DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI
INTERFACE FOR EMBEDDED SYSTEMS

by

CIHAN TUzCU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of Master Science

Sabanci University
May 2004

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI
INTERFACE FOR EMBEDDED SYSTEMS

APPROVED BY:

Assist. Prof. Dr. Ayhan BOZKURT

(Thesis Advisor)

Assist. Prof. Dr. ilker HAMZAOGLU
(Jury Member)

Assist. Prof. Dr. Erkay SAVAS
(Jury Member)

DATE OF APPROVAL:

a Cihan TUZCU 2004
All Rights Reserved

ABSTRACT

This thesis presents digital design and implementation of a controller module for
serial flash memories.

Firstly, the platform including the serial flash memory controller, flash memories
and SPI (Serial Peripheral Interface) protocol have been investigated to solve the current
problems related with controlling of serial flash memories. Then, in the implementation
part of the thesis, the Serial Flash Memory Controller module has been designed by
using VHDL (VHSIC Hardware Description Language-VHDL) and synthesized in
CMOS 0.35 mm technology. Functional and gate-level simulations have been done with
Cadence simulator. Lastly the final gate level netlist has been placed and routed with
Cadence Silicon Ensemble.

A great deal of attention has been given to design a generic controller that needs
simple software and minimum processor access cycle. It is programmed from the
processor for different operations of serial flash memories. The structure of the frame,
control data and timings are controlled by hardware according to the programmed
operation. In addition to this, our Serial Flash Memory Controller module can be used
with different flash memories. This is very important property for reusability of the
module.

The Serial Flash Memory Controller module is capable to work up to 20 MHz
serial communication speed and it can be integrated to processor platforms that have
AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus)
interface.

OZET

Bu tez seri flas belleklerin kontrollini saglayan devrenin sayisal olarak tasarimu,
ve uygulanmasi asamalarindan olusmustur.

Ilk olarak seri flas bellek kontroldr blogunun da igerisinde bulundugu islemci
platformu, seri flas bellekler ve SPI (Serial Peripheral Interface) protokolu, seri flas
belleklerin kontrolindeki mevcut problemler icin arastirilmigtir. Tezin uygulama
boluminde seri flas bellek kontrolor blogu VHDL (VHSIC Hardware Description
Language-VHDL) kullamilarak sayisal olarak tasarlanmis, 0.35 mm sayisal CMOS
teknolojisi kullamilarak sentezlenmis, fonksiyonel ve kapi seviyesinde test edilmistir.
Tezin son asamasinda, sentezlenmis blok yerlestirme ve yol atama islemlerinden
gegirilmistir.

Seri flas bellek kontrolér blogunun jenerik olarak tasarlamasinin yaminda blogun
basit bir yazilima ve minimum islemci kontroline ihtiyag duymasina biyuk onem
verilmigstir. Seri flag bellege transfer edilecek bilginin icerigi ve SPI (Serial Peripheral
Interface) protokoliine uygun olarak gonderilmesi, seri flas bellek kontrolor blogu
tarafindan, islemcinin programlandigi operasyona gore kontrol edilir. Seri flas bellek
kontrolor blogu farkli seri flas belleklerle kullarilabilir. Blok, islemci tarafindan seri
flas belleklerin farkli operasyonlart igin programlanabilir.

Seri flag bellek kontrolor blogunun maksimum 20 MHz seri transfer hizina kadar
cikabilmektedir. Blok AMBA (Advanced Microcontroller Bus Architecture) APB
(Advanced Peripheral Bus) araylzi bulunan islemci platformlarina entegre edilebilir.

To my parents.

VI

ACKNOWLEDGEMENTS

This research begun while | was working in ST Microelectronics Istanbul Design
Center. Many, many people have helped me not to get lost during the development of
thisthesis.

First, 1 would like to thank my Assist. Prof. Dr. Ayhan BOZKURT who
supervised and helped me so much. It was a great pleasure to me to conduct this thesis
under his supervision. | also acknowledge Assoc. Prof. Dr. Yasar GURBUZ who as my
second supervisor provided constructive comments during my thesis time.

| am very grateful to Alcatel Microelectronics and ST Microelectronics for
providing financial support to study at Sabanci University as part of a university
industry collaboration agreement.

My colleagues from ST Microelectronics supported me in my research work. |
want to thank them for all their help, support, interest and valuable hints.

Finally, | am grateful to my parents for their continuous encouragement, abundant

love and generous support they have given me throughout my life.

VII

TABLE OF CONTENTS

1. INTRODUCTION. ...ttt ettt neesnneennee s 1
I o (V7= (o] TSRO P RO P PSP 1
1.2. TheSIS OrganiZaliON..........eeiueiiieeiieesiee ettt sn e sneeeans 2

2. PROCESSOR PLATFORMcoiiiiiiieiiiaiie et 4
2.1. Introduction to the AMBA BUSES..........coiiiiiiiiiienie et 5
2.2, AMBA AHB e 5

2.2.1. BUSINEEICONNECTION ...ttt 7
2.2.2. Overview of AMBA AHB OPEralioN.........coouieiiieiieiiee e 8
2.3 AMBA APB ..t 9
2.3 1. AMBA APB SEAES.......ooiiiiieeiiie st 11
2.4. Typical AMBA Based MicroControllercocveiiiiiieiiienieeeecece e 14

3. FLASH MEMORIES. ...t 15

3.1, FlBSN MEBIMOIY ...ttt 15
3.1.1. NAND and NOR Flash MEMOTIIES.........cccuieriiiiieiienieesee e 17
3.1.2. Parallel and Serial INterfaceoooveiiiiiieiiee e 18

4. SPl PROTOQCOL ..ottt anneennee s 20
4.1. SPI Protocol Signal DefiNitioN...........cocviiiieiiieiiesieesee e 20
4.2, SPI FUNCHONAITY ... 20
4.3, SPI CONFIQUIBLION......coieiiiii ittt 21
4.4, Peripneral TYPES.ocuei ittt 22

5. SERIAL FLASH MEMORY CONTROLLER.........ccceiiiiiiiieieeceee e 24
5.1. General FUNCtioNal DESCIIPLION.eeiiieiieeiee st 25

5.0 0 APBIT e 25
5.0 2. SP I e 31
5.1.3. SPICIOCKLOGIC.ceuteiiuiieiiiieiee ettt 44
5.1.4. RXFIFO .ottt 45
5.2. Upload and Download TimiNgScouueeririiiieniieniee e 46
5.2.0 ATMEL .. et 46
5.2, 2. ST ettt e et e e ne e eane e 47
5.2.3 NEXFLASH: ..ttt 47
5.3. Functionality COMPAITSON.cccueiuieriieeieeeiee st 48

6. SERIAL FLASH MEMORY CONTROLLER VERIFICATION........c.ccccvenunene. 53

6.1, TESE SCENAIOSeeueeeintieiiiee ettt ettt et e b e snneennee s 53
6.1.1. ATMEL FIBSN TESt ... 53
6.1.2. ST FlasSh TSI ..o 55
6.1.3. NEXFLASH FIash TEScoiiiiiieie e 56

7. SERIAL FLASH MEMORY CONTROLLER SYNTHESIS.........cccccoeiiienee 58

VIl

7.0 SYNENESIS ...t 58

7.2, 1O TIMING CONSITBINTS ... eeeeeieieeeieesiie ettt e b e beesnneenieeas 59
7.3, SYNNESIS RESUILS......coueiiiiiieeee e 60
7.4. Gate-level SIMUIALIONS........cocuiiiiieiieee e 63
8. PLACE & ROUTE FOR SERIAL FLASH MEMORY CONTROLLER............. 64
8.1. Floorplanning and PlaCement.............oouieiiiiienieeee e 64
8.2, ROULING. ...ttt ettt ettt ettt e e e e neeanns 65
8.3. Place&ROUIE RESUITS......c.eeiiiceee s 66
8.4. Pogt-layout SIMUIBLIONS.......cc.eeiiiiiiieiie s 69
9. FPGA IMPLEMENTATION. ..ottt 70
9.1, XSAD BDOBIT ...ttt 70
9.2. Test Scenario for FPGA ImMplementationcccceeeeerieenee e 72
9.3. FPGA Implementation RESUILS...........cocuiiiiiiieiiieiee e 75
10. CONCLUSIONS..... ..ottt be e ne e sane e 77
11. APPENDIX A: FUNCTIONAL SIMULATIONSccoiiiiiiieeeeeee 80
12. APPENDIX B: SYNTHESIS SCRIPToooiiiiiiiiieeeseeee e 83
13. APPENDIX C: GATE-LEVEL SIMULATIONScccoiiiiiieeeee e 85
14. APPENDIX D: BACKEND SCRIPTooiiiiiiieiieeiie et 87
15. APPENDIX E: PIN DESCRIPTIONS AND SIMPLIFIED SCHEMATICS OF
XSAD BOARD ...ttt ettt ettt ne e nnee s 91
16. APPENDIX F: SSIMULATIONS FOR FPGA IMPLEMENTATION................... 94

LIST OF FIGURES

Figure 2-1 Overview of processor Platformccooceeiiiinieniierieeee e 4
Figure 2-2 Multiplexer INterCONNECLIONocuiiiiiiiiieiie e 8
FIigure 2-3 SEAE DIGgIaMcoiiieiieeiee ettt 12
FIQUIe 2-4 WITE tranSIer ... 13
Figure 2-5 Rea0 tranSfar.........ooiiiiee e 13
Figure 2-6 Typical AMBA BUS SYSIEM......ccuoiiiiiiiieiie e 14
FIQUIE 4-1 SPI PrOCESS......coiutiiiiieiee ettt ne e e 21
Figure 4-2 SPI clocking WaVEfOrMS...........ooiiiiiiieieeee e s 22
Figure 5-1Block Diagram of Serial Flash Controller Module...............ccocoeiiiiiiennee. 24
Figure 5-2 Write to CTRLREGooiiiiiieeeci e 28
Figure 5-3 Generating StartRead SIgnalcocooiieiiiiiieee e 29
Figure 5-4 Control Of SPl OPErationcoouiiiieiiieiieeee e 30
FIQUIE 5-5 SPHT STAES. ..o 33
Figure 5-6 Internal states of ReadDataState.covveiiiiiiienieeree e 34
Figure 5-7 Internal states of GEtPageSIaLe.cocvveiiieiiiiiee e 34
Figure 5-8 Internal states of WriteDataState............cooveereeiiieeiiiereeeee e 35
Figure 5-9 Internal states of WritePageState..........ccooovveriiiiieiiiiseeeeeeee e 35
Figure 5-10 Internal states of WriteEnableState............cooovvviiiiiiiiiiiieeeeee 36
Figure 5-11 Internal states of GetFlashStatuSState............coocvveiiiirieiiieneeeeee e 36
Figure 5-12 Internal states of SECtOrEraseState.c.ovvviiieeiiieenieeee e 37
Figure 5-13 Internal states of BUIKEraseState...........c.coeveeiieeniienieeeeeeee e 37
Figure 5-14 GetFlashStatusState waveforms for Atmel Flash Memoryccccce...... 39
Figure 5-15 WriteDataState waveforms for Atmel Flash Memory ..., 39
Figure 5-16 WritePageState waveforms for Atmel Flash Memory ..o 39
Figure 5-17 GetPageState waveforms for Atmel Flash Memory ... 40
Figure 5-18 ReadPageState waveforms for Atmel Flash Memoryccoveiieennee 40
Figure 5-19 GetFlashStatusState waveforms for NexFlash Flash Memory................... 41
Figure 5-20 WriteEnableState waveforms for NexFlash Flash Memory....................... 41
Figure 5-21 Write to SRAM waveforms for NexFlash Flash Memoryccc........ 41
Figure 5-22 Transfer SRAM to Sector waveforms for NexFlash Flash Memory 42
Figure 5-23 Transfer Sector to SRAM waveforms for NexFlash Flash Memory 42
Figure 5-24 Read from Sector waveforms for NexFlash Flash Memory....................... 42
Figure 5-25 GetFlashStatusState waveforms for ST Flash Memorycccceeieenineene 43
Figure 5-26 WriteEnableState waveforms for ST Flash Memory............cccocvvveieennen. 43
Figure 5-27 WriteDataState waveforms for ST Flash Memorycccooveviiieenneee 43
Figure 5-28 WritePageState waveforms for ST Flash Memorycccocveveeiieenneene. 44
Figure 5-29 ReadDataState waveforms for ST Flash Memoryc.cccovceeiieinieennenne 44
Figure 7-1 Scan cells linked to form a scan chain ... 59
Figure 7-2 Synthesised SPICIockLogiC DIOCK...........cccvviiiiiiiiee 60
Figure 7-3 Synthesised RXFIFO BIOCK...........coiiiiiii e 61

Figure 8-1 Result Of Place&rOULEccueiiiiiiieeee e 68

Figure 9-1 Arrangement of components on XS40 board...........cccoceveieeninicneeneennens 70
Figure 9-2 Block diagram for integration of ApbGen and ApbSPIcccoooeiieennee 73
Figure 9-3 State machine controlling APDGEN..........cccviiiiiiiiiiee e 74
Figure 11-1 Write operation for NexFlash serial flash memory...........cccocoeiiiiennee 80
Figure 11-2 Read operation for NexFlash serial flash memory...........cccooveviiiienneene 80
Figure 11-3 Write operation for Atmel serial flash memory ..., 81
Figure 11-4 Read operation for Atmel serial flash memory..........ccccooveiiiiniiiiieineee 81
Figure 11-5 Write operation for ST serial flash memory ... 82
Figure 11-6 Read operation for ST flash Memorycocoevveiiiie i 82
Figure 13-1 WriteData operation for NexFlash serial flash memorycccccoeeneee 85
Figure 13-2 WritePage operation for NexFlash serial flash memorycccooceeeeee 85
Figure 13-3 Read Data operation for NexFlash serial flash memoryccocee. 86
Figure 15-1 Simplified schematic of XS40 boardccoiiiiiiiiiiieee 93
Figure 16-1 GetFlashStatus OPeration.............ccoeeeueeiieenieeiee e 94
Figure 16-2 Wit OPEIaIONoeiueeiiieiieesiee ettt 9
Figure 16-3 REA OPEIGION.........ooiiiiiieiieesiee ettt 95
Figure 16-4 WriteEnable, BulkErase and GetFlashStatus operations................ccceue.... 95
Figure 16-5 Output of 10gIC @NalYZEXcoiiiiieieee e 96

Xl

LIST OF TABLES

Table 2-1 AMBA AHB signal definitions............coooiiiieiiiiieceee e 7
Table 2-2 AMBA APB signal definitions..........cccoiiiiiiinieiiesee e 11
TaDIE 4-1 SPI IMOAES........ooiieieiiee e e 22
Table 5-1 List of 1/O Interfaces for APBIf BIOCK..........ccooiiiiiiiiis 26
Table 5-2 APBIT FEQISIENS......ooiiieiee e 27
Table 5-3 List of 1/O Interfaces for SPHT BIOCK..........cccoeiiiiiiiieee 32
Table 5-4 States and Opcodes Used In SPI Interfacecovvveeeiiieeicee e 38
Table 5-5 List of 1/O Interfaces for SPHT BIOCK..........cccooiiiiiiiice 44
Table 5-6 List of 1/O Interfaces for RXFIfo BIOCK...........cooouiiiieiiiiiiiiieeceeeee 45
Table 5-7 Comparisons with other serial peripheral interface blocks.............cccccceenee. 48
Table 7-1 10 timing constraints for ATMEL flash memoryccccovoiiiiiieniienenns 59
Table 7-2 10 timing constraints for ST flash memory ... 60
TabIE 7-3ATEATEPONT ...ttt nnee s 62
TabIE 7-4 POWES TEPOI.eeiieeiiieee ettt et saneesane s 62
Table 8-1 DESIGN SUMIMEIY.......coiiiiiiiierieeeiee st esiee et et esse e s e sbe e seesieeeneeanneensneas 66
Table 8-2 UtIliZation Of FOWS.........coiiiiiiiiiie e 67
Table 8-3 Layer INfOrMELION.uiiiieiei it 67
Table 8-4 WIre |engths.cooiiiie e 68
Table 9-1 Pin assignmentS for FPGA ... 72
Table 9-2 Device UtiliZation SUMMEIYcoouiiiiiiiieie e 76
Table 15-1 Pin descriptions of XS40 boardcocveiiiiiiiiiieneceeeee e 92

X1l

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

DAC Digital to Analog Converter

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read
Only Memory

HDL Hardware Description Language

LCD Liquid Crystal Display

MOS Metal Oxide Semiconductor

RAM Random Access Memory

RTC Real Time Clocks

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

X111

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI
INTERFACE FOR EMBEDDED SYSTEMS

by

CIHAN TUzCU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of Master Science

Sabanci University
May 2004

DIGITAL DESIGN OF SERIAL FLASH MEMORY CONTROLLER WITH SPI
INTERFACE FOR EMBEDDED SYSTEMS

APPROVED BY:

Assist. Prof. Dr. Ayhan BOZKURT

(Thesis Advisor)

Assist. Prof. Dr. ilker HAMZAOGLU
(Jury Member)

Assist. Prof. Dr. Erkay SAVAS
(Jury Member)

DATE OF APPROVAL:

a Cihan TUZCU 2004
All Rights Reserved

ABSTRACT

This thesis presents digital design and implementation of a controller module for
serial flash memories.

Firstly, the platform including the serial flash memory controller, flash memories
and SPI (Serial Peripheral Interface) protocol have been investigated to solve the current
problems related with controlling of serial flash memories. Then, in the implementation
part of the thesis, the Serial Flash Memory Controller module has been designed by
using VHDL (VHSIC Hardware Description Language-VHDL) and synthesized in
CMOS 0.35 mm technology. Functional and gate-level simulations have been done with
Cadence simulator. Lastly the final gate level netlist has been placed and routed with
Cadence Silicon Ensemble.

A great deal of attention has been given to design a generic controller that needs
simple software and minimum processor access cycle. It is programmed from the
processor for different operations of serial flash memories. The structure of the frame,
control data and timings are controlled by hardware according to the programmed
operation. In addition to this, our Serial Flash Memory Controller module can be used
with different flash memories. This is very important property for reusability of the
module.

The Serial Flash Memory Controller module is capable to work up to 20 MHz
serial communication speed and it can be integrated to processor platforms that have
AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus)
interface.

OZET

Bu tez seri flas belleklerin kontrollini saglayan devrenin sayisal olarak tasarimu,
ve uygulanmasi asamalarindan olusmustur.

Ilk olarak seri flas bellek kontroldr blogunun da igerisinde bulundugu islemci
platformu, seri flas bellekler ve SPI (Serial Peripheral Interface) protokolu, seri flas
belleklerin kontrolindeki mevcut problemler icin arastirilmigtir. Tezin uygulama
boluminde seri flas bellek kontrolor blogu VHDL (VHSIC Hardware Description
Language-VHDL) kullamilarak sayisal olarak tasarlanmis, 0.35 mm sayisal CMOS
teknolojisi kullamilarak sentezlenmis, fonksiyonel ve kapi seviyesinde test edilmistir.
Tezin son asamasinda, sentezlenmis blok yerlestirme ve yol atama islemlerinden
gegirilmistir.

Seri flas bellek kontrolér blogunun jenerik olarak tasarlamasinin yaminda blogun
basit bir yazilima ve minimum islemci kontroline ihtiyag duymasina biyuk onem
verilmigstir. Seri flag bellege transfer edilecek bilginin icerigi ve SPI (Serial Peripheral
Interface) protokoliine uygun olarak gonderilmesi, seri flas bellek kontrolor blogu
tarafindan, islemcinin programlandigi operasyona gore kontrol edilir. Seri flas bellek
kontrolor blogu farkli seri flas belleklerle kullarilabilir. Blok, islemci tarafindan seri
flas belleklerin farkli operasyonlart igin programlanabilir.

Seri flag bellek kontrolor blogunun maksimum 20 MHz seri transfer hizina kadar
cikabilmektedir. Blok AMBA (Advanced Microcontroller Bus Architecture) APB
(Advanced Peripheral Bus) araylzi bulunan islemci platformlarina entegre edilebilir.

To my parents.

VI

ACKNOWLEDGEMENTS

This research begun while | was working in ST Microelectronics Istanbul Design
Center. Many, many people have helped me not to get lost during the development of
thisthesis.

First, 1 would like to thank my Assist. Prof. Dr. Ayhan BOZKURT who
supervised and helped me so much. It was a great pleasure to me to conduct this thesis
under his supervision. | also acknowledge Assoc. Prof. Dr. Yasar GURBUZ who as my
second supervisor provided constructive comments during my thesis time.

| am very grateful to Alcatel Microelectronics and ST Microelectronics for
providing financial support to study at Sabanci University as part of a university
industry collaboration agreement.

My colleagues from ST Microelectronics supported me in my research work. |
want to thank them for all their help, support, interest and valuable hints.

Finally, | am grateful to my parents for their continuous encouragement, abundant

love and generous support they have given me throughout my life.

VII

TABLE OF CONTENTS

1. INTRODUCTION. ...ttt ettt neesnneennee s 1
I o (V7= (o] TSRO P RO P PSP 1
1.2. TheSIS OrganiZaliON..........eeiueiiieeiieesiee ettt sn e sneeeans 2

2. PROCESSOR PLATFORMcoiiiiiiieiiiaiie et 4
2.1. Introduction to the AMBA BUSES..........coiiiiiiiiiienie et 5
2.2, AMBA AHB e 5

2.2.1. BUSINEEICONNECTION ...ttt 7
2.2.2. Overview of AMBA AHB OPEralioN.........coouieiiieiieiiee e 8
2.3 AMBA APB ..t 9
2.3 1. AMBA APB SEAES.......ooiiiiieeiiie st 11
2.4. Typical AMBA Based MicroControllercocveiiiiiieiiienieeeecece e 14

3. FLASH MEMORIES. ...t 15

3.1, FlBSN MEBIMOIY ...ttt 15
3.1.1. NAND and NOR Flash MEMOTIIES.........cccuieriiiiieiienieesee e 17
3.1.2. Parallel and Serial INterfaceoooveiiiiiieiiee e 18

4. SPl PROTOQCOL ..ottt anneennee s 20
4.1. SPI Protocol Signal DefiNitioN...........cocviiiieiiieiiesieesee e 20
4.2, SPI FUNCHONAITY ... 20
4.3, SPI CONFIQUIBLION......coieiiiii ittt 21
4.4, Peripneral TYPES.ocuei ittt 22

5. SERIAL FLASH MEMORY CONTROLLER.........ccceiiiiiiiieieeceee e 24
5.1. General FUNCtioNal DESCIIPLION.eeiiieiieeiee st 25

5.0 0 APBIT e 25
5.0 2. SP I e 31
5.1.3. SPICIOCKLOGIC.ceuteiiuiieiiiieiee ettt 44
5.1.4. RXFIFO .ottt 45
5.2. Upload and Download TimiNgScouueeririiiieniieniee e 46
5.2.0 ATMEL .. et 46
5.2, 2. ST ettt e et e e ne e eane e 47
5.2.3 NEXFLASH: ..ttt 47
5.3. Functionality COMPAITSON.cccueiuieriieeieeeiee st 48

6. SERIAL FLASH MEMORY CONTROLLER VERIFICATION........c.ccccvenunene. 53

6.1, TESE SCENAIOSeeueeeintieiiiee ettt ettt et e b e snneennee s 53
6.1.1. ATMEL FIBSN TESt ... 53
6.1.2. ST FlasSh TSI ..o 55
6.1.3. NEXFLASH FIash TEScoiiiiiieie e 56

7. SERIAL FLASH MEMORY CONTROLLER SYNTHESIS.........cccccoeiiienee 58

VIl

7.0 SYNENESIS ...t 58

7.2, 1O TIMING CONSITBINTS ... eeeeeieieeeieesiie ettt e b e beesnneenieeas 59
7.3, SYNNESIS RESUILS......coueiiiiiieeee e 60
7.4. Gate-level SIMUIALIONS........cocuiiiiieiieee e 63
8. PLACE & ROUTE FOR SERIAL FLASH MEMORY CONTROLLER............. 64
8.1. Floorplanning and PlaCement.............oouieiiiiienieeee e 64
8.2, ROULING. ...ttt ettt ettt ettt e e e e neeanns 65
8.3. Place&ROUIE RESUITS......c.eeiiiceee s 66
8.4. Pogt-layout SIMUIBLIONS.......cc.eeiiiiiiieiie s 69
9. FPGA IMPLEMENTATION. ..ottt 70
9.1, XSAD BDOBIT ...ttt 70
9.2. Test Scenario for FPGA ImMplementationcccceeeeerieenee e 72
9.3. FPGA Implementation RESUILS...........cocuiiiiiiieiiieiee e 75
10. CONCLUSIONS..... ..ottt be e ne e sane e 77
11. APPENDIX A: FUNCTIONAL SIMULATIONSccoiiiiiiieeeeeee 80
12. APPENDIX B: SYNTHESIS SCRIPToooiiiiiiiiieeeseeee e 83
13. APPENDIX C: GATE-LEVEL SIMULATIONScccoiiiiiieeeee e 85
14. APPENDIX D: BACKEND SCRIPTooiiiiiiieiieeiie et 87
15. APPENDIX E: PIN DESCRIPTIONS AND SIMPLIFIED SCHEMATICS OF
XSAD BOARD ...ttt ettt ettt ne e nnee s 91
16. APPENDIX F: SSIMULATIONS FOR FPGA IMPLEMENTATION................... 94

LIST OF FIGURES

Figure 2-1 Overview of processor Platformccooceeiiiinieniierieeee e 4
Figure 2-2 Multiplexer INterCONNECLIONocuiiiiiiiiieiie e 8
FIigure 2-3 SEAE DIGgIaMcoiiieiieeiee ettt 12
FIQUIe 2-4 WITE tranSIer ... 13
Figure 2-5 Rea0 tranSfar.........ooiiiiee e 13
Figure 2-6 Typical AMBA BUS SYSIEM......ccuoiiiiiiiieiie e 14
FIQUIE 4-1 SPI PrOCESS......coiutiiiiieiee ettt ne e e 21
Figure 4-2 SPI clocking WaVEfOrMS...........ooiiiiiiieieeee e s 22
Figure 5-1Block Diagram of Serial Flash Controller Module...............ccocoeiiiiiiennee. 24
Figure 5-2 Write to CTRLREGooiiiiiieeeci e 28
Figure 5-3 Generating StartRead SIgnalcocooiieiiiiiieee e 29
Figure 5-4 Control Of SPl OPErationcoouiiiieiiieiieeee e 30
FIQUIE 5-5 SPHT STAES. ..o 33
Figure 5-6 Internal states of ReadDataState.covveiiiiiiienieeree e 34
Figure 5-7 Internal states of GEtPageSIaLe.cocvveiiieiiiiiee e 34
Figure 5-8 Internal states of WriteDataState............cooveereeiiieeiiiereeeee e 35
Figure 5-9 Internal states of WritePageState..........ccooovveriiiiieiiiiseeeeeeee e 35
Figure 5-10 Internal states of WriteEnableState............cooovvviiiiiiiiiiiieeeeee 36
Figure 5-11 Internal states of GetFlashStatuSState............coocvveiiiirieiiieneeeeee e 36
Figure 5-12 Internal states of SECtOrEraseState.c.ovvviiieeiiieenieeee e 37
Figure 5-13 Internal states of BUIKEraseState...........c.coeveeiieeniienieeeeeeee e 37
Figure 5-14 GetFlashStatusState waveforms for Atmel Flash Memoryccccce...... 39
Figure 5-15 WriteDataState waveforms for Atmel Flash Memory ..., 39
Figure 5-16 WritePageState waveforms for Atmel Flash Memory ..o 39
Figure 5-17 GetPageState waveforms for Atmel Flash Memory ... 40
Figure 5-18 ReadPageState waveforms for Atmel Flash Memoryccoveiieennee 40
Figure 5-19 GetFlashStatusState waveforms for NexFlash Flash Memory................... 41
Figure 5-20 WriteEnableState waveforms for NexFlash Flash Memory....................... 41
Figure 5-21 Write to SRAM waveforms for NexFlash Flash Memoryccc........ 41
Figure 5-22 Transfer SRAM to Sector waveforms for NexFlash Flash Memory 42
Figure 5-23 Transfer Sector to SRAM waveforms for NexFlash Flash Memory 42
Figure 5-24 Read from Sector waveforms for NexFlash Flash Memory....................... 42
Figure 5-25 GetFlashStatusState waveforms for ST Flash Memorycccceeieenineene 43
Figure 5-26 WriteEnableState waveforms for ST Flash Memory............cccocvvveieennen. 43
Figure 5-27 WriteDataState waveforms for ST Flash Memorycccooveviiieenneee 43
Figure 5-28 WritePageState waveforms for ST Flash Memorycccocveveeiieenneene. 44
Figure 5-29 ReadDataState waveforms for ST Flash Memoryc.cccovceeiieinieennenne 44
Figure 7-1 Scan cells linked to form a scan chain ... 59
Figure 7-2 Synthesised SPICIockLogiC DIOCK...........cccvviiiiiiiiee 60
Figure 7-3 Synthesised RXFIFO BIOCK...........coiiiiiii e 61

Figure 8-1 Result Of Place&rOULEccueiiiiiiieeee e 68

Figure 9-1 Arrangement of components on XS40 board...........cccoceveieeninicneeneennens 70
Figure 9-2 Block diagram for integration of ApbGen and ApbSPIcccoooeiieennee 73
Figure 9-3 State machine controlling APDGEN..........cccviiiiiiiiiiee e 74
Figure 11-1 Write operation for NexFlash serial flash memory...........cccocoeiiiiennee 80
Figure 11-2 Read operation for NexFlash serial flash memory...........cccooveviiiienneene 80
Figure 11-3 Write operation for Atmel serial flash memory ..., 81
Figure 11-4 Read operation for Atmel serial flash memory..........ccccooveiiiiniiiiieineee 81
Figure 11-5 Write operation for ST serial flash memory ... 82
Figure 11-6 Read operation for ST flash Memorycocoevveiiiie i 82
Figure 13-1 WriteData operation for NexFlash serial flash memorycccccoeeneee 85
Figure 13-2 WritePage operation for NexFlash serial flash memorycccooceeeeee 85
Figure 13-3 Read Data operation for NexFlash serial flash memoryccocee. 86
Figure 15-1 Simplified schematic of XS40 boardccoiiiiiiiiiiieee 93
Figure 16-1 GetFlashStatus OPeration.............ccoeeeueeiieenieeiee e 94
Figure 16-2 Wit OPEIaIONoeiueeiiieiieesiee ettt 9
Figure 16-3 REA OPEIGION.........ooiiiiiieiieesiee ettt 95
Figure 16-4 WriteEnable, BulkErase and GetFlashStatus operations................ccceue.... 95
Figure 16-5 Output of 10gIC @NalYZEXcoiiiiieieee e 96

Xl

LIST OF TABLES

Table 2-1 AMBA AHB signal definitions............coooiiiieiiiiieceee e 7
Table 2-2 AMBA APB signal definitions..........cccoiiiiiiinieiiesee e 11
TaDIE 4-1 SPI IMOAES........ooiieieiiee e e 22
Table 5-1 List of 1/O Interfaces for APBIf BIOCK..........ccooiiiiiiiiis 26
Table 5-2 APBIT FEQISIENS......ooiiieiee e 27
Table 5-3 List of 1/O Interfaces for SPHT BIOCK..........cccoeiiiiiiiieee 32
Table 5-4 States and Opcodes Used In SPI Interfacecovvveeeiiieeicee e 38
Table 5-5 List of 1/O Interfaces for SPHT BIOCK..........cccooiiiiiiiice 44
Table 5-6 List of 1/O Interfaces for RXFIfo BIOCK...........cooouiiiieiiiiiiiiieeceeeee 45
Table 5-7 Comparisons with other serial peripheral interface blocks.............cccccceenee. 48
Table 7-1 10 timing constraints for ATMEL flash memoryccccovoiiiiiieniienenns 59
Table 7-2 10 timing constraints for ST flash memory ... 60
TabIE 7-3ATEATEPONT ...ttt nnee s 62
TabIE 7-4 POWES TEPOI.eeiieeiiieee ettt et saneesane s 62
Table 8-1 DESIGN SUMIMEIY.......coiiiiiiiierieeeiee st esiee et et esse e s e sbe e seesieeeneeanneensneas 66
Table 8-2 UtIliZation Of FOWS.........coiiiiiiiiiie e 67
Table 8-3 Layer INfOrMELION.uiiiieiei it 67
Table 8-4 WIre |engths.cooiiiie e 68
Table 9-1 Pin assignmentS for FPGA ... 72
Table 9-2 Device UtiliZation SUMMEIYcoouiiiiiiiieie e 76
Table 15-1 Pin descriptions of XS40 boardcocveiiiiiiiiiieneceeeee e 92

X1l

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

DAC Digital to Analog Converter

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read
Only Memory

HDL Hardware Description Language

LCD Liquid Crystal Display

MOS Metal Oxide Semiconductor

RAM Random Access Memory

RTC Real Time Clocks

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

X111

1 INTRODUCTION

1.1. M otivation

An increasing number of embedded applications use in-circuit reprogrammable
memory chips. Embedded system designers have begun to use flash memory to hold a
system's code and its data, replacing solutions that include a combination of EPROM,
EEPROM, and/or flash. The flash memory included on chip allows data to be reloaded
whenever required, ie after assembly of the hardware or even after shipment at
customer’s site in case of a bug or new features. Therefore data can be loaded or
modified with the microcontroller installed in the application system.

The evolution of computer and peripherals market segment is driven by the
progress of semiconductor industry and in particular by the development of high-speed
processors that demand higher capacity, higher data processing time and faster
memories. Flash memories are ideal for the applications requiring fast code
programming and fast code downloading.

Parallel Access and Serial Access Parallel buses were primarily used to interface
flash memories with microcontrollers and microprocessors through an address bus, a
data bus and a control bus. By default, the term "Flash memory" refers to a parallel
interface memory. The data bus can be organized as x8 bits, x16 bits or x32 bits. In
some cases, address and data buses can be multiplexed.

The serial bus is used to connect a Flash memory to a microcontroller or an ASIC
equipped with a serial bus. Serial buses are input/output interfaces supporting a mixed
address/data protocol. The serial bus connectivity reduces the number of interface
signals required. For example, the SPI bus, the most popular serial bus for serial Flash,
memories, requires only 4 signals (data in, data out, clock and chip select) compared to
21 signals necessary to interface a 10-bit address parallel memory. As a result, the

number of pins of the memory package (memory and bus master) is reduced, as is the
number of PCB tracks. Consequently, a serial memory can fit into a smaller and less
expensive package. However, serial Flash memories are available in lower densities
than Flash memories. The communication throughput between serial Flash memory and
master processor is lower than the communication throughput between Flash memory
and master processor. Consequently, the time to download code into the serial memory
and execute it from the memory is longer. As aresult, serial Flash memories are usually
used for small code storage associated with a cache RAM. This is called a code
shadowing architecture. The executable code is first programmed in the memory and it
is write protected. After power-up, it is downloaded from memory to RAM from where
it is executed by the master processor.

The main purpose of this thesis is to design a controller for serial flash memories
to be used in embedded applications. Moreover, it has been tried to design the whole IP
architecture as generic as possible. So that it can be used with different serial flash

memories.

1.2. ThesisOrganization

The goal of thisthesis isto design a controller for fast and reliable communication
between the processor and the serial flash memories in embedded applications.

In order to understand where the serial flash memory controller module is used
and what the complete system looks like, we need to have a closer look to the structure
of a processor platform. Chapter 2 gives an introductory knowledge about on-chip
communications standard for designing high-performance embedded microcontrollers.

Chapter 3 gives an overview of flash memories. Firstly the structures of different
types of flash memories are explained and then parallel and serial interfaces for flash
memories are compared.

Serial Flash memories have serial peripheral interface to transfer data. Chapter 4
covers the serial peripheral interface protocol. Firstly the structure and the functionality
of SPI is introduced. Then the configuration parameters for serial peripheral interface
are explained. Lastly where SPI isused in practice is covered in this chapter.

Chapter 5 contains detailed explanation of serial flash memory controller module.
After introducing the properties of controller module, detailed functional descriptions

for each of subblocks are given. Then upload and download timings for different flash
memories are calculated. Also the comparison made between our serial flash memory
controller module and several different SPI master modules. The configuration of serial
flash memory controller module is also given in this part.

Chapter 6 covers the test scenarios, which we used to verify our design, for
different flash memories.

Synthesis results in terms of area and power consumption estimations for serial
flash memory controller are covered in chapter 7.

The results for place and route of serial flash memory controller is given in
chapter 8.

Chapter 9 includes the details for FPGA implementation of serial flash memory
controller. FPGA board used for this application and the test environment are explained
in this chapter.

Finally, some conclusions are drawn for the overal assessment of the study and
some possible future research topics are pointed in chapter 10.

2. PROCESSOR PLATFORM

The hardware, including the Serial Flash Controller, is a clean and stable

processor platform that can be reused in different product lines. The kernel of the

platformisthe AMBA AHB and APB bus system.

The platform can be based on any processor core, which has a direct AHB

interface or an appropriate wrapper for the AHB bus (ARM7 and ARM9 family).

The overview of the hardware platformisillustrated in Figure 2-1.

TIMER

UART APBSPI

Serial Flash
Memory0

Serial Flash
Memoryl

ADDRESS

“ | DECODER ROM DPRAM

AHB to APB
BRIDGE

Serial Flash
Memory2

ARM
PROCESSOR

Serial Flash
Memory3

Figure 2-1 Overview of processor platform

The AMBA AHB isa multimaster multislave high-speed bus that is controlled via

an Arbiter and an Address Decoder. The AMBA APB bus is asingle master multislave

low speed bus. Both busses, AHB and APB, are accessible from outside.

Processor platform includes a bridge from the AHB to the APB busthat is slave

on the AHB and a master on the APB side.

2.1. Introduction to the AM BA Buses

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an
on-chip communications standard for designing high-performance embedded
microcontrollers[2].

Two distinct buses are defined within the AMBA specification:

» the Advanced High-performance Bus (AHB)

» the Advanced Peripheral Bus (APB)

The AMBA AHB is for high-performance, high clock frequency system modules.
The AHB acts as the high-performance system backbone bus. AHB supports the
efficient connection of processors, on-chip memories and off-chip external memory
interfaces with low-power peripheral macrocell functions. AHB is also specified to
ensure ease of use in an efficient design flow using synthesis and automated test
techniques.

The AMBA APB is for low-power peripherals. AMBA APB is optimised for
minimal power consumption and reduced interface complexity to support peripheral

functions. APB can be used in conjunction with either version of the system bus.

22. AMBA AHB

AHB is a new generation of AMBA bus, which is intended to address the
reguirements of high-performance synthesizable designs. AMBA AHB isanew level of
bus, which sits above the APB, and implements the features required for high-
performance, high clock frequency systems including:

* burst transfers

* split transactions

» single cycle bus master handover

» single clock edge operation

* non-tristate implementation

* wider data bus configurations (64/128 bits).

Table 2-1 contains an overview of the AMBA AHB signals.

Name

Description

HCLK

Bus clock:
This clock times all bus transfers. All signal timings
arerelated to the rising edge of HCLK.

HRESETN

Reset:
The bus reset signal is active LOW and is used to reset
the system and the bus. This is the only active LOW
signal.

HADDR[31:0]

Address bus:
The 32-bit system address bus.

HTRANS[1:0]

Transfer type:
Indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE

Transfer direction:
When HIGH this signal indicates a write transfer and
when LOW aread transfer.

HSIZE[2:0]

Transfer size:

Indicates the size of the transfer, which is typically
byte (8-bit), halfword (16-bit) or word (32-bit). The
protocol alows for larger transfer sizes up to a
maximum of 1024 bits.

HBURST[2:0]

Burst type:

Indicates if the transfer forms part of a burst. Four,
eight and sixteen beat bursts are supported and the
burst may be either incrementing or wrapping.

HPROT[3:0]

Protection control:

The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that wishes to
implement some level of protection. The signals
indicate if the transfer is an opcode fetch or data
access, as well as if the transfer is a privileged mode
access or user mode access. For bus masters with a
memory management unit these signals also indicate
whether the current access is cacheable or bufferable.

HWDATA[31:0]

Write data bus:

The write data bus is used to transfer data from the
master to the bus slaves during write operations. A
minimum data bus width of 32 bits is recommended.
However, this may easily be extended to alow for
higher bandwidth operation.

HSELX

Slave select:

Each AHB slave has its own slave select signal and
this signal indicates that the current transfer is intended
for the selected slave. This signal is simply a
combinatorial decode of the address bus.

HRDATA[31:0]

Read data bus:
The read data bus is used to transfer data from bus

slaves to the bus master during read operations. A
minimum data bus width of 32 bits is recommended.
However, this may easily be extended to alow for
higher bandwidth operation.

HREADY

Transfer done:

When HIGH the HREADY signal indicates that a
transfer has finished on the bus. This signal may be
driven LOW to extend atransfer.

HRESP[1:0]

Transfer response:

The transfer response provides additional information
on the status of a transfer. Four different responses are
provided, OKAY, ERROR, RETRY and SPLIT.

Table 2-1 AMBA AHB signal definitions

2.2.1.BusInterconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexer
interconnection scheme. Using this scheme all bus masters drive out the address and
control signals indicating the transfer they wish to perform and the arbiter determines
which master has its address and control signals routed to all of the slaves. A central

decoder is also required to control the read data and response signal multiplexer, which

selects the appropriate signals from the slave that is involved in the transfer.

Figure 2-2 illustrates the structure required to implement an AMBA AHB design

with three masters and four slaves.

Add

control mux

Arbiter

HADDR

ress and

|

Write data mux

HADDR

HWDATA
Master#1

HRDATA

HADDR

HWDATA
Master#2

HRDATA

HADDR

HWDATA
Master#3

HRDATA

HWDATA
Slave#l
HRDATA
HADDR
HWDATA
Slave#2
HRDATA
HADDR
HWDATA
Slave#3
HRDATA
HADDR
HWDATA
Slave#4

HRDATA

Read data mux

Decoder

Figure 2-2 Multiplexer Interconnection

2.2.2.0verview of AMBA AHB operation

Before an AMBA AHB transfer can commence, the bus master must be granted
access to the bus. The master starts this process by asserting a request signal to the
arbiter. Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer by driving the address and
control signals. These signals provide information on the address, direction and width of
the transfer, as well as an indication if the transfer forms part of a burst. Two different

forms of burst transfers are allowed:

* incrementing bursts, which do not wrap at address boundaries

* wrapping bursts, which wrap at particular address boundaries.

A write data busis used to move data from the master to a slave, while aread data
bus is used to move data from a slave to the master.

Every transfer consists of:

» an address and control cycle

* one or more cycles for the data.

The address cannot be extended and therefore all daves must sample the address
during this time. The data, however, can be extended using the HREADY signal. When
LOW this signal causes wait states to be inserted into the transfer and allows extra time
for the slave to provide or sample data.

During a transfer the slave shows the status using the response signals,
HRESP[1:0]:

. OKAY

The OKAY response is used to indicate that the transfer is progressing normally

and when HREADY goes HIGH, the transfer has completed successfully.

- ERROR

The ERROR response indicates that a transfer error has occurred and the transfer

has been unsuccessful.

-RETRY and SPLIT

Both the RETRY and SPLIT transfer responses indicate that the transfer cannot

complete immediately, but the bus master should continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular
burst before the arbiter grants another master access to the bus. However, in order to
avoid excessive arbitration latencies it is possible for the arbiter to break up a burst and
in such cases the master must re-arbitrate for the bus in order to complete the remaining

transfers in the burst.

2.3. AMBA APB

The APB is part of the AMBA hierarchy of buses and is optimised for minimal
power consumption and reduced interface complexity. The AMBA APB appears as a
local secondary bus that is encapsulated as a single AHB slave device. APB provides a
low-power extension to the system bus, which builds on AHB signals directly. The APB
bridge appears as a slave module, which handles the bus handshake and control signal

retiming on behalf of the local peripheral bus. The AMBA APB should be used to
interface to any peripherals, which are low bandwidth and do not require the high
performance of a pipelined bus interface. All signal transitions are only related to the
rising edge of the clock.

An AMBA APB implementation typically contains a single APB bridge, which is
required to convert AHB transfers into a suitable format for the slave devices on the
APB. The bridge provides latching of all address, data and control signals, as well as
providing a second level of decoding to generate dave select signals for the APB
peripherals.

The APB bus is characterized by:

- asimple bus unpipelined architecture

. easy to implement with all the peripherals acting as slaves

- low gate count

. low power

- reduced loading of the main system bus by isolating peripherals behind the
bridge

. peripheral bus signals only active during low bandwidth peripheral transfers.

A simple APB interface is recommended for:

* simple register-mapped slave devices

* very low power interfaces where clocks cannot be globally routed

* grouping narrow-bus peripherals to avoid loading the system bus.

AMBA APB signal names with a description is given in Table 2-2.

10

Name Description
Bus clock:

PCLK The rising edge of PCLK is used to time all transfers on
the APB.

APB reset:

PRESETN The APB bus reset signal is_ active LOW and this signal
will normally be connected directly to the system bus reset
signal.

APB address bus:

PADDR[31:0] This is the APB address bus, which may be up to 32-bits

wide and is driven by the peripheral bus bridge unit.
APB select:
A signal from the secondary decoder, within the peripheral

PSEL x bus bridge unit, to each peripheral bus slave x. This signal
indicates that the slave device is selected and a data
transfer is required. There is a PSELx signal for each bus
slave.

APB strobe:
This strobe signal is used to time all accesses on the

PENABLE peripheral bus. The enable signal is used to indicate the
second cycle of an APB transfer. The rising edge of
PENABLE occursin the middle of the APB transfer.

APB transfer direction:

PWRITE When HIGH this signal indicates an APB write access and
when LOW aread access.
APB read data bus:

PRDATA The read data bus is driven by the selected slave during
read cycles (when PWRITE is LOW). The read data bus
can be up to 32-bits wide.

APB write data bus:

PWDATA The write data bus is driven by the peripheral bus bridge
unit during write cycles (when PWRITE is HIGH). The
write data bus can be up to 32-bits wide.

Table 2-2 AMBA APB signal definitions

2.3.1. AMBA APB States

Figure 2-3 shows AMBA APB state diagram.

11

PSELx=0
PENABLE =0

TRANSFER

NO
TRANSFER

ENABLE
PSELx=1
PENABLE =1

SETUP
PSELx=1
PENABLE =0

Figure 2-3 State Diagram

IDLE state is the default state for the peripheral bus.

When a transfer is required the bus moves into the SETUP state, where the
appropriate select signal, PSELX, is asserted. The bus only remains in the SETUP state
for one clock cycle and will always move to the ENABLE state on the next rising edge
of the clock.

In the ENABLE state the enable signal, PENABLE is asserted. The address, write
and select signals all remain stable during the transition from the SETUP to ENABLE
state. The ENABLE state aso only lasts for a single clock cycle and after this state the
bus will return to the IDLE state if no further transfers are required. Alternatively, if
another transfer is to follow then the bus will move directly to the SETUP date. It is
acceptable for the address, write and select signals to glitch during a transition from the
ENABLE to SETUP states.

2.3.1.1.Write Transfer

The waveform of write transfer is shown in Figure 2-4.

12

PCLK

PADDR

PWRITE

PSEL

PENABLE

PWDATA

Figure 2-4 Write transfer

The write transfer starts with the address, write data, write signal and select signal
all changing after the rising edge of the clock. The first clock cycle of the transfer is
called the SETUP cycle. After the following clock edge the enable signal PENABLE is
asserted, and this indicates that the ENABLE cycle is taking place. The address, data
and control signals all remain valid throughout the ENABLE cycle. The transfer
completes at the end of this cycle.

The enable signal, PENABLE, will be deasserted at the end of the transfer. The
select signal will also go LOW, unless the transfer is to be immediately followed by
another transfer to the same peripheral.

In order to reduce power consumption the address signal and the write signal will
not change after atransfer until the next access occurs.

2.3.1.2.Read Transfer

The waveform of read transfer is shown in Figure 2-5.

PCLK ‘ ‘ ‘
1
I

PADDR

PWRITE

PENABLE

‘ ‘
| |
| |
‘ ‘
| |
I T
| |
| |
! !

PSEL | |
| |
| |
| |
| |
T T
‘ ‘
| |
| |
‘ ‘

PWDATA

Figure 2.5 Read transfer

13

The timing of the address, write, select and strobe signals are all the same as for
the write transfer. In the case of a read, the slave must provide the data during the
ENABLE cycle. The data is sampled on the rising edge of clock at the end of the
ENABLE cycle.

24. Typical AMBA Based Microcontroller

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory
bandwidth, on which the CPU, on-chip memory and other Direct Memory Access
(DMA) devices reside. This bus provides a high-bandwidth interface between the
elements that are involved in the majority of transfers. Also there is a bridge to the
lower bandwidth APB, located on the high-performance bus. Most of the peripheral
devices in the system are located on the APB. Figure 2-6 shows the structure of typical
AMBA bus system.

High-Performance High-Bandwidth
ARM Processor On-Chip RAM

UART ‘ ‘ TIMER

High Bandwidth AHB APB

External Memory
Interface

390149

KEYPAD ‘ ‘ PIO

DMA Bus
Master AHB to APB Bridge

Figure 2-6 Typical AMBA Bus System

14

3. FLASH MEMORIES

3.1. Flash Memory

Flash memory is atype of electronic memory increasingly used in a wide range of
communications, consumer, computer and peripherals, and automotive applications, but
which relatively few semiconductor companies can produce in volume at the low cost
equipment manufacturers require.

Flash belongs to the class of semiconductor memories called non-volatile
memories, of which it is the most dynamic driving force. Semiconductor memories can
be divided into two different types: those that can only retain data stored in them while
they are connected to a battery or some other source of electrical power (volatile), and
those that retain their data even if their power supply isremoved (non-volatile).

Flash memories can be electrically erased and it is not necessary to erase the
whole memory array in order to store new datain part of it.

Flash memory, EPROM and EEPROM devices all use the same basic floating gate
mechanism to store data, but they use different techniques for reading and writing data.
In each case, the basic memory cell consists of a single MOS transistor (MOSFET) with
two gates:

control gate connected to the read/write control circuitry

floating gate located between the control gate and the channel of the MOSFET
(the part of the MOSFET through which electrons flow between the so-called
Source and Drain terminals).

In astandard MOSFET, a single Gate terminal controls the electrical resistance of
the channel: electrical voltage applied to the gate controls how much current can flow
between the Source and Drain. The MOSFETSs used in non-volatile memories include a

second gate that is completely surrounded by an insulating layer of silicon dioxide, i.e.,

15

it is electrically isolated from the rest of the circuitry. Because the floating gate is
physically very close to the MOSFET channel, even a small electric charge has an
easily detectable effect on the electrical behavior of the transistor. By applying
appropriate signals to the control gate and measuring the change in transistor behavior,
it is possible to determine whether there is an electrical charge on the floating gate.
Because the floating gate is electrically isolated from the rest of the transistor, special
techniques are required to move electrons to and from the floating gate.

One method is to fill the MOSFET channel with high-energy electrons by making
arelatively high current pass between the drain and the source of the MOSFET. Some
of these "hot" electrons have sufficient energy to cross the potential barrier between the
channels and reach the floating gate. When the high current in the channel is removed,
these electrons remain trapped in the floating gate. This is the method used to program
the memory cells in EPROM and Flash memories. This technique, known as Channel
Hot Electron (CHE) injection, can be used to load an electrical charge onto the floating
gate, but does not provide a way to discharge it. EPROM technology achieves this by
flooding the entire memory array with ultra-violet light; the high-energy light rays
penetrate the chip structure and impart enough energy to the trapped electrons to alow
them to escape from the floating gate.

The second method of moving a charge to a floating gate is the quantum
mechanical effect known as tunneling. In this method electrons are removed from the
floating gate by applying a voltage that is large enough to cause electrons to ‘tunnel’
across the insulating oxide layer to the source between the MOSFET control gate and
the source or the drain. The number of electrons that can tunnel across an insulating
layer in a given time depends on the thickness of the layer and the value of the applied
voltage. To meet realistic voltage levels and erase-time constraints, the insulating layer
must be very thin, typically 7nm (70 Angstroms).

EEPROM memories use tunneling to charge and discharge the floating gate
according to the polarity of the applied tunneling voltage. A Flash memory can
therefore be considered to be a memory device that is programmed like an EPROM and
erased like an EEPROM, athough there is much more to Flash technology than simply
grafting the EEPROM erase mechanism onto EPROM technology.

The most important difference between EPROM and the other two processes lies
in the thickness of the oxide layer that separates the floating gate from the source. In an
EPROM, this is typically 20-25nm, but this is far too thick to allow tunneling to take

16

place at an acceptable rate with a practical voltage level. For Flash memory, tunnel
oxide thickness of around 10nm is required, and the quality of this oxide layer has a
dramatic effect on the performance and reliability of the device. This is one of the
reasons that relatively few semiconductor manufacturers have mastered Flash
technology and even fewer have been able to reliably combine Flash technology and
mainstream CMOS processes to build products such as microcontrollers with embedded
Flash memory.

3.1.1.NAND and NOR Flash Memories

Although all flash memories use the same basic storage cell, there are a number of
ways in which the cells can be interconnected within the overall memory array. The two
most prominent architectures are known as NOR and NAND; these terms, derived from
traditional combinatorial logic, indicate the topology of the array and the manner in
which individual cells are accessed for reading and writing. Initialy, there was a basic
distinction between these two fundamentally different architectures, with NOR devices
exhibiting inherently faster read times and NAND devices offering higher storage
densities (because the NAND cell is about 40% smaller than the NOR cell). NOR Flash
memories are considered to be the best choice for densities up to 256 Mbits, while
NAND types are preferred for 512-Mbits and up. This is the best compromise between

large data storage capacities and cell size - and consequently, final die size.

3.1.1.2.NOR Flash Memory

NOR-type Flash memories are based on technologies that evolved largely from the
first non-volatile memory technologies. They are typically organized as a number of
blocks between 16 Kbytes and 128 Kbytes, each of which can be individually erased or
programmed. The architecture can be either uniform if all of the blocks are the same
size or asymmetrical when the blocks vary in size. The array can be organized as a
single piece of memory or split into dua or multiple banks, and in some cases, one
block (called boot block) located at the top or the bottom of the address space, is
dedicated to the storage of the boot code. NOR Flash memories usually have a random
access for reading at byte/word level and sometimes a page access mode, allowing the

17

reader to view an entire page of 2 to 4 words in one go. When very rapid read
operations are required, the Flash memory is equipped with a burst read mode, which
allows datato be transferred on every clock cycle.

3.1.1.2.NAND Flash Memory

Flash Memories can also be organized in NAND arrays by connecting cells in
series. They feature parallel interface, higher storage densities (up to 1 Gbit), faster
erase time, and slower random access time compared with the NOR type. For these
reasons, they are used for soring large amounts of data, such as music files and digital
images, handled by digital consumer applications. NAND Flash memories are
organized into small blocks of 8 Kbytes to 16 Kbytes. Each block is divided into pages,
usually 512-Bytes long, which can be read and programmed as a whole. This
organization perfectly fits the data format widely used by mass storage systems such as
floppy disks and hard disks. NAND flash memories are not suitable for direct code
execution because of their slow access times, even if some of the last generation
microcontrollers equipped with integrated cache memory can use NAND Flash to
manage code and data storage. In addition, standard NAND Flash memories have a
multiplexed data/address bus that reduces the device pin count and enables density
upgrades within a single footprint.

3.1.2.Parallel and Serial Interface

Parallel Access and Serial Access Parallel buses were primarily used to interface
flash memories with microcontrollers and microprocessors through an address bus, a
data bus and a control bus. By default, the term "Flash memory" refers to a parallel
interface memory. The data bus can be organized as x8 bits, x16 bits or x32 bits. In
some cases, address and data buses can be multiplexed. They are available in densities
of up to 128 Mbits. Because of their rapid read times, Flash memories are traditionally
used for basic code or code-plus-parameter storage where greater flexibility compared
to EPROM is more important than the additional unit cost. More recently, they have
pervaded many new applications where their key functions are to store both code and
data. This was achieved by dual operations supported by dual or multiple bank

18

architecture, which enable programming/erasing operations in one bank while reading
from another bank.

The serial bus is used to connect a Flash memory to a microcontroller or an ASIC
equipped with a serial bus. Serial buses are input/output interfaces supporting a mixed
address/data protocol. The serial bus connectivity reduces the number of interface
signals required. For example, the SPI bus, the most popular serial bus for serial Flash
memories, requires only 4 signals (data in, data out, clock and chip select) compared to
21 signals necessary to interface a 10-bit address parallel memory. As a result, the
number of pins of the memory package (memory and bus master) is reduced, as is the
number of PCB tracks. Consequently, a serial memory can fit into a smaller and less
expensive package. However, serial Flash memories are available in lower densities
than Flash memories. The communication throughput between serial Flash memory and
master processor is lower than for traditional Flash memories. Consequently, the time to
download code into the serial memory and execute it from the memory is longer. As a
result, serial Flash memories are usually used for small code storage associated with a
cache RAM. This is called a code shadowing architecture. The executable code is first
programmed in the memory and it is write protected. After power-up, it is downloaded
from memory to RAM from where it is executed by the master processor.

19

4. SPI PROTOCOL

The Serial Peripheral Interface (SPI) is a synchronous, serial data link that is
standard across microprocessors, microcontrollers and peripherals. It enables
communication between microprocessors, peripherals and inter-processor
communication, and is widely used to connect peripherals to each other and to

MIiCroprocessors.

4.1. SPI Protocol Signal Definition

The interface uses a 3-wire bus plus a chip/slave select line for each device
connected to the bus. The three bus lines are as follows:
SCLK - the clock signal used for synchronizing data transfers. It is generated
by the bus "Master"
MISO - Master In Slave Out. Line used for sending data from a slave to the
master.
MOSI - Master Out Slave In. Line used for sending data from the master to a

slave.

4.2. SPI Functionality

Each device connected to the bus can be selected by the bus master using a
dedicated SS (Slave Select) line. It is possible to have more than one master hanging off
the bus, but only one master can be active a any given time. The implication of this
configuration is that the bus master has to have as many lines as there are devices to

drive each of the SS lines.

20

When the master initiates a data transfer, the master writes a bit to the MOSI line
and reads a bit from the MISO at the same time on every cycle of the SCLK signal. The
data is transferred through a simple shift register transfer scheme where the data is
clocked into and out of devices on a first-in, first-out basis. This means that every data
transfer results in an exchange of bits between the master and the slave (each device is
simultaneously a transmitter and a receiver), making it a full duplex serial interface.
When a device is not selected, it must tri-state (release) the output (MI1SO) line.
Through buffering, it would be possible to drive more than one receive-only device, but
not more than one transmit-only or receive and transmit device since there would be a
contention issue on the MISO line.

The block diagram of this process is shown in Figure 4-1.

MOSI
L Shift Register = MISO Shift Register J
y SS y
Clock SCLK
Generator
Master Slave

Figure 4-1 SPI Process

Usually, in synchronous serial protocols, datais clocked out on one edge and
clocked in on the other edge to reduce clock skew errors.

4.3. SPI Configuration

Because there is no official specification, what exactly SPI is and what not, it is
necessary to consult the data sheets of the components one wants to use. Important are
the permitted clock frequencies and the type of valid transitions.

There are no general rules for transitions where data should be latched. Although
not specified, in practice four modes are used. These four modes are the combinations
of clock polarity and clock phase. In Table 4-1, the four modes are listed.

21

SPI Mode Clock Polarity Clock Phase
0 0 0
1 0 1
2 1 0
3 1 1

Table 4-1 SPI Modes

If the phase of the clock is zero, datais latched at the rising edge of the clock with
polarity of the clock equals zero, and at the falling edge of the clock with polarity of the
clock equals one. If the phase of the clock is one, the polarities are reversed. Polarity of
the clock equals zero means falling edge and polarity of the clock equals one means
rising edge.

The waveforms are shown in Figure 4-2.

| | | | | | | |

PHA=0,POL=0

s | | | | | | | |
PHA=0,POL=1

s || | | | | | | |

PHA=1,POL=0

s || | | | | | | |
PHA=1,POL=1

MOSI B7 B6 B5 B4 B3 B2 Bl BO

MISO B7 B6 B5 B4 B3 B2 Bl BO

Figure 4-2 SPI clocking waveforms

4.4. Peripheral Types

Peripheral types that can be connected to the host processor through the SPI
interface can be subdivided into the following categories:
Converters (ADC and DAC)

22

Memories (EEPROM and FLASH)

Real Time Clocks (RTC)

Sensors (temperature, pressure)

Others (signalmixer, potentiometer, LCD controller, UART, USB controller,
amplifier)

In the three categories, converters, memories and RTCs, there is a great variety of
components. Devices belonging to the last two groups are more rarely.

There are lots of converters with different resolutions, clock frequencies and
number of channels to choose from. (8, 10, 12 up to 24Bit with clock frequencies from
30ksps up to 600ksps).

Memory devices are mostly EEPROM variants. There are adso a few SPI flash
memories. Capacities range from a couple of bits up to 64KBit. Clock frequencies up to
3MHz. Serial EEPROMS SPI are available for different supply voltages (2.7V to 5V)
allowing their use in low-voltage applications. The data retention time duration from 10
years to 100 years. The permitted number of write accesses is 1 million cycles for most
components. By cascading memory devices any number of bits'word can be obtained.

RTCs are ideally suited for serial communication because only small amounts of
data have to be transferred. There is also a great variety of RTCs with supply voltages
from 2.0V. In addition to the standard functions of a "normal" clock, some RTCs offer
an alarm function, non-volatile RAM etc.

The group of the sensors is yet weakly represented. Only a temperature and a
pressure sensor could be found.

USB controllers with SPI make it easier to use these protocols on a micro

controller and interfacing a LCD via SPI saves the troublesome parallel wiring.

23

5. SERIAL FLASH MEMORY CONTROLLER

Serial Flash Memory Controller module provides four-wire synchronous, serial
communication with peripheral devices. It has the following features:
Programmable through the AMBA APB bus by a host CPU.
Master operation.
Common data clock to receive and transmit data.
Receive FIFO.
SPI operation completed and FIFO overrun interrupts.
Four external peripheral selects.
The Serial Flash Memory Controller module is split into four blocks:
APB Interface

SPI Interface
SPIClockL ogic

RxFIFO

Block diagram of SPI block is depicted in Figure 5-1.

- N RXFIFO -
_ APBDataRead(31:0) 4x32bit
APBDataWrite(31:0) Y SPIClock_Out _
APBWr rite - DOUtSPI
APBAdr(15:0) » APB Interface SPI Interface DinSPI
APBEnable >
APBSelect 7 SPINCS(3:0)
» SPIClock
ResetNot L Logic -
? [? [/
f
FlashTypeSel(1:0)

Figure 5-1Block Diagram of Serial Flash Controller Module

24

5.1.1.APBIf

5.1

General Functional Description

This block ensures the APB bus interfacing. It provides communication with the

controller.

5.1.1.1.Interfaces

Name Size | Direction | Description
APBClock 1 I Clock
APBResetNot 1 | Resat
APB Interface
Chip select for APBSPI
APBSelect 1 I module
APBEnable 1 I Enables APBSPI operation
Address input to APBSPI
APBAddr 16 I module
APBWrite 1 I Write/Read enable input
APBDataWrite 32 I Data input to APBSPI module
Data output from APBSPI
APBDataRead 32 @) module
Intr 1 ©) Interrupt output
SPIIf Interface
WriteDataReg 32 ©) Data output to SPIIf
Length of the data that isread
ReadL engthReg 10 @) from the flash
AddrReg 3 o 5221 memory address of the
SPINCSReg 2 ©) Chip select output to SPI1f
. Enable signal to send read
StartRead sig 1 @) opcode
. Enable signal to send GetPage
GetPage _sig 1 @) opcode
. . Enable signal to send
WriteData sig 1 O WriteData opcode
. . Enable signal to send
WritePage sig 1 O WritePage opcode
. Enable signal to send
GetFlashStatus_sig 1 O GetFlashStatus opcode

25

Enable signal to send

WriteEnable sig 1 o WriteEnable opcode
. Enable signal to send
SectorErase_sig 1 O SectorErase opcode
. Enable signal to send
BulkErase_sig 1 O BulkErase opcode
Indicates that the Read
StartRead captured 1 I operation is started
Indicates that the GetPage
GetPage:_captured 1 | operation is started
. Indicates that the WriteData
WriteData_captured 1 I operation is started
. Indicates that the WritePage
WritePage captured 1 I operation is started
Indicates that the
GetFlashStatus_captured 1 GetFlashStatus operation is
started
. Indicates that the WriteEnable
WriteEnable captured 1 I operation is started
Indicates that the SectorErase
SectorErase_captured 1 I operation is started
Indicates that the BulkErase
BulkErase_captured 1 I operation is started
Busy 1 I Indicates that SPIIf is busy
RxFIFO Interface
Data in 32 I Data input from RxXFIFO
FIFORE 1 ©) Read Enable output to RxFIFO
EmptyFlag 1 I FifoEmpty input from RxFIFO
FullFlag 1 I FifoFull input from RxFIFO

Table5-1 List of I/O Interfaces for APBIf Block

5.1.1.2.Detailed Functional Description

APBIf is synchronized with the rising edge of the APBClock input. The registers
inside APBITf block can be read or written via APB bus by looking at the values of the
APBSelect, APBWrite and APBAddr. If the block is selected for write operation by the
controller, the corresponding register will be written. If it is selected for read operation
by the controller, the corresponding register would be read. APBAddr input will be the

address of the register.

Theregistersinside APBIf block are shown in Table 5-2.

26

Register Name

Address

Reset
Condition
(MSB to
L SB)

bitsto
write/

read

Description

CTRLREG

0x1800e000

Bit:

0: selects StartRead state

1: selects GetPage state

2: selects Write Data state

3: selects WritePage state

4: selects GetFashStatus state
5: selects WriteEnable state
6: selects BulkErase state

7: selects SectorErase state

STATUSREG

0x1800e010

100

R: 3

Bit:

0: indicates RxFifo is Full.
1: indicates RxFifo is not
empty

2: indicates SPI is not busy (it
isDone).

ADDRESSREG

0x1800e020

0x00000000

W: 32

Flash Memory, page and byte
addresses stored in this register.

WRITEDATAREG

0x1800e030

0x00000000

W: 32

Word that will be sent to the
flash memory is stored in this
register.

READLENGTHREG

0x1800e040

W: 10

The number of words that will
beread iswritten in this
register.

RXFIFO

0x1800e050

0x00000000

R: 32

Words that areread in
ReadDataSate are stored in the
FIFO.

SPINCSREG

0x1800e060

Thesetwo bits are used for
SPINCS(3:0) bit selection.

00 selects bit0 of SPINCS to be
active.

01 selects bitl of SPINCSto be
active

10 selects bit2 of SPINCSto be
active

11 selects bit3 of SPINCSto be
active

Table 5-2 APBIf registers

CTRLREG, WRITEDATAREG, ADDRREG and READLENGTH registers can
only be written. Whereas STATUSREG can only be read.

Writing to CTRLREG initiates one of the ReadData, WriteEnable, GetPage,
WriteData, WritePage, GetFlashStatus, WriteEnable, BulkErase or SectorErase states.
After initiation of one of these states, CTRLREG will be reset automatically. Whenever

27

one of these states starts, SPI Interface becomes busy. After SPI finishes the current
state, Done signal becomes ‘1’ and it will be stored in the STATUSREG. Writing a new
datato CTRLREG during the busy period will cause the previous state to be completed
unproperly. So, it is suggested to observe the Done bit of the Status Register when there
is an interrupt from serial flash memory controller module (Any change in the content
of status register causes serial flash memory controller module to generate interrupt). If
it is'1', then the new state can be initiated by writing to CTRLREG. If the new state
starts, Done bit goes to '0". One-cycle, active low interrupt is produced, when Done bit
goes '1'. Writing to CTRLREG is implemented as in Figure 5-2.

Apgese
naoble |
APBWriteD
APBAddr(15:0) | APBDataerte(|7:0k) 5 o CTRLREG(7:0)
CtrIRegAddress — Clock |
CLR 6

ResetNot
Figure 5-2 Writeto CTRLREG

When CTRLREG(0) goes 1 from O, StartRead signal is generated for SPIIf to start
read operation. SPIIf sends StartRead captured signal with the StartRead signal coming
from APB Interface. After receiving the StartRead captured signal, APBIf deasserts
StartRead. GetPage, WriteData, WritePage, GetFlashStatus, WriteEnable, SectorErase,
and BulkErase signals are asserted by checking CtrlIReg(1), CtrIReg(2), CtrlIReg(3),
CtriIReg(4), and CtrlIReg(5), respectively, and deasserted by checking
GetPage_captured, WriteData_captured, WritePage_captured, GetFlashStatus_captured,
WriteEnable captured, BulkErase captured, and SectorErase captured signals,
respectively. This operation is depicted in Figure 5-3.

28

L

StartReadCaptured —

)
N\ 5 g StartRead
I
CTRLREG(0) D Q D Q :
Clock
ResetNot TL (

Figure 5-3 Generating StartRead signal

ol

ol
ol

The waveforms of the control signals generated by APBIf can be seen in Figure
5-4.

STATUSREG register holds Full Flag (FF) and notEmptyFlag (nEF) coming from
RxFIFO, as well. When RxFIFO is full, FF bit of STATUSREG goes '1' and a one-
cycle, active low interrupt is produced at the Interrupt signal. When RxFIFO is not
empty, nEF bit of STATUSREG goes '1' and a one-cycle, active low interrupt is
produced at the Interrupt signal.

When reading the RXFIFO, the bytes of RxFIFO are placed reversely into the
APBDataRead signal. That is the first byte of 32-bit RxFIFO data is assigned to the last
byte of 32-bit APBDataRead signal and the last byte of 32-bit RxFIFO data is assigned
to the last byte of 32-bit APBDataRead signal. As the same manner, the second byte
placed to third byte and the third byte placed to second byte.

29

Clock 0 P O

APBAddr Xmooo

‘Xmooo E000 Xmooo X E010 Xmooo ‘Xmooo ‘Xmooo Xmooo E050

APBSelect j

[[] I [1 1

APBEnable 5

]]] I]]]]

APBW ite

CtrIReg HV®A

i S S M e

APBDataWrite Xoooooowo Xooooooou 00000008 \Xooooooow

Xooooooé Xoooooio Xoooooomo Xooooooﬁ

APBDataRead

X status data

seiEwits EFEFEFEFE “““““““ Y

WriteEnable_captured

[]

WriteData_sig

WriteData_captured

WritePage_sig

WritePage_captured

GetPage_sig

GetPage_captured

GetFlashStatus_sig

GetFlashStatus_captured

BulkErase_sig

BulkErase_captured

SectorErase_sig

SectorErase_captured

StartRead_sig

StartRead_captured

Figure 5-4 Control of SPI operation

30

5.1.2.SPIIf

5.1.2.1.Interfaces

Name Size | Direction | Description
APBClock 1 I Clock
APBResetNot 1 | Resat
APBIf Interface
WriteDataReg 32 I Data input from APBIf
Length of the data that isread
ReadL engthReg 10 I from the flash
AddrReg 3 | 5221 memory address of the
SPINCSReg 2 I Chip select input from APBIf
. Enable signal to send read
StartRead sig 1 I opcode
. Enable signal to send GetPage
GetPage _sig 1 I opcode
. . Enable signal to send
WriteData_sig 1 | WriteData opcode
. . Enable signal to send
WritePege_sig 1 | WritePage opcode
. Enable signal to send
GetFlasnSiatus_sig 1 | GetFlashStatus opcode
. . Enable signal to send
WriteEnable sig 1 | WriteEnable opcode
. Enable signal to send
SectorErase_sig 1 | SectorErase opcode
. Enable signal to send
BulkErase. sig 1 | BulkErase opcode
Indicates that the Read
StartRead captured 1 o operation is started
Indicates that the GetPage
GetPage:_captured 1 © operation is started
. Indicates that the WriteData
WriteData captured 1 O operation is started
. Indicates that the WritePage
WritePage captured 1 o operation is started
Indicates that the
GetFlashStatus_captured 1 @) GetFlashStatus operation is
started
WriteEnable captured 1 o Indicates that the WriteEnable

operation is started

31

Indicates that the SectorErase
SectorErase_captured 1 O operation is started

Indicates that the BulkErase
BulkErase_captured 1 O operation is started
Busy 1 ©) Indicates that SPIIf is busy
RxFIFO Interface
Data out 32 ©) Data input from RxXFIFO

Write Enable output to
FIFOWE 1 @) RXEIEO
EmptyFlag 1 I FifoEmpty input from RxFIFO
FullFlag 1 I FifoFull input from RxFIFO
SPIClockL ogic Interface

Indicates the rising edge of the
SPIEnable 1 I SP| clock

Indicates the falling edge of
SPIEnableFall 1 I the SPI clock

SPI Clock output to SPIIf
SPIClock 1 I block

Table5-3 List of I/0O Interfaces for SPIIf Block

5.1.2.2.Detailed Functional Description

The SPIIf is synchronized on the rising edge of the Clock signal when the
SPIEnable signal becomes high. It aso uses the SPIEnableFall signal. The
SPIClock_Out clock is generated by the SPI Interface block and is a copy of SPIClock.
It only toggles when the SPI peripheral is activated by the SPINCS signal.

SPIIf sends opcode, address, data and control data to the peripheral devices.
According to the state initiated by APBIf, SPIIf selects the opcode for three different
types of flash memories (ATMEL, NEXFLASH, and ST). FlashTypeSel signal selects
the flash memory type ("00": ATMEL, "01": ST, "10": NEXFLASH).

There are Setup, Opcode, Address, DontCare, ReadData and Hold internal states
working successively in each of the states shown in Figure 5-5. Setup internal state is
used to assert the SPINCS signal for 5 SPIClock cycle before the operation begins. In
the Opcode State, opcode is sent serially to the flash memory. SPIClock_Out signal
starts to toggle with the first bit of the opcode. In the Address State, SPIIf sends the
address stored in the ADDRREG serially, right after the opcode. In the DontCare State,
some control bits needed for different types of flash memories (ATMEL, ST, and
NEXFLASH) are sent serially. In the ReadData State, SPI Interface starts to read the

32

data coming from the flash memory, as much as specified in the READLENGTHREG.
During this period, SPIIf sends dummy bits to DoutSPI. In the WriteData State SPIIf
sends 32 bit data serially to DoutSPI. In the Hold State the SPINCS is holded 5
SPIClock cycle without toggling the SPIClock_Out signal.

SPIIf states are shown in Figure 5-5.

ReadData

BulkErase GetPage

SectorErase

WriteData

GetFlash
Status

4 GetPage
WriteEnable_sig=1
WriteEnable

For ReadDataState, SPIIf sends ReadData opcode, address bits and control data
Then it gets data from external peripheral device as much as specified in
READLENGTHREG. The CS pin must remain low during the loading of the opcode,
the address hits, the control bits, and the reading of data. When StartRead_sig goes '1,
current state changes from ldle to ReadDataState. Internal states of ReadDataState are

WritePage

Figure 5-5 SPIIf states

shown in Figure 5-6.

33

"HHHHHH'

READDATASTATE

IDLE

ADDRESS
DONT
CARE

IDLE

Figure 5-6 Internal states of ReadDataState

For GetPageState (for ATMEL and NEXFLASH), SPIIf sends GetPage opcode,
address bits and control bits (only for NEXFLASH). The CS pin must be low while
toggling the serial clock pin to load the opcode and the address bits. The transfer of the
page of data from the main memory to the buffer will begin when the CS pin transitions
from alow to a high state. The internal states of GetPageState are shown in Figure 5-7.

IDLE
SPIFlashTypeSel=00 o
SPIFlashTypeSel=10

IDLE

Figure 5-7 Internal states of GetPageState

For WriteDataState, SPIIf sends WriteData opcode, address bits, 32 bit data and
control bits (only for NEXFLASH) to the external peripheral device. While sending the
content of WRITEDATAREG, bytes are reversed. After the last address byte has been
clocked into the device, data can then be clocked in on subsequent clock cycles. Data

34

will continue to be loaded into the flash memory buffer until a low-to-high transition is
detected on the CS pin. Figure 5-8 showsthe internal states of WriteDataState.

WRITEDATASTATE

SPIFlashTypeSel=01land
first WriteDataState

or

SPIFlashTypeSel=00 or
SPIFlashTypeSel=10

IDLE

SPIFlashTypeSel=01and
except for first WriteDataState

IDLE

SPIFlashTypeSel=01

IDLE IDLE

Figure 5-8 Internal states of WriteDataState

For WritePageState, SPIIf sends WritePage opcode (for ATMEL and
NEXFLASH), address bits (for ATMEL and NEXFLASH) and control bits (only for
NEXFLASH). When a low-to-high transition occurs on the CS pin, the data is stored in
the buffer into the specified page in main memory. The internal states of
WritePageState are shown in Figure 5-9.

IDLE
SPIFlashTypeSel=00 o

SPIFlashTypeSel=10
SPIFlashTypeSel=10

IDLE

IDLE
SPIFlashTypeSel=01

Figure 5-9 Internal states of WritePageState

35

For WriteEnable state (for NEXFLASH and ST), SPIIf sends opcode and control
bits (only for NEXFLASH). The internal states of WriteEnableState are shown in
Figure 5-10.

IDLE SPIFlashTypeSel=0

SPIFlashTypeSel=01 o
SPIFlashTypeSel=10

PIFlashTypeSel=10

IDLE

Figure 5-10 Internal states of WriteEnableState

For GetFlashStatusState, SPIIf sends ReadStatus opcode. Status information
received from flash is sent to RxFIFO aligned to MSB. The status register can be used
to determine the flash memory’ s ready/busy status. The internal states of GetFlashStatus
State are shown in Figure 5-11.

IDLE

GETFLASHSTATUSSTATE

IDLE

Figure 5-11 Internal states of GetFlashStatusState

For SectorEraseState (only for ST), SPIIf sends opcode and address of sector to be
erased. The internal states of SectorEraseState are shown in Figure 5-12.

36

IDLE
SPIFlashTypeSel=01

SECTORERASESTATE

IDLE

Figure 5-12 Internal states of SectorEraseState

For BulkEraseState (only for ST), SPIIf sends only opcode. The internal states of
BulkEraseState are shown in Figure 5-13.

IDLE
SPIFlashTypeSel=01

BULKERASESTATE

IDLE

Figure 5-13 Internal states of BulkEraseState

States and opcodes related to these states are described in Table 5-4. These
opcodes are different for each Flash type.

37

State Opcode Flash Type
ReadDataState 0x68 ATMEL

0x03 ST

0x50 NEXFLASH
GetPageState 0x53 ATMEL

- ST

0x53 NEXFLASH
WriteDataState 0x84 ATMEL

0x02 ST

0x72 NEXFLASH
WritePageState 0x83 ATMEL

. ST

OxF3 NEXFLASH
WriteEnableState - ATMEL

0x06 ST

0x06 NEXFLASH
GetFlashStatusState Ox57 ATMEL

0x03 ST

0x84 NEXFLASH
SectorEraseState - ATMEL

0xD8 ST

- NEXFLASH
BulkEraseState - ATMEL

OxC7 ST

- NEXFLASH

Table 5-4 States and Opcodes Used In SPI Interface

The waveforms of SPIIf for Atmel flash memory are shown in following figures.

38

GetHashStatus

hdd

Figure 5-14 GetFlashStatusState waveforms for Atmel Flash Memory

Wite Data

Figure 5-15 WriteDataState waveforms for Atmel Flash Memory

Wtite Page

had

Figure 5-16 WritePageState waveforms for Atmel Flash Memory

39

CetPage

Pncs X

woa JUIUUUULTLTTTUTTUTTUU U U

Does? REERREE0ERREAEDDEEANDDEE)
Setup > opcode > address

Qock

PIncs ><

Pk At

had

Figure 5-17 GetPageState waveforms for Atmel Flash Memory

Read Page

SPIak Out

had

Figure 5-18 ReadPageState waveforms for Atmel Flash Memory

The waveforms of SPIIf for NexFlash flash memory are shown in following
figures.

40

GetHashSatus

o | [1]
Setup > qpooce > chta
Qlock
SANCS ><
sacaa [[T[]
DoutSPl ‘

hold

Figure 5-19 GetFlashStatusState waveforms for NexFlash Flash Memory

WriteEnable

setup o opoode b contral b hold

Figure 5-20 WriteEnableState waveforms for NexFash Flash Memory

Witeto SRAM

Figure 5-21 Write to SRAM waveforms for NexFlash Flash Memory

41

Transfer SRAMto Sector

hold

Figure 5-22 Transfer SRAM to Sector waveforms for NexFlash Flash Memory

Transfer Sector to SRAM

hold

Figure 5-23 Transfer Sector to SRAM waveforms for NexFlash Flash Memory

Read from Sector

Qock

SPINCS

SPICK Ot
ot (o sf ooz f1 0

Qock

SPINCS X

sacac | [][]
DousA ‘f T

data hold

Figure 5-24 Read from Sector waveforms for NexFlash Flash Memory

42

The waveforms of SPIIf for ST flash memory are shown in following figures.

GetHashStatus

SPINCS ><
soc IO IO U
oo [1
setup opoode > data
Qock
SPINCS X
o [[[[TITULL]
o |

hold

Figure 5-25 GetFlashStatusState waveforms for ST Flash Memory

WiteEnable

Setup agpcode hold

Figure 5-26 WriteEnableState waveforms for ST Flash Memory

Wite Data

Figure 5-27 WriteDataState waveforms for ST Flash Memory

43

Witeto Page

Qok

s x

SACk

hold

Figure 5-28 WritePageState waveforms for ST Flash Memory

Read Deta

Qock

SPInCS X
sacor | [|[[JTUU UL
= i —

Figure 5-29 ReadDataState waveforms for ST Flash Memory

5.1.3.SPIClockL ogic

5.1.3.1.Interfaces

Name Size | Direction | Description
APBClock 1 I Clock
APBResetNot 1 | Reset
RxFIFO Interface
FifoFullFlag 1]I | FifoFull input from RxFIFO
SPIIF Interface

Indicates the rising edge of the
SPIEnable 1 @) SP| clock

Indicates the falling edge of
SPIEnableFall 1 @) the SPI clock

SPI Clock output to SPIIf
SPIClock 1 @) block

Table 5-5 List of I/0O Interfaces for SPIIf Block

5.1.3.2.Detailed Functional Description

SPIClockLogic module produces SPIEnable, SPIEnableFall and SPIClock signals
for SPI Interface and RxFifo. SPIClock frequency is 1/4 of the Clock signal for ATMEL
Flash, ST Flash, and NexFlash Flash. SPIEnable signal is used for receiving the data
coming from DinSPI on the rising edge of Clock signal. It's an active high one Clock
cycle signal. On the other hand, SPIEnableFall signal stands for the falling edge of the
SPIClock and it is used to send the data to DoutSPI. Its duration is also one Clock cycle.

5.1.4.RxFIFO

5.1.4.1.Interfaces

Name Size | Direction | Description
APBclk 1 I Clock
APBrst 1 | Reset
APBIf Interface
APBrd 1 I Read Enable input from APBIf
full 1 ©) FifoFull output to APBIf
empty 1 O] FifoEmpty output to APBIf
APBDataRead 32 ©) Data output to APBIf
SPIIf Interface
SPlwr 1 I Write Enable input from SPIIf
full 1 O FifoFull output to SPI1f
SPIDataWrite 32 I Data input from SPI1f
SPIClockL ogic Interface

FifoFull output to
full 1 O SPIClockL ogic

Indicates the rising edge of the
SPIEnable 1 I SP| clock

Table 5-6 List of I/0O Interfaces for RxFifo Block

45

5.1.4.2 Detailed Functional Description

RxFifo is a 32 bit wide 4 location deep receive first in first out memory buffer.
Received data from the serial interface are stored in the buffer until read out by the CPU
across the AMBA APB interface. SPI interface writes data into the RxFIFO on the
rising edge of Clock signal when SPIEnable is high. APB interface reads RxFIFO on
the rising edge of Clock signal when read enable is high. When RxFIFO is empty, it
produces empty flag and when it is full it produces full flag.

5.2. Upload and Download Timings

Calculations of upload and download timings at 10 MHz for ATMEL, ST and
NexFLASH serial flash memories are given in following sections.

5.2.1.ATMEL:

Calculation for Upload Time:

WriteData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode)+24 cycle (address)+32 cycle (data) = 74 cycle

WritePage Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode)+24 cycle (address) = 42 cycle

Max PageProgram Time = 20ms

Upload Time =(WriteData Time x 1056/4 + WritePage Time) / (10x10°%) + Max
PageProgram Time = 21.96ms

Calculation for Download Time:
ReadData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode)+24 cycle (address)+32 cycle (control) = 74 cycle

Download Time = (ReadData Time + 1056 x 8) / (10x10°) = 0.85ms

46

5.2.2.ST:

Calculation for Upload Time:

WriteEnable Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode) = 18 cycle

WriteData Time = 5 cycle (setup time for Chip Select)+8 cycle (opcode)+24 cycle
(address)+32 cycle (data) = 69 cycle (this timing is for first 32 bit (4 byte) data, 252
byte data remains. Except first WriteData operation (first 32 bit data), all the other
WriteData states send only 32 bit data serially to ST Flash)

WritePage Time = 5 cycle (hold time for Chip Select) =5 cycle
Max PageProgram Time = 5ms

Upload Time =(WriteEnable Time + WriteData Time + WritePage Time + 32 X
252/4) | (10x10°) + Max PageProgram Time = 5.21ms

Calculation for Download Time:

ReadData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode)+24 cycle (address) = 42 cycle

Download Time = (ReadData Time + 256 x 8) / (10x10°%) = 0.21ms

5.2.3.NEXFLASH:

Calculation for Upload Time:

WriteEnable Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode)+8 cycle (control) = 26 cycle (this state is required only
for first write operation. The remaining write data states don't require WriteEnable
State).

WriteData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select) +8 cycle (opcode)+16 cycle (address)+32 cycle (data)+8 cycle (control) =
74 cycle

WritePage Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for
Chip Select)+8 cycle (opcode)+16 cycle (address)+16 cycle (control) = 50 cycle

47

Max PageProgram Time = 15ms

Upload Time =(WriteEnable Time + WriteData Time x 528/4 + WritePage Time)

/ (10x10° + Max PageProgram Time = 15.98ms

Calculation for Download Time:

ReadData Time = 5 cycle (setup time for Chip Select)+ 5 cycle (hold time for

Chip Select)+8 cycle (opcode)+32 cycle (address) + 32 cycle (control) = 82 cycle

Download Time = (ReadData Time + 528 x 8) / (10x10°) =0.43 ms

5.3.

Functionality Comparison

The following table gives the comparison between several SPI blocks and our

serial flash controller block according to the functional features.

Serial Peripheral APB SPI Phase/ FIFO Word o
_ _ _ _ Transmission Speed
Interface Compliance Mode Polarity Size Size
Serial Flash 32bit x 4)
Yes Master Only Mode0 32 hit 1/4 of system clock
Controller for Rx
Master/ 32byte for Up to 1/8 of sysem
Actd Yes
Save Rx and Tx clock
Master/ Not) Up to 1/2 of sysem
Alma-Tech No 8 hit
Slave Programmable clock
Master/ Programmable up to | Up to 1/2 of system
Atmel Yes Programmable)
Save 16 hit clock
Master/ 8byte for
Cadence Yes Programmable 1/2 of system clock
Save Rx and Tx
) Master/ 8byte for)
Palmchip No Programmable 8 hit
Save Rx and Tx
) Master/ Programmable up to
Scenix No Programmable . Upto1.72MHz
Save 16 hit
Sota Yes Master Programmable Programmable Programmable

Table 5-7 Comparisons with other serial peripheral interface blocks

Our serial flash memory controller module has APB interface. It's an important

feature since the module can be easily adapted to processor platform. Our serial flash

48

memory controller module can only work in master mode. Actually working in slave
mode is not needed for our module, because the slave is always the serial flash memory.
Our serial flash memory controller module has a receive FIFO. This is necessary to
have faster download speed. Our module needs only one clock input. It produces the
SPI clock internally. Some of serial peripheral interface controllers need external SPI
clock.

Different serial peripheral interface controllers have different control schemes. In
general, the processor programs serial peripheral interface controllers to send the data
according to the frame format required by flash memory. The frame includes dummy
bits for setup and hold times, opcodes and data bits. Software should take care of all
these while sending data to flash memory. Serial peripheral interface controller only
serially sends the datato the serial flash memory. If different flash memory is used, then
software has to be changed completely according to new flash memory opcodes and
timings. Therefore the transfer is completely controlled by software. For example lets
assume that serial peripheral interface controller has 4x32 bit transmit FIFO. Then to
write 0x12345678 to first address of the buffer of Atmel serial flash memory, following
data should be written to transmit FIFO.

First address:

Opcode: 0x84, Address: 0x000000

10000100000000000000000000000000

Second address:

Data: 0x12345678

00010010001101000101011001111000

After the processor fills the transmit FIFO, it should start serial transfer by writing
control register of serial peripheral interface controller. The operation given in above
example is very simple one.

The serial peripheral interface controllers use the methods given below to transmit
the data serially to flash memory:

It sends the contents of transmit FIFO continuously.

It stops the serial data clock between the transfer of the data in first address
and the data in second address. Also it keeps the serial flash memory to be
selected until the transfer is completed.

Our serial flash memory controller module doesn’'t need transmit FIFO, since it

works based on commands.

49

Also serial peripheral interface controllers should have a programmable chip
select time. This is required for the setup and hold time requirements of chip select
signal.

In our serial flash controller module, the processor doesn't have to care about the
opcodes and the timings. Software only initiates the transfer by sending related
command to serial flash memory controller module. The transfer of data is completely
controlled by hardware. So it is simpler to program our module for the required
operation.

Serial flash controller module sends opcode and data according to setup and hold
time requirements of selected flash memory. When it finishes its operation, it generates
one cycle interrupt. While reading from flash memory, processor programs serial flash
controller for the length of data to be read and then it only waits for the interrupts. Each
time the processor receives interrupt from serial flash controller, it reads the FIFO. So
the processor needs less cycle to send and receive the data.

The serial flash memory performs steps below for different operations:

Steps for Reading Data from Flash:
§ Software should follow the steps below:
P Write starting page address to ADDRREG.
P Write # of words to be read from Flash to READLENGTHREG.
P Write 0x00000001 to CTRLREG to gtart the read operation.
P Aninterrupt is produced when FIFO is not empty.
P Read datafrom RxFIFO.

P While reading, poll notEmpty bit of STATUSREG to avoid reading when
FIFO isempty.

P When SPI fills# of data determined by READLENGTH, it sets Done bit of
STATUSREG to 1, and an interrupt is generated.

Steps for Page to Buffer Transfer of Flash:
§ Software should follow the steps below:

P Write page address to ADDRREG.

50

P Write 0x00000002 to CTRLREG to start the GetPage operation.

P When SPI sends the opcode related with GetPage, it fires Done bit of
STATUSREG to 1, and an interrupt is generated.

P Check the flash status before starting a new operation.
Steps for Writing Data into Flash Buffer:
§ Software should follow the steps below:
P Write starting byte addressto ADDRREG.
P Write one word datato be sent to WRITEDATAREG.
P Write 0x00000004 to CTRLREG to start the WriteData operation.

P When SPI sends last byte of data, it fires Done bit of STATUSREG to 1, and

an interrupt is generated.
Steps for Writing Flash Buffer into Page:
§ Software should follow the steps below:
P Write page address to ADDRREG.
P Write 0x00000008 to CTRLREG to start the WritePage operation.

P When SPI sends the opcode related with WritePage, it fires Done bit of
STATUSREG to 1, and an interrupt is generated.

P Check the flash status before starting a new operation.
Steps for GetFlashStatus State:
§ Software should follow the steps below:
P Write 0x00000010 to CTRLREG to gtart the GetFlashStatus operation.
P Aninterrupt is produced when FIFO is not empty.
P Read datafrom RxFIFO. The MSB contains Flash Status.

P When SPI finishes GetFlashStatus operation, it fires Done bit of
STATUSREG to 1, and an interrupt is generated.

Steps for WriteEnable State

51

§ Software should follow the steps below:
P Write 0x00000020 to CTRLREG to gtart the write operation.

P When SPI finishes WriteEnable operation, it fires Done bit of STATUSREG

to 1, and an interrupt is generated.
Steps for Sector Erase State
§ Software should follow the steps below:
P Write 0x00000040 to CTRLREG to gtart the Sector Erase operation.

P When SPI finishes Sector Erase operation, it fires Done bit of STATUSREG

to 1, and an interrupt is generated.
P Check the flash status before starting a new operation.
Steps for Bulk Erase State
§ Software should follow the steps below:
P Write 0x00000080 to CTRLREG to start the Bulk Erase operation.

P When SPI finishes Bulk Erase operation, it fires Done bit of STATUSREG to
1, and an interrupt is generated.

P Check the flash status before starting a new operation.

For setup and hold time requirements SPI sends extra 5 bits after making SPINCS
active and before making it inactive.

52

6. SERIAL FLASH MEMORY CONTROLLER VERIFICATION

After the design has been captured in HDL, it is essential to verify that the code
matches the required functionality. Our verification environment consists of processor
platform, serial flash memory controller module (ApbSPI) and serial flash memory
models. To simplify the testbench development, the processor model is replaced by
SoftFrog model. SoftFrog is a mechanism to make a C-program communicate with the
VHDL-simulator. SoftFrog can handle the interrupts.

To verify the serial flash memory controller module, following tests were
executed:

Verify of reset values of the control and status registers.

Modify the control and status registers, and check the new values.

Configure the serial flash memory controller for different serial flash
memories and perform read and write operations.

The following sections include the test scenarios for functional verification of
serial flash memory controller module for different flash memories. Verification
Navigator was used to specify the code coverage of testbenches. We have a statement
coverage about 98%.

6.1. Test Scenarios

6.1.1.ATMEL Flash Test

AT45DB642 (64 Mbit) Denali Flash model is used to test SPI Block for ATMEL
Flash. Steps followed for testing the ATMEL Flash are listed below:

53

- Select Flash: Firstly, Flash type is selected by applying "00" to the
FlashTypeSel input of SPI block.

- Select SPINCS: The CS signal of 64Mbit ATMEL Flash is connected to the
SPINCS(0) pin of SPI block. In order to select this pin to be active, "00" is written
into the SPINCSREG.

- Write to Bufferl: Fill all the 1056 bytes of Bufferl of the ATMEL Flash
with data. When writing the data into the Bufferl, the order should be like this:
First, write to the ADDRESSREG, then write to WRITEDATAREG, and last write
to CTRLREG.

- Transfer Bufferl to Pagel: After writing the data to the Bufferl, its content
is transferred to Pagel by writing to ADDRESSREG and CTRLREG. During
transfer, check the status of Flash whether it is busy or not.

- Fill Bufferl with zeros: If the Flash is ready, Bufferl is filled with zeros to
Clear it.

- Transfer Pagel to Bufferl: Pagel is transferred back to Bufferl by writing
to ADDRESSREG and CTRLREG. During transfer, check the status of Flash
whether it is busy or not.

- Change Bufferl: If the Flash is ready, change the content of Bufferl.

- Transfer Bufferl to Pagel: New Bufferl content is transferred to Pagel
again by writing to ADDRESSREG and CTRLREG. During transfer, check the
status of Flash whether it is busy or not.

- Write to Bufferl: If the Flash is ready, Bufferl is loaded with a different
1056-byte data.

- Transfer Bufferl to Page2: Bufferl is transferred to Page2 by writing to
ADDRESSREG and CTRLREG. During transfer, check the status of Flash whether
it is busy or not.

- Read Two Pages Continuously: When Flash is ready, Pagel and Page2 are
read successively by writing to ADDRESSREG and CTRLREG. In continuous
reading mode FIFO becomes empty after each reading. If data is not continuously
read, FIFO becomes full after 4 words are stored in it. Both conditions (FIFO full
and FIFO empty) are tested for SPI verification.

6.1.2.ST Flash Test:

M25P80 (8 Mbit) VHDL model is used to test SPI Block for ST Flash. Each
SPINCS bits connected to one ST Fash. Steps followed for testing the ST Flash are
listed below:

- Select Flash: Firstly, Flash type is selected by applying "01" to the
FlashTypeSel input of SPI block.

- Select SPINCS: In order to select the second bit of the SPINCS output to be
active, "01" iswritten into the SPINCSREG.

- Send Write Enable Opcode: Send Write Enable opcode to the Flash to make
the Flash Pages writable. This operation is performed by writing to the CTRLREG.
Before every write operation, this opcode is required by ST Flash.

- Write to Pagel: Write all the 256 bytes of Pagel of second Flash with data
by using WriteData state. When writing the first 32-bit of datainto Pagel, the order
should be like this: First, write to the ADDRESSREG (including page and byte
addresses), then write to WRITEDATAREG, and last writeto CTRLREG. The
remaining 32-bit data must be sent successively by writing to WRITEDATAREG.
After sending all the data, set CTRLREG to start WritePage State. Before
performing new instruction after write page state, check the status of Flash whether
it is busy or not.

- Send Write Enable Opcode: If the Flash is ready, send again Write Enable
opcode to the Flash to make the Flash Pages writable. This operation is performed
by writing to the CTRLREG.

- Write to Page2: Write all the 256 bytes of Page2 of second Flash with
different data as described in "Write to Pagel" paragraph. Check the status of Flash
whether it is busy or not.

- Read Two Pages Continuously: When Flash is ready, Pagel and Page2 of
second Flash are read successively by writing to ADDRESSREG and CTRLREG.
In continuous reading mode FIFO becomes empty after each reading. If datais not
continuously read, FIFO becomes full after 4 words are stored in it. Both conditions
(FIFO full and FIFO empty) are tested for SPI verification.

- Select SPINCS: In order to select the third bit of the SPINCS output to be
active, "10" iswritten into the SPINCSREG.

55

- Send Write Enable Opcode: Send WriteEnable opcode to the Flash.

- Write to Pagel: Write all the 256 bytes of Pagel of the third Flash with data
as described in "Write to Pagel" paragraph. Check the status of Flash whether it is
busy or not.

- Read Pagel: If the Flash is ready, read Pagel of the third Flash.

Note: SectorErase and BulkErase tests are done partially. That is, we send only
Sector Erase and Bulk Erase opcodes to ST Flash and observe whether the ST Flash
receives these opcodes or not by checking the Flash Status.

6.1.3.NexFLASH Flash Test:

NX25F641C (64 Mbit) verilog model is used to test SPI Block for NEXFLASH
Flash and it is connected to SPINCS(3). Steps followed for testing the NEXFLASH
Flash are listed below:

- Select Flash: Firstly, Flash type is selected by applying "10" to the
FlashTypeSel input of SPI block.

- Select SPINCS: The CS signal of 64Mbit NEXFLASH Flash is connected to
the SPINCS(3) signal of SPI block. In order to select this signal to be active, "11" is
written into the SPINCSREG.

- Send Write Enable Opcode: Send Write Enable opcode to the Flash to make
the Flash Pages writable. This operation is performed by writing to the CTRLREG.
This operation should be performed only once after power on.

- Write to SRAM: Fill all the 528 bytes of SRAM of the NEXFLASH Flash
with data. When writing the data into the SRAM, the order should be like this: First,
write to the ADDRESSREG, then write to WRITEDATAREG, and last write to
CTRLREG.

- Transfer SRAM to Sectorl: After writing the data to the SRAM, its content
is transferred to Sectorl by writing to ADDRESSREG and CTRLREG. During
transfer, check the status of Flash whether it is busy or not.

- Change the content of SRAM: If the Flash is ready, change the content of
SRAM with new data.

56

- Transfer SRAM to Sector2: SRAM is transferred to Sector2 by writing to
ADDRESSREG and CTRLREG. During transfer, check the status of Flash whether
it is busy or not.

- Read Two Sectors Continuously: When Flash is ready, Sectorl and Sector2
are read successively by writing to ADDRESSREG and CTRLREG. In continuous
reading mode FIFO becomes empty after each reading. If data is not continuously
read, FIFO becomes full after 4 words are stored in it. Both conditions (FIFO full
and FIFO empty) are tested for SPI verification.

- Transfer Sectorl to SRAM: Sectorl is transferred back to SRAM by writing
to ADDRESSREG and CTRLREG. During transfer, check the status of Flash
whether it is busy or not. (check transfer bit of Flash status)

- Change SRAM: If the Flash isready, change the content of SRAM.

- Transfer SRAM to Sector3: New SRAM content is transferred to Sector3
again by writing to ADDRESSREG and CTRLREG. During transfer, check the
status of Flash whether it is busy or not.

- Read Sector3: If the Flash is ready, read Sector3 of the ST Flash.

Waveforms for the simulations of functional tests are given in Appendix A.

57

1. SERIAL FLASH MEMORY CONTROLLER SYNTHESIS

7.1. Synthess

Synthesis provides a link between a HDL and a netlist similarly to the way that a
C compiler provides a link between C code and machine language. Once a HDL model
is complete two items are required to proceed: a logic synthesizer and a cell library that
is called the target library. The HDL code is mapped to cells from this library. It is
possible to effectively translate designs captured in high level languages to designs
optimized for area and speed by using of logic synthesis.

Serial Flash Memory Controller block was synthesized with Synopsys Design
Compiler Synthesistool in CMOS 0.35 nm technology. A synthesis script, that includes
all necessary constraints, is used for synthesis. This script is given in Appendix B.

As a synthesis methodology, “top-down” synthesis way was used since it provides
a push-button approach and our design is not so large. All constraints were applied to
the top-level block, which is called ApbSPI.

Logic synthesis results in a netlist, which contains sequential non-scan cells and
other combinational gates from the technology library. Full scan methodology is used in
synthesis of Serial Flash Memory Controller block. In this methodology all the
sequential cellsin the netlist are replaced by scan cells. Full scan designs achieve higher
fault coverage. Scan cells have two different modes of operation: normal and scan. In
normal mode, the scan cell’ s functionality is same as that of sequential non-scan cell. In

scan mode, the scan cells are linked in the form of a shift register.

58

Scan In TI o) TI Q TI Q

Ol
Ol
Ol

TI

Ol

|_Scan Out

Clk

Figure 7-1 Scan cells linked to form a scan chain

When scan cells are linked to form a scan chain as shown in Figure 7-1, all the

scan cells are controllable and observable.

Scan insertion results in design overheads such as, the use of extra scan ports, an

increase in silicon area due to use of scan flops, and greater timing delays due to the

insertion of the scan cells for the sequential non-scan cells.

After inserting the test scan logic in the design, the ATPG algorithm is used to

generate test patterns.

7.2. 10 Timing Constraints

Atmel Flash
DoutSPI Setup Time (min) wrt - of 5ns
SPICIk Out
DoutSPI Hold Time (min) wrt - of
SPICIK_Out 10ns
DinSPI Valid Time (max) wrt of
SPICIK_Out 20ns

Table 7-1 10 timing constraints for ATMEL flash memory

59

ST Flash

DoutSPI Setup Time (min) wrt - of

SPICIk_Out S ns
DoutSPI Hold Time (min) wrt - of 5ns
SPICIk Out

DinSPI Valid Time (max) wrt — of

SPICIk_Out 15ns

Table 7-2 10 timing constraints for ST flash memory

Timing values are at the flash interface. Board delays are not taken into account.

7.3. SynthesisResults

Schematic view of synthesized SPIClockLogic module is shown in Figure 7-2.

Setup File Edit View Attributes Analysis Tools

EENEEE

Synopsys Design Analyzer -

Help

=

Left Button: Select — Middle Button: Add/Medify Select — Right Button: Menu

Current Design: ApbSPT Current Instance: SPIC1kTog_1 (SPIClockLogic_test_1) Schematic View

Figure 7-2 Synthesised SPIClockL ogic block

60

Schematic view of synthesized RxFIFO module is shown in Figure 7-3.

= Synopsys Design Analyzer
Betup File Edit View Attributes Analysis Tools

o [[(o8 [l B

= 1

Current Design: ApbSPT Current Instance: FIFO_1 (fifo_test_1) Schematic View

Left Button: Select - Middle Button: Add/Modify Select — Right Button: Menu

Figure 7-3 Synthesised RxFIFO block

80 MHz system clock frequency is used in synthesis of serial flash memory
controller module. The system has not any problem at this operation frequency in terms
of critical timing issues and we do not get any violations.

Results of area achieved for this synthesis can be seen in Table 7-3.

61

_ ApbSPI
Block Apblf SPIIf SPIClockLogic | RXFIFO
(Top Leve)

Combinational nt 26608.39 357138.59 709.79 46792.19 432668.59
Area Gates | 487.3 6540.99 12.99 856.99 7924.3
Noncombinational nt 48175.4 111839 2093 70343 232450.4
Area Gates | 882.33 2048.33 38.33 1288.33 4257.33
Area Gates | 107.14 1039.78 3.62 5.6 2426.7

nt 74783.79 468977.59 2802.79 117135.2 665119
Total Cel Area

Gates | 1369.67 8589.33 51.33 2145.33 12181.7

nt 80633.79 525749.62 3000.79 117441.2 797617
Total Area

Gates | 1476.8 9629.11 54.96 2150.93 14608.37

Table 7-3Areareport

Power estimation reports given

frequency is shown in Table 7-4.

by Synopsys Design Analyzer for operating

Operating Conditions WORST
Global Operating Voltage (V) 3.3
Library csx_3.3V
Power Consumption Estimation

) ApbSPI
Block Apblf SPIIf SPIClockLogic | RXFIFO

(Top level)

Céll Internal Power mwW | 2.69 7.26 0.29 1.86 20.09
Net Switching Power mW | 6.15 7.6 0.16 3.6 51.03
Total Dynamic Power mwW | 8.84 14.85 0.45 5.45 71.12
Cell Leakage Power nW | 80.03 493.41 3.15 82.64 696.35
(Static Power)

Table 7-4 Power report

62

7.4. Gate-level Simulations

The netlist of the synthesised Serial Flash Memory Controller module was saved
in verilog format and then sdf (standard delay file) file was generated for the gate-level
simulations. This sdf file is generated by Synopsys Design Analyzer and it includes the
estimated timings for each of library elements.

In gate level simulations verilog model of NexFlash serial flash memory was used.
There is no special reason to select NexFlash serial flash memory for gate level
simulations. It was selected as a representative memory.

The waveforms for the gate level simulations are given in Appendix C.

63

8. PLACE & ROUTE FOR SERIAL FLASH MEMORY CONTROLLER

Cadence Silicon Ensemble is used for place&route.

8.1. Floorplanning and Placement

As it is said in Smith’s book, the input to a floorplanning tool is a hierarchical
netlist that describes the interconnection of the blocks, the logic cells within the blocks,
and the logic cell connectors [3]. The netlist is a logical description of the ASIC; the
floorplan is a physical description of an ASIC. Floorplanning is thus mapping between
the logical description (the netlist) and the physical description (the floorplan).

Floorplanning step helps to define the dimensions of the chip layout and place
modules of the design in specific regions. At this stage of the design flow, thisis avery
rough estimate of the actual placement. Also, no actua routing is done at this stage.
Floorplanning allows us to predict interconnect delay by estimating interconnect length.

For floorplanning of serial flash memory controller module, the aspect ratio was
set to be 1, which was square. The distance of the IO to core was selected as 100 nm.
This distance was large enough to leave room to route power and ground wires. Flip
every other row and abut rows options were selected to create rows where VDD and
GND alternates. Block halo per side, the distance between blocks and the rows, was set
to be 20 mm. Row Utilization factor was selected as 90%. It indicates how densely
Silicon Ensemble will pack each row. Higher numbers give you more dense designs, but
smaller numbers will make it run faster.

After completing floorplan, placement of the logic cells begins. After
floorplanning and placement, we have more accurate estimates of the capacitive loads
that each logic cell must drive. The goal of a placement tool is to arrange all the logic
cells within the flexible blocks on a chip. Ideally, the objectives of the placement step
are:

Guarantee the router can complete the routing step.
Minimize all the critical net delays.
Make the chip as dense as possible.
First step of placement of serial flash memory controller module was to place the
1O cells automatically. After this power planning was started. Power rings surrounding
all cells were generated and connected to power pads. Metall and metal2 were used for
the power ring. The width of core supply ring and channel were selected as 10 nmand 5

nm. After the power routing was planned, the cells were placed inside the rows.

8.2. Routing

Once the designer has floorplanned a chip and the logic cells within the blocks
have been placed, it is time to make the connections by routing the chip. Routing is split
into global routing followed by detailed routing.

The input to the global router is a floorplan that includes the locations of all the
fixed and flexible blocks, the placement information for flexible blocks, and the
locations of all the logic cells. The goal of global routing is to provide complete
instructions to the detailed router on where to route every net. The objectives of global
routing are:

Minimize the total interconnect length.
Maximize the probability that the detailed router can complete the routing.
Minimize the critical path delay.

The global routing step determines the channels to be used for each interconnect.
Using this information, detailed router decides the exact location and layers for each
interconnect. The goal of detailed routing is to complete all the connections between
logic cells. . The objectives of detailed routing are:

The total interconnect length and area.
The number of layer changes that the connections have to make.
The delay of critical paths.

First step of the routing of serial flash memory controller module was to connect

all blocks to the power rings in the design. Block and allport options were selected in

this step. Block option connects pins to the closest rings. Allport option connects all

65

ports of the pins to the closest rings, otherwise only one port is connected. After
connecting rings, final and global routing was started. After routing, the gaps between
the cells were closed by placing filler cells.

The script, used in backend flow, is given in Appendix D.

8.3. Place& Route Results

The number of components, models, pins, nets, instances of each model, and the

routing tracks available for our serial flash memory controller block are given below.

Number of macros 190
Number of components 6527
Number of pins 28412
Number of regular pins 15333
Number of special pins 8344
Number of unused pins 215
Number of nets 4585
Average number of pins per net 6.15
Number of subnets 0
Number of routing tracks available 1439
Number of GCELL S per layer 5250

Table 8-1 Design summary

Rows are locations for the placement of cells, either horizontally or vertically. A
row is a one-dimensional array of uniform placement grids in which to place of a
matching type. For maximum chip area utilization, the cells are placed as close as
possible to each other within each row and not violating design rules. Utilization of

rows for our design is given below.

66

Type Number Length Area % Row Space
Standard Rows | 59 4551260 5916638000
Standard Cells 6432 4551260 5916638000 | 100.00

Table 8-2 Utilization of rows

Areaof chip: 9431322600 (square DBU)
Arearequired for all cells: 5916638000 (square DBU)
Area utilization of all cells: 62.73%

Tota layers. 7

Routing layers: 3

The area estimated after the synthesis was about 0.8 mm?. The final area at the end

of the place&route is 0.94 mm?. It is 17.5 % larger than the expected one. It’s not a big

difference. Moreover, since we don't have any routing error, we can still reduce the

area.

Layer information given in Table 8-3.

Layer Routing Process Routing
Order Order

MET1 horizontal 6 3

MET?2 vertical 4 2

MET3 horizontal 2 1

VIA can't route 5

VIA2 can't route 3

OVERLAP can't route 1

VIRTUAL can't route 7

Table 8-3 Layer information

Wiring information is given below.

Total viasin regular wiring: 19475
Total segmentsin regular wiring: 38897
Total vias in special wiring: 154

Total segmentsin special wiring: 227

Wire lengths for different layers given in Table 8-4.

67

MET1 MET?2 MET3 Total
(microns) (microns) (microns) (microns)
Length of regular 40489.40 257515.70 288972.00 | 586977.10
wires
Length of special 95737.60 4960.80 .00 100698.40
wires
Length of regular 136227.00 | 262476.50 288972.00 | 687675.50
and special wiring
Table 8-4 Wire lengths
The result of place& route is given in Figure 8-1.

File Edit View Floorplan Place Route Report Yerify

Scale: Big,Med

Object 51 ¥s
Region
Group
Fowr
cell
Het "
Swire ~
Bein v
[[[....... =g)
ik =g 4
v A «
<« = >
> L 4 -
= +
Sa & &
N

X -85.51 ¥ 380.62 dX
Physical delays are calculated

REPORT DELAY completed.

Finished execution of file ‘gemma.mac’.

677.72 dY

-192.48 Sel

0

Figure 8-1 Result of place&route

68

8.4. Post-layout Simulations

Verilog netlist of Serial Flash Memory Controller module and sdf file was
exported at the end of place&route. These files were used in post-layout simulations.
Since NexFlash serial flash memory model was used in gate level simulations, we used
it also for pogt-layout simulations. Also the testbench is the one that was used in gate
level tests.

69

0. FPGA IMPLEMENTATION

The serial flash memory controller module was implemented to FPGA for final
verification. X340 FPGA board and M25P80 serial flash memory were used in this
application.

9.1. XS40 board

The arrangement of components for X$40 board is shown in Figure 9-1.

PC Parallel Port

J1

100MHz Osc.~. J s [vsgl—oe (not installed)
vs[I]

E 9YDC Power Supply --C L

J9
— SRAM

J12~]
J6—]
J4—

J117

Serial EEPROM-T ¢

15
Socket
i)
]
5

J10 U0
J7
I —Microconiroller
[I J2
PS/2 Mouse VGA Monitor
or Keyboard

] &

FPGA

Figure 9-1 Arrangement of components on XS40 board

70

XS40 board can be connected to PC from the parallel port. It has GXSLOAD,
GXSPORT, GXSTEST and GXSSETCLK utility programs.

X0 board has a 100 MHz programmable oscillator (a Dallas Semiconductor
DS10752-100). The 100 MHz master frequency can be divided by factorsof 1, 2, ... up
to 2052 to get clock frequencies of 100 MHz, 50 MHz, ... down to 48.7 KHz,
respectively. The divided frequency is sent to the rest of the XS40 board circuitry as a
clock signal. In our FPGA implementation, we programmed oscillator to get clock
frequency of 25 MHz. The divisor was stored into the oscillator chip by using the GUI-
based GXSSETCLK utility.

The FPGA used in X340 board is XC4010X L with 84 pin.

Xilinx ISE 4.2 was used in our FPGA application. This program integrates all
Foundation tools into a unified environment. The final result of the project is a bit
stream file that can be downloaded into areprogrammable FPGA device.

After the design was implemented to FPGA, the generated bit stream file was
downloaded from PC into X340 board by using GXSLOAD utility.

The microcontroller and the RAM inside the XS40 board are not used in our
application. For this reason RAM and microcontroller are held in an inactive state. The
microcontroller is held in the RESET date by placing a high level on its RST pin. The
RAM is deactivated by placing a high level on its /CS input. We used FPGA pins
attached to the RAM and microcontroller as general-purpose 1/0. Pin assignments of
FPGA for our application isgiven in Table 9-1.

71

Port Name L ocation
Clock p13
ResetNot pa4
DinSPI p3
SPINCS p4
SPICIk_Out p5
DoutSPI p6
FlashwP p7
FlashHold p8
UCRst p36
SRAMcs p65
Led<0> p19
Led<1> p23
Led<2> p26
Led<3> p25
Led<4> p24
Led<5> pl8
Led<6> p20

Table 9-1 Pin assignments for FPGA

XS40 board pin descriptions and its detailed schematic given in Appendix E.

9.2. Test Scenario for FPGA Implementation

To verify the serial flash memory controller module, the block named as ApbGen
was designed. ApbGen block generates APB signals according to the test scenario. The
block diagram for the top level, which integrates ApbGen and ApbSPI, is given below.

72

'

Clock ApbSelect o . DinSPI
ResetNot { ApbAddr(15:0) o DoutSPI
ApbWrite o | SPINCS o
ApbDataWrite(31:0) AprPl SPICIk_Out
ApbDataRead(31:0) FlashwP
ApbGen [
ApbEnable o | FlashHold
‘Interru pt UCRst
SRAMcs
Led(6:0)

Figure 9-2 Block diagram for integration of ApbGen and ApbSPI

The state machine controlling the operation of ApbGen block is shown in Figure
9-3

73

DataCntr= (c_PageWidth)

é

ApbDataRead(0)="0"

WriteEnable

ApbDataRead(0)="0"
and
Erased="1" Erased="'0"

Erased="'0"

GetFlashStatus BulkErase Erased="1'

DataCntr < c_PageWidth

WriteData

DataCntr = c_PageWidth

s

WritePage

Figure 9-3 State machine controlling ApbGen

Erased signal is the input of FSM that controls ApbGen block. This signal is set to
1, when the BulkErase operation is finished by serial flash memory.

In WriteEnable State, ApbSPI block is programmed for WriteEnable operation.

In BulkErase State, if ApbSPI is not busy, it is programmed for BulkErase
operation. There is a process inside ApbGen, to read the status register of ApbSPI when
Interrupt input is high. So ApbGen can detect whether the ApbSPI block is busy or not.

In GetFlashStatus State, if ApbSPI is not busy, it is programmed for
GetFlashStatus operation. After ApbSPI finishes GetFlashStatus operation, the status

74

datais read from the FIFO. This will continue until the serial flash memory is ready for
new operation.

In WriteData State, if ApbSPI is not busy, it is programmed for WriteData
operation. The length of the data that is sent to serial flash memory is 256 byte. This
length equals to the length of one page of serial flash memory used for verification.
Because of the limited size of the FPGA that we used, we can only write one page of
datato the serial flash memory.

In WritePage State, if ApbSPI is not busy, it is programmed for WritePage
operation.

In ReadData State, ApbSPI is programmed for ReadData operation. ApbGen reads
the status of ApbSPI when the Interrupt input is high. If there is data written into the
FIFO, it will be read by ApbGen. ApbGen compares the received data with the data sent
to serial flash memory. If there is any difference between these, it sets Error_Detected
signal.

After all the data is read, if Error_Detected signal is high, ApbGen writes E to
seven-segment display on the X340 board. Otherwise it writes C to seven-segment
display. This means that the data received is correct.

A simple pull up resistor (10 kohm) was connected to chip select pin of flash
memory to insure safe and proper power up and power down. Also 0.1 uF capacitor was
connected between Vcc and Gnd of serial flash memory to stabilise the VVcc feed [7].

The waveforms for RTL simulations given in Appendix F.

9.3. FPGA Implementation Results

Device utilization summary for FPGA implementation is given in Table 9-2.

75

Number of External IOBs 16 out of 61 26%
Flops 7

Latches 0

Number of Global Buffer IOBs loutof8 12%
Flops 0

Latches 0

Number of CLBs 400 out of 400 100%
Total Latches Oout of 800 0%
Total CLB Flops 438 out of 800 54%
4input LUTs 728 out of 800 91%
3input LUTs 157 out of 400 39%
Number of BUFGLSs 2outof 8 25%
Number of STARTUPs loutof 1 100%

Table 9-2 Device utilization summary

The main problem while implementing the design to the FPGA is the number of
CLBs. To fit the design into the FPGA some of the functionalities were given up. This
version of design can only work with ST serial flash memories. Also it has only one
chip select output.

76

10. CONCLUSIONS

This thesis has presented the SPI protocol and the design, digital implementation,
functional and gate-level verification, synthesis and place&route of serial flash memory
controller block in digital CMOS 0.35nm technology.

While designing serial flash memory controller block, our main purpose was to
create easy programmable, easy adaptable module with minimum area. For this reason
we made research on current solutions for communication with serial flash memories,
SPI protocol and structure of processor platform.

The design consists of four main blocks:

Apblf block: APB interface that provides communication with the processor.
SPIIf block: SPI interface, which provides communication with serial flash
memory.

SPIClockLogic: Produces clock and enable signals for communication with
serial flash memory.

RxFIFO: FIFO for continuos operation in receive mode.

Serial flash memory controller block can be programmed by the processor for the
required operation and the structure of receive or transmit frame. This block can easily
be integrated into the processor platform for embedded applications. Since the serial
flash memory controller block has a generic structure, it can be used with different types
of flash memories.

The synthesis of serial flash memory controller block was done for 80 MHz clock
speed. SPIClockLogic block produces 20 MHz SPI clock from this 80 MHz clock.

Serial flash memory controller block is tested and verified for all flash memory
access operations. All the tests were done from the top level by using model of

processor and flash memories.

77

10.

11.

12.

13.

14.

REFERENCES

ARM, PrimeCell Synchronous Serial Port (PL0O22) Technical Reference Manual,
July 2001.

ARM, AMBA Specification (Rev 2.0), May 1999.
Michael John Sebastian Smith, Application Specific Integrated Circuits, 1997.
Pran Kurup, Taher Abbasi, Logic Synthesis Using Synopsys (Second Edition), 1997.

Atmel, 64-megabit 2.7-volt Only Dual-interface Data Flash AT45DB642, Rev.
1638D-11/01.

Atmel, 32-Bit Embedded Core Peripheral, Serial Peripheral Interface (SPI), Rev.
1244D-CASIC-01/03.

STMicroelectronics, 8 Mbit, Low Voltage, Serial Flash Memory with 25 MHz SPI
Bus Interface M25P80, December 2002.

NexFlash Technologies, 63M-bit Serial Flash Memory with 4 Pin SPI Interface
NX25F641C, April 2002.

Fred G. Martin, D.4 Serial Peripheral Interface, November 1995.
Motorola, MC68HC11 Reference Manual, Prentice Hall 1989.

Ohio State University, Information and Electronics Group, The Serial Peripheral
Interface, Nautilus Chip-Project DEEPSEA (Digital Exportation of an Established
Protocol from Sensing Encoded Analog), January 2001.

Andrew Chu, Chris Ohlmann, VHDL Implementation of Serial Peripheral Interface,
2002.

Cadence, Serial Peripheral Interface Technical (SPl) Technical Data Shest,
December 2002.

Palmchip, Serial Peripheral Interface Controller, January 2002.

78

15. ST Microelectronics, SPI Communication Between ST7 and EEPROM, 1999.
16. Xilinx, CoolRunner Serial Peripheral Interface Master, December 2002.
17. Alma Technologies, SPI Master/Save Core, 2002.

18. Dave Bursky, Serial Flash Memories Rise To Meet Changing System Needs, Marc
1999.

19. Brett Glass, There in a Flash: Flash Memory for Embedded Systems, CMP Media
Inc. 2000.

20. ST Microelectronics, Flash Memories, B979M - June 2003.

21. ST Microelectronics, Using Serial Flash Memories for Code Sorage in Computer
and Peripherals Applications, May 2002.

22. XESS Corporation, X340, XSP Board V1.4 X340, XSP Board V1.4 X0, XSP
Board V1.4 X340, XSP Board V1.4 User Manual, 9/21/2001.

79

11. APPENDIX A: FUNCTIONAL SIMULATIONS

Below figures shows write and read operations for NexFlash flash memories.

Fi Qi [o] Wi Help

Edit ral Farm

ite[31:0]

File Edit tral Format ans indowy elp

Figure 11-2 Read operation for NexFlash serial flash memory

80

Below figures shows read and write operations for Atmel flash memories.

Signalscan Waveform:1

Fo tio Ip

File Edit

Figure 11-4 Read operation for Atmel serial flash memory

81

Below figures read and write operations for ST flash memories.

Signalscan V

File Edit

Figure 11-6 Read operation for ST flash memory

82

12. APPENDIX B: SYNTHESIS SCRIPT

To synthesise ApbSPI following scripts should be run.

dc_shell -f analyze.scr
dc_shell -f ApbSPI.rtl.script

In the script called analyze.scr all the hdl files included in ApbSPI database are
analyzed.

ApbSPI.rtl.script is given below.

elaborate ApbSPI -arch "STR" -lib LIB_APB_SPI -update
set_scan_configuration -methodology full_scan
set_scan_configuration -style multiplexed_flip_flop

OPERATING_CONDITIONS = "WORST"

REF DRIVER PIN ="csx_ HRDLIB/DFA/Q"

REF DRIVER CELL ="csx_HRDLIB/DFA"

REF LOAD ="csx_HRDLIB/NA2/A"
DEFAULT_MAX_TRANSITION =2.6
CLOCK_NAME = "Clock"

CLOCK_PERIOD = "11.00"

CLOCK_PERIOD_1 = "40.00"

RESET NAME = "ResetNot"

DEFAULT_INPUT DELAY ="1"

DEFAULT OUTPUT DELAY ="5"

DEFAULT LOAD ="1"

DEFAULT _MAX_CAPACITANCE = 5.0 * load_of(REF_LOAD)
DEFAULT_DRIVE = drive_of(REF_DRIVER_PIN)

create_clock CLOCK_NAME -period CLOCK_PERIOD
set_input_delay DEFAULT_INPUT_DELAY -clock CLOCK_NAME all_inputs()
remove_input_delay CLOCK_NAME -clock CLOCK_NAME
set_max_capacitance DEFAULT_MAX_CAPACITANCE all_inputs()
remove_attribute CLOCK_NAME max_capacitance
set_max_transition DEFAULT_MAX_TRANSITION find(design,"*")
set_load DEFAULT_LOAD all_outputs()

MAX_ AREA_ CONSTRAINT ="0.0"
set_max_areaMAX_AREA_CONSTRAINT

set_operating_conditions OPERATING_CONDITIONS
set_fix_multiple_port_nets —all

83

compile -scan

write -hierarchy -output ApbSPI.db

write -hierarchy -format verilog -output ApbSPI.GAT.v
write_constraints -format sdf -output ApbSPI.sdf

report_area > ApbSPI.rtl.reports
report_timing >> ApbSPI.rtl.reports
report_reference >> ApbSPI.rtl.reports
check_design >> ApbSPI.rtl.reports
report_constraints -verbose >> ApbSPI.rtl.reports
report_hierarchy >> ApbSPI.rtl.reports
report_port >> ApbSPI.rtl.reports
quit

13. APPENDIX C: GATE-LEVEL SIMULATIONS

Below figures show the results of gate level simulations for NexFlash serial flash

memories.

Ip

i tma

Figure 13-1 WriteData operation for NexFlash serial flash memory

File Edit Contral Format Op Help

DinSPI = =

PI = 0
SPIClk Out = 0

Figure 13-2 WritePage operation for NexFlash serial flash memory

85

Signalscan Waveform:1

File Edit

DoutSET
SPICLE

Figure 13-3 Read Data operation for NexFlash serial flash memory

86

14. APPENDIX D: BACKEND SCRIPT

H#H-- set colorsto make vias visible

##__

sat v DRAW.SWIRE.LAYERSET "123456";
set v DRAW.WIRE.LAYERSET "123456";

set v DRAW.SWIRE.4.COLOR 5
set v DRAW.SWIRE.5.COLOR 6 ;
set v DRAW.WIRE.4.COLOR 5
set v DRAW.WIRE.5.COLOR 6 ;

set v DRAW.LAYER.ORDER "4 12 35 6";

##-- Set Off Congestion Map Drawing
SET VAR DRAW.SCORE.GRAPHICS.AT OFF;

##-- Set Design Directory

HH--

SET VAR DB.DESIGN.DIR "./DB" ;

SET VAR VERIFY. TECHNOLOGY .MIN.FEATURESIZE 5;

SET VAR SROUTE.VIA.SNAPMANUFACTURINGGRID TRUE ;
SET VAR SROUTE.STRIPE.SNAP.RGRID "GRID" ;

SET VAR HYPEREXTRACT.RULES.FILE
"/usr/local/cdg/lib/ams_v3.40/artist/HK _0.35/LEF/csd/csd_he.rules’;

##-- Set Variables for VERILOG Import

HH--

SET VAR INPUT.VERILOG.CREATE.IO.PINS FALSE ;

SET VAR INPUT.VERILOG.ADD.LEADING.DELIM FALSE;

set var INPUT.VERILOG.GROUND.NET "gnd! gnd3r! gnd3o!" ;

set var INPUT.VERILOG.POWER.NET "vdd! vdd3o! vdd3r!";

set var INPUT.VERILOG.SPECIAL.NETS "vdd! vdd3o! vdd3r! gnd! gnd3o! gnd3r!" ;
set var INPUT.VERILOG.LOGIC.0.NET gnd! ;

set var INPUT.VERILOG.LOGIC.1.NET vdd! ;

##-- Import Library Data

87

##-- LEF

FINPUT LEF F /usr/local/cdg/lib/ams_v3.40/artist/HK _0.35/LEF/csd/csd.lef

INPUT LEF F /usr/local/cdg/lib/ams_v3.40/artist/HK _0.35/LEF/csd/HRDLIB_3M.lef ;
INPUT LEF F /usr/local/cds/lib/ams_v3.40/artist/HK _0.35/LEF/csd/IOLIB_3M.lef ;
INPUT LEF F <addional LEF files> ;

##-- CTLF Timing
##-- GCF File
INPUT CTLFINITFILE "./csd3.3V.gcf" ;

##-- Import Design Data
##-- Verilog
INPUT VERILOG FILE ./VERILOG/csx_HRDLIB.v LIB DesignLib;
INPUT VERILOG FILE ./VERILOG/ApbSPI.GAT.v LIB DesignLib
REFLIB "DesignLib" DESIGN DesignLib.ApbSPI:hdl ;

##-- Import Timing Contraints
##-- INPUT GCF FILENAME "./constr3.3V.gcf" REPORTFILE "importgcf.rpt” ;

#-- To Set Rows On Grid
SET VAR PLAN.IOROW.SNAPGRID.X 10;
SET VAR PLAN.IOROW.SNAPGRID.Y 10;

##-- Save design
HH--
SAVE loaded ;

##-- Initialize the floorplan

FINIT FLOORPLAN rowu 0.90 rowsp 0 blockhalo 2000 f a 1 abut xio 10000 yio
10000 ;

WINDOW FHIT;

###-- Place the Periphery Cells

IOPLACE AUTOMATIC STYLE EVEN ;

##-- Cut Rows around Blocks
CUT ROW BLOCKHALO 2000;
##-- Power Routing

HH--

BUILD CHANNEL ;

##-- Add Power Stripes

HH--

#ADD STRIPE NET vdd! NET gnd! DIRECTION Vertical LAYER MET2 WIDTH
500

##-- Add Power Rings
HH--
CONSTRUCT RING NET "vdd!" NET "gnd!"
LAYER MET1 CORERINGWIDTH 1000 SPACING CENTER
BLOCKRINGWIDTH 500

88

LAYER MET2 CORERINGWIDTH 1000 SPACING CENTER
BLOCKRINGWIDTH 500;

SAVE power_plan;
##-- Add Cap cells
SROUTE ADDCELL MODEL LCAP PREFIX Icap
SPIN vdd! NET vdd! SPIN gnd! NET gnd!
AREA (-43500 -43480) (43640 43610) PREENDCAP;
SROUTE ADDCELL MODEL RCAP PREFIX rcap
SPIN vdd! NET vdd! SPIN gnd! NET gnd!
AREA (-43500 -43480) (43640 43610) POSTENDCAP;

#-- Place Standard Cells
QPLACE NOCONFIG;

SAVE gplaced ;
SET VAR SROUTE.LPR.VIASATCROSSOVER TRUE ;
SET VAR SROUTE.STACKVIASATCROSSOVER TRUE ;

##-- Finish Power Routing
##-- Connect Blocks
CONNECT RING NET "vdd!" NET "gnd!" BLOCK ALLPORT ;

##-- Connect Power Pads
CONNECT RING NET "vdd!" NET "gnd!" IOPAD ALLPORT WIDTH 1000
IORING;

##-- Route the Clock nets
#HCLOCKROUTE ALL ;

##-- Route dl the nets

SET VAR WROUTE.GROUTE.ONLY FALSE ;

SET VAR WROUTE.FINAL TRUE ;

SET VAR WROUTE.GLOBAL TRUE;

SET VAR WROUTE.SEARCHREPAIR TRUE ;

SET VAR WROUTE.INCREMENTAL.FINAL FALSE ;
WROUTE NOCONFIG ;

##-- Add Feedthru Cells

HH--

#EXEC fillcore.mac ;

SROUTE ADDCELL MODEL FEED?25 PREFIX fillcore NO FS
SPIN 'vdd!" NET 'vdd!" SPIN ‘gnd!" NET 'gnd!"
AREA (-43500 -43480) (43640 43610) ;

SROUTE ADDCELL MODEL FEED10 PREFIX fillcore NO FS
SPIN 'vdd!" NET 'vdd!" SPIN ‘gnd!" NET 'gnd!"
AREA (-43500 -43480) (43640 43610) ;

SROUTE ADDCELL MODEL FEEDS5 PREFIX fillcore NO FS
SPIN 'vdd!" NET 'vdd!" SPIN ‘gnd!" NET 'gnd!"
AREA (-43500 -43480) (43640 43610) ;

89

SROUTE ADDCELL MODEL FEED2 PREFIX fillcore NO FS
SPIN ‘vdd!' NET ‘vdd!" SPIN ‘gnd!' NET ‘gnd!’
AREA (-43500-43480) (43640 43610) ;

SROUTE ADDCELL MODEL FEED PREFIX fillcore NO FS
SPIN ‘vdd!' NET ‘vdd!" SPIN ‘gnd! NET ‘gnd!’
AREA (-43500-43480) (43640 43610) ;

SET VAR DRAW.ROW.AT "OFF",

SET VAR DRAW.CELL.AT "OFF",

SET VAR DRAW.CELL.UNPLACED.AT "OFF";
SET VAR DRAW.PIN.AT "On";

SET VAR DRAW.SWIRE.AT "On",

SET VAR DRAW.SWIRE.GEOM "On";

SET VAR DRAW.WIRE.AT "On",

SET VAR DRAW.WIRE.GEOM "On";

SET VAR DRAW.BLOCKAGE.AT "On";
REFRESH

##-- Save the design
SAVE "final" ;

##-- Save the design as DEF

OUTPUT DEF FILENAME "./DEF/ApbSPI.def" ;

OUTPUT GDSII MAPFILE gds2.map STRUCTURENAME ApbSPI FILE
ApbSPI_se.gds? ;

SET VAR OUTPUT.VERILOG.PWR.AND.GND.PORTS "TRUE";
OUTPUT VERILOG FILE "./VERILOG/ApbSPI.v" ;

H#H-- Write RSPF
REPORT RC FILE ApbSPI.rspf ;

##-- Write Logical SDF

SET VAR TIMING.RSPF.FILE "ApbSPI.rspf";
REPORT DELAY SDFOUTPUT FILENAME ApbSPI.sdf USERSPF;

90

15. APPENDIX E: PIN DESCRIPTIONS AND SIMPLIFIED SCHEMATICS

OF X$40 BOARD
XS0 Pin | Connectsto Description
25 SO0 BLUEO
26 S1BLUE1L
24 S2 GREENO These pins drive the individual segments of the LED display
20 S3 GREEN1 (S0-S6). They also drive the color and horizontal sync signals
23 4 REDO for a VGA monitor.
18 S5 RED1
19 S6 HSYNCB
13 CLK An input driven by the 100 MHz programmabl e oscill ator
44 PC DO
45 PC D1 These pins are driven by the data output pins of the PC parallel
46 PC D2 port. Clocking signals can only be reliably applied through pins
47 PC D3 44 and 45 since these have additiona hysteresis circuitry. Pins
48 PC D4 32 and 34 are mode signas for the FPGA so you must adjust
your design to account for the way that the Foundation tools
49 PC D5 handle these pins. Pins 32 and 34 are not usable as general-
32 PC D6 purpose 1/0 on the Spartan FPGA on the XSP Board.
34 PC D7
37 XTAL1 Pin that drives the uC clock input
36 RST Pin that drives the uC reset input
29 ALEB Pin that monitors the uC address latch enable
14 PSENB Pin that monitors the uC program store enable
7 P10
8 P11
9 P12 These pins connect to the pins of Port 1 of the uC. Some of the
6 P13 pins are also connected to the status input pins of the PC
77 P14PC$4 parald port. Pin 67 drives the vertical sync signa for a VGA
70 P15 PC S3 monitor.
66 P16 PC S5
67 P17VSYNCB
69 P3 1(TXD) PC S6 These pins connect to some of the pins of Port 3 of the uC. The
63 P3 4(T0) P2 CLK uC has specialised functions for each of the port pins indicated
62 P3 6(WRB) WEB in parentheses. Pin 62 connects to the data write pin of the uC
() and the write-enable pin of the SRAM. Pin 69 connects to a
status input pin of the PC parald port and the PS2 data line.
21 P3 7(RDB) Pin 68 connects to the PS/2 clock line
41 PO O(ADO) DO These pins connect to Port 0 of the uC, which is aso a
multiplexed address/data port. These pins aso connect to the
40 PO 1(ADY) D1 data pins of the SRAM.
39 PO 2(AD2) D2
38 PO 3(AD3) D3

91

35 PO 4(AD4) D4

81 PO 5(AD5) D5

80 PO 6(AD6) D6

10 PO 7(AD7) D7

59 P2 O(A8) A8

S/ P2 0(A9) A9

ol P2 0(A10) A10 These pins connect to Port 2 of the uC, which also outputs the
56 P2 0(A11) A1l upper address byte. These pins aso connect to the upper
50 P2 0(A12) A12 address bits of the SRAM. Pins 28 and 16 are connected to the
58 P2 0(A13) A13 128 KB SRAM address pins only on the XSA0+ Board. Pins 28
60 P2 0(A14) Al4 and 16 do not connect to the 32 KB SRAM on the XS40 Board.

28 P2 0(A15) A15

16 Al6

3 A0

4 Al

5 A2

;g 22 These pins drive the 8 lower address bits of the SRAM.

82 A5

83 A6

84 A7

61 OEB Pin that drives the SRAM output enable

65 CEB Pin that drives the SRAM chip enable

75 PC S7 Pin that drives a status input pin of the PC paralé port

Table 15-1 Pin descriptions of X340 board

92

PC ParalklPort

VGA Inputs

7

PC ParallelPort

pC_87

PC 86

PC 85

PS /2 Port

KB _DATA

pC a4

B 83

Status Mputs

-«
b3
-
-
e
-
VEYNC &
HAYNC &
RED1
RED) #————
GREEN] ———————
o,
-
-

GREEND
BLUE1
BLUEQ

w

n

L
[}
.

32 $1 g3

“ﬁ?ﬁ“ﬁtﬂ?“g

Segm entLED

l100MHz

Prog.0 sc.

i

BC D7+
BC D+

PC DS

BC D4
BC D3

BC D2

PC D1

Data Outputs

TIPIIIL

PC DO

*s notoonnected on ISP BEoard
*t g gpplieg o I540+ Board

Figure 15-1 Simplified schematic of X S40 board

18
23
20
24
26

14¢
11+
48
i7
5
10 4

FPGA

b L
[

L8850000 Ahtondts & | D dhddooos o doo

o

PP A sty

(5]
pir}

I

Ldd dbbdbhbd

BB _CLE

)

8031 uC

28 o

18 5

10

11

12

25

29

24

22

93

oooo

32K /128K **x 8 SRAM

et e

e fe e

T
£ b L e Lo

og=
wlzl

a
b

16. APPENDIX F: SSMULATIONS FOR FPGA IMPLEMENTATION

The following figures show the waveforms for functional simulations in FPGA
implementation.

Signalscan Waveform:1

Format

gnalscan Waveform:1

Edit ntral armat Optio

WriteData

Figure 16-2 Write operation

94

Figure 16-4 WriteEnable, BulkErase and GetFlashStatus operations

Following figure is the output of the logic analyzer for the test with XS40 board
and M25P80 serial flash memory. It shows the WriteEnable, BulkErase and
GetFlashStatus operations of serial flash memory controller module.

95

P Waveform<1= ME E
File Edit Options

Help
[ovicote [_mon ||
Search ~ Goto I Markers I Comments I Analysis] Mixed Signal I
Goto ITime él |:O = él Gotol
Trigger | Beginm’.ngl End | G1 I G2
GL & GZ Centered |
==

SecondsAdiv |E3‘2Ell us]:I Delay |E4.32EI us j‘

Lakl
Lakl
Lakl
Lakl

[—

Figure 16-5 Output of logic analyzer

96

10.

11.

12.

13.

14.

REFERENCES

ARM, PrimeCell Synchronous Serial Port (PL0O22) Technical Reference Manual,
July 2001.

ARM, AMBA Specification (Rev 2.0), May 1999.
Michael John Sebastian Smith, Application Specific Integrated Circuits, 1997.
Pran Kurup, Taher Abbasi, Logic Synthesis Using Synopsys (Second Edition), 1997.

Atmel, 64-megabit 2.7-volt Only Dual-interface Data Flash AT45DB642, Rev.
1638D-11/01.

Atmel, 32-Bit Embedded Core Peripheral, Serial Peripheral Interface (SPI), Rev.
1244D-CASIC-01/03.

STMicroelectronics, 8 Mbit, Low Voltage, Serial Flash Memory with 25 MHz SPI
Bus Interface M25P80, December 2002.

NexFlash Technologies, 63M-bit Serial Flash Memory with 4 Pin SPI Interface
NX25F641C, April 2002.

Fred G. Martin, D.4 Serial Peripheral Interface, November 1995.
Motorola, MC68HC11 Reference Manual, Prentice Hall 1989.

Ohio State University, Information and Electronics Group, The Serial Peripheral
Interface, Nautilus Chip-Project DEEPSEA (Digital Exportation of an Established
Protocol from Sensing Encoded Analog), January 2001.

Andrew Chu, Chris Ohlmann, VHDL Implementation of Serial Peripheral Interface,
2002.

Cadence, Serial Peripheral Interface Technical (SPl) Technical Data Shest,
December 2002.

Palmchip, Serial Peripheral Interface Controller, January 2002.

78

15. ST Microelectronics, SPI Communication Between ST7 and EEPROM, 1999.
16. Xilinx, CoolRunner Serial Peripheral Interface Master, December 2002.
17. Alma Technologies, SPI Master/Save Core, 2002.

18. Dave Bursky, Serial Flash Memories Rise To Meet Changing System Needs, Marc
1999.

19. Brett Glass, There in a Flash: Flash Memory for Embedded Systems, CMP Media
Inc. 2000.

20. ST Microelectronics, Flash Memories, B979M - June 2003.

21. ST Microelectronics, Using Serial Flash Memories for Code Sorage in Computer
and Peripherals Applications, May 2002.

22. XESS Corporation, X340, XSP Board V1.4 X340, XSP Board V1.4 X0, XSP
Board V1.4 X340, XSP Board V1.4 User Manual, 9/21/2001.

79

