPLEMENTATION

The following figures show the waveforms for functional simulations in FPGA

implementation.

Figure 16-1 GetFlashStatus operation

Figure 16-2 Write operation

95

Figure 16-3 Read operation

Figure 16-4 WriteEnable, BulkErase and GetFlashStatus operations

Following figure is the output of the logic analyzer for the test with XS40 board

and M25P80 serial flash memory. It shows the WriteEnable, BulkErase and

GetFlashStatus operations of serial flash memory controller module.

96

Figure 16-5 Output of logic analyzer

78

REFERENCES

1. ARM, PrimeCell Synchronous Serial Port (PL022) Technical Reference Manual,

July 2001.

2. ARM, AMBA Specification (Rev 2.0), May 1999.

3. Michael John Sebastian Smith, Application Specific Integrated Circuits, 1997.

4. Pran Kurup, Taher Abbasi, Logic Synthesis Using Synopsys (Second Edition), 1997.

5. Atmel, 64-megabit 2.7-volt Only Dual-interface Data Flash AT45DB642, Rev.

1638D–11/01.

6. Atmel, 32-Bit Embedded Core Peripheral, Serial Peripheral Interface (SPI), Rev.

1244D-CASIC–01/03.

7. STMicroelectronics, 8 Mbit, Low Voltage, Serial Flash Memory with 25 MHz SPI

Bus Interface M25P80, December 2002.

8. NexFlash Technologies, 63M-bit Serial Flash Memory with 4 Pin SPI Interface

NX25F641C, April 2002.

9. Fred G. Martin, D.4 Serial Peripheral Interface, November 1995.

10. Motorola, MC68HC11 Reference Manual, Prentice Hall 1989.

11. Ohio State University, Information and Electronics Group, The Serial Peripheral

Interface, Nautilus Chip-Project DEEPSEA (Digital Exportation of an Established

Protocol from Sensing Encoded Analog), January 2001.

12. Andrew Chu, Chris Ohlmann, VHDL Implementation of Serial Peripheral Interface,

2002.

13. Cadence, Serial Peripheral Interface Technical (SPI) Technical Data Sheet,

December 2002.

14. Palmchip, Serial Peripheral Interface Controller, January 2002.

79

15. ST Microelectronics, SPI Communication Between ST7 and EEPROM, 1999.

16. Xilinx, CoolRunner Serial Peripheral Interface Master, December 2002.

17. Alma Technologies, SPI Master/Slave Core, 2002.

18. Dave Bursky, Serial Flash Memories Rise To Meet Changing System Needs, Marc

1999.

19. Brett Glass, There in a Flash: Flash Memory for Embedded Systems, CMP Media

Inc. 2000.

20. ST Microelectronics, Flash Memories, B979M - June 2003.

21. ST Microelectronics, Using Serial Flash Memories for Code Storage in Computer

and Peripherals Applications, May 2002.

22. XESS Corporation, XS40, XSP Board V1.4 XS40, XSP Board V1.4 XS40, XSP

Board V1.4 XS40, XSP Board V1.4 User Manual, 9/21/2001.

