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ABSTRACT 

 CAD/CAM systems and CNC machine tools have made significant impact on 

machining accuracy and productivity. However, material removal rate and quality in 

machining may still be limited due to issues related to the process mechanics which are not 

considered in CAD/CAM systems. In this study, modeling structural properties of milling 

system components is presented. These models eliminate the need for stiffness and transfer 

function measurements, and together with cutting force and stability models, they can be 

integrated into CAD/CAM systems to predict and compensate surface errors, and determine 

chatter free machining conditions. Therefore, the process is also simulated in addition to the 

geometry, which is usually the missing part in virtual manufacturing systems. The goal of 

this research is to develop a virtual machining system for precision machining of sculptured 

surfaces in which the part geometric errors contributed by the machine tool errors are 

predicted and evaluated prior to the real cutting. 

 
Cutting forces produce deformations of the tool and these cause dimensional and 

form errors on the workpiece. Milling forces can be modeled for given cutter geometry, 

cutting conditions and work material. The force prediction can be used to determine form 

errors on the finished surface. Chatter vibrations developed due to dynamic interactions 

between the cutting tool and workpiece. Chatter vibrations cause poor surface finish and 

inconsistent product quality. Static and dynamic properties of end mill are required to 

predict the form errors and chatter stability limits without measurement. In this research, 

generalized equations are presented which can be used for predicting static and dynamic 

properties of the cutting tool. The static and dynamic characteristics of tool and tool holder 

can be obtained by using finite element analysis (FEA). Considering great variety of 

machine tool and tool holder configurations and geometries, FEA for each configuration is 

very time consuming. In this study, the models are seemed to be accurate for prediction 

statics and dynamics characteristics of the tool. 



  

ÖZET 

Günümüzde CAD/CAM sistemlerinin ve CNC takım tezgahlarının kullanımının 

artması ile işleme hassasiyetinde ve verimlilikte önemli gelişmeler elde edilmiştir. Ancak 

talaş kaldırma oranı ve kalite gibi işleme mekaniğine bağımlı konular hala CAD/CAM 

sistemlerinde göz ardı edilmektedir. Bu çalışmada frezeleme sisteminin yapısal özellikleri 

modellenmiştir. Bu modellerin elastiklik katsayısı ve transfer fonksiyonu ölçümüne gerek 

kalmadan, kesme kuvveti modelleri ve kararlılık modelleri ile birlikte CAD/CAM 

sistemlerine katılarak yüzey hatalarının tahmini ve giderilmesi, aynı zamanda tırlama 

oluşmadan kesme yapılabilmesini sağlar. Bu çalışmada takımlardan dolayı kaynaklanan 

geometrik hataları kesme yapmadan önce tahmin eden sanal üretim sistemi yapılması 

amaçlanmıştır. 

Kesme kuvvetleri takımda deformasyonlara neden olmakta ve bu deformasyonlardan 

dolayı ölçü ve şekil hataları meydana gelmektedir. Frezeleme kuvvetleri, kesici takım 

geometrisi, kesme koşulları ve iş parçası malzesine bağımlı olarak modellenmektedir. Bu 

modelleme sonucu elde edilen kuvvet tahminleri, işlenmiş yüzeydeki form hatalarının 

hesaplanmasında kullanılabilir. Tırlama, kesici takım ve iş parçası arasındaki dinamik 

etkileşimler nedeniyle oluşmaktadır. Tırlama düşük yüzey kalitesine ve istikrarsız ürün 

kalitesine sebep olur. Parmak frezenin statik ve dinamik özellikleri, form hataları ve tırlama 

kararlılık sınırlarını ölçmeden tahmin etmek için gereklidir. Bu araştırmada kesici takımın 

statik ve dinamik özelliklerini tahmin etmekte kullanılabilecek genel denklemler 

sunulmuştur. Takımın ve takım tutucunun statik ve dinamik karakterleri sonlu elemanlar 

analizi yöntemi kullanılarak elde edilmiştir. Takım ve takım tutucuların çok çeşitli düzenek 

ve geometrileri göz önüne alındığında, tamamı için ayrı ayrı sonlu elemanlar analizi 

yapmak çok zaman alıcı bir iştir. Bu çalışmada elde edilen modellerin statik ve dinamik 

karakterleri belirlemede doğru sonuçlar verdiği ispatlanmıştır. 
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ABSTRACT 

 CAD/CAM systems and CNC machine tools have made significant impact on 

machining accuracy and productivity. However, material removal rate and quality in 

machining may still be limited due to issues related to the process mechanics which are not 

considered in CAD/CAM systems. In this study, modeling structural properties of milling 

system components is presented. These models eliminate the need for stiffness and transfer 

function measurements, and together with cutting force and stability models, they can be 

integrated into CAD/CAM systems to predict and compensate surface errors, and determine 

chatter free machining conditions. Therefore, the process is also simulated in addition to the 

geometry, which is usually the missing part in virtual manufacturing systems. The goal of 

this research is to develop a virtual machining system for precision machining of sculptured 

surfaces in which the part geometric errors contributed by the machine tool errors are 

predicted and evaluated prior to the real cutting. 

 
Cutting forces produce deformations of the tool and these cause dimensional and 

form errors on the workpiece. Milling forces can be modeled for given cutter geometry, 

cutting conditions and work material. The force prediction can be used to determine form 

errors on the finished surface. Chatter vibrations developed due to dynamic interactions 

between the cutting tool and workpiece. Chatter vibrations cause poor surface finish and 

inconsistent product quality. Static and dynamic properties of end mill are required to 

predict the form errors and chatter stability limits without measurement. In this research, 

generalized equations are presented which can be used for predicting static and dynamic 

properties of the cutting tool. The static and dynamic characteristics of tool and tool holder 

can be obtained by using finite element analysis (FEA). Considering great variety of 

machine tool and tool holder configurations and geometries, FEA for each configuration is 

very time consuming. In this study, the models are seemed to be accurate for prediction 

statics and dynamics characteristics of the tool. 



  

ÖZET 

Günümüzde CAD/CAM sistemlerinin ve CNC takım tezgahlarının kullanımının 

artması ile işleme hassasiyetinde ve verimlilikte önemli gelişmeler elde edilmiştir. Ancak 

talaş kaldırma oranı ve kalite gibi işleme mekaniğine bağımlı konular hala CAD/CAM 

sistemlerinde göz ardı edilmektedir. Bu çalışmada frezeleme sisteminin yapısal özellikleri 

modellenmiştir. Bu modellerin elastiklik katsayısı ve transfer fonksiyonu ölçümüne gerek 

kalmadan, kesme kuvveti modelleri ve kararlılık modelleri ile birlikte CAD/CAM 

sistemlerine katılarak yüzey hatalarının tahmini ve giderilmesi, aynı zamanda tırlama 

oluşmadan kesme yapılabilmesini sağlar. Bu çalışmada takımlardan dolayı kaynaklanan 

geometrik hataları kesme yapmadan önce tahmin eden sanal üretim sistemi yapılması 

amaçlanmıştır. 

Kesme kuvvetleri takımda deformasyonlara neden olmakta ve bu deformasyonlardan 

dolayı ölçü ve şekil hataları meydana gelmektedir. Frezeleme kuvvetleri, kesici takım 

geometrisi, kesme koşulları ve iş parçası malzesine bağımlı olarak modellenmektedir. Bu 

modelleme sonucu elde edilen kuvvet tahminleri, işlenmiş yüzeydeki form hatalarının 

hesaplanmasında kullanılabilir. Tırlama, kesici takım ve iş parçası arasındaki dinamik 

etkileşimler nedeniyle oluşmaktadır. Tırlama düşük yüzey kalitesine ve istikrarsız ürün 

kalitesine sebep olur. Parmak frezenin statik ve dinamik özellikleri, form hataları ve tırlama 

kararlılık sınırlarını ölçmeden tahmin etmek için gereklidir. Bu araştırmada kesici takımın 

statik ve dinamik özelliklerini tahmin etmekte kullanılabilecek genel denklemler 

sunulmuştur. Takımın ve takım tutucunun statik ve dinamik karakterleri sonlu elemanlar 

analizi yöntemi kullanılarak elde edilmiştir. Takım ve takım tutucuların çok çeşitli düzenek 

ve geometrileri göz önüne alındığında, tamamı için ayrı ayrı sonlu elemanlar analizi 

yapmak çok zaman alıcı bir iştir. Bu çalışmada elde edilen modellerin statik ve dinamik 

karakterleri belirlemede doğru sonuçlar verdiği ispatlanmıştır. 
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CHAPTER 1 

INTRODUCTION 

Milling is one of the most commonly used machining processes in industry. Great 

variety of parts with different geometry, complexity, quality and materials can be produced 

by milling. In milling the main cutting motion is the rotation of a multitoothed cutter that 

machines a workpiece that performs translative feed motions. There are two basic models, 

face milling and peripheral milling (up and down milling). A very common type of 

peripheral milling is end milling (Figure 1.1). The geometry of end milling operation is 

presented in Figure 1.2. 

 

Figure 1.1: End milling operation 

 

 

 

Figure 1.2:Geometry of end milling  

 



  

Depending on the workpiece geometry, different milling cutters are used. Tool 

holders are used to provide good concentricity between tool and machine spindle. (Figure 

1.3)  
 

            

Figure 1.3: Various milling cutting tools and tool holders 

 
An end mill is a cutter of a smaller diameter (usually between 5 mm and 30 mm 

diameter) clamped in overhang, and its length is several times its diameter. Figure 1.4 

shows an end mill with detail geometric properties.  

 

Figure 1.4: Geometric properties of the end mill 

 
Static and dynamic deformations of cutting tool play an important role in tolerance 

integrity and stability in a machining process affecting part quality and productivity. 

Modeling is needed for prediction static and dynamic properties of cutting tool without 

measurement. The models can be integrated into CAD/CAM systems in order to achieve a 

virtual machining system where most of the effects that are observed in real machining 

could be simulated in advance.  



  

1.1. Related Literature Review 

Process modeling is needed for modeling structural properties of milling system 

components. Modeling of milling process has been the subject of many studies some of 

which are summarized by Smith and Tlusty (1991). The focus of these studies has mostly 

been on the modeling of cutting geometry and force, stability and prediction of part quality.  

Milling forces have been investigated using different approaches. Koenigsberger and 

Sabberwal (1961) developed equations for milling forces using mechanistic modeling 

where the cutting force coefficients which relate the chip area to tangential, radial and axial 

forces are calibrated through force measurements. The mechanistic approach has been 

widely used for the force predictions and also have been extended to predict associated 

machine component deflections or surface geometrical errors (Kline et al., 1982; Budak 

and Altintas, 1995). Another alternative is to use mechanics of cutting approach in 

determining milling force coefficients as used by Armarego et al. (1985). In this approach, 

an oblique cutting force model together with an orthogonal cutting database are used to 

predict milling force coefficients eliminating the need for milling tests as different tool and 

cutting geometries can be handled by the oblique model (Budak et al. 1996). Once the 

cutting force coefficients are known, the milling forces can be determined by integrating 

the forces along the cutting edges. Altintas et al. (1996, 2001) also demonstrated the 

application of this approach to complex milling cutter geometries. Milling forces can be 

used to predict tool and part deflection and form errors. (Figure 1.5) 
 

 
                     a) Ideal geometry      b) Form error         c) Surface roughness 

Figure 1.5: Effect of tool deflection on form error and surface roughness 



  

Another major limitation on productivity and surface quality in milling is the chatter 

vibrations which develop due to dynamic interactions between the cutting tool and 

workpiece, and result in poor surface finish and reduced tool life. Tlusty et al. (1963) and 

Tobias (1965) identified the most powerful source of self-excitation which is associated 

with the structural dynamics of the machine tool and the feedback between the subsequent 

cuts on the same cutting surface resulting in regeneration of waviness on the cutting 

surfaces, and thus modulation in the chip thickness (Koenigsberger and Tlusty, 1967). 

Under certain conditions the amplitude of vibrations grows and the cutting system becomes 

unstable. Additional operations, mostly manual, are required to clean the chatter marks left 

on the surface (Figure 1.6). Thus, chatter vibrations result in reduced productivity, 

increased cost and inconsistent product quality.  

 
 

 

 

Figure 1.6: Chatter marks on the surface 

 
CAD/CAM is the most common example of computer integration to manufacturing 

environment promising improved productivity, quality and flexibility. They are the most 

important elements for development of virtual machining systems. One significant 

shortcoming of CAD/CAM systems is the fact that they mostly neglect the mechanics of 

the process when simulating the machining cycles. Many quality and productivity problems 

such as excessive forces, deformations and vibrations resulting in reduced material removal 

rates, on the other hand, are experienced during the machining. Process models together 

with structural models of machining system components need to be integrated into 

CAD/CAM environment in order to achieve a virtual machining system where most of the 

effects that are observed in real machining could be simulated in advance.  



  

Demonstrations of cutting model implementation in CAD/CAM systems have been 

done in several studies [Altintas and Spence, 1991, Yazar et al., 1994]. Altintas and Spence 

(1991), and Yazar et al. (1994) demonstrated that force models could be used to predict 

form errors and optimize feedrates based on simulation at the CAD/CAM stage. Weck et al. 

(1994) demonstrated determination of chatter free milling conditions in a commercial 

CAD/CAM software. Cutting force coefficients and tool dynamics were needed for these 

simulations, which were determined experimentally. Generation of an orthogonal cutting 

database for a work material as Budak et al. (1996) did reduces the amount of experiments, 

and thus makes implementation of force models in CAD/CAM more practical. There is a 

need for more practical determination of structural properties of the cutting tool for a virtual 

machining system. Kops et al. (1990) determined an equivalent diameter for end mill based 

on FEA in order to be able to use beam equations for deflection calculations, which 

eliminate stiffness measurements for each tool.  

 

Static and dynamic deformations of machine tool, tool holder and cutting tool play an 

important role in tolerance integrity and stability in a machining process affecting part 

quality and productivity. Excessive static deflections may cause tolerance violations 

whereas chatter vibrations result in poor surface finish. Cutting force, surface finish and 

cutting stability models can be used to predict and overcome these problems. This would 

require static and dynamic data for the structures involved in a machining system (Altintas, 

2000). Considering great variety of machine tool configurations, tool holder and cutting 

tool geometries, analysis of every case can be quite time consuming and unpractical. These 

data are usually obtained by testing using stiffness measurements and modal analysis 

(Altintas, 2000, Budak and Altintas, 1994 and Koenigsberger and Tlusty, 1967).  

 

Recent improvements in machine and spindle designs have led to the increased use of 

high-speed machining (HSM) in the manufacture of discrete parts (Smith et al., 1998). It is 

recognized that a major practical limitation on the productivity of HSM systems is 

regenerative chatter. Therefore, many studies have explored methods to maximize material 

removal rate (MRR) during HSM, while avoiding chatter. HSM simulation, which is 

crucial for pre-process chatter prediction and avoidance, requires knowledge of the system 



  

dynamics reflected at the tool point. In general, a separate set of tool point frequency 

response function (FRF) measurements must be performed for each tool/holder/spindle 

combination on a particular machining center. These measurements can prove time 

consuming and lead to costly machine downtime. In order to reduce measurement time and 

increase process efficiency receptance coupling substructure analysis (RCSA) is used to 

predict the tool point dynamic response. Building on early work of Duncan (1947), Bishop 

and Johnson (1960) and more recent work of Ewins (1986) and Ferreira and Ewins (1995). 

Schmitz and Donaldson (2000) and Schmitz et al. (2001) develop an analytic expression for 

the frequency response at the free end of the milling cutter from: 1) an analytic model of 

the tool; 2) an experimental measurement of the holder/spindle sub-assembly; and 3) a set 

of empirical connection parameters. These parameters are extracted from a single 

measurement of the tool/holder/spindle assembly at a known tool overhang length using 

nonlinear least squares estimation (Schmitz and Burn, 2003). 

 

1.2. Scope of the Study 

Due to its wide use in industry, milling system is considered. The main concern of 

this master thesis is the accurate knowledge the static and dynamic properties of machining 

system components. Generalized equations are presented which can be used for predicting 

the static and dynamic properties. Substructuring methods are used in predicting the total 

system dynamics based on component analysis. Results presented here can be integrated to 

a CAD/CAM environment together with process models towards development of a virtual 

machining system.    

  

 End milling is a commonly used process in industry for parts with dimensional and 

surface quality requirements. Chapter 2 gives process models (Budak, 2002) that can be 

used improve productivity and quality. An analytical milling force model, which is used 



  

tool deflection calculations, is presented. The prediction of form error is demonstrated. An 

analytical model for prediction of chatter stability limit is presented. 

 

 Chapter 3 gives simplified equations to predict maximum tool deflection. Because 

of the complex end mill geometry beam approximations do not provide accurate stiffness 

and transfer function predictions. The moment of inertias of different end mill cross 

sections must be determined (Nermes et al., 2001). In static analysis, moment area method 

(Beer and Johnson, 1992) is used to calculate the deflection of end mill, which have two 

segments, one for part with flute and the other for the shank. I-DEAS (Shih, 2000) finite 

element analysis results for tool and tool holder is also presented in this chapter Analytical 

equation solutions are compared with FEA results. 
 

 Chapter 4 starts with a brief explanation segmented beam model that is used to 

predict tool dynamics. The solution of mode shapes and fundamental natural frequency is 

presented (Rao, 1995). In order to avoid complex calculations simplified equations are 

determined.  I-DEAS finite element dynamic analysis results for tool and tool holder are 

given. Transfer function measurement system and modal analysis are described. 

  

 The application of Receptance Coupling Substructure Analysis (RCSA) to the 

analytic prediction of tool point dynamic response is described in chapter 5. The interface 

stiffness and damping between tool and tool holder is identified. The effects of changes in 

tool parameters and clamping conditions are evaluated. 

 

In chapter 6, the analytical static and dynamic calculations are verified by 

experiments. Displacement of the tool is measured. Maximum surface errors due to the tool 

deflection are calculated and compared with experimental data (Budak and Altintas, 1994). 

Application of simplified segmented beam equations is demonstrated by examples. 

 

 A conclusion of the study is provided in Chapter 7 summarizing the results 

achieved. 

  



  

 

CHAPTER 2 

PROCESS MODELING IN MILLING 

High cutting forces, tool breakage, part and tool deflections and chatter vibrations are 

the common reasons for reduced productivity and quality in many milling operations. 

Milling process can be modeled in order to overcome or reduce the effects of these 

limitations. In this chapter, modeling methods of force, deflection, surface error and 

stability are presented.  

 

For a stable milling process, milling forces, part and tool deflections can be 

determined using static analysis. The force predictions can be used to determine structural 

deformations and form errors left on the finished surface.  In the first and second section, 

force and structural models are described.  

 

Another very important limitation in milling is the self-exited chatter vibrations, 

which cause poor surface finish and tool life resulting in reduced productivity. In the third 

section, mathematical models for chatter are presented.  

 

 

 

 

 



  

2.1. Milling Force Modeling 

Milling forces can be modeled for given cutter geometry, cutting conditions, and 

work material.  The geometry of chip formation and milling force components is shown in 

Figure 2.1. (Budak, 2002).  
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Figure 2.1: Cross sectional view of an end mill showing differential forces 

 
Tangential (dFt) and radial (dFr) forces act on a differential flute element with height 

dz. For a point on the (jth) cutting tooth, differential milling forces in the tangential (dFt) 

and radial direction (dFr) can be given as  
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where φ is the immersion angle measured from the positive y axis as shown in Figure 2.1. 

The radial (w) and axial depth of cut (a), number of teeth (N), cutter radius (R) and helix 

angle (β) determine what portion of a tooth is in contact with the workpiece for a given 

angular orientation of the cutter (φ). In milling the instantaneous chip thickness variation 

can be approximated as 

 
( , ) sin ( )j t jh z f zφ φ=                                                                                                                              (2.2) 

 
where ft is the feed per tooth (mm/rev-tooth) and φj(z) is the immersion angle for the flute 

(j) at axial position z.  



  

In equation 2.1 Kt and Kr are the milling force coefficients. All milling force 

coefficients depend on the workpiece material and cutting tool geometry. In exponential 

force model, milling force coefficients Kt and Kr can be expressed as exponential functions 

of the average chip thickness. (Altintas, 2000) In linear force model, both cutting and edge 

force coefficients are assumed to be independent of the chip thickness. 
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where p and q are cutting force constants determined from cutting experiments at different 

feed rates. Average chip thickness (ha)  
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In equation (2.1) the edge forces are also included in the cutting force coefficient, 

which is usually referred to as the exponential force model. They are separated from the 

cutting force coefficients in edge force or linear force model (Budak, 1994; Budak et al., 

1996): 
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                                                                                    (2.5) 

 
where Ktc and Krc are the cutting force coefficients contributed by the shearing action in 

tangential and radial directions, respectively and Kte and Kre are the edge constants.  
  

Due to the helical flute, the immersion angle changes along the axial direction as  

 
tan( ) ( 1)j pz j z

R
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where the cutter pitch angle (or tooth spacing angle) is defined as φp=2π/N.  At an axial 

depth of cut z the lag angle is ψ=kβz, where kβ=tanβ/R. 

The tangential and radial forces can be resolved in the feed, x, and normal, y, 

directions using the transformation as follows 
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The differential cutting forces are integrated analytically along the in-cut portion of 

the flute j in order to obtain the total cutting force produced by the flute: 
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where zjl(φj(z)) and  zju(φj(z)) are the lower and upper axial engagement limits of the contact 

or the tooth (j). The integrations are carried out by noting φj(z)=φ+(j-1) φp-kβz, dφj(z)=- kβdz 

(Budak and Altintas, 1995). Thus 
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The cutting forces contributed by all flutes are calculated and summed to obtain the total 

instantaneous forces on cutter at immersion φ: 
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2.2. Tool Deflection and Form Error 

In end milling, the finished workpiece surface is perpendicular to the direction of 

feed. If feed and normal directions are aligned with Cartesian x and y axes respectively, any 

deflection in the y-axis may produce a static form error. End mills can be considered as 

elastic cylinder beam, cantilevered to the spindle through collet end chuck. Flexible cutters 

deflect under the periodically varying milling forces, which are modeled in the previous 

section.   

 

Generating the surface becomes complex when the end mill has helical flutes. The 

cutting forces are not constant but vary with the rotation of the end mill. Furthermore, the 

helix angle of the flutes produces additional variation on distribution of cutting forces along 

the z-axis. As the end mill rotates, the tip of the flute moves to immersion φ. Since the 

normal cutting force will not be zero at this instant, the elastic end mill displacement will 

produce a form error on the surface. Depending on the number of flutes and width of cut, 

there may be more than one cutting edge point in contact with the finish surface.  

 

Figure 2.2: The influence of the milling mode on the surface form errors 

 
The contact points can be calculated by equating the instantaneous immersion angle 

( ) ( 1)j pz j k zβφ φ φ= + − − , with kβ=tanβ/R to zero in up milling and to π in down milling. 
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where β is the helix angle and φp=(2π)/N is the cutter pitch angle. The cutter can be divided 

into M number of small disk elements within the axial depth of cut (a) and it can be rotated 

at increments ∆φ, (i.e., φ=0, ∆φ, 2∆φ,…, φp) (Figure 2.3) (Altintas, 2000).  

 

Figure 2.3: Static deformation model of an end mill  

 

Each differential element has an axial depth of cut (∆z=a/M), and the influence of the 

helix angle may be neglected by selecting small elements. The differential cutting force 

produced by element m is given by 
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where Kt and Kr are cutting constants and ft is the feed rate per tooth. 

The immersion angle for the element m is φj(m)= φ+(j-1) φp-kβ.m∆z. The deflection in 

the y direction at the contact point zk caused by the force applied at the element m is given 

by the cantilever beam formulation. As 
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where E is the young modulus, I is the area of inertia of the tool and νk=l-zk, with l being 

the gage length of the cutter measured form the collet face. The calculation of the area 

moment inertia of the tool with flute will be explained in chapter 3. The total static 

deflection at axial contact point zk is calculated by superposition of the deflections produced 

by all M elemental forces on the end mill: 

 

1
( ) ( , )

M
y k y k

m
z z mδ δ∑

=
=                                                                                                     (2.14) 

 
At the points where the cutting edges is contact with the finish surface, the deflection 

δy(zk) is imprinted as a dimensional error on the workpiece.  

2.3. Milling Stability 

Chatter in milling has been modeled analytically by considering the regeneration in 

chip thickness and the machine-process interactions. Milling cutters can be considered to 

have two orthogonal degrees of freedom as shown in Figure 2.4. (Altintas, 2000) 

 

Figure 2.4: Chatter model for milling. 
 

Milling forces excite both cutter and workpiece causing vibrations, which are 

imprinted on the cutting surface. Each vibrating cutting tooth removes the wavy surface left 



  

from the previous tooth resulting in modulated chip thickness, which can be expressed as 

follows 
 

( ) sin ( ) ( )
cc w w

o o
j t j j j j jh f v v v vφ φ= + − − −                                                                                         (2.15) 

 

where the feed per tooth ft represents the static part of the chip thickness, and φ=Ω.t is the 

angular position of the cutter measured with respect to the first tooth and corresponding to 

the rotational speed Ω  (rad/sec). In the equation 2.15, c and w indicate cutter and 

workpiece, respectively. vj and vj
o are the dynamic displacements due to tool and workpiece 

vibrations for the current and previous tooth passes, and include tool and workpiece 

vibrations. The static part in equation is neglected in the stability analysis. Then the 

dynamic chip thickness can be put in the following form 
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where (xc,yc) and (xw,yw) are the dynamic displacements of the cutter and workpiece in  x 

and y directions, respectively. Similar to the static force analysis, dynamic cutting forces 

can be obtained using the dynamic chip thickness as 
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where the directional coefficients are given as: 
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The directional coefficients, a, depend on the angular position of the cutter which 

makes equation (2.17) time-varying: 
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[A(t)] is periodic at the tooth passing frequency ω=NΩ and with corresponding period 

of T=2π/ω. In general, Fourier series expansion of the periodic term is used for the solution 

of the periodic systems. The higher harmonics do not affect the accuracy of the predictions, 

and it is sufficient to include only the average term in the Fourier series expansion of the 

periodic terms (Budak et al., 1994; 1998). As the directional coefficients are valid within 

the cutting zone between start and exit immersion angles (φst, φex): 
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Substituting equation (2.20-21) into equation 2.19 and assuming harmonic functions 

for dynamic forces and vibrations, the characteristics equation is obtained as 

 
[ ] [ ]0det ( ) 0cI G iω +Λ =                                                                                                                                        (2.22) 

 
where [I] is the unit matrix, and the oriented transfer function matrix is defined as: 
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and the eigenvalue (Λ) in equation (2.22) is given as  
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If the eigenvalue Λ is known, the stability limit can be determined from equation 

(2.24). Λ can easily be computed from equation (2.22) numerically. However, an analytical 

solution is possible if the cross transfer functions, Gxy and Gyx, are neglected in equation 

(2.22): 
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Since the transfer functions are complex, Λ will have complex and real parts. The 

axial depth of cut (a) is a real number. When Λ=ΛR+iΛI and e-iωcT=cosωcT-isinωcT are 

substituted in equation 2.24, the complex part of the equation has to vanish yielding  
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The above can be solved to obtain a relation between the chatter frequency and the 

spindle speed (Budak et al., 1995; 1998): 
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where ε is the phase difference between the inner and outer modulations, k is an integer 

corresponding to the number of vibration waves within a tooth period, and n is the spindle 

speed (rpm). After the imaginary part in equation (2.24) is vanished, the following is 

obtained for the stability limit (Budak and Altintas, 1995; 1998): 
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Equations (2.28-29) can be used to determine the stability limit and corresponding 

spindle speed. When this procedure is repeated for a range of chatter frequencies and 

number of vibration waves, k, the stability lobe diagram for a milling system is obtained. 

2.4. Importance of the Static and Dynamic Properties of Cutting Tools 

Static and dynamic properties of machine tool play an important role in a machining 

process. The knowledge of static and dynamic deflections of the end mill are required to 

predict the form errors and chatter stability limits in milling without experimental 

measurements.  

 

Excessive forces, deformations and vibrations are experienced during the machining 

and these problems cause many quality and productivity problems. Process models together 

with structural models of machining system components need to be integrated into 

CAD/CAM environment in order to predict and compensate surface errors and determine 

chatter free machining condition. In a virtual machining system, most of the effects that are 

observed in real machining could be simulated in advance. This is very important in 



  

CAD/CAM systems where part accuracy and the optimal stable cutting conditions can be 

determined before the machining process. 

 

Therefore, force, form error and stability models can be used to improve productivity, 

dimensional integrity and surface finish quality in milling operations 

2.5. Summary 

In this chapter, milling process models are reviewed. These models can be used in 

optimization of milling operations. Deflection and surface generation model is used to 

predict form error. Stability lobes are obtained by using chatter model in order to determine 

suitable spindle speed. Importance of the static and dynamic properties of tool is 

emphasized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

CHAPTER 3 

MODELING OF END MILL STATICS  

Static deflection of end mills may cause tolerance violation on milled parts. These 

deflection need to be modeled in order to check the tolerance integrity for potential 

compensation of the errors. This chapter covers the static analysis of typical 2-Flute, 3-

Flute and 4-Flute end mills. A cantilever beam model is used to perform the static analysis 

of the cutters under load. Therefore, the primary objective of the static analysis is to 

determine the maximum deflection at the tool tip. 

 

In the end milling process the deflection of the cutter is an important factor affecting 

the accuracy of machining, with implications on the selection of cutting parameters and 

economics of the operation. Although the deflection affects adversely the accuracy, the 

flexibility of the cutter is beneficial in attenuating the overload in a sudden transient 

situation, as well as attenuating chatter. The end mill deflection is important to evaluate 

surface error. 

 
First section of the chapter gives a brief explanation of geometric properties and 

analytical deflection formulas for cutters; Finite Element Analysis (FEA) results of the tool 

and tool holder are explained in the second section, which is followed by simplified 

equations for tool deflection. 

 

 

 



  

3.1. Geometric Parameters and Analytical Statistical Analysis 

In order to perform static analysis, models of the 2-Flute, 3-Flute and 4-Flute cutters 

are needed to determine the necessary geometric and loading parameters, moment of inertia 

and bending moments. Three models have been developed to determine the maximum 

deflection using cantilever method of 2-Flute, 3-Flute and 4-Flute cutters since their 

geometry are different. Their bending moment distributions are the same since they share 

same loading and boundary conditions. The loading and boundary conditions of the 

cantilever beam are depicted in Figure 3.1, where D1 is the mill diameter, D2 is the shank 

diameter, L1 is the flute length, L2 is the overall length, F is the point load, I1 is the 

moment of inertia of the part with flute and I2 is the moment of inertia of the part without 

flute. The cutting force is represented by a point force, which is an approximation. 

However, it should be noted that this model is used only for stiffness calculation, not for 

final tool deflection. Accurate surface generation models can be used (Budak and Altintas, 

1994) for form errors, once the stiffness is determined. 

 

 

Figure 3.1: Loading and boundary conditions of the end mill 

3.1.1. Moment of Inertia 

In order to perform the analytic static analysis, models of the 4-Flute, 3- Flute and 2-

Flute end mills are needed to determine the moment of inertias. Due to the complexity of 

the cutter cross-sections its axis, the calculation of the inertia is the most difficult aspect of 

the static analysis. The cross sections of the 3-Flute, 4- Flute and 2-Flute end mills are as 

shown in Figure 3.2, where fd is the flute depth. In the case of the 3-Flute cutters, the shapes 



  

of the regions labeled ‘1’ is bounded by the lines x=0, y=-0.5774x and arcs. The region 

labeled ‘2’ is bounded by the lines x=0, y=0.5774x and an arc. Lastly, the region labeled ‘3’ 

is bounded by the lines y=0.5774x, y=-0.5774x and an arc. Regions labeled ‘1’, ‘2’, ‘3’ and 

‘4’ in the case of the 4-Flute cutters, are bounded by arcs and the lines x=0 and y=0.  

Regions labeled ‘1’ or ‘2’ in the cross section of the 2-Flute cutter, are bounded by the line 

y=0. Based on the equations bounding each region, the inertia can be derived. The 

derivations of the moment of inertia of the 3-Flute, 4- Flute and 2-Flute cutters are provided 

in Sections 3.1.1.1, 3.1.1.2 and 3.1.1.3. The flute depth, fd, is in general different for 

different end mill generation.  

 

 

Figure 3.2: Cross-sections of the 3-Flute, 4-Flute and 2-Flute end mills 

3.1.1.1. 3-Flute Cutters 

In order to obtain the inertia of the cross section, inertia of region 1 is first derived 

and the inertia of regions 2 and 3 are obtained by transforming the inertia matrix of region 

1. The total inertia of cross section is then obtained by summing the inertia of regions 1,2 

and 3.  

Using tensor analysis, the inertia of region 2 of a 3-Flute cutter can be obtained by 

transforming the inertia matrix of region 1, I1, by 120 degrees as: 

 

2 1  TI T I T=                                                                                                                       (3.1) 

 
where the inertia matrices I1, I2 and the transformation matrix T are defined as 
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Similarly, the inertia of region 3 can be found by transforming the inertia of region 1 

by 240 degrees. That is 

 

3 1  TI T I T=                                                                                                                       (3.3) 

 
where the transformation matrix T in this case is defined as 
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Then, the total inertia of the 3-Flute cutter can be calculated as 

 
3 , 3 , ,1 ,11.5 1.5xx flute TOTAL yy flute TOTAL xx yyI I I I− −= = +                                                         (3.5) 

 
The cross section of the region 1 of the 3-Flute cutter is drawn as shown in Figure 3.3 

 

 

Figure 3.3: Region 1 of 4-Flute end mill 



  

The inertia of region 1 is derived by, first computing the equivalent radius Req of the 

arc respect to x- and y-axes by using the cosine law, in terms of the radius r of the arc, 

position of the center of the arc (a) and θ. (Nermes et al., 2001) 
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The moment of inertia about x-axis and y-axis are given as 
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Performing the first integral with respect to ρ and rearranging, equation. (3.7) 

becomes 

2
2 / 3 4 2 4 2 2 2

,1
0

2 /3 4 2 4
,1

0

( )1 1 2sin ( ) ( ) .( )
4 8 2 2 2

1 1cos ( ) ( )
4 8 2

xx eq

yy eq

fd
fd fdI R d r a

fdI R d

π

π

π
θ θ π

θ θ π

 
 

= − + + −∫  
 
 

 = −∫   

                        (3.8) 

 

Substituting Req3-flute (3.6) into integrals and integrating we get the moment of inertia 

about x-axis and y-axis for region 1 of the 3-Flute end mill. Ixx,1 and Iyy,1 are used to 

evaluate the total moment of the inertia (3.5). 

 

 

 



  

3.1.1.2. 4-Flute Cutters 

In the case of the 4-Flute cutters, the cross section of the region 1 is drawn as shown 

in Figure 3.4. The regions 1,2,3 and 4 are symmetrical, therefore the inertia of only one 

region is necessary to compute and the inertias of the other regions are deduced. For 

instance, it can be shown that the inertia of region 1 about the x-axis, Ixx,1, is equal to the 

inertia of region 2 about the y-axis, Iyy,2. The total inertia as function of the inertia of the 

region 1 is found as 
 

4 , 4 , ,1 ,12 2xx flute TOTAL yy flute TOTAL xx yyI I I I− −= = +                                                             (3.9) 

 
 The inertia of region 1 is derived by, computing the equivalent radius Req of the arc 

with respect to x- and y-axes by using the cosine law in terms of r, a and θ. 
 

 

Figure 3.4: Region 1 of 4-Flute end mill 

The equivalent radius formula for region 1 of 4-Flute end mill with respect to x- and 

y-axes is given as follows 
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The moment of inertia about x-axis and y-axis are found as 
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Substituting Re4-flute (3.10) into integrals and integrating we obtain Ixx,1 and Iyy,1 and 

they are used to evaluate the total moment of the inertia (3.9). 

3.1.1.3. 2-Flute Cutters 

In the case of the 2-Flute cutters, the cross section of the region 1 is drawn as shown 

in Figure 3.5. The cross section of the 2-Flute cutter is not symmetric with respect to x and 

y-axes, so the total moment of inertia Ixx and Iyy are different. After transforming and 

summing, the total moment of inertia of the 2-Flute end mill is found as 

 
2 , ,1 2 , ,12 ,  2xx flute TOTAL xx yy flute TOTAL yyI I I I− −= =                                                             (3.12) 

 

Figure 3.5: Region 1 of 2-Flute end mill 

 
The inertia of region 1 of the 2-Flute cutter is derived by computing the equivalent 

radius Req by using the cosine law in terms of r, a and θ. 
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The moment of inertia about x- and y-axes are given as 
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We obtain Ixx,1 and Iyy,1 by substituting Req2-flute (3.13) into integrals and integrating. 

They are used to evaluate the total moment of the inertia (3.12). 



  

3.1.2. Maximum Deflection 

Knowing the moment of inertia of the 4-Flute, 3- Flute and 2-Flute end mills, the 

deflection along the length of cutters can be calculated for given material properties (E, 

elastic modulus) and force (F). Based on the loading conditions, the deflection along the 

beam is determined by using the moment area theorems. For example, Figure 3.6 shows the 

variation along two parts of a beam of the quantity M/EI, obtained by dividing the bending 

moment M by the flexural rigidity EI (Elastic Modulus* Moment of Inertia).  
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Figure 3.6: Bending moment (ME/I) diagram of the end mill 

 
The product of the area, which refers to the area under the M/EI diagram, and the 

distance from its centroid to origin gives the maximum deflection at the end point.  From 

Figure 3.6 using moment area method we can define ymax for the end point (Beer and 

Johnston, 1992). 
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3.2. Modeling and FEA Analysis 

For parametric, geometric solid modeling and Finite Element Modeling (FEM) 

several software, such as CATIA, Pro/Engineer and I-DEAS, can be used. For this 

research, I-DEAS is used for geometric modeling and FEM.  

3.2.1. Tool 

3.2.1.1. Parametric Geometric Modeling 

For geometric modeling of 4-Flute, 3-Flute and 2-Flute, helical end mills, I-DEAS is 

a powerful parametric design tool. I-DEAS is a Computer Aided Engineering package used 

to create three-dimensional (3D) solid models of parts. I-DEAS is a parametric solid 

modeling system that makes design changes easy to oerform. Parametric means that the 

shape of the part is driven by its feature dimensions. Feature dimensions can be redefined at 

anytime. Many 3D solid models were prepared for end mills with different flute diameter, 

shank diameter, flute length, overall length and flute number. 

3.2.1.2. Finite Element Modeling (FEM) and Analysis (FEA) 

Finite element modeling and analysis are performed on I-DEAS FE package (Shih, 

2000). End mills are made from high-speed steel (HSS) and carbide that have the following 

properties necessary to calculate the maximum deflection. 

 

Material Modulus of Elasticity (GPa) Poisson’s Ratio Density (kg/m3) 
HSS 200 0.3 8600 

Carbide 605 0.3 12500 

Table 3.1: Mechanical properties of the tool materials 



  

The 4-Flute, 3-Flute and 2-Flute end mills are meshed with solid linear tetrahedral 

elements. The end mill is split into two segments: one which represents the shank with one 

length of elements and an other which represents the part including Flute and cutting edges 

with a second length of elements. This is to reduce the total number of elements suitable for 

FE analysis.  

 

The end mill is constrained at the end of the shank where it is gripped by the tool 

holder. The displacement is constrained at that point in all directions. This is actually a 

simple cantilever beam clamped at one end and free at the other end. The force is applied at 

the free end. Figure 3.7 illustrates an example of the meshed 3-Flute end mill including 

boundary conditions. 

 

 

Figure3.7: Meshing and boundary conditions example  

 

Finite Element Analysis (FEA) is applied to great variety of tool geometries and two 

different tool materials in I-DEAS. An example deflection of an end mill is shown in 

Figure 3.8. Some of the deflection values found by analytic equations and I-DEAS are 

shown in Table 3.2.  Approximately sixty tools were tested. 



  

 

Figure 3.8: Example tool deflection 

 

Flute Material D1 (mm) D2 (mm) L1 (mm) L2 (mm) y_Analytic (mm) 
Force=50 N 

y_I-DEAS (mm)
Force=50 N Difference (%)

4 HSS 6 6 13 57 0.248844 0.251768 1.16 
3 HSS 6 6 13 57 0.245466 0.250252 1.91 
2 HSS 6 6 13 57 0.244309 0.249888 1.23 
4 HSS 10 10 22 72 0.067320 0.069073 2.54 
3 HSS 10 10 22 72 0.065174 0.067203 3.02 
2 HSS 10 10 22 72 0.064452 0.066813 3.53 
4 HSS 10 13 22 72 0.027316 0.028412 3.86 
3 HSS 10 13 22 72 0.025169 0.026517 5.08 
2 HSS 10 13 22 72 0.024448 0.026007 5.99 
4 HSS 10 10 26 72 0.069894 0.071800 2.65 
3 HSS 10 10 26 72 0.066350 0.068580 3.25 
2 HSS 10 10 26 72 0.065160 0.0676546 3.69 
4 HSS 16 19 32 92 0.012426 0.013230 6.08 
3 HSS 16 19 32 92 0.011415 0.012325 7.38 
2 HSS 16 19 32 92 0.010901 0.011842 7.94 
4 Carbide 10 10 22 72 0.022255 0.022832 2.54 
3 Carbide 10 10 22 72 0.021545 0.022216 3.02 
2 Carbide 10 10 22 72 0.021307 0.022087 3.53 
4 Carbide 16 16 32 92 0.007281 0.007580 3.94 
3 Carbide 16 16 32 92 0.006950 0.007315 4.99 
2 Carbide 16 16 32 92 0.006777 0.007163 5.38 
4 Carbide 20 20 38 104 0.004368 0.004630 5.66 
3 Carbide 20 20 38 104 0.004138 0.004463 7.27 
2 Carbide 20 20 38 104 0.004062 0.004409 7.86 

Table 3.2: Results of the analytic equations and I-DEAS analysis 

 

 



  

3.2.1.3. Simplified Equations for Tool Deflection 

Modeling and FEA can be impractical and time consuming for each tool 

configuration in a virtual machining environment. Therefore, simplified equations are 

created to predict deflections of tools for given geometric parameters and material 

properties (elastic modulus and density). The static characteristics of end mills can be 

easily determined by these analytical expressions. After the comparison of analytical and 

FEA results, the corrected deflection equations are obtained by using MINITAB software. 

These equations has the following form: 
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where Yanalytic is in mm. The error in this approximation is less than % 1. 

 

In the analytical deformation equations, the evaluation of the integral formulas is very 

complex. In an attempt to further simplify the deflection calculation, the following analysis 

is performed. The maximum deflection could be determined using 
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where F(N) is the applied force and E (MPa) is the modulus of elasticity of the tool 

material. The geometric properties of the end mill are in mm.  The error in this 

approximation is less than % 5. 

 

 

 

Figure 3.9: Boundary and loading conditions of the cylinder 

If the shape of the end mill is assumed to be a cylinder, the stiffness of the tool will 

be very different from the stiffness obtained from simplified equations (Table 3.3). Figure 

3.9 shows boundary and loading conditions of a cylinder. The stiffness of the cylinder is 

calculated by using cantilever beam method. (Beer and Johnston, 1992) 
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where k is the stiffness (N/mm). Diameter (D) and length (L) of the cylinder are in mm and 

elastic modulus (E) is in MPa (N/mm2)  

 

Flute Material D1 (mm) D2 (mm) L1 (mm) L2 (mm) k_equation 
(N/mm) 

k_cylinder 
(N/mm) 

4 HSS 6 6 13 57 201 
3 HSS 6 6 13 57 204 
2 HSS 6 6 13 57 205 

206 

4 HSS 10 10 22 72 743 
3 HSS 10 10 22 72 767 
2 HSS 10 10 22 72 776 

789 

4 Carbide 10 10 22 72 2246 
3 Carbide 10 10 22 72 2321 
2 Carbide 10 10 22 72 2347 

2387 

4 Carbide 16 16 32 92 6867 
3 Carbide 16 16 32 92 7194 
2 Carbide 16 16 32 92 7378 

7498 

Table 3.3: Comparison of the stiffness values obtained from simplified equations and 

cylinder model 



  

3.2.2. Tool Holder 

The static characteristics of HSK (HSK-40, HSK-50 and HSK-63) and CAT (CAT-40 

and CAT-50) tool holders were analyzed in I-DEAS. The material properties for tool 

holders are summarized in Table 3.4 (Aoyama and Inasaki, 2001). Examples of the finite 

element model used for HSK and CAT tool holders are shown in Figure 3.10. 

 
Modulus of Elasticity (GPa) Poisson’s Ratio Density (kg/m3) 

206 0.3 7860 

Table 3.4: Mechanical Properties of the Tool Holder Material 

 

 

 

 

 

Figure 3.10: Example of FEM model for HSK and CAT tool holders 

 
An example of deformation of the HSK type tool holder is shown in Figure 3.11. The 

displacement of tool holders and stiffness values are shown in Table 3.5. 

 

 

 

 

 

  

 

 

Figure 3.11: Example of deflection of a tool holder 



  

 

Tool Holder 
Type 

Max Displacement (µm) 
Force=200 N 

Stiffness 
(kN/mm) 

HSK-A40 1.38 24.60 
HSK-A50 3.14 63.69 
HSK-A63 9.02 22.17 
CAT-40 3.53 56.66 

CAT-50 4.26 46.95 

Table 3.5: Results of I-DEAS analysis of the tool holders 
 

It can be concluded from Table 3.5 that the stiffness depends on the type of the tool 

holder. 

3.3. Summary 

 In this chapter, geometric properties and material characteristics of tool and tool 

holder are explained. Models for end mill static deformations, which can be used for 

deflection calculations and surface form error, are presented. Generalized equations are 

developed to predictions stiffness for different tool geometry without measurement. The 

static characteristics of tool and tool holder are obtained using FEA analysis. FEA results 

are compared with analytical equation results.   

 

 

 

 

 

 

 

 

 



  

 

CHAPTER 4 

MODELING OF END MILL DYNAMICS 

In this chapter, the dynamic analysis of milling tool and tool holder is presented. 

Dynamic properties play an important role in stability of machining process affecting part 

quality and productivity. Accurate knowledge of the machine dynamics is required for 

predicting dimensional accuracy. Frequency response function (FRF) measurements need 

to be performed to identify the dynamics of the systems experimentally. This can be very 

time consuming considering the number of tool-tool holder combinations in a production 

facility. 

 

In the first section, a method for modeling dynamics of milling tool is presented. 

Some practical equations are developed to predict the dynamic properties of tools. Dynamic 

analysis of different geometry and material of the tool and tool holder, which are carried 

out by Finite Element Analysis (FEA) in I-DEAS, are given in the second section. 

Considering great variety of cutting tool geometries, application of FEA to every case can 

be quite time consuming and unpractical. The results obtained from FEA and analytic 

dynamic equations are compared in the third section. 

 

In the last section, the transfer function measurement and modal analysis are 

explained. The analytical FRF prediction method is compared with the results obtained 

from experiments.  

 

 



  

4.1. Dynamic Analysis of the Tool 

4.1.1. Segmented Beam Model for Tool Dynamics 

Dynamic analysis is used to determine mode shapes and natural frequencies of the 

cutting tool structures. A modeling method for transverse vibrations of an end mill is 

developed. End mill is a segmented beam, one segment for the part with flute and the other 

segment for the shank. The beam model with two different geometric segments is shown in 

Figure 4.1. Dynamic analysis of segmented beam has been carried as it was not available in 

the vibration literature. 

 
Figure 4.1: The geometry of the beam with two different geometric segments 

I1, I2 and A1, A2 are the moment of inertias and the areas of the segments, 

respectively.  R (x) and S (y) are the mode shapes, and w1 (x, t), and w2 (x, t) are the 

displacement functions.  

For a slender beam with two different geometric segments, the associated 

displacement functions w1 (x, t), and w2 (x, t) can be written in the following form; 

1( , ) ( ).       , 0 x L1

2( , ) ( ).      , L1 L2

i t

i t

w x t S x e

w x t R x e x

ω

ω
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= ≤ ≤
                                                                                  (4.1) 

The governing equations of motion, neglecting the rotational inertia and shear 

formation, can be converted into the well-known Euler-Bernoulli equations (Chaudhari and 

Maiti, 2000): 
4

2
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4
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                                                                           (4.2) 



  

where E is the modulus of elasticity  and ρ is the density. The solution of equation (4.2) can 

be expressed as (Rao, 1995) 

( ) 1.cosh( ) 2.sinh( ) 3.cos( ) 4.sin( )
( ) 5.cosh( ) 6.sinh( ) 7.cos( ) 8.sin( )

R x A x A x A x A x
S x A x A x A x A x

β β β β
α α α α

= + + +
= + + +

                                     (4.3) 

where A1, A2, A3, A4, A5, A6, A7 and A8 are arbitrary constants. It is necessary to 

accompany the general solutions with the boundary conditions. The boundary conditions 

are as follows. At x=L2 (i.e. at the free end), bending moment and shear force must vanish: 

2 2
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At x=L1 the continuity equations for displacement, slope, moment and shear force are 

as follows: 
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At x=0 (i.e. at the fixed end) displacement and slope are zero: 

(0) 0
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These 8 conditions defined by equations (4.4 - 4.11) are sufficient to solve for the 8 

arbitrary constants. The equations involving these constants can be written in the following 

form 

[ ]{ } 0C A =                                                                                                                       (4.12) 

where Aj is the vector of the 8 arbitrary constants  and the coefficient matrix [C] is of 

dimension (8 x 8), and is given by 
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The characteristic equation is determined when determinant of the coefficient matrix 

C (4.13) is equal to zero. In order to write of the characteristic equation with one unknown, 

the ratio between β and α values is calculated by using the frequency equation, which is 

derived from equation 4.2. 
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The simple form of matrix (4.13) is obtained by using 1
2

L
L

 (l) and 2
1

d
d

 (d) ratios. 

There is only one unknown, x ( 2Lβ ) in this form.  
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(4.15) 

 

 

 



  

βL2 or αL1 values are computed from characteristic equation, i.e. determinant of the 

coefficient matrix C (4.15) for different modes. For any beam, there will be an infinite 

number of normal modes with one natural frequency associated with each normal mode. 

The natural frequencies of segmented beam 

2 2
4 4

1 2( 1)       or     ( 2)
1 1 2 2

EI EIL L
A L A L

ω α ω β
ρ ρ

= =                                                   (4.16) 

After determining the coefficient matrix C, arbitrary constants vector A can be 

computed from equation (4.12). The mode shapes R (x) and S (y) (equation 4.3) according 

to the frequencies are obtained by using A1, A2, A3, A4, A5, A6, A7 and A8. 

4.1.2. Simplified Equations for Natural Frequencies and Mode Shapes 

 Segmented beam model was used to determine cutting tool dynamics. This beam 

model can be used in many areas. However, the calculations of the natural frequencies and 

mode shapes are very difficult because of the complex coefficient matrix (4.13). Simplified 

equations are developed to calculate the solution of the characteristic equation easily. The 

solution of the determinant of the complex coefficient matrix can be repeated for various 

segmented beam geometries. The natural frequency equations of segmented beam (4.16) 

can be rewritten in the following form: 
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                                                  (4.17) 

 

In derivation of the equations to determine K, the length ratio (L1/L2) and the 

diameter ratio (D1/D2) are used. Therfore, the K value can be calculated for any given 

geometric properties. The graph for the variation in the K value for first mode according to 

L1/L2 and D1/D2 ratio is shown in Figure 4.2. 

 



  

In Figure 4.2, the relation between 1/K and D1/D2 is linear. The slope and the 

constant of the line change according to L1/L2 ratio. In order to calculate the natural 

frequency of the first mode, the equation between K and geometric properties is derived.  
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The graph given in Figure 4.2, or equation 4.18, can be used to determine K based on 

L1/L2 and D1/D2 for any segmented beam with two sections. 

 

Then, the fundamental natural frequency can be determined from equation 4.17 

eliminating the need for eigenvalue solution for matrix (4.13). Therefore, the fundamental 

frequency of a segmented beam can be determined analytically, which is an original 

contribution. The application of this formulation to end mill dynamics is presented in 

chapter 6. 
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Figure 4.2: Relation between 1/K and D1/D2 ratio according to L1/L2 ratio 



  

4.2. Modeling and FEA Analysis 

In I-DEAS, models are built to define geometry, material properties, element types 

and constraints for end mills. Natural frequencies and mode shapes are obtained using FEA. 

(Shih, 2000) 

4.2.1. Tool 

Many end mills with different material and geometric parameters are analyzed.  As an 

example, natural frequencies and mode shapes of a HSS end mill with 4-Flute, 16 mm 

diameter and 92 mm length are shown in Figure 4.3. 

 

 

 

 

 

                    Mode1: 1476 Hz                                                    Mode2: 7134 Hz 

 

 

 

 

 

Mode3: 16764 Hz 

Figure 4.3: Example of natural frequencies and mode shapes of a tool 

The natural frequencies of HSS tools according to geometric properties of the end 

mill and frequency description are given in Table 4.1. The lateral and vertical bending 

frequencies are different for 2-flute cutter. The cross section of the 2-flute cutter is not 

symmetric with respect to x and y-axes, so the moment of inertia Ixx and Iyy are different. 



  

Frequency (Hz) D1=6 mm, L1=13 mm, 
L2=57 mm, D2=6 mm

D1=10 mm, L1=22 mm, 
L2=72 mm, D2=10 mm

D1=16 mm, L1=32 mm, 
L2=92 mm, D2=16 mm 

D1=20 mm, L1=38 mm, 
L2=104 mm, D2=20 mm

DESCRIPTION TYPE 4_Flute 3_Flute 2_Flute 4_Flute 3_Flute 2_Flute 4_Flute 3_Flute 2_Flute 4_Flute 3_Flute 2_Flute 

First  
Bending X 1409 1500 1435 1504 1620 1534 1476 1600 1505 1443 1565 1468 

First  
Bending Y 1409 1500 1437 1504 1620 1539 1476 1600 1516 1443 1565 1483 

Second  
Bending X 7890 8072 7846 7755 7662 7475 7134 6897 6729 6800 6477 6328 

Second  
Bending Y 7890 8072 8005 7755 7662 7918 7134 6897 7331 6800 6477 6969 

Third 
 Bending X 19604 18939 18623 18543 19218 18643 16764 15918 15671 15798 15009 14782 

Third  
Bending Y 19604 18939 19992 18543 19218 19018 16764 15918 17218 15798 15009 16214 

Table 4.1: Natural frequencies (I-DEAS) of HSS end mills with different geometry 

As the tool length/diameter ratio increases, the natural frequency of the tool decreases 

(Figure 4.4).  2-flute cutters have the greatest natural frequency and 4-flute cutters have the 

least because of the cross section. The natural frequencies of the cylinder that has the same 

diameter and length with other tools are also calculated. This graph shows that considering 

the tool as a cylinder is a bad approximation. 
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Figure 4.4: Relationship between natural frequencies (Mode1) of HSS tool and tool  

       length/diameter ratio 

 



  

Frequency (Hz) D1=6 mm, L1=13 mm, 
L2=57 mm, D2=6 mm

D1=10 mm, L1=22 mm, 
L2=72 mm, D2=10 mm

D1=16 mm, L1=32 mm, 
L2=92 mm, D2=16 mm 

D1=20 mm, L1=38 mm, 
L2=104 mm, D2=20 mm

DESCRIPTION TYPE 4_Flute 3_Flute 2_Flute 4_Flute 3_Flute 2_Flute 4_Flute 3_Flute 2_Flute 4_Flute 3_Flute 2_Flute 

First  
Bending X 2033 2164 2069 2169 2340 2210 2129 2309 2154 2082 2258 2118 

First  
Bending Y 2033 2164 2072 2169 2340 2221 2129 2309 2187 2082 2258 2139 

Second  
Bending X 11381 11646 11033 11187 11081 10922 10291 9950 10026 9765 9343 9033 

Second  
Bending Y 11381 11646 11549 11187 11081 11423 10291 9950 10575 9765 9343 10054 

Third 
 Bending X 28282 27322 27624 26750 27727 26238 24189 22968 23657 22791 21655 22185 

Third  
Bending Y 28282 27322 28841 26750 27727 27436 24189 22968 24838 22971 21655 23391 

Table 4.2: Natural frequencies (I-DEAS) of carbide end mills with different geometry 

The lateral and vertical bending frequencies of carbide tools according to geometric 

properties and frequency description are given in Table 4.2. The carbide tools have higher 

natural frequency than HSS tools because of their high modulus of elasticity (Figure 4.5). 
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Figure 4.5: Comparison between carbide and HSS natural frequencies 

 



  

4.2.2. Tool Holder 

The dynamic characteristics of HSK (HSK-40, HSK-50 and HSK-63) and CAT 

(CAT-40 and CAT-50) tool holders were analyzed in I-DEAS. The first and second natural 

frequencies of tool holders are summarized in Table 4.3. 

 

 First Bending (kHz) Second Bending (kHz) 

Tool Holder Type Lateral Vertical Lateral Vertical 

HSK-A40 14.74 14.76 20.50 20.70 

HSK-A50 13.66 13.67 31.61 31.64 

HSK-A63 13.85 13.87 28.48 28.56 

CAT-40 8.05 8.06 22.73 22.73 

CAT-50 7.19 7.20 21.70 21.71 

Table 4.3: Results of the FEA for the tool holders in I-DEAS 

4.3. Comparison of the Results from Finite Element Analysis and Analytic Solution 

Analytic equations, which are used to predict dynamic behavior of the cutting tools, 

are compared with I-DEAS finite element analysis. Table 4.4 shows the error between the 

I-DEAS FE and analytic solution for 4-flute HSS end mill, which has 6 mm flute diameter, 

13 mm flute length, 57 overall length and 6 mm in shank diameter.  From Table 4.4, the 

error between FEM frequency and analytic calculated frequency increases from % 5 for 

mode1 to % 18 for mode 3.   

4_FLUTE Frequency_Analytic (Hz) Frequency_I-DEAS (Hz) ERROR (%) 

First Bending 1409 1476 4.74 

Second Bending 7890 8530 8.12 

Third Bending 19601 23170 18.21 

Table 4.4: Comparison of the natural frequencies of FE and analytic analysis 



  

Table 4.5 shows the displacement errors between the I-DEAS FE and analytic 

analysis for the fist three modes. The mode shapes representations, which are drawn using 

analytic equations, are given in Table 4.5 for three modes of the 4-flute cutting tool. 

Critical displacements values and their positions along the tool length are compared. The 

error in maximum displacement is in the range of % 3.5 - %12.5. As tool diameter and tool 

length increases, the error in the natural frequencies between FEM and analytic model. 
 

 
4_Flute (I-DEAS) ANALYTIC  

x/L Displacement (mm) x/L Displacement (mm) ERROR (%) 
0 0.0000 0 0.0000 - 

1/4 0.1138 1/4 0.1147 0.79 
2/4 0.4100 2/4 0.3943 3.83 
3/4 0.7860 3/4 0.7541 4.06 
1 1.1770 1 1.1365 3.44 

 

 
a) Mode 1 

 
 

 
4_Flute (I-DEAS) ANALYTIC  

x/L Displacement (mm) x/L Displacement (mm) ERROR (%) 
0 0.0000 0 0.0000 - 

A/L=0,456 0.7403 A/L=0,448 0.7738 4.52 
B/L=0,761 0.0000 B/L=0,742 0.0000 - 

C/L=1 1.3450 C/L=1 1.4301 6.33 
 



  

 
b) Mode 2 

 
 

4_Flute (I-DEAS) ANALYTIC  
x/L Displacement (mm) x/L Displacement (mm) ERROR (%) 
0 0.0000 0 0.0000 - 

A/L=0,283 0.6490 A/L=0,282 0.6509 0.30 
B/L=0,5 0.0000 B/L=0,488 0.0000 - 
C/L=0,7 0.5870 C/L=0,672 0.5655 3.66 

D/L=0,867 0.0000 D/L=0,842 0.0000 - 
E/L=1 1.2360 E/L=1 1.0827 12.40 

 

 
c) Mode 3 

Table 4.5: Comparison of the mode shapes of FE and analytic analysis 

 

 

 



  

 

4.4. Experimental Method 

4.4.1. Testing and Analysis 

Complete dynamic description of the machine requires the determination of modal 

frequencies, mode shapes and system parameters (equivalent mass, stiffness and damping 

ratio). Experimental modal analysis deals with a method of measuring the response of a 

machine, structure or system to vibration and using that information to identify some of its 

dynamic properties. The response of a system can be measured in terms of its displacement, 

velocity, or acceleration.  

 

FRF (Frequency Response Function) plays an important role in the experimental 

modal analysis. The frequency response function is first determined experimentally and 

then analyzed to find the natural frequencies, mode shapes and system parameters. The 

system parameters (equivalent mass, stiffness and damping ratio) can be used to predict the 

response of the system to various excitations.  

 

General arrangement the can be for the frequency response measurement of system is 

shown in Figure 4.6. A hammer is used to apply an impact load at different points of the 

system while an accelerometer is fixed at one location to measure the response. Testing the 

functional transfer and transactional characteristics of a mechanical structure involves 

mounting the accelerometer at one location of interest and striking the object with hammer 

at that point or some other point.  

 



  

 

Figure 4.6: FRF measurement system 

 

The hammer consists of an integral, quartz force sensor mounted on the striking end 

of the hammer head. The sensing element functions to transfer impact force into electrical 

signal for display and analysis. Signals generated by accelerometer and hammer are 

powdered by conditioning amplifiers. These sensors are easy to operate and interface with 

signal analysis, data acquisition and recording instruments. 

 

Time response of the accelerometer is measured, but the same data must be converted 

into frequency domain. Fast Fourier Transform (FFT) is used to convert the time data. 

Computers can be used to collect to the data, estimate the modal parameters and display the 

results. Small desktop computers are available along with user-friendly programs to guide 

the user through all the steps of modal testing. In this research, the data is collected by 

CutPro© MalTF software where the modal analysis is also performed in CutPro© Modal 

(Alitntas, 2000). 

 

The FRFs indicates the dynamic characteristics of a system. A plot (Figure 4.7) of a 

FRF provides the approximate values of natural frequencies and damping ratios. In some 

cases, a set of FRFs can be used to find an approximate mode shape. 

 



  

 
Figure 4.7: The graph of real and imaginary part of FRF 

4.4.2. Example 

The analytic solution is very useful to identify the dynamic properties of the tools. In 

this section, the analytical FRF prediction method is compared with the results obtained 

from experiments.  

 

4-flute carbide end-mill with long overhang is selected to demonstrate the accuracy of 

analytical results. The mill and shank diameter is 8 mm, the flute length is 41 mm and the 

gauge length is 80 mm. FRF measurement was performed to determine the transfer 

function of the end mill, which is shown in Figure 4.7. Table 4.6 shows the identified 

frequency, stiffness, damping and mass values for the end mill. For comparison with 

analytical model predictions, the results obtained using the cylinder approximation for the 

end mill are also shown in Table 4.6 and Figure 4.7. The cylinder with the same diameter 

and length is used in calculations. The graphs between the magnitude of the transfer 

function and frequency for all methods are shown in Figure 4.7.   

 



  

 

Figure 4.7: Magnitude of the transfer function for the experimental, I-DEAS, 

analytical and cylinder methods 

 

Transfer Function Frequency 
(Hz) 

Stiffness 
(N/m) 

Damping 
(ζ) 

Mass 
(kg) 

Experiment 935 5.11E+5 0.012 0.0150 
Analytic Solution 922 5.50E+5 0.012 0.0164 

Cylinder 1216 7.12E+5 0.012 0.0122 
 

Table 4.6: The comparison of the dynamic properties obtained from experimental, 

analytical and cylinder methods 

 

Due to the long flute length of the tool, the cylinder approximation is very poor in 

this case. The approximation results could be improved by using an effective diameter for 

the cylinder. As the end mills do not have circular cross sections along the flute length, the 

analytical solution is the most powerful approximation to find the dynamic properties. The 

model presented in this chapter can be used to determine the dynamics of end mills for a 

given geometry, material and clamping conditions.  

 

 



  

4.5. Summary  

In this chapter, a method of modeling for transverse vibrations of geometrically 

segmented beam is proposed. End mill is assumed to be as segmented beam with one end 

fixed and other end free. In order to obtain natural frequency and mode shape of the system, 

complex matrix calculations are needed. Simplified equations are derived to eliminate time 

consuming calculations. In these equations, desired geometric properties can be selected for 

prediction.. 

 

Finite Element Analysis (FEA) results of various tool geometries, different materials 

and tool holder types are given. These results are compared with the results obtained from 

analytic equations. 

 

Frequency Response Function (FRF) measurements need to be performed to identify 

the dynamics of the system experimentally.  Transfer function measurement system and 

modal analysis are described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

CHAPTER 5 

CLAMPING PARAMETERS FOR END MILLS 

Complete dynamic response of an end mill depends on the machine, tool holder and 

end mill component dynamics as well as the interface or contact parameters among them. 

In this study, the dynamic characteristics at the tip of the holder, which involves the 

dynamics of both spindle and holder, are assumed to be known from experimental data. 

Considering small number of spindle/holder combination compared to holder/tool 

combination, this is an acceptable approach. The tool dynamics are calculated analytically. 

The next important parameter for the prediction of the total dynamics of the system is the 

interface or contact parameters (stiffness and damping) between the tool and the holder.  

 

The application of receptance coupling substructure analysis to the analytic prediction 

of tool point dynamic response is described. Tool point dynamic response is predicted by 

using frequency response measurements of individual components coupled though 

appropriate connections. 

 

In the first section, the description of receptance coupling substructure analysis 

(RCSA) and a method to identify the connection parameters (stiffness and damping) 

between tool and tool holder/ spindle are given. The effects of changes in tool parameters 

and clamping conditions are explained with experimental results in the second section. 

 

 

 



  

5.1. Method for Identification of the Connection Parameters Tool and Tool 

Holder/Spindle 

Complete machine structure is divided into two parts, tool and tool holder/spindle. 

The description of the assembly model and the connection parameters are shown in Figure 

5.1. (Schmitz, 2000) 

 

 

Figure 5.1: Tool and tool holder/spindle assembly 

 

The four connection parameters (linear and torsional springs and dampers) must be 

determined to predict tool point frequency response function (FRF). According to these 

parameters, tool and tool holder/spindle FRFs are coupled using receptance coupling 

substructure analysis (RCSA). RCSA is a very efficient analysis to predict tool point 

dynamic response without the measurement of each tool, tool holder and spindle 

combination. In receptance coupling substructure analysis, experimental or analytical direct 

and cross FRFs for individual components are used to predict the final assembly’s dynamic 

response at any spatial coordinate selected for component measurements. In this method, 

experimental or analytical FRFs are required only at the coordinate of interest and any 

connection coordinates.  

 



  

In RCSA, each component of the assembly must be tested separately to determine the 

component FRFs. Nevertheless, this is only possible if the impact tests on the individual 

parts provide enough information to predict accurately the dynamic properties of the 

assembled structure. In case of low natural frequency modes, the dynamics at the tool and 

tool holder/spindle interface might not be adequately represented in the modal data. 

Furthermore, in many cases the measurement of component dynamics is not practical 

which is the case for free-free end mill. Free-free state is difficult to realize in practice. The 

direct and cross free-free state FRFs for coordinates of component A are calculated 

analytically. An analytical formulation, rather than experimental measurement, was 

selected due to the difficulties associated with obtaining these tool FRFs using impact test. 

The direct FRFs at coordinate x3 of the component B are obtained experimentally using 

impact testing. The holder/spindle component is difficult to model analytically. 

 

The holder and spindle dynamic properties can also be determined using FEA 

(Kıvanc and Budak, 2003, Jorgensen and Shin, 1998). However, the number of 

spindle/holder combinations for milling tools is much more limited on a machining center, 

and thus they can be measured and used for different end mill combinations. In order to 

evaluate the FRF of the tool/holder/spindle system, the end mill can be modeled using a 

standard finite element (FE) model of a cylindrical beam and the FRF of the holder/spindle 

system is identified using impact testing (Park and Altintas, 2003) 

 

The receptance term, G, for the assembled system in Figure 5.2 will be derived by 

using the receptance coupling method. Figure 5.2 displays the assembled and component 

systems with F1 (force) and M1 (moment) applied to the assembled system. The direct 

deflection receptance G11(ω) = 1

1

X
F

 for the combined spindle/holder/tool structure C. 



  

 

Figure 5.2: Assembled spindle/holder/tool structure 

 

Considering the (unassembled) substructures in Figure 5.3 the displacements and 

rotations can be written. The notation H refers to receptance term (displacement over 

force). The direct FRFs at coordinates x1 and x2 (H11 and H22, respectively) and a cross FRF 

H12 (H21 is equivalent by reciprocity) can be derived by analytically. For this model, 

response functions that relate displacement under applied moment (Lmn), rotation under 

applied force (Nmn) and the rotation under applied moment (Pmn) are also included. The 

terms mnH ′ , mnL′ , mnN ′  and mnP′  represent mobility FRFs, or the ratio of linear or rotational 

velocity to force or moment. The linear and rotational stiffness and damping terms are 

labeled kx, kθ, cx and cθ, respectively. 
 

 

 

Figure 5.3:Componenets of the spindle/holder/tool structure 



  

The displacement and rotation conditions at coordinates x1, x2 and x3 for the 

components and at X1 for the assembly are given in equations 5.1 and 5.2. 
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                                                                                (5.2) 

 
The force and moment equilibrium condition for components is given in equation 5.3. 

The compatibility conditions are shown in equation 5.4. 
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Substitution of equations of the displacement (x2 and x3), the rotation (θ2 and θ3) at 

coordinates x2 and x3, their derivatives ( 2x ′ , 3x ′ , 2θ ′ , 3θ ′ ) and equation 5.3 into equation 

5.4 yields equation 5.5. 

 

33 22 33 22 2

33 22 33 22 2 21 1 21 1 21 1 21 1

33 22 33 22 2

33 22 33 22 2 21 1 21 1 21 1 21 1

( 1)

( )

( )

( 1)

x x x x

x x x x x x x x

q q q q

q q q q q q q q

k H k H c H c H f

k L k L c L c L m k H F k L M c H F c L M

k N k N c N c N f

k P k P c P c P m k N F k P M c N F c P M

′ ′+ + + + +

′ ′ ′ ′+ + + = − − − −

′ ′+ + + +

′ ′ ′ ′+ + + + = − − − −

        (5.5) 



  

There are two unknowns and two equations. The expressions for the force and 

moment acting on individual component (f2, m2, f3=- f2 and m3=- m2) can be evaluated from 

equation 5.5. 
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where 
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                                                             (5.7) 

 

From equation 5.2, the direct deflection receptance G11(ω) = 1

1
 X

F
 for assembled 

spindle/holder/tool structure C can be determined. 
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The terms, 2

1

f
F

and 2

1

m
F

 must be calculated in order to evaluate the term, X1 / F1. By 

using equation 5.6, equation 5.9 and 5.10 can be derived. 
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Substitution of equation 5.9 and 5.10 into 5.8 give the expression for the G11 

receptance term. Finally, after RCSA for the complete structure, the analytical 

displacement/force relationship at the tool tip (G11), which is required for stability and 

chatter avoidance, is given as (Schmitz, et. al, 2001): 
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The receptance term (H) contains three components. The first represent the 

contributions by transnational and rotational rigid body modes, respectively. The third 

gives response due to the free-free modes φI(x), expressed as shown in equation 5.17, which 

are evaluated at coordinate x1 (a distance L from the model origin). For the tool 

holder/spindle component the direct deflection receptance term (H33) is measured at the 

intersection location by impact test. 
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Response functions that relate displacement to applied moment are derived. For 

component B (tool holder/spindle combination), the direct FRF (L33) pertaining moment at 

the connection point is required. It is assumed zero because of the absence of reliable 

measurement techniques. 
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Response functions that relate rotation to applied force are shown in equation 5.15. 

The direct FRF at the connection coordinate (N33) is assumed zero. 
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Response functions that relate rotation to applied moment are also derived. For 

component B, the direct FRF (P33) pertaining moment is also assumed zero. 
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The response due to the free-free modes is shown in the following equation. λi is a 

dimensionless frequency parameter. 
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For the calculations elastic modulus (E), viscous damping coefficient (c), mass (m) 

and second moment of inertia (I) are required. In the static analysis section, an analytic 

equation for the maximum displacement at the tool tip was derived which can be used to 

determine the stiffness of the tool (Chapter 3). The effective diameter of the tool and the 

second moment of inertia can be calculated using the analytical equations developed in 

Chapter 3 for segmented beam with different moments of inertias and the cantilever beam 

equation of the uniform cylinder. The mass of the tool can then be determined using the 

natural frequency and stiffness both from analytic equations. The damping ratios for 

different HSS and carbide tools have been determined experimentally. By using these 

dynamic properties, the approximate c values are estimated. Note that c values determined 

this way includes the damping of the tool only without the damping from the clamping as 

they are identified from end mill’s component mode dynamics. These damping values can 

then be used in the analysis of different tools.  
 

In experiments, the tool point FRFs (G11) of the tool/tool holder/spindle assembly are 

measured for different tools. The connection parameters (kx, kθ, cx, cθ) are determined using 

lsqnonlin command of Matlab Optimization Toolbox [Schmitz and Burn, 2003, MatWorks, 

2002]. Isqnonlin solves nonlinear least squares problems, including nonlinear data fitting. 

X=lsqnonlin (fnctn,Xo) starts at a point X0 and finds a minimum to the sum of squares of the 

functions described in fnctn. Our syntax is [X, resnorm, residual, exitflag, 

output]=lsqnonlin(fnctn ,X0 ,lb, ub, options]. The solution is always in the range lb <= X <= 



  

ub. The optimization parameters (max iteration number, max function evaluation number, 

tolerances for function and X values) are specified in the structure options. The value of the 

residual for a solution X, the value exitflag (0,1) that describes the exit condition and the 

structure output that contains information about the optimization are returned. According to 

the calculated spring and damper parameters, the tool point FRF of the assembly is 

predicted analytically using Eq. (5.1). The experimentally measured result and the predicted 

results for G11 are compared in the next section. 

5.2. Experimental Results 

In this section, the FRFs using analytical models and the RCSA are compared with 

experimental results for verification. For the identification of the interface stiffness and 

damping between the tool and tool holder, different tool geometries, materials and 

clamping conditions are used. Contact parameters are identified and presented.  

 

The tool holder/spindle direct FRF (H33) is measured at the free end in x/y directions by 

using low mass accelerometer and impact hammer. The measured FRF for X direction of 

the HSK40 tool holder/spindle is shown in Figure 5.5. The same tool holder is used with 

different end mills, and therefore the same FRF (H33) is used in RCSA in the following 

examples. Interaction between tool and tool holder/spindle modes affects the tool point 

FRF. Figure 5.4 shows the tool and tool holder/spindle assembly and variable tool 

geometry properties. 

 

 

Figure 5.4: Tool- tool holder/spindle assembly and changing parameters 

 



  

 

 

Figure 5.5: Measured FRF of tip of HSK40 tool holder/spindle combination (X direction) 

5.2.1. The Effect of the Tool Length  

A carbide end mill with 4 flutes, 8 mm diameter, and 100 mm length is used for test. 

Different lengths (length to diameter ratios of 8:1, 9:1, 10:1, 11:1) are selected for the 

measurement.25 Nm clamping torque is applied on HSK40 holder. The tool effective 

diameter and damping coefficient were determined as 7.49 mm and 20 Ns/m, respectively. 

 

After the nonlinear least square evaluation, the stiffness and damping coefficients are 

determined as shown in Table 5.1. The change in predictive values of linear rotational 

stiffness and damping coefficients for the longest and shortest tools is shown in Figure 5.6. 

After the connection parameters are obtained, the analytic direct and cross FRFs for the tool 

and experimental holder/spindle direct FRF are inserted equation 5.1. Experimental impact 

tests were also performed for each of the four selected tools. 



  

Table 5.1: Stiffness/ damping coefficients for 8 mm diameter for shortest and longest tools 
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Figure 5.6: Variation of the connection parameters for shortest and longest tool 

 
The measured and predicted FRFs using analytical component FRFs and RCSA are 

shown Figure 5.7 for different length to diameter ratios. The response is governed by only 

the first mode of the tool, and thus only the first beam mode is used in the analytical 

component modes. The agreement between the experimental results and the predictions is 

 L/D=8 L/D=9 L/D=10 L/D=11 

 D=8, L=64,  
T=25, Lcontact=36

D=8, L=72, 
T=25, Lcontact=28

D=8, L=80,  
T=25, Lcontact=20 

D=8, L=88, 
T=25, Lcontact=12

kx (N/m) 9.036 * 106 6.885 * 106 3.614 * 106 1.304* 106 

kq (Nm/rad) 1.02 * 107 5.3 * 106 3.8 * 106 1.277* 106 

cx (Ns/m) 445 368 228 141 

cq (Nms/rad) 54.17 71.44 78.09 79.34 



  

satisfactory.  For a tool, when the overhang is increased, contact length between tool and 

tool holder, natural frequency and stiffness decreases and tool flexibility increases. 
 

 

                               a) L/D = 8                                                         b) L/D = 9 

 

                               c) L/D = 10                                                      d) L/D = 11 

Figure 5.7: Comparison between measured frequency response and predicted response 

using equation 5.11 with best-fit connection parameters  (8,9,10 and 11:1 tools) 

5.2.2. The Effect of the Tool Length and Clamping Torque 

HSS and carbide end mill with 4 flutes, 20 mm diameter, and 104 mm length are used 

for test.  Different clamping torque values (25 Nm, 35 Nm and 45 Nm) are applied on 

HSK40 holder. The tool effective diameter was determined as 19.498-mm. Damping 



  

coefficients for HSS and carbide tools were 26 Ns/m and 60 Ns/m, respectively. The 

nonlinear least square evaluation is used to find the stiffness and damping coefficients for 

HSS and carbide tool and tool holder/spindle combination. (Table 5.2) 
 

 

 

 

 

. 

 

 

 
  

 

 

 

 

 

 

 

 
 

Table 5.2: Stiffness/ damping coefficients for 20 mm diameter for different materials and 

clamping torques  

 

The variation of linear and rotational stiffness and damping coefficients for different 

clamping torques is shown in Figure 5.8. The stiffness and damping coefficients for the 

combination HSS tool and tool holder/spindle are a bit less than connection coefficients for 

the combination carbide tool and tool holder/spindle. As the clamping torque applied on 

tool holder increases, all coefficients increase. 

 

 L/D=4.8 L/D=4.8 L/D=4.8 

HSS D=20, L=96, 
T=25, Lcontact=8

D=20, L=96, 
T=35, Lcontact=8 

D=20, L=96, 
T=45, Lcontact=8 

kx (N/m) 4.46* 107 5.00* 107 5.58* 106 

kq (Nm/rad) 3.41* 104 3.65* 104 3.98* 104 

cx (Ns/m) 1401 1592 1798 

cq (Nms/rad) 0.2 0.3 0.4 

 L/D=4.8 L/D=4.8 L/D=4.8 

CARBIDE D=20, L=96, 
T=25, Lcontact=8

D=20, L=96, 
T=35, Lcontact=8 

D=20, L=96, 
T=35, Lcontact=8 

kx (N/m) 4.56* 107 5.27* 107 5.72* 107 

kq (Nm/rad) 4.12* 104 4.32* 104 4.54* 104 

cx (Ns/m) 1642 1784 1853 

cq (Nms/rad) 0.31 0.4 0.52 
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Figure 5.8: Variation of the connection parameters diameter for different materials and 

clamping torques  
 

Figure 5.9 shows an example of the experimental and predicted direct tool point FRFs 

(G11) for tool material of HSS and carbide. The overall agreement between the predicted 

and measured results is good. However, small deviations are also seen. This is attributed in 

imperfect knowledge of tool geometry, deviations in contact conditions between collet and 

tool and finite repeatability of the FRF measurement process. 

 
                                a) HSS                                                            b) Carbide 

 

Figure 5.9: Comparison between measured frequency response and predicted response 

using equation 5.11 with best-fit connection parameters  (D=20 mm, L=96 mm, T=35 Nm) 



  

5.2.3. The Interaction between Tool and Tool Holder/Spindle Modes 

In the experiment, the HSS end mill, which has 16 mm diameter, 85 mm overhang 

and 4 flutes, was mounted in HSK40 tool holder. The effective diameter of the end mill and 

the damping ratio were determined as 15.56 mm and 20 Ns/m, respectively. The linear and 

rotational spring and damping coefficients for the connection between the tool and tool 

holder/spindle are given in Table 5.3. The agreement between the predicted and measured 

results can be seen from the Fig. 5.10. 

 

kx (N/m) kq (Nm/rad) cx (Ns/m) cq (Nms/rad) 
84.8* 105 8* 104 1022 6.3 

Table 5.3: Stiffness/ damping coefficients for 16 mm diameter (L/D = 5.3) 

 

 

Figure 5.10: Comparison between measured frequency response and predicted response 

using equation 5.11 with best-fit connection parameters  (D=16 mm, L=85 mm, T=45 Nm) 

 

Because of the interaction between tool holder/spindle dynamics and the tool 

dynamics, two close modes are experienced as shown in the figure. The single tool mode 

has been effectively split into two dynamically stiffer modes, providing an increase in 



  

stability. This is due to interaction of the cantilever tool mode with approximately 1042 Hz 

tool holder/spindle mode (Figure 5.2). The analog to this situation is the dynamic absorber, 

where a small spring/mass is added to a larger vibrating system. The spring constant and 

mass of the added system are selected such that the natural frequency is equal to excitation 

frequency of the larger structure and the vibration of the support structure is reduced. 

Alternatively, this effect may be described as proper impedance matching between the tool 

and tool holder/spindle substructures.  

 

5.3. Model for Contact Stiffness 

The connection between tool and collet is cylindrical. Contact stiffness due to 

deformations in a connection between two components, tool and tool holder/collet. In 

cylindrical connections, the radial and angular deformations are important. External forces 

causes displacements and pressures. The interaction of tool and collet is as shown in Figure 

5.11. 
 

 
Figure 5.11: Cylindrical connection between tool and tool holder/collet 



  

In the figure, q, in N/m, is load per unit length of connection (Lcontact). Displacement 

(δ) caused by external force is along the direction of the force. φ0 is the contact angle. 

Radial displacement at angle φ is δφ. 

 

Under external loading of connection, total pressures on one side are increasing, 

while on the opposite side they are decreasing. Maximum displacement caused by external 

force is along the direction of the force, displacement along the circumference can be 

assumed to be cosinusoidal. 

 

Contact deflections can be considered as proportional to the contact pressure (Rivin, 

1999). Two correlations between contact pressure p and deformation δ are considered. 
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=
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where p is pressure from external load and 0.5k cp−= is the contact compliance coefficient. 

Coefficient c is experimentally determined   for different connection materials. 

 

Assuming that interaction of cylinder is as shown in Figure 5.11. There is 

cosinusoidal load distribution along the arc 2φ0. Radial displacement at angle φ to the 

direction of load q: 

 
cos

coskp
ϕ

ϕ

δ δ ϕ

δ ϕ

=

=
                                                                                                                  (5.18) 

 
 
Vertical component of contact pressure at angle φ is 
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The total vertical load can be obtained by integrating pϕ along the contact arc 2φ0. 
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Substitution equation 5.20 into equation 5.18 yields equation 5.21 

 
0.5

0 0 0( cos sin )cpδ ϕ ϕ ϕ= +                                                                                            (5.21) 
 

Stiffness of connection is determined by deformation between the connected surfaces. 
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A load and connection stiffness characteristic of the system is nonlinear. C is a 

constant parameter, which changes with material properties (E, elastic modulus) of 

connected parts. The effect of contact length is linear as it is seen in Figure 5.6. The contact 

angle, φ0, depends on material properties and clamping torque applied on tool holder. The 

graph variation of the contact stiffness for different materials (carbide, HSS) and different 

clamping torques (Figure 5.8) shows the material property and clamping torque effect.  

 

 

 

 

 

 

 

 



  

5.4. Summary 

The application of receptance coupling substructure analysis (RCSA) to tool point 

FRF prediction has been demonstrated. The derivation analytical expressions for FRFs, 

which is coupled with tool holder/spindle experimental FRFs is shown.  The method of 

identification of the connection parameters (stiffness and damping) between tool and tool 

holder/spindle is presented. The experimental and predicted results are compared. The 

effects of changes in tool geometric parameters and clamping conditions are explained. The 

model for contact stiffness is developed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

CHAPTER 6 

EXPERIMENTAL APPLICATION 

The stiffness and deflection of a cutting tool is very important for accuracy and 

stability in a machining process. Proper cutting conditions can be selected using the 

structural characteristics of the cutting system in order to improve quality and productivity. 

In this chapter, application of the structural modeling methods will be demonstrated by 

experiments.  

 

Static deformations of the tool are important for machined part precision and surface 

quality. The stiffness that can be calculated analytically is used to predict the maximum 

surface error generated by the end mill. In the first section, the analytical displacement and 

stiffness calculations, which were presented in chapter 3, are verified by experiments where 

displacement of the tool is measured. The comparison of the experimental and analytic 

results is presented in the second section.  

 

Dynamic models developed for end mills in this study can be used for transfer 

function and stability calculations. In the third section, it is demonstrated that the analytical 

solution can accurately predict the dynamic properties of the tool. In the fourth section, the 

application of segmented beam formulation is demonstrated for two different beams.  

 

  

 

 



  

6.1. Stiffness Calculation 

Stiffness is the capacity of a mechanical system to sustain loads without excessive 

changes of its geometry. Stiffness effects on performance of mechanical systems are due to 

influence of deformations on static strength, wear resistance, efficiency, accuracy, dynamic 

stability and manufacturability. 

 

The analytical stiffness calculation for cutting tool is explained in chapter 3. End mill 

is taken as a segmented beam, one segment for the part with flute and the other segment for 

the shank. Maximum displacement for the end point is given in equation 3.15 according to 

geometric properties of the tool. Stiffness of the tool can be calculated easily by using 

maximum displacement. In order to check accuracy of analytic stiffness calculation an 

experiment was carried out which is presented here.  

 

4-flute high speed steel long slender end mill is selected to demonstrate the accuracy 

of analytical results.  The mill and shank diameter is 6 mm, the flute length is 38 mm and 

the gauge length is 75 mm. A force (F) is applied to end point of the tool and measured by 

dynamometer (Figure 6.1) Displacements at X1 and X2 are measured by dial gage.  

 

 

Figure 6.1:  Experimental set-up of stiffness measurement 



  

Total displacement of the tool is equal to summation of clamping displacement, beam 

displacement and rotational displacement. Rotational displacement is assumed to be zero. 

In order to calculate clamping stiffness the displacement at X1 is also measured. Following 

figure explains the method used for the calculation. 

 
 
 
 
 
                                                     =                         +                                +        
 
 

 

Figure 6.2: Theory of displacement measurement calculation 

 

Force, 28.5 N is applied to the end of the tool. The displacement at X1 and X2 are 

0.008 mm and 0.388 mm, respectively.  The displacement of the beam is calculated as 

0.380 mm. The experimental beam stiffness is 75 N/mm. The analytical maximum 

displacement of the beam is 0.403 mm according to applied force, 28.5 N. So the stiffness 

of the tool, which is calculated by using displacement from analytical equation, is 70.5 

N/mm. The agreement between two stiffness values is very satisfactory. The small 

difference may result from experimental errors.  
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6.2. Maximum Surface Error 

Maximum dimensional surface error is obtained from cutting force and surface 

generation models presented in chapter 2. Maximum surface error varies according to 

cutting conditions. Therefore, feasible cutting conditions such as radial depth of cut and 

federate can be determined from maximum surface error data. 

 

The stiffness of an end mill can be calculated using the analytic model presented in 

chapter 3. The stiffness values are used to predict the maximum surface error generated by 

the end mill. For surface error calculation, the cutting forces are determined according to 

work material properties, cutting and tool conditions (Altintas, 2000). The results are 

verified using the experimental results in (Budak and Altintas, 1994). 4-flute high speed 

steel end mill with 300 helix angle is used for comparision.  The tool diameter is 19.05 mm 

and the tool gauge length is 54.5 mm. The stiffness of this tool is 12761 N/mm. Cutting 

conditions are summarized in Table 6.1. The cutting forces are determined according to 

these cutting parameters (Budak and Altintas, 1994). 

 

Cutting pressure coefficient (KT) 546 MPa 

p 0.246 

Cutting force coefficient (KT) 0.270 

q 0.271 

Entry Angle, Exit angle 00, 900 

Table 6.1: Cutting conditions to calculate the cutting forces and max surface error 

 
The model results agree with the experimental results (Table 6.2). The error in the 

prediction of the maximum surface error (Emax) is less than % 6.  

 

 



  

 

Axial depth 
of cut (mm) 

Federate 
(mm/tooth) 

Emax 
Exp. (mm) 

Emax 
Model (mm)

ERROR 
(%) 

19.05 0.14 0.0944 0.0912 3.38 
15.00 0.10 0.0722 0.0677 6.23 
15.00 0.06 0.0444 0.0438 1.35 
15.00 0.02 0.0178 0.0167 6.18 
18.00 0.02 0.0166 0.0158 4.82 

Table 6.2: Experimental and calculated maximum surface error results 
 

 

6.3. Chatter Avoidance  

Machine tool vibrations are the self exited oscillations of cutting tool and workpiece. 

In order to generate the stability diagrams dynamic characteristics of the tool is needed. The 

excessive vibrations of the cutter and workpiece result in poor surface finish and 

dimensional accuracy and may damage the workpiece and machine tool.  Chatter vibration 

free spindle speeds and axial depth of cuts can be selected from stability chats 

 

Frequency response function (FRF) is required for chatter stability diagrams. In order 

to obtain the FRF, the tool point is excited using a hammer. This is time consuming for 

each tool/holder/spindle assembly.  The analytic solution is very useful to identify the 

dynamic properties for especially long tools. The dynamics of tool holder/spindle can be 

neglected when very tool length is used. A cutting tool can be considered as fixed-free bar 

as in the analytical solution. 

 

 

 

 



  

6.3.1. Example 1 

4-flute high speed steel end mill with long overhang is selected to demonstrate the 

accuracy of analytical results. The analytical solution is also compared with cylinder 

approximation commonly used for end mills.  The mill and shank diameter is 12 mm, the 

flute length is 26 mm and the gauge length is 74 mm. FRF measurement was performed to 

determine the transfer function of the end mill, which is shown in Figure 6.3. Table 6.3 

shows the frequency, stiffness, damping and mass values for the end mill, and the cylinder 

with the same diameter and length.  The graphs between the magnitude of the transfer 

function and frequency for all methods are shown in Figure 6.3.  The approximation results 

could be improved by using an effective diameter for the cylinder. The analytical solution 

is the most powerful approximation to find the dynamic properties. 
 

 

Figure 6.3: Magnitude of the transfer function for the experimental, analytical and 

cylinder methods for example 1 



  

 

Transfer 

Function 
Frequency (Hz) Stiffness (N/m) Damping (ζ) Mass (kg) 

Experimental 1174 1.35E+6 0.018 0.0250 

Analytical 1148 1.38E+6 0.018 0.0265 

Cylinder 1478 1.51E+6 0.018 0.0175 

Table 6.3:  The comparison of the dynamic properties for example 1 

 

The stability lobe for down milling of Al-7075 with radial width of the cut 2.5 mm is 

determined using the equations described in chapter 4 (CutPro©) (Altintas, 2000) shown in 

Figure 6.4. The minimum stable depth of cut is 0.2 mm. 

 

 

 

 

Figure 6.4: Stability lobe diagram for example 1 

 

 



  

6.3.2. Example 2 

For example 2, HSS end mill, which has 10 mm mill and shank diameter, 22 mm the 

flute length, 69 mm the gauge length and 4-Flute, was mounted in HSK 40 tool holder. In 

order to determine the transfer function of the end mill FRF measurement was performed, 

analytical equations and cylinder approximation are used (Figure 6.5). Table 6.4 shows the 

frequency, stiffness, damping and mass value for the end mill, which are obtained from 

experiment and analytical equations, and for the cylinder with the same diameter and 

length.  The most powerful approximation to find the dynamic properties is the analytical 

solution. When the cylinder approximation is compared with experimental result, it is 

observed that it is not a very accurate method. The agreement between experimental and 

analytical results in example 2 is sufficient. 

 

Figure 6.5: Magnitude of the transfer function for the experimental, analytical and cylinder 

methods for example 2. 



  

Transfer 

Function 
Frequency (Hz) Stiffness (N/m) Damping (ζ) Mass (kg) 

Experimental 1127 9.53E+5 0.0168 0.0190 

Analytical 1207 9.47E+5 0.0168 0.0165 

Cylinder 1549 1.07E+6 0.0168 0.0113 

Table 6.4:  The comparison of the dynamic properties for example 2 

 

The stability lobe for down milling of Al-7075 with radial width of the cut 2.5 mm is 

determined and shown in Figure 6.6. The minimum stable depth of cut is 0.1 mm for 

example 2. 

 

 

 

Figure 6.6: Stability lobe diagram for example 2 

 

 

 



  

6.4. Application of Segmented Beam Formulation 

The determination of fundamental natural frequency for segmented beam is explained 

in chapter 4. Because of the complex matrix calculations (equation 4.13), the determination 

of natural frequency is very difficult. Therefore, a graph was created based on the 

geometric properties of the beam. From this graph (Figure 4.2) K value can be selected to 

calculate natural frequency. Then, simplified equations were developed according to length 

ratio (L1/L2) and diameter ratio (D1/D2)  (equation 4.18).  Fundamental natural frequency 

can be easily calculated by using K value, geometric properties and material properties 

(equation 4.17).  

 

For this section, two segmented beams, which have different materials and geometric 

properties, are selected (Figure 6.7). In this analysis, the length and diameter ratios are 

more important than the exact length diameter values. The mechanical properties of the 

material are given in Table 6.5 (Beer and Johnston, 1992).  
 

 

 

 

                          a) Aluminum beam                                             b) Steel beam 

Figure 6.7: Geometric properties of aluminum and steel segmented beams 

 

MATERIAL Elastic Modulus (GPa) Density (kg/m3) 

Steel 200 7860 

Aluminum 72 2800 

Table 6.5: Mechanical properties of the segmented beam materials 



  

 

The K value is calculated from the matrix solution (equation 4.13), the graph (Figure 

4.2) and the simplified equations (equation 4.18). Following calculation shows the K value 

determination from simplified equations for aluminum segmented beam. Table 6.6 shows 

all K values for three different methods.   
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K MATRIX GRAPH EQUATION 

L1/L2=0.57, D1/D2=1.45, 

Aluminum 
0.808 0.790 0.767 

L1/L2=0.31, D1/D2=1.25 

Steel 
0.271 0.260 0.253 

Table 6.6: K values for three different methods of natural frequency calculation 
 

Material properties, geometric properties and K values for all methods are substituted 

into equation 4.17 and natural frequency is calculated. Following calculation demonstrates 

natural frequency of the aluminum segmented beam. 
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Experimental modal analysis results (Figure 6.8) for two aluminum and steel 

segmented beams and the frequencies, which are calculated from matrix, graph and 

simplified equations, are tabulated in Table 6.7.  
 

 

Figure 6.8: The experimental FRF measurement for aluminum segmented beam 

 
FREQUENCY (Hz) MATRIX GRAPH EQUATION EXPERIMENT 

L1/L2=0.57, D1/D2=1.45 

Aluminum 
279 273 265 284 

L1/L2=0.31, D1/D2=1.25 

Steel 
671 651 627 693 

Table 6.7: Frequency results from experiments and other methods 

 
Obviously, the frequency, which is calculated from complex matrix equations, is very 

close to the experimentally determined frequency.  Instated of using the graph for the K 

value, using the simplified equations is much easier. However, the error of the frequency of 



  

the simplified equations is more than the frequency of the graph method. (% 6.6 for 

aluminum segmented beam and %9.5 for steel segmented beam) 

 
After determining the natural frequency, the mode shape can be obtained by using 

arbitrary constant vector A from equation (4.12). The mode shape, which is obtained by 

using the solution for matrix equations for aluminum beam, is given in Figure 6.9. 

 

 
Figure 6.9: Mode shape for the solution of matrix equations 

 

For the first bending mode, maximum displacement occurs at the end of the beam. 

The comparison of the mode shapes of the aluminum segmented beam for all three methods 

is given in Table 6.8. The table contains the ratio of displacement at certain point and 

maximum displacement. 

 

Displacement / 
 Max Displacement at 50 mm at 100 mm at 150 mm at 200 mm at 228 mm

MATRIX 0.07325 0.26597 0.53145 0.82955 1 

GRAPH 0.07579 0.27009 0.53515 0.83095 1 

EQUATION 0.07896 0.27526 0.53975 0.8327 1 

Table 6.8: The comparison of the mode shapes for three different methods 

 



  

6.5. Summary 

Applications of the models are demonstrated by 4 examples. The first one is on 

prediction of the deflection and stiffness of the tool. Then, the prediction of the form error 

due to tool deflection is demonstrated in the second example. The third one is on the 

prediction of the tool transfer function, which is required for chatter avoidance and stability 

limit calculations. Finally, the application of the simplified segmented beam equations is 

demonstrated with examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

CHAPTER 7 

CONCLUSION  

In this study, generalized equations are presented which can be used for predicting 

the static and dynamic properties of milling system components. Both FEA and analytical 

methods have been used for static and dynamic analysis of end mills. The results are 

verified experimentally. RCSA model has been used for combining the measured dynamics 

of the tool holder/spindle and the analytically determined end mill modes. The connection 

parameters between tool and tool holder/spindle are identified. 

 

Dynamic and static properties of milling tools are very important for machining 

precision and chatter stability. In general, approximate analytical or experimental results 

are used to determine these characteristics. Approximate results do not provide accurate 

information particularly for the dynamics and chatter stability. Experimental methods, on 

the other hand, are time consuming considering the possible number of tool and tool holder 

combinations, tool geometry and material in an industrial setting. The analytical models 

presented in this work eliminate measurements for every tool assembly. The models 

consider the complex geometry of flutes in development of cross sectional properties. The 

approach presented here is very useful for implementation in a virtual machining system 

where the form errors and stability limits for a milling application can be determined 

automatically.  

 



  

End mills have flutes and unfluted sections, which further complicate their geometry. 

This segmented characteristic has also been considered in static and dynamic modeling. 

This is an original contribution of this work. Simplified equations for segmented beam can 

be used for any area. Due to its wide use in industry, milling process is considered, 

however the same methods can be applied to other machining operations as well.  

 

As a future work the modeling of contact parameters will be developed. The 

parameters can be determined by using these models according to tool geometric 

conditions, material properties and clamping force. In the future, all study, which is done 

for tool and tool holder, can be done for spindle and machine. All models can be integrated 

into CAD/CAM systems to develop a virtual machining system for precision machining. 
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