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ABSTRACT

CAD/CAM systems and CNC machine tools have made significant impact on
machining accuracy and productivity. However, material removal rate and quality in
machining may still be limited due to issues related to the process mechanics which are not
considered in CAD/CAM systems. In this study, modeling structural properties of milling
system components is presented. These models eliminate the need for stiffness and transfer
function measurements, and together with cutting force and stability models, they can be
integrated into CAD/CAM systems to predict and compensate surface errors, and determine
chatter free machining conditions. Therefore, the process is also simulated in addition to the
geometry, which is usually the missing part in virtual manufacturing systems. The goal of
this research is to develop a virtual machining system for precision machining of sculptured
surfaces in which the part geometric errors contributed by the machine tool errors are

predicted and evaluated prior to the real cutting.

Cutting forces produce deformations of the tool and these cause dimensional and
form errors on the workpiece. Milling forces can be modeled for given cutter geometry,
cutting conditions and work material. The force prediction can be used to determine form
errors on the finished surface. Chatter vibrations developed due to dynamic interactions
between the cutting tool and workpiece. Chatter vibrations cause poor surface finish and
inconsistent product quality. Static and dynamic properties of end mill are required to
predict the form errors and chatter stability limits without measurement. In this research,
generalized equations are presented which can be used for predicting static and dynamic
properties of the cutting tool. The static and dynamic characteristics of tool and tool holder
can be obtained by using finite element analysis (FEA). Considering great variety of
machine tool and tool holder configurations and geometries, FEA for each configuration is
very time consuming. In this study, the models are seemed to be accurate for prediction

statics and dynamics characteristics of the tool.



OZET

Giiniimiizde CAD/CAM sistemlerinin ve CNC takim tezgahlarimin kullaniminin
artmasi ile isleme hassasiyetinde ve verimlilikte 6nemli gelismeler elde edilmistir. Ancak
talas kaldirma orani ve kalite gibi isleme mekanigine bagimli konular hala CAD/CAM
sistemlerinde g6z ardi edilmektedir. Bu ¢aligmada frezeleme sisteminin yapisal 6zellikleri
modellenmistir. Bu modellerin elastiklik katsayis1 ve transfer fonksiyonu ol¢limiine gerek
kalmadan, kesme kuvveti modelleri ve kararlilik modelleri ile birlikte CAD/CAM
sistemlerine katilarak ylizey hatalarinin tahmini ve giderilmesi, ayni zamanda tirlama
olusmadan kesme yapilabilmesini saglar. Bu ¢alismada takimlardan dolay1 kaynaklanan
geometrik hatalar1 kesme yapmadan 6nce tahmin eden sanal {iretim sistemi yapilmasi
amaglanmustir.

Kesme kuvvetleri takimda deformasyonlara neden olmakta ve bu deformasyonlardan
dolay1 ol¢ii ve sekil hatalart meydana gelmektedir. Frezeleme kuvvetleri, kesici takim
geometrisi, kesme kosullar1 ve is parcast malzesine bagimli olarak modellenmektedir. Bu
modelleme sonucu elde edilen kuvvet tahminleri, islenmis yiizeydeki form hatalarinin
hesaplanmasinda kullanilabilir. Tirlama, kesici takim ve is parcasi arasindaki dinamik
etkilesimler nedeniyle olusmaktadir. Tirlama diisiikk ylizey kalitesine ve istikrarsiz {irlin
kalitesine sebep olur. Parmak frezenin statik ve dinamik 6zellikleri, form hatalar1 ve tirlama
kararhilik sinirlarini 6lgmeden tahmin etmek icin gereklidir. Bu arastirmada kesici takimin
statik ve dinamik Ozelliklerini tahmin etmekte kullanilabilecek genel denklemler
sunulmustur. Takimin ve takim tutucunun statik ve dinamik karakterleri sonlu elemanlar
analizi yontemi kullanilarak elde edilmistir. Takim ve takim tutucularin ¢ok c¢esitli diizenek
ve geometrileri géz Oniine alindiginda, tamami icin ayri1 ayr1 sonlu elemanlar analizi
yapmak ¢ok zaman alict bir istir. Bu ¢alismada elde edilen modellerin statik ve dinamik

karakterleri belirlemede dogru sonuglar verdigi ispatlanmaistir.
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ABSTRACT

CAD/CAM systems and CNC machine tools have made significant impact on
machining accuracy and productivity. However, material removal rate and quality in
machining may still be limited due to issues related to the process mechanics which are not
considered in CAD/CAM systems. In this study, modeling structural properties of milling
system components is presented. These models eliminate the need for stiffness and transfer
function measurements, and together with cutting force and stability models, they can be
integrated into CAD/CAM systems to predict and compensate surface errors, and determine
chatter free machining conditions. Therefore, the process is also simulated in addition to the
geometry, which is usually the missing part in virtual manufacturing systems. The goal of
this research is to develop a virtual machining system for precision machining of sculptured
surfaces in which the part geometric errors contributed by the machine tool errors are

predicted and evaluated prior to the real cutting.

Cutting forces produce deformations of the tool and these cause dimensional and
form errors on the workpiece. Milling forces can be modeled for given cutter geometry,
cutting conditions and work material. The force prediction can be used to determine form
errors on the finished surface. Chatter vibrations developed due to dynamic interactions
between the cutting tool and workpiece. Chatter vibrations cause poor surface finish and
inconsistent product quality. Static and dynamic properties of end mill are required to
predict the form errors and chatter stability limits without measurement. In this research,
generalized equations are presented which can be used for predicting static and dynamic
properties of the cutting tool. The static and dynamic characteristics of tool and tool holder
can be obtained by using finite element analysis (FEA). Considering great variety of
machine tool and tool holder configurations and geometries, FEA for each configuration is
very time consuming. In this study, the models are seemed to be accurate for prediction

statics and dynamics characteristics of the tool.
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Giiniimiizde CAD/CAM sistemlerinin ve CNC takim tezgahlarimin kullaniminin
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talas kaldirma orani ve kalite gibi isleme mekanigine bagimli konular hala CAD/CAM
sistemlerinde g6z ardi edilmektedir. Bu ¢aligmada frezeleme sisteminin yapisal 6zellikleri
modellenmistir. Bu modellerin elastiklik katsayis1 ve transfer fonksiyonu ol¢limiine gerek
kalmadan, kesme kuvveti modelleri ve kararlilik modelleri ile birlikte CAD/CAM
sistemlerine katilarak ylizey hatalarinin tahmini ve giderilmesi, ayni zamanda tirlama
olusmadan kesme yapilabilmesini saglar. Bu ¢alismada takimlardan dolay1 kaynaklanan
geometrik hatalar1 kesme yapmadan 6nce tahmin eden sanal {iretim sistemi yapilmasi
amaglanmustir.

Kesme kuvvetleri takimda deformasyonlara neden olmakta ve bu deformasyonlardan
dolay1 ol¢ii ve sekil hatalart meydana gelmektedir. Frezeleme kuvvetleri, kesici takim
geometrisi, kesme kosullar1 ve is parcast malzesine bagimli olarak modellenmektedir. Bu
modelleme sonucu elde edilen kuvvet tahminleri, islenmis yiizeydeki form hatalarinin
hesaplanmasinda kullanilabilir. Tirlama, kesici takim ve is parcasi arasindaki dinamik
etkilesimler nedeniyle olusmaktadir. Tirlama diisiikk ylizey kalitesine ve istikrarsiz {irlin
kalitesine sebep olur. Parmak frezenin statik ve dinamik 6zellikleri, form hatalar1 ve tirlama
kararhilik sinirlarini 6lgmeden tahmin etmek icin gereklidir. Bu arastirmada kesici takimin
statik ve dinamik Ozelliklerini tahmin etmekte kullanilabilecek genel denklemler
sunulmustur. Takimin ve takim tutucunun statik ve dinamik karakterleri sonlu elemanlar
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CHAPTER 1

INTRODUCTION

Milling is one of the most commonly used machining processes in industry. Great
variety of parts with different geometry, complexity, quality and materials can be produced
by milling. In milling the main cutting motion is the rotation of a multitoothed cutter that
machines a workpiece that performs translative feed motions. There are two basic models,
face milling and peripheral milling (up and down milling). A very common type of
peripheral milling is end milling (Figure 1.1). The geometry of end milling operation is

presented in Figure 1.2.

Cutting edge

Figure 1.2:Geometry of end milling



Depending on the workpiece geometry, different milling cutters are used. Tool
holders are used to provide good concentricity between tool and machine spindle. (Figure

1.3)

Figure 1.3: Various milling cutting tools and tool holders

An end mill is a cutter of a smaller diameter (usually between 5 mm and 30 mm
diameter) clamped in overhang, and its length is several times its diameter. Figure 1.4

shows an end mill with detail geometric properties.

\w——— ______  OVERALL
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FLUTE
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Figure 1.4: Geometric properties of the end mill

Static and dynamic deformations of cutting tool play an important role in tolerance
integrity and stability in a machining process affecting part quality and productivity.
Modeling is needed for prediction static and dynamic properties of cutting tool without
measurement. The models can be integrated into CAD/CAM systems in order to achieve a
virtual machining system where most of the effects that are observed in real machining

could be simulated in advance.



1.1. Related Literature Review

Process modeling is needed for modeling structural properties of milling system
components. Modeling of milling process has been the subject of many studies some of
which are summarized by Smith and Tlusty (1991). The focus of these studies has mostly
been on the modeling of cutting geometry and force, stability and prediction of part quality.
Milling forces have been investigated using different approaches. Koenigsberger and
Sabberwal (1961) developed equations for milling forces using mechanistic modeling
where the cutting force coefficients which relate the chip area to tangential, radial and axial
forces are calibrated through force measurements. The mechanistic approach has been
widely used for the force predictions and also have been extended to predict associated
machine component deflections or surface geometrical errors (Kline et al., 1982; Budak
and Altintas, 1995). Another alternative is to use mechanics of cutting approach in
determining milling force coefficients as used by Armarego et al. (1985). In this approach,
an oblique cutting force model together with an orthogonal cutting database are used to
predict milling force coefficients eliminating the need for milling tests as different tool and
cutting geometries can be handled by the oblique model (Budak et al. 1996). Once the
cutting force coefficients are known, the milling forces can be determined by integrating
the forces along the cutting edges. Altintas et al. (1996, 2001) also demonstrated the
application of this approach to complex milling cutter geometries. Milling forces can be

used to predict tool and part deflection and form errors. (Figure 1.5)
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Figure 1.5: Effect of tool deflection on form error and surface roughness



Another major limitation on productivity and surface quality in milling is the chatter
vibrations which develop due to dynamic interactions between the cutting tool and
workpiece, and result in poor surface finish and reduced tool life. Tlusty et al. (1963) and
Tobias (1965) identified the most powerful source of self-excitation which is associated
with the structural dynamics of the machine tool and the feedback between the subsequent
cuts on the same cutting surface resulting in regeneration of waviness on the cutting
surfaces, and thus modulation in the chip thickness (Koenigsberger and Tlusty, 1967).
Under certain conditions the amplitude of vibrations grows and the cutting system becomes
unstable. Additional operations, mostly manual, are required to clean the chatter marks left
on the surface (Figure 1.6). Thus, chatter vibrations result in reduced productivity,

increased cost and inconsistent product quality.

Figure 1.6: Chatter marks on the surface

CAD/CAM is the most common example of computer integration to manufacturing
environment promising improved productivity, quality and flexibility. They are the most
important elements for development of virtual machining systems. One significant
shortcoming of CAD/CAM systems is the fact that they mostly neglect the mechanics of
the process when simulating the machining cycles. Many quality and productivity problems
such as excessive forces, deformations and vibrations resulting in reduced material removal
rates, on the other hand, are experienced during the machining. Process models together
with structural models of machining system components need to be integrated into
CAD/CAM environment in order to achieve a virtual machining system where most of the

effects that are observed in real machining could be simulated in advance.



Demonstrations of cutting model implementation in CAD/CAM systems have been
done in several studies [Altintas and Spence, 1991, Yazar et al., 1994]. Altintas and Spence
(1991), and Yazar et al. (1994) demonstrated that force models could be used to predict
form errors and optimize feedrates based on simulation at the CAD/CAM stage. Weck et al.
(1994) demonstrated determination of chatter free milling conditions in a commercial
CAD/CAM software. Cutting force coefficients and tool dynamics were needed for these
simulations, which were determined experimentally. Generation of an orthogonal cutting
database for a work material as Budak et al. (1996) did reduces the amount of experiments,
and thus makes implementation of force models in CAD/CAM more practical. There is a
need for more practical determination of structural properties of the cutting tool for a virtual
machining system. Kops et al. (1990) determined an equivalent diameter for end mill based
on FEA in order to be able to use beam equations for deflection calculations, which

eliminate stiffness measurements for each tool.

Static and dynamic deformations of machine tool, tool holder and cutting tool play an
important role in tolerance integrity and stability in a machining process affecting part
quality and productivity. Excessive static deflections may cause tolerance violations
whereas chatter vibrations result in poor surface finish. Cutting force, surface finish and
cutting stability models can be used to predict and overcome these problems. This would
require static and dynamic data for the structures involved in a machining system (Altintas,
2000). Considering great variety of machine tool configurations, tool holder and cutting
tool geometries, analysis of every case can be quite time consuming and unpractical. These
data are usually obtained by testing using stiffness measurements and modal analysis

(Altintas, 2000, Budak and Altintas, 1994 and Koenigsberger and Tlusty, 1967).

Recent improvements in machine and spindle designs have led to the increased use of
high-speed machining (HSM) in the manufacture of discrete parts (Smith et al., 1998). It is
recognized that a major practical limitation on the productivity of HSM systems is
regenerative chatter. Therefore, many studies have explored methods to maximize material
removal rate (MRR) during HSM, while avoiding chatter. HSM simulation, which is

crucial for pre-process chatter prediction and avoidance, requires knowledge of the system



dynamics reflected at the tool point. In general, a separate set of tool point frequency
response function (FRF) measurements must be performed for each tool/holder/spindle
combination on a particular machining center. These measurements can prove time
consuming and lead to costly machine downtime. In order to reduce measurement time and
increase process efficiency receptance coupling substructure analysis (RCSA) is used to
predict the tool point dynamic response. Building on early work of Duncan (1947), Bishop
and Johnson (1960) and more recent work of Ewins (1986) and Ferreira and Ewins (1995).
Schmitz and Donaldson (2000) and Schmitz et al. (2001) develop an analytic expression for
the frequency response at the free end of the milling cutter from: 1) an analytic model of
the tool; 2) an experimental measurement of the holder/spindle sub-assembly; and 3) a set
of empirical connection parameters. These parameters are extracted from a single
measurement of the tool/holder/spindle assembly at a known tool overhang length using

nonlinear least squares estimation (Schmitz and Burn, 2003).

1.2. Scope of the Study

Due to its wide use in industry, milling system is considered. The main concern of
this master thesis is the accurate knowledge the static and dynamic properties of machining
system components. Generalized equations are presented which can be used for predicting
the static and dynamic properties. Substructuring methods are used in predicting the total
system dynamics based on component analysis. Results presented here can be integrated to
a CAD/CAM environment together with process models towards development of a virtual

machining system.

End milling is a commonly used process in industry for parts with dimensional and
surface quality requirements. Chapter 2 gives process models (Budak, 2002) that can be

used improve productivity and quality. An analytical milling force model, which is used



tool deflection calculations, is presented. The prediction of form error is demonstrated. An

analytical model for prediction of chatter stability limit is presented.

Chapter 3 gives simplified equations to predict maximum tool deflection. Because
of the complex end mill geometry beam approximations do not provide accurate stiffness
and transfer function predictions. The moment of inertias of different end mill cross
sections must be determined (Nermes et al., 2001). In static analysis, moment area method
(Beer and Johnson, 1992) is used to calculate the deflection of end mill, which have two
segments, one for part with flute and the other for the shank. [-DEAS (Shih, 2000) finite
element analysis results for tool and tool holder is also presented in this chapter Analytical

equation solutions are compared with FEA results.

Chapter 4 starts with a brief explanation segmented beam model that is used to
predict tool dynamics. The solution of mode shapes and fundamental natural frequency is
presented (Rao, 1995). In order to avoid complex calculations simplified equations are
determined. I-DEAS finite element dynamic analysis results for tool and tool holder are

given. Transfer function measurement system and modal analysis are described.

The application of Receptance Coupling Substructure Analysis (RCSA) to the
analytic prediction of tool point dynamic response is described in chapter 5. The interface
stiffness and damping between tool and tool holder is identified. The effects of changes in

tool parameters and clamping conditions are evaluated.

In chapter 6, the analytical static and dynamic calculations are verified by
experiments. Displacement of the tool is measured. Maximum surface errors due to the tool
deflection are calculated and compared with experimental data (Budak and Altintas, 1994).

Application of simplified segmented beam equations is demonstrated by examples.

A conclusion of the study is provided in Chapter 7 summarizing the results

achieved.



CHAPTER 2

PROCESS MODELING IN MILLING

High cutting forces, tool breakage, part and tool deflections and chatter vibrations are
the common reasons for reduced productivity and quality in many milling operations.
Milling process can be modeled in order to overcome or reduce the effects of these
limitations. In this chapter, modeling methods of force, deflection, surface error and

stability are presented.

For a stable milling process, milling forces, part and tool deflections can be
determined using static analysis. The force predictions can be used to determine structural
deformations and form errors left on the finished surface. In the first and second section,

force and structural models are described.

Another very important limitation in milling is the self-exited chatter vibrations,
which cause poor surface finish and tool life resulting in reduced productivity. In the third

section, mathematical models for chatter are presented.



2.1. Milling Force Modeling

Milling forces can be modeled for given cutter geometry, cutting conditions, and
work material. The geometry of chip formation and milling force components is shown in

Figure 2.1. (Budak, 2002).

Figure 2.1: Cross sectional view of an end mill showing differential forces

Tangential (dF;) and radial (dF,) forces act on a differential flute element with height
dz. For a point on the (/) cutting tooth, differential milling forces in the tangential (dF))

and radial direction (dF,) can be given as

dF,/_ (9,2)=K,h;(¢,2)dz o
dF, (4.2) = K, dF, (¢.2)

where ¢ is the immersion angle measured from the positive y axis as shown in Figure 2.1.
The radial (w) and axial depth of cut (a), number of teeth (V), cutter radius (R) and helix
angle (f) determine what portion of a tooth is in contact with the workpiece for a given
angular orientation of the cutter (¢). In milling the instantaneous chip thickness variation

can be approximated as
hi(@,2)= 1;sin gy (2) 22)

where £, is the feed per tooth (mm/rev-tooth) and ¢(z) is the immersion angle for the flute

(7) at axial position z.



In equation 2.1 K; and K, are the milling force coefficients. All milling force
coefficients depend on the workpiece material and cutting tool geometry. In exponential
force model, milling force coefficients K; and K, can be expressed as exponential functions
of the average chip thickness. (Altintas, 2000) In linear force model, both cutting and edge

force coefficients are assumed to be independent of the chip thickness.
K,=Kph, P, K. =Kph, ™ (2.3)

where p and ¢ are cutting force constants determined from cutting experiments at different

feed rates. Average chip thickness (/,)
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(2.4)

In equation (2.1) the edge forces are also included in the cutting force coefficient,
which is usually referred to as the exponential force model. They are separated from the
cutting force coefficients in edge force or linear force model (Budak, 1994; Budak et al.,

1996):

dF, ($,2) =| Ko + K, oh;(¢,2) | dz

(2.5)
dF, ($,2)=| Ko + K oh;(4,2) |dz

where K, and K,. are the cutting force coefficients contributed by the shearing action in

tangential and radial directions, respectively and K, and K. are the edge constants.

Due to the helical flute, the immersion angle changes along the axial direction as

8,1 =4+ (G-, L 2.6)



where the cutter pitch angle (or tooth spacing angle) is defined as ¢,=27/N. At an axial

depth of cut z the lag angle is y=kzz, where ks~tan/F/R.

The tangential and radial forces can be resolved in the feed, x, and normal, y,

directions using the transformation as follows

dF, =—dF, cos¢; —dF, sing;

, (2.7)
dFy/ = dFt/_ sing; —dF,/ cos ¢,

The differential cutting forces are integrated analytically along the in-cut portion of

the flute j in order to obtain the total cutting force produced by the flute:
Fo,(8;(2)) = [ dF, ($;(2))dz (2.8)

where z;i(¢;j(z)) and z;,(¢;(z)) are the lower and upper axial engagement limits of the contact
or the tooth (j). The integrations are carried out by noting ¢(z)=¢+(j-1) @-kz, dg(z)=- kpdz
(Budak and Altintas, 1995). Thus

KR . z,(#)
)= m[_ cos2¢; + K, (24;(2)—sin 29, (Z))L, 0) (2.9)
Fy (9)= _Kt—ftR[(Zcﬁj (z)—sin2¢; (z)) +K, cos24; (Z)Tf“ @

4tan B z,(#)

The cutting forces contributed by all flutes are calculated and summed to obtain the total

instantaneous forces on cutter at immersion ¢:

E@=LF @ F®=1F) (2.10)



2.2. Tool Deflection and Form Error

In end milling, the finished workpiece surface is perpendicular to the direction of
feed. If feed and normal directions are aligned with Cartesian x and y axes respectively, any
deflection in the y-axis may produce a static form error. End mills can be considered as
elastic cylinder beam, cantilevered to the spindle through collet end chuck. Flexible cutters
deflect under the periodically varying milling forces, which are modeled in the previous

section.

Generating the surface becomes complex when the end mill has helical flutes. The
cutting forces are not constant but vary with the rotation of the end mill. Furthermore, the
helix angle of the flutes produces additional variation on distribution of cutting forces along
the z-axis. As the end mill rotates, the tip of the flute moves to immersion @. Since the
normal cutting force will not be zero at this instant, the elastic end mill displacement will
produce a form error on the surface. Depending on the number of flutes and width of cut,
there may be more than one cutting edge point in contact with the finish surface.
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Figure 2.2: The influence of the milling mode on the surface form errors

The contact points can be calculated by equating the instantaneous immersion angle

$;(2)=¢+(j—1D¢, —kpzz, with kg=tan/J/R to zero in up milling and to 7 in down milling.

Uy i L ET@HG18,)

kg kg

(down milling), j=1,2..N-1 (2.11)



where S s the helix angle and @,=(2n)/N is the cutter pitch angle. The cutter can be divided

into M number of small disk elements within the axial depth of cut (@) and it can be rotated

at increments Ag, (i.e., §=0, Ag, 2A4,..., ¢,) (Figure 2.3) (Altintas, 2000).

Figure 2.3: Static deformation model of an end mill

Each differential element has an axial depth of cut (Az=a/M), and the influence of the

helix angle may be neglected by selecting small elements. The differential cutting force

produced by element m is given by

AR, ($) = Ko S [sing ()= K, cosg (]sing) (2.12)

where K, and K, are cutting constants and f; is the feed rate per tooth.

The immersion angle for the element m is ¢(m)= ¢+(j-1) @,-kp.mAz. The deflection in

the y direction at the contact point z; caused by the force applied at the element m is given

by the cantilever beam formulation. As

V2

y.m’m
——Q3v,,- V), 0< v, <v,
2 (2.13)

5y(zkam) = 2

AF v
ﬁ(?’vk' Vm)> Vi < Vi



where E is the young modulus, / is the area of inertia of the tool and v=/-z;, with / being
the gage length of the cutter measured form the collet face. The calculation of the area
moment inertia of the tool with flute will be explained in chapter 3. The total static
deflection at axial contact point z; is calculated by superposition of the deflections produced

by all M elemental forces on the end mill:

6,()= 8, (zym) (2.14)

At the points where the cutting edges is contact with the finish surface, the deflection

0y(zx) 1s imprinted as a dimensional error on the workpiece.
2.3. Milling Stability

Chatter in milling has been modeled analytically by considering the regeneration in
chip thickness and the machine-process interactions. Milling cutters can be considered to

have two orthogonal degrees of freedom as shown in Figure 2.4. (Altintas, 2000)
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Figure 2.4: Chatter model for milling.

Milling forces excite both cutter and workpiece causing vibrations, which are

imprinted on the cutting surface. Each vibrating cutting tooth removes the wavy surface left



from the previous tooth resulting in modulated chip thickness, which can be expressed as

follows
hi(@)=Jysing;+(] =V, )=, =v; ) (2.15)

where the feed per tooth f, represents the static part of the chip thickness, and ¢=(2¢ is the
angular position of the cutter measured with respect to the first tooth and corresponding to
the rotational speed (2 (rad/sec). In the equation 2.15, ¢ and w indicate cutter and
workpiece, respectively. v; and v;” are the dynamic displacements due to tool and workpiece
vibrations for the current and previous tooth passes, and include tool and workpiece
vibrations. The static part in equation is neglected in the stability analysis. Then the

dynamic chip thickness can be put in the following form

hj(¢)=[Axsin¢j +Aycos¢j] (2.16)
where

Ae=(0,=x0) = (%, —x;,)

Ayz(yc _yco)_(yw_yﬁz)

where (x.,y.) and (x,,),) are the dynamic displacements of the cutter and workpiece in x
and y directions, respectively. Similar to the static force analysis, dynamic cutting forces

can be obtained using the dynamic chip thickness as

Fx—laK o oy | A 2.17
Fy_ztawaw{Ay} @17

where the directional coefficients are given as:

N
a, =—3 sin2¢$j +K,(1—cos2¢j)
j=1
N .
dyy, ==X (I+c0s2¢;) + K, sin2¢;
jv=1 (2.18)
= _jzl—(l—cos 2¢;)+ K, sin2¢;
N .
dye =— X —sin2¢; + K, (1+cos2¢;)
j=1



The directional coefficients, a, depend on the angular position of the cutter which

makes equation (2.17) time-varying:

{FO} = ak, [40]{A0) (2.19)

[A(?)] is periodic at the tooth passing frequency w=N{2and with corresponding period
of T=2m/w. In general, Fourier series expansion of the periodic term is used for the solution
of the periodic systems. The higher harmonics do not affect the accuracy of the predictions,
and it is sufficient to include only the average term in the Fourier series expansion of the
periodic terms (Budak et al., 1994; 1998). As the directional coefficients are valid within

the cutting zone between start and exit immersion angles (dy, @ex):

_14 _N| % %
[4)]= ’, %[A(cé)]dcé— 27’L‘w a)J (2.20)

1 .
Oy 25[0052¢—2Kr¢5+Kr sm2¢]§j
I . é
&y :5[—sm2¢—2¢+K,cos2¢]¢;
; .21
: é.
a, :5[—s1n2¢+2¢+K, cos2¢]¢u

1 . é.
a,, 25[—cos2¢—2Kr¢—Kr sin2¢] ;

Substituting equation (2.20-21) into equation 2.19 and assuming harmonic functions

for dynamic forces and vibrations, the characteristics equation is obtained as

det[[1]+A[Gyi,)] | =0 (2.22)

where /1] is the unit matrix, and the oriented transfer function matrix is defined as:



[Go]=[40][6]

[G(ia)c)] = [Gc(ia)c)] + [Gw(ia)c)] (2.23)
G, G
p P,

G, ]=| . | (p=ew

P

[Gp"‘ Gp«" ]

and the eigenvalue (A1) in equation (2.22) is given as

__ N kali—eieT
A= 4ﬂKta(l e ) (2.24)

If the eigenvalue A is known, the stability limit can be determined from equation
(2.24). A can easily be computed from equation (2.22) numerically. However, an analytical

solution is possible if the cross transfer functions, G, and G,,, are neglected in equation

(2.22):

A=—2;0 at a12—4a0) (2.25)
where
ty =G ()G i) 0502, ~ 2y 5| (2.26)

@ =0, Gy i)+, G, (i)

Since the transfer functions are complex, A will have complex and real parts. The

-iw.T_

axial depth of cut (a) is a real number. When A=AR+iAJ and e cos®T-isinw.T are

substituted in equation 2.24, the complex part of the equation has to vanish yielding

_A,_ sno T

K (2.27)

- Ap - 1-cosaw. T

The above can be solved to obtain a relation between the chatter frequency and the

spindle speed (Budak et al., 1995; 1998):



. =¢&+2kr

E=m-2y ; l//=tan_11c (2.28)
n=—-

NT
where ¢ is the phase difference between the inner and outer modulations, & is an integer
corresponding to the number of vibration waves within a tooth period, and # is the spindle
speed (rpm). After the imaginary part in equation (2.24) is vanished, the following is
obtained for the stability limit (Budak and Altintas, 1995; 1998):

i :—2]\”;? (1+4°) (2.29)

4

Equations (2.28-29) can be used to determine the stability limit and corresponding
spindle speed. When this procedure is repeated for a range of chatter frequencies and

number of vibration waves, k, the stability lobe diagram for a milling system is obtained.
2.4. Importance of the Static and Dynamic Properties of Cutting Tools

Static and dynamic properties of machine tool play an important role in a machining
process. The knowledge of static and dynamic deflections of the end mill are required to
predict the form errors and chatter stability limits in milling without experimental

measurements.

Excessive forces, deformations and vibrations are experienced during the machining
and these problems cause many quality and productivity problems. Process models together
with structural models of machining system components need to be integrated into
CAD/CAM environment in order to predict and compensate surface errors and determine
chatter free machining condition. In a virtual machining system, most of the effects that are

observed in real machining could be simulated in advance. This is very important in



CAD/CAM systems where part accuracy and the optimal stable cutting conditions can be

determined before the machining process.

Therefore, force, form error and stability models can be used to improve productivity,

dimensional integrity and surface finish quality in milling operations

2.5. Summary

In this chapter, milling process models are reviewed. These models can be used in
optimization of milling operations. Deflection and surface generation model is used to
predict form error. Stability lobes are obtained by using chatter model in order to determine
suitable spindle speed. Importance of the static and dynamic properties of tool is

emphasized.



CHAPTER 3

MODELING OF END MILL STATICS

Static deflection of end mills may cause tolerance violation on milled parts. These
deflection need to be modeled in order to check the tolerance integrity for potential
compensation of the errors. This chapter covers the static analysis of typical 2-Flute, 3-
Flute and 4-Flute end mills. A cantilever beam model is used to perform the static analysis
of the cutters under load. Therefore, the primary objective of the static analysis is to

determine the maximum deflection at the tool tip.

In the end milling process the deflection of the cutter is an important factor affecting
the accuracy of machining, with implications on the selection of cutting parameters and
economics of the operation. Although the deflection affects adversely the accuracy, the
flexibility of the cutter is beneficial in attenuating the overload in a sudden transient
situation, as well as attenuating chatter. The end mill deflection is important to evaluate

surface error.

First section of the chapter gives a brief explanation of geometric properties and
analytical deflection formulas for cutters; Finite Element Analysis (FEA) results of the tool
and tool holder are explained in the second section, which is followed by simplified

equations for tool deflection.



3.1. Geometric Parameters and Analytical Statistical Analysis

In order to perform static analysis, models of the 2-Flute, 3-Flute and 4-Flute cutters
are needed to determine the necessary geometric and loading parameters, moment of inertia
and bending moments. Three models have been developed to determine the maximum
deflection using cantilever method of 2-Flute, 3-Flute and 4-Flute cutters since their
geometry are different. Their bending moment distributions are the same since they share
same loading and boundary conditions. The loading and boundary conditions of the
cantilever beam are depicted in Figure 3.1, where D/ is the mill diameter, D2 is the shank
diameter, L/ is the flute length, L2 is the overall length, F' is the point load, /1 is the
moment of inertia of the part with flute and 72 is the moment of inertia of the part without
flute. The cutting force is represented by a point force, which is an approximation.
However, it should be noted that this model is used only for stiffness calculation, not for
final tool deflection. Accurate surface generation models can be used (Budak and Altintas,

1994) for form errors, once the stiffness is determined.
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Figure 3.1: Loading and boundary conditions of the end mill

3.1.1. Moment of Inertia

In order to perform the analytic static analysis, models of the 4-Flute, 3- Flute and 2-
Flute end mills are needed to determine the moment of inertias. Due to the complexity of
the cutter cross-sections its axis, the calculation of the inertia is the most difficult aspect of
the static analysis. The cross sections of the 3-Flute, 4- Flute and 2-Flute end mills are as

shown in Figure 3.2, where f; is the flute depth. In the case of the 3-Flute cutters, the shapes



of the regions labeled ‘1’ is bounded by the lines x=0, y=-0.5774x and arcs. The region
labeled 2’ is bounded by the lines x=0, y=0.5774x and an arc. Lastly, the region labeled 3’
is bounded by the lines y=0.5774x, y=-0.5774x and an arc. Regions labeled ‘1°, ‘2°, ‘3’ and
‘4> in the case of the 4-Flute cutters, are bounded by arcs and the lines x=0 and y=0.
Regions labeled ‘1’ or ‘2’ in the cross section of the 2-Flute cutter, are bounded by the line
y=0. Based on the equations bounding each region, the inertia can be derived. The
derivations of the moment of inertia of the 3-Flute, 4- Flute and 2-Flute cutters are provided
in Sections 3.1.1.1, 3.1.1.2 and 3.1.1.3. The flute depth, f;, is in general different for

different end mill generation.

Figure 3.2: Cross-sections of the 3-Flute, 4-Flute and 2-Flute end mills

3.1.1.1. 3-Flute Cutters

In order to obtain the inertia of the cross section, inertia of region 1 is first derived
and the inertia of regions 2 and 3 are obtained by transforming the inertia matrix of region
1. The total inertia of cross section is then obtained by summing the inertia of regions 1,2
and 3.

Using tensor analysis, the inertia of region 2 of a 3-Flute cutter can be obtained by

transforming the inertia matrix of region 1, /;, by 120 degrees as:
L=TLT"
=11 (3.1

where the inertia matrices /;, I, and the transformation matrix 7 are defined as



1 I
[2 _ xx,2 xy,2 (3‘2)
Ixy,2 Iyy,Z
005(2_7r) -s n(2—ﬂ)
= 23 23
. T T
Si(—— CoOS(——
=) =)

Similarly, the inertia of region 3 can be found by transforming the inertia of region 1

by 240 degrees. That is
L=TIT" (3.3)

where the transformation matrix T in this case is defined as

47 . A4r
cos(—) —sin(—
( 3 ) ( 3 )

T = (3.4)
sin(4—ﬂ) cos(4—ﬂ)
3 3
Then, the total inertia of the 3-Flute cutter can be calculated as
I3 puterorar = Lyys— e rorar =1.50) +1.51,, (3.5

The cross section of the region 1 of the 3-Flute cutter is drawn as shown in Figure 3.3

Figure 3.3: Region 1 of 4-Flute end mill



The inertia of region 1 is derived by, first computing the equivalent radius R,, of the

arc respect to x- and y-axes by using the cosine law, in terms of the radius r of the arc,

position of the center of the arc (a) and 6. (Nermes et al., 2001)

Rog3- ﬂute(ﬁ) acos(9+—)+\/(r —a )+a .COS (t9+—) 0<¢9£2T7z (3.6)

The moment of inertia about x-axis and y-axis are given as

R (0) (fd
27/3
L= 1 [ plsi 20)dpdo-| a(yt e — 2P v - Ly
0
3.7)

27/3R,(0) .
Ly 1= (f) j P Ccos (H)dpde [ 7[(%)4}

Performing the first integral with respect to p and rearranging, equation. (3.7)

becomes
/ (fd
27/3
Ixx,lzi | R, 4sin (9)d9 3 (fd (\/ f
0 (3.8)
1 27/3 fd
Iyi=7 (j) R,,* cos*(0)dO - {8 (= )}

Substituting Reg3.mue (3.6) into integrals and integrating we get the moment of inertia
about x-axis and y-axis for region 1 of the 3-Flute end mill. /; and /,,; are used to

evaluate the total moment of the inertia (3.5).



3.1.1.2. 4-Flute Cutters

In the case of the 4-Flute cutters, the cross section of the region 1 is drawn as shown
in Figure 3.4. The regions 1,2,3 and 4 are symmetrical, therefore the inertia of only one
region is necessary to compute and the inertias of the other regions are deduced. For
instance, it can be shown that the inertia of region 1 about the x-axis, .., is equal to the
inertia of region 2 about the y-axis, /,,,». The total inertia as function of the inertia of the

region 1 is found as

L va— puterorar = Lyya—pruerorar = 2y + 21, (3.9

The inertia of region 1 is derived by, computing the equivalent radius R,, of the arc

with respect to x- and y-axes by using the cosine law in terms of 7, a and 6.

Figure 3.4: Region 1 of 4-Flute end mill

The equivalent radius formula for region 1 of 4-Flute end mill with respect to x- and

y-axes is given as follows

Rogs- e (0) = a.sin() +\/(r2 —a®)+a’.sin?(0) 0<6 s% (3.10)

The moment of inertia about x-axis and y-axis are found as

a. ") fi
a2y, 1 4 2 2
]xx,l —Z (I) Req Sin (H)dé’— gﬂ'(j) +T.(r+a—7)

(3.11)

I R 1 fd.4
1 177 (I) R,," cos (H)dg_[gﬂ(T) }



Substituting Ry (3.10) into integrals and integrating we obtain /.. ; and 1, ; and

they are used to evaluate the total moment of the inertia (3.9).

3.1.1.3. 2-Flute Cutters

In the case of the 2-Flute cutters, the cross section of the region 1 is drawn as shown
in Figure 3.5. The cross section of the 2-Flute cutter is not symmetric with respect to x and
y-axes, so the total moment of inertia I and /,, are different. After transforming and

summing, the total moment of inertia of the 2-Flute end mill is found as

Lo puterorar = 2L t> Lo e rorar =24, (3.12)

Figure 3.5: Region 1 of 2-Flute end mill

The inertia of region 1 of the 2-Flute cutter is derived by computing the equivalent

radius R., by using the cosine law in terms of , a and 6.

Royo- prue(0) = —a.cos(0) + \/(rz —a®)+a’.cos?(0)  0<O<rx (3.13)

The moment of inertia about x- and y-axes are given as

_ 1z 4 .2 1 fd 4
[xx,l —Z(I)Req Sin (0)d6—|:§7l'(7

Jd o (3.14)
12, 1 fd ., ”(2) Jd o
Iyy,l_z (j) R,," cos™(0)d0 - gﬂ'(—z) +—2 .(r——2)

We obtain /,.; and 1, ; by substituting R.,>.mue (3.13) into integrals and integrating.

They are used to evaluate the total moment of the inertia (3.12).



3.1.2. Maximum Deflection

Knowing the moment of inertia of the 4-Flute, 3- Flute and 2-Flute end mills, the
deflection along the length of cutters can be calculated for given material properties (£,
elastic modulus) and force (F). Based on the loading conditions, the deflection along the
beam is determined by using the moment area theorems. For example, Figure 3.6 shows the
variation along two parts of a beam of the quantity M/EI, obtained by dividing the bending
moment M by the flexural rigidity £/ (Elastic Modulus* Moment of Inertia).

M/EI

Figure 3.6: Bending moment (ME/I) diagram of the end mill

The product of the area, which refers to the area under the M/EI diagram, and the
distance from its centroid to origin gives the maximum deflection at the end point. From
Figure 3.6 using moment area method we can define y,,, for the end point (Beer and

Johnston, 1992).

_FLP 1 FLIL2-LINL2+2L1) | 1 FL2(L2- LI)QL2+L1)
Ymax =3 e EI2 6 EI2

(3.15)



3.2. Modeling and FEA Analysis

For parametric, geometric solid modeling and Finite Element Modeling (FEM)
several software, such as CATIA, Pro/Engineer and I-DEAS, can be used. For this
research, [-DEAS is used for geometric modeling and FEM.

3.2.1. Tool

3.2.1.1. Parametric Geometric Modeling

For geometric modeling of 4-Flute, 3-Flute and 2-Flute, helical end mills, [-DEAS is
a powerful parametric design tool. -DEAS is a Computer Aided Engineering package used
to create three-dimensional (3D) solid models of parts. I-DEAS is a parametric solid
modeling system that makes design changes easy to oerform. Parametric means that the
shape of the part is driven by its feature dimensions. Feature dimensions can be redefined at
anytime. Many 3D solid models were prepared for end mills with different flute diameter,

shank diameter, flute length, overall length and flute number.

3.2.1.2. Finite Element Modeling (FEM) and Analysis (FEA)

Finite element modeling and analysis are performed on I-DEAS FE package (Shih,
2000). End mills are made from high-speed steel (HSS) and carbide that have the following

properties necessary to calculate the maximum deflection.

Material Modulus of Elasticity (GPa) | Poisson’s Ratio | Density (kg/m’)
HSS 200 0.3 8600
Carbide 605 0.3 12500

Table 3.1: Mechanical properties of the tool materials



The 4-Flute, 3-Flute and 2-Flute end mills are meshed with solid linear tetrahedral
elements. The end mill is split into two segments: one which represents the shank with one
length of elements and an other which represents the part including Flute and cutting edges
with a second length of elements. This is to reduce the total number of elements suitable for

FE analysis.

The end mill is constrained at the end of the shank where it is gripped by the tool
holder. The displacement is constrained at that point in all directions. This is actually a
simple cantilever beam clamped at one end and free at the other end. The force is applied at
the free end. Figure 3.7 illustrates an example of the meshed 3-Flute end mill including

boundary conditions.

Figure3.7: Meshing and boundary conditions example

Finite Element Analysis (FEA) is applied to great variety of tool geometries and two
different tool materials in [-DEAS. An example deflection of an end mill is shown in
Figure 3.8. Some of the deflection values found by analytic equations and I-DEAS are

shown in Table 3.2. Approximately sixty tools were tested.



D = L )

Figure 3.8: Example tool deflection

. Analytic (mm)|y I-DEAS (mm) | ..

Flute Material | DI (mm) | D2 (mm) | L1 (mm) | L2 (mm) yiFocmi p O(N ) yiForce= 50(N ) Difference (%)
4 HSS 6 6 13 57 0.248844 0.251768 1.16
3 HSS 6 6 13 57 0.245466 0.250252 1.91
2 HSS 6 6 13 57 0.244309 0.249888 1.23
4 HSS 10 10 22 72 0.067320 0.069073 2.54
3 HSS 10 10 22 72 0.065174 0.067203 3.02
2 HSS 10 10 22 72 0.064452 0.066813 3.53
4 HSS 10 13 22 72 0.027316 0.028412 3.86
3 HSS 10 13 22 72 0.025169 0.026517 5.08
2 HSS 10 13 22 72 0.024448 0.026007 5.99
4 HSS 10 10 26 72 0.069894 0.071800 2.65
3 HSS 10 10 26 72 0.066350 0.068580 3.25
2 HSS 10 10 26 72 0.065160 0.0676546 3.69
4 HSS 16 19 32 92 0.012426 0.013230 6.08
3 HSS 16 19 32 92 0.011415 0.012325 7.38
2 HSS 16 19 32 92 0.010901 0.011842 7.94
4 Carbide 10 10 22 72 0.022255 0.022832 2.54
3 Carbide 10 10 22 72 0.021545 0.022216 3.02
2 Carbide 10 10 22 72 0.021307 0.022087 3.53
4 Carbide 16 16 32 92 0.007281 0.007580 3.94
3 Carbide 16 16 32 92 0.006950 0.007315 4.99
2 Carbide 16 16 32 92 0.006777 0.007163 5.38
4 Carbide 20 20 38 104 0.004368 0.004630 5.66
3 Carbide 20 20 38 104 0.004138 0.004463 7.27
2 Carbide 20 20 38 104 0.004062 0.004409 7.86

Table 3.2: Results of the analytic equations and I-DEAS analysis




3.2.1.3. Simplified Equations for Tool Deflection

Modeling and FEA can be impractical and time consuming for each tool
configuration in a virtual machining environment. Therefore, simplified equations are
created to predict deflections of tools for given geometric parameters and material
properties (elastic modulus and density). The static characteristics of end mills can be
easily determined by these analytical expressions. After the comparison of analytical and

FEA results, the corrected deflection equations are obtained by using MINITAB software.

These equations has the following form:

N
Y=Ccy analytic
0.984 for 4-Flute
C=:0.985 for 3-Flute (3.16)

0.983 for 2-Flute

0.983 for 4-Flute
N =<0.981 for 3-Flute
0.980 for 2-Flute

where Yynanic 18 in mm. The error in this approximation is less than % 1.

In the analytical deformation equations, the evaluation of the integral formulas is very
complex. In an attempt to further simplify the deflection calculation, the following analysis

is performed. The maximum deflection could be determined using

F| L1® (L2°-L1) N
deflection,, = C.— +

e E| p1* D24
9.05 for 4-Flute
C=1{8.30 for 3-Flute (3.17)

7.93 for 2-Flute

0.950 for 4-Flute
N =:0.965 for 3-Flute

0.974 for 2-Flute



where F(N) is the applied force and £ (MPa) is the modulus of elasticity of the tool
material. The geometric properties of the end mill are in mm. The error in this

approximation is less than % 5.
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Figure 3.9: Boundary and loading conditions of the cylinder

If the shape of the end mill is assumed to be a cylinder, the stiffness of the tool will
be very different from the stiffness obtained from simplified equations (Table 3.3). Figure
3.9 shows boundary and loading conditions of a cylinder. The stiffness of the cylinder is

calculated by using cantilever beam method. (Beer and Johnston, 1992)

FI? FI F  3ExD*
Venax = o = o k=—— = (3.18)
3EI 3Eﬂ Ymax 64L
64

where k is the stiffness (N/mm). Diameter (D) and length (L) of the cylinder are in mm and
elastic modulus (E) is in MPa (N/mm?)

Flute |Material |D1 (mm)|D2 (mm)|L1 (mm)|L2 (mm) kﬁe\glrlr?;())n ka?/’rlrllrrlg)e r

4 HSS 6 6 13 57 201

3 HSS 6 6 13 57 204 206
2 HSS 6 6 13 57 205

4 HSS 10 10 22 72 743

3 HSS 10 10 22 72 767 789
2 HSS 10 10 22 72 776

4 Carbide 10 10 22 72 2246

3 Carbide 10 10 22 72 2321 2387
2 Carbide 10 10 22 72 2347

4 Carbide 16 16 32 92 6867

3 Carbide 16 16 32 92 7194 7498
2 Carbide 16 16 32 92 7378

Table 3.3: Comparison of the stiffness values obtained from simplified equations and

cylinder model




3.2.2. Tool Holder

The static characteristics of HSK (HSK-40, HSK-50 and HSK-63) and CAT (CAT-40
and CAT-50) tool holders were analyzed in I-DEAS. The material properties for tool
holders are summarized in Table 3.4 (Aoyama and Inasaki, 2001). Examples of the finite

element model used for HSK and CAT tool holders are shown in Figure 3.10.

Modulus of Elasticity (GPa) Poisson’s Ratio | Density (kg/m’)

206 0.3 7860

Table 3.4: Mechanical Properties of the Tool Holder Material

Figure 3.10: Example of FEM model for HSK and CAT tool holders

An example of deformation of the HSK type tool holder is shown in Figure 3.11. The

displacement of tool holders and stiffness values are shown in Table 3.5.

Figure 3.11: Example of deflection of a tool holder



Tool Holder | Max Displacement (um) Stiffness

Type Force=200 N (kN/mm)
HSK-A40 1.38 24.60
HSK-AS50 3.14 63.69
HSK-A63 9.02 22.17
CAT-40 3.53 56.66
CAT-50 4.26 46.95

Table 3.5: Results of I-DEAS analysis of the tool holders

It can be concluded from Table 3.5 that the stiffness depends on the type of the tool
holder.

3.3. Summary

In this chapter, geometric properties and material characteristics of tool and tool
holder are explained. Models for end mill static deformations, which can be used for
deflection calculations and surface form error, are presented. Generalized equations are
developed to predictions stiffness for different tool geometry without measurement. The
static characteristics of tool and tool holder are obtained using FEA analysis. FEA results

are compared with analytical equation results.



CHAPTER 4

MODELING OF END MILL DYNAMICS

In this chapter, the dynamic analysis of milling tool and tool holder is presented.
Dynamic properties play an important role in stability of machining process affecting part
quality and productivity. Accurate knowledge of the machine dynamics is required for
predicting dimensional accuracy. Frequency response function (FRF) measurements need
to be performed to identify the dynamics of the systems experimentally. This can be very
time consuming considering the number of tool-tool holder combinations in a production

facility.

In the first section, a method for modeling dynamics of milling tool is presented.
Some practical equations are developed to predict the dynamic properties of tools. Dynamic
analysis of different geometry and material of the tool and tool holder, which are carried
out by Finite Element Analysis (FEA) in I-DEAS, are given in the second section.
Considering great variety of cutting tool geometries, application of FEA to every case can
be quite time consuming and unpractical. The results obtained from FEA and analytic

dynamic equations are compared in the third section.

In the last section, the transfer function measurement and modal analysis are
explained. The analytical FRF prediction method is compared with the results obtained

from experiments.



4.1. Dynamic Analysis of the Tool

4.1.1. Segmented Beam Model for Tool Dynamics

Dynamic analysis is used to determine mode shapes and natural frequencies of the
cutting tool structures. A modeling method for transverse vibrations of an end mill is
developed. End mill is a segmented beam, one segment for the part with flute and the other
segment for the shank. The beam model with two different geometric segments is shown in
Figure 4.1. Dynamic analysis of segmented beam has been carried as it was not available in

the vibration literature.

5 Wlﬂl:}".,t:l . WEI:}:',’[:I
| 1 ' [
Al —sx  ALNE : 2212, |:ILT'.
|
: Ef
L2

Figure 4.1: The geometry of the beam with two different geometric segments

11, 12 and Al, A2 are the moment of inertias and the areas of the segments,
respectively. R (x) and S (y) are the mode shapes, and w! (x, ¢), and w2 (x, ¢) are the
displacement functions.

For a slender beam with two different geometric segments, the associated

displacement functions w/ (x, ¢), and w2 (x, ¢) can be written in the following form;

wl(x,t) =8(x).” ,0<x<Ll

. 4.1)
w2(x,t) = R(x).” ,L1<x<L2

The governing equations of motion, neglecting the rotational inertia and shear
formation, can be converted into the well-known Euler-Bernoulli equations (Chaudhari and

Maiti, 2000):

d*s 5
EIIF—pAla) S=0 ,0<x<L1
x
(4.2)
d*R )
X



where E is the modulus of elasticity and p is the density. The solution of equation (4.2) can

be expressed as (Rao, 1995)

R(x) = Al.cosh(fx)+ A2.sinh(fBx)+ A3.cos(fx)+ A4.sin([x)

4.3
S(x) = AS5.cosh(ax)+ A6.sinh(ax) + A7.cos(ax) + A8.sin(ax) (43)

where Al, A2, A3, A4, A5, A6, A7 and A8 are arbitrary constants. It is necessary to
accompany the general solutions with the boundary conditions. The boundary conditions

are as follows. At x=L2 (i.e. at the free end), bending moment and shear force must vanish:

d*R(L2) . d’R(L2)
PR (44
Alcosh(fL2)+ A2sinh(fSL2)— A3cos(SL2)— A4sin(SL2)=0

EI2

2 3
iEI2 —d R(0) =0—>—d R(0)=0
dx dx? dx’

Alsinh(fL2)+ A2 cosh(fL2)+ A3sin(SL2)— Adcos(fL2)=0

(4.5)

At x=L1 the continuity equations for displacement, slope, moment and shear force are

as follows:

R(L1)=S(LI)
Alcosh(fSL1)+ A2sinh(fL1)+ A3cos(SL1)+ A4sin(SL1) — (4.6)
AScosh(aLl)— A6sinh(aL1) — A7 cos(aLl) — A4sin(aLl) =0

dR(L1) dS(LI)
dx  dx
Alsinh(SL1)+ A2 cosh(fL1)— A3sin(fL1)+ A4 cos(fL1)— 4.7)

2 g5sinh(aLl)~< 46 cosh(aLl)+ < A7sin(a L)~ A8cos(aLl) =0
p s s s

d’R(L1) _d*S(L1)
dx? dx?
Alcosh(fSL1)+ A2sinh(SL1)— A3cos(SL1)— A4sin([SL1) — (4.8)
2

2 2 2
(%J A5cosh(aLl)— (%) A6sinh(aL1) + (%} A7 cos(aLl) + (%) A8sin(aLl) =0




[c]-

d’R(LY) _d’S(0)
dx’ dy3
Alsinh( S L1)+ A2 cosh(fL1)+ A3sin(SL1) — A4 cos(f L) — (4.9)

3 3 3
(EJ ASsinh(aLl)— [ﬁj A6cosh(alLl)— [ﬁj
s B P

3
ATsin(aL1) + [%} A8cos(aLl)=0

At x=0 (i.e. at the fixed end) displacement and slope are zero:

5(0)=0 (4.10)
A5+ A7=0

ds©) _,

i 4.11)
A6+ A8=0

These 8 conditions defined by equations (4.4 - 4.11) are sufficient to solve for the 8
arbitrary constants. The equations involving these constants can be written in the following

form

[C]{4}=0 (4.12)

where 4; is the vector of the 8 arbitrary constants and the coefficient matrix [C] is of

dimension (8 x 8), and is given by

[cosh(BL2) sinh(BL2) —cos(SL2) —sin(SL2) 0 0 0 0
sinh(SL2) cosh(fL2) sin(fL2) —cos(SL2) 0 0 0 0

cosh(fL1) sinh(SBL1)  cos(fL1)  sin(SL1) —cosh(aL1) —sinh(aL1) —cos(axll)  —sin(arLl)

ﬁMﬂDwM&D—MﬂDCﬂMD:%mmm %@m&niﬁmm %mwm

2 2

cosh(fL1) sinh(BL1) —cos(BL1) —sin(SLI1) _;ljcosh(aLl) _ﬂofsinh(aLl) chos(aLl) ;Zsin(aLl)
3 3 3 3

sinh(BL1) cosh(BLl) sin(BLI) —cos(ALI) ;;;ﬁmxaLD ';;<mgmaLD j;gsh(aLD j;(mxaLD

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0

(4.13)




The characteristic equation is determined when determinant of the coefficient matrix
C (4.13) is equal to zero. In order to write of the characteristic equation with one unknown,
the ratio between B and a values is calculated by using the frequency equation, which is

derived from equation 4.2.

4 4
ﬂ-'D—Ala)zS:0—> ﬂ-054a)2S:0—>a):052 £
dx*  EIl dx* pAl

4 4
AR A2 g0 9 R pa2R_0 0= p2 [F12 (4.14)
dx* EI2 dx*

pA2
2
oo EH:ﬂz EI2 _)ﬁ_: /I2A1 _>£= |d2
pAl pA2 o A2l « dl

The simple form of matrix (4.13) is obtained by using f—; ) and‘/% (d) ratios.

There is only one unknown, x ( L2 ) in this form.

[ cosh(x) sinh(x) —cos(x) —sin(x)
sinh(x) cosh(x) sin(x) —cos(x) 0 0 0 0

cosh(x/) sinh(x/) cos(x/)  sin(x/) —cosh(xé) —sinh(xé) —cos(xé) —sin(xé)

sinh(x/) cosh(x/) —sin(x/) cos(x/) _glsinh(xé) _glcosh(xé) ésin(xé) _glcos(xé)
cosh(x/) sinh(x/) —cos(x/) —sin(x/) -1 cosh(xi) -1 sinh(x i) 1 cos(x i) S sin(xi)
d* d d 4 d & o d

. . -1 [, -1 [ -1. 1 1 /
sinh(x/) cosh(x/) sin(x/) —cos(x/) E s1nh(x3) ; cosh(xg) ; sin(x 5) ? cos(x 5)
0 0 0 0 1 0 1 0

(4.15)



BL2 or alLl values are computed from characteristic equation, i.e. determinant of the
coefficient matrix C (4.15) for different modes. For any beam, there will be an infinite
number of normal modes with one natural frequency associated with each normal mode.

The natural frequencies of segmented beam

EIl or w—(sL2) |_E12

= (0le)2 _
pAIL* pA2L2*

(4.16)

After determining the coefficient matrix C, arbitrary constants vector 4 can be
computed from equation (4.12). The mode shapes R (x) and S ()) (equation 4.3) according
to the frequencies are obtained by using 41, A2, A3, A4, A5, A6, A7 and A48.

4.1.2. Simplified Equations for Natural Frequencies and Mode Shapes

Segmented beam model was used to determine cutting tool dynamics. This beam
model can be used in many areas. However, the calculations of the natural frequencies and
mode shapes are very difficult because of the complex coefficient matrix (4.13). Simplified
equations are developed to calculate the solution of the characteristic equation easily. The
solution of the determinant of the complex coefficient matrix can be repeated for various
segmented beam geometries. The natural frequency equations of segmented beam (4.16)

can be rewritten in the following form:

EIl
pAIL*

EI 1 122 EI2
w=K 7= K a 2 7
pALLL d2 11> |\ pA2L2

In derivation of the equations to determine K, the length ratio (LI/L2) and the

EI2
pA2L2*

o = (aLl)® or  w=(BL2)

(4.17)

diameter ratio (DI/D2) are used. Therfore, the K value can be calculated for any given
geometric properties. The graph for the variation in the K value for first mode according to

L1/L2 and D1/D2 ratio is shown in Figure 4.2.



In Figure 4.2, the relation between //K and DI/D2 is linear. The slope and the
constant of the line change according to L//L2 ratio. In order to calculate the natural

frequency of the first mode, the equation between K and geometric properties is derived.
L:a[ﬂ}b_)[(:; (4.18)
D2

where
g —-0.817(In)+0.0167
/
bh=0.1821/> +0.1063/—0.0275
=L
L2

The graph given in Figure 4.2, or equation 4.18, can be used to determine K based on

L1/L2 and D1/D2 for any segmented beam with two sections.

Then, the fundamental natural frequency can be determined from equation 4.17
eliminating the need for eigenvalue solution for matrix (4.13). Therefore, the fundamental
frequency of a segmented beam can be determined analytically, which is an original
contribution. The application of this formulation to end mill dynamics is presented in

chapter 6.
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Figure 4.2: Relation between 1/K and D1/D2 ratio according to L1/L2 ratio




4.2. Modeling and FEA Analysis

In I-DEAS, models are built to define geometry, material properties, element types
and constraints for end mills. Natural frequencies and mode shapes are obtained using FEA.
(Shih, 2000)

4.2.1. Tool

Many end mills with different material and geometric parameters are analyzed. As an
example, natural frequencies and mode shapes of a HSS end mill with 4-Flute, 16 mm

diameter and 92 mm length are shown in Figure 4.3.
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Figure 4.3: Example of natural frequencies and mode shapes of a tool

The natural frequencies of HSS tools according to geometric properties of the end
mill and frequency description are given in Table 4.1. The lateral and vertical bending
frequencies are different for 2-flute cutter. The cross section of the 2-flute cutter is not

symmetric with respect to x and y-axes, so the moment of inertia /,, and /,, are different.



Frequenc (HZ) D=6 mm, L=13 mm, D;=10 mm, L;=22 mm,[D;=16 mm, L;=32 mm, D;=20 mm, L;=38 mm,

q y L,=57 mm, D,=6 mm |L,=72 mm, D,=10 mm|L,=92 mm, D,=16 mm| L,=104 mm, D,=20 mm

DESCRIPTIONTYPE4 Flute|3 Flute|2 Flute|4 Flute|3 Flute|2 Flute|4 Flute|3 Flute|2 Flute|4 Flute|3 Flute| 2 Flute

F1rsfc X [ 1409|1500 | 1435|1504 | 1620 | 1534 | 1476 | 1600 | 1505 | 1443 | 1565 | 1468
Bending

Flrst Y [1409| 1500|1437 | 1504|1620 | 1539 | 1476 | 1600 | 1516 | 1443 | 1565 | 1483
Bending
Second

. X | 7890|8072 | 7846 | 7755|7662 | 7475 | 7134 | 6897 | 6729 | 6800 | 6477 | 6328
Bending
Second

. Y | 7890 | 8072 | 8005 | 7755|7662 | 7918 | 7134 | 6897 | 7331 | 6800 | 6477 | 6969
Bending

Bzigi(lilg X [19604(18939(18623|18543|19218|18643|16764|15918|15671|15798(15009| 14782

BZII:ziriig Y |19604(18939(19992{18543({19218|19018|16764(15918|17218|15798|15009| 16214

Table 4.1: Natural frequencies (I-DEAS) of HSS end mills with different geometry

As the tool length/diameter ratio increases, the natural frequency of the tool decreases
(Figure 4.4). 2-flute cutters have the greatest natural frequency and 4-flute cutters have the
least because of the cross section. The natural frequencies of the cylinder that has the same

diameter and length with other tools are also calculated. This graph shows that considering

the tool as a cylinder is a bad approximation.

Frequency (Hz)

(o¢]
—_
—_

9 ) 10
Length/Diameter

—<&¢— Cylinder —#= 4flute = =4 = 3flute =o=—2flute

Figure 4.4: Relationship between natural frequencies (Model) of HSS tool and tool

length/diameter ratio



Frequenc (HZ) D=6 mm, L=13 mm, D;=10 mm, L;=22 mm,[D;=16 mm, L;=32 mm, D;=20 mm, L;=38 mm,
q y L,=57 mm, D,=6 mm |L,=72 mm, D,=10 mm|L,=92 mm, D,=16 mm| L,=104 mm, D,=20 mm
DESCRIPTIONTYPE4 Flute|3 Flute|2 Flute|4 Flute|3 Flute|2 Flute|4 Flute|3 Flute|2 Flute|4 Flute|3 Flute| 2 Flute
Flrst X 1203312164 (2069 2169|2340 (2210|2129 2309 (2154|2082 |2258| 2118
Bending
Flrst Y 2033|2164 (207212169 |2340 (2221|2129 2309|2187 (2082|2258 | 2139
Bending
];fr(l:gir;li X |11381|11646({11033({11187{11081|10922/10291| 9950 [10026| 9765 | 9343 | 9033
5:1‘;3;‘; Y |11381|11646|11549|11187|11081|11423|10291| 9950 [10575| 9765 | 9343 | 10054
Bzigi(lilg X |28282(27322(27624(26750(27727|26238|24189(22968(23657|22791|21655| 22185
BZIlll(liriig Y [28282|27322|28841|126750(27727|27436|24189|22968(24838|22971(21655| 23391

Table 4.2: Natural frequencies (I-DEAS) of carbide end mills with different geometry

The lateral and vertical bending frequencies of carbide tools according to geometric

properties and frequency description are given in Table 4.2. The carbide tools have higher

natural frequency than HSS tools because of their high modulus of elasticity (Figure 4.5).

Frequency (Hz)

15000 ~

model

mode?2

Mode No

mode3

mode4

Figure 4.5: Comparison between carbide and HSS natural frequencies




4.2.2. Tool Holder

The dynamic characteristics of HSK (HSK-40, HSK-50 and HSK-63) and CAT
(CAT-40 and CAT-50) tool holders were analyzed in I-DEAS. The first and second natural

frequencies of tool holders are summarized in Table 4.3.

First Bending (kHz) | Second Bending (kHz)
Tool Holder Type | Lateral Vertical Lateral Vertical
HSK-A40 14.74 14.76 20.50 20.70
HSK-A50 13.66 13.67 31.61 31.64
HSK-A63 13.85 13.87 28.48 28.56
CAT-40 8.05 8.06 22.73 22.73
CAT-50 7.19 7.20 21.70 21.71

Table 4.3: Results of the FEA for the tool holders in I-DEAS

4.3. Comparison of the Results from Finite Element Analysis and Analytic Solution

Analytic equations, which are used to predict dynamic behavior of the cutting tools,
are compared with [-DEAS finite element analysis. Table 4.4 shows the error between the
I-DEAS FE and analytic solution for 4-flute HSS end mill, which has 6 mm flute diameter,
13 mm flute length, 57 overall length and 6 mm in shank diameter. From Table 4.4, the
error between FEM frequency and analytic calculated frequency increases from % 5 for

model to % 18 for mode 3.

4 FLUTE | Frequency_ Analytic (Hz) Frequency I-DEAS (Hz)] ERROR (%)
First Bending 1409 1476 4.74
Second Bending 7890 8530 8.12
Third Bending 19601 23170 18.21

Table 4.4: Comparison of the natural frequencies of FE and analytic analysis



Table 4.5 shows the displacement errors between the I-DEAS FE and analytic
analysis for the fist three modes. The mode shapes representations, which are drawn using
analytic equations, are given in Table 4.5 for three modes of the 4-flute cutting tool.
Critical displacements values and their positions along the tool length are compared. The
error in maximum displacement is in the range of % 3.5 - %12.5. As tool diameter and tool

length increases, the error in the natural frequencies between FEM and analytic model.

4 Flute (I-DEAS) ANALYTIC

x/L. |Displacement (mm)| x/L | Displacement (mm) [ERROR (%)

0 0.0000 0 0.0000 -
1/4 0.1138 1/4 0.1147 0.79
2/4 0.4100 2/4 0.3943 3.83
3/4 0.7860 3/4 0.7541 4.06

1 1.1770 1 1.1365 3.44

1.5 T T
| ol 7] OO PR P PO O P

displacernert. (oom)

05 -
5 | |
0 w40 57
a) Mode 1
4 Flute (I-DEAS) ANALYTIC
x/L. Displacement (mm), x/L.  |Displacement (mm)ERROR (%)
0 0.0000 0 0.0000 -
A/L=0,456, 0.7403 A/L=0,448 0.7738 4.52
B/L=0,761 0.0000 B/L=0,742 0.0000 -
C/L=1 1.3450 C/L=1 1.4301 6.33




4 T

143003

—0.77375
"o 2w 40 37
b) Mode 2
4 Flute (I-DEAS) ANALYTIC
x/L.  Displacement (mm) x/L.  Displacement (mm)ERROR (%)

0 0.0000 0 0.0000 -
A/L=0,283 0.6490 A/L=0,282 0.6509 0.30

B/L=0,5 0.0000 B/L=0,488 0.0000 -
C/L=0,7 0.5870 C/L=0,672 0.5655 3.66

D/L=0,867 0.0000 D/L=0,842 0.0000 -
E/L=1 1.2360 E/L=1 1.0827 12.40

R S S S L B B
E 063049 '7\ /
"N
—0.56583 [ mmm e e R e o A
) L .
0 0 40 57
A B x C D E
¢) Mode 3

Table 4.5: Comparison of the mode shapes of FE and analytic analysis



4.4. Experimental Method

4.4.1. Testing and Analysis

Complete dynamic description of the machine requires the determination of modal
frequencies, mode shapes and system parameters (equivalent mass, stiffness and damping
ratio). Experimental modal analysis deals with a method of measuring the response of a
machine, structure or system to vibration and using that information to identify some of its
dynamic properties. The response of a system can be measured in terms of its displacement,

velocity, or acceleration.

FRF (Frequency Response Function) plays an important role in the experimental
modal analysis. The frequency response function is first determined experimentally and
then analyzed to find the natural frequencies, mode shapes and system parameters. The
system parameters (equivalent mass, stiffness and damping ratio) can be used to predict the

response of the system to various excitations.

General arrangement the can be for the frequency response measurement of system is
shown in Figure 4.6. A hammer is used to apply an impact load at different points of the
system while an accelerometer is fixed at one location to measure the response. Testing the
functional transfer and transactional characteristics of a mechanical structure involves
mounting the accelerometer at one location of interest and striking the object with hammer

at that point or some other point.



Figure 4.6: FRF measurement system

The hammer consists of an integral, quartz force sensor mounted on the striking end
of the hammer head. The sensing element functions to transfer impact force into electrical
signal for display and analysis. Signals generated by accelerometer and hammer are
powdered by conditioning amplifiers. These sensors are easy to operate and interface with

signal analysis, data acquisition and recording instruments.

Time response of the accelerometer is measured, but the same data must be converted
into frequency domain. Fast Fourier Transform (FFT) is used to convert the time data.
Computers can be used to collect to the data, estimate the modal parameters and display the
results. Small desktop computers are available along with user-friendly programs to guide
the user through all the steps of modal testing. In this research, the data is collected by
CutPro® MalTF software where the modal analysis is also performed in CutPro® Modal

(Alitntas, 2000).

The FRFs indicates the dynamic characteristics of a system. A plot (Figure 4.7) of a
FRF provides the approximate values of natural frequencies and damping ratios. In some

cases, a set of FRFs can be used to find an approximate mode shape.
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Figure 4.7: The graph of real and imaginary part of FRF

4.4.2. Example

The analytic solution is very useful to identify the dynamic properties of the tools. In
this section, the analytical FRF prediction method is compared with the results obtained

from experiments.

4-flute carbide end-mill with long overhang is selected to demonstrate the accuracy of
analytical results. The mill and shank diameter is 8 mm, the flute length is 41 mm and the
gauge length is 80 mm. FRF measurement was performed to determine the transfer
function of the end mill, which is shown in Figure 4.7. Table 4.6 shows the identified
frequency, stiffness, damping and mass values for the end mill. For comparison with
analytical model predictions, the results obtained using the cylinder approximation for the
end mill are also shown in Table 4.6 and Figure 4.7. The cylinder with the same diameter
and length is used in calculations. The graphs between the magnitude of the transfer

function and frequency for all methods are shown in Figure 4.7.
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Figure 4.7: Magnitude of the transfer function for the experimental,

analytical and cylinder methods

I-DEAS,

. Frequency Stiffness Damping Mass
Transfer Function (Hz) (N/m) ©) (ke)
Experiment 935 5.11E+5 0.012 0.0150
Analytic Solution 922 5.50E+5 0.012 0.0164
Cylinder 1216 7.12E+5 0.012 0.0122

Table 4.6: The comparison of the dynamic properties obtained from experimental,

analytical and cylinder methods

Due to the long flute length of the tool, the cylinder approximation is very poor in

this case. The approximation results could be improved by using an effective diameter for

the cylinder. As the end mills do not have circular cross sections along the flute length, the

analytical solution is the most powerful approximation to find the dynamic properties. The

model presented in this chapter can be used to determine the dynamics of end mills for a

given geometry, material and clamping conditions.



4.5. Summary

In this chapter, a method of modeling for transverse vibrations of geometrically
segmented beam is proposed. End mill is assumed to be as segmented beam with one end
fixed and other end free. In order to obtain natural frequency and mode shape of the system,
complex matrix calculations are needed. Simplified equations are derived to eliminate time
consuming calculations. In these equations, desired geometric properties can be selected for

prediction..

Finite Element Analysis (FEA) results of various tool geometries, different materials
and tool holder types are given. These results are compared with the results obtained from

analytic equations.

Frequency Response Function (FRF) measurements need to be performed to identify
the dynamics of the system experimentally. Transfer function measurement system and

modal analysis are described.



CHAPTER S

CLAMPING PARAMETERS FOR END MILLS

Complete dynamic response of an end mill depends on the machine, tool holder and
end mill component dynamics as well as the interface or contact parameters among them.
In this study, the dynamic characteristics at the tip of the holder, which involves the
dynamics of both spindle and holder, are assumed to be known from experimental data.
Considering small number of spindle/holder combination compared to holder/tool
combination, this is an acceptable approach. The tool dynamics are calculated analytically.
The next important parameter for the prediction of the total dynamics of the system is the

interface or contact parameters (stiffness and damping) between the tool and the holder.

The application of receptance coupling substructure analysis to the analytic prediction
of tool point dynamic response is described. Tool point dynamic response is predicted by
using frequency response measurements of individual components coupled though

appropriate connections.

In the first section, the description of receptance coupling substructure analysis
(RCSA) and a method to identify the connection parameters (stiffness and damping)
between tool and tool holder/ spindle are given. The effects of changes in tool parameters

and clamping conditions are explained with experimental results in the second section.



5.1. Method for Identification of the Connection Parameters Tool and Tool

Holder/Spindle

Complete machine structure is divided into two parts, tool and tool holder/spindle.
The description of the assembly model and the connection parameters are shown in Figure

5.1. (Schmitz, 2000)

E Tool Holder
2 Toal
+=pindle
&
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b
B *39— ex [ (K2 A X1
TOOL HODER + E TOOL
SPIMDLE Qa3 @ oy | Q2 o

Figure 5.1: Tool and tool holder/spindle assembly

The four connection parameters (linear and torsional springs and dampers) must be
determined to predict tool point frequency response function (FRF). According to these
parameters, tool and tool holder/spindle FRFs are coupled using receptance coupling
substructure analysis (RCSA). RCSA is a very efficient analysis to predict tool point
dynamic response without the measurement of each tool, tool holder and spindle
combination. In receptance coupling substructure analysis, experimental or analytical direct
and cross FRFs for individual components are used to predict the final assembly’s dynamic
response at any spatial coordinate selected for component measurements. In this method,
experimental or analytical FRFs are required only at the coordinate of interest and any

connection coordinates.



In RCSA, each component of the assembly must be tested separately to determine the
component FRFs. Nevertheless, this is only possible if the impact tests on the individual
parts provide enough information to predict accurately the dynamic properties of the
assembled structure. In case of low natural frequency modes, the dynamics at the tool and
tool holder/spindle interface might not be adequately represented in the modal data.
Furthermore, in many cases the measurement of component dynamics is not practical
which is the case for free-free end mill. Free-free state is difficult to realize in practice. The
direct and cross free-free state FRFs for coordinates of component A are calculated
analytically. An analytical formulation, rather than experimental measurement, was
selected due to the difficulties associated with obtaining these tool FRFs using impact test.
The direct FRFs at coordinate x; of the component B are obtained experimentally using

impact testing. The holder/spindle component is difficult to model analytically.

The holder and spindle dynamic properties can also be determined using FEA
(Kivanc and Budak, 2003, Jorgensen and Shin, 1998). However, the number of
spindle/holder combinations for milling tools is much more limited on a machining center,
and thus they can be measured and used for different end mill combinations. In order to
evaluate the FRF of the tool/holder/spindle system, the end mill can be modeled using a
standard finite element (FE) model of a cylindrical beam and the FRF of the holder/spindle
system is identified using impact testing (Park and Altintas, 2003)

The receptance term, G, for the assembled system in Figure 5.2 will be derived by
using the receptance coupling method. Figure 5.2 displays the assembled and component

systems with F; (force) and M; (moment) applied to the assembled system. The direct

) X . .
deflection receptance G (@) 271 for the combined spindle/holder/tool structure C.

1
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Figure 5.2: Assembled spindle/holder/tool structure

Considering the (unassembled) substructures in Figure 5.3 the displacements and
rotations can be written. The notation H refers to receptance term (displacement over
force). The direct FRFs at coordinates x; and x, (H;; and H»,, respectively) and a cross FRF
H;; (H; is equivalent by reciprocity) can be derived by analytically. For this model,
response functions that relate displacement under applied moment (L,,,), rotation under
applied force (N,,,) and the rotation under applied moment (P,,) are also included. The

terms H' , L' , N' and P! represent mobility FRFs, or the ratio of linear or rotational

mn’ mn?’ mn mn

velocity to force or moment. The linear and rotational stiffness and damping terms are

labeled k,, kg ¢, and cg, respectively.

AR
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Figure 5.3:Componenets of the spindle/holder/tool structure



The displacement and rotation conditions at coordinates x; x, and x; for the

components and at X; for the assembly are given in equations 5.1 and 5.2.

xp = Hyfi + Ly + Hyp fr + Liymy
6, = N fi + Bimy + Nyp fo + Bomy
Xy = Hy fi+ Lyymy + Hyy fo + Lyymy

(5.1)
0, = Ny f1 + Byymy + Ny [ + Pymy
Xy =Hys f3+ Lyymy
03 = N33 f3 + Py3ms
Xy =H\ |+ LM+ Hyp fo + Ligmy (52)

O, =N K+ B 1M+ Ny fo + Bymy

The force and moment equilibrium condition for components is given in equation 5.3.

The compatibility conditions are shown in equation 5.4.

Hh+=0> 1=/
my +m3 :O—)m3 =—nmy (53)
Xlle, @1261

ky(x3 _x2)+cx(x3’ _le) =/

' ' (5.4)
ky(63=05)+c (05 —6,)=m,

Substitution of equations of the displacement (x, and x;), the rotation (6, and ;) at

coordinates x, and x;, their derivatives (x, , x3, 6, , 65) and equation 5.3 into equation

5.4 yields equation 5.5.

(k Hs3+k Hyy +c Hys +c Hyy +1) f2+
(kyLsz +k Loy +c L3 +c Loy Ymy ==k Hy Fy —k Ly M| —c Hy | F =, Ly M,

(5.5)
(ky N33 +k Ny + ch33' + chzz') fo+

(ky Py +ky Py + ¢, Pys +c Py +1)my =~k Ny Fy =k, Py My —c, Ny iy —c, Py M,



There are two unknowns and two equations. The expressions for the force and

moment acting on individual component (f>, m,, f3=- f> and ms=- m;) can be evaluated from

equation 5.5.

Af2+Bm2:C1
E;C,-C,B —-AC, +C\E,
= 3T aE ™ BB AE
4D — AL3 4D — AL3
where

A=k Hyy+k Hyy +c Hyy +c Hy, +1

B=kyLyy +keLyy +c.Lys +cLyy

Ey =k, Py +k Py +c,P3 +c, Py +1 5
Ey =k N33 +k, Ny +c, N33 +c, Ny

Cl=—k Hy F ~k Ly My —c.Hy| F —cc Ly M,

C2 =~k Ny F =k, Py My —cyNpy F —c Py ' M,

. . . X
From equation 5.2, the direct deflection receptance G;;(®) = 71 for assembled

1

spindle/holder/tool structure C can be determined.

Xy =H\ B +L M+ Hp, [+ Liymy

fa "y fa "y (5-8)
Xi=|\H+H,=+L,—= [+ Hy,>=+L,—= M
1 [ nthe leFi 1+ L 2 g M
The terms, i) and % must be calculated in order to evaluate the term, X;/ F;. By
1 1

using equation 5.6, equation 5.9 and 5.10 can be derived.



E;C,-C,B
fy=3017%

_ B3k — kLo M, —c Hy| K —¢ Ly My) = B(~k Ny F, =k Py My —c,No|'F, —c, Py M)

E,B— AE,
2 E,B- AE,
[~E3(k Hy, +c Hayy )+ B(k Ny +¢, Ny IR
2= E,B—AE, +(...)M,
fo _WkeHyy +e o)) = 5 Bky Ny +¢,Ns))]
F E;'E,B—4
J;?=(E2E11)
where

E =E 'E,B-4
Ey =(k Hy +c Hy )= Ey "Bk, Ny +¢,Ny))

(5.9)
, =—2 14
E,B— AE,
- —A(=k Ny Fy — kg Py M, _chZIIFl _Cq1)21,M1)+E4(_ka21F1 —ky Ly M, _cxHZI'Fl _chZI,Ml)
2 E,B— AE,
A(k, Ny, +c, Ny )= Eg(k . Hyy +c,.Hy )
mzz[ (kyNaj +cgNyy )= Ey(k Hyy + ¢ Hyyp )l LM,
E,B— AE,
my E3_1[A(qu21 +¢yNay ) = Eq(k Hyy + ¢ Hyp )]
F E;'E,B- 4
ny

"2 gy [E4E2E_1 —(ky Ny, +¢, N 1’)}
2

(5.10)

Substitution of equation 5.9 and 5.10 into 5.8 give the expression for the Gy;

receptance term. Finally, after RCSA for the complete structure, the analytical

displacement/force relationship at the tool tip (G,;), which is required for stability and

chatter avoidance, is given as (Schmitz, et. al, 2001):

X

-1 -1 ’ -1
GH:?:Hll—leEl Ey —LpEy ((kgNy +¢cgNay) — E4E T Ey)

1

(5.11)



where

Ey = (k Hys +k Hy +c Hyy +c Hyy +1) = By Ey(k Lys + k Loy + ¢, Lis +¢,Lyy)

Ey = (k Hyy + ¢ Hy) = Ey™ (kg Ny +¢oNy ki Ly + ko Loy +¢, Ly + ¢, L)

Ey = kpPy3 +kgPy +co Py + ¢y Ppy +1

Ey =kyNs3 +kyNy, +cyNiy +cyNby (5.12)
H, =iwH
N, =iwN,

mn?>

r_ .
mn> Lmn - lWLmn

;.
P, =iwP,,

The receptance term (H) contains three components. The first represent the
contributions by transnational and rotational rigid body modes, respectively. The third
gives response due to the free-free modes @ (x), expressed as shown in equation 5.17, which
are evaluated at coordinate x; (a distance L from the model origin). For the tool
holder/spindle component the direct deflection receptance term (H3;3) is measured at the

intersection location by impact test.

-1, 3 e #(L)’
mo*  meo~ =5 EIA;
mo- +icw + L3
L3 e 40
mo” mo™ 22w+ B
i Lo
Hy =—Hp, i i (5.13)
-1 3 = ¢,(0)°
H,, = 5+ >+ P> 7}
m meo~ =y i
mw- +icw+ L3

H;; — Experimentally determined

Response functions that relate displacement to applied moment are derived. For
component B (tool holder/spindle combination), the direct FRF (L;3) pertaining moment at
the connection point is required. It is assumed zero because of the absence of reliable

measurement techniques.



- ® (0)g (L
L= 62+z ¢ '(0)¢; (L) .
mLo® =l > . EIA
—-me- +icw+ 3
L

© (0)e: (0

Ly - 6 .3 ¢:'(0)¢;(0) (5.14)
mLw? =1 > . EIA!
—-mw- +icw+ L3

L33 — assummed zero

Response functions that relate rotation to applied force are shown in equation 5.15.

The direct FRF at the connection coordinate (N33) is assumed zero.

-6 X ¢i (L)¢i '(0)

Ny = + =
! mLe? A 2. EIAI-4
—-mo” +icw +
I r
6 ® (0)g;'(0
mLow” =l 2. El/ll-4
-mo” +icw +
JE

N5; — assummed zero

Response functions that relate rotation to applied moment are also derived. For

component B, the direct FRF (P;3) pertaining moment is also assumed zero.

12 = (4,0))

EIAL* (5.16)

1

L3

—ma)2 +icw+

P;; — assummed zero

The response due to the free-free modes is shown in the following equation. /4; is a

dimensionless frequency parameter.



#:(x) = cosh (Mj +cos [ ﬂ,-xj -0, {sinh (Mj +sin ( ﬂixﬂ
L L L L

cosh 4; —cos 4;
"~ sinh A; —sin 4;
47300  i=1
78532  i=2
10.9556 =3
4 =114.1371  i=4
17.2787  i=5
(2i+1)% i>5 (5.17)

For the calculations elastic modulus (£), viscous damping coefficient (c), mass (m)
and second moment of inertia (/) are required. In the static analysis section, an analytic
equation for the maximum displacement at the tool tip was derived which can be used to
determine the stiffness of the tool (Chapter 3). The effective diameter of the tool and the
second moment of inertia can be calculated using the analytical equations developed in
Chapter 3 for segmented beam with different moments of inertias and the cantilever beam
equation of the uniform cylinder. The mass of the tool can then be determined using the
natural frequency and stiffness both from analytic equations. The damping ratios for
different HSS and carbide tools have been determined experimentally. By using these
dynamic properties, the approximate ¢ values are estimated. Note that ¢ values determined
this way includes the damping of the tool only without the damping from the clamping as
they are identified from end mill’s component mode dynamics. These damping values can

then be used in the analysis of different tools.

In experiments, the tool point FRFs (G;;) of the tool/tool holder/spindle assembly are
measured for different tools. The connection parameters (ky, kg ¢y, cg) are determined using
Isgnonlin command of Matlab Optimization Toolbox [Schmitz and Burn, 2003, MatWorks,
2002]. Isgnonlin solves nonlinear least squares problems, including nonlinear data fitting.
X=lsgnonlin (fnctn,X,) starts at a point Xy and finds a minimum to the sum of squares of the
functions described in fnctn. Our syntax is [X, resnorm, residual, exitflag,

output]=Ilsqnonlin(fuctn ,Xy,lb, ub, options]. The solution is always in the range /b <= X <=



ub. The optimization parameters (max iteration number, max function evaluation number,
tolerances for function and X values) are specified in the structure options. The value of the
residual for a solution X, the value exitflag (0,1) that describes the exit condition and the
structure output that contains information about the optimization are returned. According to
the calculated spring and damper parameters, the tool point FRF of the assembly is
predicted analytically using Eq. (5.1). The experimentally measured result and the predicted

results for G;; are compared in the next section.

5.2. Experimental Results

In this section, the FRFs using analytical models and the RCSA are compared with
experimental results for verification. For the identification of the interface stiffness and
damping between the tool and tool holder, different tool geometries, materials and

clamping conditions are used. Contact parameters are identified and presented.

The tool holder/spindle direct FRF (H3;) is measured at the free end in x/y directions by
using low mass accelerometer and impact hammer. The measured FRF for X direction of
the HSK40 tool holder/spindle is shown in Figure 5.5. The same tool holder is used with
different end mills, and therefore the same FRF (Hj33) is used in RCSA in the following
examples. Interaction between tool and tool holder/spindle modes affects the tool point
FRF. Figure 5.4 shows the tool and tool holder/spindle assembly and variable tool
geometry properties.
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Figure 5.4: Tool- tool holder/spindle assembly and changing parameters
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Figure 5.5: Measured FRF of tip of HSK40 tool holder/spindle combination (X direction)

5.2.1. The Effect of the Tool Length

A carbide end mill with 4 flutes, 8 mm diameter, and 100 mm length is used for test.
Different lengths (length to diameter ratios of 8:1, 9:1, 10:1, 11:1) are selected for the
measurement.25 Nm clamping torque is applied on HSK40 holder. The tool effective

diameter and damping coefficient were determined as 7.49 mm and 20 Ns/m, respectively.

After the nonlinear least square evaluation, the stiffness and damping coefficients are
determined as shown in Table 5.1. The change in predictive values of linear rotational
stiffness and damping coefficients for the longest and shortest tools is shown in Figure 5.6.
After the connection parameters are obtained, the analytic direct and cross FRFs for the tool
and experimental holder/spindle direct FRF are inserted equation 5.1. Experimental impact

tests were also performed for each of the four selected tools.



D=8, L=64, D=8, L=72, D=8, L=80, D=8, L=88,
T=259 Lcontac=36 T=259 Lcontac=28 T=25, Lecontac=20 T=259 Lecontace=12

kx (N/m) 9.036 * 10° 6.885 * 10° 3.614 * 10° 1.304* 10°
kq (Nm/rad)|  1.02 * 10’ 53%10° 3.8%10° 1.277* 10°
cx (Ns/m) 445 368 228 141
cq (Nms/rad) 54.17 71.44 78.09 79.34

Table 5.1: Stiffness/ damping coefficients for 8§ mm diameter for shortest and longest tools

kx kq
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Figure 5.6: Variation of the connection parameters for shortest and longest tool

The measured and predicted FRFs using analytical component FRFs and RCSA are
shown Figure 5.7 for different length to diameter ratios. The response is governed by only
the first mode of the tool, and thus only the first beam mode is used in the analytical

component modes. The agreement between the experimental results and the predictions is



satisfactory. For a tool, when the overhang is increased, contact length between tool and

tool holder, natural frequency and stiffness decreases and tool flexibility increases.
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Figure 5.7: Comparison between measured frequency response and predicted response

using equation 5.11 with best-fit connection parameters (8,9,10 and 11:1 tools)

5.2.2. The Effect of the Tool Length and Clamping Torque

HSS and carbide end mill with 4 flutes, 20 mm diameter, and 104 mm length are used
for test. Different clamping torque values (25 Nm, 35 Nm and 45 Nm) are applied on
HSK40 holder. The tool effective diameter was determined as 19.498-mm. Damping



coefficients for HSS and carbide tools were 26 Ns/m and 60 Ns/m, respectively. The
nonlinear least square evaluation is used to find the stiffness and damping coefficients for

HSS and carbide tool and tool holder/spindle combination. (Table 5.2)

HSS D=20,L=96, | D=20,L=96, | D=20,L=96,
T=25, Leontac=8 | T=35, Leontac=8 | T=45, Leontact=8
kx (N/m) 4.46* 107 5.00% 107 5.58* 10°
kq (Nm/rad)|  3.41* 10 3.65% 10* 3.98* 10"
cx (Ns/m) 1401 1592 1798
cq (Nms/rad) 0.2 0.3 0.4
CARBIDE |12yl 8] T35 L8 | T35, L8
kx (N/m) 4.56* 10’ 5.27% 10 5.72% 10’
kq (Nm/rad)|  4.12* 10° 4.32% 10* 4.54* 10*
cx (Ns/m) 1642 1784 1853
cq (Nms/rad) 0.31 0.4 0.52

Table 5.2: Stiffness/ damping coefficients for 20 mm diameter for different materials and

clamping torques

The variation of linear and rotational stiffness and damping coefficients for different
clamping torques is shown in Figure 5.8. The stiffness and damping coefficients for the
combination HSS tool and tool holder/spindle are a bit less than connection coefficients for
the combination carbide tool and tool holder/spindle. As the clamping torque applied on

tool holder increases, all coefficients increase.



kx kq
6.00E+07 5.00E+04

CARBIDE —

CARBID/ 4.00E+04 | -—
5.00E+07 HSS /{
/ 3.00E+04 -

4.00E+07 2.00E+04
45 25

35 45
T (Nm)

cx cq
0.8

CARBIDE
/ 0.6 |
CARBIDE

0.2 HSS

2.00E+03

1.00E+03 : : 0
25 45 25

45

35 35
T (Nm) T (Nm)

Figure 5.8: Variation of the connection parameters diameter for different materials and

clamping torques

Figure 5.9 shows an example of the experimental and predicted direct tool point FRFs
(G) for tool material of HSS and carbide. The overall agreement between the predicted
and measured results is good. However, small deviations are also seen. This is attributed in
imperfect knowledge of tool geometry, deviations in contact conditions between collet and

tool and finite repeatability of the FRF measurement process.
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Figure 5.9: Comparison between measured frequency response and predicted response

using equation 5.11 with best-fit connection parameters (D=20 mm, L=96 mm, T=35 Nm)



5.2.3. The Interaction between Tool and Tool Holder/Spindle Modes

In the experiment, the HSS end mill, which has 16 mm diameter, 85 mm overhang
and 4 flutes, was mounted in HSK40 tool holder. The effective diameter of the end mill and
the damping ratio were determined as 15.56 mm and 20 Ns/m, respectively. The linear and
rotational spring and damping coefficients for the connection between the tool and tool
holder/spindle are given in Table 5.3. The agreement between the predicted and measured

results can be seen from the Fig. 5.10.

kx (N/m) kq (Nm/rad) cx (Ns/m) c¢q (Nms/rad)
84.8% 10° 8* 10 1022 6.3

Table 5.3: Stiffness/ damping coefficients for 16 mm diameter (L/D = 5.3)
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Figure 5.10: Comparison between measured frequency response and predicted response

using equation 5.11 with best-fit connection parameters (D=16 mm, L=85 mm, T=45 Nm)

Because of the interaction between tool holder/spindle dynamics and the tool
dynamics, two close modes are experienced as shown in the figure. The single tool mode

has been effectively split into two dynamically stiffer modes, providing an increase in



stability. This is due to interaction of the cantilever tool mode with approximately 1042 Hz
tool holder/spindle mode (Figure 5.2). The analog to this situation is the dynamic absorber,
where a small spring/mass is added to a larger vibrating system. The spring constant and
mass of the added system are selected such that the natural frequency is equal to excitation
frequency of the larger structure and the vibration of the support structure is reduced.
Alternatively, this effect may be described as proper impedance matching between the tool

and tool holder/spindle substructures.

5.3. Model for Contact Stiffness

The connection between tool and collet is cylindrical. Contact stiffness due to
deformations in a connection between two components, tool and tool holder/collet. In
cylindrical connections, the radial and angular deformations are important. External forces
causes displacements and pressures. The interaction of tool and collet is as shown in Figure

5.11.

Figure 5.11: Cylindrical connection between tool and tool holder/collet



In the figure, ¢, in N/m, is load per unit length of connection (L onacr). Displacement
(0) caused by external force is along the direction of the force. ¢y is the contact angle.

Radial displacement at angle @ is 0.

Under external loading of connection, total pressures on one side are increasing,
while on the opposite side they are decreasing. Maximum displacement caused by external
force is along the direction of the force, displacement along the circumference can be

assumed to be cosinusoidal.

Contact deflections can be considered as proportional to the contact pressure (Rivin,

1999). Two correlations between contact pressure p and deformation o are considered.

o=kp
5.18
5:cp0‘5 ( )

where p is pressure from external load and & = cp_o‘5 is the contact compliance coefficient.

Coefficient c is experimentally determined for different connection materials.

Assuming that interaction of cylinder is as shown in Figure 5.11. There is
cosinusoidal load distribution along the arc 2¢o. Radial displacement at angle ¢ to the

direction of load q:

6, =0cosp
(5.18)
6, =hkpcosg
Vertical component of contact pressure at angle ¢ is
Py =PpPCOSQY
S 2 (5.19)
2 _20 05 =000 g2 OCOS 0



The total vertical load can be obtained by integrating p,, along the contact arc 2¢o,

% Scoslp 5P, o .10
= | ——=— ] cos"p=—|@+cos@singp|"’
p _LD P _{00 0="rlo+cospsing]’,

o )
p= ;((00 +Cos @, sin @) (5.20)

o .
P =—"25 (g +cos gy sin )
cp '

Substitution equation 5.20 into equation 5.18 yields equation 5.21

5 =cp®? (¢ +cos @, sin @) (5.21)

Stiffness of connection is determined by deformation between the connected surfaces.

qlL

‘contact —

o

L . —
9% contact = C\Jqd Lyypyy00: (90 +COS @ SN ) 1

c %((po +cos @, sin ¢y) (5.22)

kx =C \Y qdl‘contact ((00 +cCos Do sin (pO)_l

A load and connection stiffness characteristic of the system is nonlinear. C is a
constant parameter, which changes with material properties (E, elastic modulus) of
connected parts. The effect of contact length is linear as it is seen in Figure 5.6. The contact
angle, ¢y, depends on material properties and clamping torque applied on tool holder. The
graph variation of the contact stiffness for different materials (carbide, HSS) and different

clamping torques (Figure 5.8) shows the material property and clamping torque effect.



5.4. Summary

The application of receptance coupling substructure analysis (RCSA) to tool point
FRF prediction has been demonstrated. The derivation analytical expressions for FRFs,
which is coupled with tool holder/spindle experimental FRFs is shown. The method of
identification of the connection parameters (stiffness and damping) between tool and tool
holder/spindle is presented. The experimental and predicted results are compared. The
effects of changes in tool geometric parameters and clamping conditions are explained. The

model for contact stiffness is developed.



CHAPTER 6

EXPERIMENTAL APPLICATION

The stiffness and deflection of a cutting tool is very important for accuracy and
stability in a machining process. Proper cutting conditions can be selected using the
structural characteristics of the cutting system in order to improve quality and productivity.
In this chapter, application of the structural modeling methods will be demonstrated by

experiments.

Static deformations of the tool are important for machined part precision and surface
quality. The stiffness that can be calculated analytically is used to predict the maximum
surface error generated by the end mill. In the first section, the analytical displacement and
stiffness calculations, which were presented in chapter 3, are verified by experiments where
displacement of the tool is measured. The comparison of the experimental and analytic

results is presented in the second section.

Dynamic models developed for end mills in this study can be used for transfer
function and stability calculations. In the third section, it is demonstrated that the analytical
solution can accurately predict the dynamic properties of the tool. In the fourth section, the

application of segmented beam formulation is demonstrated for two different beams.



6.1. Stiffness Calculation

Stiffness is the capacity of a mechanical system to sustain loads without excessive
changes of its geometry. Stiffness effects on performance of mechanical systems are due to
influence of deformations on static strength, wear resistance, efficiency, accuracy, dynamic

stability and manufacturability.

The analytical stiffness calculation for cutting tool is explained in chapter 3. End mill
is taken as a segmented beam, one segment for the part with flute and the other segment for
the shank. Maximum displacement for the end point is given in equation 3.15 according to
geometric properties of the tool. Stiffness of the tool can be calculated easily by using
maximum displacement. In order to check accuracy of analytic stiffness calculation an

experiment was carried out which is presented here.

4-flute high speed steel long slender end mill is selected to demonstrate the accuracy
of analytical results. The mill and shank diameter is 6 mm, the flute length is 38 mm and
the gauge length is 75 mm. A force (F) is applied to end point of the tool and measured by
dynamometer (Figure 6.1) Displacements at X7/ and X2 are measured by dial gage.

Figure 6.1: Experimental set-up of stiffness measurement



Total displacement of the tool is equal to summation of clamping displacement, beam
displacement and rotational displacement. Rotational displacement is assumed to be zero.
In order to calculate clamping stiffness the displacement at X1 is also measured. Following

figure explains the method used for the calculation.

+ 8ROTATIONAL

8TOTAL 8CLAMPING 8BEAM

Figure 6.2: Theory of displacement measurement calculation

Force, 28.5 N is applied to the end of the tool. The displacement at X1 and X2 are
0.008 mm and 0.388 mm, respectively. The displacement of the beam is calculated as
0.380 mm. The experimental beam stiffness is 75 N/mm. The analytical maximum
displacement of the beam is 0.403 mm according to applied force, 28.5 N. So the stiffness
of the tool, which is calculated by using displacement from analytical equation, is 70.5
N/mm. The agreement between two stiffness values is very satisfactory. The small

difference may result from experimental errors.



6.2. Maximum Surface Error

Maximum dimensional surface error is obtained from cutting force and surface
generation models presented in chapter 2. Maximum surface error varies according to
cutting conditions. Therefore, feasible cutting conditions such as radial depth of cut and

federate can be determined from maximum surface error data.

The stiffness of an end mill can be calculated using the analytic model presented in
chapter 3. The stiffness values are used to predict the maximum surface error generated by
the end mill. For surface error calculation, the cutting forces are determined according to
work material properties, cutting and tool conditions (Altintas, 2000). The results are
verified using the experimental results in (Budak and Altintas, 1994). 4-flute high speed
steel end mill with 30° helix angle is used for comparision. The tool diameter is 19.05 mm
and the tool gauge length is 54.5 mm. The stiffness of this tool is 12761 N/mm. Cutting
conditions are summarized in Table 6.1. The cutting forces are determined according to

these cutting parameters (Budak and Altintas, 1994).

Cutting pressure coefficient (Kr) 546 MPa
p 0.246
Cutting force coefficient (Kr) 0.270
q 0.271
Entry Angle, Exit angle 0°, 90"

Table 6.1: Cutting conditions to calculate the cutting forces and max surface error

The model results agree with the experimental results (Table 6.2). The error in the

prediction of the maximum surface error (Emax) is less than % 6.



Axial depth Federate Emax Emax ERROR

of cut (mm) | (mm/tooth) | Exp.(mm) | Model (mm) (%)
19.05 0.14 0.0944 0.0912 3.38
15.00 0.10 0.0722 0.0677 6.23
15.00 0.06 0.0444 0.0438 1.35
15.00 0.02 0.0178 0.0167 6.18
18.00 0.02 0.0166 0.0158 4.82

Table 6.2: Experimental and calculated maximum surface error results

6.3. Chatter Avoidance

Machine tool vibrations are the self exited oscillations of cutting tool and workpiece.
In order to generate the stability diagrams dynamic characteristics of the tool is needed. The
excessive vibrations of the cutter and workpiece result in poor surface finish and
dimensional accuracy and may damage the workpiece and machine tool. Chatter vibration

free spindle speeds and axial depth of cuts can be selected from stability chats

Frequency response function (FRF) is required for chatter stability diagrams. In order
to obtain the FRF, the tool point is excited using a hammer. This is time consuming for
each tool/holder/spindle assembly. The analytic solution is very useful to identify the
dynamic properties for especially long tools. The dynamics of tool holder/spindle can be
neglected when very tool length is used. A cutting tool can be considered as fixed-free bar

as in the analytical solution.



6.3.1. Example 1

4-flute high speed steel end mill with long overhang is selected to demonstrate the
accuracy of analytical results. The analytical solution is also compared with cylinder
approximation commonly used for end mills. The mill and shank diameter is 12 mm, the
flute length is 26 mm and the gauge length is 74 mm. FRF measurement was performed to
determine the transfer function of the end mill, which is shown in Figure 6.3. Table 6.3
shows the frequency, stiffness, damping and mass values for the end mill, and the cylinder
with the same diameter and length. The graphs between the magnitude of the transfer
function and frequency for all methods are shown in Figure 6.3. The approximation results
could be improved by using an effective diameter for the cylinder. The analytical solution
is the most powerful approximation to find the dynamic properties.
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Figure 6.3: Magnitude of the transfer function for the experimental, analytical and

cylinder methods for example 1



Transfer
Frequency (Hz) | Stiffness (N/m) | Damping ({) | Mass (kg)
Function
Experimental 1174 1.35E+6 0.018 0.0250
Analytical 1148 1.38E+6 0.018 0.0265
Cylinder 1478 1.51E+6 0.018 0.0175

Table 6.3: The comparison of the dynamic properties for example 1

The stability lobe for down milling of Al-7075 with radial width of the cut 2.5 mm is
determined using the equations described in chapter 4 (CutPro®) (Altintas, 2000) shown in

Figure 6.4. The minimum stable depth of cut is 0.2 mm.
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Figure 6.4: Stability lobe diagram for example 1



6.3.2. Example 2

For example 2, HSS end mill, which has 10 mm mill and shank diameter, 22 mm the
flute length, 69 mm the gauge length and 4-Flute, was mounted in HSK 40 tool holder. In
order to determine the transfer function of the end mill FRF measurement was performed,
analytical equations and cylinder approximation are used (Figure 6.5). Table 6.4 shows the
frequency, stiffness, damping and mass value for the end mill, which are obtained from
experiment and analytical equations, and for the cylinder with the same diameter and
length. The most powerful approximation to find the dynamic properties is the analytical
solution. When the cylinder approximation is compared with experimental result, it is

observed that it is not a very accurate method. The agreement between experimental and
analytical results in example 2 is sufficient.
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Figure 6.5: Magnitude of the transfer function for the experimental, analytical and cylinder

methods for example 2.



Transfer
Frequency (Hz) | Stiffness (N/m) | Damping ({) | Mass (kg)
Function
Experimental 1127 9.53E+5 0.0168 0.0190
Analytical 1207 9.47E+5 0.0168 0.0165
Cylinder 1549 1.07E+6 0.0168 0.0113

Table 6.4: The comparison of the dynamic properties for example 2

The stability lobe for down milling of Al-7075 with radial width of the cut 2.5 mm is
determined and shown in Figure 6.6. The minimum stable depth of cut is 0.1 mm for

example 2.
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Figure 6.6: Stability lobe diagram for example 2



6.4. Application of Segmented Beam Formulation

The determination of fundamental natural frequency for segmented beam is explained

in chapter 4. Because of the complex matrix calculations (equation 4.13), the determination

of natural frequency is very difficult. Therefore, a graph was created based on the

geometric properties of the beam. From this graph (Figure 4.2) K value can be selected to

calculate natural frequency. Then, simplified equations were developed according to length

ratio (L1/L2) and diameter ratio (D1/D2) (equation 4.18). Fundamental natural frequency

can be easily calculated by using K value, geometric properties and material properties

(equation 4.17).

For this section, two segmented beams, which have different materials and geometric

properties, are selected (Figure 6.7). In this analysis, the length and diameter ratios are

more important than the exact length diameter values. The mechanical properties of the

material are given in Table 6.5 (Beer and Johnston, 1992).

20 mm

7 . 7 ] .
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[ - | . L
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228 mm 100 tnin
a) Aluminum beam b) Steel beam
Figure 6.7: Geometric properties of aluminum and steel segmented beams
MATERIAL Elastic Modulus (GPa) Density (kg/ms)
Steel 200 7860
Aluminum 72 2800

Table 6.5: Mechanical properties of the segmented beam materials



The K value is calculated from the matrix solution (equation 4.13), the graph (Figure
4.2) and the simplified equations (equation 4.18). Following calculation shows the K value
determination from simplified equations for aluminum segmented beam. Table 6.6 shows

all K values for three different methods.

© 1  —0.817(In/)+0.0167

= , a , bh=0.1821/2 +0.1063/ —0.0275
D1 /
a +b
22)
[= ﬂ = 0.57,ﬂ =145—> K =0.767
L2 D2
K MATRIX GRAPH EQUATION

L1/1L.2=0.57, D1/D2=1.45,

0.808 0.790 0.767
Aluminum

L1/L.2=0.31, D1/D2=1.25

0.271 0.260 0.253
Steel

Table 6.6: K values for three different methods of natural frequency calculation

Material properties, geometric properties and K values for all methods are substituted

into equation 4.17 and natural frequency is calculated. Following calculation demonstrates

natural frequency of the aluminum segmented beam.
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Experimental modal analysis results (Figure 6.8) for two aluminum and steel
segmented beams and the frequencies, which are calculated from matrix, graph and

simplified equations, are tabulated in Table 6.7.
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Figure 6.8: The experimental FRF measurement for aluminum segmented beam

FREQUENCY (Hz) MATRIX | GRAPH | EQUATION | EXPERIMENT

L1/L2=0.57, D1/D2=1.45

279 273 265 284
Aluminum
L1/L2=0.31, D1/D2=1.25
671 651 627 693
Steel

Table 6.7: Frequency results from experiments and other methods

Obviously, the frequency, which is calculated from complex matrix equations, is very
close to the experimentally determined frequency. Instated of using the graph for the K

value, using the simplified equations is much easier. However, the error of the frequency of




the simplified equations is more than the frequency of the graph method. (% 6.6 for

aluminum segmented beam and %9.5 for steel segmented beam)

After determining the natural frequency, the mode shape can be obtained by using
arbitrary constant vector 4 from equation (4.12). The mode shape, which is obtained by

using the solution for matrix equations for aluminum beam, is given in Figure 6.9.
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Figure 6.9: Mode shape for the solution of matrix equations

For the first bending mode, maximum displacement occurs at the end of the beam.
The comparison of the mode shapes of the aluminum segmented beam for all three methods
is given in Table 6.8. The table contains the ratio of displacement at certain point and

maximum displacement.

MI;;SIl))l?scpelI;lceel:ltle/zn ¢ at50 mm | at 100 mm | at 150 mm |at 200 mm | at 228 mm
MATRIX 0.07325 0.26597 0.53145 0.82955 1
GRAPH 0.07579 0.27009 0.53515 0.83095 1
EQUATION 0.07896 0.27526 0.53975 0.8327 1

Table 6.8: The comparison of the mode shapes for three different methods



6.5. Summary

Applications of the models are demonstrated by 4 examples. The first one is on
prediction of the deflection and stiffness of the tool. Then, the prediction of the form error
due to tool deflection is demonstrated in the second example. The third one is on the
prediction of the tool transfer function, which is required for chatter avoidance and stability
limit calculations. Finally, the application of the simplified segmented beam equations is

demonstrated with examples.



CHAPTER 7

CONCLUSION

In this study, generalized equations are presented which can be used for predicting
the static and dynamic properties of milling system components. Both FEA and analytical
methods have been used for static and dynamic analysis of end mills. The results are
verified experimentally. RCSA model has been used for combining the measured dynamics
of the tool holder/spindle and the analytically determined end mill modes. The connection

parameters between tool and tool holder/spindle are identified.

Dynamic and static properties of milling tools are very important for machining
precision and chatter stability. In general, approximate analytical or experimental results
are used to determine these characteristics. Approximate results do not provide accurate
information particularly for the dynamics and chatter stability. Experimental methods, on
the other hand, are time consuming considering the possible number of tool and tool holder
combinations, tool geometry and material in an industrial setting. The analytical models
presented in this work eliminate measurements for every tool assembly. The models
consider the complex geometry of flutes in development of cross sectional properties. The
approach presented here is very useful for implementation in a virtual machining system
where the form errors and stability limits for a milling application can be determined

automatically.



End mills have flutes and unfluted sections, which further complicate their geometry.
This segmented characteristic has also been considered in static and dynamic modeling.
This is an original contribution of this work. Simplified equations for segmented beam can
be used for any area. Due to its wide use in industry, milling process is considered,

however the same methods can be applied to other machining operations as well.

As a future work the modeling of contact parameters will be developed. The
parameters can be determined by using these models according to tool geometric
conditions, material properties and clamping force. In the future, all study, which is done
for tool and tool holder, can be done for spindle and machine. All models can be integrated

into CAD/CAM systems to develop a virtual machining system for precision machining.
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