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A WAVELET BASED METHOD FOR AFFINE INVARIANT 2D OBJECT

RECOGNITION

Abstract

Recognizing objects that have undergone certain viewing transformations is an im-

portant problem in the field of computer vision. Most current research has focused

almost exclusively on single aspects of the problem, concentrating on a few geomet-

ric transformations and distortions. Probably, the most important one is the affine

transformation which may be considered as an approximation to perspective trans-

formation. Many algorithms were developed for this purpose. Most popular ones are

Fourier descriptors and moment based methods. Another powerful tool to recognize

affine transformed objects, is the invariants of implicit polynomials. These three

methods are usually called as traditional methods. Wavelet-based affine invariant

functions are recent contributions to the solution of the problem. This method is

better at recognition and more robust to noise compared to other methods. These

functions mostly rely on the object contour and undecimated wavelet transform. In

this thesis, a technique is developed to recognize objects undergoing a general affine

transformation. Affine invariant functions are used, based on on image projections

and high-pass filtered images of objects at projection angles . Decimated Wavelet

Transform is used instead of undecimated Wavelet Transform. We compared our

method with the an another wavelet based affine invariant function, Khalil-Bayoumi

and also with traditional methods.



Özet

Görüntü dönüşümüne uğramış objeleri tanımak, bilgisayarlı görüntüleme alanındaki

önemli problemlerden biridir. Son zamanlardaki birçok araştırma, özellikle ge-

ometrik dönüşümler üzerine odaklanmıştır. Bu dönüşümlerin en önemlileri kam-

era hareketi ile meydana gelen perspektif dönüşümü ve onun yakınsaması olan il-

gin dönüşümdür. Bunun için geliştirilmiş birçok yöntem mevcuttur. Bunları en

önde gelenleri Fourier tanımlıyıcıları; Momentler ve Örtük polinom eģrileridir. Bu

yöntemler geleneksel yöntemler olarak da adlandırılırlar. Wavelet bazlı ilgin fonksiy-

onlar, son zamanlarda geliştirilen yöntemlerdir. Bu yöntem diğer yöntemlere göre

daha efektif ve gürultüye karşı daha etkilidir. Bu yöntemlerde objelerin çevre eğrileri

ve ”undecimated wavelet” dönüsüm kullanılır. Bu tezde, ilgin dönüsüme uğramış

nesneleri bilgisayarla tanımak için yeni bir yöntem önerilmektedir. Bu yöntemde

ilgin fonksiyonlar, görüntü projeksiyonları ve high-pass filtrelenmiş resimlerin pro-

jeksiyonları kullanlmaktadr. Ayrıca, diğer ”wavelet” bazlı metodların aksine ”dec-

imated wavelet” dönüşüm tercih edilmiştir. Yöntemimizi diğer ”wavelet” bazlı

yönteml olan Khalil-Baoumi metodu ile ve geleneksel yöntemlerle karşılaştırdık.
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Chapter 1

Introduction

Object recognition is an important problem in computer vision and pattern analysis.

Research in computer vision is aimed at enabling computers to recognize objects

without human intervention. Applications are numerous, and include automatic

inspection of parts in factories, detection of fires at high-risk sites and robot vision,

especially for autonomous robots. Object recognition can be described as the task of

finding and labelling parts of an image that corresponds to objects in the scene. The

task is usually broken up into two stages, ’low-level’ vision and ’high-level’ vision.

Low-level vision involves extracting significant features from the image, such as the

outline of an object or regions with same texture, and often involves segmenting

the image into separate ’objects’. The task of high-level vision is then to recognize

objects.

High-level vision, in particular is concerned with finding the properties of an

image which are invariant to transformations of the image caused by moving an

object so as to change its perceived position and orientation. The idea of invariance

arises from our own ability to recognize objects irrespective to such movement. If one

looks at a car from different orientations, it is easy for a human being to recognize it

as a car; it can be said that a car has properties which are invariant to size, position

and orientation. Finding mathematical functions of an image that are invariant to

the above transformations provides us with techniques for recognizing objects using

computers.

The search for invariants is a classical problem in mathematics dating back to

the 18th century. Invariant features form a compact, intrinsic description of an

object and can be used to design recognition algorithms that are potentially more

1



efficient than, say, aspect-based approaches. Invariant features can be designed

based on many different methods. They can be computed either globally, which

requires the knowledge of the shape as a whole or locally, which are based on local

properties such as curvature as arc length. Global invariants suffer when some parts

of the image data are unavailable. On the other hand most local invariants have

difficulties tolerating noise because its computation usually involves solving for high

order derivatives.

Current research has focused almost exclusively on single aspects of the problem,

concentrating on a few geometric transformations and distortions. Shape distortion,

arising from observing an object by a camera under arbitrary orientations, can be

most appropriately described as a perspective transformation [1]. However when the

dimensions of the object are small compared to the distance from the camera to the

object, a weak perspective can be assumed. In this case, the orthographic projection

may be used as an approximation to the perspective projection, and the perspective

distortion of the object can be modelled by shear in the image plane. Furthermore,

the affine transformation, consisting rotation, scaling and shearing and translation

transformations may be used as an approximation to the perspective transformation

[1].

Image invariants can be designed to fit the needs of specific systems. Some

require that it be nondiscriminating to an object’s geometric pose or orientation.

Others may be interested in it being insensitive to the change of illumination. More

complex systems demand it to be insensitive to a combination of several environ-

mental changes. Furthermore, invariant features can be designed based on many

different methods. It can be computed either globally, which requires shape knowl-

edge as a whole, or locally, which are based on local properties such as curvature

and arc length. When some parts of image data is unavailable, global invariants

are unable to produce good results. On the other hand, most local invariants have

difficulties tolerating noise since then its computation usually involves solving for

high order derivatives. Most of the current studies have focused almost exclusively

on single aspects of the problem, concentrating on a few geometric invariants. Affine

invariants are among most popular ones.

Consider a parametric curve x(t), y(t) parameterized by t on a plane. Affine

2



transformation performs the following mappings:

x̃(t) = a0 + a1x(t) + a2y(t). (1.1)

ỹ(t) = b0 + b1x(t) + b2y(t). (1.2)

Equations (3.1) and (3.2) can be written in the matrix form as:


x̃(t)

ỹ(t)


 =


a1 a2

b1 b2





x(t)

y(t)


 +


a0

b0


 = A


x(t)

y(t)


 + B. (1.3)

where A is a nonsingular square matrix representing the rotation, scaling and skew-

ing transformations. The vector B represents the translation. When Affine transfor-

mation is applied to the whole image, the coordinate system changes and Jacobean

J provides the information about this coordinate change.

J =
∣∣∣∂(ex,ey)
∂(x,y)

∣∣∣ =

∣∣∣∣∣∣

∂(ex)
∂(x)

∂(ex)
∂(y)

∂(ey)
∂(x)

∂(ey)
∂(y)

∣∣∣∣∣∣
= a1b2 − a2b1 = det(A). (1.4)

let I(t) be an invariant function and Ĩ(t) be the same invariant function calculated

using the points that are subjected to affine transformation. The relation between

them can be formulated as:

Ĩ = IJw. (1.5)

The exponent w which is the power of Jacobean J is called the weight of the invari-

ant. In the case ; w = 0 the function is called absolute invariant. If w 6= 0 then it

is called the relative invariant.

3



Many algorithms have been developed for the representation of objects under-

going affine transformation. They can be classified as local and global techniques.

Global techniques are based on the use of global features of the object such as the

Fourier Descriptors [2],[3],[4],[5],[6] which is effective against noise and the affine

moment invariants derived by Flusser and Suk [7], which are the extension of the

classical moment invariants developed by Hu [8]. High order moments are sensitive

to noise so only a few low-order moment invariants are used and this limits the

ability of object classification with a large size database. Local techniques use local

features such as critical points [9]. Another algorithm to recognize affine transformed

objects(Chapter 3) is the one based on implicit polynomials. Invariant features of

implicit polynomials [11]-[14] are used for that purpose based on 3L fitting algorithm

and data set normalization to remove ”affineness” of the data

Tieng-Boles [15] and Khalil-Bayoumi [16] derived new techniques based on dyadic

wavelet transform. This technique decomposes object contours into several compo-

nents at different resolution levels and uses an affine invariant function derived by

[15],[16]. These techniques combine the spatial and transform domain method’s ad-

vantages. In our technique we do not use the object contour but instead, the one

dimensional (1D) projection of objects from various angles and high-pass filtered

images of objects at these angles.

Fourier descriptors, and affine moment invariants and implicit polynomial method,

which are called as traditional methods are explained and experimental results are

given in Chapter 2 . In Chapter 3, wavelet based affine invariant functions together

with our technique is presented. Also, experimental results comparing our method

with Khalil-Bayoumi and Tieng-Boles method are presented.
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Chapter 2

Traditional Methods

2.1 Implicit Polynomials

Implicit polynomials are one of the leading shape representations in computer vi-

sion . Implicit polynomials have several strong features such as their interpolation

property against missing data, smoothing property against noise and perturbations,

Bayesian recognizers and the most important of all may be their algebraic invari-

ants. Implicit polynomial related techniques require to have a robust and consistent

implicit polynomial fits to data sets. This problem is solved through different mini-

mization techniques. There are various polynomial fitting techniques; but we focus

on 3L fitting technique [12],[17],[18] which seems to overcome many drawbacks of

the other algorithms. For curve fitting, first sensed data points of an object to be

recognized, the object contour, is fit by an implicit polynomial. Then a vector of

polynomial coefficients is used to obtain the invariants which are used in object

recognition. An implicit polynomial model in 2D, with an implicit curve of degree

n, is defined by :

f(x, y) =
∑

0<i,j;i+j<n aijx
iyj = a00︸︷︷︸

H0

+ a10x + a01y︸ ︷︷ ︸
H1(x,y)

+ a20x
2 + a11xy + a02y

2

︸ ︷︷ ︸
H2(x,y)

+....

+ an0x
n + an−1,1x

n−1y + ..... + a0ny
n

︸ ︷︷ ︸
Hn(x,y)

=
∑n

r=0 Hr(x, y) = 0.

(2.1)
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where Hr(x, y) is a homogeneous binary (i.e, two variables) polynomial of degree

r in x and y. Notice that in the above formula, the grading lexicographic monomials

induced by x3 < x2 < x1 is applied. f(x, y) is written in the vector form, to facilitate

the polynomial fitting , as:

f(x, y) = Y T A. (2.2)

where

A = [a00 a10 a01 a20 a11 a02 ... a0n]T (2.3)

and

Y = [1 x y x2 xy y2 x3 ... xn ... xyn−1 yn]. (2.4)

Such curves of degree 2 are the circles, hyperbolas, ,straight line pairs, conics −
ellipses, etc. that are commonly used.

To use affine invariant property of implicit polynomials for determining the affine

equivalence of two curves,we need an affine invariant fitting algorithm. The affine

fitting algorithm performs fittings to the original data set and the affine transformed

one, given a data set of points. 3L fitting algorithm, which is explained in section

2.1.2, is not affine invariant[17]. due to that the level set generation is based on an

Euclidian invariant quantity. This problem can be solved by replacing the euclidian

invariant quantity in the level set generation by an affine invariant quantity or

removing the affineness of the data set by a scattering matrix normalization. We

used data set normalization in our work.

2.1.1 Data set normalization

Data set normalization is used to remove the affineness of data. After this operation,

also called as whitening, 3L fitting algorithm can be used without any modification

[17],[18]. But this does not make the recognition process affine invariant. Extra

work is required to make recognition process affine invariant. This is done via the

use of invariants found by [17]. Data set normalization can be explained as follows:
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The scatter matrix of a data set
∑

, which is a positive symmetric matrix, can

be written as :
∑

= Q
∧

QT (2.5)

where Q is an orthogonal matrix of normalized eigenvectors of
∑

and
∧

is the the

diagonal matrix of the corresponding eigenvalues. The scatter matrix of the data set

becomes the identity matrix I, by applying the transformation, Aw =
∧−1/2 QT to

the data set. This transformation makes the spectrum of the eigenvectors uniform.

Assume that Γ0 and Γ̂0 are two data sets related by affine transformation. Math-

ematical transformation between them reduces to rotation after the Aw transforma-

tion is applied to both. So after this transformation we can use the 3L fitting

algorithm to fit to data and then recognize affine transformed object.

2.1.2 3L fitting

To fit an implicit polynomial to the object boundary, the nth degree implicit poly-

nomial f(x, y), that minimizes the average squared distance from the data points

to the zero set Z(f) of the polynomial, should be found. As no explicit expression

is available, an iterative process is used to solve for geometric distance. A widely

used distance approximation is:

d(pi,Z(f)) ≈ |f(pi)|
‖ ∇f(pi) ‖ (2.6)

and the average squared distance becomes:

d
2 ≈ 1

N

N∑
i=1

d2(pi,Z(f)) =
1

N

N∑
i=1

|f(pi)|2
‖ ∇f(pi) ‖2

(2.7)

This is a nonlinear optimization problem.

Usually only Γ0, data set of object boundary is taken into account by many

fitting formulations. As it is explained in [17], ” It is possible to fit the polynomial

in a fast an stable way by fitting the explicit polynomial f(x, y) to a portion of the

distance transform d(x, y) of Γ0. d(x, y) is the function which, at (x, y) takes on the

value of the signed distance from (x, y) to Γ0; meaning that d(x, y) is the shortest
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distance between (x, y) to the closest point in Γ0 and takes positive and negative

values according to what side of the data set Γ0 it is present. 3L fitting algorithm

uses synthetically generated data sets Γ+c and Γ−c besides the data set Γ0. Data

set Γ+c contains the points at a distance c to one side of Γ0 and Γ−c to other side

of Γ0. Γ+c and Γ−c are the levelsets of d(x, y) at levels +c and −c ”.

We can use a distance transform computation algorithm to generate d(x, y) from

Γ0. For each data point in Γ0 , The Euclidean distance transform determines a point

in Γ+c and one in Γ−c. These are at a perpendicular distance c at each side of the

original data set(curve) Γ0 . Let Γ0

⋃
Γ+c

⋃
Γ+c = (xiyi)

T : 1 < i < 3K and

M = [Y1 Y2 ... Y3K ]

where Yi is Y at (4) evaluated at pi = (xi, yi). Also d is defined as a vector whose

ith component d(xi, yi) which is the distance between point pi and Γ0. The level sets

used are only, +c,0 and −c. The problem of estimating the vector of polynomial

coefficients A becomes the minimization problem; minimize:

∑3K
i=1(d(xi, yi)− Y T

i A)2 or ‖ MA− d ‖2

For this problem, the least squares solution is:

A = (MT M)−1MT d. (2.8)

Introduction of two level set constraints is because of two reasons. First reason is to

have a more stable and consistent fitting with regard to the transformations of the

data set Γ0 and being more robust to noise. Fitting the polynomial to more than

Γ0; fitting f(x, y) to a ribbon of data rather than to a curve of data, leads us to that

accomplishment. Also, singularities are removed from the vicinity of data set and

forced to occur at local extrema or saddle points and singularities are prevented to

occur within synthetic ribbon by the use of synthetic data sets Γ+c and Γ−c. Sec-

ond, as the fitted polynomial f(x, y) is an approximation to the distance transform
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d(x, y), given a new data point (x̂, ŷ), |f(x̂, ŷ)| is an approximation to the distance

between (x̂, ŷ) to Γ0.

2.1.3 Affine invariants

To use implicit polynomials to recognize affine transformed 2D objects we need to

obtain invariants to affine transformation. We used the invariants obtained by Civi

[17]. Here, first some relative affine invariants of fourth degree implicit polynomials

are given as :

Γ1 = 45a2
13a

2
20 − 30a12a13a20a21 + 3a2

12a
2
21 + 6a11a13a

2
21 + 48a04a20a

2
21 − 12a03a

3
21 +

20a2
12a20a22 − 30a11a31a20a22 − 120a04a

2
20a22 − 16a11a12a21a22 + 54a10a13a21a22 +

12a03a20a21a22 + 20a02a
2
21a22 + 17a2

11a
2
2 − 36a10a12a

2
22 − 8a02a20a

2
22 − 36a01a21a

2
22 +

72a00a
3
22−12a3

12a30+54a11a12a13a30−162a10a
2
13a30−72a04a12a20a30+54a03a13a20a13a30−

72a04a11a21a30 +54a03a12a21a30−72a02a13a21a30 +432a04a10a22a30−72a03a11a22a30 +

12a02a12a22a30+54a01a13a22a30−81a2
03a

2
30+216a02a04a

2
30+6a11a

2
12a31−36a2

11a13a31+

54a10a12a13a31+180a04a11a20a31−72a03a12a20a31+54a02a13a20a31−324a04a10a21a31+

54a03a11a21a31− 30a02a12a21a31 + 54a01a13a21a31 + 54a03a10a22a31− 30a02a11a22a31 +

54a01a12a22a31 − 324a00a13a22a31 + 54a02a03a30a31 − 324a01a04a30a31 + 45a2
02a

2
31 −

162a01a03a
2
31 + 972a00a04a

2
31− 36a04a

2
11a40 + 432a04a10a12a40− 72a03a11a12a40 +

48a02a
2
12a40 − 324a03a10a13a40 + 180a02a11a13a40 − 324a01a12a13a40 + 972a00a

2
13a40 +

216a03a20a40 − 576a02a04a20a40 − 72a02a03a21a40 − 120a2
02a22a40 + 432a01a03a22a40 −

2592a00a04a22a40

Γ2 = 144a40a04a00−36a40a03a01+12a40a02a02−36a31a13a00+9a31a12a01−6a31a11a02+

9a31a10a03+9a30a13a01−6a30a12a02+9a30a11a03−36a30a10a04+12a22a22a00−6a22a21a01+

4a22a20a02−6a22a12a10+2a22a11a11+2a21a21a02−6a21a20a03+9a21a13a10−a21a12a11+

12a20a20a04 − 6a20a13a11 + 2a20a12a12

Γ3 = 6a22a22a22 − 27a13a22a31 + 81a04a31a31 + 81a13a13a40 − 216a04a22a40

Γ4 = 120a40a04 − 30a31a13 + 10a22a22
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where a00, a01, a10, a20, a11, a02, a30, a21, a12, a03, a40, a31, a22, a13, a04 are the implicit

polynomial coefficients obtained by the affine invariant 3L fitting algorithm. In

order to use an invariant in object recognition under affine transformation of the

image plane, we should have an absolute weight invariant. Absolute invariants which

we used are obtained through the relative invariants by [17].

I1 =
Γ1Γ4

Γ2Γ3

(2.9)

I2 =
Γ2

1

Γ2
2Γ4

(2.10)

2.2 Fourier Descriptors

Fourier descriptors provide a means for representing the boundary of a two dimen-

sional shape. The basic idea is this: a closed curve may be represented by a periodic

function of a continuous parameter, or alternatively, by a set of Fourier coefficients

of this function. These coefficients are called Fourier Descriptors. In order to use

Fourier descriptors for pattern classification applications, we must normalize the

curve representation with respect to a desired transformation class. If the normal-

ization is exact it will result in a set of Fourier descriptors which are invariant with

respect to the desired transformation class.

The early similarity-invariant Fourier Descriptors were derived by normaliza-

tion performed in the spatial domain, using the invariant properties of curvature

and/or tangent angle. The calculation of these quantities implies the calculation of

derivatives, which may be avoided by performing normalization completely in the

Fourier domain. Class of Fourier transforms includes the similarity transforms, but

in addition includes shearing.

Affine invariant Fourier descriptors were introduced by Arbter et al. [3]. Fourier

descriptors were originally introduced to provide rotation invariance: if one has a

closed contour described by (x(s), y(s)), s ∈ S. Then the curve can be approxi-

mated by a Fourier series with coefficients Uk, Vk defined as:
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[Uk, Vk] =
1

S

∫ S

0

[x(s), y(s)]e−j 2Πks
S ds. (2.11)

the magnitudes of Uk and Vk are invariant to rotations; invariance to translations

can be achieved by the coordinate origin at the image centroid, and invariance

to changes in scale by forming the ratio of two coefficients. Invariance to affine

transformation is not so straightforward because the curve length can change. We

need a new parametrization.

2.2.1 Parametrization

The affine transform can be written as:

x = Ax0 + b, det(A) 6= 0. (2.12)

where x, x0 ∈ <2,A is a 2x2 matrix,b is a 2-vector and x is the affine transformed

version of x0 or using the complex representation:

x = ax0 + bx0∗ + c, aa∗ − bb∗ 6= 0. (2.13)

where x, x0, a, b, c ∈ C,complex plane; c is the constant representing translation.a,b

are constants due to the linear part of the affine transformation.

The arc length is nonlinearly transformed under affine transformation so a new

parametrization is needed which is linear under affine transformation and the pa-

rameterizing function must yield the same parametrization independent of the initial

representation of the contour. The parametrization which satisfy these criteria is

the affine length [31] :

t =

∫

C

3

√
det(

dx

dξ

d2x

dξ2
)dξ =

∫

C

2
√

xξyξξ − yξxξξdξ. (2.14)

where xξ,yξ are the first and xξξ,yξξ are the second derivatives of the components

x(ξ) and y(ξ) and C is the path along the curve. Affine length causes some difficulty

since boundary encoding will eventually be with polygons and this parametrization

involves a second order derivative. Use of the second order derivative will result in
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a parametrization which is zero along the sides of the polygon and infinite at the

vertices. Instead a first order form is used:

t =
1

2

∫

c

|det(x(ξ), xξ)|dξ =
1

2

∫

c

|x(ξ)yξ − x(ξ)yξ|dξ. (2.15)

this parametrization will not be invariant for the case b 6= 0(18) ; that is translation.

To avoid this problem the coordinate system is initially moved to the area center

define by:

xs =
2

3

∮
c
x(ξ)det(x(ξ), xξ)dξ∮
C

det(x(ξ), xξ)dξ
. (2.16)

The area center of an affine contour is the affine transform of the area center due

to the fact that the affine transformation transforms areas with a constant scale

det(A).

2.2.2 Construction of Parameters from Fourier Coefficients

The boundary is encoded as a function of parameter and the Fourier Transform of

the resulting function is taken. A point on the boundary is described by a vector

function:

x =


u(t)

v(t)


 . (2.17)

Fourier transform is then applied to the functions u(t) and v(t),resulting in a matrix

of coefficients:




U0 V1

... , ...

V0 U1


 (2.18)

Although these coefficients are complex, the functions u(t) and v(t) ar real and so

U−k = U∗
k V−k = V ∗

k . and all coefficients [Uk, Vk]
T can be discarded for k < 0.
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A description of the boundary is to be constructed from the Fourier coefficients.

The pair [U0, V0]
T is discarded due to that it contains no shape information and

it depends on translation. Remaining coefficients are shift invariant. We define the

relative invariants that is a set of numbers Ik, Ik ∈ C (complex plane), which

satisfy the following relations. Let I0
k represent the kth invariant measured on the

reference image, and let Ik represent the same invariant measured on the observed

image. If Ik is indeed a relative invariant, it will satisfy:

Ik = µI0
k . (2.19)

Furthermore, µ will be the same constant for all k. A larger set of invariants can be

found as follows: let Xk represent the kth Fourier coefficient vector resulting from

the transform of the observation and let X0
k represent the same coefficient from the

transform of the reference. If the observation did infact result from the affine trans-

form A applied to the reference, we have to satisfy:

Xk = AX0
k . (2.20)

since the Fourier transform is a linear operator. Choose any two coefficients, say k,

and p, and construct the 2x2 matrix:

[Xk, Xp]. (2.21)

using such a matrix, it may be written:

[Xk, Xp] = A[X0
k , X0

p ]. (2.22)

taking the determinant of both sides we have:

det[Xk, Xp] = det(A)det[X0
k , X0

p ]. (2.23)
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and we have invariant scalars which obey the definition of (2.16), where µ = det(A).

To reduce the cardinality and also redundancy of this set we fix p to some constant

value such that p 6= 0 and Xp 6= 0 and define the set of relative invariants ∆k:

∆k = det[Xk, X
∗
p ]. (2.24)

that set of invariants is complete, that is two planar curves will have the same set of

descriptors if and only if they are affine. The absolute invariants are derived from

relative invariants of equation (2.21), eliminating the effects of µ, by simply dividing

all the invariants by ∆p:

Qk =
∆k

∆p

=
|Xk, X

∗
p |

|Xp, X∗
p |

=
UkV

∗
p − VkU

∗
p

UpV ∗
p − VpU∗

p

. (2.25)

In the absence of noise equation (2.20) may be chosen, but when noise is available,

signal to noise ratio should be as high as possible and equation (2.22) should be

considered with p for which |Xk, X
∗
p | is as large as possible.

2.3 Moment Invariants

Moment invariants are useful features of a two dimensional image. They are invari-

ant to shifts, to changes of scale and to rotations. In other words, they are invariant

and to general linear transformations of the image. Affine transformation is a linear

transformation, when translation part is removed. So moment invariants can be

used to recognize affine transformed objects. These moment invariants are called

affine moment invariants.

2.3.1 Moments

Let image f(x, y) to be the intensity function of the image, which is assumed to be

piecewise continuous and has compact support, is given. The regular moment mpg

is defined as:
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mpg =

∫ +∞

−∞

∫ +∞

−∞
xpyqf(x, y)dxdy , p, q = 0, 1, 2, ... . (2.26)

Given that intensity function is piecewise continuous and has compact support, it

can be proved that moments of all orders exist and that f(x, y) is uniquely deter-

mined by infinite set of moments and conversely moments are uniquely determined

by f(x, y). The moment generating function of f(x, y) is defined as:

M(u, v) =

∫ +∞

−∞

∫ +∞

−∞
eux+vyf(x, y)dxdy. (2.27)

Note that u and v are real. If moments of all orders exists as assumed, then M(u, v)

can be expanded into power series in the moments mpq as follows:

M(u, v) =
+∞∑
p=0

+∞∑
q=0

mpg
up

p!

vq

q!
. (2.28)

Central moments are defined as:

µpq =

∫ +∞

−∞

∫ +∞

−∞
(x− x)p(y − y)qf(x, y)dxdy. (2.29)

where x = m10/m00 and y = m01/m00.

The central moments are equivalent to the regular moments of the image that

has been shifted such that the image centroid (x, y) coincides with the origin.

It is assumed that the origin is chosen to coincide with the centroid of the image;

therefore, µpq can also be expressed as:

µpq =

∫ +∞

−∞

∫ +∞

−∞
xpyqf(x, y)dxdy, p, q = 0, 1, 2, ... . (2.30)
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2.3.2 Algebraic Invariants

A binary algebraic form of f of order p is defined as:

f = ap,0u
p +


p

1


 ap−1,1u

p−1v + ... +


 p

p− 1


 a1,p−1uvp−1 + a0,pv

p (2.31)

where u and v are the variables , and ap,0...a0,p are the coefficients. Each binary

form of order p = 1, 2, ... has one or more invariants, which are defined as follows: a

homogeneous kth order polynomial Γ(ap,0, ..., a0,p) of the coefficients is an algebraic

invariant of weight g and order k if :

I(a′p,0, ..., a
′
0,p) = ∆gI(ap,0, ..., a0,p). (2.32)

where a′p,0, ..., a
′
0,p are the new coefficients obtained by the following general linear

transformation into binary form (13):


u

v


 =


α γ

β δ





u′

v′


 , ∆ =

∣∣∣∣∣∣
α γ

β δ

∣∣∣∣∣∣
6= 0. (2.33)

if g = 0, the invariant is an absolute invariant; otherwise it is called a relative invari-

ant. Given two relative invariants, an absolute invariant can be formed by dividing

the suitable powers of relative invariants to remove the ∆g terms. A simple example

of an absolute invariant is that of the binary quartic:

f4(x, y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4 (2.34)

which has two relative invariants:

S = ae− 4bd + 3c2, g = 4

T = ace + 2bcd− ad2 − eb2 − c3, g = 6
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System of linear, quadratic and cubic forms

In the following A,B,C will represent the coefficients of the binary form Ax2+2Bxy+

Cy2, α, β, γ, δ those of the cubic form αx3 + 3βx2y + ... + δy3 and a, b, ...., e those of

the quartic form ax4 + 4bx3y + ... + ey4.

The quadratic form

Invariant: Q = AC −B2 with weight g = 2.

The cubic form

Invariant: P = (αδ − βγ)2 − 4(αγ − β2)(βδ − γ2),with g = 6.

The system of cubic and quadratic forms

Invariants:

I = A(βδ − γ2)−B(αδ − βγ) + C(αγ − β2)

R = α2C3 − 6αβBC2 + 6αγC(2B2 − AC) + αδ(6ABC − 8B3) + 9β2AC2

− 18βγABC + 6βδA(2B2 − AC) + 9γ2A2C − 6γδA2B + δ2A3.

M = A3(3βγδ2 − αδ3 − 2γ3δ) + 6A2B(αγδ2 − β2δ2 − βγ2δ + γ4)

+ 3A2C(2β2γδ − αγ2δ − βγ3) + 12AB2(2β2γδ − αγ2δ − βγ3)

+ 3C(AC + 4B2)(αβ2δ + β3γ − 2αβγ2) + 4AB(2B2 + 3AC)(αγ3 − β3δ)

+ 6BC2(α2γ2 + αβ2γ − α2βδ − β4) + C3(α3δ + 2αβ3 − 3α2βγ)

quartic forms

Invariants:

S = ae− 4bd + 3c2

T = ace + 2bcd− ad2 − eb2 − c3

system quartic and quadratic forms

Invariants:

L = eA2 + 4cB2 + aC2 − 4bBC + 2cAC − 4dAD g = 4

N = A2(ce− d2) + B2(ae− c2) + C2(ac− b2)

+ 2BC(bc− ad) + 2AC(bd− c2) + 2AB(cd− be), g = 6
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system quartic and cubic forms

Invariant:

K = a(βδ − γ2)2 − 2b(αδ − γβ)(βδ − γ2)− 2d(αγ − β2)(αδ − γβ)

+ c[2(αγ − β2)(βδ − γ2) + (αδ − γβ)2] + e(αγ − β2)2

Invariants to affine image transformations can be easily constructed from algebraic

invariants by using the Revised Fundamental Theorem of Moment Invariants via

the method explained in [10],[30].

Revised Fundamental theorem of invariants states that:

Let |∆| be the absolute value of the determinant ∆ of the affine image transfor-

mation. If the binary form of order p has an algebraic invariant I(ap,0, ap−1,1, ..., a0,p)

of weight w and order k,i.e

I(a′p,0, a
′
p−1,1, ..., a

′
0,p) = ∆wI(ap,0, ap−1,1, ..., a0,p). (2.35)

then the moments of order p have the same invariant but with the additional factor

| ∆ |k :

I(a′p,0, a
′
p−1,1, ..., a

′
0,p) = ∆g|∆|kI(a′p,0, ap−1,1, ..., a

′
0,p). (2.36)

2.3.3 Affine Moment Invariants

Affine moment invariants are the moment based descriptors of the planar shapes,

which are invariant under general affine transformation.

The affine transformation can be decomposed into six one parameter transfor-

mations:

u = x + α, u = δ.x

v = y v = y

u = x, u = x + t.y

v = y + β v = y

u = ω.x, u = x

v = ω.y v = t′.x + y
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Invariant : µ Q P I R S T L N K Gi J E F

g + k 1 4 10 7 11 6 9 7 10 13 10 14 8 16

K 1 2 4 3 5 2 3 3 4 5 4 4 2 4

Table 2.1: the values of g+k and k for the invariants

Any function F of moments which is invariant under these six transformations

will be invariant under the general affine transformation. As talked above, affine

moment invariants can be obtained from algebraic invariants using the method in

[30] based on the theorem of moment invariants, where the coefficients(a, b, c, ...) in

the expressions for algebraic invariants are replaced by corresponding central mo-

ments i.e the coefficients (A, B, C)(x, y)2 are replaced by µ20, µ11, µ02 respectively;

similarly, the coefficients α, β, γ, δ of the cubic form (α, β, γ, δ)(x, y)3 are replaced

by µ30, µ21, µ03 respectively and so on for higher forms. As an example, the simplest

invariant Q becomes µ20mu02 −mu2
11. If only central moments up to fourth order

are used, this means 13 non-zero moments , that leads to 9 independent absolute

invariants. One set of nine is presented below.

Γ1 = Q
µ4

00
Γ2 = P

µ10
00

Γ3 = I
µ7

00

Γ4 = R
µ11

00
Γ5 = S

µ6
00

Γ6 = T
µ9

00

Γ7 = L
µ7

00
Γ8 = N

µ10
00

Γ9 = G1

µ10
00

Most of the invariants are of high order in the coefficients, hence has a large

number of terms in their expressions. This is undesirable because they are more

noise sensitive compared to invariants with fewer terms.
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Chapter 3

Wavelet-based Affine Invariant

Functions

A new technique for affine invariant representation is the dyadic wavelet transform

based representation. Object contours are decomposed into several components at

different resolution levels. Since the wavelet transform is essentially a recurrent

filtering process with a kernel which is a bandpass filter [28], the components at

each resolution level have a limited bandwidth in the frequency domain. As a result

this can limit the effect of noise by selecting a suitable number of resolution levels

in the representation. Also, due to preserving spatial information at each resolution

level, establishing the point correspondence between elements can be easily achieved.

So, A,advantages of spatial (i.e Moment method) and transform domain (i.e Fourier

descriptors ) representations are combined.

Wavelet coefficients for certain scale values can be efficiently calculated via the

discrete dyadic wavelet transform (DWT) Discrete dyadic wavelet transform of a

signal is implemented using the filters proposed by Mallat [28],[29] . A filterbank

composed of lowpass and highpass filters together with downsamplers are used. This

filterbank produces two sets of coefficients: orthogonal detail coefficients which are

the even outputs of the highpass filter; and also called as the wavelet coefficients

and the approximation coefficients which are the even outputs of the lowpass filter.

Downsamplers drop the odd indiced samples . By downsampling, computational

cost of implementing DWT drops to O(NlogN) .
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3.1 Wavelet transform

The Fourier transform is a tool widely used for many scientific purposes, but it is well

suited only to the study of stationary signals where all frequencies have an infinite

coherence time. The Fourier analysis brings only global information which is not

sufficient to detect compact patterns. Gabor introduced a local Fourier analysis,

taking into account a sliding window, leading to a time frequency-analysis. This

method is only applicable to situations where the coherence time is independent

of the frequency. This is the case for instance for singing signals which have their

coherence time determined by the geometry of the oral cavity. Morlet introduced

the Wavelet Transform in order to have a coherence time proportional to the period

[32]. It replaces the Fourier transform’s sinusoidal waves by a family generated

by translations and dilations of a window called a wavelet. It has two arguments:

time and scale. Wavelet transform localizes a function both in space and scaling

and has some desirable properties compared to the Fourier Transform . The Morlet-

Grossmann definition of the continuous wavelet transform [33] for a 1D signal f(x) ∈
L2(R) :

W(a, b) =
1√
a

∫ +∞

−∞
f(x)ψ∗(

x− a

b
)dx. (3.1)

where z∗ denotes the complex conjugate of z , ψ∗ is the analyzing wavelet, a(> 0)

is the scale parameter and b is the position parameter

the transform is characterized by following properties:

(i). It is a linear transformation

(ii). It is covariant under translations

f(x) −→ f(x− µ),

W(a, b) −→ W(a, b− µ), and

(iii).It is covariant under dilations

f(x) −→ f(sx), W(a, b) −→ S
−1
2 W(sa, sb).

The last property makes the wavelet transform very suitable for analyzing hierar-
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chical structures. It is like a mathematical microscope with properties that do not

depend on the magnification. In Fourier space, we have:

Ŵ (a, ν) =
√

af̂(ν)ψ∗(a, ν). (3.2)

When the scale a varies, the filter ψ∗(a, ν) is only reduced or dilated while keeping

the same pattern

Now consider a function W(a,b) which is the wavelet transform of a given func-

tion f(x). f(x) can be restored using the formula:

f(x) =
1

Cx

∫ +∞

−∞

∫ +∞

−∞

1√
a
W (a, b)χ(

x− b

a
)
da.db

a2
. (3.3)

where

Cx =

∫
ψ̂∗χ̂(ν)

ν
dν. (3.4)

here χ(x) is the wavelet function for synthesis. Generally, χ(x) is selected such that:

χ(x) =ψ(x) for reconstruction.

3.1.1 Multiresolution Analysis and Discrete Wavelet Trans-

form

Multiresolution analysis [35] results from the embedded subsets generated by the

interpolations at different scales A function f(x) is projected at each step j onto the

subset Vj. This projection is defined by the scalar product cj(k) of f(x) with the

scaling function φ(x) which is dilated and translated:

cj(k) =< f(x), 2−jφ(2−jx− k) > . (3.5)
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As φ(x) is a scaling function with the property:

1

2
φ(

x

2
) =

∑
n

h(n)φ(x− n). (3.6)

or

φ̂(2ν) = ĥ(ν)φ̂(ν). (3.7)

where ĥ(ν) is the Fourier transform of the function. then

ĥ(ν) =
∑

n

h(n)e−2πnν . (3.8)

Equation 6 permits us to compute directly the set cj+1(k) from cj(k). If we

start from the set c0(k) and compute all the sets cj(k), with j > 0, without directly

computing any other scalar product:

cj+1(k) =
∑

n

h(n− 2k)cj(n). (3.9)

At each step, the number of scalar products is divided by 2. Step by step

the signal is smoothed and information is lost. The remaining information can be

restored using the complementary subspace Wj+1 of Vj+1in V j. This subspace can

be generated by a suitable wavelet function ψ(x) with translation and dilation.
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1

2
φ(

x

2
) =

∑
n

g(n)φ(x− n). (3.10)

or

φ̂(2ν) = ĝ(ν)φ̂(ν). (3.11)

We compute the scalar product < f(x), 2−(j+1)ψ(2−(j+1)x− k) > with:

wj+1(k) =
∑

n

g(n− 2k)cj(n). (3.12)

with this analysis we have built the first part of a filter bank [35]. In order to

restore original data, Mallat uses the properties of orthogonal wavelets [28].

In the decomposition, the function is successively convolved with the two filters

Hd(low frequencies) and Hh(high frequencies). Each resulting function is decimated

by suppression of one sample out of two; and we iterate as in Figure 3.1.

Dyadic Wavelet Transform

Dyadic wavelet transforms are scale samples of wavelet transforms following a geo-

metric sequence of ratio 2. Time is not sampled. The dyadic wavelet transform of f

is defined by

Wf(u, 2j) =

∫ ∞

−∞
f(t)

1√
2j

ψ(
t− u

2j
)dt = f∗ψ2j(u) ; ψ2j(t) = ψ2j(−t) =

1√
2j

ψ(
−t

2j
)

(3.13)

It defines a stable complete representation if its Heisenberg boxes cover all of the

frequency axis, that is, if there exist A and B such that:

∀ω ∈ R, A ≤
+∞∑
−∞

|ψ̂(2jω)|2 ≤ B. (3.14)
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Figure 3.1: The filterbank associated with multiresolution analysis. Hh, Fh are high-

pass filters and Hd, Fd are low-pass filters. In the equations, high-pass filter is used

as g and low-pass filter is used as h.
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Figure 3.2: Block diagram of dyadic wavelet transform(left) and its associated in-

verse transform(right).Hh, Fh are high-pass filters and Hd, Fd are low-pass filters.

The family of dyadic wavelets is a frame of L2(R). To build dyadic wavelets, it

is sufficient to satisfy the previous condition. To do so, it is possible to proceed

as for the construction of orthogonal and biorthogonal wavelet bases, using conju-

gate mirror or perfect reconstruction filter banks. The wavelets satisfy then scaling

equations and the fast dyadic wavelet transform is implemented using filter banks.

Filterbank structure of dyadic wavelet transform is shown in Figure 3.2.

3.2 Tieng-Boles Function

Tieng and Boles proposed an affine invariant function using one dyadic level [15],[25].

Their approach starts with constructing the parametric equation of the object con-

tours based on one of the affine invariant parameters, the enclosed area [34] . Let

x(t), y(t) denote the contour of the object. Then the enclosed area parameter can

be calculated by contour integration along the object contour C as follows:

σ =
1

2

∫

C

|xẏ − yẋ|dt. (3.15)

In the discrete case, the first derivatives ẋ,ẏ can be calculated via finite difference
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equation as follows:

ẋ(t) = x(t + 1)− x(t), ẏ(t) = y(t + 1)− y(t) (3.16)

by replacing the integration by summation, contour integral can be implemented as:

σ(k) =





0, if k=1 ;

1
2

∑k−1
t=1 |x(t)y(t + 1)− x(t + 1)y(t)|, otherwise.

(3.17)

where k = 1, ..., T and T is the equally spaced segments along the contour.

Since the objects have undergone a general affine transformation, their enclosed

areas will generally have different values. A normalization process is required to

make these value same for matching objects. Furthermore, although the object

contour is uniformly sampled, the parameter σ is digitized with nonequal intervals

when arc length and enclosed area are not linearly dependent. As dyadic wavelet

transform,which requires input data to be sampled with equal intervals, is used,

normalized parameter σ must also be resampled prior to processing.

Let [x(σ), y(σ)] and [xa(σa), ya(σa)] be the parametric equations of two contours

that differ only by general affine transformation. After normalization and resam-

pling , there is a one-to-one relation between σ and σa. Thus these parameters are

dropped in the following equations for simplicity. The relation between the two

contours can be expressed as :

xa = a11x + a12y + b1

ya = a21x + a22y + b2

(3.18)

The next step in the representation is to calculate the dyadic wavelet transform

of both sides via the undecimated FWT (Fast Wavelet Transform). After taking

dyadic wavelet transform of both sides , the relation between the approximation, Aj

and detail Wj, signals of xa, ya, x and y at a particular resolution level j is given by:

Ajxa = a11Ajx + a12Ajy + 2j/2b1

Ajya = a21Ajx + a22Ajy + 2j/2b2

(3.19)
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and

Wjxa = a11Wjx + a12Wjy

Wjya = a21Wjx + a22Wjy
(3.20)

As seen in the above equations, approximation signals depend on the position of

object contours in images but the detail signals do not. If the object centroid is

used as the origin, then b1 = b2 = 0. Equations (3.24) and (3.25) can be written in

matrix form as:


Ajxa Wjxa

Ajya Wjya


 =


a11 a12

a21 a22





Ajx Wjx

Ajy Wjy


 . (3.21)

Based on the determinant properties, relatively affine invariant representation is ob-

tained in the form:

AjxWjy − AjyWjx. (3.22)

The representation can be made absolutely invariant by representing it in ratio form

as:

Mj(k) =
Ajx(k)Wjy(k)− Ajy(k)Wjx(k)

Aix(n)Wiy(n)− Aiy(n)Wix(n)
(3.23)

with Aix(n)Wiy(n)− Aiy(n)Wix(n) 6= 0.

3.3 Khalil-Bayoumi Function

Khalil-Bayoumi proposed an affine-invariant representation[16] similar to Tieng-

Boles representation, but their representation uses only the detail signals from two

dyadic levels. Their wavelet-based affine invariant function also use undecimated

wavelet transform. We here explain the Khalil-Bayoumi affine invariant function

based on decimated wavelet transform and propose a different method based on
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image projections with Khalil-Bayoumi and Tieng-Boles representations instead of

using the contour points.

Let us denote the wavelet transform of a signal x(t) at the resolution scale i as

Wix(t) , then the wavelet transform of (3.1) and (3.2) is given as :

Wix̃(t) = a1Wix(t) + a2Wiy(t). (3.24)

Wiỹ(t) = b1Wix(t) + b2Wiy(t). (3.25)

Wia0 = Wib0 = 0 due to the high-pass filter. Let the object be defined by x(t) and

y(t) . An affine invariant function for an object using the wavelet coefficients of

signals x(t) and y(t) for two wavelet scales i,j can be defined as:

fij(t) = Wix(t)Wjy(t)−Wiy(t)Wjx(t). (3.26)

It can be shown that:

f̃ij(t) = Wix̃(t)Wj ỹ(t)−Wiỹ(t)Wjx̃(t) = det(A)fij(t). (3.27)

The invariant function fij(t) uses only the detail coefficients of the two different

levels. The Khalil-Boyoumi ’s affine function is computed using undecimated wavelet

transform meaning that no downsampling operation is performed. This results in a

lot of computational cost of the wavelet transform. If the length of the signal is N,

then in the undecimated transform case, length-N signals are filtered at each scale.

In decimated case, downsampling halves the signal length at each level.

The wavelet signal Wix(t) , at resolution scale i=1 can be expressed as ,

Wix(t) =
∑

dkw(t− k), i = 1. (3.28)

dk are the wavelet coefficients produced by a decimated Filterbank at resolution

29



scale i = 1 and we call w(t) as the mother wavelet. If the length of the data is N,

then the limits of the summation in (3.33) is from k=0 to k=N where a circular

computation of DWT is assumed. Similarly for j = 2, Wjy(t) can be expressed as:

Wjy(t) =
∑

eiw(t/2− l). (3.29)

where ei are the wavelet coefficients at resolution scale, j = 2. The limits of the

summation is from l = 0 to l = N/2 because of the downsampling. Let us assume

that w(t) is the Haar wavelet, i.e:

w(t) = 1 for 0 < t < 0.5), w(t) = −1 for 0.5 < t < 1), w(t) = 0 otherwise.

(3.30)

we can express the first term of the affine function (3.31) as :

Wix(t)Wjy(t) =
∑∑

dkelw(t− k)w(t/2− l) for i = 1, j = 2; (3.31)

Direct computation of (3.36) and the affine invariant function (3.31) requires NxN/2

and NxN multiplications, respectively. However as, w(t)w(t/2) = w(t) , w(t)w(t/2−
k) = 0 for k > 1 , since the Haar wavelet has a compact support with length 2.

Similarly, w(t− 2)w(t/2− 1) = w(t− 2) , w(t− 3)w(t/2− 1) = −w(t− 3), etc . As

a result of these relations, equation (3.36) can be expressed as:

Wix(t)Wjy(t) =
N∑

k=0,even

dkek/2w(t−k)−
N∑

k=1,odd

dke(k−1)/2w(t−k) for i = 1, j = 2;

(3.32)

we require only N multiplications for the right hand side of equation (3.37). The

affine invariant function fij(t), for i=j+1, can be expressed as in [36]:

fij(t) =
∑

k,even di
ke

i+1
k/2wi(t− k) − ∑

k,odd di
ke

i+1
(k−1)/2wi(t− k)
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+
∑

k,even ei
kd

i+1
k/2wi(t− k) − ∑

k,odd ei
kd

i+1
(k−1)/2wi(t− k)

(3.33)

where wi(t) = w(t/2i) is the wavelet of the resolution scale i, di
k, and ei

k are the

wavelet coefficients of the signals at resolution level i, respectively. This equation

has an important feature that one can compute it by using the computationally

efficient orthogonal wavelet transform as the filterbank having downsamplers can

compute wavelet coefficients di
k, and ei

k . Equations (3.37) and (3.38) are developed

for the specific case of i = 1, j = i + 1. However similar equations with O(N)

can be easily developed for any i, j values due to the fact that w(t)w(t/2j) =

w(t), ...., w(t − j)w(t/2j) = −w(t − j), and 0, otherwise etc because w(t) has a

compact support. In the undecimated WT implementation as in the case for Khalil-

Bayoumi [16] paper, length-N signals are filtered at each level; but in the decimated

implementation −N/2i signals are filtered at resolution level i so the final stage of

constructing fij(t) requires only O(N) arithmetic.

Equation (3.38) is obtained by taking the advantage of the fact that Haar wavelet

has compact support. Some computationally efficient signal reconstruction algo-

rithms from WT also take advantage of this fact [27]. In fact, all wavelets con-

structed from FIR filters have compact support. So the double summation in (3.36)

can be reduced to as set of single summations as (3.37) for all compactly supported

wavelets and one can obtain equations like (3.38) as well. As an example, widely

used Daubechies-4 wavelet[35] has a compact support of length 6, ie w(t) = 0 for

t > 6, and t < 0. In the case of Daubechies-4 wavelet, w(t)w(t/2−k) = 0 for k > 3.

This results in a slightly higher computational cost compared to the Haar wavelet

case but more robustness against noise is achieved. In general the length of data N

is much higher than the support length of most wavelets and this leads to significant

computational savings.
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3.4 Wavelet Affine Function with Image Projec-

tion

As stated above our method relies on image projections and high filtered images

from various angles. We do not use the contour points as signals to wavelet analysis

and then to invariant function, instead we take projection of an image from vari-

ous angles and high-pass filter image and use combination of the image projection

and projection of the high-pass filtered image from various projection angles as in-

put signals to Khalil-Bayoumi affine function[16] after taking their dyadic wavelet

transform.

Define g(φ, s) as a 1D projection of an image at angle φ; q(φ, s) is the line inte-

gral of the image intensity ,f(x, y) , along a line l that is distance s from the origin

and at an angle phi from the x axis,

g(φ, s) =

∫

l

f(x, y)dl (3.34)

All points on the line satisfy the equation: x.sin(φ) − y.cos(φ) = s. Therefore the

projection function g(φ, s) can be written as:

g(φ, s) =

∫ ∫
f(x, y)δ(xsin(φ)− ycos(φ)− s)dxdy (3.35)

Projection signal is the first signal we used in the affine invariant function [16].After

taking the projection of the binary image at various angles, we add the signals one

after another and obtain a final signal. For the second signal as talked above, we

use the projection of the high-pass filtered image. At each projection angle, we

high-pass filter the image with the basic high-pass filter [-1,1]. After filtering the

binary synthetic image, we calculate absolute value of the image. Then, we combine

these signals by adding one after another to have a final signal and use this final

signal as the second input signal to the affine function (3.41),[16]. The algorithm

may be shown as below in figure 3.3 flowgraph.

A model image, model airplane 12 in Figure 3.7, has projection at 40o and pro-

jection of high-pass filtered image of it, at projection angle 40o is shown in Figure
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Figure 3.3: Our algorithm

3.4. In Figure 3.5 projection and high-pass filtered image for model image 12 is

shown at angles, 0o, 30o, 45o, 60o, 90o. These two signals are subjected to dyadic

wavelet transform. Then signals at different scales are used to construct the affine

function:

I = WixWjy −WiyWjx (3.36)

where x stands for the projection of the image at various angles and y stands for

the projection of the high-pass filtered image at same angles. Wi,Wj are the detail

signals, in other words, outputs of the high-pass filters at Filterbank at resolution

scale i and j respectively.

To recognize the object, correlation between the invariant function calculated

for object and invariant functions of objects at database is compared. Let Rij be

the correlation function [16] between the test object’s affine function and the affine

function of an object in database, calculated using dyadic scales i and j. A final

correlation function using various correlation functions at different dyadic scales is

given as [36]:

Rfinal = v1Ri1j1 + v2Ri2j2 + ... + vkRikjk
. (3.37)

Final correlation function is used for final decision.
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Figure 3.4: Projection(left) and projection of the high-pass filtered(right) of airplane

model 12 at 40o
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Figure 3.5: Projection(left) and projection of airplane model 12 after high-pass

filtering (right) at 0o,30o,45o,60o,90o, used as input signal to wavelet transform and

then affine function
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3.5 Experimental Results

A computationally efficient algorithm using projections is offered in the previous

section based on Khalil-Bayoumi affine invariant function[13]. We performed an

experiment to investigate the recognition power of the method.

In this experiment, k invariant functions fij(t) for a given test object are cal-

culated by using consecutive pairs of resolution levels (i1, i1+1),(i2, i2+1),....,(ik, ik+1)

corresponding k invariant functions for each model object are kept in a database.

The correlations between the k invariant functions of the test object and each model

object are calculated to get correlation values R1, R2, ..., Rk, which are defined as:

R(I1(t), I2(t)) =

∫
I1(t)I2(t)dt

‖I1‖‖I2‖ (3.38)

where I1(t) and I2(t) represent the invariant functions. The final decision for the

test airplane and model airplane is found by linearly combining the k correlation

values as follows:

Rfinal = ν1R1 + ν1R1 + .... + νkRk (3.39)

where ν1 + ν2 + ... + νk = 1. As a rule of thumb more weight should be given to

resolution levels containing more signal energy to be more robust against noise.
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Test image 1 2 3 4 5 6 7 8 9 10

Model image 6 2 19 15 5 1 8 16 20 10

Table 3.1: Model Images Used to Produce the Test Images

This experiment is carried out with airplane images that were used in Figure 3.6 and

Figure 3.7. Table 3.1 shows which test image is produced from which model image.

The same type of wavelet with [16] is used. 20 model images and 10 test images are

constructed by random affine transformation to randomly selected 10 model images.

We used all the 10 affine transformed test images in our experiment. Parameters for

test images are in appendix part. For our method, projection and high-pass filtered

signals are normalized to length 512. The correlations between the test images and

model images are calculated and the result is determined according to the model

producing the highest correlation value. The signal to noise ratio is defined as in

[16]. Three noise levels are tested . In the first experiment SNR is about 50 dB,

in the second experiment SNR is 20 dB and finally third experiment is performed

with an SNR of 15 dB. Signal to noise ratios are determined as in [13]. By using the

same data set, we compared our method with the Khalil-Bayoumi method, Implicit

polynomials, Fourier descriptors and Moment invariants.

The results are given in table formats in appendix. In a table, the first column

gives the number of the test image. In the second column, highest correlation and

the number of the model image(in parenthesis) which highest correlation value is

calculated, is shown. In the third column, second highest correlation value and

number of model image which it is calculated is shown.At the fourth and fifth

columns, only the third and fourth highest correlation values are shown. The number

of the model plane which they are calculated from, is not given.

As seen from the tables, our method performs well at all three noise levels.

Test images are recognized with a hundred percentage efficiency at all noise levels.

Khalil-Bayoumi method also performed well but at the 15dB noise level it failed to

recognize one of the test images. This means that our method is more robust to noise
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Figure 3.6: The airplane models
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Figure 3.7: The test images

compared to wavelet-based Khalil- Bayoumi method. Our method performed better

than the traditional methods at all noise levels. Fluctuations at data in graphics is

due to that, wavelet representation used, i.e. wavelet function and filters , are not

very suitable for that shape. We used the representation which gives the best result

at overall(Deubechies-4 filters).

We made an experiment with Fourier descriptors and Moment invariants with

the same data set we used for testing our method. We computed Euclidean dis-

tance between resulting vectors to match the test image to model image which test

image is produced from. For each test image, 10 experiments are done resulting

100 trials. Best results for Fourier descriptors and Moment invariants are given in

appendix. For the low-noise case (50 dB), Moment invariants achieved a recogni-

tion performance of 82 percentage and Fourier descriptors achieved a performance

of 76 percentage. For high-noise level case (20dB), Moment invariants performed 63

percentage and Fourier descriptors had 78 percentage. This is an expected result

since moment invariants are sensitive to noise. Our method which has a recognition

performance of 100 percentage at low-noise level and 96 percentage at high-noise

level, is obviously more successful compared to Fourier descriptors and Moment in-
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Figure 3.8: Low-noise level correlation values for our method and Khalil-Bayoumi

method. Thick line corresponds to our method and thin line with circle marking

corresponds to Khalil-Bayoumi method.

variants and more robust against noise. For the implicit polynomials, we used the

same data set and same affine transformed test images. We obtain the implicit

polynomial coefficients via the affine invariant 3L fitting algorithm [17],[18]. But

this process is not completely affine invariant. We replaced the coefficients into the

invariants obtained in [17] and used these invariants for the recognition of our 10

affine transformed model planes.

Figure 3.7, 3.8 shows the highest correlation value between test image and the

model images for Our method, Khalil-Bayoumi method and Implicit Polynomials.

All methods managed to recognize 10 test images. In Figure 3.9, Our method and

Khalil-Bayoumi comparison is given. Both methods recognized 10 test images. Our

correlation values are higher than Khalil-Bayoumi method’s. Figure 3.10 shows our

method vs Implicit polynomials; where Implicit polynomials failed to recognize one

of the test images correctly (shown by arrow head in figure). When we increased

the noise to 15dB, Khalil-Bayoumi had a false detection; shown by arrow head in

Figure 3.11.
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Figure 3.9: Low-noise level correlation values for our method and Implicit polyno-

mials. Thick line corresponds to our method and thin line with square marking

corresponds to Implicit polynomials.
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Figure 3.10: High-noise level correlation values for our method and Khalil-Bayoumi

method. Thick line corresponds to our method and thin line with circle marking

corresponds to Khalil-Bayoumi method.
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Figure 3.11: High-noise level correlation values for our method and Implicit poly-

nomials. Thick line corresponds to our method and thin line with square marking

corresponds to Implicit polynomials. Arrow head shows false detection.
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Figure 3.12: Highest-noise level correlation values for our method and Khalil-

Bayoumi method. Thick line corresponds to our method and thin line with circle

marking corresponds to Khalil-Bayoumi method. Arrow head shows false detection.
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Chapter 4

Conclusion

In this thesis, the problem of 2D object recognition using wavelet based affine invari-

ant functions is considered. In previous works, affine invariant representations use

the affine invariant parameters affine arc length and enclosed area. Adopting these

invariant parameters, a method is derived based on objects contours and undeci-

mated dyadic wavelet transform. We derived an algorithm using the 1D projections

of the 2D objects and high-pass filtered images of objects with decimated wavelet

transform. Wavelet functions that have compact support and symmetric shape are

used. We compared the image recognition power of our method with previous affine

invariant function based methods with experiments using synthetic images. Besides

a comparison of the method with Fourier descriptors, Affine invariant moments and

Implicit polynomials is carried out. Experimental results show that affine invariant

function based methods are more successful than traditional methods. Our method

detected the affine transformed objects accurately under noise even better than

other affine invariant function based methods.
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Chapter 5

Appendix

I

The results are given in table formats as explained in section 3.3. In a table, first

column gives the number of the test image. In second column, highest correlation

and the number of the model image(in parenthesis) which highest correlation value is

calculated, is shown. In third column, second highest correlation value and number

of model image which it is calculated is shown. In fourth and fifth columns, only

the third and fourth highest correlation values are shown. The number of the model

plane which they are calculated from, is not given. In the table showing the results

for Tieng-Boles function, only highest correlation values are given for 50dB and

20dB noise levels. For Implicit polynomials, Invariant values determines the match.

For Fourier descriptors and Moment invariants, vector coefficients are by calculating

Euclidean distance similar to correlation and smallest value of the Euclidean distance

is used to match the test image and model images.
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test.im \ b.match 1 2 3 4

(01) 0.991(06) 0.918(10) 0.900 0.810

(02) 0.986(02) 0.845(03) 0.795 0.725

(03) 0.981(19) 0.867(18) 0.816 0.763

(04) 0.994(15) 0.905(14) 0.828 0.796

(05) 0.990(05) 0.726(01) 0.711 0.632

(06) 0.983(01) 0.869(05) 0.819 0.781

(07) 0.990(08) 0.970(09) 0.910 0.733

(08) 0.990(16) 0.887(13) 0.842 0.728

(09) 0.992(20) 0.847(07) 0.751 0.618

(10) 0.988(10) 0.909(06) 0.876 0.799

Table 5.1: the results at low-noise level for our method

test.im \ b.match 1 2 3 4

(01) 0.990(06) 0.724(09) 0.690 0.606

(02) 0.962(02) 0.765(10) 0.759 0.756

(03) 0.982(19) 0.774(18) 0.536 0.244

(04) 0.990(15) 0.606(06) 0.594 0.339

(05) 0.988(05) 0.444(02) 0.382 0.367

(06) 0.975(01) 0.598(18) 0.557 0.541

(07) 0.991(08) 0.749(10) 0.561 0.514

(08) 0.990(16) 0.769(14) 0.739 0.632

(09) 0.978(20) 0.702(07) 0.377 0.167

(10) 0.981(10) 0.765(06) 0.749 0.683

Table 5.2: the results at low-noise level for Khalil-Bayoumi method
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test.im \ b.match 1 2 3 4

(01) 0.804(06) 0.773(10) 0.714 0.685

(02) 0.800(02) 0.786(03) 0.741 0.678

(03) 0.731(19) 0.706(18) 0.722 0.594

(04) 0.743(15) 0.720(14) 0.697 0.659

(05) 0.816(05) 0.785(01) 0.707 0.603

(06) 0.829(01) 0.794(05) 0.656 0.655

(07) 0.760(08) 0.753(09) 0.700 0.568

(08) 0.752(16) 0.710(13) 0.688 0.615

(09) 0.741(20) 0.730(07) 0.693 0.529

(10) 0.784(10) 0.766(06) 0.726 0.577

Table 5.3: the results at high-noise level for our method

test.im \ b.match 1 2 3 4

(01) 0.758(06) 0.583(09) 0.557 0.533

(02) 0.771(02) 0.716(09) 0.631 0.606

(03) 0.653(19) 0.409(18) 0.382 0.189

(04) 0.454(15) 0.333(06) 0.243 0.217

(05) 0.827(05) 0.424(02) 0.405 0.403

(06) 0.849(01) 0.606(18) 0.605 0.486

(07) 0.287(08) 0.202(10) 0.167 0.156

(08) 0.775(16) 0.580(14) 0.549 0.546

(09) 0.386(20) 0.368(01) 0.438 0.278

(10) 0.675(10) 0.510(08) 0.508 0.474

Table 5.4: the results at high-noise level for Khalil-Bayoumi method
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test.im \ b.match our method Khalil −Bayoumi

(01) 0.617(06) 0.443(06)

(02) 0.594(02) 0.580(02)

(03) 0.580(19) 0.342(18)

(04) 0.387(15) 0.411(15)

(05) 0.422(05) 0.607(05)

(06) 0.551(01) 0.540(01)

(07) 0.349(08) 0.216(08)

(08) 0.507(16) 0.614(16)

(09) 0.455(20) 0.348(20)

(10) 0.588(10) 0.496(10)

Table 5.5: the results at highest-noise level for our method and Khalil-Bayoumi

method. In second column highest correlation values for our method is shown and

in third column for Khalil-Bayoumi method

test.im \ b.match Low noise High noise

(01) 0.914(06) 0.817(06)

(02) 0.816(02) 0.748(02)

(03) 0.842(19) 0.734(18)

(04) 0.960(15) 0.705(15)

(05) 0.952(05) 0.717(05)

(06) 0.946(01) 0.708(01)

(07) 0.954(08) 0.617(08)

(08) 0.968(16) 0.396(16)

(09) 0.935(20) 0.678(20)

(10) 0.901(10) 0.763(10)

Table 5.6: results for Tieng-Boles function through our method, with image projec-

tions
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test.im \ b.match 1 2 3 4

(01) 0.951(06) 0.923(19) 0.805 0.734

(02) 0.915(02) 0.848(10) 0.762 0.755

(03) 0.949(19) 0.886(18) 0.817 0.703

(04) 0.976(15) 0.890(14) 0.822 0.771

(05) 0.962(05) 0.894(01) 0.811 0.678

(06) 0.938(01) 0.883(18) 0.807 0.665

(07) 0.928(08) 0.894(09) 0.841 0.765

(08) 0.935(16) 0.847(15) 0.814 0.705

(09) 0.927(07) 0.881(20) 0.803 0.788

(10) 0.919(10) 0.893(09) 0.812 0.679

Table 5.7: Low-noise level experiment results for implicit polynomials

test.im \ b.match 1 2 3 4

(01) 0.738(06) 0.706(19) 0.685 0.596

(02) 0.715(02) 0.682(10) 0.609 0.588

(03) 0.678(18) 0.663(19) 0.584 0.535

(04) 0.764(15) 0.698(14) 0.633 0.570

(05) 0.814(05) 0.742(14) 0.684 0.613

(06) 0.808(01) 0.700(19) 0.643 0.528

(07) 0.703(09) 0.588(08) 0.449 0.401

(08) 0.810(16) 0.731(15) 0.675 0.566

(09) 0.726(07) 0.718(20) 0.662 0.541

(10) 0.712(10) 0.655(09) 0.606 0.558

Table 5.8: High-noise level experiment results for implicit polynomials
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test.im \ b.match 1 2

(01) 0.189(06) 0.224(13)

(02) 0.174(02) 0.191(08)

(03) 0.267(18) 0.273(19)

(04) 0.206(15) 0.214(14)

(05) 0.143(05) 0.372(15)

(06) 0.120(01) 0.226(18)

(07) 0.195(08) 0.235(09)

(08) 0.179(16) 0.253(11)

(09) 0.284(06) 0.290(20)

(10) 0.342(10) 0.394(08)

Table 5.9: the results at low-noise level for Moment method

test.im \ b.match 1 2

(01) 0.356(06) 0.398(13)

(02) 0.387(03) 0.421(02)

(03) 0.467(18) 0.511(19)

(04) 0.336(15) 0.379(16)

(05) 0.345(05) 0.413(14)

(06) 0.277(01) 0.356(19)

(07) 0.295(08) 0.335(09)

(08) 0.348(16) 0.382(14)

(09) 0.355(07) 0.393(20)

(10) 0.410(10) 0.461(08)

Table 5.10: the results at high-noise level for Moment method
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test.im \ b.match 1 2

(01) 0.215(06) 0.242(09)

(02) 0.230(02) 0.265(09)

(03) 0.284(18) 0.302(19)

(04) 0.304(15) 0.329(14)

(05) 0.214(05) 0.282(13)

(06) 0.258(01) 0.391(08)

(07) 0.273(08) 0.308(10)

(08) 0.205(16) 0.332(14)

(09) 0.345(06) 0.360(20)

(10) 0.318(10) 0.406(03)

Table 5.11: the results at low-noise level for Fourier descriptors

test.im \ b.match 1 2

(01) 0.262(06) 0.294(09)

(02) 0.318(02) 0.365(09)

(03) 0.351(18) 0.410(19)

(04) 0.369(15) 0.422(14)

(05) 0.307(05) 0.390(13)

(06) 0.299(01) 0.435(08)

(07) 0.343(08) 0.388(10)

(08) 0.325(16) 0.418(14)

(09) 0.395(06) 0.438(20)

(10) 0.367(10) 0.442(03)

Table 5.12: the results at high-noise level for Fourier descriptors
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II

For the experiments, we obtained the test images by applying affine transforma-

tion to the randomly selected 10 model images in Figure 3.5. The model images ,

1,2,5,6,8,10,15,16,19,20 are subjected to the affine transformation:

T = 2−k/2


cos(θ) −sin(θ)

sin(θ) cos(θ)





a b

0 1/a


 (5.1)

Parameters for the test images are given below. First column shows the test image.

Second column is the model image from which test image is produced via the affine

transformation. Other columns give the parameters of the affine transformation

given by above formula.

test.im model.im θ a b

1 6 100 1 0.2

2 2 -10 1 -0.1

3 19 -50 1 1

4 15 30 1 -0.2

5 5 70 1 0

6 1 150 1 0

7 8 30 1 0.1

8 16 60 0.8 0.2

9 20 -30 1 -0.1

10 10 -70 1.4 0.2
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