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PRIMITIVE ELEMENTS IN FINITE FIELDS WITH ARBITRARY TRACE

Abstract

Arithmetic of finite fields is not only important for other branches of mathematics

but also widely used in applications such as coding and cryptography. A primitive

element of a finite field is of particular interest since it enables one to represent

all other elements of the field. Therefore an extensive research has been done on

primitive elements, especially those satisfying extra conditions.

We are interested in the existence of primitive elements in extensions of finite

fields with prescribed trace value. This existence problem can be settled by means

of two important theories. One is character sums and the other is the theory of

algebraic function fields. The aim of this thesis is to introduce some important

properties of these two topics and to show how they are used in answering the

existence problem mentioned above.

Keywords: Finite field, primitive element, trace, character sum, algebraic func-

tion field.
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SONLU CİSİMLERDE HERHANGİ TRACE DEǦERİNE SAHİP

İLKEL ELEMANLAR

Özet

Sonlu cisimlerin aritmetiǧi matematiǧin diǧer alanlarındaki önemi dışında kod-

lama ve şifreleme gibi uygulamalarda da sıkça kullanılır. Cismin tüm diǧer eleman-

larının gösterilişine imkan verdiǧi için sonlu cisimlerin ilkel elemanlarına özellikle

ilgi duyulmaktadır. Bu sebepten genelde ilkel elemanlar, özellikle de bazı şartları

saǧlayan ilkel elemanlar konularında kapsamlı araştırmalar yapılmaktadır.

Biz, sonlu cisimlerin genişlemelerinde herhangi bir trace deǧerine sahip ilkel

elemanların varlıǧı problemiyle ilgileneceǧiz. Bu varlık problemi iki önemli ku-

ram yoluyla çözülebilir. Bunlardan birincisi karakter toplamları diǧeri ise cebirsel

fonksiyon cisimleridir. Bu tezin amacı sözü geçen iki önemli kuramın bazı temel

özelliklerini açıklamak ve yukarda tanımlanan varlık probleminin cevaplanmasında

nasıl kullanıldıklarını göstermektir.

Anahtar kelimeler: Sonlu cisim, ilkel eleman, trace, karakter toplamı, cebirsel

fonksiyon cismi.
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CHAPTER 1

INTRODUCTION

Arithmetic of finite fields is not only important for other branches of mathematics

but also widely used in applications such as coding and cryptography. A primitive

element of a finite field is of particular interest since it enables one to represent

all other elements of the field, i.e. it generates the multiplicative group of the

finite field. Therefore an extensive research has been done on primitive elements,

especially those satisfying extra conditions.

Let Fq be the finite field with q elements and Fqn denote the degree n extension

of Fq. The primitive normal basis theorem, the complete proof of which was given

by Lenstra-Schoof ( [11]), states that for any n ≥ 2, there exists a primitive element

w in Fqn such that {w,wq, . . . , wqn−1} forms an Fq-basis for the n dimensional Fq-

vector space Fqn . If q = 2, then w+w2 + · · ·+w2n−1
is simply the trace of w relative

to extension F2n/F2. Hence, the value of this sum is either 0 or 1, two elements of F2.

If zero, then one gets a contradiction to F2-linear independence of the basis elements

w,w2, . . . , w2n−1
. Hence we can conclude that there exists a primitive element in F2n

whose trace relative to F2n/F2 is one.

Since the proof of the primitive normal basis theorem is rather complicated,

MacWilliams-Sloane ( [13], Research Problem 4.1) asked for a simpler and more

direct proof of the fact that there exists primitive elements in extensions of F2 with

trace one. This was accomplished by Moreno ( [15]). From this point on the problem

was generalized to extensions of arbitrary finite fields Fq and any trace value t in
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Fq, including zero trace. Jungnickel-Vanstone ( [10]) proved this general version of

the problem for nonzero trace values with certain exceptions all of which arise in

quadratic extensions. The complete answer was given by Cohen in a series of papers

( [1], [2], [3]).

At this point one could think that the above existence problem was no longer

of interest since it was settled completely. The common feature of all the works

mentioned above is that they use character sums. Using the theory of algebraic

function fields, Özbudak ( [16]) showed that a more general result for the nonzero

trace case can be found. This thesis focuses on the works of Cohen, inparticular [3],

and Özbudak.

In this chapter we introduce some of the basic concepts in finite fields, char-

acter sums and function fields, which will be used in the subsequent chapters and

which also make the above discussion meaningful. For the proofs of results and a

complete introduction to subjects above, we refer the reader to excellent books of

Lidl-Niederreiter [12], Stichtenoth [17] and Jungnickel [9].

1.1. Primitive Elements and the Trace Map in Finite Fields

For a finite field Fq, we denote by F∗q the multiplicative group of nonzero elements

in Fq . It is known that F∗q is a cyclic group with q − 1 elements.

A generator of the cyclic group F∗q is called a primitive element of Fq . Since F∗q
is a cyclic group of order q − 1, Fq clearly has ϕ(q − 1) primitive elements, where

ϕ is the Euler phi function that counts the numbers between 1 and q − 1 which are

relatively prime to q − 1.

Let Fqm be the finite field with qm elements which can be viewed as a degree m

field extension of Fq. Note that a primitive element α of Fqm is a defining element

for the field extension Fqm/Fq, i.e. Fqm = Fq(α).

2



Definition 1.1.1 A polynomial f(x) ∈ Fq[x] of degree m ≥ 1 is called a primitive

polynomial over Fq if it is the minimal polynomial over Fq of a primitive element of

Fqm .

For any finite Galois extension F/E, there is an important mapping called the

trace map from F to E. It is denoted by TrF/E and defined as

TrF/E(x) =
∑

σ∈Gal(F/E)

σ(x),∀x ∈ F.

The trace map can be defined for any finite field extension F/E by slightly changing

the above description. Since an extension of finite fields Fqn/Fq is a cyclic (Galois)

extension of degree n, where the Galois group Gal(Fqn/Fq) is generated by the

Frobenious automorphism σ(x) = xq, the description of the trace map for finite

fields can be given as follows:

Definition 1.1.2 For an extension Fqn/Fq, trace map is a mapping from Fqn to Fq
defined by

TrFqn/Fq(x) =
n−1∑
k=0

xq
k

,∀x ∈ Fqn . (1.1)

We list some properties of the trace in the following theorem. When there is no

ambiguity, we ignore the related extension and just write Tr for trace.

Theorem 1.1.1 The trace function TrFqn/Fq is an Fq-linear mapping from Fqn onto

Fq with the following properties:

(a) Tr(uq) = Tr(u) for all u ∈ Fqn;

(b) Tr(u) = nu for all u ∈ Fq;

(c) If α ∈ Fqn with the minimal polynomial fα(t) = tm+am−1t
m−1 + . . .+a1t+a0 ∈

Fq[t] over Fq, then TrFqn/Fq(α) = − n
m
am−1;

(d)(Transitivity of trace) Let Fqm be a finite extension of Fqn. Then

TrFqm/Fq(α) = TrFqn/Fq(TrFqm/Fqn (α)) for all α ∈ Fqm;

(e)(Additive Hilbert’s Theorem 90) TrFqn/Fq(b) = 0 for b ∈ Fqn if and only if b =

aq − a for some a ∈ Fqn.
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1.2. Character Sums

Let G be a multiplicatively written finite abelian group with identity element

1G. A character χ of G is a homomorphism from G into the multiplicative group

U of complex numbers of absolute value 1. In other words χ is a mapping from

G to U satisfying χ(g1g2) = χ(g1)χ(g2) for any g1, g2 ∈ G. Note that χ(1G) = 1 .

Since (χ(g))|G| = χ(g|G|) = χ(1G) = 1 for every g ∈ G, χ(g) is a complex |G|th

root of unity. Among the characters of G, there is the trivial character χ0 which

is defined by χ0(g) = 1 for all g ∈ G. All other characters of G are nontrivial .

With each character χ of G there is an associated conjugate character χ̄ defined by

χ̄(g) = χ(g) , where χ(g) denotes the complex conjugate of χ(g) ∈ U . Note that

for an element in U , the complex conjugate is the multiplicative inverse. Hence,

χ̄(g) =χ(g) = χ(g)−1 = χ(g−1).

For finitely many characters χ1, . . . , χn of G, we can define the product character

χ1...χn by (χ1...χn)(g) = χ1(g)...χn(g) for all g ∈ G. We denote the set of all

characters of G by Ĝ. Clearly Ĝ is an abelian group under this multiplication of

characters. Since the values of characters of G are complex |G|th roots of unity, Ĝ

is a finite abelian group. In fact, Ĝ is isomorphic to G and hence | Ĝ |=| G |.

Example 1.2.1 Let G be a finite cyclic group of order n, and let g be a generator

of G. All characters of G are defined by χj(g
k) = e2πijk/n, k = 0, 1, . . . , n − 1 for a

fixed integer j, 0 ≤ j ≤ n− 1. Ĝ consists exactly of the characters χ0, χ1, . . . , χn−1.

In the following theorem, we list some basic properties of characters which will

be used later.

Theorem 1.2.2 Let G be a finite abelian group. For all g, h ∈ G and all characters

χ, ψ of G, we have the following properties:
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(i)
∑

g∈G χ(g) = 0 if χ 6= χ0.

(ii)
∑

χ∈Ĝ χ(g) = 0 for 1G 6= g ∈ G.

(iii) ∑
χ∈Ĝ

χ(g)χ−1(h) =

 | G | if g = h

0 otherwise

(iv) ∑
g∈G

ψ(g)χ−1(g) =

 | G | if χ = ψ

0 otherwise

Last two properties are called orthogonality relations for characters.

In a finite field Fq there are two important finite abelian groups, i.e. the additive

group and the multiplicative group of the field. The characters associated to these

two group structures are different. We use the term, additive character for the

characters of the additive group of Fq and the term multiplicative character for

the characters of the multiplicative group F∗q . Let p be the characteristic of Fq
and let Tr denote the trace map from Fq to Fp. Then the function χ1 defined by

χ1(c) = e2πiTr(c)/p for all c ∈ Fq is called the canonical additive character of Fq.

All additive characters of Fq can be given by χb(c) = χ1(bc) for all c ∈ Fq and for

some b ∈ Fq. Since the multiplicative group F∗q is a cyclic group of order q − 1,

multiplicative characters can be easily determined using Example 1.2.1. Let g be a

generator of F∗q. For each j = 0, 1, . . . , q − 2, the function ψj with

ψj(g
k) = e2πijk/(q−1) for k = 0, 1, . . . , q − 2

defines a multiplicative character of Fq. Every multiplicative character of Fq is in

this form. Since F̂∗q ' F∗q, F̂∗q is a cyclic group of order q − 1.

If λ is a multiplicative character of Fq, then λ is defined for all nonzero elements

of Fq . But, for convenience, we can extend the definition of λ by setting λ(0) = 1 if

λ is the trivial character and λ(0) = 0 if λ is a nontrivial character. Then we have

∑
c∈Fq

λ(c) =

 q if λ is trivial

0 if λ is nontrivial
,
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which justifies the above conventions for λ(0) values.

Clearly, the restriction of a character to a subgroup H of G is a character of H.

It is often useful to consider the subgroup H⊥ of all characters of G which restrict

to the trivial character of H, i.e.

H⊥ := {χ ∈ Ĝ : χ(h) = 1 for all h ∈ H}. (1.2)

Similarly, given a subgroup S of Ĝ, we also define an associated subgroup S⊥ of G:

S⊥ := {g ∈ G : χ(g) = 1 for all χ ∈ S}. (1.3)

The final theorem of this section describes the structure of the character groups of

subgroups of G and Ĝ, respectively.

Theorem 1.2.3 (Duality Theorem) Let G be a finite abelian group. Then one

has the following for all subgroups H and S of G and Ĝ, respectively.

Ĥ ∼= Ĝ/H⊥ and H⊥ ∼= (̂G/H); (1.4)

Ŝ ∼= G/S⊥ and S⊥ ∼= (̂Ĝ/S). (1.5)

1.3. Algebraic Function Fields

Let K be an arbitrary field. An algebraic function field F/K of one variable

over K is an extension F/K such that F is a finite algebraic extension of K(x) for

some element x ∈ F which is transcendental over K. We will simply refer to F/K

as a function field. The set K̃ := {z ∈ F | z is algebraic over K} is a subfield of F ,

since sums, products and inverses of algebraic elements are also algebraic. We have

K ⊆ K̃ ⊂ F . K̃ is called the field of constants of F/K. The extension K̃/K is a

finite extension and we call K the full constant field of F if K̃ = K.
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Example 1.3.2 The simplest example of an algebraic function field is the rational

function field F = K(x), where x is a transcendental element over K. Any element

0 6= z ∈ K(x) has a unique representation

z = a
∏
i

pi(x)
ni , (1.6)

where 0 6= a ∈ K, pi(x) ∈ K[x] are monic, pairwise distinct irreducible polynomials

and ni ∈ Z for all i.

If K is assumed to be a perfect field, i.e. every algebraic extension is separable,

then an arbitrary function field F/K can be represented as F = K(x, y), where

K(x) is the rational function field and y is separable over K(x). Such a function

field F/K is said to be separably generated. Note that if K is a finite field or a field

of characteristics zero, every function field F/K is separably generated.

Definition 1.3.3 A valuation ring of the function field F/K is a ring O ⊆ F with

the following properties :

(i) K ( O ( F ,

(ii) for any z ∈ F , z ∈ O or z−1 ∈ O.

A valuation ring O of F/K is a principal ideal domain. In fact, O is also a local

ring, i.e. a ring with a unique maximal ideal. This unique maximal ideal is, clearly,

the set {z ∈ O, z 6∈ O∗} = O −O∗, where O∗ denotes the group of units of O.

Definition 1.3.4 A place P of the function field F/K is the maximal ideal of some

valuation ring O of F/K. Any element t ∈ P such that P = tO is called a prime

element for P .

We denote the set of places of a function field F/K by PF . This set is known

to be an infinite set for any function field. Furthermore, a valuation ring O and a

place P of F/K uniquely determine each other with the following relation:

for 0 6= x ∈ F , x ∈ P ⇐⇒ x−1 6∈ O.

7



Therefore, the valuation ring associated with the place P ∈ PF is denoted by OP .

Another notion which is in one to one correspondence with valuation rings, and

hence with places, of a function field is the so-called discrete valuation.

Definition 1.3.5 A discrete valuation of F/K is a function v : F −→ Z ∪ {∞}

with the following properties :

(i) v(x) = ∞⇐⇒ x = 0.

(ii) v(xy) = v(x) + v(y) for any x, y ∈ F .

(iii) (Triangle inequality) v(x+ y) ≥ min{v(x), v(y)} for any x, y ∈ F .

(iv) There exists an element z ∈ F with v(z) = 1.

(v) v(a) = 0 for any 0 6= a ∈ K.

The triangle inequality is an equality in some cases.

Lemma 1.3.4 (Strict Triangle Inequality) Let v be a discrete valuation of F/K

and x, y ∈ F with v(x) 6= v(y). Then

v(x+ y) = min{v(x), v(y)}. (1.7)

Now we describe how vP is defined for a given valuation ring OP or a place

P ∈ PF . If t is a prime element for P , then every 0 6= z ∈ F has a unique

representation z = tnu for some u ∈ O∗
P and integer n. We define vP (z) = n. This

function is a discrete valuation associated to the given place P ∈ PF . Conversely,

let v be a discrete valuation of F/K. The set {z ∈ F |v(z) > 0} determines a place

P of F/K. Corresponding valuation ring OP is {z ∈ F | v(z) ≥ 0}.

Example 1.3.3 If F/K is a function field, where K̃ = K, then note that any

0 6= k ∈ K is contained in O∗
P for any P ∈ PF . Therefore, k = t0k is the unique

representation mentioned above. Hence, vP (k) = 0, for any P ∈ PF and any

k ∈ K − {0}.

For a valuation ring OP , the quotient ring OP /P is a field, since P is maximal

in OP . This field is denoted by FP and it is called the residue class field of P . For

an element z ∈ OP , we denote the coset z + P ∈ OP /P by z(P ). For z ∈ F −OP ,

8



we set z(P ) = ∞. Hence, we have a map from F to FP ∪ {∞} via the assignment

z 7−→ z(P ) for any z ∈ F . Under this map, K ⊂ OP is mapped injectively into FP ,

i.e. there exists an isomorphic copy of K in FP . Therefore, FP can be viewed as a

K-vector space. In fact, FP is a finite dimensional vector space over K.

Definition 1.3.6 For a place P of F/K, the degree of P is defined by

degP = dimK FP .

Definition 1.3.7 Let 0 6= z ∈ F and P ∈ PF . We say that P is a zero of z of order

m if vP (z) = m > 0 and P is a pole of z of order m if vP (z) = −m < 0.

For a nonzero element x ∈ F , there are finitely many zeros and poles. Note that

there are, in fact, no zeros or poles for an element 0 6= k ∈ K, by Example 1.3.3. We

try to explain the meanings of these fundamental concepts for the simplest function

field, that is the rational function field.

Example 1.3.4 Let F = K(x) be the rational function field over K. K is clearly

the full constant field of K(x)/K since every element in K(x)−K is transcendental

over K. For any monic, irreducible polynomial p(x) ∈ K[x], there is an affine place

Pp(x) of K(x) defined by

Pp(x) =

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], p(x) | f(x), p(x) - g(x)
}
. (1.8)

Its corresponding valuation ring is given by

Op(x) :=

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], p(x) - g(x)
}

(1.9)

We can describe the corresponding discrete valuation vP for P = Pp(x) ∈ PK(x) as

follows: Any z ∈ K(x) − {0} can be uniquely written as z = p(x)n(f(x)/g(x))

with n ∈ Z and f(x), g(x) ∈ K[x] both of which are not divisible by p(x). Then

vP (z) = n. The residue class fieldK(x)P = OP/P of P is isomorphic toK[x]/(p(x)).

Therefore, degP = deg(p(x)). If p(x) is linear, i.e. p(x) = x − α for some α ∈ K,

we denote its affine place by Pα = Px−α ∈ PK(x). In this case the degree of P = Pα

9



is one. Another place of the rational function field K(x) is the infinite place which

is

P∞ =

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) < deg(g(x))

}
. (1.10)

Valuation ring O∞ of the infinite place P∞ can be given by

O∞ :=

{
f(x)

g(x)

∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) ≤ deg(g(x))

}
. (1.11)

The corresponding discrete valuation v∞ for the infinite place is given by

v∞(f(x)/g(x)) = deg(g(x)) − deg(f(x)), where f(x), g(x) ∈ K[x]. The element

t = 1/x is a prime element for P∞ and degree of P∞ is one. All places of the

rational function field K(x)/K are only the infinite place P∞ and the affine places

Pp(x) for irreducible polynomials p(x) ∈ K[x]. Therefore, the set of degree one places

of K(x)/K is in one to one correspondence with K
⋃
{∞}.

From here on, F/K will always denote an algebraic function field of one variable

such that K is the full constant field of F/K, unless otherwise specified. We will

further assume that K is a perfect field in our consideration. For our interests later,

K will be a finite field which is perfect.

Definition 1.3.8 The (additively written) free abelian group which is generated

by the places of F/K is denoted by DF and it is called divisor group of F/K. The

elements of DF are called divisors of F/K. In other words, a divisor is a formal

sum

D =
∑
P∈PF

npP, (1.12)

where nP ∈ Z and nP = 0 for almost all P ∈ PF .

For Q ∈ PF and D =
∑

P∈PF
npP , we define vQ(D) = nQ. Note that vQ(D) = 0

for almost all Q ∈ PF , by definition of a divisor. This enables us to define a partial

order on the divisor group DF via the relation D1 ≤ D2 ⇔ vP (D1) ≤ vP (D2) for

all P ∈ PF . We call D ∈ DF a positive divisor if D ≥ 0. We extend the notion

of degree of a place to the divisor group by setting degD = deg(
∑

P∈PF
npP ) =∑

P∈PF
np degP =

∑
P∈PF

vP (D) degP . Note that degD is an integer.
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We have mentioned that a nonzero element x ∈ F has finitely many zeros and

poles. Denote by Z (respectively N) the set of zeros (poles) of x in PF . Then we

define the zero divisor of x by

(x)0 :=
∑
P∈Z

vP (x)P, (1.13)

and the pole divisor of x by

(x)∞ :=
∑
P∈N

−vP (x)P. (1.14)

Note that both (x)0 and (x)∞ are positive divisors. Finally, we define the principal

divisor of x ∈ F by

(x) = (x)0 − (x)∞. (1.15)

An important fact is that deg(x)0 = deg(x)∞ = [F : K(x)] < ∞, if x ∈ F − K.

This means that any nonconstant function has as many poles as zeros, counted with

multiplicities. For a nonzero constant function k ∈ K, (k)0 = (k)∞ = (k) = 0 by

Example 1.3.3. We now associate an important space to a divisor of F/K.

Definition 1.3.9 For a divisor A ∈ DF we set

L(A) := {x ∈ F
∣∣∣ (x) ≥ −A} ∪ {0}. (1.16)

L(A) is a finite dimensional K-vector space for any A ∈ DF . It is called the

Riemann-Roch space of A and we define the dimension of a divisor to be dimA :=

dimK L(A). Computing the dimension of a divisor is a challenging problems in

general. The main tool for this is the Riemann-Roch Theorem ( [17], Theorem

I.5.15). Now we are ready to give the definition of an important invariant of a

function field.

Definition 1.3.10 The genus of F/K is defined by

g(F ) = max{degA− dimA+ 1| A ∈ DF}. (1.17)

The genus of the rational function field is zero. In general, genus is a nonnegative

integer.

11



Now we define algebraic extensions of function fields. We call a function field

F ′/K ′ an algebraic extension of F/K if F ′ ⊇ F is an algebraic field extension with

K ′ ⊇ K. If [F ′ : F ] < ∞, this algebraic extension is called a finite extension. For

any finite extension, we have K ′/K is algebraic and [K ′ : K] <∞. Let P ∈ PF and

P ′ ∈ PF ′ . If P ⊆ P ′, then a place P ′ ∈ PF ′ is said to lie over P ∈ PF . We also say

P ′ is an extension of P or P lies under P ′ and we denote this relation by P ′ | P .

Theorem 1.3.5 Let F ′/K ′ be an algebraic extension of F/K. Let P (respectively

P ′) be a place of F/K (respectively F ′/K ′) and let OP ⊆ F (respectively OP ′ ⊆ F ′)

be the corresponding valuation rings. Suppose that vP , vP ′ are corresponding discrete

valuations. Then the following are equivalent:

(a) P ′ | P .

(b) OP ⊆ OP ′.

(c) There exists an integer e ≥ 1 such that vP ′(x) = e.vP (x) for all x ∈ F .

If P ′ | P , we have P = P ′ ∩ F and OP = OP ′ ∩ F . An important fact is that any

place P ∈ PF has finitely many places in PF ′ over it.

Definition 1.3.11 Let F ′/K ′ be an algebraic extension of F/K, and let P ′ ∈ P′F
be a place of F ′/K ′ lying over P ∈ PF .

(i) The integer e(P ′|P ) := e with vP ′(x) = e.vP (x) for any x ∈ F is called the

ramification index of P ′ over P .

(ii) f(P ′|P ) := [F ′
P ′ : FP ] is called the relative degree of P ′ over P .

The ramification index e(P ′|P ) is an integer which is greater than or equal to 1.

We say that P ′|P is unramified if e(P ′|P ) = 1. Otherwise, i.e. e(P ′|P ) > 1, we

say P ′|P is ramified. We say that P is ramified (respectively, unramified ) in F ′/F

if there is at least one P ′ ∈ PF over P such that P ′|P is ramified (respectively, if

P ′|P is unramified for all P ′|P ). P is totally ramified in F ′/F if there is only one

extension P ′ ∈ PF ′ of P and the ramification index is e(P ′|P ) = [F ′ : F ].

The following important fact is sometimes called the fundamental equality.

Theorem 1.3.6 Let F ′/K ′ be a finite extension of F/K, P a place of F/K and
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P1, . . . , Pm all the places of F ′/K ′ lying over P . Let ei = e(Pi | P ) denote the

ramification index and fi = f(Pi | P ) the relative degree of Pi over P for all i =

1, . . . ,m. Then
m∑
i=1

eifi = [F ′ : F ]. (1.18)

The following theorem is useful in determining extensions of places in function

field extensions.

Theorem 1.3.7 (Kummer’s Theorem) Let ϕ(T ) = T n + fn−1(x)T
n−1 + . . . +

f0(x) ∈ K(x)[T ] be an irreducible polynomial over the rational function field K(x).

We consider the function field K(x, y)/K where y satisfies the equation ϕ(y) = 0,

and an element α ∈ K such that fj(α) 6= ∞ for any j, 0 ≤ j ≤ n−1. Let Pα ∈ PK(x)

be the zero of x−α in K(x). Assume that ϕα(T ) := T n+fn−1(α)T n−1+. . .+f0(α) ∈

K[T ] can be decomposed in K[T ] as ϕα(T ) =
∏r

i=1 ψi(T ) with irreducible, monic,

pairwise distinct polynomials ψi(T ) ∈ K[T ]. Then we have :

(a) For any i = 1, . . . , r, there is a uniquely determined place Pi ∈ PK(x,y) such

that x − α ∈ Pi and ψi(y) ∈ Pi. The element x − α is a prime element of Pi (i.e.

e(Pi|Pα) = 1 ), and the residue class field of Pi is isomorphic to K[T ]/(ψi(T )).

Hence fi(Pi|Pα) = degψi(T ).

(b) If degψi(T ) = 1 for at least one i ∈ {1, . . . , r}, then K is the full constant field

of K(x, y).

(c) If ϕα(T ) has n = degϕα(T ) distinct roots in K, then there is, for any β with

ϕα(β) = 0, a unique place Pα,β ∈ PK(x,y) such that x − α ∈ Pα,β and y − β ∈ Pα,β.

Pα,β is a place of K(x, y) of degree 1.

We finish the introduction of algebraic function fields with an important theorem.

It provides a bound (upper and lower) for the number of degree one (rational) places

of a function field over a finite field.

Theorem 1.3.8 (Hasse-Weil Bound) Let F/Fq be a function field with full con-

stant field Fq of genus g. The number N of places of F/Fq of degree one satisfies

|N − (q + 1)| ≤ 2gq
1
2 .
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CHAPTER 2

PRIMITIVE ELEMENTS WITH ARBITRARY TRACE

USING CHARACTER SUMS

Let Fqn be a degree n extension of the finite field Fq for an arbitrary integer

n ≥ 2. In this chapter, we prove the existence of primitive elements w of Fqn with

prescribed trace t in Fq. The result is due to Cohen ( [3]). If f(x) ∈ Fq[x] denotes

the minimal polynomial of w over Fq, i.e. a primitive polynomial, then, as noted in

Section 1.1, this is equivalent to proving that the coefficient of xn−1 in f(x) is −t,

where t is the prescribed element in Fq.

The above existence result is valid for all q, n pairs and all t ∈ Fq with two

exceptions. For n = 2, TrFqn/Fq(w) = 0 is impossible for any q. If so, then

TrFqn/Fq(w) = w + wq = 0 implies that wq−1 = −1 which gives w2q−2 = 1. Since w

is primitive in Fq2 , its order is q2 − 1. But 2q − 2 ≤ q2 − 1 for any prime or prime

power q. So, there is no primitive element with zero trace in quadratic extensions

of finite fields. The second exception is the case n = 3, q = 4. There are twelve

primitive polynomials of degree 3 over F4 and none of them have zero coefficient for

the x2 term (see [12], Ch. 10).

2.1. Strategy
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The following is what we want to prove in this chapter.

Theorem 2.1.1 Let n ≥ 2 and t ∈ Fq be an arbitrary member with t 6= 0 if n = 2

or if n = 3, q = 4. Then there exists a primitive element in Fqn with trace t.

The proof of Theorem 2.1.1 is easy after a simple lemma and another theorem.

We denote the trace map TrFqn/Fq simply as Tr.

Lemma 2.1.2 There exists a basis {w1, . . . , wn} of Fqn over Fq with

Tr(wi) = 0, i = 1, . . . , n− 1

Tr(wn) = 1 .

Proof : Since Tr is onto mapping, as noted in Section 1.1, there exists ξ ∈ Fqn

with Tr(ξ) 6= 0. Let wn = ξ
Tr(ξ)

. Note that Tr(wn) = 1
Tr(ξ)

Tr(ξ) = 1, since

Tr(ξ) ∈ Fq and Tr is Fq-linear. Now let {w′
1, . . . , w

′
n−1, wn} be a basis of Fqn/Fq

extending {wn}. Let wi = w′
i − Tr(w′

i)wn for all i = 1, . . . , n − 1. Then Tr(wi) =

Tr(w′
i)− Tr(w′

i)Tr(wn) = 0 for all i.

2

Theorem 2.1.3 Let n and t be as in Theorem 2.1.1 and let {w1, . . . , wn} be any

basis of Fqn over Fq. Then there exists elements a1, . . . , an−1 in Fq such that a1w1 +

. . .+ an−1wn−1 + twn is a primitive element of Fqn.

Remark 2.1.1 The geometric interpretation of the above theorem sometimes is

very useful. Note that Fqn can be regarded as an n-dimensional affine space over

Fq, n ≥ 2. Theorem 2.1.3 implies that, with the exception of hyperplanes through

the origin when n = 2 or when n = 3 and q = 4, every hyperplane contains a point

corresponding to a primitive element of Fqn .

Assuming the validity of Theorem 2.1.3, we can now prove the main result easily.

Proof of Theorem 2.1.1 : Let {w1, . . . , wn} be the basis constructed in Lemma

2.1.2. From Theorem 2.1.3 let w be a primitive element of the form a1w1 + . . . +
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an−1wn−1+twn. Then Tr(w) = Tr(a1w1+. . .+an−1wn−1+twn). Since a1, . . . , an−1, t ∈

Fq, we have Tr(w) = a1Tr(w1)+ . . .+an−1Tr(wn−1)+ tT r(wn). From Lemma 2.1.2,

Tr(wi) = 0, i = 1, . . . , n− 1 and Tr(wn) = 1. Therefore, Tr(w) = t.

2

2.2. Estimate for a Character Sum and Proof of Theorem 2.1.3

In this section t is a non-zero element of Fq while throughout {w1, . . . , wn} is a

basis of Fqn over Fq. As shorthand we write a for (a1, . . . , an−1) ∈ Fn−1
q etc., and

put w for (w1, . . . , wn−1) and a.w for the inner product a1w1 + . . .+ an−1wn−1.

Lemma 2.2.4 For all ξ in Fqn − Fq, there are qn−2 solutions (x,y) ∈ F2n−2
q of the

equation

(x.w + twn)/(y.w + twn) = ξ. (2.1)

Proof : Since {w1, . . . , wn} is a basis of Fqn over Fq, we can write ξwi =
∑n

j=1 aijwj

for all i, where aij ∈ Fq for all i and j. Then (2.1) holds if and only if

ξ
( n∑
i=1

yiwi
)

=
n∑
i=1

( n∑
j=1

yjaij
)
wj =

n∑
j=1

xjwj, xn = yn = t,

⇐⇒ x1 − a11y1 − . . .− an−1yn−1 = an1t

...

xn−1 − a1n−1y1 − . . .− an−1n−1yn−1 = ann−1t

−a1ny1 − . . .− an−1nyn−1 = (ann − 1)t.

This linear system has n equations in 2n−2 unknowns. Hence the rank of the linear

system is 2n−2−n = n−2 unless ajn = 0, j = 1, . . . , n−1 which, however, implies

that ξ = ann. This is a contradiction since ξ 6∈ Fq. Therefore the linear system has

n− 2 free unknowns. Since these variables are in Fq, we have q choices for each one.

Then there are qn−2 solutions.
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2

Remark 2.2.2 If ξ ∈ Fq, then equation (2.1) can be written as

x1w1 + . . .+ xn−1wn−1 + twn = ξ(y1w1 + . . .+ yn−1wn−1 + twn).

Since {w1, . . . , wn} is a basis of Fqn over Fq and xi, yj, t ∈ Fq, for all i,j, we conclude

that xi = ξyi for i = 1, . . . , n − 1 and t = ξt. Since t 6= 0, we get ξ = 1 and hence

xi = yi for all i = 1, . . . , n − 1. Therefore, x = y and the value of (2.1) is 1. Since

x ∈ Fn−1
q , there are qn−1 such x.

Now let χ be a multiplicative character of Fqn and define

S(χ) =
∑

a∈Fn−1
q

χ(a.w + twn). (2.2)

Also let Q = (qn − 1)/(q − 1). We compute |S(χ)| next.

Lemma 2.2.5 Suppose χ is a non-trivial character of order d(> 1), where

d | qn − 1. Then

|S(χ)| =

 q(n−2)/2, if d | Q,

q(n−1)/2, otherwise.

Proof : Let χ̄ be the conjugate of χ. Then

|S(χ)|2 = S(χ)S(χ̄)

=
∑

a∈Fn−1
q

χ(a.w + twn)
∑

b∈Fn−1
q

χ((b.w + twn)
−1)

=
∑

a,b∈Fn−1
q

χ((a.w + twn)/(b.w + twn))

= qn−2
∑

ξ∈F∗qn−F∗q

χ(ξ) + qn−1χ(1),

where the last equality follows from Lemma 2.2.4 and Remark 2.2.2. From the fact

that
∑

ξ∈F∗qn
χ(ξ) = 0 ( cf. Theorem 1.2.2 ) for non-trivial characters and χ(1) = 1,

we have

|S(χ)|2 = −qn−2
∑
ξ∈F∗q

χ(ξ) + qn−1. (2.3)
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For trivial multiplicative character, we have
∑

ξ∈F∗q χ(ξ) = q − 1. Note that the

multiplicative characters χ of Fqn of order d dividing Q are precisely the characters

in (F∗q)⊥, since we have

(F∗q)⊥ ∼= ̂(F∗qn/F∗q) ∼= F∗qn/F∗q ∼= ZQ

by Theorem 1.2.3. Now the sum in (2.3) is zero if the restriction of χ to F∗q is

non-trivial, i.e. if d - Q and otherwise, the right side of (2.3) has the value

−qn−2(q−1)+qn−1 = qn−2. Taking square roots on both sides of (2.3), we are done.

2

Let e be a divisor of qn− 1 and define N(e) to be the number of elements of the

form ξ = a.w + twn (i.e. on a given hyperplane) for which ξ 6= 0 and the integer

defined by (qn−1)/(order of ξ) and e are relatively prime. When e = qn−1, clearly

order of ξ is qn− 1. Hence N(qn− 1) is simply the number of primitive elements on

the hyperplane. To calculate this number, we use the Vinogradov Formula in [10].

Recall that The Möbius function is the function on N defined by

µ(n) =


1, if n = 1,

(−1)k, if n is the product of k distinct primes,

0 if n is divisible by the square of a prime.

Lemma 2.2.6 (The Vinogradov Formula) Let U be a subset of Fqn such that

U = {a ∈ Fn−1
q | a.w + twn}. Let N(qn − 1) be the number of primitive elements

Fqn contained in U . Then one has

qn − 1

ϕ(qn − 1)
N(qn − 1) =

∑
d|(qn−1)

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x), (2.4)

where ϕ and µ are the functions of Euler and Möbius and ψd runs over all multi-

plicative characters of order exactly d.

Proof : Let x ∈ Fqn , and write x = wk for some fixed primitive element w of Fqn .

Since both the Möbius and the Euler function are multiplicative functions, we have∑
d|(qn−1)

µ(d)

ϕ(d)

∑
ψd

ψd(x) =
∏

p|qn−1

(
1 +

µ(p)

ϕ(p)

∑
ψp

ψp(x)
)
,
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where p runs over the prime divisors of qn − 1.

Note that µ(p) = −1 and ϕ(p) = p − 1, which follow directly from definition.

Since ψp(w)p = 1 and w is primitive in Fqn , then ξp = ψp(w) is a primitive pth root

of unity in multiplicative group of complex numbers. Each ψp is determined by the

image of w. Hence, number of characters of order p are equal to primitive pth roots of

unity in multiplicative group of complex numbers. Therefore,
∑

ψp
ψp(x) =

∑
ξp
ξkp .

Hence, ∏
p|qn−1

(
1 +

µ(p)

ϕ(p)

∑
ψp

ψp(x)
)

=
∏

p|qn−1

(
1− 1

p− 1

∑
ξp

ξkp

)
,

where ξp runs over the primitive pth roots of unity in multiplicative group of complex

numbers.

Note that there are ϕ(p) = p− 1 primitive pth roots of unity. Since ξpp = 1, then

ξkp = 1 for p | k. Hence,
∑

ξp
ξkp = p−1 if p | k. Also note that ξkp is again a primitive

pth root of unity for p - k. Therefore,
∑

ξp
ξkp is equal to sum of all different p − 1

powers of ξp except for 1. This is equal to −1. Hence,

∑
ξp

ξkp =

 p− 1, if p | k,

−1, p - k.

Hence,

∏
p|qn−1

(
1− 1

p− 1

∑
ξp

ξkp

)
=

 0, if some p divides k,∏
p|qn−1

(
1 + 1

p−1

)
, if (qn − 1, k) = 1 .

By multiplicativity of ϕ again, we have∏
p|qn−1

(
1 +

1

p− 1

)
=

∏
p|qn−1

p

ϕ(p)
=

qn − 1

ϕ(qn − 1)
.

Thus the assertion follows by summing the equation just obtained over all x ∈ U .

2

Remark 2.2.3 In fact, Vinogradov Formula holds for more general subsets of Fqn .

We just state the version which is sufficient for our purpose.
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We set N(q, n) = qn−1
ϕ(qn−1)

N(qn − 1) and W (e) = 2w(e), where w(e) denotes the

number of distinct primes dividing e.

Lemma 2.2.7 If

qn−1 − (W (qn − 1)−W (Q))q(n−1)/2 − (W (Q)− 1)q(n−2)/2 > 0, (2.5)

then N(q, n) is positive, i.e. N(qn−1) > 0 and hence U contains a primitive element

of Fqn.

Proof : Assume that U does not contain a primitive element of Fqn . Then, from

Lemma 2.2.6, ∑
d|(qn−1)

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x) = 0 .

We split up the preceding sum as∑
d|(qn−1), d-Q

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x)+
∑

d|Q, d6=1

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x)+
∑
d=1

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x) = 0 .

Note that ϕ1 is the trivial character. Hence,
∑

x∈U ϕ1(x) =| U |= qn−1. Therefore,

we get ∑
d|(qn−1), d-Q

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x) +
∑

d|Q, d 6=1

µ(d)

ϕ(d)

∑
ψd

∑
x∈U

ψd(x) = −qn−1. (2.6)

Taking absolute values in ( 2.6) and using the triangle inequality yields∑
d|(qn−1), d-Q

| µ(d) |
ϕ(d)

∑
ψd

∑
x∈U

| ψd(x) | +
∑

d|Q, d 6=1

| µ(d) |
ϕ(d)

∑
ψd

∑
x∈U

| ψd(x) |≥ qn−1. (2.7)

Note that the multiplicative characters ψd of Fqn of order d dividing Q are precisely

the characters in (F∗q)⊥, since we have (F∗q)⊥ ∼= ̂(F∗qn/F∗q) ∼= F∗qn/F∗q ∼= ZQ, by The-

orem 1.2.3 in Section 1.2. Hence we can apply Lemma 2.2.5 to substitute for the

absolute values of the character sums appearing in (2.7). We also note that there

are exactly ϕ(d) multiplicative characters of order d. We obtain

q(n−1)/2
∑

d|(qn−1), d-Q

| µ(d) | + q(n−2)/2
∑

d|Q, d 6=1

| µ(d) | ≥ qn−1. (2.8)
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We now require the following auxiliary formula:∑
d|m

| µ(d) |= 2w(m). (2.9)

This result is an immediate consequence of the definition of the Möbius function,

since one can form exactly 2w(m) squarefree divisors of m from the w(m) distinct

prime divisors of m. Using (2.9), we obtain from (2.8) the inequality

(W (qn − 1)−W (Q))q(n−1)/2 + (W (Q)− 1)q(n−2)/2 ≥ qn−1,

contradicting the hypothesis in the statement. This proves the lemma.

2

Proof of Theorem 2.1.3 : There exists a primitive root of Fq2 of the form a1w1 +

tw2 for some a1 ∈ Fq by Theorem 1.1 of [1]. Hence Theorem 2.1.3 is true for n = 2.

For n ≥ 3 and t = 0, the result follows from Theorem 1 of [2]. This theorem

conclude that every cyclic (v, k, λ)-difference set contains a residue prime to v, i.e.

it has generator of the additive group of integers modulo v with two exceptions.

Namely, two (21, 5, 1)-difference sets do not contain a generator of the additive

group of integers modulo v. For q 6= 4 and n ≥ 3 every hyperplane in projective

n-space over Fq contains an element of order Q. This implies that every hyperplane

through the origin in affine n-space contains an element ξ whose index with respect

to any primitive element is prime to Q, so that (qn − 1)/(order of ξ) is prime to

Q. Hence, we can find a suitable element a ∈ Fq such that aξ is a primitive element

which gives the conclusion in Remark 2.1.1. Therefore we assume that n ≥ 3 and

t 6= 0.

Our mail tool is Lemma 2.2.7. We must check that (2.5) in Lemma 2.2.7 is

generally effective when n = 3. After that, verification of this equation is easier for

greater n. We therefore concentrate on this case.

Suppose that n = 3. Note first that if a prime p divides Q = q2 + q + 1 then,

either p = 3 (in which case q ≡ 1(mod3)) or p ≡ 1(mod6)(and - (q − 1)). Now we
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set r = w(q3 − 1)(≥ 1), s = w(Q)(≥ 1) and t = w(q − 1). We have

t =

 r − s if q 6≡ 1(mod3)

r − s+ 1 if q ≡ 1(mod3)
(2.10)

With this setting, (2.5) in Lemma 2.2.7 is true if

q > 2r − 2s + (2s − 1)q−
1
2 . (2.11)

Since r = s for q = 2, we can easily see that (2.11) holds when r = 1 or 2. Moreover,

if r = 3 or 4, then (2.11) is satisfied when q > 5 or q > 13, respectively. Further,

we gain (2.11) for all q ≤ 13 by direct verification except when q = 11 in which case

q3 − 1 = 1330 = 2.5.7.19, r = 4 and s = 2. This case is investigated separately at

the end.

Now we define integers A(m) and B(m) as the product of the first m primes and

the first m primes which are congruent to 1 modulo 6 for each positive integer m,

respectively. We have q > A(t) and

Q ≥

 B(s), if q 6≡ 1(mod3),

3B(s− 1), if q ≡ 1(mod3).
(2.12)

If

A(m) ≥ 2r − 2, (2.13)

we can conclude that (2.11) is satisfied for t ≥ m. Note that for s = 1 it is satisfied

since q is an integer.

If r = 5, then (2.13) holds with m = 3 and so we can assume t ≤ 2. By

(2.10),(2.12) we have s ≥ 3 , Q ≥ B(3) = 1729 and q > 41. Note that this is

stronger than (2.11).

If r = 6, then (2.13) holds with m = 4 and we can take t ≤ 3. Indeed if t = 3

and q 6≡ 1(mod3) then q ≥ 71 which implies (2.11). Otherwise we have s ≥ 4 from

(2.10) and hence we have Q ≥ 5187 by (2.12). Hence,it yields q > 71. The method

for the cases r = 7 and 8 is similar to that of r = 5 and 6, respectively. Note that

B(4) = 7.13.19.31 = 53599. Hence, we obtain q > 230 for r = 7 and q ≥ 771 and

q > 400 for r = 8.
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For r ≥ 9 we use the following facts which can be proved by induction for m ≥ 5,

namely,

A(m) ≥ 2m, B(m) > 6m(m+ 1)!/3 > 24m (m ≥ 5). (2.14)

Recall that [x] denotes the integral part of a real number x. Selecting m = [1
2
(r+1)],

we obtain from (2.14) that t < m and so s ≥ m. From (2.14), were (2.11) to be

false, we would have

24m ≥ 22r ≥ (q + 1)2 > Q > B(m) > 24m,

a contradiction. With the exception q = 11 noted above, this completes the proof

for n = 3.

For greater n, the verification is easier than that for small values of n. Let n = 4.

If q is odd, then 16 divides q4−1. Hence we are done. For example, if w(q4−1) = 4

then q4 − 1 ≥ 16.3.5.7 = 1680 which implies q
3
2 > 14 and this is enough. When

n = 5 it is sufficient to prove that q2 > W (q5− 1). It can be seen from the fact that

p ≡ 1(mod 10) for all p ( > 5) dividing Q. Therefore, we omit further details.

From the above for the completion of the proof of Theorem 2.1.3 the only lack

is the case which is q = 11 and n = 3. For this case, note that there are eleven

primitive polynomials of degree 3 over F11. These are

5 + 6x+ x3

4 + 6x+ x2 + x3

4 + 7x+ 2x2 + x3

9 + 4x+ 3x2 + x3

9 + 2x+ 4x2 + x3

5 + 5x+ 5x2 + x3

3 + 6x2 + x3

5 + 2x+ 7x2 + x3

9 + x+ 8x2 + x3

4 + 9x2 + x3

5 + 5x+ 10x2 + x3
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(See [10]). Looking at the coefficients of x2 in these polynomials, we realize that all

possible trace values are taken in this case. Hence, we are done.

2
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CHAPTER 3

“GENERALIZATION” VIA ALGEBRAIC FUNCTION FIELDS

Cohen’s result (cf. Theorem 2.1.1) guarantees the existence of a primitive ele-

ment in Fqn with prescribed trace t ∈ Fq with two exceptions. Namely, as seen in

Chapter 2, t cannot be zero if n = 2 or (n, q) = (3, 4). In this chapter, we will prove

a “generalization” of this result, which is due to Özbudak ( [16]). It is valid not

only for the trace map but for any additive polynomial, with some technical details

which will be explained. The reason why we call this a “generalization” is that it

only guarantees a nonzero prescribed trace. The technique used in Özbudak’s work

is the theory of algebraic function fields rather than character sums, which was the

main tool for Cohen’s work. In the first section we describe some properties of im-

portant class of function fields called Artin-Schreier extensions. The second section

contains the proof of Özbudak’s theorem.

3.1. Artin-Schreier Extensions

Let K be a field of char K = p > 0. A polynomial of the form

A(T ) = anT
pn

+ an−1T
pn−1

+ . . .+ a1T
p + a0T ∈ K[T ] (3.1)
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is called an additive (or linearized) polynomial over K. A(T ) is separable iff A(T )

and its derivative A′(T ) have no common factor of degree > 0. Since A′(T ) = a0,

then the polynomial (3.1) is separable iff a0 6= 0. An additive polynomial has the

following important property :

A(u+ v) = A(u) + A(v) (3.2)

for any u, v in some extension field of K. In particular, if A(T ) is an additive and

separable polynomial over K all of whose roots are in K, then these roots form a

subgroup of the additive group of K of order pn = degA(T ). This easily follows

from equation (3.2). The converse of this is also true, which gives a nice criteria for

additivity of separable polynomials.

Lemma 3.1.1 Let K be an algebraically closed field. Let P (x) ∈ K[x] be a separable

polynomial. Let

{w1, . . . , wm} ⊂ K

be the set of its roots. Then P (x) is additive if and only if {w1, . . . , wm} is an

additive subgroup in K.

Proof : What must be shown is the following: Let W = {w1, . . . , wm} be an additive

subgroup of K and let

P (x) := PW (x) :=
∏
i=1

m(x− wi) .

Then P (x) is additive.

Note that if w ∈ W , then P (x+ w) = P (x). Now let y ∈ K and put

H(x) = P (x+ y)− P (x)− P (y).

Clearly deg H(x) < deg P (x). On the other hand, it is now trivial to see that

H(w) = 0 for w ∈ W . As m =deg P >deg H, we conclude that H(x) ≡ 0.

Let y now be an arbitrary indeterminate and put

H1(y) = P (x+ y)− P (x)− P (y) ∈ K[x][y].
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We conclude that H1(α) = 0 for α ∈ K. As K is infinite, we see that H1(y) ≡ 0,

which completes the proof.

2

Before defining Artin-Schreier extensions, we need an important technical lemma.

Lemma 3.1.2 Let F/K be an algebraic function field of characteristic p > 0. For

an arbitrary element u ∈ F and an arbitrary place P ∈ PF , one of the two cases is

satisfied:

(a) There exists an element z ∈ F such that vP (u− (zp − z)) ≥ 0,

(b) For some z ∈ F , vP (u − (zp − z)) = −m < 0 with m 6≡ 0 (mod p). In this

case, the integer m is uniquely determined by u and P . Namely,

−m = max{vP (u− (wp − w)) | w ∈ F}. (3.3)

Proof : Let x1, x2 ∈ F−{0} with vP (x1) = vP (x2). Since vP (1/x2) = −vP (x2), then

vP (x1/x2) = min{vP (x1),−vP (x2)} ≤ 0 by Strict Triangle Inequality (cf. Lemma

1.3.4). Then x1/x2 6∈ P , i.e. the residue class (x1/x2)(P ) ∈ OP/P is not zero.

Since OP/P is perfect field of characteristic p > 0, then (x1/x2)(P ) = (y(P ))p for

some y ∈ OP − P . Then we have vP (y) = 0 and vP (x1/x2 − yp) > 0, which imply

vp(x1 − ypx2) > vP (x1).

Assume that vP (u − (zp1 − z1)) = −lp < 0 for some z1 ∈ F . We can choose

t ∈ F with vP (t) = −l. Then vP (u − (zp1 − z1)) = vP (tp) = −lp, again by Strict

Triangle Inequality. By the arguments in the first paragraph we can find y ∈ F with

vP (y) = 0. By setting z2 = z1 + yt, we get vP (u− (zp2 − z2)) > −lp.

Assume that vP (u − (zp − z)) < 0 for all z ∈ F . If there exists some l such

that vP (u − (zp − z)) = −lp < 0 for all z ∈ F , then we can find z2 ∈ F such that

vP (u − (zp2 − z2)) > −lp by arguments above. Continuing this way, we can find

zn such that vP (u − (zpn − zn)) ≥ 0 since lp is finite. Then this proves existence

of an element z ∈ F such that (a) holds. if there is no element z of F such that

vP (u− (zp − z)) ≥ 0, then we must have an element z such that vP (u− (zp − z)) =

−m < 0 with m 6≡ 0 (mod p). The only lack is the characterization of m. Now
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let vP (u − (zp − z)) = −m < 0 with m 6≡ 0 (mod p). Clearly pvP (w − z) 6= −m

for any w ∈ F . If pvP (w − z) > −m, then pvP ((w − z)p − (w − z)) > −m. From

Strict Triangle Inequality we get vP (u − (wp − w)) = −m. If pvP (w − z) < −m,

we obtain vP (u− (wp−w)) < −m using Strict Triangle Inequality. Hence, we have

vP (u − (wp − w)) ≤ −m. So we proved that characterization of m in (b). Hence,

we are done.

2

Definition 3.1.1 Let F/K be an algebraic function field of characteristic p > 0.

Suppose u ∈ F is an element with the property

u 6= wp − w, for all w ∈ F. (3.4)

Let F ′ = F (y), where yp − y = u. F ′/F is called an Artin-Schreier extension.

We list some important properties of Artin-Schreier extensions in the following

theorem.

Theorem 3.1.3 Let F ′ = F (y) with yp− y = u, where u ∈ F , be an Artin-Schreier

extension. For a place P ∈ PF , define

mP =

 m, if there exists z ∈ F such that vP (u− (zp − z)) = −m < 0 and p - m,

−1, if vP (u− (zp − z)) ≥ 0 for some z ∈ F .

(3.5)

Then

(i) F ′/F is a cyclic Galois extension of degree p.

(ii) P ∈ PF is unramified in F ′/F if and only if mP = −1.

(iii) P ∈ PF is totally ramified in F ′/F if and only if mP > 0.

(iv) If mQ > 0 for some Q ∈ PF , then K is the full constant field of F ′ and

g′ = pg +
(p− 1)

2

(
−2 +

∑
P∈PF

(mP + 1) degP
)
,

where g′ (respectively g) is the genus of F ′/K (respectively F/K).

Proof : See [17], Theorem 3.7.8.
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Remark 3.1.1 Note that the number mP in (3.5) is well - defined by Lemma 3.1.2.

Observe that the equation defining Artin-Schreier extension involves a specific

additive polynomial yp − y. A natural question is whether one can say something

about extensions defined by a general additive polynomial A(T ). The following

theorem generalizes Artin-Schreier extensions in this way. We will refer to the

extensions of the type described below also as Artin-Schreier extensions, which is

commonly done in the literature.

Theorem 3.1.4 Consider an algebraic function field F/K with full constant field

K of characteristic p > 0, and an additive separable polynomial A(T ) ∈ K[T ] of

degree pn which has all roots in K. Let u ∈ F . Suppose that for any P ∈ PF there

is an element z ∈ F such that

vP (u− A(z)) ≥ 0 (3.6)

or

vP (u− A(z)) = −m with m > 0 and m 6≡ 0 (mod p) (3.7)

Define mP := −1 in case (3.6) and mP := m in case (3.7). Consider the extension

field F ′ = F (y) of F where y satisfies the equation A(y) = u. If there exists at least

one place Q ∈ PF with mQ > 0 , the following holds:

1. F ′/F is a Galois extension of degree pn and K is the full constant field of F ′.

2. Any P ∈ PF with mP = −1 is unramified in F ′/F .

3. Any P ∈ PF with mP > 0 is totally ramified in F ′/F .

4. Let g′(respectively g) be the genus of F ′ (respectively F ). Then

g′ = png +
(pn − 1)

2

(
−2 +

∑
P∈PF

(mP + 1) degP
)
.

The proof of this theorem can be given by mimicing the arguments in the proof of

Theorem 3.1.3. Note the difference in the statements of Theorem 3.1.3 and Theorem

3.1.4, which is of fundamental importance. Namely, the numbersmP associated with
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places P ∈ PF are automatically well-defined for extensions defined by yp − y = u,

whereas we make an assumption that they are well-defined when a general additive

polynomial is used. So, one has to check this point in the latter case. In the

following theorem, we consider a class of Artin-Schreier extensions and determine

some properties, which will be used in next section.

Theorem 3.1.5 Let L = Fqr be a finite field in which the additive polynomial

A(T ) = a0T + a1T
q + . . . + anT

qn ∈ L[T ] with a0an 6= 0 splits. Let h(x) ∈ L[x]

be another polynomial of degree e, where gcd(e, q) = 1. Consider the extension

E = L(x, y) of the rational function field L(x) defined by equation

A(y) = h(x) .

We have:

(i) g(E) = (qn−1)(e−1)
2

, where g is the genus of E.

(ii) If P∞ ∈ PL(x) is the place at infinity and Pα denotes the zero of (x− α) ∈ L(x)

in PL(x) ( for all α ∈ L), then P∞ is totally ramified in E/L(x) with a unique degree

one extension. For Pα, one of the following holds:

• A(T ) = h(α) has qn distinct roots in L. In this case Pα has qn distinct

extensions in E, each of which has degree one.

• A(T ) = h(α) has no root in L. In this case all extensions of Pα in E have

degree greater than one.

Proof : Since a0an 6= 0, A(T ) is a separable, additive polynomial of degree qn whose

roots are in Fqr = L. Recall that the only places of L(x) are the place at infinity

P∞, the affine places Pq(x) associated to irreducible polynomials q(x) ∈ L[x]. We

want to use the conclusions of Theorem 3.1.4. However, one needs to check that the

assumptions in Theorem 3.1.4 are satisfied for any place of L(x) (cf. Remark 3.1.1).

For any affine place Pq(x) ∈ PL(x), let 0 = z ∈ L(x). Then vPq(x)
(h(x)− A(0)) =

vPq(x)
(h(x)) ≥ 0. Is it possible to find z ∈ L(x) such that vPq(x)

(h(x) − A(z)) =

−m < 0 and m 6≡ (mod p)? We have vPq(x)
(h(x) − A(z)) = vPq(x)

(h(x) − (a0z +
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a1z
q + . . . + anz

qn
)). For this to be negative, vPq(x)

(a0z + a1z
q + . . . + anz

qn
)

must be negative by Strict Triangle Inequality (cf. Lemma 1.3.4). Therefore,

vPq(x)
(z) < 0 must hold by Strict Triangle Inequality (cf. Lemma 1.3.4). Then

vPq(x)
(A(z)) = min{vPq(x)

(z), . . . , vPq(x)
(zq

n
)} = qnvPq(x)

(z) < 0. Now vPq(x)
(h(x) −

A(z)) = vPq(x)
(A(z)) = qnvPq(x)

(z) < 0 but qnvPq(x)
(z) ≡ 0 (mod p). Hence, for

any affine place of L(x), the assumptions in Theorem 3.1.4 are satisfied. Therefore,

mPq(x)
:= −1.

For P∞, let z = 0. Then vP∞(h(x) − A(0)) = vP∞(h(x)) = − deg(h(x)) = −e.

Since gcd(e, q) = 1, then vP∞(h(x)− A(0)) = −e 6≡ 0 (mod p). Then we ask if it is

possible to find z ∈ L(x) such that vP∞(h(x)− A(z)) ≥ 0. If vP∞(A(z)) > −e,

then vP∞(h(x)− A(z)) = vP∞(h(x)) = −e < 0. If vP∞(A(z)) < −e = vP∞(h(x)),

then vP∞(h(x) − A(z)) = vP∞(A(z)) < −e < 0. Finally, if vP∞(A(z)) = −e =

vP∞(h(x)), then vPq(x)
(z) < 0. But, as seen in the previous paragraph, this implies

vP∞(A(z)) = −e = qnvP∞(z). This is impossible since (e, q) = 1.

The final thing to check is if the existence z ∈ L(x) of

vP∞(h(x)− A(z)) = −ē < 0, ē 6≡ 0 (mod p) and ē 6= e ,

i.e. whether e is well-defined. However our analysis in the previous paragraph

shows that for any z ∈ L(x) and all possible values of vP∞(A(z)), vP∞(h(x)−A(z))

is either −e or less than −e but divisible by p. So, e is well-defined andmP∞ = e > 0.

Therefore, we can use conclusions of Theorem 3.1.4.

The first conclusion is that P∞ is the only place of L(x) that is ramified in

E/L(x). The ramification index is qn = [E : L(x)], since P∞ is totally ramified.

Hence, there exists a unique place Q∞ ∈ PE over P∞. Note that e(Q∞ | P∞) =

qn implies by Theorem 1.3.6, f(Q∞|P∞) = 1. Hence, deg(Q∞) = [EQ∞ : L] =

f(Q∞|P∞) degP∞
[L:L]

= 1.

(i) From Theorem 3.1.4, we have

g(E) = qng(L(x)) +
qn − 1

2

(
−2 +

∑
P∈PL(x)

(mP + 1) degP
)
.

g(L(x)) = 0, mP∞ = e and mP = −1 for any P∞ 6= P ∈ PL(x). Hence, g(E) =

(qn−1)
2

(−2 + (e+ 1)) = (qn−1)(e−1)
2

.
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(ii) Consider the equation A(T ) = h(α) for α ∈ L. If µ ∈ L is any root of A(T ) and

β is a root of A(T ) = h(α) , then A(β + µ) = A(β) +A(µ) = A(β) = h(α). Since L

contains all roots of A(T ) by assumption and A(T ) is separable, we conclude that

if A(T ) = h(α) has one root in L then it must have qn distinct roots.

If A(T ) = h(α) has qn distinct roots in L, then A(T ) − h(α) factors into qn

distinct linear polynomials over L. Then, by Kummer’s Theorem (cf. Theorem

1.3.7), there exists qn degree one extensions of Pα in PE. If A(T )− h(α) ∈ L[T ] has

no root in L, then the irreducible factors over L of this polynomial have degree > 1.

Hence, again by Kummer’s Theorem, Pα has no degree one extension in PE.

2

We finish this section with a useful technical lemma of Madden.

Lemma 3.1.6 Let l and d be two fixed natural numbers with l 6= 1. If M is large

enough, then there exists integers s and t such that :

1. gcd(s, t) = 1 and s,t are squarefree,

2. r is a prime number. r | (M − 1) if and only if r | (st),

3. ϕ(t)
t
> l−1

l
.[1 + (d.s− 1). M

1
2

M−1
+ 2

M−1
]

where ϕ(t) is the Euler phi function.

Proof : See Madden ( [14], page 511).

2

3.2. Additive Polynomials and Primitive Elements
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We start with fixing some notation for this section. Let p = char Fq and K̄

denote the algebraic closure of Fq. Let

A(T ) = a0T + a1T
q + . . .+ anT

qn ∈ Fqm [T ], a0an 6= 0 (3.8)

be an additive polynomial. Let FqmN be the smallest extension of Fqm in which A(T )

splits. For k ≥ 1, we define

Φk : FqmNk −→ FqmNk

α 7→ A(α)

and Bk(T ) :=
∏

β∈Im(Φk)(T − β) ∈ FqmNk [T ]. For every k ≥ 1, Φk is an additive

homomorphism since A(T ) is an additive polynomial for which A(α1+α2) = A(α1)+

A(α2) for all α1, α2 ∈ FqmNk . This implies that Im (Φk) is an additive subgroup of

FqmNk and, hence, of K̄. Since Im (Φk) is the set of roots of the separable polynomial

Bk(T ), and by the above observation that Im (Φk) is an additive subgroup of K̄,

we conclude that Bk(T ) is an additive polynomial (cf. Lemma 3.1.1). Note that

|Ker(Φk)| = qn since A(T ) is separable of degree qn which splits over FqmNk . Hence

|Im(Φk)| = |FqmNk/Ker(Φk)| = qmNk−n = deg(Bk(T )) .

Finally, define for all k ≥ 1

Ψk : FqmNk −→ FqmNk

α 7→ Bk(α)

The following is the result of Özbudak:

Theorem 3.2.7 With the notations as above, let f(T ) ∈ FqmN [T ] of degree d ≥ 1

with f(0) = 0 and gcd(d, q) = 1. If k is sufficiently large and 0 6= uk ∈ ImΨk, then

there exists a primitive root wk ∈ FqmNk such that Bk(f(wk)) = uk.

Proof : We use the notation introduced in the paragraph preceding the theorem.

Let Lk = FqmNk and αk denote a primitive element for Lk for all k ≥ 1. We consider

the function fields  Ek = Lk(x, y)

A(y) = f(αtkx
s)− vk
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where vk ∈ FqmNk such that Ψk(vk) = uk ∈ FqmNk and the numbers t, s are defined

for sufficiently large k, using Lemma 3.1.6, as follows:

l = qn, d = deg(f),M = qmNk for sufficiently large k

By Lemma 3.1.6, s and t are squarefree relatively prime integers such that a prime

number r divides M − 1 if and only if r | st. Note that deg(f(αtkx
s)) = ds. Since

p = char(Fq) - qmNk − 1 = M − 1, p - s. Therefore, (q, ds) = 1 and Ek/Lk is

an Artin-Schreier extension by Lemma 3.1.5. Hence we have g(Ek) = (qn−1)(ds−1)
2

,

which provides us with a lower bound on the number of degree one places Nk of

Ek/Lk via Hasse-Weil bound (cf. Theorem 1.3.8):

Nk ≥ qmNk + 1− (qn − 1)(ds− 1)q
mNk

2 . (3.9)

Let λk = {αtkβs : primitive in Lk; β ∈ Lk − {0}}. We will determine the

cardinality of the set λk. Any β ∈ Lk − {0} can be written as β = αak, where

a ∈ {1, 2, . . . , qmNk − 1}, since αk ∈ Lk is a primitive element. The element

αtkβ
s = αt+ask is primitive in Lk if and only if (t+as, |Lk−{0}|) = (t+as, qmNk−1) =

(t+ as,M − 1) = 1. Let us count the number of primes dividing t+ as and M − 1.

Let r be a prime dividing both numbers. Then r | st by Lemma 3.1.6. Since s

and t are relatively prime by construction, there are two possibilities: Either r | s

or r | t. If we assume r | s, then r | t as well since r | (t + as,M − 1). This is

impossible. Therefore, r must divide t. This implies, again using r | (t+ as,M − 1)

and (s, t) = 1, that r | a. These arguments lead to the following conclusion:

(t+ as,M − 1) = 1 ⇐⇒ (t, a) = 1

Therefore, we must count the integers a ∈ {1, 2, . . . , qmNk − 1} such (t, a) = 1 in

order to determine |λk|. The number t satisfies 1 ≤ t ≤ qmNk − 1 and, by Lemma

3.1.6 (ii), t | qmNk − 1. Divide the interval of a-values {1, 2, . . . , qmNk − 1} into

qmNk−1
t

subintervals of length t each. In the first subinterval {1, 2, . . . , t}, there

exists ϕ(t) a values with (t, a) = 1. The second subinterval consists of the numbers

{t+ 1, t+ 2, . . . , 2t}. A number a = t+ i in this subinterval is relatively prime to t
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if and only if (i, t) = 1. There are, again, ϕ(t) such i values. Continuing this way,

we conclude that there are ϕ(t) q
mNk−1
t

a values in {1, 2, . . . , qmNk − 1} such that

(a, t) = 1. Therefore

|λk| =
ϕ(t)(qmNk − 1)

t
.

At this point, observe that if there exists β ∈ Lk such that the corresponding

degree one place Pβ ∈ PLk(x) has a degree one extension in Ek with αtkβ
s ∈ λk,

then, by Kummer’s Theorem (cf. Theorem 1.3.7), we conclude that there exists

t0 ∈ Lk, A(t0) = f(αtkβ
s)− vk. Hence, Bk(A(t0)) = Bk(f(αtkβ

s))−Bk(vk), since Bk

is an additive polynomial. Note that Bk(A(t0)) = 0 and Ψk(vk) = Bk(vk) = uk by

definition of Bk, Ψk and vk. Therefore, we reach the result

there exists αtkβ
s : primitive element in FqmNk such that Bk(f(αtkβ

s)) = uk.

Motivated by the argument in the last paragraph, assume that there exists no

degree one place Pβ ∈ PLk(x) with a degree one extension in Ek such that αtkβ
s ∈ λk.

We want to reach a contradiction to finish the proof.

We know that A(T ) = h(0) − vk has no solution in Lk. Otherwise if t0 ∈ Lk

is a solution, then Bk(A(t0)) = Bk(h(0)) − Bk(vk). We have Bk(A(t0)) = 0 for

any t0 ∈ Lk. Since h(0) = 0, then Bk(vk) = 0 = uk. By assumption, uk is a

nonzero element of ImΨk. This is a contradiction. So A(T ) = h(0) − vk has no

solution in Lk. In order to write a lower bound for Nk we need Hasse-Weil bound.

However, to write an upper bound for Nk we will rather use the arguments above.

Let S = {β ∈ Lk : αtkβ
s ∈ λk}. Note that |S| ≥ |λk| since for distinct β1, β2 ∈ Lk

one might have αtkβ
s
1 = αtkβ

s
2. Hence, under the assumption made above, at most

qmNk − 1− |S| elements in Lk might have a corresponding degree one place in PL(x)

with a degree one extension in PEk
. By Lemma 3.1.5, each such a place has qn

distinct degree one places in PEk
. Knowing degree one places of Ek must lie over

degree one places of Lk, we get

Nk ≤ 1 + qn(qmNk − 1− |λk|) = 1 + qn
(
qmNk − 1− ϕ(t)(qmNk − 1)

t

)
,

where +1 in the above upper bound comes from the fact that the place at infinity

of Lk(x) is totally ramified (cf. Lemma 3.1.5). Combining lower and upper bounds
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for Nk yields

qmNk − (qn − 1)(ds− 1)q
mNk

2 ≤ qn
(
qmNk − 1− ϕ(t)(qmNk − 1)

t

)
.

This implies, after a simple manipulation, that

ϕ(t)

t
≤ 1− qmNk−n

qmNk − 1
+ (ds− 1)

(
1− 1

qn

)
q

mNk
2

qmNk − 1
.

Since 1
qn ≤ qmNk−n

qmNk−1
, 1− qmNk−1

qmNk−1
≤ qn−1

qn and we get

1− qmNk−n

qmNk − 1
<
qn − 1

qn

(
1 +

2

qmNk − 1

)
.

From the last two inequalities we get

ϕ(t)

t
<
qn − 1

qn

(
1 + (ds− 1)

q
mNk

2

qmNk − 1
+

2

qmNk − 1

)
.

The inequality above yields a contradiction to Lemma 3.1.6 (iii), where one replaces

l by qn and M by qmNk. Hence, we are done.

2

Remark 3.2.2 Let A(T ) = T q−T and f(T ) = T . Then A(T ) splits over Fq. Note

that Bk(T ) ∈ Fqk [T ] of degree qk−1. Bk(α) = 0 if and only if α = γq − γ for some

α ∈ Fqk by Hilbert’s Theorem 90 (cf. Theorem 1.1.1). Consider the polynomial

TrF
qk/Fq(T ) = T + T q + . . .+ T q

k−1
of degree qk−1. For a root α of Bk(T ), we have

TrF
qk/Fq(α) = (γq − γ) + (γq − γ)q + . . .+ (γq − γ)q

k−1

= γq − γ + γq
2 − γq + . . .+ γq

k − γq
k−1

= γq
k − γ = 0

where the last step follows from the fact that γ ∈ Fqk . Hence, roots of Bk(T )

and TrF
qk/Fq(T ) are the same. Since these are polynomials over the same field and

of the same degree, we conclude that Bk(T ) = TrF
qk/Fq(T ). Note that Im(Ψk) =

{Bk(α) : α ∈ Fqk} = Fq since trace map is onto. Therefore Bk(wk) = TrF
qk/Fq(wk) =

uk. This shows how Theorem 3.2.7 “specializes” to Theorem 2.1.1.
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CHAPTER 4

CONCLUSION AND FURTHER RESEARCH

In this thesis we have given two proofs of the existence of primitive elements in

finite fields with arbitrary trace (or equivalently, existence of primitive polynomials

whose first coefficient is prescribed). The first proof is due to Cohen and the main

tool is character sums. The second is a work of Özbudak who uses algebraic function

fields to prove a more general statement.

Since Cohen solved the above problem in all cases in 1990, variants of the problem

have been introduced and worked on. The common goal of these later works is to

impose more conditions on primitive elements (or primitive polynomials) and still

prove existence results. Some of these new problems, which in turn motivate further

research, are:

• In addition to the trace, also prescribe the norm of the primitive element. We

refer to [8] for research in this direction.

• Cohen-Hachenberger ( [5]) proved the existence of a primitive element w in Fqn

which generate a normal basis {w,wq, . . . , wqn−1} for Fqn over Fq and which

has a prescribed nonzero trace value in Fq. Note that having a nonzero trace

is not an assumption but necessity since a zero trace for w would imply a zero

trace for all elements of Fqn , which is impossible.

• The works of Han ( [7]) and Cohen-Mills ( [4]) study the existence of primitive

polynomials over Fq of degree n for which the coefficients of the terms xn−1
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and xn−2 are prescribed. Obviously, this problem can be extended to cover

more coefficients with specified values.

The above list can be extended with similar problems all of which arise from

the initial problem that is discussed in this thesis. All of these works seem to

rely on heavy computational arguments and, usually, the main mathematical tool

is character sums. This makes each work quite involved. However, Özbudak’s

approach was able to simplify the proof, and even obtain a result in more general

setting, in the case of primitive elements with specified trace. Therefore, attacking

these kinds of problems with techniques brought from algebraic function fields, or

other branches of mathematics, with or without the use of character sums would

be very interesting. Especially, if such approaches prove to be as simplifying as

Özbudak’s work they would be quite useful.
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