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students and patience in assisting me with this thesis. I appreciate her valuable

advice and efforts offered during the course of my studies.

I would also like to thank my jury members, Prof. Aytül Erçil and Dr. Hakan
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Abstract

Biometrics is the utilization of biological characteristics (face, iris, fingerprint) or

behavioral traits (signature, voice) for identity verification of an individual. Biomet-

ric authentication is gaining popularity as a more trustable alternative to password-

based security systems as it is relatively hard to be forgotten, stolen, or guessed.

Signature is a behavioral biometric: it is not based on the physical properties,

such as fingerprint or face, of the individual, but behavioral ones. As such, one’s

signature may change over time and it is not nearly as unique or difficult to forge as

iris patterns or fingerprints, however signature’s widespread acceptance by the pub-

lic, make it more suitable for certain lower-security authentication needs. Signature

verification is split into two according to the available data in the input. Off-line

signature verification takes as input the image of a signature and is useful in au-

tomatic verification of signatures found on bank checks and documents. On-line

signature verification uses signatures that are captured by pressure-sensitive tablets

and could be used in real time applications like credit card transactions or resource

accesses.

In this work we present two complete systems for on-line and off-line signature

verification. During registration to either of the systems the user has to submit a

number of reference signatures which are cross aligned to extract statistics describ-

ing the variation in the user’s signatures. Both systems have similar verification

methodology and differ only in data acquisition and feature extraction modules.

A test signature’s authenticity is established by first aligning it with each reference

signature of the claimed user, resulting in a number of dissimilarity scores: distances

to nearest, farthest and template reference signatures. In previous systems, only one

of these distances, typically the distance to the nearest reference signature or the

distance to a template signature, was chosen, in an ad-hoc manner, to classify the

signature as genuine or forgery. Here we propose a method to utilize all of these dis-

tances, treating them as features in a two-class classification problem, using standard

pattern classification techniques. The distances are first normalized, resulting in a



three dimensional space where genuine and forgery signature distributions are well

separated. We experimented with the Bayes classifier, Support Vector Machines,

and a linear classifier used in conjunction with Principal Component Analysis, to

classify a given signature into one of the two classes (forgery or genuine).

Test data sets of 620 on-line and 100 off-line signatures were constructed to

evaluate performances of the two systems. Since it is very difficult to obtain real

forgeries, we obtained skilled forgeries which are supplied by forgers who had access

to signature data to practice before forging. The online system has a 1.4% error

in rejecting forgeries, while rejecting only 1.3% of genuine signatures. As an offline

signature is easier to forge, the offline system’s performance is lower: a 25% error

in rejecting forgery signatures and 20% error in rejecting genuine signatures. The

results for the online system show significant improvement over the state-of-the-art

results, and the results for the offline system are comparable with the performance

of experienced human examiners.
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Özet

Biometrik doğrulama insanın kişisel özelliklerini (parmak izi, yüz, iris, ses gibi)

kullanarak gerçekleştirilen kimlik doğrulama yöntemidir. Günümüz teknolojisinin

getirdiği olanaklarla önemi gün geçtikçe artan biometrik doğrulama, kart veya parola

tabanlı güvenlik sistemlerine göre daha pratik (parola hatırlama, kart kaybetme

ve çaldırma sorunları yok), aynı zamanda daha güvenlidir (örn. bir parolayı tah-

min etmek bir parmak izini taklit etmekten daha kolaydır). İmza kişinin fiziksel

özelliklerine bağlı olmayan, davranışsal bir biometriktir, bundan dolayı imza za-

manla değişebilir ve parmakizi veya iris kadar özebir değildir. Göz irisi veya par-

makizi gibi biometrikler kişiye özgü olmalarına karşın, suçlular ile ilişkilendirildikleri

ve kişi hakkında sağlık gibi konularda istenmeyen bilgileri açığa çıkardıkları için,

bu sistemleri kullanmaya başlayan ülkelerde toplum tarafından kolaylıkla kabul

görmemişlerdir. Öte yandan imza, günümüzde hemen her ortamda kimlik doğrulama

işlemleri için gerekli bir bilgi olarak görülmektedir.

İmza doğrulama statik (off-line) veya dinamik (on-line) imza doğrulama şeklinde

iki ana konu olarak değerlendirilmektedir. Kağıt üzerindeki statik bir imzadan,

tarama yoluyla sadece imzanın şeklini içeren bir imge elde edilmesine karşın, dokun-

maya hassas tabletlere atılan dinamik imzalarda hem imzanın şekli, hem de di-

namik özellikleri (hızı, kaç darbede atıldığı, kalemin ne kadar bastırıldığı gibi) elde

edilebilir. Statik bir imzanın kopyalanması elde bir örnek varsa oldukça kolay ol-

masına karşın, dinamik özellikler imzayı daha kişiye özgü kılar ve taklit edilmesini

zorlaştırır. Yine de her iki imza türüne dayalı doğrulama sistemlerinin kullanım

alanları farklıdır: mesela statik imza doğrulayıcı bir sistem banka çeklerindeki sahte-

ciliklerin yakalanmasında kullanılırken, dinamik imza doğrulama sistemleri özellikle

kredi kartındaki sahteciliklerin yakalanmasında kullanılmaktadır. Dinamik imza

doğrulama sistemleri ayrıca bina girişlerinde, eliçi ve avuçiçi bilgisayarlarındaki bil-

gilerin korunmasında kullanılmaktadır.

Bu çalışmada iki ayrı imza türüne dayalı (statik ve dinamik) iki farklı imza

doğrulama sistemi sunulmaktadır. Her iki sistemde de kullanıcı bir kaç referans imza



vererek sisteme kaydolur. Bu referans imzalarından, kişinin imzalarının özelliklerini

ve değişkenliğini karakterize eden öznitelikler çıkarılır ve sistemde bu kullanıcıya

özgü değerler olarak saklanır. Her iki sistemin girdi olarak kabul ettikleri imza

türleri ve imzalardan çıkarılan öznitelikler farklı olmalarına rağmen, sistemler aynı

doğrulama yöntemine dayanmaktadırlar: herhangi bir imza doğrulanacağı zaman,

bu imza iddia edilen kişinin bütün referans imzalarıyla karşılaştırılır ve test edilen

imzanın referans imzalarına uzaklığı (farklılığı) hesaplanır. Herhangi iki imza arasın-

daki farklılık, farklı uzunluklardaki iki dizinin, linear olmayan bir değişimle gelebile-

cekleri en benzer hallerin uzaklığını hesaplamak için kullanılan ”Dynamic Time

Warping” algoritması ile bulunur. Daha önce geliştirilmiş imza doğrulama sistem-

lerinde, bu işlemin sonucunda elde edilen minimum uzaklık (test imzasının en yakın

referans imzasına uzaklığı) veya test imzasının şablon referans imzasına uzaklığı, bu

kişiye ait ortalama değerlerle karşılaştırılarak, imzanın gerçek mi, taklit mi olduğuna

buluşsal yöntemlerle karar verilmekteydi. Önerdiğimiz doğrulama yönteminde bahsi

geçen uzaklıklar kendilerine karşılık gelen referans imzalar arasındaki ortalama uzak-

lıklarla normalize edilerek, sahte ve gerçek imzaların birbirinden ayrık oldukları

öznitelik uzayı oluşturmaktadırlar. Çalışmamızda imzalardan çıkarılan üç boyutlu

öznitelik vektörleri Bayes sınıflandırıcı, Destekçi Vektör Makinesi, ve Linear sınıflan-

dırıcı kullanarak imzaların sahte olup olmadığını tespit etmek için kullanılmışlardır.

Sistemleri denemek için 100 ayrı kişiden toplam 620 dinamik ve 20 kişiden toplam

100 statik deneme imzası (gerçek ve sahte) toplanmıştır. Gerçek taklit imzaları

elde etmek zor olduğu için, taklit edeceği imzanın şeklini ve mümkünse imzalama

haraketlerini görebilen taklitçilerden nitelikli sahte imzalar alınmıştır. Dinamik

imza doğrulama sistemi gerçek imzaların %1.4’ünü yanlışlıkla redederken, sahte

imzaların sadece %1.3’ü yanlışlıkla kabul etmiştir. Statik imzayı taklit etmek daha

kolay olduğu için, statik imza doğrulama sistemi sahte imzaların %25’ini yanlışlıkla

kabul ederken, gerçek imzaların %20’sini yanlışlıkla redetmiştir. Önerilen dinamik

doğrulama sistemi var olan sistemlerden daha üstün performans sergilerken, statik

doğrulama sistemimizden de bu konudaki uzman kişilerin başarısıyla kıyaslanabilir

performans elde edilmiştir.
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Abstract

Biometrics is the utilization of biological characteristics (face, iris, fingerprint) or

behavioral traits (signature, voice) for identity verification of an individual. Biomet-

ric authentication is gaining popularity as a more trustable alternative to password-

based security systems as it is relatively hard to be forgotten, stolen, or guessed.

Signature is a behavioral biometric: it is not based on the physical properties,

such as fingerprint or face, of the individual, but behavioral ones. As such, one’s

signature may change over time and it is not nearly as unique or difficult to forge as

iris patterns or fingerprints, however signature’s widespread acceptance by the pub-

lic, make it more suitable for certain lower-security authentication needs. Signature

verification is split into two according to the available data in the input. Off-line

signature verification takes as input the image of a signature and is useful in au-

tomatic verification of signatures found on bank checks and documents. On-line

signature verification uses signatures that are captured by pressure-sensitive tablets

and could be used in real time applications like credit card transactions or resource

accesses.

In this work we present two complete systems for on-line and off-line signature

verification. During registration to either of the systems the user has to submit a

number of reference signatures which are cross aligned to extract statistics describ-

ing the variation in the user’s signatures. Both systems have similar verification

methodology and differ only in data acquisition and feature extraction modules.

A test signature’s authenticity is established by first aligning it with each reference

signature of the claimed user, resulting in a number of dissimilarity scores: distances

to nearest, farthest and template reference signatures. In previous systems, only one

of these distances, typically the distance to the nearest reference signature or the

distance to a template signature, was chosen, in an ad-hoc manner, to classify the

signature as genuine or forgery. Here we propose a method to utilize all of these dis-

tances, treating them as features in a two-class classification problem, using standard

pattern classification techniques. The distances are first normalized, resulting in a



three dimensional space where genuine and forgery signature distributions are well

separated. We experimented with the Bayes classifier, Support Vector Machines,

and a linear classifier used in conjunction with Principal Component Analysis, to

classify a given signature into one of the two classes (forgery or genuine).

Test data sets of 620 on-line and 100 off-line signatures were constructed to

evaluate performances of the two systems. Since it is very difficult to obtain real

forgeries, we obtained skilled forgeries which are supplied by forgers who had access

to signature data to practice before forging. The online system has a 1.4% error

in rejecting forgeries, while rejecting only 1.3% of genuine signatures. As an offline

signature is easier to forge, the offline system’s performance is lower: a 25% error

in rejecting forgery signatures and 20% error in rejecting genuine signatures. The

results for the online system show significant improvement over the state-of-the-art

results, and the results for the offline system are comparable with the performance

of experienced human examiners.
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Özet

Biometrik doğrulama insanın kişisel özelliklerini (parmak izi, yüz, iris, ses gibi)

kullanarak gerçekleştirilen kimlik doğrulama yöntemidir. Günümüz teknolojisinin

getirdiği olanaklarla önemi gün geçtikçe artan biometrik doğrulama, kart veya parola

tabanlı güvenlik sistemlerine göre daha pratik (parola hatırlama, kart kaybetme

ve çaldırma sorunları yok), aynı zamanda daha güvenlidir (örn. bir parolayı tah-

min etmek bir parmak izini taklit etmekten daha kolaydır). İmza kişinin fiziksel

özelliklerine bağlı olmayan, davranışsal bir biometriktir, bundan dolayı imza za-

manla değişebilir ve parmakizi veya iris kadar özebir değildir. Göz irisi veya par-

makizi gibi biometrikler kişiye özgü olmalarına karşın, suçlular ile ilişkilendirildikleri

ve kişi hakkında sağlık gibi konularda istenmeyen bilgileri açığa çıkardıkları için,

bu sistemleri kullanmaya başlayan ülkelerde toplum tarafından kolaylıkla kabul

görmemişlerdir. Öte yandan imza, günümüzde hemen her ortamda kimlik doğrulama

işlemleri için gerekli bir bilgi olarak görülmektedir.

İmza doğrulama statik (off-line) veya dinamik (on-line) imza doğrulama şeklinde

iki ana konu olarak değerlendirilmektedir. Kağıt üzerindeki statik bir imzadan,

tarama yoluyla sadece imzanın şeklini içeren bir imge elde edilmesine karşın, dokun-

maya hassas tabletlere atılan dinamik imzalarda hem imzanın şekli, hem de di-

namik özellikleri (hızı, kaç darbede atıldığı, kalemin ne kadar bastırıldığı gibi) elde

edilebilir. Statik bir imzanın kopyalanması elde bir örnek varsa oldukça kolay ol-

masına karşın, dinamik özellikler imzayı daha kişiye özgü kılar ve taklit edilmesini

zorlaştırır. Yine de her iki imza türüne dayalı doğrulama sistemlerinin kullanım

alanları farklıdır: mesela statik imza doğrulayıcı bir sistem banka çeklerindeki sahte-

ciliklerin yakalanmasında kullanılırken, dinamik imza doğrulama sistemleri özellikle

kredi kartındaki sahteciliklerin yakalanmasında kullanılmaktadır. Dinamik imza

doğrulama sistemleri ayrıca bina girişlerinde, eliçi ve avuçiçi bilgisayarlarındaki bil-

gilerin korunmasında kullanılmaktadır.

Bu çalışmada iki ayrı imza türüne dayalı (statik ve dinamik) iki farklı imza

doğrulama sistemi sunulmaktadır. Her iki sistemde de kullanıcı bir kaç referans imza



vererek sisteme kaydolur. Bu referans imzalarından, kişinin imzalarının özelliklerini

ve değişkenliğini karakterize eden öznitelikler çıkarılır ve sistemde bu kullanıcıya

özgü değerler olarak saklanır. Her iki sistemin girdi olarak kabul ettikleri imza

türleri ve imzalardan çıkarılan öznitelikler farklı olmalarına rağmen, sistemler aynı

doğrulama yöntemine dayanmaktadırlar: herhangi bir imza doğrulanacağı zaman,

bu imza iddia edilen kişinin bütün referans imzalarıyla karşılaştırılır ve test edilen

imzanın referans imzalarına uzaklığı (farklılığı) hesaplanır. Herhangi iki imza arasın-

daki farklılık, farklı uzunluklardaki iki dizinin, linear olmayan bir değişimle gelebile-

cekleri en benzer hallerin uzaklığını hesaplamak için kullanılan ”Dynamic Time

Warping” algoritması ile bulunur. Daha önce geliştirilmiş imza doğrulama sistem-

lerinde, bu işlemin sonucunda elde edilen minimum uzaklık (test imzasının en yakın

referans imzasına uzaklığı) veya test imzasının şablon referans imzasına uzaklığı, bu

kişiye ait ortalama değerlerle karşılaştırılarak, imzanın gerçek mi, taklit mi olduğuna

buluşsal yöntemlerle karar verilmekteydi. Önerdiğimiz doğrulama yönteminde bahsi

geçen uzaklıklar kendilerine karşılık gelen referans imzalar arasındaki ortalama uzak-

lıklarla normalize edilerek, sahte ve gerçek imzaların birbirinden ayrık oldukları

öznitelik uzayı oluşturmaktadırlar. Çalışmamızda imzalardan çıkarılan üç boyutlu

öznitelik vektörleri Bayes sınıflandırıcı, Destekçi Vektör Makinesi, ve Linear sınıflan-

dırıcı kullanarak imzaların sahte olup olmadığını tespit etmek için kullanılmışlardır.

Sistemleri denemek için 100 ayrı kişiden toplam 620 dinamik ve 20 kişiden toplam

100 statik deneme imzası (gerçek ve sahte) toplanmıştır. Gerçek taklit imzaları

elde etmek zor olduğu için, taklit edeceği imzanın şeklini ve mümkünse imzalama

haraketlerini görebilen taklitçilerden nitelikli sahte imzalar alınmıştır. Dinamik

imza doğrulama sistemi gerçek imzaların %1.4’ünü yanlışlıkla redederken, sahte

imzaların sadece %1.3’ü yanlışlıkla kabul etmiştir. Statik imzayı taklit etmek daha

kolay olduğu için, statik imza doğrulama sistemi sahte imzaların %25’ini yanlışlıkla

kabul ederken, gerçek imzaların %20’sini yanlışlıkla redetmiştir. Önerilen dinamik

doğrulama sistemi var olan sistemlerden daha üstün performans sergilerken, statik

doğrulama sistemimizden de bu konudaki uzman kişilerin başarısıyla kıyaslanabilir

performans elde edilmiştir.
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Chapter 1

Biometric Authentication

Automatically verifying someone’s identity by his face, iris or fingerprint is no longer

science fiction, but rather it became a daily routine authentication procedure in

many places. Biometrics is the utilization of physiological characteristics (face,

iris, fingerprint) or behavioral traits (signature, voice) for identity verification of an

individual, though the complete list of characteristics is much longer. Biometric

authentication is gaining popularity as a more trustable alternative to password-

based security systems, since it is almost impossible to steal, copy, or guess biometric

properties. Furthermore, one can forget his password, whereas forgetting is even not

an issue for biometric properties.

While looking for a proper biometric to be used in a particular application, the

following criteria are important: i) uniqueness, ii) whether it is hard to be copied

or stolen, iii) acceptability by the public, iv) and the cost to employ that particular

biometric data.

Signature is a behavioral biometric: it is not based on physiological properties

of the individual, such as fingerprint or face, but behavioral ones. As such, one’s

signature may change over time and it is not nearly as unique or difficult to forge

as iris patterns or fingerprints, however signature’s widespread acceptance by the

public, make it more suitable for certain lower-security authentication needs. For

instance, MasterCard estimates a $450 million loss each year due to credit card

fraud, likewise some billions of dollars being lost because of fraudulent encashment

of checks. Reliable automatic signature verification could be a proper solution to

reduce such losses since handwritten signatures are already involved in the credit

card transactions and bank checks encashment.
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Signature verification is split into two according to the available data in the in-

put. Offline (static) signature verification takes as input the image of a signature

and is useful in automatic verification of signatures found on bank checks and docu-

ments. Online (dynamic) signature verification uses signatures that are captured by

pressure-sensitive tablets that extract dynamic properties of a signature in addition

to its shape, and can be used in real time applications like credit card transactions,

protection of small personal devices (e.g. PDA, laptop), authorization of computer

users for accessing sensitive data or programs, and authentication of individuals for

access to physical devices or buildings.

Signatures in off-line systems usually may have noise, due to scanning hardware

or paper background, and contain less discriminative information since only the im-

age of the signature is the input to the system. While genuine signatures of the

same person may slightly vary, the differences between a forgery and a genuine sig-

natures may be imperceptible, which make automatic off-line signature verification

be a very challenging pattern recognition problem. Besides, the difference in pen

widths and unpredictable change in signature’s aspect ratio are other difficulties of

the problem. Worth to notice is the fact that even professional forensic examiners

perform at about 70% of correct signature classification rate (genuine or forgery).

On-line signatures are more unique and difficult to forge than their counterparts

are, since in addition to the shape information, dynamic features like speed, pres-

sure, and capture time of each point on the signature trajectory are available to

be involved in the classification. In other words, on-line signatures have an extra

dimension, which is not available for the off-line signatures. As a result, on-line

signature verification is more reliable than the off-line.

Figure 1.1 summarizes the task to be solved by a signature verification system:

given a test signature and a claimed ID, either accept a user as the identity owner

or deny him based on a dissimilarity degree between the test and reference set

signatures. In either of the signature verification systems, the users are first enrolled

by providing reference signature samples. When a user presents a test signature and

claims to be a particular individual, the test signature is compared with reference set

signatures of the claimed identity. If the dissimilarity between the test and reference

set signatures is above a certain threshold, the user is rejected, otherwise accepted.
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Figure 1.1: The task of an automatic signature verification system.

The dissimilarity between two signatures can be established in two ways: if

each time a signature is presented to the system, equal number of features are

being extracted from that signature, some sort of distance (ex. Euclidian distance)

can be used to compare these two signatures. In this type of comparison, global

features which describe the signature as a whole, are used. Systems using only global

features are generally fast but have low performance. The second alternative is to

make a point-by-point comparison, where the so called local features, pertaining to

particular points on the signature trajectory, are used. Since even signatures signed

by the same person may vary in length (implying feature vectors of different length),

methods which are able to non-linearly associate vectors of different lengths, such

as Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) are used.

In evaluating the performance of a signature verification system, there are two

important factors: the false rejection rate (FRR) of genuine signatures and the false

acceptance rate (FAR) of forgery signatures. As these two are inversely related,

lowering one often results in increasing the other. Hence, it is common to talk

about the equal error rate (EER) which is the point where FAR equals FRR. Since

obtaining actual forgeries is difficult, two forgery types have been defined: A skilled

forgery is signed by a person who has had access to a genuine signature for practice.

A random or zero-effort forgery is signed without having any information about the

signature, or even the name, of the person whose signature is forged. State of the art

performance of the available on-line signature verification algorithms lies between
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1% and 10% equal error rate, while off-line verification performance is still between

70% and 80% equal error rate. Unfortunately no public signature database of either

type is available, which makes it difficult to compare existing signature verification

systems.
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Chapter 2

On-Line Signature Verification

This chapter describes our on-line signature verification system. In Section 2.1 we

make a literature overview of existing methods for the on-line signature verification.

In Section 2.2, there is an overview of the system and its main modules. Section

2.3 covers the data acquisition process and the commercially available hardware

used for that purpose. Section 2.4 is on commonly used preprocessing techniques.

Feature extraction and dissimilarity comparison between two signatures are covered

in Sections 2.5 and 2.6, respectively. Enrollment to the system and verification

phases are described in Sections 2.7 and 2.8, respectively. Performance results of

the system are presented in Section 2.9. Finally, a summary of proposed system is

done in Section 2.10.

2.1 Literature Overview

Advances in technology and relatively cheap data acquisition devices triggered the

use of on-line signature verification in many real time applications, such as credit

card transactions, document flow applications, and identity authentication prior to

access of sensitive resources. There have been several studies on on-line signature

verification problem. On-line signature verification systems differ on various issues,

such as data acquisition, preprocessing, and dissimilarity calculation. These issues

and some of the existing methods are discussed in this section.

Most commonly used on-line signature acquisition devices are pressure sensitive

tablets with or without visual feedback. Smart pens capable of measuring forces

at the pen-tip, exerted in three direction, are also widely used in signature verifica-
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tion systems. Special hand gloves with sensors for detecting finger bend and hand

position and orientation [33], and a CCD camera based [19] approaches were also

in signature acquisition; however, due to their cost and impracticality, such devices

couldn’t find place in real systems. Depending on the device used, fair amount of

preprocessing may be applied to a signature data prior to the feature extraction

phase [13,21]. We discuss commonly used preprocessing techniques in Section 2.4.

In addition to the trajectory coordinates, behavioral characteristics, such as

pressure at pen tip, acceleration, and pen tilt, can be captured during the signing

session, depending on the device used. Using these characteristics more than 40

features [35] have been used for signature verification. Features can be classified in

two types: global and local. Global features are features related to the signature

as a whole; for instance the signing speed, signature bounding box, and Fourier

descriptors of the signature’s trajectory. Local features correspond to a specific

sample point along the trajectory of the signature. Examples of local features include

distance and curvature change between successive points on the signature trajectory.

Some researchers tried to find a set of robust and discriminative features for signature

verification purposes [5, 13, 26], however the sets were selected experimentally and

may only be applicable for particular verification methods. Genetic Algorithms were

also used to find the most useful set of features [36].

Due to behavioral changes of a writer, two signatures signed by the same person

may have different trajectory lengths (hence feature vectors of differing lengths).

Therefore, straight forward methods, such as the Euclidian distance or autocorre-

lation, are not very useful in calculation of the dissimilarity value between two sig-

natures. To overcome the problem, methods which can non-linearly relate vectors

of different length are commonly used. For instance, dynamic time warping algo-

rithm with some sort of the Euclidian distance [13, 15, 21, 23] and Hidden Markov

Models [5, 26] are commonly used in aligning two signatures.

Generally in previous systems, between 3 and 20 reference signatures are taken

during the user enrollment. Template generation for the reference set signatures is

generally accomplished by simply selecting one or more of the sample signatures as

templates [21,23]. Various thresholds are used in deciding whether the dissimilarity

between the test signature and the reference and/or template signatures is accept-
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able. Two types of threshold selections were reported: writer dependent and writer

independent thresholds [13]. In writer dependent scenario, thresholds are calculated

for each user individually, whereas in writer independent one, a global threshold for

all the writers is set empirically during the validation phase of the system.

State of the art performance of the existing on-line signature verification algo-

rithms lies between 1% and 10% equal error rate. However lack of publicly available

signature database and difficulties in obtaining skilled forgeries make it difficult to do

a comprehensive comparison between existing on-line signature verification methods.

Previously Proposed Methods

Jain et al. [13] used pressure sensitive tablet to capture signatures. After a fair

amount of preprocessing (resampling, smoothing, and size normalization), several

local features were extracted: x,y coordinate differences between two consecutive

points, curvature, gray values in 9x9 neighborhood, absolute and relative speeds,

etc. Number of signature strokes was the only extracted global feature, which was

later incorporated to the overall dissimilarity value. Dynamic programming algo-

rithm was applied to align two signatures. The overall dissimilarity value between

a test and a template signatures was then calculated by linearly incorporating the

alignment score, the difference of stroke numbers between the signatures, and the

normalization factor. Three different criteria were investigated to authenticate the

test signature: the minimum, the maximum, and the average dissimilarity values to

the reference set signatures. Finally, the common and the writer-dependent thresh-

olds were separately used to classify the signature as genuine or forgery. System

was tested using a test data set of 1232 genuine and 60 skilled forgery signatures,

captured from 102 individuals. In addition to that, system was also tested against

random forgeries, where authentic signatures of enrolled writers served as random

forgeries to each other. Jain et al. reported best results using minimum dissimilar-

ity criterion and writer-dependent thresholds, where the system performance was a

2.8% false accept rate and 1.6% false reject rate using only random forgeries. Using

common threshold yielded a 3.3% false reject rate and a 2.7% false accept rate again

using only random forgery signatures.
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Nalwa in his work [21] claims that the behavioral characteristics of a signature

are not as consistent as it’s shape information. He summarizes his algorithm in

three phases: normalization, description, and comparison. Normalization was used

to make the algorithm invariant to changes in signature’s orientation (rotation)

and aspect ratio (size). First a polygon was fitted through the sample points of

signature trajectory. Then signature was normalized with respect to rotation and

aspect ratio of fitted polygon. The jitter, the aspect ratio and number of strokes

were extracted prior to the normalization, and kept as global features. During the

description phase, five characteristic functions were derived, each describing a local

feature of the signature. Features described are: the x and y coordinates relative to

the center of mass, the torque and two curvature-ellipses measures derived from the

moments of inertia. Each function then was normalized to have zero mean. Finally,

comparison was providing the dissimilarity measure between the signature and a

claimed prototype. To do so, characteristic functions were simultaneously warped

against their prototypes, resulted in the overall alignment cost. The alignment cost

was then considered as a global feature. The final dissimilarity measure was defined

as the weighted harmonic mean of the global features. The system was tested using

three different data sets of 904, 982 and 790 genuine signatures, where 59, 102

and 43 writers contributed to, respectively. Additionally, 325, 401 and 424 forgery

signatures were collected. Using 6 reference signatures for the prototype creation,

Nalwa reported equal error rates of 3%, 2% and 5%, for each data set respectively.

Dolfing et al. [5] used a special digitizer consisting of an LCD and orthogonal sen-

sors for pen-tilt tracking. Using this setup, x and y coordinates, pressure at pen tip

and a pen tilt in the x and y directions were captured. A signature was divided into

number of segments, where segment boundaries were identified using velocity inver-

sion criterion (i.e. vy=0). 32 features were extracted for each segment : 13 spatial,

13 dynamic, and 6 contextual. Each signature was modeled by a single left-to-right

Hidden Markov model, where loop, forward and skip transition probabilities were

estimated during training. The observation probabilities were continuous Gaussian

mixtures and up to four Gaussians were allowed per each state. The number of

states was equal to 0.8 times number of segments of a reference signature. The

model was trained using the Maximum Likelihood criterion and applying Viterbi
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algorithm, followed by linear discriminant analysis. Test signature’s dissimilarity

calculation was based on the Viterbi algorithm, which calculates the likelihood of

the signature being generated by the claimed writer’s model. An adaptive threshold,

which is a combination of a common offset and a writer dependent threshold, was

used for accepting or rejecting a test signature. A test data set of 1530 genuine and

3000 amateur forgeries was constructed, using signatures collected from 51 individ-

uals. Furthermore, 240 skilled forgeries were supplied by 6 professional document

examiners. In average, an equal error rate of 2.45% was obtained.

Rigoll et al. [26] provided a comparison between on-line and off-line signature

verification using Hidden Markov Models. Signatures used for either of the systems

were from the same data set; hence while using signatures for the off-line verification

system ,all dynamic features were discarded and only the image of the signature was

used. Seven different feature types were empirically tested for their discriminative

capabilities. Although Rigoll et al. used discrete Hidden Markov Models, they

didn’t mention about the structure of the models. The Viterbi algorithm was used to

compute the likelihood probability of a test signature belonged to a claimed writer’s

model. The system was tested on very small data set: 14 writers contributed to the

data set with 20 signatures each, 16 of which were used for training each writer’s

model, and the remaining 4 (56 total) were used for testing. As for the forgery

set, 60 forgeries were supplied by 10 forgers, where 40 of them were skilled forgeries.

Each feature was evaluated for it’s discriminative power. Then empirically combined

feature sets were tested in the same manner. The feature set of bitmap, velocity,

Fourier transform and pressure features yielded the best performance results of 1%

equal error for the on-line system. For the off-line case an equal error rate of 1.9%

was obtained. Although good performance results are reported for these systems,

the data sets are too small to give reliable performance numbers.

2.2 General System Overview

Figure 2.1 depicts a high level representation of the proposed on-line signature veri-

fication system. Data acquisition module is responsible for capturing signature data

during the signing session. Profile generator creates a profile, based on the infor-
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mation extracted from the reference signatures of the user, which is then stored

in the system database. Verification engine is responsible for the verification of a

given test signature, based on the dissimilarity between the test and the reference

set signatures.

Figure 2.1: High level representation of the proposed on-line signature verification

system.

An on-line signature can be viewed as a function of time. This fact makes it

easier to derive the signing characteristics for a particular user, as explained in

Section 2.5. Due to the same fact, on-line signature verification systems are more

reliable compared to off-line signature verification systems.

Figure 2.2 depicts a sample on-line signature in our database. Arrows in the

figure 2.3 show signing flow of the signature which can’t be easily deduced even for

such simple signature (numbers indicate signing sequence of signature strokes). The
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sampling points of that signature are depicted in Figure 2.4. Distances between

sampling points are not even, caused by the variation of signing speed with time,

which is a behavioral characteristic of a writer. Depending on the device used,

behavioral characteristics, such as pressure at pen tip, acceleration, and pen tilt,

can be captured during the signing session. Overview of the commercially available

data acquisition hardware is presented in Section 2.3.

Figure 2.2: Sample on-line signature from our signature database.

Figure 2.3: Signing flow of the sample on-line signature. Red arrows show signing

flow and numbers indicate signing sequence of signature strokes.

Some of the data acquisition hardware may introduce noise and jaggedness to

the signature data. Similarly, use of different acquisition devices within the same

system may introduce change in signature’s scale and orientation. Most commonly
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Figure 2.4: Sampling points of the example on-line signature.

used preprocessing techniques to remove such variations, along with their advantages

and shortcomings are described in Section 2.4.

During enrollment the user gives a number of reference signatures which are used

in creating a profile for that user in the system. The user profile contains supplied

reference signatures and similarity values which describe variations within the ref-

erence signatures. Similarity between two signatures is calculated using dynamic

programming algorithm, as described in Section 2.6. More detailed information

about similarity values and the way they are being extracted is provided in Section

2.7.

Verification engine is used to authenticate a given (test) signature against the

claimed ID. The test signature is compared with each reference signature using dy-

namic programming algorithm. Comparison results in a number of similarity values,

which are then presented to a classifier for a final decision. We have experimented

with Support Vector Machine, Bayes, and Linear classifiers. Verification process is

broadly described in Section 2.8.

2.3 Data Acquisition

Digital tablets are one of the oldest types of input devices used with the computer.

In the 1950s, US military used a type of digital tablet in a system developed to

help in manipulation of radar images. These systems cost millions of dollars and

filled entire rooms. In the 1970s, minicomputers that used CAD (Computer Aided
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Design) became available. These systems used a puck to input information. The

puck resembled a mouse, only it had a lens with a crosshair mounted in the front

part. The puck was used on a special tablet and contained numerous buttons [32].

Pressure tablets were also available for Amiga; for instance EasyL is one of them.

It had an active area of 8.5”x11” and only sensed the pressure being on or off (no

variable pressure). Today pressure sensitive tablets are very common and they are a

relatively cheap computer accessory. Pressure sensitive tablets, also called graphics

tablets or pads, are widely used for graphics manipulation, CAD, web browsing and

simply instead of a mouse.

Figure 2.5: Interlink Electronics ePad-ink pressure sensitive tablet with visual feed-

back.

There are some key points which determine the quality and possible application

areas of a tablet: size of the active area of a pad, resolution, pressure sensitivity

levels, sampling rate, and availability of visual feedback. Input device capabili-

ties determine the quality of signature features, being extracted during the signing

sessions, and directly effect performance of the systems.

Tablets are not the only possible input device for on-line signature verification

systems. Digital pens or smart pens with some special sensors at pen tip are an

alternative to pressure sensitive tablets. For instance, the FingerSystem’s i-pen has

an optical sensor which provides accurate and precise position of pen motion or

LCI’s SmartPen which has sensors that determine the angle and precise movements

of the pen. SmartPen is also capable of reading and converting writing or voice into

computer text. Yet another example is Logitech’s Digital Pen. A comprehensive
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list of the pressure sensitive tablets that are commercially available in the market,

is presented in Table 2.1.

Brand & Model Active Area Pressure Levels Resolution

Interlink ePad-ink 3”x2.20” 512 300dpi

Wacom Graphire2 3.65” x 5” 512 1016lpi

Aiptek Hyperpen 6000U 4.5”x6” 512 3048lpi

Dynalink FreeDraw 5”x3.75” 512 2540lpi

Genius EasyPen 4”x3” - 2540lpi

Genius WizardPen 4”x3” 512 4064lpi

Genius MousePen 5.5”x4” 512 4064lpi

CalComp DrawingBoard III 12”x12” 256 2540lpi

Paradise Graphics Tablet 5”x4” 512 2048dpi

UC-Logic SuperPen 4030 4”x3” 512 1000lpi

UC-Logic SuperPen 8060 8”x6” 1024 1000lpi

Acedad Flair 5”x3.75” 512 2540lpi

Table 2.1: Pressure sensitive tablets available in the market.

We have used both Wacom’s Graphire2 pressure sensitive tablet and Interlink’s

ePad-ink with visual feedback. Both tablets are capable of sampling data at about

100 samples per second: at each sample point, the x,y coordinates of the signature’s

trajectory and the time stamp are recorded. Wacom’s pen is featured to capture

samples only during the interaction of the pen tip with the tablet. ePad-ink doesn’t

require special pen to be used and is capable of giving visual feedback (Figure 2.5)

through a LCD screen, which gives to a signer natural feeling of signing on ordinary

paper.

2.4 Preprocessing

There are some commonly done preprocessing steps, aimed to improve the verifica-

tion performance of a system. These range from size normalization to smoothing of

the trajectory and resampling. All of the preprocessing techniques are done at the
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expense of removing some properties peculiar to the particular writer. There may

be some circumstances where performing these are inevitable, such as when using

noisy data acquisition devices or when there are discrepancies among the hardware

devices within the system. In such cases, one should carefully choose and design the

preprocessing phase of the system. Within our setup, where the hardware was one

type and had a sufficient resolution, we decided to bypass preprocessing so that the

timing characteristics of the writer were not discarded.

Tablets with low resolutions or low sampling rates may give signatures that

have jaggedness which is commonly removed using smoothing techniques. However,

tremor in the signature, which can also cause the jaggedness, may be a behavioral

characteristic of a writer. Applying smoothing will remove that characteristic.

In the systems where tablets of different active areas are used, signature size

normalization is a frequently used preprocessing technique. Comparing two signa-

tures having the same shape but different sizes would result in low similarity scores,

when using some of the comparison techniques, such as point-by-point comparison

by applying dynamic programming algorithm. Size normalization is commonly ap-

plied to obtain scale invariance for such comparison algorithms. However, the size

may be a writer dependent characteristic, i.e. writer may always sign in only large

or small signatures, whereas normalization will remove it.

Modern tablets have a sampling rate of more than 100 trajectory points per

second. In some of the previous methods, resampling, as a preprocessing step, was

used to get rid of possibly redundant data . After successful resampling, shape

related features were more reliably extracted, however this was done at an expense

of loosing speed information, implicitly incorporated in the data.

2.4.1 Resampling

Due to the high sampling rate of the tablet, some sample points mark the same

trajectory point, especially when the pen movement is slow. Most verification

systems resample the input so as to obtain a trajectory consisting of equidistant

points [13, 15, 36]. This is often done in order to remove redundant points to speed

up the comparisons and to obtain a shape-based representation, removing the time

dependencies. However, resampling also results in significant loss of information
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since the seemingly redundant data incorporates speed characteristics of the gen-

uine signer. It is very difficult to catch and imitate the signing dynamics of the

original signature. Furthermore, a signature is considered as a ballistic movement

such as handwriting or throwing a ball, and a forger carefully imitating a signature

would in general be slower than the owner of the signature.

Another problem with resampling is that the critical points, capturing the char-

acteristics of the signature, may be lost; critical points are sometimes added sepa-

rately to the set of equidistant points obtained after resampling to solve this prob-

lem [13]. For instance Ohishi et al. don’t do uniform resampling but resample data

according to the curvature change between consecutive sample points [23].

2.4.2 Normalization

In systems where the user may have to sign on tablets with different active areas,

signature size normalization may be required. People usually scale their signatures to

fit the area available for the signature. However, size difference may be a problem in

comparing two signatures. Generally, signatures are normalized with respect to both

width and height, but scaling doesn’t always solve the problem since the signature

may have a different aspect ratio. Alternatively, signature size can be normalized

according to one of the dimensions (width or height), which doesn’t completely

remove size characteristic of a writer. It is also known that, people doesn’t equally

scale their signatures with respect to width and height [7]. The signature size is

considered to be a writer specific characteristics, i.e. writer may always sign only

in large or small signatures, which should be preserved if there is no difference the

sizes of the active areas of tablets, used in the system.

Normalization with respect to skew is a preprocessing technique commonly used

for handwriting recognition. In handwriting recognition systems, this type of nor-

malization is performed to recognize words independent of the writing style. How-

ever, skew normalization is not useful technique for signature verification, since the

skew is a writer specific characteristic.

Size normalization is not performed in our system, since there is a consistency

between the tablets we use.
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2.4.3 Smoothing

Tablets which have low resolution may suffer from discretization errors, resulting in

jagged signature trajectories. Extracting local features from jagged signature tra-

jectories, and then using them for verification may lead to poor system performance.

Hence, smoothing is required for low resolution tablets. Herbst et al. used cubic

smoothing splines [11] to both interpolate signature data between discrete tablet

grid points and smooth the data.

Jain et al. [13] has used a Gaussian filter to smooth the signature. Gaussian filter

smooths out small fluctuations in the signal, while preserving its’ overall structure.

The x- and the y-direction of the signature were smoothed separately.

2.5 Feature Extraction

Feature extraction phase is one of the crucial phases of an on-line signature verifi-

cation system. The discriminative power of the features and their resilience to the

variation within the reference signatures of a writer, play one of the major roles in

the whole verification process. While features related to the signature shape are

not dependent on the data acquisition device, presence of dynamic features, such as

pressure at the pen-tip or pen-tilt, depends on the hardware used.

As mentioned previously, features may be classified as global or local, where

global features identify signature’s properties as a whole and local ones correspond

to a properties specific to a sampling point. As an example, signature bounding

box, trajectory length or average signing speed are global features, and distance or

curvature change between consecutive points on the signature trajectory are local

features. Features may also be classified as spatial (related to the shape) or temporal

(related to the dynamics).

More than 40 different features have been reported and used for on-line signa-

ture verification. Some of the earlier researchers have compared these features and

proposed a sets of features most reliable for the verification [5,13,26]. Dolfing et al.

used linear discriminant analysis to identify most discriminative features; Jain et

al. and Rigoll et al. identified feature sets by evaluating their effect on verification

performance of the proposed systems. Yang et al. have used Genetic Algorithm to
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find the most useful features for on-line signature verification [36]. However, there is

no publicly available on-line signature database and there are no standards on how

skilled forgeries must be obtained, so it becomes difficult to justify which features

are really discriminative and most suitable for on-line signature verification.

iP

i+P  2

i+P  1

i−P  2

i−P  1

x

y

β

dy

dx

Figure 2.6: Local features extracted from an on-line signature trajectory.

Extracting and using only global features for verification is relatively easier and

requires less computational resources than using of local features. However, global

features alone lack discriminative power. We didn’t use any global features in our

method, all the features we have experimented with were local.

In our system we have experimented with the following local features of the

sample points on the signature trajectory:

• x and y offsets relative to the first point on the signature trajectory

• x and y coordinate differences between two consecutive points

• curvature differences between two consecutive points

• critical points of signature trajectory

Figure 2.6 illustrates the curvature (β) and the differences in x,y coordinates (dx, dy)

for the point Pi. Pi−2 through Pi+2 represent consecutive signature trajectory points.

Each point has x and y coordinates and a time stamp as its initial features captured

by the hardware. Time stamp represents a time instant when a point was recorded

during the signature acquisition process. The curvature around the point Pi is

obtained as the angle between the dashed lines.
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All of the above mentioned features except critical points are calculated for each

sample point on a signature trajectory. Critical points are a set of the sampling

points which define signature’s overall shape, and are described in Subsection 2.5.1.

Feature vectors of each feature type are separately extracted and then used for

calculation of the dissimilarity value between two signatures. Since signature data is

not resampled in the system, feature vectors of length equal to a number of sampling

points in a signature trajectory are extracted. Dissimilarity value calculation is

described in Section 2.6.

2.5.1 Critical Points

Although different heuristics may be established to identify critical points of a sig-

nature trajectory, we prefer to call sampling points of high curvature as the critical

points. Critical points, defined in this way, indicate crucial sampling points which

determine overall shape (skeleton) of a signature. Rest of the points, which are

around critical points, refine some subtle details of the signature shape. However,

these non-critical points determine temporal features of a writer behavior, such as

velocity or pressure change.

To identify critical points, all redundant points are first discarded from a sig-

nature trajectory. Redundant points are those consecutive points which indicate

same coordinates of a signature trajectory but captured at different time periods.

Redundant points are caused by slow signing speed of a writer and high sampling

rate of the data acquisition hardware. Then the curvature is calculated for each

remaining trajectory point. Finally, if the curvature difference between two con-

secutive points is higher than some threshold that point is identified as a critical,

otherwise discarded. Figure 2.7 indicates critical points of the signature depicted

on Figure 2.2.

2.6 Signature Dissimilarity Calculation

Now that the signature can be represented by the feature vector, we need a method

to compare two signatures based on their vector representations. Aa was mentioned

before, there is a variation among genuine signatures of a writer, which may result

19



Figure 2.7: Critical points identified on an on-line signature trajectory.

in signatures of different lengths implying feature vectors of different lengths. Dif-

ference between the vector lengths makes it impossible to use a naive element-wise

comparison of signatures, such as Euclidian distance between two vectors.

Taking into consideration that signature trajectory can be viewed as a function

of time, a reliable dissimilarity comparison method must meet following criteria:

(i) cross-over alignments between the points are not allowed, (ii) variation within

genuine signatures must be taken in to consideration.

In our system, in order to compare two signatures, Dynamic Time Warping algo-

rithm is used. This algorithm is a well-known and widely used method for aligning

vectors of different lengths. Dynamic time warping algorithm finds the best non-

linear alignment of two vectors such that the overall distance between corresponding

vector elements is minimized in least square sense. The overall distance between two

signatures S1 and S2 is calculated in linear time as shown in the following equation:

C[i, j] = Min





C[i− 1, j] + GapCost,

C[i, j − 1] + GapCost,

C[i− 1, j − 1] + Dist(S1[i], S2[j])

(2.1)

where Si[j] denotes the i’th signature’s j’th point in the trajectory and

Dist(x, y) =





0 if ||x− y|| < Thr

||x− y|| − Thr otherwise
(2.2)
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which is designed in a way to allow small variations between aligned elements.

The above formulae show the well-known dynamic programming algorithm, where

C is the matrix to be filled by the algorithm and the GapCost is the constant co-

efficient penalizing a missing or extraneous point in either of the signatures. The

Dist function is designed to allow for insignificant variation in reference signatures

by using the constant Thr, which is the threshold defining maximum allowed dis-

similarity between the aligned sampling points. The result of applying the dynamic

programming algorithm (C[length(S1), length(S2)]) gives the dissimilarity score of

two signatures, which we call a distance between two signatures.

One of the crucial points in the dynamic programming is the selection of gap

penalties. Proper selection of gap penalties will enable the control over the alignment

score, such that the score between forgery and genuine signatures will be high,

whereas it remains low for genuine signatures. Different strategies can be followed

in gap penalty selection:

• Constant gap penalty regardless of gap length.

• Larger gap opening penalty followed by a much smaller gap extension penalty.

• Gap penalty increasing rapidly with gap length.

• Different gap penalties for reference and test signatures.

The alignment score will linearly increase with respect to the gap length, using

constant gap penalty. Using larger gap opening penalty followed by a much smaller

gap extension penalty allows better control over a number of gap segments in the

alignment. Gap penalty which is rapidly (exponentially) increasing with a gap length

can maintain an alignment scheme where just small gap segments will be permitted.

Using different gap penalties for a reference and a test signatures will give a control

over a significance of a gap opening in either of the signatures.

2.7 Enrollment

During enrollment to the system, a user supplies a number of reference signatures,

which are then used for calculations of user specific statistics describing the varia-

tion within reference signatures. Feature vectors are extracted from the reference
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signatures, and are pairwise aligned using the dynamic programming algorithm. So

if the user supplies N reference signatures, pairwise alignments of them result in

N(N − 1)/2 distances using which following statistics are being calculated:

• Average of distances to nearest signatures

• Average of distances to farthest signatures

• Average value of all pairwise alignments

The average of distances to nearest signatures is being calculated by averaging the

distances from each reference signature to it’s closest neighbor. The average of

distances to farthest signatures is calculated in the same manner, however in this

case distances to the farthest neighbors are being averaged. In addition to the

averages, template signature is also selected amongst the reference set. The template

signature is referred to be the one from which average distance to all other reference

signatures is the minimum.

Figure 2.8 depicts the reference signatures supplied by a particular user, where xi

represents i’th reference signature supplied by the user, Xt represents the template

signature. Min and Max represent maximum and minimum distances among the

reference signatures, respectively. Dashed line with an arrow points to a nearest

neighbor of a signature it is originating from. Average of distances represented by

dashed lines with arrows gives the average of distances to nearest signatures.

Figure 2.8: Distances between reference signatures used for user profile creation.

We store the reference signatures together with the mentioned average distances

in a user profile, to later be used during the verification process. In return to the
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signatures, the user receives an ID which defines his identity in the system.

2.8 Verification

During the verification phase, a test signature and an ID of a claimed user are sub-

mitted to the system. The test signature is compared with each reference signature,

resulting in a number of distances. Out of these distances, distance to the closest,

farthest, and the template signatures are all used to classify the test signature as

genuine or forgery. Figure 2.9 depicts the distances used for the verification.

Figure 2.9: The distances used in the verification process. xi represents i’th reference

signature. Y and Xt denote the test and the template signatures, respectively. dmax,

dmin, dtemplate represent distances to the furthest, nearest and template reference

signatures, respectively.

In previous systems, only one of these distances, typically the distance to the

nearest reference signature or the distance to a template signature, was chosen in

an ad-hoc manner, to classify the signature as genuine or forgery. In our system, we

utilize all of these distances, treating them as features in a two-class classification

problem, using standard pattern classification techniques, such as Bayes classifier,

Support Vector Machines, and Linear classifier.

Since the dissimilarity score between two signatures directly depends on lengths

of these signatures, the score must be transformed to a more robust feature. After

studying and experimenting we came up with two transformations. In the first one,

the distances are normalized by their corresponding averages in the reference set.
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In the second one, the distances are transformed to their z-score, described in detail

in 2.8.4. Applying these transformations eliminates the need for user-dependent

thresholds.

The distribution of the normalized validation data, shown in Figure 2.10, sup-

ports that genuine and forgery signatures are well separated with the normalized

features. Supplementary data distributions are given in appendix A. We have exper-

imented with Bayes classifier, SVM (Support Vector Machine), and Linear classifier

to robustly separate genuine and forgery distributions. In order to train and opti-

mize the classifiers, a validation data set of 76 genuine and 54 forgery signatures,

was constructed. Each validation signature was compared to the reference set of

signatures of a user that the validation signature claimed to belong. The resulting

distances of each validation signature were either normalized or transformed to z-

scores, which then were used for training. Mentioned classifiers and the way they

were trained are described in subsections 2.8.2, 2.8.3, and 2.8.1, respectively.
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Figure 2.10: Plot of genuine (blue dots) and forgery signatures (red stars) with

respect to the 3-dimensional normalized distance vector, where dmax, dmin, and

dtempl represent dimensions spanned by the corresponding normalized distances.

2.8.1 Linear Classifier

Principal Component Analysis or Karhunen-Loeve Transformation is a well known

linear dimensionality reduction technique. Using PCA, high-dimensional data can
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be projected on to a lower dimensional space which best represents the data in a

least-squares sense. In other words, PCA, instead of selecting a subset of a given

set of features, linearly combines them to produce a smaller set of features. Since

theoretical background of PCA is beyond the scope of this work we will only explain

practical application of the technique to the problem of signature verification. For

details on PCA refer to [14].

The principal component was calculated using the feature vectors of signatures in

the validation data set, where each vector was the set of the transformed distances.

Same vectors were then projected onto the principal component and reduced to a

one dimensional data. A threshold value, which well separated the genuine and

forgery signatures, was empirically selected by examining the distributions of the

projected vectors. The same threshold was then used in classifying the test signa-

tures projected onto the same principal component.

As the three features were highly correlated (Figure 2.10), we could reduce the

dimensionality from three to one while keeping most of the variance. This technique

was separately applied to vectors of normalized distances and z-scores, respectively.

The results are reported in section 2.9.

2.8.2 Bayes Classifier

Bayesian decision theory is a well known statistical technique used for pattern clas-

sification. Bayesian theory is deeply studied in [6], here we will only briefly provide

with the necessary terminology and describe the way the Bayes classifier is used for

on-line signature verification problem.

A prior probability of a signature class (genuine or forgery) represents the fre-

quency of that particular class being selected each time a signature is verified. In

our case, each class has equal prior probability, since each time a signature is verified

there is an equal chance of classifying that signature as genuine or forgery. Cf and

Cg denote class labels of forgery and genuine signatures, respectively and P (Ck)

denotes prior probability of a class k (genuine or forgery).

A probability that a signature has a feature vector X and belongs to a class

k is called a joint probability and is denoted by P (Ck, X). A a probability that a

signature has a feature vector X given that it belongs to a class k is a conditional
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probability and is denoted by P (X|Ck). The difference between joint and conditional

probabilities is that the joint probability is calculated over all signatures, while con-

ditional probability is calculated only over a particular class of signatures. Besides,

the joint probability can be expressed in terms of the conditional and the prior

probabilities in the following way:

P (Ck, X) = P (X|Ck)P (Ck) (2.3)

or

P (Ck, X) = P (Ck|X)P (X) (2.4)

where P (Ck|X) is called a posterior probability, and P (X) is a probability of ob-

serving feature vector X over all signatures (genuine and forgery). The posterior

probability represents a probability that a signature belongs to a class k given that

a feature vector X was measured for it. Using the above two equations, posterior

probability can be expressed as:

P (Ck|X) =
P (X|Ck)P (Ck)

P (X)
(2.5)

The Bayes theorem states that classifying a signature to a class having the

largest posterior probability minimizes the misclassification error, i.e. decide Cg

if P (Cg|X) > P (Cf |X) otherwise decide Cf . In addition to that, posterior prob-

abilities can be expressed in terms of probabilities which are relatively easier to

calculate.

We have modeled posterior probabilities of genuine and forgery signature dis-

tributions using Gaussian densities. A d-dimensional Gaussian density, namely a

Multivariate Normal Distribution, is represented in Equation 2.6, where x is a d-

dimensional feature vector (3 in our case), Σ denotes covariance matrix, µ is a mean

vector, |Σ| and Σ−1 represent determinant and inverse of the covariance matrix,

respectively.

p(x) =
1

2πd/2|Σ|1/2
exp[−1

2
(x− µ)T Σ−1(x− µ)] (2.6)

The parameters of the Gaussians were estimated using validation data set. Gen-

erally, to ease the parameter estimation phase natural logarithm of the Gaussian is

used:

gk(x) = −1

2
(x− µk)

T Σ−1
k (x− µk)− d

2
ln 2π − 1

2
ln |Σk|+ ln P (Ck) (2.7)
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Since the prior probabilities of genuine and forgery signatures are assumed to be

equal, second and forth terms of the above equation can be removed. The dis-

criminant function is defined as g(x) = gg(x) − gf (x), where test signature will be

classified as genuine if g(x) > 0 or forgery otherwise. Classification results using

Bayes classifier are reported in section 2.9.

2.8.3 Support Vector Machine

Support Vector Machine (SVM) is a relatively new pattern classification technique,

based on statistical learning theory [4, 31, 34]. SVMs are applicable to regression

and classification tasks where they have consistently shown higher performance than

traditional learning tools (especially for classification problems).

The basic idea of SVMs is that, SVM maps the input space into a higher dimen-

sional feature space. Mapping can be done either linearly or non-linearly, according

to the kernel function used for the mapping. In this new feature space, the SVM

constructs separating hyperplanes that are optimal in the sense that the classes are

separated with the largest margin and minimum classification error. The optimal

hyper plane can be written as a combination of a few feature points those are called

the support vectors of the optimal hyper plane.

In our system SVM was trained using the 3-dimensional feature vectors of the

transformed distances which were calculated using signatures of the validation data

set. Later, same SVM was used to classify signatures of the test data set.

2.8.4 Z-Scores

Standardized score or z-score is known to represent relative status of that score in a

distribution. In our case, z-score indicates a deviation of a distance from a mean of

its distribution in a standard deviation units. In other words, z-score indicates how

many standard deviations away is a distance from its mean. Z-Score is calculated

as fallows:

Z =
x− µ

σ
(2.8)

Converting the distances to their z-scores will transform the distribution of gen-

uine signatures of a particular writer to a distribution of 0 mean and a standard
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deviation of 1. This transformation doesn’t alter the form of the original distri-

bution, since the frequency of any given z-score is equal to that of the distance it

corresponds to in the original distribution.

2.9 Performance Evaluation

Here we describe a strategy our system’s performance is evaluated. Data sets used

for the evaluation and performance results are described in subsections 2.9.1 and

2.9.2, respectively.

In evaluating the performance of a signature verification system, there are two

important factors: the false rejection rate (FRR) of genuine signatures and the

false acceptance rate FAR) of forgery signatures. As these two are inversely related,

lowering one often results in increasing the other. Hence, it is common to talk about

the equal error rate which is the point where FAR equals FRR. Since obtaining

actual forgeries is difficult, two other forgery types have been defined and used in

performance evaluations. A skilled forgery is signed by a person who has had access

to a genuine signature for practice. A random or zero-effort forgery is signed without

having any information about the signature, or even the name of the person whose

signature is forged. While any signature in a database can be used as a random

forgery to everyone besides its owner, obtaining truly skilled forgeries is difficult,

since subjects forging signatures to help build a signature database are not expected

to be as ambitious as an actual forger. Therefore, it may be more suitable to talk

about random and informed forgeries.

2.9.1 Data Sets

The system performance was evaluated using sample signatures supplied by 94 sub-

jects enrolled in our system. 73 of the enrolled subjects are students (graduate and

undergraduates), faculty members, and workers of Sabanci University, where the

remaining 21 were enrolled to the system during the demonstration of the system in

CeBIT 2002, in Istanbul. Figure 2.11 depicts sample signatures of some users who

contributed to our signature database.

There were no constraints on how to sign and no information about the working
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mechanism of the system were supplied to the subjects, so that they signed in their

most natural way. Each subject supplied 10 to 15 genuine signatures 8 of which were

used for profile creation and the rest for the performance evaluation of the system,

which comprise our first data set (G1) of 182 test genuine signatures.

To collect skilled forgeries we added a signing simulation module to our system.

Simulation module animates the signing process of a signature so that the forger

is able to see not only the signature shape but the signing dynamics (speed and

acceleration) as well. Signature simulation module animates signature dynamics

according to the time stamps of signature’s trajectory points. Forgers had a chance

to see the animation several times and practice tracing over the signature image a

few times before forging it. Our forgery data set (F1) consists of 313 skilled forgeries

obtained in this way.

A data set (G2) of 124 genuine signatures, which were collected from the subjects

who enrolled to the system more than six months before their contribution to the

G2 (3-5 signatures from each). The aim of constructing this data set was to test

the system against possible changes in signatures over time.

A validation data set of 76 and 54 genuine and forgery signatures, respectively

was constructed to train some of the classifiers and estimate their parameters.

Finally, to evaluate the system performance against random forgeries we used

each genuine signature in the database as a forgery for users beside the owner. These

random forgeries may be considered as a data set (F2) of totally 69936 signatures.

All data sets mentioned above are summarized in Table 2.2. Note that, even though

this is not a very large set, there is no public online signature database (that we

know of).

Data Set Signature # Type

G1 182 Genuine

F1 313 Skilled forgeries

G2 124 Genuine

F2 69936 Random forgeries

Table 2.2: Data sets used to evaluate on-line signature verification system’s perfor-

mance.
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Figure 2.11: Sample signatures of some users who contributed to the signature

database.

2.9.2 Results

Results reported here are based on the verification of test signatures, where each

signature was represented by a feature vector of elements corresponding to x and

y coordinate differences between two consecutive trajectory points. Performance

results of the system based on the other features, which were described in Section

2.5, are reported in Appendix B.

Table 2.3 summarizes performance results, where the best results were obtained

using the Linear classifier. Overall performance error rate for the Linear classifier is

1.46%, which is a good result compared to the state-of-the-art performance results.

First three rows of the Table 2.3 are the results of the classifiers using the 3-

dimensional feature vector of the normalized distances, and the following two rows
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using the feature vector of the distances converted to the z-scores. Results on z-

scores are inferior to the normalized distances, which is due to z-score’s property

of directly incorporating variance of a distribution. Hence, the signatures of people

having large variation within their reference signatures can be forged more easily

if z-scores are used. Since our data sets contain genuine and forgery signatures

separately, only false accept error rate (FAR) or false reject error rate (FRR) is

reported for each data set. Overall error rate represents system’s error calculated

by averaging classification errors in G1, F1, and G2 data sets.

Classifier G1: FRR F1: FAR G2: FRR Overall Error Rate

Linear 1.65% 1.28% 1.61% 1.46%

Bayes 2.19% 3.52% 5.64% 3.60%

SVM 0.55% 3.85% 3.33% 2.75%

PCA on Z-Scores 2.88% 4.39% 8.87% 4.85%

Bayes on Z-Scores 4.39% 6.73% 6.45% 5.99%

Table 2.3: System performance results using the classifiers mentioned in section 2.8

and dx, dy in feature vectors.

The system’s performance was also evaluated against random forgeries using the

data set F2 and the Linear. False accept error rate was measured to be 1.06%.

This result seems to be unexpected when compared with the results on data set F1,

where forgeries were considered to be skilled. However, after the investigation of the

error cause, we found that only a few users who supplied very inconsistent reference

signatures have contributed to the reported false accept error rate.

The relative performances of the different classifiers are not very significant since

the database is rather small and the results are very close; rather, the main goal

of this work was the design of a dissimilarity measure that separates genuine and

forgery classes quite well.
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2.10 Summary

A system with improved decision criterion and classification methodology relying

solely on standard pattern recognition techniques is implemented for on-line signa-

ture verification.

Two different pressure sensitive tablets are used as the input devices to the sys-

tem. Each tablet is able to sample 100 sampling points per second, where each

sampling point has x,y coordinates and a time stamp as features. Different prepro-

cessing techniques commonly used in previous works are discussed. In our system,

we found that the advantage of not resampling, namely keeping all the dynamic in-

formation, significantly outweighs the advantages of resampling. Besides, difference

in coordinates between two consecutive trajectory points were found to be useful

for signature representation, as they are more robust to local variations of signa-

tures. The dissimilarity between two signatures is established using dynamic time

warping algorithm, which finds the best non-linear alignment of two vectors of dif-

ferent lengths such that the overall distance between corresponding vector elements

is minimized in least squares sense.

During the verification, a test signature and an ID of a claimed user is being

submitted to the system. After the alignment of the test signature with the refer-

ence set signatures, distances to the nearest, farthest, and template signatures are

recorded. In previous systems, only one of these distances, typically the distance to

the nearest reference signature or the distance to a template signature, was chosen,

in an ad-hoc manner, to classify the signature as genuine or forgery. In our system,

we utilize all of the distances using standard pattern classification techniques. The

distances are first normalized by the corresponding reference set averages, resulting

in a three dimensional space where genuine and forgery signature distributions are

well separated.

We have experimented with Bayes classifier, SVM, and Linear classifier to ver-

ify the test signature. To report unbiased system performance results, all of the

classifiers were trained using validation dataset and tested on separate test data

sets. We have collected 619 test signatures (genuine and forgery together) from 94

enrolled users. Since it is very difficult to obtain real forgeries, we obtained skilled

forgeries which are supplied by forgers who had access to signature data to practice
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before forging. To collect forgery signatures a special module is added to the system,

which is animating presented signature according to time stamps of sampling points.

Forger before submitting a signature had a chance to see the animation for several

times. Best results of 1.46% EER are obtained with the Linear classifier. The results

show significant improvement over the results of reported state-of-the-art systems.
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Chapter 3

Off-Line Signature Verification

This chapter describes our system proposed for an off-line signature verification. In

Section 3.1 we make a literature overview existing methods for the off-line signature

verification. In Section 3.2, brief description of the system and its main modules

are presented. Section 3.3 describes image preprocessing steps required to prepare

signatures for the feature extraction phase. Feature extraction phase is described in

Section 3.4, followed by the method designed to establish similarity degree between

two signatures, covered in Section 3.5. Enrollment to the system and the verification

processes are discussed in sections 3.6 and 3.7, respectively. The performance results

of the system are reported in Section 3.8.

3.1 Literature Overview

Automatic off-line signature verification is a very old pattern classification problem,

involving the discrimination of genuine and forgery signatures, written on a piece of

paper. Unlike on-line systems, off-line systems have only the image of a signature as

input; in other words, dynamic information is not available for the off-line signature

verification. Other difficulties such as variation within genuine signatures, noise

introduced by the scanning device, or a difference in pen width make off-line signa-

ture verification a challenging problem. It is worth to notice that, even professional

forensic examiners perform at about 70% of correct classification rate (genuine or

forgery). The difficulty of the classification can be appreciated by looking at the

Figure 3.1, which depicts four genuine and a test signatures. Although the test

signature seems to be authentic, it is actually a forgery.
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Figure 3.1: The figure depicts the difficulty of the signature classification. The

variation in the four reference signatures (at left) makes it difficult to classify the

test signature (at right).

Due to the difficulties of the problem, much of the research effort in the area has

been spent on random and simple (unprofessional) forgery detection, where deceit

is generally obvious. Unlike random forgery detection, skilled forgery detection is

a much more difficult task. Another interesting fact about signatures is that no

two genuine signatures are exactly the same; when two identical signatures found,

forensic examiners consider one as a trace over the other. Thus, a signature verifi-

cation system should be able to differentiate between the variation within genuine

signatures and the fraud. Off-line signature verification involved in skilled forgery

detection is still an open research question. Following is a brief review of the meth-

ods proposed for random and skilled forgery detections, respectively.

3.1.1 Random Forgery Detection

Since random forgeries differ significantly from the genuine signatures, and to a lesser

extent simple forgeries, some of the earliest systems used only image based features

for off-line signature verification. For instance, Revillet [25] used moment invariants

and Fourier descriptors to classify signatures as genuine or forgery. Nemcek [22]

used a maximum likelihood classifier, applied onto a number of features extracted

from the Hadamard Spectrum, to detect simple forgeries. Performance of Nemcek’s

system had a false reject rate of 11% and false accept rate of 41%. Chuang [3] divided

a signature into three regions (upper, middle, and lower) out of which a number of
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global features were extracted. The features and their ratios were compared with

those of the reference signature, using weighted distance as the dissimilarity metric.

Chuang reports a 20% equal error rate for the proposed method. As can be inferred

from the results of the systems, using only global image features is not sufficient

even for random forgery detection.

Most of the remarkable work in the area of random forgery detection was done

by Sabourin et al. In [27], Sabourin et al. used extended shadow codes, previously

proposed by Burr for handwritten character recognition [2], as a shape feature to

detect random forgeries. These codes incorporate both global and local represen-

tation of a signature. To calculate shadow codes the image is projected onto a

bar mask array, where each bar is associated with spatially constrained area of a

signature. Shadow projection was defined as the simultaneous projection of each

signature pixel onto it’s closest horizontal, vertical, and diagonal bars. Feature vec-

tor of normalized shadow codes is then used by a k-Nearest Neighborhood and a

minimum distance classifiers. Best system performance results of 2.16% equal er-

ror rate were obtained using k-NN classifier. However, extended shadow codes are

poorly tolerable to changes in signature translation, rotation, and scale.

Sabourin et al. also introduced an identity grid, separately for each writer [20].

Identity grid divides a signature in to a number of cells such that grid reflects overall

shape of the signature. Cells are then presented to a neural network, which reduces

cell sizes by 1/3. After the size reduction, for each cell a Fuzzy ARTMAP network is

trained to learn its contents. During the verification, outputs of each ARTMAP are

combined to produce the final decision. System’s performance results are reported

to be 9.14% of equal error rate.

Most of successful works of Sabourin et al. were based on shape matrices [30] and

a local granulometric size distributions [28,29]. Shape matrices were previously used

for planar shape representation of industrial parts and machine printed characters.

In the proposed method, shape matrices were used as a mixed shape feature for

signature verification. Mixed shape feature is actually a global feature, in calculation

of which positions of local features are taken into account. Best results of 0.84%

equal error rate were reported using a test data set of 800 signatures. In the second

work, a signature was centered on to a grid of rectangular retinas, which were excited
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by the signature’s trajectory pixels at that location. Granulometric size distribution

were used as the shape descriptors of each retina, where granulometry is the result

of a set of morphological openings. Finally, a feature vector of dimension equal to

a number of retinas was used by k-NN classifier to detect random forgeries. The

system’s performance was evaluated using the same test data set and the best result

reported to be a 0.02% of equal error rate. Although very good results were obtained

from both systems, they both assume that all signatures are of similar size, and that

the corresponding strokes of the signatures fall into approximately the same retinas.

Other methods which mainly aimed skilled forgery detection, and also reported

their results on random forgery detection, will be discussed in subsection 3.1.2.

3.1.2 Skilled Forgery Detection

Signatures in off-line systems usually may have noise, due to scanning hardware or

paper background, and contain less discriminative information since only the image

of the signature is the input to the system. While genuine signatures of the same

person may slightly vary, the differences between a forgery and a genuine signatures

may be imperceptible, which make automatic off-line signature verification be a very

challenging pattern recognition problem. Besides, the difference in pen widths and

unpredictable change in signature’s aspect ratio are other difficulties of the problem.

Herbst et al. proposed to use the Radon transform and the dynamic program-

ming algorithm to detect skilled forgeries [12]. A sinogram was constructed by

applying the Radon transform to a signature image, where the signature can be

reconstructed from it’s sinogram by applying inverse Radon transform. In order to

compare two signatures, their corresponding projections (rows of their sinograms)

were used as input to the dynamic programming algorithm. The dissimilarity of two

signatures was obtained by averaging alignment scores of corresponding projections.

The system was tested using a data set of 460 genuine, 138 skilled forgery, and 138

random forgery signatures. Herbst et al. reported a 23% equal error rate when only

skilled forgeries were used, and a 10% equal error rate when only random forgeries

were used.

Guo et al. [10] approached the problem by establishing a local correspondence

between a model and a questioned signature. The questioned signature was seg-
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mented into consecutive stroke segments that were matched to the stroke segments

of the model. Stroke segment boundaries were defined by topological features, such

as crossings and endings. The cost of the match was determined by comparing a set

of geometric properties of the corresponding sub-strokes and computing a weighted

sum of the property value differences. The least invariant features of the least invari-

ant sub-strokes were given the biggest weight, thus emphasizing features that were

highly writer-dependent. Random and simple forgeries were detected when a good

correspondence couldn’t be found. The threshold between genuine and forgery sig-

natures based on the correspondence cost was determined by a Gaussian statistical

model. Skilled forgery detection was performed by examining the writer-dependent

information embedded at the sub-stroke level and trying to capture unballistic mo-

tion and tremor information in each stroke segment. Guo et al. reported a 0.13%

false accept rate and 0.39% false reject rate using Sabourin’s data set of 800 test

signatures (genuine and random forgeries). For the case of skilled forgeries a 6%

false accept rate and 11% false reject rate was reported using a data set of 50 skilled

forgery and 200 genuine signatures.

Fang et al. [8] used vertical and horizontal projections of signatures for skilled

forgery detection. To compare two signatures their corresponding projections were

aligned using dynamic programming algorithm. Wrapping function of the test sig-

nature was compared to the average wrapping function of reference set signatures

using the Mahalanobis distance. A data set of 1320 genuine and 1320 forgery signa-

tures was used to test the system. Fang et al. reported the best results of 23.2% false

reject rate and 21.4% false accept rate, obtained using both vertical and horizontal

projections

Mizukami et al. [18] used displacement extraction method to establish dissimilar-

ity between two signatures. First, two dimensional displacement function between

two signature images was found using Gauss-Seidel iterative approximation method.

Displacement function matched corresponding coordinates between test and refer-

ence signatures. The dissimilarity between two signatures was calculated using sum

of Euclidian distances between corresponding signature coordinates, which were

prior adjusted using displacement function. A data set of 200 genuine and 200

skilled forgery signatures was constructed to test the system. Mizukami et al. re-
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ported performance result of a 24.9% average error rate.

3.2 General System Overview

Off-line signature verification has a significant use mainly in establishing the au-

thenticity of bank checks and other official documents, based on the signatures they

carry. For instance, thousands of checks are being processed in a day in most banks

or insurance companies; hence there is a great need for the automation of this pro-

cess. In the proposed system, instead of classifying a signature only as genuine or

forgery, the signature is being classified into three classes: genuine, forgery, and un-

certain. In this way, signatures which can be identified as genuine and forgery with

confidence will be separated, and a human examiner (ex. bank officer responsible

from signature inspection) will examine only a small portion of signatures classified

into the third class of uncertain signatures.

Figure 3.2 depicts a high level representation of the proposed off-line signature

verification system. The system can be viewed in three modules: image acquisition

and preprocessing module, enrollment and verification modules. Image acquisi-

tion and preprocessing module is responsible for extracting signature image from

a scanned document and afterwards preprocessing it for farther feature extraction.

Any ordinary scanner with enough resolution can be used as an image acquisition

device. During preprocessing, noise possibly introduced by the scanning hardware

is removed and the signature is binarized.

Before verification or enrollment can take place, features are needed to be ex-

tracted from the signature’s image. In on-line signature verification, feature extrac-

tion was a relatively easy phase as we had signature trajectory points indexed in a

vector according to their sampling time stamps. For the off-line case, we have only

a signature image to work on, where it is very hard to robustly extract permanent

and genuine signer’s unique features. We have extracted and experimented with sig-

nature envelopes and various projections as the features. Feature extraction phase

is covered in section 3.4.

During enrollment, user supplies a number of reference signatures which are used

by a profile generator to create a profile on the system for that user. Profile contains
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Figure 3.2: High level representation of the proposed off-line signature verification

system.

the reference signatures and similarity values. Similarity between two signatures is

calculated using the dynamic programming algorithm. Similarities among all ref-

erence signatures are further transformed to calculate similarity scores (distances)

which describe variations within reference signatures. Dynamic programming algo-

rithm is broadly described in section 2.6. More detailed information on similarity

values and how they are being extracted is given in section 3.5. Enrollment phase

to the system is covered in section 3.6.

Verification engine is used to authenticate a given (test) signature against the

claimed ID. Firstly, reference set signatures and similarity values corresponding to

the claimed ID, are retrieved from the system’s database. Then, using dynamic

programming algorithm, the test signature is compared with each reference set sig-

nature. Comparison results in a number of dissimilarity values (distances), which

further normalized and presented to a classifier as a feature vector. We have ex-

perimented with a linear classifier used in conjunction with Principal Component

Analysis, to classify a test signature as genuine or forgery. Normalization of the
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similarity values, and the way they were used by the classifier are broadly described

in section 3.7. Finally, performance evaluation and the data set used to evaluate

system’s performance are reported in section 3.8

3.3 Preprocessing

Any ordinary scanner with enough resolution can be used as an image acquisition

device. Scanning hardware may introduce noise to a signature image. Another

source of noise may be speckled paper background on which the signature is signed.

Noise on a signature image may thwart feature extraction process; hence it needs

to be removed. However preprocessing methods should be selected carefully as they

may remove signature properties peculiar to a signer.

Although we don’t know the real noise distribution, we have used a Gaussian

filter to smooth the image of a signature. Gaussian smoothing filter is known to be a

very successful in normally distributed noise removal. Two-dimensional, zero-mean

Gaussian function is defined as:

g[i, j] = e−
(i2+j2)

2σ2 (3.1)

where σ is the Gaussian spread parameter, determining the width of the Gaussian.

Since Gaussian function is symmetric, smoothing performed by the filter will be the

same in all directions thus edges in an image will not be biased in some particular

direction, which is important. After the smoothing, image is binarized by a simple

thresholding scheme.

Even after smoothing some small dots and isolated pixels may remain due to

binarization; hence we decided to use the morphological opening and closing opera-

tors to get rid of these spurious data. Image morphology is beyond the scope of this

work, hence we will only briefly describe the open and close morphological operators

to give some insight; for broad coverage on morphology refer to [9]. The opening

operator with a given structuring element will remove all the points which are too

small to contain that structuring element. The closing operator, in the contrary,

fills in holes and concavities smaller than that structuring element. Both close and

open operators smooth an image. Selection of structuring elements is a crucial step,

where if wrongly selected may cause distortions and deteriorate system performance.
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Signature’s size is considered to be one of the writer specific characteristics. We

preserved this characteristic in our on-line system by not doing size normalization,

since both tablets we used had approximately the same area for signing. However

in off-line signature verification systems, there is no reliable way to control change

in signature’s size, since signing area provided to gather reference signatures and

test signatures will be different in real applications. Scale difference of reference

set signatures and the test signature may severely affect feature extraction and the

similarity comparison phases. In the proposed off-line signature verification system,

signatures are normalized with respect to both width and height. We broadly discuss

signature normalization process in section 2.4.2.

3.4 Feature Extraction

In this work four different features were extracted for signature verification: upper

envelope, lower envelope, vertical, and horizontal projections. These features were

commonly used for handwriting recognition.

Upper envelope is the curve connecting upper most pixels of the signature tra-

jectory. Likewise, lower envelope is the curve connecting lower most pixels of the

signature trajectory. Figure 3.3 depicts a sample off-line signature, following is the

Figure 3.4 which is to depict the upper and lower envelopes extracted for that signa-

ture. To extract upper envelope, each column of the image is traversed from top to

bottom. The location of first encountered non-white pixel is marked as a point of the

upper envelope. In the same manner, to extract lower envelope of a signature, each

column of the image is traversed from bottom to top, recording first encountered

non-white pixels to the envelope curve. The last figure 3.5 depicts the horizontal

and vertical projection profiles of the same sample signature. Projection profiles

are very sensitive to a pen width; hence to overcome this problem both vertical and

horizontal profiles were normalized to signature’s height and width, respectively.

As was mentioned in the previous section, before features are actually extracted

the image of a signature is normalized, thus feature vectors are of fixed length. After

feature extraction, we merge these feature vectors into a single vector, to be later

used in similarity comparisons.
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Figure 3.3: Sample off-line signature.

Figure 3.4: Upper and lower envelopes of the signature shown in Figure 3.3.

3.5 Signature Dissimilarity Calculation

Once the feature vectors are extracted, there is a need for a method two compare

two signatures using their feature vectors. Since the feature vectors are of the

same length, the most natural way to compare them would be to use the Euclidian

distance between them. However this would lead to a very poor similarity metric

since the corresponding features in the vectors may be distorted due to the natural

Figure 3.5: Horizontal and vertical projection profiles of the signature shown in

Figure 3.3.
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variance among genuine signatures. Second straight-forward way to compare the

vectors would be to use autocorrelation. However autocorrelation misses the ability

to properly deal with non-linear distortions in the signatures and has the principal

area of application in recognition rather than verification, where in recognition the

task is to find the closest template signal when an unknown signal is presented.

Figure 3.6 depicts the lower envelopes extracted from two signatures which belong

to the same person, and justifies that if Euclidian distance or autocorrelation would

be used similarity score between these two feature vectors would be low.

Figure 3.6: Two lower envelopes, corresponding to a two signatures of a same person,

that would give a low similarity score if Euclidian distance or autocorrelation were

used.

Hence, there is need for a method which can relate corresponding features of

two vectors in a non-linear manner. In this system, we have used the Dynamic

Time Warping algorithm, which finds the best non-linear alignment of two vectors

such that the overall distance between corresponding vector elements is minimized

in a least squares manner. Dynamic time warping algorithm was described in great

detail in Section 2.6.

3.6 Enrollment

During enrollment to the system, a user supplies a number of reference signatures,

which are then used for calculations of user specific statistics describing the variation

within reference signatures. Feature vectors are extracted from the reference signa-

tures, and are pairwise aligned using dynamic programming algorithm as described
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in section 2.6. So if the user supplies N reference signatures, pairwise alignments

of them result in N(N − 1)/2 distances out of which following statistics are being

calculated:

• Average of distances to nearest signatures

• Average of distances to farthest signatures

• Average value of all pairwise alignments

Average of distances to nearest signatures is being calculated by averaging the dis-

tances from each reference signature to it’s closest neighbor. Average of distances to

farthest signatures is calculated in the same manner, however in this case distances

to the farthest neighbors are being averaged. In addition to the averages, template

signature is also selected amongst the reference set. The template signature is re-

ferred to be the one from which average distance to all other reference signatures is

the minimum.

After feature vectors are extracted, signature images are of no interest, since

feature vectors are what is used in verification. We store the feature vectors together

with the mentioned distances in a user profile, to later be used during the verification

process. In return to supplied reference signatures, the user receives an ID which

defines his identity in the system. For the case of bank checks, ID may be a customer

number, which can be printed on to all checks before a check book is given to a

customer.

3.7 Verification

Promising performance results were obtained from our on-line signature verification

system. This inspired us to adopt the same strategy for off-line signature verifica-

tion as well. After a signature is segmented from a document, preprocessed and

the feature vector extracted out of it, system retrieves a profile corresponding to the

claimed ID and the test vector is compared with each reference feature vector result-

ing in a number of distances. Out of these distances distance to the closest, farthest,

and a template signatures are then used to classify the test signature. Normally it

would be convenient to classify signature as genuine or forgery. However for off-line
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signature verification it would be more useful if the system could robustly classify

large portion of presented signatures as obviously genuine or forgery and leave the

rest (hopefully a small portion) for further human inspection. Thus, signatures in

our system are classified into three classes: genuine, forgery, and uncertain signa-

tures.

Before distances are used in the classification, they are normalized by the cor-

responding averages of the reference set. Normalized distances are then put in to

three dimensional feature vector, which is used by a classifier. The distribution of

the normalized validation data, shown in Fig. 3.7, supports that obviously genuine

and forgery samples are well separated with the normalized features and only a

small portion of signatures is left for human check. Note that by normalizing the

measured distance vectors by the corresponding reference set averages eliminates

the need for user-dependent thresholds.
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Figure 3.7: Plot of genuine (blue dots) and forgery signatures (red stars) with

respect to the 3-dimensional normalized distance vector, where dmax, dmin, and

dtempl represent dimensions spanned by the corresponding normalized distances.

Firstly, to classify a signature, three dimensional feature vector is reduced to

one dimension using PCA (Principal Component Analysis). PCA projects high-

dimensional data on to a lower dimensional space, which best represents data in

the least-squares sense, as described in more details in Section 2.8.1. To find the

principal component and threshold values, validation data set consisting of 20 gen-
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uine and 20 forgery signatures was used. Each validation signature was compared

to the reference set of signatures it claimed to belong, giving a 3-dimensional fea-

ture vector (min, max, and template distance), which was normalized as mentioned

above. Then normalized feature vectors were used to find the principal component

and farther projected on to it resulting in one dimensional data. Finally, threshold

values which define boundaries between genuine, forgery, and uncertain signature

classes were empirically selected from projected one dimensional data. Same prin-

cipal component and the thresholds calculated using validation data set were used

to classify test signatures. Performance results are reported in section 3.8.

3.8 Performance Evaluation

In this section, we present performance results of the proposed system for off-line

signature verification. In section 2.9 we have already mentioned about difficulties

and strategy to evaluate performance of a biometric based security systems, in

particular on-line signature verification systems. One of the main difficulties was to

conduct a real field test, where skilled forgers occasionally would try to break into

the system while genuine users routinely authenticate themselves.

3.8.1 Data Sets

We have constructed 3 data sets to evaluate the system performance, where 20 people

contributed. Each person supplied 9 genuine signatures signed with 4 different pens.

The reason behind using different pens was to test system’s resilience against the

changes in pen width. For each participant 6 out of the 9 signatures were randomly

selected and used as a reference set. 2 other genuine signatures from each signer

were set aside to construct first data set (G1) of 40 genuine signatures. Last genuine

signatures of each user, constituting a set of 20 genuine signatures, were used for

validation purposes. Each participant was asked to forge someone else’s signatures,

where two types of forgeries were collected: skilled and random. Forgeries supplied

by a person who had a signature to practice before forging it are considered to be

the skilled forgeries. In the case of random forgeries, people were only supplied with

the name of a genuine signature owner, before they forged it. Defining forgeries in
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this way, data sets of 60 skilled (F1) and 20 random (F2) forgeries were constructed.

Also another set of 20 skilled forgeries were set aside for validation purposes. All the

data sets we use, are disjoint. The table 3.1 summarizes data sets used to evaluate

system performance.

Data Set Signature # Type

G1 40 Genuine

F1 60 Skilled Forgery

F2 20 Random Forgery

Table 3.1: Data sets used to evaluate off-line system performance.

3.8.2 Results

Normally to evaluate a biometric based security system two criteria are important:

false accept rate and false reject rate. However for off-line signature verification sys-

tems, it would be more useful if the system could robustly classify a large portion

of the presented signatures as obviously genuine or forgery and leave the rest (hope-

fully a small portion) for further human inspection, since even human examiners do

that. In this way, the system could save much time for check examiners, working in

banks and other companies where thousands of the checks must be processed each

day.

Tables 3.2 and 3.3 summarize performance results of the system. Using all of

the features together (envelopes and projections) we got a 15% error rate rejecting

skilled forgeries; while non of the genuine signatures were rejected, 26% of all the

signatures (genuine and skilled forgeries) were classified as uncertain. In other words,

by classifying only 26% of the signatures as uncertain we were able to obtain 0% false

reject rate and 15% false accept rate. Slightly better results were obtained using

the envelopes (upper and lower) alone. In this case, 10% of the genuine signatures

were rejected, 13% of skilled forgeries were accepted, and only 16% of all signatures

were classified as uncertain. Using either of the feature set combinations (envelopes

and projections or just envelopes) was equally sufficient to successfully reject all of

the random forgeries.
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Data set FRR FAR Uncertain

G1 0% - 20%

F1 - 15% 28%

F2 - 0% 0%

Table 3.2: Performance results of the off-line signature verification system using

both the envelopes and the projection profiles in the feature vector.

Data set FRR FAR Uncertain

G1 10% - 20%

F1 - 13% 13%

F2 - 0% 0%

Table 3.3: Performance results of the off-line signature verification system using

only upper and lower envelopes in the feature vector.

Performance results of existing systems were reported with respect to false accept

and false reject error rates. To be able to compare the results of our system with

those of the existing systems, our system was retrained to classy signatures into

2 classes (genuine and forgery). Using the envelopes alone, we obtained a 25% of

error rate in rejecting skilled forgeries, and a 20% of error rate in accepting genuine

signatures.

As was mentioned in 3.1, state-of-the-art performance of the skilled forgery de-

tection is around 20% equal error rate and that of random forgery detection is about

0.2% equal error rate. Although our system was evaluated on a small test data set,

promising results are obtained.

3.9 Summary

Inspired by good results obtained from the on-line signature verification system,

same methodology was adopted for the off-line system. However, due to the less

discriminative information in the off-line signatures, lower performance results were

obtained. Major challenges of the problem are the variation within genuine signa-
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tures and hardly perceptible differences between a forgery and a genuine signatures

of a particular writer.

Image of a signatures, signed with a dark ink on a relatively white paper, is

the input to the system. Gaussian filtering followed by morphological closing and

opening operators are applied to remove possible noise from the signature image.

Then, the image size is normalized to get rid of the scaling problem. Four different

feature vectors are extracted from preprocessed image: upper and lower envelopes,

horizontal and vertical projections profiles of the signature. Feature vectors are then

merged to a single vector which is used for the signature dissimilarity calculation.

As the feature vector is extracted, the off-line signature verification system follows

the same methodology as on-line system do.

The dissimilarity between two signatures is established using dynamic program-

ming algorithm. To verify a test signature, first it is aligned with the reference

set signature of the claimed user, resulting the three distances. Then each of the

distances is normalized by the corresponding reference set average. Three dimen-

sional feature vector, with the normalized distances in it, is first projected on to the

principal component, and then classified using the linear classifier. Since the main

task of the system is to ease the work of human signature experts, signatures are

classified into three classes: genuine, forgery, and an uncertain. This classification

scheme reduces work of experts, since only a small portion of presented signatures is

classified into the third group, while the rest of the signatures are reliable classified

into the corresponding classes. This is necessary as it is impossible to find features

that can reliable separate the two classes (genuine or forgery).

The system is trained using the validation data set. 20 people contributed to the

test data set with a total of 100 signatures (genuine and skilled forgery). 10% of the

genuine signatures were rejected by the system and only 13% of forgeries accepted,

while 16% of the total amount classified as uncertain signatures. Obtained results

are comparable to those of the state-of-the-art.
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Chapter 4

Conclusions

In this thesis we have addressed the problem of handwritten signature verification.

We have formulated signature verification as a two-class problem and approached

it using standard pattern recognition techniques, improving the decision step of

the previous approaches which are commonly based on heuristic methods. Two

complete systems were presented: one for on-line and the other for off-line signature

verification. Both systems had similar verification methodology and differed only in

data acquisition and feature extraction modules.

Another important design decision was about not doing any preprocessing for

the on-line signature verification system. We have decided that the advantage of

not resampling, namely keeping all the dynamic information, significantly outweighs

the advantages of resampling.

In comparing two signatures, it is essential to use robust features that would

result in low dissimilarity score for genuine signatures and high one for forgeries.

After studying and experimenting with a number of features, for the on-line signa-

ture verification we have decided to use x and y coordinate differences between two

consecutive points, as they are more robust to local variations of the signatures.

Another improvement was in the design of the dynamic programming algorithm.

Various parameters were optimized. Parameters were chosen such that small vari-

ations within genuine signatures were ignored, while forgeries were still detected.

In all steps where parameters were set, we used the validation data to keep testing

completely unbiased.

In verifying a test signature, the signature is aligned with all reference set sig-

natures belonging to the claimed user, resulting in a number of dissimilarity scores:
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distances to nearest, farthest and template reference signatures. In previous sys-

tems, only one of these distances, typically the distance to the nearest reference

signature or the distance to a template signature, was chosen, in an ad-hoc manner,

to classify the signature as genuine or forgery. Here we proposed a method to utilize

all of these distances, treating them as features in a two-class classification problem,

using standard pattern classification techniques. The distances are first normalized,

resulting in a three dimensional feature space where genuine and forgery signature

distributions are well separated. We experimented with the Bayes classifier, Support

Vector Machines, and Linear classifier to classify a given signature into one of the

two classes (forgery or genuine).

Test data sets of 620 on-line and 100 off-line signatures were constructed to

evaluate performances of the two systems. Off-line signature data set is smaller

because it was time consuming to collect and scan the data. Since it is very difficult

to obtain real forgeries, we obtained skilled forgeries which were supplied by forgers

who had access to the signature data to practice before forging. Here we proposed

a new method to collect skilled forgeries: signatures to be forged are animated

according to the time stamps of their sampling points, hence a forger was able to

see both the shape and the dynamics of the signature. The online system had a

1.4% error in rejecting forgeries, while rejecting only 1.3% of genuine signatures.

As the reliability of the off-line signature verification is lower, even for forensic

experts, we decided to make a third category of signatures. Genuine and forgery

signatures, those which can be detected with high confidence, are separated to their

corresponding classes, while only a small portion of signatures are being identified

as uncertain and left for human inspection. An offline signature is easier to forge,

hence the offline system’s performance was lower: 10% of the genuine signatures

were rejected by the system, 13% of forgeries were accepted, while 16% of total

signature amount were delivered to the uncertain signatures class. The results for

the online system show significant improvement over the state-of-the-art results, and

the results for the offline system are comparable with the performance of experienced

human examiners.
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Appendix A

Additional Feature Distribution Graphs
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Figure A.1: Plot of genuine (blue dots) and forgery signatures (red stars) with
respect to the 3-dimensional distance vector, where calculation of distances is based
on the x and y coordinates relative to the first point of a signature trajectory. dmax,
dmin, and dtempl represent dimensions spanned by the corresponding normalized
distances.
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Figure A.2: Plot of genuine (blue dots) and forgery signatures (red stars) with re-
spect to the 3-dimensional distance vector, where calculation of distances is based
on the curvature differences between two consecutive points of a signature trajec-
tory. dmax, dmin, and dtempl represent dimensions spanned by the corresponding
normalized distances.
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Figure A.3: Plot of genuine (blue dots) and forgery signatures (red stars) with re-
spect to the 3-dimensional z-score vector, where calculation of z-scores is based on
the x and y coordinate differences between two consecutive points of a signature tra-
jectory. zmax, zmin, and ztempl represent dimensions spanned by the corresponding
z-scores.
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Figure A.4: Plot of genuine (blue dots) and forgery signatures (red stars) with
respect to the 3-dimensional z-score vector, where calculation of z-scores is based on
the x and y coordinates relative to the first point of a signature trajectory. zmax,
zmin, and ztempl represent dimensions spanned by the corresponding z-scores.
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Figure A.5: Plot of genuine (blue dots) and forgery signatures (red stars) with
respect to the 3-dimensional z-score vector, where calculation of z-scores is based on
the curvature differences between two consecutive points of a signature trajectory.
zmax, zmin, and ztempl represent dimensions spanned by the corresponding z-scores.
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Appendix B

Additional System Performance Evaluation Results

Data Set Signature # Type
G1 182 Genuine
F1 313 Skilled forgeries
G2 124 Genuine

Table B.1: Data sets used to evaluate on-line system performance.

Classifier G1: FRR F1: FAR G2: FRR Overall Error Rate
Linear 1.65% 8.74% 4.84% 5.98%
Bayes 1.09% 17.9% 4.03% 10.19%
SVM 0.55% 13.15% 3.33% 7.45%
PCA on Z-Scores 2.74% 6.73% 13.71% 6.96%
Bayes on Z-Scores 1.09% 16.66% 7.25% 10.19%

Table B.2: System performance results using the classifiers mentioned in section 2.8
and x and y coordinates relative to the first point of a signature trajectory in feature
vectors.

Classifier G1: FRR F1: FAR G2: FRR Overall Error Rate
Linear 2.74% 13.46% 8.06% 9.22%
Bayes 6.04% 14.10% 8.06% 10.51%
SVM 0% 15.70% 3.33% 8.58%
PCA on Z-Scores 2.74% 14.74% 6.45% 9.54%
Bayes on Z-Scores 6.04% 13.14% 8.06% 10.03%

Table B.3: System performance results using the classifiers mentioned in section 2.8
and curvature differences between two consecutive points in feature vectors.
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