
 i

DIGITAL IMPLEMENTATION OF ETSI OFDM

SYMBOL SYNCHRONIZER BASED ON SLIDING CORRELATION

by

RIZA DÖNMEZ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of Master Science

Sabancı University

May 2003

 iii

 Rıza DÖNMEZ 2003

All Rights Reserved

 iv

ABSTRACT

This thesis presents the design, implementation, verification and synthesis of a

digital hardware, which performs OFDM symbol synchronization using short training

symbols (STS) defined in European Telecommunications Standards Institute (ETSI)

HiperLan/2 Physical Layer specifications. Designed ETSI OFDM Symbol Synchronizer

IP was synthesized in CMOS 0.13µm technology using Virtual Silicon Technology

(VST) Standard Cell Libraries.

In this thesis, we first explain OFDM and OFDM systems in detail.

Synchronization problems occurring in OFDM systems are classified and techniques

used to overcome these problems are presented. Then a digital ETSI OFDM Symbol

Synchronizer IP, which performs OFDM symbol synchronization task based on the

correlation of the received symbols, is proposed. Proposed architecture has been

designed using VHDL (VHSIC Hardware Description Language) in the implementation

part of the thesis. Designed IP has been verified functionally first, then synthesized in

CMOS 0.13µm technology. Gate-level verification has been also performed after

synthesis of the IP.

Like other communication systems, synchronization is a critical problem to be

solved in OFDM systems. One of the arguments against OFDM is that it is highly

sensitive to synchronization errors. Before an OFDM receiver can demodulate the sub-

carriers, it has to perform at least two synchronization tasks: First, it has to find out

where the symbol boundaries are. Second, it has to estimate and correct the carrier

frequency offset of the received signal and clock offset between transmitter and receiver

because any offset introduces Inter-carrier interference (ICI) and Inter-symbol

interference (ISI). This work aims to review OFDM and synchronization issues in

OFDM systems and to design a digital symbol synchronizer hardware that performs the

detection of OFDM symbols, which is the first synchronization task mentioned above.

 v

ETSI HiperLAN/2 standard has been used in this work as the reference for all

parameters needed and used in the hardware implementation of ETSI OFDM Symbol

Synchronizer. Although the needed sampling frequency of OFDM receiver is 20 MHz

in the ETSI standards, the designed IP can be run up to 50 MHz. It can be easily

adapted to any changes in the standard, such as the increase in speed.

The generically designed ETSI OFDM STS Symbol Synchronizer IP can be

integrated to other modules easily and used as part of the whole synchronizer block in

ETSI OFDM receivers.

 vi

ÖZET

Bu tez Avrupa Telekomünikasyon Standartları Enstitüsü (ETSI), Fiziksel Katman

tarifinde açıklanan STS (Short Training Symbols - STS) sembollerini kullanarak OFDM

sembol senkronizasyonunu gerçekleyen bir sayısal devrenin tasarımı, uygulanması,

sınanması ve sentezlenmesi aşamalarından oluşmuştur. Tasarlanan ETSI OFDM

(Orthogonal Frequency Division Multiplexing) Sembol Senkronizasyon devresi, Virtual

Silicon Technology (VST) Standart Hücre Kütüphaneleri kullanılarak 0.13 µm sayısal

CMOS teknolojisinde sentezlenmiştir.

Bu tezde, öncelikle OFDM ve OFDM sistemleri detaylı olarak açıklanmıştır.

OFDM sistemlerinde karşılaşılan senkronizasyon problemleri sınıflandırılarak, bu

problemlerin çözümünde kullanılan senkronizasyon teknikleri sunulmuştur. Bunların

ardından, alıcıya gelen sembollerin korelasyonuna dayalı OFDM senkronizasyon

işlemini gerçekleştiren ETSI OFDM Sembol Senkronizasyon devresi önerilmiştir.

Önerilen mimari, tezin uygulama bölümünde VHDL (Çok Yüksek Hızlı Entegre Devre

Donanım Tanımlama Dili) kullanılarak gerçeklenmiştir. Bu devre ilk önce işlevsel

olarak sınanmış, ardından 0.13 µm sayısal CMOS teknolojisinde sentezlenmiştir.

Devrenin sentezi sonrasında ,kapı düzeyinde işlevselliği yeniden test edilmiştir.

Diğer haberleşme sistemlerinde olduğu gibi, senkronizasyon, OFDM

sistemlerinde de çözümlenmesi gereken kritik bir sorundur. OFDM senkronizasyon

hatalarına çok duyarlı bir yapıya sahiptir. Bir OFDM alıcısı, OFDM alt-taşıyıcılarını

demodüle etmeden önce, en azından iki senkronizasyon işlevini yerine getirmek

zorundadır: İlki, alıcıya gelen OFDM sembol sınırlarını, bir başka deyimle OFDM

sembolünün ne zaman başladığını tespit etmek zorundadır. İkincisi, alınan sinyaldeki

taşıyıcı frekans ofsetini ve alıcı ve verici arası saat ofsetini tahmin etmeli ve

düzeltmelidir. Zira, herhangi bir ofset taşıyıcılar arası ve semboller arası girişime neden

olmaktadır.

 vii

Bu çalışma, OFDM ve OFDM sistemlerindeki senkronizasyon olgularını ele

almayı ve yukarıda bahsedilen ilk senkronizasyon işlevi olan, alıcıda OFDM

sembollerinin saptamasını gerçekleyen bir sayısal sembol senkronizasyon devresi

tasarlamayı hedeflemektedir.

ETSI OFDM Sembol Senkronizasyon devresinin uygulamasında ETSI

HiperLAN/2 Standardı, tüm parametreler için referans olarak alınmıştır. ETSI

standardında, OFDM alıcısının örnekleme frekansı 20 MHz olmasına karşın, tasarlanan

devre 50 MHz hıza kadar çalışabilmektedir. Devre, ETSI standardında örnekleme

frekansında ileride meydana gelebilecek değişikliği, 50 MHz hıza kadar destekleyebilir.

Jenerik olarak tasarlanan ETSI OFDM STS Sembol Senkronizasyon devresi, diğer

modüllerle kolaylıkla birleştirilip, ETSI OFDM alıcılarında tüm senkronizasyonu

sağlayan bloğun bir parçası olarak kullanılabilir.

 viii

To my wife Handan,

our son Can

and

to my parents.

 ix

ACKNOWLEDGEMENTS

I wish I could say, “I did this all myself.” Knowing the importance of being a

team member is always the first rule to achieve successful results in any area. Taking

this fact into consideration, I would like to thank the following people and organizations

that supported and contributed to my thesis:

First, I would like to thank my thesis supervisor Assoc. Prof. Dr. Yaşar GÜRBÜZ

for his unbelievable patience, understanding, assistance and excellent support. I am very

lucky to work with a supervisor like him since his very valuable suggestions helped me

to finish my thesis indeed.

I am also very lucky to work with my thesis co-advisor Asist. Prof. Dr. Mehmet

KESKİNÖZ during the last period of my thesis study. I am very thankful to him for his

understanding, helpful and professional approach.

I want also to thank Asist. Prof. Dr. Meriç ÖZCAN and Asist. Prof. Dr. Ayhan

BOZKURT for their technical suggestions.

I am very grateful to Alcatel Microelectronics and ST Microelectronics for

providing financial support to study at Sabancı University as part of a university-

industry collaboration agreement.

I have enjoyed the companionship, motivation, and encouragement supplied by

many friends in our current ST Microelectronics digital design team. I thank Burak,

Faruk, Hayrettin, Aybars, Murat and Levent for their very important technical

suggestions and of course for their friendship.

And I am grateful to my family: my wife Handan and my son Can for their

endless patience, love, encouragement, motivation and understanding, which were most

important reasons for me to succeed in my study indeed.

Finally, I am grateful to my parents for their continuous encouragement, abundant

love and generous support they have given me throughout my life.

 x

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1. Motivation... 1
1.2. Thesis Organization .. 3

2. INTRODUCTION TO OFDM (Orthogonal Frequency Division Multiplexing)
 .. 4

2.1. OFDM Signal.. 8
2.1.1. Generation of Sub-carriers Using IFFT .. 8
2.1.2. Guard Time and Cyclic Extension.. 13
2.1.3. Useful Symbol Duration ... 18
2.1.4. Number of Carriers ... 18

2.2. Properties of OFDM ... 19
2.3. Choice of OFDM Parameters ... 20

3. SYNCHRONIZATION .. 23

3.1. Introduction... 23
3.2. Symbol Synchronization... 24

3.2.1. Sensitivity To Timing Errors .. 24
3.2.2. Sensitivity To Phase Noise ... 26

3.3. Frequency Synchronization .. 27
3.3.1. Sampling Frequency Synchronization .. 27
3.3.2. Carrier Frequency Synchronization .. 27

3.4. Synchronization Techniques... 31
3.4.1. Synchronization Using The Cyclic Extension .. 31
3.4.2. Synchronization Using Special Training Symbols 37
3.4.3. Optimal Timing In The Presence Of Multi-path 38

4. SYNCHRONIZATION PRACTICE: SYNCHRONIZATION DETECTION
USING SHORT TRAINING SYMBOLS (STS) .. 42

4.1. Preamble and Correlation Characteristics... 42
4.1.1. Short Training Symbols (STS) ... 43
4.1.2. Long Training Symbols (LTS) ... 49

4.2. Digital Design and Hardware Implementation of ETSI OFDM STS
Synchronizer Using Sliding Correlator... 50

4.2.1. Top-level Architecture.. 50

 xi

4.2.1.1. Sliding Correlator Shift Register Unit (SlidingShiftRegister) 52
4.2.1.2. Sliding Correlator Unit ... 53
4.2.1.3. CORDIC (COrdinate Rotation DIgital Computer) Unit................. 57

4.2.1.3.1. Functional Description: Cordic Theory 58
4.2.1.3.2. Structure Overview.. 63

4.3. Hardware Design of Generic ETSI OFDM STS Synchronizer 69
4.3.1. Coding of ETSI OFDM STS Synchronizer .. 69
4.3.2. Simulation of ETSI OFDM STS Synchronizer 69

4.3.2.1. Top-level Functional Simulation Results of ETSI OFDM STS
Synchronizer ... 71

4.3.3. Synthesis of ETSI OFDM STS Synchronizer IP and Gate-level
Simulations ... 79

4.3.3.1. Synthesis ... 79
4.3.3.2. Gate-level Simulations.. 89

5. CONCLUSIONS ... 91

A. APPENDIX A: SCHEMATICS OF WHOLE IP... 93

B. APPENDIX B: FUNCTIONAL VHDL CODES.. 99

C. APPENDIX C: GATE-LEVEL VHDL CODES.. 118

D. APPENDIX D: ETSI BRAN HIPERLAN TYPE 2 STANDARD 119

E. APPENDIX E: TOOLS THAT WERE USED... 159

REFERENCES.. 160

 xii

LIST OF FIGURES

Figure 2.1 Concept of OFDM signal: (a) Conventional multi-carrier technique, (b)

Orthogonal multi-carrier modulation technique ... 6

Figure 2.2 Spectra of individual sub-carriers.. 6

Figure 2.3 Basic OFDM communication system.. 7

Figure 2.4 OFDM modulator .. 9

Figure 2.5 OFDM Demodulator ... 10

Figure 2.6 Example of four sub-carriers within one OFDM symbol.............................. 10

Figure 2.7 OFDM versus FDM power spectrum density ... 12

Figure 2.8 Effect of multi-path with zero signal in the guard time 14

Figure 2.9 OFDM symbol with cyclic extension.. 14

Figure 2.10 Example of an OFDM signal with three sub-carriers in a channel; the

dashed line represents a delayed multi-path component. ... 15

Figure 2.11 Inter Frame Interference in OFDM systems.. 17

Figure 3.1 Example of an OFDM signal with three sub-carriers, showing the earliest and

latest possible symbol timing instants that do not cause ISI or ICI. 25

Figure 3.2 Effects of a frequency offset ∆F: reduction in signal amplitude (ο) and inter-

carrier interference (•) .. 29

Figure 3.3 Sub-carrier spacing.. 29

Figure 3.4 Degradation in SNR due to a frequency offset (normalized to the sub-carrier

spacing). Analytical expression for AWGN (dashed) and fading channels (solid)........ 30

Figure 3.5 Synchronization using the cyclic prefix .. 31

Figure 3.6 Example of correlation output amplitude for eight OFDM symbol with 192

sub-carriers and a 20% guard time ... 33

Figure 3.7 Example of correlation output amplitude for eight OFDM symbols with 48

sub carriers and a 20%guard time... 33

Figure 3.8 Vector representation of phase drift estimation .. 35

 xiii

Figure 3.9 Matched filter that is matched to a special OFDM training symbol 37

Figure 3.10 Raised cosine window... 38

Figure 3.11 ISI/ICI caused by multi-path signals ... 39

Figure 3.12 OFDM symbol structure.. 40

Figure 4.1 ETSI UP LONG preamble .. 43

Figure 4.2 Illustration of Sliding Correlation of Received STS 44

Figure 4.3 Sliding correlation of two received STS symbols over a 16 samples

correlation window ... 45

Figure 4.4 Sliding Correlation of the ETSI BROADCAST Preamble: (a) Correlation

Amplitude. (b) Correlation Phase ... 45

Figure 4.5 ETSI BROADCAST Preamble and STS Data dumped from OFDM simulink

model. ... 46

Figure 4.6 Example of Cross Correlation of Received STS ... 47

Figure 4.7 Cross correlation of the received STS symbols with the transmitted ideal

symbol in a 16 samples correlation window... 48

Figure 4.8 ETSI Ideal Cross Correlation: (a) Correlation Amplitude. (b) Correlation

Phase ... 49

Figure 4.9 Top-level Block Diagram of ETSI OFDM STS Synchronizer 50

Figure 4.10 Architecture of SlidingShiftRegister Block .. 52

Figure 4.11 The top-level block diagram of Sliding Correlator 54

Figure 4.12 Complex Multiplier Structure ... 55

Figure 4.13 Detailed architecture of SRCorrAccumulator block 57

Figure 4.14 Vector Rotation ... 58

Figure 4.15 Iterative Rotation Solution .. 59

Figure 4.16 Top-level block representation of CORDIC ... 64

Figure 4.17 PRE_CORDIC Structure... 67

Figure 4.18 POST_CORDIC Structure .. 67

Figure 4.19 CORDIC_CORE Structure.. 68

Figure 4.20 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST

Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase 73

Figure 4.21 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST

Preamble for NRIterations = 2 in CORDIC block: (a) Amplitude (b) Phase 74

Figure 4.22 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST

Preamble for NRIterations = 5 in CORDIC block: (a) Amplitude (b) Phase 75

 xiv

Figure 4.23 Simulation section of SlidingShiftRegister block 76

Figure 4.24 Simulation section of SRCorrComplexMultiplier sub-block in

SlidingCorrelator .. 76

Figure 4.25 Simulation section of SlidingCorrelator block.. 77

Figure 4.26 Simulation section of CORDIC block... 78

Figure 4.27 Top-level simulation section of STSSynchronizer...................................... 79

Figure 4.28 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer 80

Figure 4.29 Schematic view of synthesized SlidingShiftRegister block 81

Figure 4.30 Schematic view of synthesized SRCorrComplexMultiplier block

instantiated in SlidingCorrelator block ... 82

Figure 4.31 Schematic view of a DesignWare multiplier component instantiated in

SRCorrComplexMultiplier block ... 83

Figure 4.32 Schematic view of synthesized SlidingCorrelator block............................. 84

Figure 4.33 Schematic view of synthesized CORDIC block.. 85

Figure 4.34 Gate-level simulation section of STSSynchronizer..................................... 89

Figure 4.35 ETSI OFDM STS Synchronizer output graphs (gate-level) for ETSI BROADCAST

Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase 90

Figure A.1 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer. 93

Figure A.2 Schematic view of synthesized SlidingShiftRegister block 94

Figure A.3 Schematic view of synthesized SRCorrComplexMultiplier block instantiated

in SlidingCorrelator block .. 95

Figure A.4 Schematic view of a DesignWare multiplier component instantiated in

SRCorrComplexMultiplier block ... 96

Figure A.5 Schematic view of synthesized SlidingCorrelator block.............................. 97

Figure A.6 Schematic view of synthesized CORDIC block... 98

Figure D.1 HIPERLAN/2 Protocol Stack and Functions ... 123

Figure D.2 MAC Frame Format for Sectored Antennas .. 124

Figure D.3 MAC Frame Format for Sectored Antennas .. 125

Figure D.4 Format of the Long PDUs .. 126

Figure D.5 Reference Configuration of Transmitter .. 131

Figure D.6 Scrambler Schematic Diagram... 135

Figure D.7 Functional blocks of FEC coder ... 135

Figure D.8 The mother convolutional code of rate ½... 137

Figure D.9 Position of Puncturing P1 in cases of, .. 138

 xv

Figure D.10 Code Rate Dependent Puncturing P2 ... 140

Figure D.11 BPSK, QPSK, 16QAM and 64QAM constellation bit encoding 144

Figure D.12 Illustration of an OFDM Symbol with Cyclic Prefix 146

Figure D.13 Sub-carrier Frequency Allocation .. 148

Figure D.14 PDU Train Payload (rPAYLOAD) format ... 149

Figure D.15 PHY burst format ... 150

Figure D.16 Broadcast Burst Preamble .. 151

Figure D.17 Downlink Burst Preamble .. 153

Figure D.18 Short Preamble for Uplink Bursts .. 154

Figure D.19 Long Preamble for Uplink Bursts... 155

Figure D.20 Preamble for Direct Link Bursts... 156

Figure D.21 PHY burst structures: (a) Broadcast burst, (b) Downlink burst, (c) Uplink

burst with short preamble, (d) Uplink burst with long preamble, (e) Direct link burst 158

 xvi

LIST OF TABLES

Table 4.1 Constants used in CORDIC_CORE block ... 66

Table 4.2 Input stimuli characteristics .. 70

Table 4.3 Area results of synthesis of ETSI OFDM STS Synchronizer for 20MHz

operation frequency .. 87

Table 4.4 Area results of synthesis of ETSI OFDM STS Synchronizer for 50MHz

operation frequency .. 87

Table 4.5 Power consumption estimation for 20MHz operation frequency................... 88

Table 4.6 Power consumption estimation for 50MHz operation frequency................... 88

Table D.1 Mode Dependent Parameters ... 133

Table D.2 Puncturing pattern P1 and transmitted sequence after parallel-to-serial

conversion... 138

Table D.3 Puncturing pattern P2 and transmitted sequence after parallel-to-serial

conversion for the possible code rates .. 140

Table D.4 Modulation Dependent Normalization Factor KMOD................................ 142

Table D.5 Encoding Tables for BPSK, QPSK, 16QAM and 64QAM 143

Table D.6 Numerical Values for the OFDM Parameters.. 145

Table E.1 Tools that were used... 159

 xvii

LIST OF ABBREVIATIONS

ACF Association Control Function

ACH Access Feedback Channel

AFC Automatic Frequency Control

AP Access Point

ARP Antenna Reference Point

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

ATM Asynchronous Transfer Mode

BCH Broadcast Channel

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BRAN Broadband Radio Access Networks

CC Central Controller

CFO Carrier Frequency Offset

CL Convergence Layer

CO Clock Offset

CP Cyclic Prefix

DAB Digital Audio Broadcasting

DCC DLC Connection Control

DFT Discrete Fourier Transform

DiL Direct Link

DLC Data Link Control

DLCC DLC Connection

DLCC-ID DLC Connection Identifier

DM Direct Mode

 xviii

DUT Device Under Test

EC Error Control

EIRP Effective Isotropic Radiated Power

ETSI European Telecommunications Standards Institute

FCH Frame Channel

FEC Forward Error Correction

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GI Guard Interval

HIPERLAN High Performance Local Area Network

HIPERLINK High Performance Radio Link

Hz Hertz

ICI Inter Carrier Interference

IDFT Inverse Discrete Fourier Transform

IFI Inter Frame Interference

IFFT Inverse Fast Fourier Transform

IP Intellectual Property

ISI Inter Symbol Interference

LAN Local Area Network

LCH Long Transport Channel

LLC Logical Link Control

LTS Long Training Symbol

MAC Medium-Access Controller

ML Maximum Likelihood

MT Mobile Terminal

OFDM Orthogonal Frequency Division Multiplexing

PDU Protocol Data Unit

PHY Physical

PPM Parts Per Million

RCH Random Channel

RLC Radio Link Control

RRC Radio Resource Control

QAM Quadrature Amplitude Modulation

QoS Quality of Service

 xix

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

SCH Short Transport Channel

SDF Standard Delay File

SIR Signal - to - (ISI + ICI) Ratio

SNR Signal to Noise Ratio

STS Short Training Symbol

TC Transport Channel

USAP User Service Access Point

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WLAN Wireless Local Area Network

 1

1. INTRODUCTION

1.1. Motivation

Over the last decade, the market for wireless service has grown at an

unprecedented rate. The industry has grown from cellular phones and pagers to

broadband and ultra-broadband wireless services that can provide voice, data, and full-

motion video in real time. Wireless communications systems are playing currently a

major role and expected to play a more important role in providing portable access to

future information services.

Within the wide variety of wireless communication systems, there are many

modulation techniques in current use. A very important modulation technique, OFDM,

is currently of great interest by the researchers in the Universities and research

laboratories all over the world since it provides data transmission in a bandwidth-

efficient way. Multi-carrier or Orthogonal frequency-division multiplexing (OFDM)

systems have gained an increased attention during the last years. It is used in the

European digital broadcast radio system. OFDM has already been accepted for the new

wireless local area network standards from IEEE 802.11, High Performance Local Area

Network type 2 (HIPERLAN/2) and Mobile Multimedia Access Communication

(MMAC) Systems.

Like other communication systems, synchronization is a critical problem to be

solved in OFDM systems. One of the arguments against OFDM is that it is highly

sensitive to synchronization errors. Before an OFDM receiver can demodulate the sub-

carriers, it has to perform at least two synchronization tasks. First, it has to find out

where the symbol boundaries are and what the optimal timing instants are to minimize

the effects of inter-carrier interference (ICI) and inter-symbol interference (ISI). Second,

it has to estimate and correct the carrier frequency offset of the received signal because

any offset introduces ISI. This work aims to review OFDM and synchronization issues

and implement a synchronizer hardware that realizes the first synchronization task

 2

based on sliding correlation. During the course of study, ETSI standards are considered

for the design.

This work analyzes OFDM and the synchronization problems in OFDM systems;

implements a European Telecommunications Standards Institute (ETSI) OFDM Short

Training Symbols (STS) Symbol Synchronizer. This work can be taken as a basis of a

doctoral research for implementing a complete OFDM receiver.

 3

1.2. Thesis Organization

The goal of this thesis is to research OFDM and synchronization problems

existing in OFDM systems and design and implement the OFDM STS Symbol

Synchronization system based on ETSI standards.

The thesis is organized as follows:

Chapter 2 gives an overview of OFDM. This chapter considers the basic OFDM

receiver and transmitter structure and mathematical modeling of the blocks.

Chapter 3 contains synchronization issues in OFDM systems. Symbol and

frequency synchronization problems are mentioned in detail followed by the

descriptions of the sensitivity of OFDM to synchronization errors and different

synchronization techniques.

Chapter 4 covers the design of ETSI OFDM STS Symbol Synchronizer IP

including the design pre-study before the implementation, simulation and synthesis.

First preamble and correlation characteristics are explained, and then the general

information of STS is given with the generated reference OFDM preamble example.

Sliding and cross correlation techniques are explained and compared with each other,

followed by a discussion on why sliding correlation method is more useful than the

cross one for ETSI STS synchronizer. After a short description of the LTS part of

preamble, the pre-study section is completed. The proposed architecture for the symbol

synchronizer is explained in detail then the achieved results at the end of

implementation of ETSI OFDM STS Symbol Synchronizer are presented with

simulation and synthesis. Amplitude and phase outputs of the designed symbol

synchronizer are compared to the reference matlab model graphically. Results of two

syntheses realized with CMOS 0.13µm for 20 MHz and 50 MHz operation frequencies

are compared to each other in terms of area and power consumption estimations.

Finally, conclusions are drawn for the study and based on these assessments some

possible future research topics are suggested in chapter 5.

 4

2. INTRODUCTION TO OFDM (Orthogonal Frequency Division
Multiplexing)

Multi-carrier transmission is the principle of transmitting data by dividing the data

stream into several parallel bit streams, each of which has a much lower bit rate [4].

Orthogonal Frequency Division Multiplexing (OFDM) with densely spaced subcarriers

and overlapping spectra is a special form of multi-carrier transmission. To obtain a high

spectral efficiency, the sub-carrier center frequencies are selected to have minimum

values to maintain orthogonality; hence the name OFDM is used.

OFDM is a special case of multi-carrier transmission, where a single data stream

is transmitted over a number of lower rate sub-carriers. One of the main advantages to

use OFDM is to increase the robustness against distortion caused by frequency selective

channel or narrowband interference. In a single carrier system, a single fade or interferer

can cause the entire link to fail, but in a multi-carrier system, only a small percentage of

the sub-carriers will be affected. Error correction coding can then be used to correct for

the few erroneous sub-carriers.

The concept of using parallel data transmission and frequency division

multiplexing was published in the mid-1960s [1, 2]. The history of OFDM dates back to

the mid 60’s, when R. W. Chang published his paper on the synthesis of band-limited

signals for multi-channel transmission [1]. He presented a principle for transmitting

messages simultaneously through a linear band-limited channel without inter-channel

(ICI) and inter-symbol (ISI) interference.

In a classical parallel data system, the total signal frequency band is divided into

N non-overlapping frequency sub-channels. Each sub-channel is modulated with a

separate symbol and then the N sub-channels are frequency-multiplexed. It is good to

avoid spectral overlap of channels to eliminate inter-channel interference. However, this

leads to inefficient use of the available spectrum. To cope with the inefficiency, the

ideas proposed from mid-1960s were to use parallel data and Frequency Division

Multiplexing (FDM) with overlapping sub-channels. Figure 2.1 illustrates the difference

between the conventional non-overlapping multi-carrier technique and overlapping

 5

multi-carrier modulation technique. As shown in Figure 2.1, by using the over-lapping

multi-carrier modulation technique, we save almost 50 % of bandwidth. To realize the

overlapping multi-carrier technique, however we need to reduce crosstalk between sub-

carriers, which means that we want orthogonality between the different modulation

carriers.

The main idea behind OFDM is to split the data stream to be transmitted into N

parallel streams of reduced data rate and to transmit each of them on a separate sub-

carrier. These carriers are made orthogonal by appropriately choosing the frequency

spacing between them to obtain a high spectral efficiency. Therefore, spectral

overlapping among sub-carriers is allowed, since the orthogonality ensure that the

receiver can separate the OFDM sub-carriers and a better spectral efficiency can be

achieved than by using simple frequency division multiplex. The word orthogonality

here indicates that there is a precise mathematical relationship between the frequencies

of the carriers in the system. In a normal frequency-division multiplex system, many

carriers are spaced apart in such a way that the signals can be received using

demodulators. In such receivers, guard bands are introduced between the different

carriers and in the frequency domain, resulting in a lowering of spectrum efficiency. It

is possible, however, to arrange the carriers in an OFDM signal so that the sidebands of

the individual carriers overlap and the signals are still received without adjacent carrier

interference. To do this the carriers must be mathematically orthogonal. Figure 2.2

shows spectra of orthogonal OFDM sub-carriers.

 6

C h . 1 C h . 2 C h . 3 C h . 4 C h . 5 C h . 6 C h . 7 C h . 8 C h . 9 C h . 1 0

F r e q u e n c y

F r e q u e n c y

S a v in g o f b a n d w id th

(a)

(b)

Figure 2.1 Concept of OFDM signal: (a) Conventional multi-carrier technique, (b)
Orthogonal multi-carrier modulation technique

Figure 2.2 Spectra of individual sub-carriers

Frequency domain

Sub-carrier1
Sub-carrier4

Sub-carrier2 Sub-carrier3

 7

The general block diagram of an OFDM transceiver is illustrated in Figure 2.3. In

the transmitter path, binary input data is encoded. After interleaving, the binary values

are converted into QAM values: Each n-bit group is assigned to an appropriate complex

symbol having a signal constellation according to the used digital modulation technique

(QAM). The bits in each group determine the constellation point according to the

selected sub-carrier modulation. At this point we have a complex data. After QAM

mapping, pilot insertion is realized to facilitate coherent reception. To make the system

robust to multi-path propagation, a cyclic prefix is added. Further, windowing is applied

to attain a narrower output spectrum. After this step, the digital output signals can be

converted to analog signals, which are then up-converted to broadcasting band,

amplified and transmitted through an antenna.

The OFDM receiver basically performs the reverse operations of the transmitter,

together with additional training tasks. First, the receiver has to estimate symbol timing

and frequency offset, using special training symbols in the preamble. Then it can do an

FFT for every symbol to recover the QAM values of all sub-carriers. The training

symbols and pilot sub-carriers are used to correct the channel response as well as

remaining phase drift. The QAM values are then demapped into binary values, after

which a Viterbi decoder can decode the information bits.

Figure 2.3 Basic OFDM communication system

Binary input
data

Frequency
corrected
signal

Symbol timing

Coding Interleaving QAM
mapping

Pilot
insert.

S / P

Decoding

Deinterleaving
QAM

demapping

Channel
Correction

P / S

IFFT
(TX)

FFT
(RX)

P / S

S / P

DAC

Add cyclic
extension

and
windowing

Remove
cyclic

extension

ADC
Timing and
frequency

synchronization
RF Rx

RF Tx

Binary
output data

 8

2.1. OFDM Signal

2.1.1. Generation of Sub-carriers Using IFFT

As illustrated in Figure 2.4, an OFDM signal consists of a sum of sub-carriers that

are modulated by using quadrature amplitude modulation (QAM) or phase shift keying

(PSK). In its most general form, the low-past equivalent OFDM signal can be written as

a set of modulated carriers transmitted in parallel, as follows [5]:

 ()∑ ∑
∞

−∞=

−

=

−=

n

N

k
skkn nTtgCts

1

0
,)((2.1)

with

=

∈

otherwise 0
)(

)T[0, t 2 stfj

k
ketg

π
 (2.2)

and 1-0.....Nk, 0 =+=
s

k T
kff (2.3)

where

• knC , is the QAM modulated data (symbol transmitted on the thk sub-

carrier in the thn signaling interval, each of duration is sT).

• N is the number of OFDM sub-carriers

• kf is the thk sub-carrier frequency, with 0f being the lowest frequency

to be used.

The thn OFDM frame can be defined as the transmitted signal for the thn

signaling interval of duration equal to one symbol period sT , and denote it by)(tFn in

Equation (2.1) instead of the term in parenthesis which corresponds to the thn OFDM

frame, the relation can be rewritten as

 9

)()(tFts
n

n∑
∞

−∞=
= (2.4)

and thus,)(tFn corresponds to the set of symbols knC , , k = 0…N-1, each transmitted

on the corresponding sub-carriers kf .

Demodulation is based on the orthogonality of the carriers)(tkg , namely:

)(.)()(lkTdttgtg s
R

lk −=∫ δ (2.5)

where δ is kronecker delta function and R indicates data rate.

Therefore, by assuming no interference and noise in the channel, the demodulator will

produce transmitted symbol as:

 ∫
+

=
s

s

Tn

nT
k

s
kn dttgts

T
C

)1(
*

,)()(.1 (2.6)

The block diagram of an OFDM modulator is given in Figure 2.4, while the

demodulator is shown in Figure 2.5, where, for simplicity, the impulse response of

communications systems has been ignored.

Figure 2.4 OFDM modulator

1, −NnC

0,nC

s(t) tjwe 0

∑

tjwNe 1−

 10

Figure 2.5 OFDM Demodulator

As an example, Figure 2.6 shows four sub-carriers from one OFDM signal in time

domain. In this example, all sub-carriers have the same phase and amplitude. But in

practice the amplitudes and phases may be modulated differently for each sub-carrier.

Each sub-carrier has exactly an integer number of cycles in the interval sT and the

number of cycles between adjacent sub-carriers differs by exactly one. This property

accounts for the orthogonality between the sub-carriers.

Time domain

Figure 2.6 Example of four sub-carriers within one OFDM symbol

Ts

s(t)

tjwNe 1−−

tjwe 0−

∫ +
sT

)(

∫ +
sT

)(

Ts

0,nC

1, −NnC

Sub-carrier1
Sub-carrier2
Sub-carrier3
Sub-carrier4

 11

The orthogonality of the different OFDM sub-carriers can also be demonstrated in

another way. According to Equations (2.1), (2.2) and (2.3), each OFDM symbol

contains sub-carriers that are nonzero over a sT -second interval. Hence, the spectrum of

a single symbol is a convolution of a group of dirac pulses located at the sub-carrier

frequencies with the spectrum of the square pulse that is one for a sT -second period and

zero otherwise. The amplitude spectrum of the square pulse is equal to sinc(sfTπ),

which has zeros for all frequencies f that are an integer multiple of
sT

1 . This effect is

shown in Figure 2.2, which shows the overlapping sinc spectra of individual sub-

carriers. At the maximum of each sub-carrier spectrum, all other sub-carrier spectra are

zero. Because an OFDM receiver essentially calculates the spectrum values at those

points that correspond to the maximum of individual sub-carriers, it can demodulate

each sub-carrier free from any interference from the other sub-carriers if

synchronization is perfect and no channel distortion and noise exist.

The complex base-band OFDM signal as defined by Equation (2.4) is in fact

nothing more than the inverse Fourier transform of N QAM input symbols. The time

discrete equivalent is the inverse discrete Fourier (IDFT), which is given by Equation

(2.8). By sampling the low pass equivalent signal of Equation (2.1) and Equation (2.4)

at a rate N times higher than the symbol rate
sT

1 , and assuming 00 =f (that is the

carrier frequency is equal to the lowest sub-carrier frequency), the OFDM frame can be

expressed as:

 ∑
−

=

 +=

−=−=
1

0
, 1....0,)()(

N

k T
N
mnt

skknn NmnTtgCmF
s

 (2.7)

which yields

 { }kn

N

k

N
mkj

kn
N
mTfj

n CIDFTNeCemF
s

,

1

0

2
,

2
.)(

0
=

= ∑

−

=

ππ
 (2.8)

In practice, this transform can be implemented very efficiently by the inverse fast

fourier transform (IFFT).

 12

To point out the difference between OFDM and (Frequency Division

Multiplexing) FDM, the power spectrum density for the two systems with binary phase

shift keying (BPSK) data on all carriers is considered in Figure 2.7, illustrating the two

spectra indicating the occupied bandwidth W as function of the number of carriers N.

Note that here R indicates data rate.

Figure 2.7 OFDM versus FDM power spectrum density

From Figure 2.7, one can see that the OFDM signal requires less bandwidth as the

number of carriers is increased, and in the limit we have:

sNN T

NRR
N

NW ==
+

=
∞→∞→

.1limlim (2.9)

This is possible since there is spectral overlapping, which is resolved making use

of the orthogonality of the sub-carriers.

By performing the sampling as indicated, the OFDM signal is subject to no loss

since the two-sided bandwidth of the low-pass equivalent OFDM signal (neglecting

side-lobes due to the outer sub-carriers) is sTNW /= . Then, the sampling rate of sTN /

 13

is exactly the corresponding Nyquist rate, and hence there will be no frequency domain

aliasing.

2.1.2. Guard Time and Cyclic Extension

One of the most important reasons to use OFDM is the efficient way to deal with

interference due to multi-path. By dividing the input data-stream in N sub-carriers, the

symbol duration is made N times smaller, which also reduces the relative multi-path

delay spread, relative to the symbol time, by the same factor. An OFDM signal retains

its sub-carrier orthogonality property when transmitted through a non-dispersive

channel. Most channels of interest, however, contain significant time and/or frequency

dispersion. These impairments introduce inter symbol interference (ISI) and inter carrier

interference (ICI), and can destroy the orthogonality of the sub-carriers. A major

advantage of OFDM, mentioned before, is the ability to enhance the basic signal in

ways that overcome channel impairments.

There are two aspects of the multi-path channel that need attention:

• The delay spread, which produces an impulse response extended in time

• The arrival at the receiver of delayed versions of the transmitted signal

causing interference manifests itself as frequency-selective fading.

To protect against time dispersions including multi-path, a guard interval equal to

the length of the channel impulse response is introduced between successive OFDM

symbols. The guard interval is commonly implemented by the cyclic extension of the

IFFT output [36]. The problem of ICI is illustrated in Figure 2.8. In this figure, a sub-

carrier1 and a delayed sub-carrier2 are shown. When an OFDM receiver tries to

demodulate the first sub-carrier, it will encounter some interference from the second

sub-carrier, because within the FFT interval, there is no integer number of cycle

difference between sub-carrier 1 and 2. At the same time, there will be cross talk from

the first to the second sub-carrier for the same reason.

 14

Figure 2.8 Effect of multi-path with zero signal in the guard time

To eliminate ICI, the OFDM symbol is cyclically extended in the guard time, as

shown in Figure 2.9 [36]. This ensures that delayed replicas of the OFDM symbol

always have an integer number of cycles within the FFT interval, as long as the delay is

smaller than the guard time. As a result, multi-path signals with delays smaller than the

guard time don’t cause ICI.

Figure 2.9 OFDM symbol with cyclic extension

Sub-carrier #1

Sub-carrier #1

OFDM symbol time

Guard time FFT integration time = 1/Carrier spacing

Part of sub-carrier #2 causing
ICI on sub-carrier #1

Sub-carrier #2

Sub-carrier #3

Delayed sub-carrier #2

 15

Figure 2.10 illustrates how multi-path affects OFDM symbol [36]. This figure

shows received signals for the channel as solid lines; the dotted curve is a delayed

replica of the solid curve. Three separate sub-carriers are shown during three symbol

intervals. In reality, an OFDM receiver only sees the sum of all these signals, but

showing the separate components facilitates to see clearly what the effects of multi-path

are. From the figure, it can be seen that the OFDM sub-carriers are BPSK modulated,

which means that there can be 180-degree phase jumps at the symbol boundaries. For

the dotted curve, these phase jumps occur at a certain delay after the first path. In this

particular example, this multi-path delay is smaller than the guard time, which means

there are no phase transitions during the FFT interval. Hence, an OFDM receiver "sees"

the sum of pure sine waves with some phase offsets. This summation does not destroy

the orthogonality between the sub-carriers; it only introduces a different phase shift for

each sub-carrier. The orthogonality will be lost if the multi-path delay becomes larger

than the guard time. In that case, the phase transitions of the delayed path fall within the

FFT interval of the receiver. The summation of the sine waves of the first path added

with the phase modulated waves of the delayed path no longer gives a set of orthogonal

pure sine waves, resulting in a certain level of interference.

Figure 2.10 Example of an OFDM signal with three sub-carriers in a channel; the
dashed line represents a delayed multi-path component.

The ratio of the guard interval to useful symbol duration is application dependent.

Since the insertion of guard interval will reduce data throughput, the guard (cyclic

prefix) interval guardT is usually less than 4/T (see Table D.6. guardT is represented by

TCP). T represents here the FFT integration time.

 16

When a signal)(ts , which is sent over a channel with impulse response)(th , the

received signal is given by the convolution:

)(*)()(tsthtr = (2.10)

and if the channel is not ideal, i.e. h(t) = δ(t), there will be inter symbol interference

(ISI). It is convenient to view the OFDM signal in terms of data frames, so we can

anticipate that the channel will produce ISI within the frame, and will also produce inter

frame interference (IFI) among adjacent frames [5]. Considering the discrete-time

equivalent signal and the channel L0,.....,i , =ih , with L being the delay spread of the

channel, equation (2.10) becomes

 ∑∑
=

−
=

− +==
L

i
imim

L

i
imim shshshr

1
0

0
... (2.11)

 ISI

Figure 2.11 shows this convolution sum for the particular case of L=2. Here, sn,N-1

represents the OFDM signal carried by (N-1)th sub-carrier in the nth frame. From this

graphical representation it can be seen that the introduction of a guard interval of length

equal to the delay spread L of the channel between two adjacent frames will "absorb"

the channel delay and hence remove IFI.

 17

Figure 2.11 Inter Frame Interference in OFDM systems.

This may be accomplished by inserting L leading zeros in each frame at the

transmitter and removing them at the receiver. However, in order to also eliminate ISI

from within the frame, it is better to use a cyclic prefix instead of an all zero guard

interval. In this case, after dumping the prefix at the receiver, one would get the periodic

(cyclic) convolution of the transmitted data frame and the channel. The cyclically

extended frame can then be written as [5]

 +
=

),(
),(

)(
mF

mNF
mF

n

nt
n

1...0
1....

−=
−−=

Nm
Lm

 (2.12)

where

 1.....0,)(
1

0

2
, −== ∑

−

=
NmeCmF

N

k

N
mkj

knn
π

 (2.13)

 18

After discarding the prefix, the received frame becomes

 i

N

i
Nnn himFmF .)()(ˆ

1

0
∑

−

=
−= (2.14)

where Nim)(− represents the modulo N subtraction. After DFT demodulation we get

 kkn

N

m

N
mkj

nkn HCemF
N

C .)(ˆ.1ˆ
,

1

0

2
, == ∑

−

=

− π
 (2.15)

where 1........0 −= Nk and kH is the channel's transfer function at the sub-carrier

frequency kf from Equation (2.3). Therefore, by using a cyclic prefix, the effect of the

channel is transformed into a complex multiplication of the data symbols with the

channel coefficients kH , and all ISI and IFI is removed.

2.1.3. Useful Symbol Duration

The useful symbol duration T (FFT integration period) affects the carrier spacing

and coding latency. To maintain the data throughput, longer useful symbol duration

results in an increase of the number of carriers and the size of FFT (assuming that the

signal constellation is fixed). The number of carriers corresponds to the number of

complex points being processed in FFT. In practice the carrier offset and phase stability

may affect spacing between carriers.

2.1.4. Number of Carriers

"Less than one quarter" rule of thumb and the use of an FFT algorithm in turn

drive the selection of the number of carriers, and hence the transform size for a

particular application [6]. The first-order design of an OFDM scheme for an application

 19

using this approach begins by considering the channel delay-spread, which dictates the

duration of the guard interval. The number of sub-carriers that both maintains the

information rate needed for the application (also satisfies the channel bandwidth

constraints) and meets the "less than 1/4 symbol" rule of thumb can be determined. The

carriers are spaced by the reciprocal of the useful symbol duration. The number of

carriers corresponds to the number of complex points being processed in FFT.

2.2. Properties of OFDM

After introducing the OFDM signaling scheme, we can list its major advantages

and disadvantages as follows:

• OFDM makes efficient use of the spectrum by allowing overlap.

• By dividing the channel into narrowband flat fading sub-channels, OFDM

is more resistant to frequency selective fading than single carrier systems

are.

• ISI and IFI are eliminated through via cyclic prefix.

• Using adequate channel coding and interleaving, one can recover symbols

lost due to the frequency selectivity of the channel

• Channel is simpler than using adaptive equalization techniques with single

carrier systems.

• OFDM is computationally efficient by using FFT techniques to implement

the modulation and demodulation functions. Also, for multiple

communication channels, as is the case in digital audio broadcasting

(DAB) systems, partial FFT algorithms can be used in order to implement

program selection and decimation.

The disadvantages can be listed as follows:

 20

• The OFDM signal has a noise like amplitude with a very large dynamic

range, therefore it requires RF power amplifiers with a high peak to

average power ratio.

• OFDM is more sensitive to carrier frequency offset and phase offsets than

single carrier systems are.

2.3. Choice of OFDM Parameters

The choice of various OFDM parameters is a tradeoff between various, often

conflicting requirements. Usually, there are three main requirements as follows:

• Bandwidth

• Bit rate

• Delay spread

The delay spread directly dictates the guard time. As a rule, the guard time should

be about two to four times the root-mean-squared delay spread (see chapter 2.1.2). This

value depends on the type of coding and QAM modulation. Higher order QAM (like 64-

QAM) is more sensitive to ICI and ISI; while heavier coding obviously reduces the

sensitivity to such interference.

Since the guard time has been set, the symbol duration can be fixed. To minimize

the signal-to-noise ratio (SNR) loss caused by the guard time, it is desirable to have the

symbol duration much larger than the guard time. It cannot be arbitrarily large,

however, because larger symbol duration means more sub-carriers with a smaller sub-

carrier spacing, a larger implementation complexity, and more sensitivity phase offset

and frequency offset [11], as well as an increased peak-to-average power ratio.

After the symbol duration and guard time are fixed, the number of sub-carriers

can be determined by inverse of the useful symbol duration (symbol duration-guard

time). Alternatively, the number of sub-carriers may be also determined by the required

bit rate divided by the bit rate per sub-carrier. The bit rate per sub-carrier is defined by

the modulation type (e.g. 64-QAM), coding rate and symbol rate. An additional

 21

requirement that can affect the chosen parameters is the demand for an integer number

of samples both within the FFT/IFFT interval and in the symbol interval.

To see the relation between these three requirements mentioned above, let’s

assume we want to design a system with the following requirements:

• Bit rate: 24 Mbps

• Tolerable delay spread: 200 ns

• Bandwidth: <16 MHz

First, we can set the guard time to a safe value using the given value for the delay-

spread requirement: Delay spread should be smaller than guard time (see 2.1.2). Let’s

take the guard time 800 ns, which is four times delay-spread. By choosing the OFDM

symbol duration 5 times (4.0 µs = guard time (0.8 µs) + useful symbol part duration (3.2

µs)) the guard time according to ETSI HiperLan/2 standard (see Table D.6), we are now

ready to find the number of sub-carriers and sub-carrier spacing. The sub-carrier

spacing is the inverse of 4.0 – 0.8 = 3.2 µs, which gives 312.5 kHz. To determine the

number of sub-carriers needed, we can look at the ratio of the required bit rate and the

OFDM symbol rate. To achieve 24 Mbps, each OFDM symbol has to carry 96 bits of

information (96/4.0 µs = 24 Mbps). To do this, there are several options. One is to use

16-QAM together with ½ coding rate to get 2 bits per carrier in a symbol. In this case,

48 sub-carriers are needed to get the required 96 bits per symbol. Another option is to

use QPSK with rate ¾ coding rate, which gives 1.5 bits per sub-carrier in a symbol. In

this case, 64 sub-carriers are needed to reach the 96 bits per symbol. However, 64 sub-

carriers means a bandwidth of 64 * 312.5 kHz = 20 MHz, which is larger than the target

bandwidth. To achieve a bandwidth smaller than 16 MHz, the number of sub-carriers

needed to be equal to or smaller than 50. Hence, the first option with 48 sub-carriers and

16-QAM fulfills all the requirements.

In this section, we reviewed the OFDM, compared it to FDM in terms of

advantages and drawbacks. We saw how the basic OFDM signal is formed using IFFT

and adding a cyclic extension. We explained how OFDM avoids the problem of inter-

symbol interference by transmitting a number of narrowband sub-carriers together with

using a guard time. We gave an example to a basic OFDM communication system and

summarized the functionality of its sub-blocks. Choice of OFDM parameters for

communication system was explained with an example. We mentioned an important

 22

term for OFDM, i.e. orthogonality. After this introduction, we will see the

synchronization issues that should be taken care of in OFDM receivers in the next

chapter.

 23

3. SYNCHRONIZATION

One of the arguments against OFDM is that it is highly sensitive to

synchronization errors, in particular, to frequency errors. Before an OFDM receiver can

demodulate the sub-carriers, it has to perform at least two synchronization tasks:

• Symbol (frame) timing synchronization

• Carrier frequency synchronization (carrier frequency offset) and sampling

frequency synchronization (clock offset)

An OFDM receiver first, has to find out where the symbol boundaries are and

what the optimal timing instants are to minimize the effects of inter-carrier interference

(ICI) and inter-symbol interference (ISI). Symbol (Frame) timing synchronization

means finding an estimate where the symbol starts. Second, it has to estimate and

correct for the carrier frequency offset of the received signal, because any offset

introduces ICI. Notice that these two synchronization tasks are not the only training

required in an OFDM receiver. For coherent receivers, except for the frequency, the

carrier phase also needs to be synchronized. Further, a coherent QAM receiver needs to

learn the amplitudes and phases of all sub-carriers to find out the decision boundaries

for the QAM constellation of each sub-carrier [9, 14, 16, 17, 19].

3.1. Introduction

In an OFDM link, the sub-carriers are perfectly orthogonal only if transmitter and

receiver use exactly the same frequencies. Any frequency offset immediately results in

ICI. A related problem is the phase noise; a practical oscillator does not produce a

carrier at exactly one frequency, but rather a carrier that is phase modulated by random

 24

phase jitter. As a result, the frequency, which is the time derivative of the phase, is

never perfectly constant, thereby causing ICI in an OFDM receiver. For single-carrier

systems, phase noise and frequency offsets only give degradation in the received signal-

to-noise ratio (SNR) rather than introducing interference. This is the reason that the

sensitivity to phase noise and frequency offset are often mentioned as disadvantages of

OFDM in respect to single-carrier systems.

3.2. Symbol Synchronization

3.2.1. Sensitivity To Timing Errors

In OFDM systems, a great deal of attention is given to symbol synchronization.

Finding the symbol timing for OFDM systems means finding an estimate of the symbol

start point. So the objective is to detect the start point of OFDM symbol. However, by

using a cyclic prefix, the timing requirements are relaxed somewhat. There is usually

some tolerance for symbol timing errors since a cyclic prefix is used to extend the

symbol. A timing offset gives rise to a phase rotation of the sub-carriers. This phase

rotation is largest on the edges of the frequency band. If a timing error is small enough

to keep the channel impulse response within the cyclic prefix, the orthogonality is

maintained. In this case a symbol timing delay can be viewed as a phase shift

introduced by the channel. Then the phase rotations can be estimated by a channel

estimator. If a time shift is larger than the cyclic prefix and the receiver's FFT interval

extends over a symbol boundary, ISI will occur. Hence, OFDM demodulation should be

quite insensitive to timing offsets. To achieve the best possible multi-path robustness,

however, there exists an optimal timing instant. Any deviation from this timing instant

means that the sensitivity to delay spread increases, so the system can handle less delay

spread than the value it was designed for. To minimize this loss of robustness, the

system should be designed such that the timing error is small compared with the guard

interval.

 25

Figure 3.1 Example of an OFDM signal with three sub-carriers, showing the earliest and
latest possible symbol timing instants that do not cause ISI or ICI.

An interesting relationship exists between symbol timing and the demodulated

sub-carrier phases [20]. Looking at Figure 3.1, it can be seen that as the timing changes,

the phases of the sub-carriers change. The relation between the phase, ϕi, of sub-carrier,

i, and the timing offset, τ, is given by

 τπϕ ii f2= (3.1)

where, if is the frequency of the ith sub-carrier before sampling. For an OFDM system

with N sub-carriers and a sub-carrier spacing of 1/T, a timing delay of one sampling

interval of T/N causes a significant phase shift of)/11(2 N−π between the first and last

sub-carrier. T represents here useful symbol duration. These phase shifts add to any

phase shifts that are already present because of multi-path propagation. In a coherent

OFDM receiver, channel estimation is performed to estimate these phase shifts for all

sub-carriers [9, 14, 16, 19, 21].

Earliest possible timing

Latest possible timing

 26

3.2.2. Sensitivity To Phase Noise

Carrier phase noise is caused by imperfections in the transmitter and receiver

oscillators. Phase noise basically has two effects. First, it introduces a random phase

variation that is common to all sub-carriers. If the oscillator line width is much smaller

than the OFDM symbol rate, which is usually the case, then the common phase error is

strongly correlated from symbol to symbol; so tracking techniques or differential

detection can be used to minimize the effects of this common phase error. The second

and more disturbing effect of phase noise is that it introduces ICI, because the sub-

carriers are no longer spaced at exactly 1/T in the frequency domain. The amount of ICI

is calculated and translated into a degradation in SNR that is given as [11]

o

s
phase N

E
W

ND

≅

βπ4
10ln6

11 (3.2)

where, β is the -3 dB one-sided bandwidth of the power density spectrum of the

carrier, W is the bandwidth and os NE / is the symbol energy per noise spectral density.

Note that the degradation increases with the number of sub-carriers and the phase noise

degradation is proportional to T.β , which is the ratio of the line-width and sub-carrier

spacing 1/T.

 27

3.3. Frequency Synchronization

3.3.1. Sampling Frequency Synchronization

The received continuous-time signal is sampled at instants determined by the

receiver clock. There are two types of methods of dealing with the mismatch in

sampling frequency. In synchronized-sampling systems a timing algorithm controls a

voltage-controlled crystal oscillator in order to align the receiver clock with the

transmitter clock. The other method is non-synchronized sampling, where the sampling

rate remains fixed, requiring post-processing in the digital domain. The effect of a clock

frequency offset is that the useful signal component is rotated, attenuated and, also ICI

is introduced. The bit-error rate performance of a non-synchronized sampling systems

are much more sensitive to a frequency offset, compared with a synchronized-sampling

system [11]. For non-synchronized sampling systems, it was shown that the degradation

(in dB) due to a frequency sampling offset depends on the square of the carrier index

and the square of relative frequency offset.

3.3.2. Carrier Frequency Synchronization

Frequency offsets are created by differences in oscillators in transmitter and

receiver, Doppler shifts or phase noise introduced by non-linear channels. There are two

destructive effects caused by a carrier frequency offset in OFDM systems:

 28

• One is the reduction of signal amplitude (the sinc functions are shifted and

no longer sampled at the peak) and the other is the introduction of ICI

from the other carriers, as illustrated in Figure 3.2 and Figure 3.3.

• The latter is caused by the loss of orthogonality between the sub-channels.

Pollet analytically evaluates the degradation of the BER caused by the

presence of carrier frequency offset and carrier phase noise for an AWGN

channel [11]. It is found that a multi-carrier system is much more sensitive

than a single-carrier system. If we denote the normalized relative

frequency offset, by the sub-carrier spacing with
NW

Ff
/

∆
=∆ (∆F is the

frequency offset and N the number of sub-carriers), the degradation D in

SNR (in dB) can then be approximated by

o

s

o

s
N
E

W
FN

N
EfD

2
2

10ln3
10)(

10ln3
10(dB)

 ∆⋅

=∆≈ ππ (3.3)

Note that the degradation (in dB) increases with the square of the number of sub-

carriers, if ∆F and W are fixed.

Moose derives the signal-to-interference-ratio (SIR) on a fading and dispersive

channel [12]. The SIR is defined as the ratio of the power of the useful signal to the

power of the interference signal (ICI and additive noise).

 29

Figure 3.2 Effects of a frequency offset ∆F: reduction in signal amplitude (ο) and inter-
carrier interference (•)

Figure 3.3 Sub-carrier spacing

∆fc
W

RF carrier (or DC)

N
W

T
1 W1

s
=∆⇒==∆ c

s
c f

NT
f

W: bandwidth
N: # of sub-carriers
TS: sample period
∆fc: sub-carrier spacing

Frequency

Amplitude

 30

He assumed that all channel attenuations hk have the same power, { }2

khE . An upper

bound on the degradation is [12]

 ()

∆

∆+
≤

fc

f
N
E

dBD

s

2

2

0
10 sin

sin5947.01
log10

π
 (3.4)

where sincx () ()xx ππ / sin≡ . The factor 0.5947 is found from a lower bound of the

summation of all interfering sub-carriers. In Figure 3.4 the degradation is plotted as a

function of the normalized frequency offset ∆f, i.e. relative to the sub-carrier spacing

[12].

D
eg

ra
da

tio
n

D
 in

 d
B

Es/N0=20 dB

Es/N0=10 dB

Es/N0=0 dB0.01

0.1

1

10

0 0.01 0.02 0.03 0.04 0.05
Relative frequency offset

Figure 3.4 Degradation in SNR due to a frequency offset (normalized to the sub-carrier
spacing). Analytical expression for AWGN (dashed) and fading channels (solid).

 31

3.4. Synchronization Techniques

3.4.1. Synchronization Using The Cyclic Extension

Because of the cyclic prefix, the first TG (guard time) seconds part of each OFDM

symbol is identical to the last part. This property can be exploited for both timing and

frequency synchronization by using a synchronization system like depicted in Figure

3.5. Basically, this device correlates a TG long part of the signal with a part that is T

seconds delayed [18, 19]. The correlator output can be written as

 τττ dTtrtrtx
GT

)()()(
0

−−−= ∫ (3.5)

Figure 3.5 Synchronization using the cyclic prefix

Frequency
offset

OFDM
signal

T
delay

Conjugation

∫
GT

dt Find
maximum
correlation

Estimate
phase of

maximum

Timing

 32

Two examples of the correlation output are shown in Figure 3.6 and Figure 3.7 for

eight OFDM symbols with 192 and 48 sub-carriers, respectively [19, 36]. These figures

illustrate a few interesting characteristics of the cyclic extension correlation method.

First, both figures clearly show eight peaks for the eight different symbols but the peak

amplitudes show a significant variation. The reason for this is that although the average

power for a T seconds interval of each OFDM symbol is constant, the power in the

guard time can substantially vary from this average power level. Another effect is the

level of the undesired correlation side-lobes between the main correlation peaks. These

side-lobes reflect the correlation between two pieces of the OFDM signal that belong

partly or totally to two different OFDM symbols. Because different OFDM symbols

contain independent data values, the correlation output is a random variable, which may

reach a value that is larger than the desired correlation peak. The standard deviation of

the random correlation magnitude is related to the number of independent samples over

which the correlation is performed. The larger the number of independent samples

means the smaller the standard deviation. In the extreme case, where the correlation is

performed over only one sample, the output magnitude is proportional to the signal

power, and there is no distinct correlation peak in this case. In the other extreme case,

where the correlation is performed over a very large number of samples, the ratio of

side-lobes-to-peak amplitude will go to zero. Because the number of independent

samples is proportional to the number of sub-carriers, the cyclic extension correlation

technique is only effective when a large number of sub-carriers are used, preferably

more than 100. An exception to this is the case where instead of random data symbols,

specially designed training symbols are used [13]. In this case, the integration can be

done over the entire symbol duration instead of the guard time only. The level of

undesired correlation side-lobes could be minimized by a proper selection of the

training symbols.

 33

Figure 3.6 Example of correlation output amplitude for eight OFDM symbol with 192
sub-carriers and a 20% guard time

Figure 3.7 Example of correlation output amplitude for eight OFDM symbols with 48
sub carriers and a 20%guard time

 34

We know that the undesired correlation side-lobes only create a problem for

symbol timing. But they do not play a role for frequency offset estimation. Once symbol

timing is known, the cyclic extension correlation output can be used to estimate the

frequency offset. The phase of the correlation output is equal to the phase drift between

samples that are T seconds apart. Hence, the frequency offset can simply be found as the

correlation phase divided by Tπ2 . This method works up to a maximum absolute

frequency offset of half the sub-carrier spacing. To increase this maximum range,

shorter symbols can be used, or special training symbols with different PN sequences on

odd and even sub-carriers frequencies to identify a frequency offset of an integer

number of sub-carrier spacing [9].

The noise performance of the frequency offset estimator is now determined for an

input signal r(t) that consists of an OFDM signal s(t) with power P and additive

Gaussian noise n(t) with a one – sided noise power spectral density of N0 within the

bandwidth of the OFDM signal:

 r(t) = s(t) + n(t) (3.6)

The frequency-offset estimator multiplies the signal by a delayed and conjugated

version of the input to produce an intermediate signal y(t) given by [9, 36]

)()()()()()()exp()()()()(2 TtntntsTtnTtstnjtsTtrtrty −+−+−+=−= ∗∗∗∗ ϕ

(3.7)

The first term in the right – hand side of Equation (3.7) is the desired output

component with a phase equal to the phase drift over a T – second interval and a power

equal to the squared signal power. The next two terms are products of the signal and the

Gaussian noise. Because the signal and noise are uncorrelated and because noise

samples separated by T seconds are uncorrelated, the power of the two terms is equal to

twice the product of signal power and noise power. Finally, the power of the last term of

Equation (3.7) is equal to the squared noise power. If the input SNR is much larger than

one, the power of the squared noise component becomes negligible compared with the

power of the other two noise terms. For practical OFDM systems, the minimum input

SNR is about 6 dB, so the signal power is four times smaller than the power of the two

signal – noise product terms.

 35

The frequency offset is estimated by averaging y(t) over an interval equal to the

guard time TG and then the phase of y(t) is estimated. Because the desired output

component of Equation (3.7) is a constant vector, averaging reduces the noise that is

added to this vector. Assuming that the squared noise component may be neglected, the

output SNR is approximated as [36, 37]

00

2

0 2/2 N
PT

TPN
PSNR G

G
=≅ (3.8)

Figure 3.8 shows a vector representation of the phase estimation, where the noise

is divided into in phase and quadrature components, both having a noise power of

GTN /0 .

Figure 3.8 Vector representation of phase drift estimation

Phase error θ
)/(0 Gq TNn =σ

Signal component P ni

 36

The phase error θ is given by Equation (3.9), where the approximation has been
made that ni and nq are small compared with the signal amplitude P [37].

P

n
nP

n q

i

q ≅
+

= −)(tan 1θ (3.9)

Because the frequency offset estimation error is equal to the phase error θ divided

by 2πT, the standard deviation of the frequency error is given by [36, 37]

S

G

sG
f T

T
NETPT

N
T 0

0
/
1

2
1

2
1

ππ
σ =≅ (3.10)

where, Ts is the symbol interval and Es / N0 is the symbol - to - noise energy ratio,

defined as

00 N

PT
N
E ss = (3.11)

Es/N0 is equal to the bit energy - to – noise density Eb/N0 multiplied by the number of

bits per symbol. Because OFDM typically has a large number of bits per symbol and

Eb/N0 is larger than 1 for successful communications, typical Es/N0 values are much

larger than 1. For instance, with 48 sub-carriers using 16-QAM and rate 2
1 coding,

there are 96 bits per OFDM symbol. In this case, Es/N0 is about 20 dB larger than Eb/N0.

Typical Eb/N0 value is about 10 dB, typical Es/N0 value is about 30 dB.

If the required Es/N0 value for an acceptable frequency error level is too large,

then averaging the vector y(t) in Equation (3.7) over multiple OFDM symbols can be

used to increase the effective signal - to - noise ratio. For averaging over K symbols, the

frequency error standard deviation becomes

s

G

s
f T

T
NKET 0/

1
2

1
π

σ ≅ (3.12)

 37

3.4.2. Synchronization Using Special Training Symbols

The synchronization technique based on the cyclic extension is particularly suited

to tracking or to blind synchronization in a circuit-switched connection, where no

special training signals are available. For packet transmission, however, there is a

drawback because an accurate synchronization needs an averaging over a large (>10)

number of OFDM symbols to attain a distinct correlation peak and a reasonable SNR.

For high-rate packet transmission, the synchronization time needs to be as short as

possible, preferably a few OFDM symbols only. To achieve this, special OFDM

training symbols can be used for which the data content is known to the receiver [9, 12,

14]. In this way, the entire received training signal can be used to achieve

synchronization, whereas the cyclic extension method only uses a fraction of each

symbol.

Figure 3.9 shows a block diagram of a matched filter that can be used to correlate

the input signal with the known OFDM training signal. Here, T is the sampling interval

and Ci are the matched filter coefficients, which are the complex conjugates of the

known training signal. From the correlation peaks in the matched filter output signal,

both symbol timing and frequency offset can be estimated. The matched filter correlates

with the OFDM time signal before performing a FFT in the receiver.

Figure 3.9 Matched filter that is matched to a special OFDM training symbol

T T T

Σ Find
maximum

Symbol
timing

C0 C1 CN-1

Input

 38

3.4.3. Optimal Timing In The Presence Of Multi-path

The task of OFDM symbol timing is to minimize the amount of ISI and ICI. This

type of interference is absent when the FFT is taken over the flat part of the signaling

window, which is shown in Figure 3.10. This window is the envelope of the transmitted

OFDM symbols. Within the flat part of the window, all sub-channels maintain perfect

orthogonality. In the presence of multi-path, however, orthogonality is lost if the multi-

path delays exceed the effective guard time, which is equal to the duration of the flat

window part minus the FFT period.

Figure 3.10 Raised cosine window

Sample number

0
0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

W
in

do
w

 v
al

ue

 39

The effect of multi-path propagation on ISI and ICI is illustrated in Figure 3.11. It

shows the windowing envelopes of three OFDM symbols. The radio channel consists of

two paths with a relative delay of almost half of a symbol and relative amplitude of 0.5.

The receiver selects the FFT timing such that the FFT is taken over the flat envelope

part of the strongest path. Because the multi-path delay is larger than the guard time,

however, the FFT period cannot at the same time cover a totally flat envelope part of the

weaker signal. As a result, the non-flat part of the symbol envelope causes ICI. At the

same time, the partial overlap of the previous OFDM symbol in the FFT period causes

ISI.

The solution to the timing problem is to find the delay window with a width equal

to the guard time. This contains maximum signal power. The optimal FFT starting time,

then, is equal to the following equation:

The starting delay of the found delay window, plus the delay that occurs between

a matched filter peak output from a single OFDM pulse and the delay of the last sample

on the flat part of the OFDM signal envelope, minus the length of the FFT interval.

Figure 3.11 ISI/ICI caused by multi-path signals

ISI ICI

First path
Second path

FFT period

 40

Figure 3.12 shows the OFDM symbol structure, where T is the time needed by the

FFT. If a multi-path signal is introduced with a relative delay (relative to the delay of

the shown reference OFDM signal) exceeding Tg1, it will cause ISI and ICI. Similarly,

multi-path signals with relative delays less than -Tg2 cause ISI and ICI. The timing

problem is now to choose Tg1 and Tg2 such that the amount of ICI and ISI after the FFT

is minimized.

Figure 3.12 OFDM symbol structure

It is clear in Figure 3.12 that ISI and ICI are caused by all multi-path signals,

which delays fall outside a window of Tg = Tg1 + Tg2. All multi-path signals within this

delay window contribute to the effectively used signal power. Hence, the optimal timing

circuit maximizes the signal - to - (ISI + ICI) ratio (SIR), given by [36]

ut

u
SS

S
SIR

−
= , ττ dhS

gTT

T
u ∫

+

=
0

0

2)(, ττ dhSt ∫
∞

∞−

= 2)((3.13)

where, T0 = -Tg2 is the timing offset of the guard time window Tg. St denotes the total

received signal power and Su is the useful signal power. Because only Su depends on the

timing offset T0, the SIR is maximized by maximizing Su; that is, choosing the T0 value

that contains the largest power of h(τ) in the interval {T0, T0 + Tg}.

In this chapter, we reviewed and classified synchronization problems existing in

OFDM systems and we provided general overview about synchronization techniques

used in OFDM receivers. In Chapter 4, the implementation part of our thesis can be

seen. We proposed and designed a digital synchronizer hardware, which realizes the

timing synchronization of ETSI OFDM symbol (frame) using sliding correlation

method. OFDM symbol synchronizer that we designed uses the preambles defined in

sTβ

2gT1gT T

 41

ETSI HiperLan / 2 standard to detect the OFDM symbol (please see Appendix D for

detailed information about ETSI standard). We can remember from previous chapter,

timing synchronization means to find out where the OFDM symbol boundaries are.

Notice that, in our implementation we assumed a perfect media. That means CO, CFO,

AWGN and phase offset do not exist. Hence these issues were not considered by our

synchronizer.

 42

4. SYNCHRONIZATION PRACTICE: SYNCHRONIZATION DETECTION
USING SHORT TRAINING SYMBOLS (STS)

In the previous chapters, we reviewed OFDM, generation of OFDM signal. We

analyzed synchronization issues that should be solved in OFDM receivers. This chapter

presents digital design and hardware implementation of ETSI OFDM symbol

synchronizer, which detects ETSI OFDM symbols at the receiver using sliding

correlation method. The goal of this implementation is not to design a whole OFDM

synchronizer that realizes all synchronization tasks including CFO and CO

compensations. The first synchronization task that a receiver should perform is to find

out where OFDM symbols starts. Our aim in this implementation is to design a generic

digital hardware that can be used in OFDM receivers, which performs the detection of

ETSI OFDM symbols referenced in Appendix D. In the first part of this chapter, we

have analyzed preambles and correlation characteristics to be used in our

implementation. We have given the assumptions and parameters used in the

implementation. First sliding and cross correlation methods used to solve

synchronization problems have been described, then they have been compared to each

other according to matlab OFDM model’s correlation outputs to determine the suitable

one for our implementation. In the second part, we have explained the details of the

OFDM symbol synchronizer that we proposed and designed, followed by simulation

and synthesis results achieved in the implementation.

4.1. Preamble and Correlation Characteristics

One of the purposes of the preamble preceding every OFDM packet is to allow

start-of-symbol detection. Using the fact that it is based on well-known patterns, which

the receiver can recognize. The beginning of the preamble is based on Short Training

Symbols (“STS”, 16 samples long instead of 64) while the end is based on Long

 43

Training Symbols (“LTS”, having the normal length of 64 samples). The reason why

the short training symbols are only 16 samples long is due to the frequency domain

sequence on which they are based, where every fourth carrier carries data while all the

others do not. The result of the IFFT of such a sequence is that the 64 time domain

samples can be split in 4 identical sub-symbols or 4 STS’s. Figure 4.1 illustrates an

example of the ETSI UP LONG preamble, where the short training symbols are the

consecutive B’s and the IB, while the long training symbols are both final C’s:

B B B B B B B B B IB CP C C

Figure 4.1 ETSI UP LONG preamble

Here, IB short OFDM symbol is sign-inverted copy of B short OFDM symbol

(please see Appendix D).

In this thesis, we refer to Appendix D.1.5 for a complete description of all the

available preamble structures in the HiperLAN/2 physical layer standards. We consider

numerical values seen in Table D.6.

4.1.1. Short Training Symbols (STS)

We consider the preambles defined by ETSI, which contain an IB symbol at the

end of the STS section. Since the ETSI preambles are based upon defined symbols, it

makes sense to compute a sliding correlation over 16 samples of successive received

STS with each other (see the example in Figure 4.2) in order to find the ending point of

the STS section and the start of the LTS part. The main idea behind sliding correlation

is to correlate the successive received OFDM samples to each other within a proper

correlation window. In our implementation, the correlation window length is 16 because

received STS has 16 samples length each, which means at each clock cycle, two 16 bits-

Copy

10*0,8µs = 8,0µs
STS

2*0,8µs = 8,0µs+2*3,2µs=8,0µs
LTS

tPREAMBLE = 16,0 µs

 44

long digital inputs are correlated each other. The received complex OFDM symbols are

sampled at receiver and converted to digital samples, so that real and imaginary parts

are separated. The digital samples are shifted through a shift register block to

synchronizer module. This performs correlation process. Figure 4.2 illustrates this

sliding correlation process of received digital samples. Since the received samples are

shifted through shift registers and delayed at each clock cycle, it is possible to compute

a sliding correlation over 16-samples correlation window, which means the newest 16

samples are correlated to the previous 16 samples. The zoomed view of sliding

correlation process of two successively received symbols is depicted in Figure 4.3.

Figure 4.4 illustrates the shape of the amplitude and phase of the 16 samples

sliding correlation process of the short training symbols contained inside the ETSI

BROADCAST. The schematic of the ETSI BROADCAST Preamble and reference STS

data for ETSI BROADCAST Preamble dumped from matlab simulink model is shown

in Figure 4.5. The goal for the synchronizer is to detect the IB section based upon the

sequence SB to find out where the OFDM symbol starts. In the ETSI BROADCAST

case, the correlation amplitude is the same for both SA and SB based section (please see

D.1.5.4.7.1 for details of SA and SB). However the correlation phase transition (from

high to low or from low to high) allows us to distinguish one from the other.

Figure 4.4 reflects the ideal conditions, meaning that there is no AWGN (Additive

White Gaussian Noise) injected, no perturbation induced by the channel (the channel

impulse response is a single tap in the time domain), no CFO (Carrier Frequency Offset)

and no CO (Clock Offset) exist.

Figure 4.2 Illustration of Sliding Correlation of Received STS

t

Successively received
OFDM STS symbols
are shifted through the
synchronizer shift
register and sliding
correlation is
computed in a
correlation window of
16 samples.

Newest 16 complex
samples are correlated
to the previous 16 ones

 45

Samples

I, Q

SlidRLength (here 16 samples) SlidRLength (here 16 samples)

•“R” represents “Correlator”.
•“Slid” represents “Sliding”.
•SlidRLength is determined by the
length of STS symbols.

Multiplication sample
by sample

Addition of all values

STS1 (i.e. B) STS2 (i.e. IB)

Shift
register

Shift
register

Figure 4.3 Sliding correlation of two received STS symbols over a 16 samples
correlation window

 (a) (b)

Figure 4.4 Sliding Correlation of the ETSI BROADCAST Preamble: (a) Correlation
Amplitude. (b) Correlation Phase

Sample Sample

Correlation amplitude Correlation phase

Correlation phase makes
sharp transition from high to
low at the end of SA based
section.

Correlation phase makes
sharp transition from low to
high at the end of SB based
section.

SA SB

 46

Figure 4.5 ETSI BROADCAST Preamble and STS Data dumped from OFDM simulink
model.

A IA A IA IA B B B B IB

SHORT TRAINING
SYMBOL (STS)

CP C C

Copy

LONG TRAINING
SYMBOL (LTS)

ETSI BROADCAST PREAMBLE

A

SHORT OFDM SYMBOLS
(EACH 16 SAMPLES)

IA

B

IB

}
C } NORMAL LENGTH OFDM

SYMBOL (64 SAMPLES)

CP } CYCLIC PREFIX (COPY OF 32 LAST
SAMPLES OF C SYMBOLS)

IA } SIGN-INVERTED COPY OF
PRECEDING SHORT SYMBOL A

IA = - A

IB } BSIGN-INVERTED COPY OF
PRECEDING SHORT SYMBOL

IB = - B

-0.0920 + 0.0000i
-0.0944 - 0.0414i
-0.1202 - 0.0352i
 0.0137 + 0.1179i
 0.1301 - 0.0000i
 0.0137 - 0.1179i
-0.1202 + 0.0352i
-0.0944 + 0.0414i
-0.0920 - 0.0000i
-0.1413 + 0.0277i
-0.0498 - 0.0850i
 0.0691 - 0.0234i
-0.0000 + 0.1301i
-0.0691 - 0.0234i
 0.0498 - 0.0850i
 0.1413 + 0.0277i

0.0920 - 0.0000i
 0.0944 + 0.0414i
 0.1202 + 0.0352i
-0.0137 - 0.1179i
-0.1301 + 0.0000i
-0.0137 + 0.1179i
 0.1202 - 0.0352i
 0.0944 - 0.0414i
 0.0920 + 0.0000i
 0.1413 - 0.0277i
 0.0498 + 0.0850i
-0.0691 + 0.0234i
 0.0000 - 0.1301i
 0.0691 + 0.0234i
-0.0498 + 0.0850i
 -0.1413 - 0.0277i

IAA

0.0460 + 0.0460i
-0.1324 + 0.0023i
-0.0135 - 0.0785i
 0.1428 - 0.0127i
 0.0920 + 0.0000i

-0.1324 + 0.0023i
 0.0460 + 0.0460i
 0.0023 - 0.1324i
 -0.0785 - 0.0135i
-0.0127 + 0.1428i
 0.0000 + 0.0920i
-0.0127 + 0.1428i
-0.0785 - 0.0135i
 0.0023 - 0.1324i

 0.1428 - 0.0127i
-0.0135 - 0.0785i

B

-0.0460 - 0.0460i
 0.1324 - 0.0023i
 0.0135 + 0.0785i
-0.1428 + 0.0127i
-0.0920 - 0.0000i

 0.1324 - 0.0023i
 -0.0460 - 0.0460i
 -0.0023 + 0.1324i
 0.0785 + 0.0135i
0.0127 - 0.1428i

 -0.0000 - 0.0920i
 0.0127 - 0.1428i
 0.0785 + 0.0135i
-0.0023 + 0.1324i

 -0.1428 + 0.0127i
 0.0135 + 0.0785i

IB

Each of A, IA, B and IB consists of 16 complex QAM modulated
OFDM samples. Complex OFDM samples seen in each box below
were generated from OFDM simulink model and they constitue the

STS part of Broadcast preamble together.

 47

Instead of a sliding correlation, we could also compute the cross correlation, i.e.

correlate the received data with the ideal transmitted symbol (which is not altered by

noise, channel etc.). The principle is sketched in Figure 4.6. First difference between the

sliding correlation and the cross correlation is that cross correlation is realized between

the received STS and the ideal transmitted symbol while sliding correlation occurs

between consecutive received STS symbols. Second difference is that two inputs of

sliding correlator changes at each clock cycle while just one input of cross correlator

changes at each clock cycle. This is because the transmitted ideal symbol is correlated

with the newest received 16 samples. The zoomed view of cross correlation process of

the successively received symbols with the ideal transmitted symbol is depicted in

Figure 4.7.

Figure 4.6 Example of Cross Correlation of Received STS

t

B B B B IB

B Ideal symbol

B B B B IB

B

B B B B IB

B

B B B B IB

B

Successively received
OFDM STS symbols
(i.e. B and IB) are
shifted through the
synchronizer shift
register sample-by-
sample and correlated
with the ideal
transmitted symbol in
a correlation window
of 16 samples.

 48

I, Q

CrossRLength (here 16 samples)

•CrossRLength is determined
by the length of STS.

Complex multiplication sample
by sample

Addition of all values

STS (i.e. B)

Shift
register

Transmitted ideal B symbol

Register
(DOES NOT
shift)

Figure 4.7 Cross correlation of the received STS symbols with the transmitted ideal
symbol in a 16 samples correlation window

Figure 4.8 represents the amplitude and the phase of the ideal cross correlation

(without any perturbation-no channel effect) of the transmitted symbol with the received

data. As seen in cross correlation phase graph, the phase of the cross correlation does

not presents consecutive stable values. The phase jump therefore is not easily

detectable. The 4 peaks seen in cross correlation amplitude graph correspond to the

match between received and ideal B symbols, while the last one is due to the correlation

between the received IB and the ideal B. Synchronization on ETSI preambles is best

performed by using a sliding correlation of the received samples so that the pattern is

more easily detectable. This is the main reason why sliding correlation method is used

for synchronization of ETSI preambles in this thesis.

Samples

 49

 (a) (b)

Figure 4.8 ETSI Ideal Cross Correlation: (a) Correlation Amplitude. (b) Correlation
Phase

All the previous figures assume perfect conditions. In realistic situations, various

effects have to be taken into account that impairs the previous results. Since we assume

the ideal conditions, we will not analyze these effects.

4.1.2. Long Training Symbols (LTS)

All the Physical Layer burst structures (please see D.1.5.4.7) have a preamble

containing two specific OFDM symbols (C) of normal length (64 samples, hence called

‘long training symbols’), preceded by a cyclic prefix of the symbols copying the last 32

samples of the C symbols. One might compute the sliding correlation over 32 samples

of the LTS.

Sample

Cross correlation amplitude Cross correlation phase

Sample

 50

4.2. Digital Design and Hardware Implementation of ETSI OFDM STS
Synchronizer Using Sliding Correlator

4.2.1. Top-level Architecture

As mentioned before, the synchronization in OFDM systems is accomplished

using correlation methods. Since the synchronization pattern of sliding correlation is

more easily detectable than the one of cross correlation, we have selected the sliding

correlation method for our synchronization application. The top-level block

representation of the STS synchronizer is depicted in Figure 4.9.

Figure 4.9 Top-level Block Diagram of ETSI OFDM STS Synchronizer

S lid in g S h ifR e g is te r

R e a lP a r tO fR x S a m p le s Im a g in e r P a r tO f R x S a m p le s

S a m p le 1 R e _ O u t S a m p le 1 Im _ O u t S a m p le 2 R e _ O u t S a m p le 2 Im _ O u t

S lid in g C o r r e la to r

S R C o r r e R e _ O u t S R C o r r e Im _ O u t

C O R D IC (C O r d in a te R o ta t io n D I g ita l C o m p u te r)

A m p litu d e C o r r e la to r O u t P h a s e C o r r e la to r O u t

D ig i ta l R x S a m p le s
(C o m in g f r o m A D C)

8 8

8 8 8 8

x x

y y

STSSynchronizer

 51

In our hardware implementation we assume the followings:

• Transmitted OFDM symbols are received successively by the antenna at

the OFDM receiver and sampled at 20 MHz sampling clock frequency.

• The received complex analog OFDM samples (sub-carriers which carries

QAM modulated complex data) are already converted to digital data; real

and imaginary parts are separated each other

• Our synchronizer takes these digital samples; real and imaginary parts are

coming separately.

STS Synchronizer design consists of 3 sub-modules:

1. Sliding Shift Register module: It gets digital samples coming from the

previous module (Analog to Digital Converter (ADC) Shifter) and stores

the newest 16 samples. It provides the next block with correct data

(Sample1 and Sample 2) to be correlated.

2. Sliding Correlator module: This module realizes sliding correlation process

of the inputs provided by Sliding Shift Register module.

3. CORDIC module: This module outputs the amplitude and phase

characteristics of the correlated OFDM data.

All sub-blocks are handled in more details in the next sections.

In our implementation, we consider numerical values seen in Table D.6. In the

simulink OFDM model that we used, the modulation type was selected as 64QAM,

preamble type was chosen as ETSI_BROADCAST, CO was set to 0 Hz, CFO was set to

0 ppm and SNR was set to 210 dB that provided perfect conditions. Transmitted

complex OFDM data was dumped from this model and used as the input stimuli of our

hardware implementation. Real and imaginary parts of the generated input stimuli were

separated each other and converted to 8-bits digital samples each.

 52

4.2.1.1.Sliding Correlator Shift Register Unit (SlidingShiftRegister)

The function of the Sliding Correlator Shift Register Unit is to store the newest 16

samples and to provide SlidingCorrelator block with correct data to be correlated. At

rising edge of clock, new sample is registered and oldest sample is discarded.

In SlidingShiftRegister Block there are 17x8x2-Bit shift register to store the most

recent 16 samples. Each sample consists of real and imaginary parts, stored in 8-Bit

precision.

The detailed architecture of SlidingShiftRegister block is depicted in Figure 4.10.

It simply gets the digital real and imaginary parts of received OFDM samples and it

stores newest 16 samples. Then it outputs newest sample and 16-clock cycles delayed

sample to Sliding Correlator module, next block. The reason of this functionality is that

the length of correlation window is for 16 samples (STS i.e. B, A, IA and IB each

consists of 16 samples to be correlated). The correct data to be correlated by the next

block should be the newest one and the 16-clock cycles delayed one.

Figure 4.10 Architecture of SlidingShiftRegister Block

D Q D Q D Q D Q D Q D Q D Q D Q

D Q D Q D Q D Q D Q D Q D Q D Q

0 2 3 12 13 14 15 16

0 2 3 12 13 14 15 16

Clk

Clk

RealPartOfRxSamples(7:0)

ImaginerPartOfRxSamples(7:0)

Sample2Re_Out(7:0) Sample1Re_Out(7:0)

Sample2Im_Out(7:0) Sample1Im_Out(7:0)

 53

4.2.1.2.Sliding Correlator Unit

The general operation of a correlator is multiplying its input signals “sample-by-

sample” and adding the product of each multiplication. If the signals to be correlated are

of complex samples, i.e. a+jb and c+jd, then the multiplication occurs between one

input signal and the “conjugate” of the other input signal. For instance, (a+jb) is

multiplied by (c-jd), the conjugate of c+jd.

The implementation of “Sliding Correlator” depends on a serial approach, which

means at each clock cycle, it’s enough to multiply 2 samples with each other and add

the product to previous one to take the correlation of two successively received STS

symbols. This structure requires just one “complex multiplier”. Instead of this, all 16

samples of two received STS can be multiplied each other in parallel, then all

multiplication products can be accumulated to perform the sliding correlation of two

successive received OFDM symbols. This approach requires (# of samples in a STS)

complex multiplier units. This increases the area.

Sliding Correlator consists of 2 sub-blocks as shown in Figure 4.11:

1. SRCorrComplexMultiplier: Complex Multiplier Block

2. SRCorrAccumulator: Accumulator Block

Sliding Correlator basically receives real and imaginary samples from Sliding

Correlator Shift Register and Complex Multiplier Sub-block in Sliding Correlator

multiplies each new sample with the conjugate of a sample that has been received 16

samples before. At each clock cycle, new product of input samples is added to the

previous sum and the oldest product of samples is subtracted from this sum in

Accumulator Block. The output of this accumulator is the output of SlidingCorrelator

block.

 54

SRCorrComplexMultiplier SRCorrAccumulator

Sample2Re_Out(7:0)

Sample2Im_Out(7:0)

Sample1Re_Out(7:0)

Sample1Im_Out(7:0)

CorrMultRe_Out(16:0)

CorrMultIm_Out(16:0)

SRCorreRe_Out(x:0)

SRCorreIm_Out(y:0)

Figure 4.11 The top-level block diagram of Sliding Correlator

A complex multiplier seen in Figure 4.12 is used in SlidingCorrelator block. This

complex multiplier works on the simple principle of 4 multiplications as explained

below:

Let two complex numbers that are going to be multiplied be (A + jB) and (C + jD) and

the product (P + jQ). We have,

 P = (A x C) – (B x D) and

 Q = (A x D) + (B x C) (4.1)

Each of the inputs of the complex multiplier is 8 bits wide. The width of the both

real and imaginer output is 17.

 55

x

x

+

A (7:0)

D (7 :0)

B (7 :0)

C (7 :0)

A D (15:0)

B C (15:0)

A D plusB C (16:0) = Q (16 :0)

x

x

-

A (7:0)

C (7 :0)

B (7 :0)

D (7 :0)

A C (15:0)

B D (15:0)

A C m inusB D (16:0) = P (16 :0)

Figure 4.12 Complex Multiplier Structure

As seen in Figure 4.13, the real and imaginary outputs of the

SRCorrComplexMultiplier are the inputs of the SRCorrAccumulator. There are two

separate shift registers for both real and imaginary parts. At each clock cycle, a new

multiplied value for both real and imaginary parts are sent into these internal shift

registers, which are 16 samples long.

Real and imaginary shift registers are both 17 bits long.

A+jB

C+jD

 56

The methodology of our sliding correlation implementation can be simply

explained as follows:

• The first rule of correlation implementation is to multiply the first complex

sample (a+jb) with the conjugate of the second complex sample (c-jd). This is

done by SRCorrComplexMultiplier.

• The second rule is to accumulate every new product of the

SRCorrComplexMultiplier and to subtract the 16 clock cycles delayed product

from this accumulation. To understand this explained process let’s imagine 17

clock cycles later from the beginning of STS sliding correlation process. At this

time the first sample of first B symbol shown in Figure 4.2 is at the output of

17th flip flop of sliding shift register in Figure 4.10 and the first sample of

second B symbol is at the output of first flip flop of sliding correlator in Figure

4.10. This is the critical time for the correlation process because the meaningful

data begins from this point. The first sample of first B is multiplied by the first

sample of second B and the product is sent into SRCorrAccumulator. 16 clock

cycles later, all samples of both first B and second B are multiplied each other

and the accumulation is done. At each new clock cycle, a new product of

complex multiplier should be added to the accumulation while the oldest product

is subtracted. This is needed because our STS symbols have 16 samples each so

the “correlation window” width is just for 16 samples.

The outputs of sliding correlator are registered at the rising edge of Clk. The reset

signal is not shown in all figures for clarity.

Figure 4.11, Figure 4.12 and Figure 4.13 show the detailed diagrams of the

SlidingCorrelator block with the widths of input, internal and output signals. As seen in

these figures, the input samples of SlidingCorrelator are 8 bits for real or imaginary

parts but the internal samples are of 23 bits for real or imaginary parts. This is because

inside the correlator a much bigger precision than 8 bits is needed in order not to loose

precision during the computations.

 57

D Q D Q D Q D Q D Q D Q D Q D Q
1 2 3 12 13 14 15 16

Clk

"000000" & CorrMultRe_Out(16:0) = RealInternal(22:0) D Q+ -
Clk

D Q D Q D Q D Q D Q D Q D Q D Q
1 2 3 12 13 14 15 16

Clk

CorrMultIm_Out(16:0)
D Q

+ -
Clk

SRCorreRe_Out(22:0)

"000000" & CorrMultReDelayed(16:0) = RealDelayedInternal(22:0)

CorrMultRe_Out(16:0)

SRCorreIm_Out(22:0)
"000000" & CorrMultIm_Out(16:0) = ImInternal(22:0)

"000000" & CorrMultImDelayed(16:0) = ImDelayedInternal(22:0)

 Figure 4.13 Detailed architecture of SRCorrAccumulator block

4.2.1.3.CORDIC (COrdinate Rotation DIgital Computer) Unit

In Figure 4.9, at the output of SlidingCorrelator block, we have real and imaginary

samples of correlated OFDM symbols. But we still need to find out the amplitude and

the phase values of correlated OFDM samples to implement the OFDM synchronizer.

Amplitude and phase characteristics should be analyzed to detect the OFDM symbol at

the receiver. An algorithm called “CORDIC” has been developed for such kind of

operations, i.e. computing trigonometric functions that are based on vector rotations.

The CORDIC algorithm provides an iterative method of performing vector rotations by

arbitrary angles using only shifts and adds which facilitates the digital design of this

[28]. This is why the CORDIC algorithm was chosen in our thesis.

 58

4.2.1.3.1. Functional Description: Cordic Theory

CORDIC is a hardware-efficient algorithm that brings an iterative solution for

trigonometric functions and uses only shifts and adds to perform.

All of the trigonometric functions can be computed or derived from functions

using vector rotations. Vector rotation can also be used for polar to rectangular and

rectangular to polar conversions.

The CORDIC algorithm provides an iterative method of performing vector

rotations (see Figure 4.14) by arbitrary angles using only shifts and adds. The rotation is

derived from the general rotation transform as follows:

Figure 4.14 Vector Rotation

φφ
φφ

sincos
sincos

xyv
yxu

+=
−=

 (4.2)

which rotates a vector in a Cartesian plane by the angle φ. These can be rearranged so

that:

[]
[]φφ

φφ
tan.cos
tan.cos

xyv
yxu

+=
−=

 (4.3)

Vector
Rotation

x

φ v

u

y

 59

So far, nothing is simplified. However, if the rotation angles are restricted so that

Nii
i0,2tan =±=∆ −φ , the multiplication by the tangent term is reduced to simple

shift operation. Arbitrary angles of rotation are obtainable by performing a series of

successively smaller elementary rotations. If the decision at each iteration, i, is which

direction to rotate rather than whether or not to rotate, then the cos(δi) term becomes a

constant (because cos(δi) = cos(-δi)). The iterative rotation can now be expressed as:

Figure 4.15 Iterative Rotation Solution

Removing the scale constant from the iterative equations yields a shift-add

algorithm for vector rotation. The product of the Ki’s can be applied elsewhere in the

system or treated as part of a system processing gain. That product approaches 0.60725

as the number of iterations goes to infinity. Therefore, the rotation algorithm has a gain,

An, of approximately 1.647. The exact gain depends on the number of iterations and the

relation

 0 1 2 3

 4 5 ° 2 6 .5 6 ° 1 4 .0 3 ° 7 .1 2 °

y

x

v

u

o450 =∆φ

o56.261 =∆φ

o03.142 =∆φ
o12.73 =∆φ

i−− 2tan1
i

[]
[]

1
21

1)2cos(tan

)2(tan

2..

2..

 v,u
0.......N.i ,2tan

2
1

1
1

1

1

00

±=
+

==

−=

+=

−=

==
=±=∆

−
−−

−−
+

−
+

−
+

−

i

i
i

i

i
iii

i
iiiii

i
iiiii

i
i

d

K

where

dzz

duvKv

dvuKu

vx
φ

 (4.4)

 60

 ∏ −+=
N

i
NA 221 (4.5)

The angle of a composite rotation is uniquely defined by the sequence of the

directions of the elementary rotations. That sequence can be represented by a decision

vector. The set of all possible decision vectors is an angular measurement system based

on binary arctangents. Conversions between this angular system and any other can be

accomplished using a look-up table. A better conversion method uses an additional

adder-subtractor that accumulates the elementary rotation angles at each iteration. The

elementary angles can be expressed in any convenient angular unit. Those angular

values are supplied by a small lookup table (one entry per iteration) or are hardwired,

depending on the implementation. The angle accumulator adds a third difference

equation to the CORDIC algorithm:

)2(tan. 1
1

i
iii dzz −−

+ −= (4.6)

Obviously, in cases where the angle is useful in the arctangent base, this extra

element is not needed.

The CORDIC rotator is normally operated in one of two modes. The first, called

rotation rotates the input vector by a specified angle (given as an argument). The second

mode, called vectoring, rotates the input vector to the x-axis while recording the angle

required to make that rotation.

Rotation Mode:

In rotation mode, the angle accumulator is initialized with the desired rotation

angle. The rotation decision at each iteration is made to diminish the magnitude of the

residual angle in the angle accumulator. The decision at each iteration is therefore based

on the sign of the residual angle after each step. Naturally, if the input angle is already

expressed in the binary arctangent base, the angle accumulator may be eliminated. For

rotation mode, the CORDIC equations are:

 61

otherwise 1 ,0 if 1
where

)2(tan.

2..ˆˆˆ

2..ˆˆˆ

1
1

1

1

+<−=

−=

+=

−=

−−
+

−
+

−
+

ii

i
iii

i
iiii

i
iiii

zd

dzz

duvv

dvuu

 (4.7)

After N iterations,

[]
[]

∏ −+=

=
+==
−==

N

i
N

N

oNNNN

oNNNN

K

z
zxzyKvKv
zyzxKuKu

2

000

000

211

where
0

sincosˆ.
sincosˆ.

 (4.8)

Vectoring Mode:

In the vectoring mode, the CORDIC rotator rotates the input vector through the

angle necessary to align the result vector with the x-axis. The result of the vectoring

operation is a rotation angle and the scaled magnitude of the original vector (the x

component of the result). The vectoring function works by seeking to minimize the y

component of the residual vector at each rotation. The sign of the residual y component

is used to determine which direction to rotate next. If the angle accumulator is

initialized with zero, it will contain the traversed angle at the end of the iterations. In the

vectoring mode, the CORDIC equations are [28]:

otherwise 1 ,0ˆ if 1
where

)2(tan.

2..ˆˆˆ

2..ˆˆˆ

1
1

1

1

−<+=

−=

+=

−=

−−
+

−
+

−
+

ii

i
iii

i
iiii

i
iiii

vd

dzz

duvv

dvuu

 (4.9)

 62

After N iterations,

 ()

∏ −

−

+=

+=

==

+==

N

i
N

N

NNN

NNNN

K

xyzz

vKv
yxKuKu

2

00
1

0

2
0

2
0

211

where
tan

0ˆ.

ˆ.

 (4.10)

The CORDIC rotation and vectoring algorithms as stated are limited to rotation

angles between -π/2 and π/2. This limitation is due to the use of 20 for the tangent in the

first iteration. For composite rotation angles larger than π/2, an additional rotation

shown in Equation (4.11) is required. An initial rotation of either π or 0 can be made

avoiding reassignment of the x and y components to the rotator elements. This gives the

correction iteration. There is no growth due to this initial rotation.

otherwise 1 0, xif -1d
-1d if z-or 1,d if zz'

'
.'

+<=
===

=
=

π
yy

xdx

 (4.11)

This reduction forms a modulo 2π representation of the input angle. In our

implementation we take this initial rotation into consideration. The CORDIC rotator

described is usable to compute several trigonometric functions directly and others

indirectly. Judicious choice of initial values and modes permits direct computation of

sine, cosine, arctangent, vector magnitude and transformations between polar and

Cartesian coordinates. In this thesis since we need to find just the vector magnitude

(amplitude of the sliding correlator output) and the arctangent (phase of the sliding

correlator output) of the complex output vector of sliding correlator block, only these

two direct computations of CORDIC rotator are explained in detail below. Note that

Cartesian to Polar coordinate transformation also consists of finding the magnitude and

phase angle of the input vector provided by the vectoring mode CORDIC rotator.

Arctangent:

 63

The arctangent,)/tan(xyA=φ , is directly computed using the vectoring mode

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be

provided as a ratio has the advantage of being able to represent infinity (by setting x =

0). Since the arctangent result is taken from the angle accumulator, the CORDIC rotator

growth does not affect the result.

 ()00
1

0 tan xyzzN
−+= (4.12)

Vector Magnitude:

The vectoring mode CORDIC rotator produces the magnitude of the input vector

as a byproduct of computing the arctangent. After the vectoring mode rotation, the

vector is aligned with the x-axis. The magnitude of the vector is therefore the same as

the x component of the rotated vector. This result is apparent in the result equations for

the vector mode rotator:

 2
0

2
0ˆ. yxKuKu NNNN +== (4.13)

where ∏ −+=
N

i
NK 2211 . The magnitude result is compensated by multiplying with

KN. Note that this product approaches 0.60725 as the number of iterations goes to

infinity.

4.2.1.3.2. Structure Overview

In our ETSI STS synchronizer digital design, the CORDIC algorithm is limited to

rotation angles between -π/2 and π/2. CORDIC outputs must be compensated by

multiplying with K=0.60725 (excluding the angle).

 64

CORDIC module we designed consists of three blocks seen in Figure 4.16:

1. PRE_CORDIC

2. CORDIC_CORE

3. POST_CORDIC

PRE_CORDIC receives real and imaginary parts of correlator data and produces

the initial values of CORDIC_CORE.

CORDIC_CORE evaluates the algorithm for Cartesian to Polar conversion

(namely vectoring mode CORDIC rotator) and outputs the results of desired iteration.

These results are led to POST_CORDIC.

Finally, POST_CORDIC compensates the amplitude and corrects the phase and

then gives them out.

Figure 4.16 Top-level block representation of CORDIC

PRE_CORDIC

CORDIC_CORE

POST_CORDIC

X0 Y0 Z0

XOUT ZOUT

Phase Out

Clk Rst NIterations In Real In Imag In

Amplitude Out

 65

In our design, CORDIC algorithm works only at [-π/2, π/2] interval, so a glue

logic is required in case there is a data out off this region at the input. PRE_CORDIC is

designed to represent this data in the region CORDIC algorithm works. Phase

information is represented in [0, 2π] interval, and this is evaluated in POST_CORDIC

block. Amplitude is compensated in this block as well.

In PRE_CORDIC block (see Figure 4.17), after Real_In and Imag_In enter the

CORDIC module, the region of coming data is checked. If Real_In is less than zero, X0

is fed by the inverse signed of Real_In. Imag_In feeds Y0 and Z0 (initial phase) is set to

0. These operations are performed to allocate the data in the region CORDIC_CORE

works.

If Real_In is greater than zero, this means that the coming data is already in the

region CORDIC_CORE works. So, Real_In and Imag_In are led directly to X0 and Y0,

respectively. And, initial phase is set to zero.

XOut output of CORDIC_CORE represents the amplitude of the data coming to

CORDIC module, but differs from exact amplitude by a constant. To compensate this

difference XOut is multiplied by this constant (K=0.60725) and divided by SQRT (2)

for normalization to [0,1] region in POST_CORDIC block depicted in Figure 4.18. Also

in this block, a switching operation is applied to phase information in order to provide

that phase is between 0 and 2π at the output. Outputs are registered. These registers are

updated at rising edge of clock, Clk, and reset with asynchronous active low signal, Rst.

In CORDIC_CORE, depicted in Figure 4.19, N=10 fold ADD/SUB + SHIFTER

(The shifters are each a fixed shift, which means that they can be implemented in the

wiring) level is put cascaded in order to perform the CORDIC Algorithm. Outputs of

each level are led to a mux controlled by NIterations signal (see Figure 4.19). So that, it

is available to take the outputs of desired iteration step which is NIterations (NIterations

≤ 10). During the implementation of CORDIC block, it has been seen that 10 iteration

for the CORDIC Algorithm is quite satisfactory to get the desired result and more

iteration step requires more logic in terms of preserving accuracy in arithmetic

operations; more iteration is done more hardware is required. Shifter is performing

arithmetic shifting to right. The most important point here is to determine all constants

to be used for the calculation of zi’s. Constants in CORDIC Algorithm can be calculated

as follows:

 66

If we remember that we use vectoring mode CORDIC rotator, our equations are

otherwise 1 ,0ˆ if 1
where

)2(tan.

2..ˆˆˆ

2..ˆˆˆ

1
1

1

1

−<+=

−=

+=

−=

−−
+

−
+

−
+

ii

i
iii

i
iiii

i
iiii

vd

dzz

duvv

dvuu

 (4.14)

Constants seen in Figure 4.18 to be calculated are determined by

)2(tan 1 i−− (4.15)

where i = 0, 1, ……, N-1 and N = 10 in our exercise.

So, constants needed are calculated and inserted in Table 4.1.

i.e. Constant0 = tan-1(20) = 45o.

 Constant = tan-1(2i)

i Constant i Degree Radian
0 Constant 0 45° 0.78539
1 Constant 1 26.356° 0.46364
2 Constant 2 14.036° 0.24497
3 Constant 3 7.125° 0.12435
4 Constant 4 3.576° 0.06241
5 Constant 5 1.789° 0.03123
6 Constant 6 0.895° 0.01562
7 Constant 7 0.447° 0.05549
8 Constant 8 0.223° 0.00390
9 Constant 9 0.1119° 0.00195

Table 4.1 Constants used in CORDIC_CORE block

 67

Figure 4.17 PRE_CORDIC Structure

Figure 4.18 POST_CORDIC Structure

Imag InReal In

X0 Y0 Z0

ADD/
SUB

(1)-
(0)+

0

RealMSB

B A
0

LeftHandPlaneFlag

Rst

X Compensation

π - ZOut

ZOut+2π

XOUT ZOUT Clk

Amplitude_Out Phase_Out

AMP_REG PHASE_REG

LeftHandPlaneFlag

1 0

< 0

1 0

 68

X (N)

>>1 >>1

(1)+
(0)-

<0

(0)+
(1)-

(0)+
(1)-

C onst. 1

X (1)
Y (1) Z(1)

d(1)d(1)

Add/
subt.

A dd/
subt.

A dd/
subt.

X (2) Y (2) Z(2)

>>0 >>0

(1)+
(0)-

<0

(0)+
(1)-

(0)+
(1)-

C onst. 0

X (0) Y (0) Z(0)

d(0)d(0)

A dd/
subt.

A dd/
subt.

A dd/
subt.

>>N -1 >>N -1

(1)+
(0)-

<0

(0)+
(1)-

(0)+
(1)-

C onst. N -1

X (N -1)
Y (N -1) Z(N -1)

d(N -1)d(N -1)

A dd/
sub t.

A dd/
subt.

A dd/
subt.

Y (N) Z(N)

X (0) Y (0) Z(0)

X (0) X (1) X (N)

X _O ut

Z(0) Z(1) Z(N)

Z_O ut

0 1 N 0 1 N

N Iterations_In

Figure 4.19 CORDIC_CORE Structure

 69

4.3. Hardware Design of Generic ETSI OFDM STS Synchronizer

4.3.1. Coding of ETSI OFDM STS Synchronizer

ETSI OFDM STS Synchronizer seen in Figure 4.9 is coded using VHDL digital

hardware description language.

Three sub-modules of ETSI OFDM STS Synchronizer are coded separately.

These modules are connected to each other in STSSynchronizer, which is the top-level

module. The SRCorrComplexMultiplier block is located inside the SlidingCorrelator

module.

All modules are coded generically so that ETSI OFDM STS Synchronizer gains

flexibility, which will allow us in the future to use it in a whole synchronizer block of

an OFDM receiver.

VHDL codes of ETSI OFDM STS Synchronizer can be seen in Appendix B and

Appendix C.

4.3.2. Simulation of ETSI OFDM STS Synchronizer

ETSI OFDM STS Synchronizer seen in Figure 4.9 was tested and simulated using

Cadence Affirma NC VHDL Simulation Tool.

For each of the three sub-modules, separate functional simulations were

performed. Simulation sections of each module can be seen in Figure 4.23, Figure 4.24,

Figure 4.25 and Figure 4.26 respectively. After sub-modules were tested and verified

individually, the following step, which is the top-level verification plan was realized for

whole system.

Before giving a start to top-level functional verification, verification environment

was constructed as follows:

1. Forming of input stimuli to be forced to ETSI OFDM STS Synchronizer:

An OFDM input stimulus was dumped to a matlab file from simulink

OFDM model. The dumped OFDM stimuli have the characteristics summarized

 70

in Table 4.2. As seen in this table, the dumped data is under perfect conditions.

The STS part of this stimuli can be seen in Figure 4.5.

OFDM Stimuli Characteristics

Modulation type 64QAM

Preamble type ETSI_BROADCAST

SNR 210.0 dB

CO 0 ppm

CFO 0 Hz

Table 4.2 Input stimuli characteristics

2. Writing matlab scripts to convert the data from real-complex format to

binary format:

As seen in Figure 4.5, the dumped OFDM data consists of real-complex

numbers. This data had to be converted to binary format. Real and imaginary parts

also had to be separated from each other in order to be ready for being forced to

ETSI OFDM STS Synchronizer.

Separation of real and imaginary parts of OFDM stimuli was realized in

matlab environment without using a script. The conversion of real data to binary

format was realized with a simple matlab script so that real and imaginary parts

were stored separately. OFDM input stimuli were written into a file. Since the

only STS part of all OFDM stimuli was enough for testing the ETSI OFDM STS

Synchronizer, the stimuli other than STS and some part of LTS samples was

deleted from file. Input stimuli consist of 250 real and imaginary digital samples.

3. Writing top-level test-bench

In order to test ETSI OFDM STS Synchronizer, a top-level test-bench was

written. It reads the input stimuli from a file, then applies these stimuli to ETSI

OFDM STS Synchronizer and writes the outputs of the system into an output file.

 71

4. Writing simple matlab script which plots amplitude and phase graphs of

ETSI OFDM STS Synchronizer in matlab environment

In order to transfer outputs of the top-level simulations, a simple script was

written. This script reads the outputs from the output file generated by top-level

test-bench and then plots the amplitude and phase graphs of ETSI OFDM STS

Synchronizer.

4.3.2.1.Top-level Functional Simulation Results of ETSI OFDM STS Synchronizer

At the end of top-level functional simulations, we could get the desired results in

terms of amplitude and phase characteristics in comparison with the graphs seen in

Figure 4.4. Owing to the fact that the generated OFDM stimuli change each time the

OFDM simulink model runs (a random data generator generates all data), it is observed

that the dumped stimuli used for hardware simulations were different from the matlab

model data. Because of this reason, there have been small differences between the

graphs of our results and the matlab model.

As explained in chapter 4.1.1, the goal is to detect the IB short OFDM symbol at

the end of the preamble section based upon the sequence SB. In the ETSI

BROADCAST case (see chapter D.1.5.4.7.1 and Figure 4.4), the correlation amplitude

is the same for both SA and SB based section. However the correlation phase transition

(from high to low or from low to high) allows distinguishing them.

Figure 4.20 represents the results achieved in our hardware implementation when

the number of iterations realized in CORDIC block is equal to 10. When it’s compared

to Figure 4.4, it can be easily seen that the desired results for both amplitude and phase

characteristics could be achieved. The first plateau and then first peak seen in Figure

4.20 a, correspond to SA based section while the second ones are related to SB based

section respectively. As the first plateau seen in Figure 4.20 a continues, the phase also

preserves its value (see Figure 4.20 b). Whenever the first plateau finishes, the phase of

ETSI OFDM STS Synchronizer makes a sharp transition from high-to-low, which is

what we expect (see Figure 4.4). Then, after the first peak seen in Figure 4.20 a, the

second plateau begins; while the phase characteristic again preserves its value. The

 72

phase jump is realized this time from low-to-high whenever the second plateau finishes.

This is also same as what we expect (see Figure 4.4). These phase transitions allow us

to distinguish SA and SB based sections from each other. So amplitude and phase

characteristics should be processed and analyzed together to detect the short IB symbol

at the end of STS section.

First ∼180 output OFDM samples are the outputs for the ETSI BROADCAST

STS input samples while first ∼18 output samples are zero since the meaningful

correlation begins after 17 clock cycles later from the beginning of STS sliding

correlation process (see 4.2.1.2). After ∼180th sample, ETSI OFDM STS Synchronizer

begins to output the LTS part related results, which we are not interested in. Note that

the amplitude and phase outputs for LTS part of preamble section are not so meaningful

since the correlation window width of ETSI OFDM STS Synchronizer is only for 16

samples. Anyway the LTS part is not used to detect where the OFDM symbol

boundaries are.

As mentioned before, CORDIC block runs basically a combinational iterative

algorithm to implement the needed vector rotations. As the number of iterations realized

in CORDIC block increases, the achieved results go better in comparison with the

previous iteration. For instance, Figure 4.21 represents the amplitude and phase

characteristics at the output of ETSI OFDM STS Synchronizer for NRIterations = 2,

while Figure 4.22 represents the ones for NRIterations = 5. Since the results achieved

for 10 iterations were quite satisfactory, the number of iterations was limited to 10 in

CORDIC block of our implementation. Note that our design does not support more than

10 iterations and it’s needed to add more logic for this.

Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26 and Figure 4.27 show the

simulation sections of each block and the top-level of ETSI OFDM STS Synchronizer.

 73

(a)

(b)

Figure 4.20 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST
Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase

 74

(a)

(b)

Figure 4.21 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST
Preamble for NRIterations = 2 in CORDIC block: (a) Amplitude (b) Phase

 75

(a)

(b)

Figure 4.22 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST
Preamble for NRIterations = 5 in CORDIC block: (a) Amplitude (b) Phase

 76

Figure 4.23 Simulation section of SlidingShiftRegister block

Figure 4.24 Simulation section of SRCorrComplexMultiplier sub-block in
SlidingCorrelator

 77

Figure 4.25 Simulation section of SlidingCorrelator block

 78

Figure 4.26 Simulation section of CORDIC block

 79

Figure 4.27 Top-level simulation section of STSSynchronizer

4.3.3. Synthesis of ETSI OFDM STS Synchronizer IP and Gate-level Simulations

4.3.3.1.Synthesis

As mentioned before, ETSI OFDM STS Synchronizer was not manufactured and

resulted as a generic “IP”, which means it’s ready to be synthesized, adapted and used

in an OFDM receiver. But although it was not manufactured, it was necessary to

synthesize it to see whether it exists any problems or not in terms of static timing

analysis and also to see its maximum processing speed and the area which it covers.

 80

Synthesis was realized with Synopsys Design Analyzer Synthesis tool in CMOS

0.13µm technology using Virtual Silicon Technology (VST) library cells. It was written

a synthesis script, which included all necessary constraints for the synthesis. In order to

get more efficient results in terms of high-level optimization of both timing and area,

“Synopsys DesignWare Foundation Synthetic Library” components that are a collection

of reusable intellectual property blocks were used by adding necessary constraints into

the synthesis script.

As a synthesis methodology, “top-down” synthesis way was used since it provides

a push-button approach and our design is not so large. All constraints were applied to

STSSynchronizer, which is the top-level block.

Since it was run a preliminary synthesis, it was not constrained a wire load model

and used the default one that was assigned by the synthesis tool. Top-level schematic

view of synthesized ETSI OFDM STS Synchronizer IP is shown in Figure 4.28 and

schematic views of each of sub-modules can be seen in Figure 4.29, Figure 4.30, Figure

4.31, Figure 4.32, Figure 4.33 respectively.

Figure 4.28 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer

 81

Figure 4.29 Schematic view of synthesized SlidingShiftRegister block

 82

Figure 4.30 Schematic view of synthesized SRCorrComplexMultiplier block
instantiated in SlidingCorrelator block

 83

Figure 4.31 Schematic view of a DesignWare multiplier component instantiated in
SRCorrComplexMultiplier block

 84

Figure 4.32 Schematic view of synthesized SlidingCorrelator block

 85

Figure 4.33 Schematic view of synthesized CORDIC block

 86

Since the ETSI Hiperlan/2 PHY layer standards requires a 20 MHz sampling

frequency at receiver (please see Table D.6), synthesis was run first setting the system

operation frequency to 20 MHz. It was seen that the system had not any problem at this

operation frequency in terms of critical timing issues and we did not get any violations.

Area results achieved for this synthesis can be seen in Table 4.3. Then, as the second

step, it was aimed to catch the maximum operation frequency of this IP. After several

synthesis trials with “low effort” constraint, at the end of static timing analysis, it was

seen that the maximum operation speed for our IP was 50 MHz and CORDIC block was

at the critical path since its algorithm was implemented using mostly combinational

logic. After this clock frequency, system begins to produce setup time violations. This

result is exactly same as what we expect. To reach speeder frequencies than 50 MHz,

it’s necessary to implement a pipelined architecture inside the CORDIC block, which

increases both latency and throughput of the system. This is not aimed to reach the

possible maximum speeds in our implementation since we accept ETSI Hiperlan/2

OFDM standard and parameters. But IP is ready to run up to 50 MHz speed, maybe

more after a serious synthesis trials with correct constraints. Synthesis results for 50

MHz in terms of area are in Table 4.4. Power estimation reports given by Synopsys

Design Analyzer for 20MHz and 50MHz-operating frequencies are in Table 4.5 and in

Table 4.6 respectively. Equation to calculate the approximate power consumption in the

CMOS 0.13µm technology-VST77000 databook is given by

 staticswitchingfanoutfallrisediss PFVCEEP +++=))..((2 (4.16)

where:

• Pdiss is the power dissipation of the gate (in pW).

• Erise is the energy for the rising transition (in pJ).

• Efall is the energy for the falling transition (in pJ).

• Cfanout is the output load capacitance (in pF); the number of loads multiplied by

the value for a standard load.

• V is the supply voltage.

• Fswitching is the switching frequency of the transition (in mHz).

• Pstatic is the static power dissipation of the library cell (in pW).

 87

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer

(Total)

µ2 177.984009 14020.992188 23499.062500 37706.683594 Combinational

Area Gates 34 2707 4533 7273

µ2 12690.431641 27527.037109 933.119995 41150.585938 Noncombinational

Area Gates 2173 5310 180 7938

µ2 12868.416016 41548.031250 24432.181641 78857.265625 Total Cell Area

Gates 2207 8017 4713 15211

Number of Flip-Flops 272 590 20 882

Table 4.3 Area results of synthesis of ETSI OFDM STS Synchronizer for 20MHz
operation frequency

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer

(Total)

µ2 177.984009 14033.087891 53122.183594 67341.890625 Combinational

Area Gates 34 2707 10247 12990

µ2 12690.431641 27359.132812 933.119995 41162.683594 Noncombinational

Area Gates 2173 5278 180 7940

µ2 12868.416016 41572.218750 54055.304688 108504.578125 Total Cell Area

Gates 2207 7985 10427 20930

Number of Flip-Flops 272 590 20 882

Table 4.4 Area results of synthesis of ETSI OFDM STS Synchronizer for 50MHz
operation frequency

 88

Operating Conditions wc_1.08V_125C

Global Operating Voltage (V) 1.08

Library VST77000_wc_1.08V_125C

Power Consumption Estimation

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer

(Total)

Cell Internal Power µW 99.1853 209.6462 10.8812 319.7526

Net

Switching Power

µW 6.9607 20.1876 2.9840 73.8889

Total

Dynamic

Power = CIP + NSP

µW 106.1460 229.8338 13.8652 393.6414

Cell Leakage Power

(Static Power)

µW 14.0214 61.3368 52.4857 127.8588

Table 4.5 Power consumption estimation for 20MHz operation frequency

Operating Conditions wc_1.08V_125C

Global Operating Voltage (V) 1.08

Library VST77000_wc_1.08V_125C

Power Consumption Estimation

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer

(Total)

Cell Internal Power µW 248.4968 523.9656 28.2263 800.7877

Net

Switching Power

µW 17.4481 50.3458 7.3146 184.5302

Total

Dynamic

Power = CIP + NSP

µW 265.9449 574.3114 35.5408 985.3179

Cell Leakage Power

(Static Power)

µW 14.0473 60.8577 109.4740 184.3936

Table 4.6 Power consumption estimation for 50MHz operation frequency

 89

4.3.3.2.Gate-level Simulations

After synthesis of the IP, the net-list of the synthesized design was saved in

verilog format; then it was generated the sdf (standard delay file) file needed for the

gate-level simulations. As mentioned before, our design was resulted as an IP and no

back-end activities were done such place-and-route process. This is why we did not

have a real sdf file, which is normally produced after the place-and-route operation. So

gate-level simulations were realized using the sdf file generated by Synopsys Design

Analyzer, which included the estimated timings for each of library elements.

Gate-level simulation results seen in Figure 4.35 a and Figure 4.35 b are same as the

ones we got during functional simulations (see Figure 4.20). A section of gate-level

simulations of STSSynchronizer is shown in Figure 4.34.

Figure 4.34 Gate-level simulation section of STSSynchronizer

 90

(a)

(b)

Figure 4.35 ETSI OFDM STS Synchronizer output graphs (gate-level) for ETSI BROADCAST
Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase

 91

5. CONCLUSIONS

This thesis has presented the design, digital implementation, functional and gate-

level verification and synthesis of ETSI OFDM STS Synchronizer IP in digital CMOS

0.13µm technology using VST libraries. Physical realization of the Symbol

Synchronizer has not been performed, but it is ready to be integrated as a part of whole

synchronizer, which implements all needed synchronization tasks in an ETSI OFDM

receiver.

The architecture of the ETSI OFDM STS Synchronizer is based on sliding

correlation methodology. A serial approach is reflected to whole design instead of

parallel, which decreases the total area reducing the number of arithmetic functional

blocks used in the design like multipliers.

The design consists of three main blocks: Sliding Shift Register block, which

provides the Sliding Correlator block with the correct data to be correlated; Sliding

Correlator block, which realizes the main functionality of the IP, sliding correlation of

OFDM samples and includes the Complex Multiplier block; CORDIC block, which

provides the amplitude and phase values of correlated OFDM samples.

At the end of functional and gate-level verifications of symbol synchronizer we

designed, we could achieve very satisfactory results: Amplitude and phase

characteristics of the slightly correlated received samples were very similar to simulink

matlab model’s ones. At the output of designed synchronizer, amplitude and phase

characteristics of the correlated received samples allowed us to detect the OFDM

symbol. Amplitude and phase transitions of the correlated received STS symbols were

the same as what we expected. As a result, ETSI OFDM symbols can be easily

detectable by the hardware we proposed and designed in this thesis.

Although the current standard requires 20 MHz operation frequency, ETSI OFDM

STS Synchronizer IP is capable to work up to 50 MHz. This means that it can be easily

adapted to the future designs up to this speed. The CORDIC block is at the critical path

 92

in terms of design timing since it has a huge combinational logic to implement the

iterative CORDIC algorithm. CORDIC block should be redesigned with a pipelined

architecture in order to increase the operation frequency higher than 50 MHz.

To summarize, the proposed and digitally designed ETSI OFDM STS Symbol

Synchronizer IP is capable to correlate received ETSI OFDM symbols correctly and to

find out where ETSI OFDM symbol boundaries are. The achieved results are

satisfactory and can be used as a starting point for possible future works.

Based on the finding of this thesis, for future works, the following issues may be

proposed:

• In our work, we made our design considering a perfect media and we did

not consider impairments caused by CFO (Carrier Frequency Offset), CO

(Clock Offset), AWGN, phase errors and channel effects. First, our design

can be tested under these effects, then taking these effects into account, it

can be developed and designed a whole ETSI OFDM Synchronizer that

deals with all of these impairments, including the ETSI OFDM STS

Symbol Synchronizer IP as well.

• A complete digital OFDM receiver can be designed, implemented and

produced including the whole synchronizer block.

 93

A. APPENDIX A: SCHEMATICS OF WHOLE IP

Figure A.1 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer

 94

Figure A.2 Schematic view of synthesized SlidingShiftRegister block

 95

Figure A.3 Schematic view of synthesized SRCorrComplexMultiplier block instantiated
in SlidingCorrelator block

 96

Figure A.4 Schematic view of a DesignWare multiplier component instantiated in
SRCorrComplexMultiplier block

 97

Figure A.5 Schematic view of synthesized SlidingCorrelator block

 98

Figure A.6 Schematic view of synthesized CORDIC block

 99

B. APPENDIX B: FUNCTIONAL VHDL CODES

1. STSSynchronizerConstants.Package.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

package STSSynchronizerConstants is

--SlidingShiftRegConstants

 constant SR_SHIFTREG_LENGTH : integer := 17;
 constant SAMPLE_WIDTH : integer := 8;
 constant NR_BITS : integer := 8;

--SRCorrelatorConstants
 constant m : integer := 8;
 constant n : integer := 8;
 constant CORRELATION_LENGTH : integer := 16;
 constant SAMPLE_IN_WIDTH : integer := m; --8
 constant SAMPLE_INTERN_WIDTH : integer := m+n+7; --23
 constant SAMPLE_OUT_WIDTH : integer := 10;

--CordicRPConstants

 constant D_CORDIC_SIGNED_wl : integer := 10;
 constant D_CORDIC_UNSIGNED_wl : integer := NR_BITS + 2;
 constant D_CORDIC_INTERN_wl : integer := NR_BITS + 8;
 constant D_CORDIC_INTERN_iwl : integer := 3;

 constant WIDTH : integer := D_CORDIC_SIGNED_wl;
 constant WIDTH_INTERN : integer := D_CORDIC_INTERN_wl;
 constant IWIDTH_INTERN : integer := D_CORDIC_INTERN_iwl;

end STSSynchronizerConstants;

 100

2. SRShiftRegComponent.Package.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

package SRShiftRegComponent is

 component SRShiftReg

 port (

 Clk20M : in std_logic;
 Rst_N : in std_logic;
 SampleRe_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 SampleIm_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample1Re_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample1Im_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample2Re_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample2Im_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0)

);
 end component;

end SRShiftRegComponent;

3. SRShiftReg.Entity.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

entity SRShiftReg is

 port(
 Clk20M : in std_logic;
 Rst_N : in std_logic;
 SampleRe_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 SampleIm_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample1Re_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample1Im_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample2Re_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 Sample2Im_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0));

end SRShiftReg;

 101

4. SRShiftReg.rtl.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

architecture rtl of SRShiftReg is

 type t_SamplesShiftReg is array(SR_SHIFTREG_LENGTH-1 downto 0) of
std_logic_vector(SAMPLE_WIDTH-1 downto 0);

 signal SampleRe_r : t_SamplesShiftReg;
 signal SampleIm_r : t_SamplesShiftReg;

begin

p_SRShiftRegister: process(Clk20M, Rst_N, SampleRe_In, SampleIm_In,
SampleRe_r, SampleIm_r)
begin
 if (Rst_N = '0') then
 SampleRe_r <= (others=> (others => '0'));
 SampleIm_r <= (others=> (others => '0'));
 elsif (Clk20M'event and Clk20M = '1') then
 SampleRe_r <= SampleRe_r(SR_SHIFTREG_LENGTH-2 downto 0) &
SampleRe_In;
 SampleIm_r <= SampleIm_r(SR_SHIFTREG_LENGTH-2 downto 0) &
SampleIm_In;
 end if ;
end process p_SRShiftRegister;

 Sample1Re_Out <= SampleRe_r(SR_SHIFTREG_LENGTH-1);
 Sample1Im_Out <= SampleIm_r(SR_SHIFTREG_LENGTH-1);
 Sample2Re_Out <= SampleRe_r(0);
 Sample2Im_Out <= SampleIm_r(0);

end rtl;

 102

5. CmplxMultiplierComponent.Package.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

package CmplxMultiplierComponent is

 component CmplxMultiplier

 port (

 InputXI : in std_logic_vector(m-1 downto 0);
 InputXQ : in std_logic_vector(m-1 downto 0);
 InputYI : in std_logic_vector(n-1 downto 0);
 InputYQ : in std_logic_vector(n-1 downto 0);
 OutputI : out std_logic_vector(m+n downto 0);
 OutputQ : out std_logic_vector(m+n downto 0)

);
 end component;

end CmplxMultiplierComponent;

6. CmplxMultiplier.Entity.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

entity CmplxMultiplier is

port(

 InputXI : in std_logic_vector(m-1 downto 0);
 InputXQ : in std_logic_vector(m-1 downto 0);
 InputYI : in std_logic_vector(n-1 downto 0);
 InputYQ : in std_logic_vector(n-1 downto 0);
 OutputI : out std_logic_vector(m+n downto 0);
 OutputQ : out std_logic_vector(m+n downto 0)

);
end CmplxMultiplier;

 103

7. CmplxMultiplier.rtl.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

-- Two complex numbers are multiplied: InputX = A+jB, InputY = C+jD
-- Output = P + jQ where P = A*C - B*D, Q = A*D + B*C.

architecture rtl of CmplxMultiplier is

signal AD,BC,AC,BD : std_logic_vector(m+n-1 downto 0);
-- AD=A*D, BC=B*C, AC=A*C, BD=B*D

begin

 AD <= CONV_STD_LOGIC_VECTOR(signed(InputXI) * signed(InputYQ),m+n);
 BC <= CONV_STD_LOGIC_VECTOR(signed(InputXQ) * signed(InputYI),m+n);
 AC <= CONV_STD_LOGIC_VECTOR(signed(InputXI) * signed(InputYI),m+n);
 BD <= CONV_STD_LOGIC_VECTOR(signed(InputXQ) * signed(InputYQ),m+n);

 OutputI <= CONV_STD_LOGIC_VECTOR((signed(AC(m+n-1) & AC) -
signed(BD(m+n-1) & BD)),m+n+1);
 OutputQ <= CONV_STD_LOGIC_VECTOR((signed(AD(m+n-1) & AD) +
signed(BC(m+n-1) & BC)),m+n+1);

end rtl;

 104

8. SRCorrelatorComponent.Package.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

package SRCorrelatorComponent is

 component SRCorrelator

 port (

 Clk20M : in std_logic;
 Rst_N : in std_logic;
 Sample1Re_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 Sample1Im_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 Sample2Re_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 Sample2Im_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 SRRe_Out : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0);
 SRIm_Out : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0)

);
 end component;

end SRCorrelatorComponent;

9. SRCorrelator.Entity.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

entity SRCorrelator is

 port(
 Clk20M : in std_logic;
 Rst_N : in std_logic;
 Sample1Re_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 Sample1Im_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 Sample2Re_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 Sample2Im_In : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 SRRe_Out : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0);
 SRIm_Out : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0));

end SRCorrelator;

 105

10. SRCorrelator.rtl.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;
use lib_sts.CmplxMultiplierComponent.all;

architecture rtl of SRCorrelator is

 type t_CorrRegRe is array(CORRELATION_LENGTH-1 downto 0) of
std_logic_vector(m+n downto 0);
 type t_CorrRegIm is array(CORRELATION_LENGTH-1 downto 0) of
std_logic_vector(m+n downto 0);

 signal CorrRegRe_r : t_CorrRegRe;
 signal CorrRegIm_r : t_CorrRegIm;
 signal ProductRe_Intern : std_logic_vector(m+n downto 0);
 signal ProductIm_Intern : std_logic_vector(m+n downto 0);
 signal ToBeSubtractedRegRe_Intern : std_logic_vector(m+n downto 0);
 signal ToBeSubtractedRegIm_Intern : std_logic_vector(m+n downto 0);
 signal SubtractRe_Intermediate : std_logic_vector(m+n+1 downto 0);
 signal SubtractRe_Intermediate_Signed : signed(m+n+1 downto 0);
 signal SubtractIm_Intermediate : std_logic_vector(m+n+1 downto 0);
 signal SubtractIm_Intermediate_Signed : signed(m+n+1 downto 0);
 signal I_MSB :
std_logic_vector(SAMPLE_INTERN_WIDTH-(m+n+2)-2 downto 0); -- 4 bits
 signal Q_MSB :
std_logic_vector(SAMPLE_INTERN_WIDTH-(m+n+2)-2 downto 0); -- 4 bits
 signal Sample1_Inverted :
std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0);
 signal Sample1_Inverted_Signed : signed(SAMPLE_IN_WIDTH-1 downto 0);
 signal SubtractRe_Intern :
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SubtractIm_Intern :
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SumRe_Intern :
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SumRe_Intern_Signed : signed(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SumIm_Intern :
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SumIm_Intern_Signed : signed(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SRRe_r : std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);
 signal SRIm_r : std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);

begin

I_ComplexMultiplier : CmplxMultiplier port map(
 InputXI => Sample2Re_In,
 InputXQ => Sample2Im_In,
 InputYI => Sample1Re_In,
 InputYQ => Sample1_Inverted,
 OutputI => ProductRe_Intern,
 OutputQ => ProductIm_Intern);

 106

Sample1_Inverted_Signed <= - signed(Sample1Im_In);
Sample1_Inverted <=
CONV_STD_LOGIC_VECTOR(Sample1_Inverted_Signed,SAMPLE_IN_WIDTH);

ToBeSubtractedRegRe_Intern <= CorrRegRe_r(CORRELATION_LENGTH-1);
--CORRELATION_LENGTH-1=15
ToBeSubtractedRegIm_Intern <= CorrRegIm_r(CORRELATION_LENGTH-1);
--CORRELATION_LENGTH-1=15

SubtractRe_Intermediate_Signed <= signed(ProductRe_Intern(m+n) &
ProductRe_Intern) - signed(ToBeSubtractedRegRe_Intern(m+n) &
ToBeSubtractedRegRe_Intern);
--SubtractRe_Intermediate is 18-bits-wide ((m+n+1) = (m+n) + (m+n))
SubtractRe_Intermediate <=
CONV_STD_LOGIC_VECTOR(SubtractRe_Intermediate_Signed,(m+n+2));
I_MSB <= (others => SubtractRe_Intermediate(m+n+1));
--I_MSB is 4-bits-wide
SubtractRe_Intern <= I_MSB & SubtractRe_Intermediate & '0';
--SubtractRe_Intern is 23-bits-wide

SubtractIm_Intermediate_Signed <= signed(ProductIm_Intern(m+n) &
ProductIm_Intern) - signed(ToBeSubtractedRegIm_Intern(m+n) &
ToBeSubtractedRegIm_Intern);
--SubtractIm_Intermediate is 18-bits-wide ((m+n+1) = (m+n) + (m+n))
SubtractIm_Intermediate <=
CONV_STD_LOGIC_VECTOR(SubtractIm_Intermediate_Signed,(m+n+2));
Q_MSB <= (others => SubtractIm_Intermediate(m+n+1));
--Q_MSB is 4-bits-wide
SubtractIm_Intern <= Q_MSB & SubtractIm_Intermediate & '0';
--SubtractIm_Intern is 23-bits-wide

SumRe_Intern_Signed <= signed(SRRe_r) + signed(SubtractRe_Intern);
SumRe_Intern <= CONV_STD_LOGIC_VECTOR(SumRe_Intern_Signed, (m+n+7));

SumIm_Intern_Signed <= signed(SRIm_r) + signed(SubtractIm_Intern);
SumIm_Intern <= CONV_STD_LOGIC_VECTOR(SumIm_Intern_Signed, (m+n+7));

SRRe_Out <= SRRe_r(20 downto 11);
SRIm_Out <= SRIm_r(20 downto 11);

p_CorrelatorRegister: process(Clk20M, Rst_N, CorrRegRe_r, CorrRegIm_r,
ProductRe_Intern, ProductIm_Intern)
begin
-- Input Samples are being shifted.
 if (Rst_N = '0') then
 CorrRegRe_r <= (others => (others => '0'));
 CorrRegIm_r <= (others => (others => '0'));
 elsif (Clk20M'event and Clk20M = '1') then
 CorrRegRe_r <= CorrRegRe_r(CORRELATION_LENGTH-2 downto 0) &
ProductRe_Intern ;
 CorrRegIm_r <= CorrRegIm_r(CORRELATION_LENGTH-2 downto 0) &
ProductIm_Intern ;
 end if;
end process p_CorrelatorRegister;

 107

p_Accumulator: process(Clk20M, Rst_N)
begin
 if (Rst_N = '0') then
 SRRe_r <= (others => '0');
 SRIm_r <= (others => '0');
 elsif (Clk20M'event and Clk20M = '1') then
 SRRe_r <= SumRe_Intern;
 SRIm_r <= SumIm_Intern;
 end if ; --Clk
end process p_Accumulator;

end rtl;

11. CordicRPComponent.Package.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

package CordicRPComponent is

 component CordicRP

 port (

 Clk20M : in std_logic;
 Rst_N : in std_logic;
 NRIterations_In : in std_logic_vector(3 downto 0);
 RReal_In : in std_logic_vector(WIDTH-1 downto 0);
 RImag_In : in std_logic_vector(WIDTH-1 downto 0);

 RAmp_Out : out std_logic_vector(WIDTH-1 downto 0);
 RPh_Out : out std_logic_vector(WIDTH-1 downto 0)

);
 end component;

end CordicRPComponent;

 108

12. CordicRP.Entity.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

entity CordicRP is

 port(
 Clk20M : in std_logic;
 Rst_N : in std_logic;
 NRIterations_In : in std_logic_vector(3 downto 0);
 RReal_In : in std_logic_vector(WIDTH-1 downto 0);
 RImag_In : in std_logic_vector(WIDTH-1 downto 0);
 RAmp_Out : out std_logic_vector(WIDTH-1 downto 0);
 RPh_Out : out std_logic_vector(WIDTH-1 downto 0)
);

end CordicRP;

13. CordicRP.rtl.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

architecture rtl of CordicRP is

signal RReal_Ext : std_logic_vector(WIDTH_INTERN-1 downto 0);
signal RImag_Ext : std_logic_vector(WIDTH_INTERN-1 downto 0);

signal X_0 ,Y_0, Z_0, Xshft_0, Yshft_0 : signed(WIDTH_INTERN-1
downto 0);
signal X_1 ,Y_1, Z_1, Xshft_1, Yshft_1 : signed(WIDTH_INTERN-1
downto 0);
signal X_2 ,Y_2, Z_2, Xshft_2, Yshft_2 : signed(WIDTH_INTERN-1
downto 0);
signal X_3 ,Y_3, Z_3, Xshft_3, Yshft_3 : signed(WIDTH_INTERN-1
downto 0);
signal X_4 ,Y_4, Z_4, Xshft_4, Yshft_4 : signed(WIDTH_INTERN-1
downto 0);
signal X_5 ,Y_5, Z_5, Xshft_5, Yshft_5 : signed(WIDTH_INTERN-1
downto 0);
signal X_6 ,Y_6, Z_6, Xshft_6, Yshft_6 : signed(WIDTH_INTERN-1
downto 0);
signal X_7 ,Y_7, Z_7, Xshft_7, Yshft_7 : signed(WIDTH_INTERN-1
downto 0);

 109

signal X_8 ,Y_8, Z_8, Xshft_8, Yshft_8 : signed(WIDTH_INTERN-1
downto 0);
signal X_9 ,Y_9, Z_9, Xshft_9, Yshft_9 : signed(WIDTH_INTERN-1
downto 0);
signal X_10 ,Y_10, Z_10 : signed(WIDTH_INTERN-1
downto 0);

signal LeftHalfPlaneFlag : std_logic;
signal RRealSigned : signed (WIDTH_INTERN-1 downto 0);
signal RImagSigned : signed (WIDTH_INTERN-1 downto 0);
signal NRIterationsUnsigned : unsigned(3 downto 0);
signal NRIterationsint : integer range 0 to 15;
signal X0 : signed(WIDTH_INTERN-1 downto 0);
signal Y0 : signed(WIDTH_INTERN-1 downto 0);
signal Z0 : signed(WIDTH_INTERN-1 downto 0);
signal Xout : signed(WIDTH_INTERN-1 downto 0);
signal Zout : signed(WIDTH_INTERN-1 downto 0);
signal compen : std_logic_vector(2*WIDTH_INTERN-1+1
downto 0);
signal RPh_nxt : signed(WIDTH_INTERN-1 downto 0);
signal RPh_nxt_left : unsigned(WIDTH-1 downto 0);
signal RPhUnsigned : unsigned(WIDTH_INTERN-1 downto 0);
constant ZERO : signed(WIDTH_INTERN-1 downto 0) :=
"0000000000000000";
constant ONE : signed(WIDTH_INTERN-1 downto 0) :=
"0010000000000000";
constant TWO : signed(WIDTH_INTERN-1 downto 0) :=
"0100000000000000";
constant FOUR : signed(WIDTH_INTERN-1 downto 0) :=
"1000000000000000";
constant COMPENSATION : signed(WIDTH_INTERN-1 downto 0) :=
"0001001101101110" ;
-- 0.607253321089875 --0.607177734375
constant COMPENSATION_SQRT2 : unsigned(WIDTH_INTERN-1+1 downto 0) :=
"11011011110100101" ; -- 0.607253321089875 / SQRT(2)

--constant StepPhase0 : integer := 4096; -- "0001000000000000"
--constant StepPhase1 : integer := 2418; -- "0000100101110010"
--constant StepPhase2 : integer := 1277; -- "0000010011111101"
--constant StepPhase3 : integer := 648; -- "0000001010001000"
--constant StepPhase4 : integer := 325; -- "0000000101000101"
--constant StepPhase5 : integer := 162; -- "0000000010100010"
--constant StepPhase6 : integer := 81; -- "0000000001010001"
--constant StepPhase7 : integer := 40; -- "0000000000101000"
--constant StepPhase8 : integer := 20; -- "0000000000010100"
--constant StepPhase9 : integer := 10; -- "0000000000001010"
constant StepPhase0 : signed(WIDTH_INTERN-1 downto 0) :=
"0001000000000000";
constant StepPhase1 : signed(WIDTH_INTERN-1 downto 0) :=
"0000100101110010";
constant StepPhase2 : signed(WIDTH_INTERN-1 downto 0) :=
"0000010011111101";
constant StepPhase3 : signed(WIDTH_INTERN-1 downto 0) :=
"0000001010001000";
constant StepPhase4 : signed(WIDTH_INTERN-1 downto 0) :=
"0000000101000101";
constant StepPhase5 : signed(WIDTH_INTERN-1 downto 0) :=
"0000000010100010";
constant StepPhase6 : signed(WIDTH_INTERN-1 downto 0) :=
"0000000001010001";

 110

constant StepPhase7 : signed(WIDTH_INTERN-1 downto 0) :=
"0000000000101000";
constant StepPhase8 : signed(WIDTH_INTERN-1 downto 0) :=
"0000000000010100";
constant StepPhase9 : signed(WIDTH_INTERN-1 downto 0) :=
"0000000000001010";

procedure CordicCore(X_pre : in signed(WIDTH_INTERN-1 downto 0);
 Y_pre : in signed(WIDTH_INTERN-1 downto 0);
 Z_pre : in signed(WIDTH_INTERN-1 downto 0);
 X_shift : in signed(WIDTH_INTERN-1 downto 0);
 Y_shift : in signed(WIDTH_INTERN-1 downto 0);
 signal X : out signed(WIDTH_INTERN-1 downto
0);
 signal Y: out signed(WIDTH_INTERN-1 downto 0);
 signal Z: out signed(WIDTH_INTERN-1 downto 0);
 StepPhase : in signed(WIDTH_INTERN-1 downto 0)
) is
 begin
 if Y_pre < 0 then
 X <= X_pre-Y_shift;
 Y <= Y_pre+X_shift;
 Z <= Z_pre-StepPhase;
 else
 X <= X_pre+Y_shift;
 Y <= Y_pre-X_shift;
 Z <= Z_pre+StepPhase;
 end if;
end CordicCore;

procedure ShiftRight(X : in signed(WIDTH_INTERN-1 downto 0);
 Y : in signed(WIDTH_INTERN-1 downto 0);
 iteration: in integer;
 signal X_shift : out signed(WIDTH_INTERN-1
downto 0);
 signal Y_shift : out signed(WIDTH_INTERN-1
downto 0)
) is
 variable X_int : signed(WIDTH_INTERN-1 downto 0);
 variable Y_int : signed(WIDTH_INTERN-1 downto 0);
 begin

 X_int := X;
 for I in 1 to iteration loop
 X_int(WIDTH_INTERN-I) := X(WIDTH_INTERN-1);
 end loop;
 X_int(WIDTH_INTERN-iteration-1 downto 0) :=
X(WIDTH_INTERN-1 downto iteration);
 X_shift <= X_int;
 Y_int := Y;
 for I in 1 to iteration loop
 Y_int(WIDTH_INTERN-I) := Y(WIDTH_INTERN-1);
 end loop;
 Y_int(WIDTH_INTERN-iteration-1 downto 0) :=
Y(WIDTH_INTERN-1 downto iteration);
 Y_shift <= Y_int;

end ShiftRight;

 111

begin

RReal_Ext <= RReal_In(WIDTH-1) & RReal_In(WIDTH-1) & RReal_In &
"0000";
RImag_Ext <= RImag_In(WIDTH-1) & RImag_In(WIDTH-1) & RImag_In &
"0000";

RRealSigned <= signed(RReal_Ext);
RImagSigned <= signed(RImag_Ext);

NRIterationsUnsigned <= unsigned(NRIterations_In);
NRIterationsint <= conv_integer(NRIterationsUnsigned);

--

PreCordicR2PProcess_PROC:process(RRealSigned, RImagSigned)

begin
if RRealSigned < 0 then
 X0 <= ZERO - RRealSigned;
 LeftHalfPlaneFlag <= '1';
else
 X0 <= RRealSigned;
 LeftHalfPlaneFlag <= '0';
end if;
Y0 <= RImagSigned;
Z0 <= ZERO;
end process;

X_0 <= X0;
Y_0 <= Y0;
Z_0 <= Z0;

--

Xshft_0 <= X_0;
Yshft_0 <= Y_0;

CordicCore (X_0, Y_0, Z_0, Xshft_0, Yshft_0, X_1, Y_1, Z_1,
StepPhase0);
ShiftRight (X_1, Y_1, 1, Xshft_1, Yshft_1);

CordicCore (X_1, Y_1, Z_1, Xshft_1, Yshft_1, X_2, Y_2, Z_2,
StepPhase1);
ShiftRight (X_2, Y_2, 2, Xshft_2, Yshft_2);

CordicCore (X_2, Y_2, Z_2, Xshft_2, Yshft_2, X_3, Y_3, Z_3,
StepPhase2);
ShiftRight (X_3, Y_3, 3, Xshft_3, Yshft_3);

CordicCore (X_3, Y_3, Z_3, Xshft_3, Yshft_3, X_4, Y_4, Z_4,
StepPhase3);
ShiftRight (X_4, Y_4, 4, Xshft_4, Yshft_4);

CordicCore (X_4, Y_4, Z_4, Xshft_4, Yshft_4, X_5, Y_5, Z_5,
StepPhase4);
ShiftRight (X_5, Y_5, 5, Xshft_5, Yshft_5);

CordicCore (X_5, Y_5, Z_5, Xshft_5, Yshft_5, X_6, Y_6, Z_6,
StepPhase5);
ShiftRight (X_6, Y_6, 6, Xshft_6, Yshft_6);

 112

CordicCore (X_6, Y_6, Z_6, Xshft_6, Yshft_6, X_7, Y_7, Z_7,
StepPhase6);
ShiftRight (X_7, Y_7, 7, Xshft_7, Yshft_7);

CordicCore (X_7, Y_7, Z_7, Xshft_7, Yshft_7, X_8, Y_8, Z_8,
StepPhase7);
ShiftRight (X_8, Y_8, 8, Xshft_8, Yshft_8);

CordicCore (X_8, Y_8, Z_8, Xshft_8, Yshft_8, X_9, Y_9, Z_9,
StepPhase8);
ShiftRight (X_9, Y_9, 9, Xshft_9, Yshft_9);

CordicCore (X_9, Y_9, Z_9, Xshft_9, Yshft_9, X_10, Y_10, Z_10,
StepPhase9);

--

SelectIteration_PROC:
process(RRealSigned,RImagSigned,NRIterationsint,X_0,Z_0,X_1,Z_1,X_2,Z_
2,X_3,Z_3,X_4,Z_4,X_5,Z_5,X_6,Z_6,X_7,Z_7,X_8,Z_8,X_9,Z_9,X_10,Z_10)

begin

if RRealSigned = 0 and RImagSigned = 0 then
 Xout <= ZERO;
 Zout <= ZERO;
else
 case NRIterationsint is
 when 0 =>
 Xout <= X_0;
 Zout <= Z_0;
 when 1 =>
 Xout <= X_1;
 Zout <= Z_1;
 when 2 =>
 Xout <= X_2;
 Zout <= Z_2;
 when 3 =>
 Xout <= X_3;
 Zout <= Z_3;
 when 4 =>
 Xout <= X_4;
 Zout <= Z_4;
 when 5 =>
 Xout <= X_5;
 Zout <= Z_5;
 when 6 =>
 Xout <= X_6;
 Zout <= Z_6;
 when 7 =>
 Xout <= X_7;
 Zout <= Z_7;
 when 8 =>
 Xout <= X_8;
 Zout <= Z_8;
 when 9 =>
 Xout <= X_9;
 Zout <= Z_9;
 when 10 =>
 Xout <= X_10;

 113

 Zout <= Z_10;
 when others =>
 Xout <= ZERO;
 Zout <= ZERO;
 end case;
end if;
end process;

--

PostCordicCom_PROC: process (Zout, LeftHalfPlaneFlag)
begin
if LeftHalfPlaneFlag = '1' then
 RPh_nxt <= TWO - Zout;
elsif Zout < 0 then
 RPh_nxt <= FOUR + Zout;
else
 RPh_nxt <= Zout;
end if;
end process;

RPhUnsigned <= conv_unsigned(RPh_nxt, WIDTH_INTERN);
RPh_nxt_left <= RPhUnsigned(WIDTH_INTERN-2 downto WIDTH_INTERN-2-
WIDTH+1); -- RPh_nxt / 4

compen <= conv_unsigned(Xout, WIDTH_INTERN) * COMPENSATION_SQRT2;

--

PostCordicSeq_PROC: process (Rst_N, Clk20M)
begin
if Rst_N = '0' then
 RAmp_Out <= (others => '0');
 RPh_Out <= (others => '0');
elsif Clk20M'event and Clk20M='1' then

 RAmp_Out <= compen((2*WIDTH_INTERN-IWIDTH_INTERN+1) downto
(2*WIDTH_INTERN-IWIDTH_INTERN-WIDTH+1+1)); -- (29 downto 20)
 RPh_Out <= std_logic_vector(RPh_nxt_left);
end if;
end process;

end rtl;

 114

14. STSSynchronizerComponent.Package.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

package STSSynchronizerComponent is

component STSSynchronizer

 port (
 Clk20M : in std_logic;
 Rst_N : in std_logic;
 NRIterations_In : in std_logic_vector(3 downto 0);
 SampleRe_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 SampleIm_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 RAmp_Out : out std_logic_vector(WIDTH-1 downto 0);
 RPh_Out : out std_logic_vector(WIDTH-1 downto 0));

 end component;

end STSSynchronizerComponent;

15. STSSynchronizer.Entity.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

entity STSSynchronizer is

port(

 Clk20M : in std_logic;
 Rst_N : in std_logic;
 NRIterations_In : in std_logic_vector(3 downto 0);
 SampleRe_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 SampleIm_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 RAmp_Out : out std_logic_vector(WIDTH-1 downto 0);
 RPh_Out : out std_logic_vector(WIDTH-1 downto 0));

end STSSynchronizer;

 115

16. STSSynchronizer.rtl.vhd

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;
use lib_sts.SRShiftRegComponent.all;
use lib_sts.SRCorrelatorComponent.all;
use lib_sts.CordicRPComponent.all;

architecture rtl of STSSynchronizer is

signal Sample1Re: std_logic_vector(SAMPLE_WIDTH-1 downto 0);
signal Sample1Im: std_logic_vector(SAMPLE_WIDTH-1 downto 0);
signal Sample2Re: std_logic_vector(SAMPLE_WIDTH-1 downto 0);
signal Sample2Im: std_logic_vector(SAMPLE_WIDTH-1 downto 0);
signal Rreal : std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0);
signal Rimag : std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0);

begin

I_SRShiftReg : SRShiftReg port map(

Clk20M => Clk20M,
 Rst_N => Rst_N,
 SampleRe_In => SampleRe_In,
 SampleIm_In => SampleIm_In,
 Sample1Re_Out => Sample1Re,
 Sample1Im_Out => Sample1Im,
 Sample2Re_Out => Sample2Re,
 Sample2Im_Out => Sample2Im);

I_SRCorrelator : SRCorrelator port map(
 Clk20M => Clk20M,
 Rst_N => Rst_N,
 Sample1Re_In => Sample1Re,
 Sample1Im_In => Sample1Im,
 Sample2Re_In => Sample2Re,
 Sample2Im_In => Sample2Im,
 SRRe_Out => RReal,
 SRIm_Out => RImag);

I_CordicRP : CordicRP port map(
 Clk20M => Clk20M,
 Rst_N => Rst_N,
 NRIterations_In => NRIterations_In,
 RReal_In => RReal,
 RImag_In => RImag,
 RAmp_Out => RAmp_Out,
 RPh_Out => RPh_Out);

end rtl;

 116

17. TB_STSSynchronizer.rtl.vhd

library IEEE;
use IEEE.Std_Logic_1164.all;
use IEEE.std_logic_arith.all;
use std.textio.all;
use ieee.std_logic_textio.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;
use lib_sts.STSSynchronizerComponent.all;

entity TBE_STSSynchronizer_rtl is
end TBE_STSSynchronizer_rtl;

architecture TBA_STSSynchronizer_rtl of TBE_STSSynchronizer_rtl is

signal Clk20M : std_logic:='0';
signal Rst_N : std_logic:='0';
signal NRIterations_In : std_logic_vector(3 downto 0):="1010";
--N = 10
signal SampleRe_In : std_logic_vector(SAMPLE_WIDTH-1 downto
0):="00000000";
signal SampleIm_In : std_logic_vector(SAMPLE_WIDTH-1 downto
0):="00000000";
signal RAmp_Out : std_logic_vector(9 downto 0);
signal RPh_Out : std_logic_vector(9 downto 0);
signal FirstChar : string(1 to 1);
signal SimEnd : boolean := false;
constant c_Period20Mhz : time:= 50 ns;

begin

 I_STSSynchronizer : STSSynchronizer port map (
 Clk20M => Clk20M,
 Rst_N => Rst_N,
 NRIterations_In => NRIterations_In,
 SampleRe_In => SampleRe_In,
 SampleIm_In => SampleIm_In,
 RAmp_Out => RAmp_Out,
 RPh_Out => RPh_Out
);

Rst_N <= '1' after 10 ns;

p_ClkGenerator: process
 begin
 Clk20M <= '0';
 wait for c_Period20Mhz/2;
 while not SimEnd loop
 Clk20M <= '1';
 wait for c_Period20Mhz/2;
 Clk20M <= '0';
 wait for c_Period20Mhz/2;
 end loop;
 end process p_ClkGenerator;

 117

 p_apply_stimuli : process (Clk20M, Rst_N)
 file InputFile : text is in "./Test_Data_Dir/ETSIStimuli.txt";
 variable InputVector : line;
 variable Command_Col : string(1 to 1);
 variable Temp_In : std_logic_vector(7 downto 0);

 begin

 if (Rst_N = '0') then
 --Do nothing
 elsif (Clk20M'event and Clk20M = '1') then
-- Stimuli on the positive edge

 if not endfile(InputFile) then

 readline(InputFile, InputVector);

 --SampleRe_In
 read(InputVector, Temp_In);
 SampleRe_In <= Temp_In;

 --SampleIm_In
 read(InputVector, Temp_In);
 SampleIm_In <= Temp_In;

 else
 SimEnd <= true;
 assert false report " End of Simulation"
severity failure;
 end if;

 end if;
 end process p_apply_stimuli;

--
-- writing on falling edge
--
p_write_outputs: process(Clk20M, Rst_N)

file OutputFile1: text is out “./Test_Data_Dir/RAmp_Out_thesis.txt";
file OutputFile2: text is out "./Test_Data_Dir/RPh_Out_thesis.txt";

 variable OutVector1 : line;
 variable OutVector2 : line;

 begin
 if (Rst_N = '0') then
 -- Do nothing
 elsif Clk20M'event and Clk20M='0' then
 write(OutVector1,RAmp_Out);
 write(OutVector2,real(conv_integer(signed(RPh_Out))) /
512.0);
 writeline(OutputFile1,OutVector1);
 writeline(OutputFile2,OutVector2);

 end if;

 end process p_write_outputs;

end TBA_STSSynchronizer_rtl;

 118

C. APPENDIX C: GATE-LEVEL VHDL CODES

1. STSSynchronizer.Shell.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

library lib_sts;
use lib_sts.STSSynchronizerConstants.all;

entity STSSynchronizer is

port(

 Clk20M : in std_logic;
 Rst_N : in std_logic;
 NRIterations_In : in std_logic_vector(3 downto 0);
 SampleRe_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 SampleIm_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);
 RAmp_Out : out std_logic_vector(WIDTH-1 downto 0);
 RPh_Out : out std_logic_vector(WIDTH-1 downto 0));

end STSSynchronizer;

architecture verilog of STSSynchronizer is
 attribute foreign of verilog: architecture is "VERILOG(event)
lib_sts.STSSynchronizer:v";
begin
end;

2. TB_STSSynchronizer_GAT.rtl.vhd

It is same as TB_STSSynchronizer.rtl.vhd.

 119

D. APPENDIX D: ETSI BRAN HIPERLAN TYPE 2 STANDARD

The increasing demand for "anywhere, anytime" communications and the merging

of voice, video and data communications create a demand for broadband wireless

networks. ETSI has created the BRAN project to develop standards and specifications

for broadband radio access networks that cover a wide range of applications and are

intended for different frequency bands. This range of applications covers systems for

licensed and license exempt use.

The categories of systems covered by the BRAN project are summarized as

follows:

• HIPERLAN/1 provides high-speed (20 Mbit/s typical gross data rate)

radio local area network communications that are compatible with wired

LANs based on Ethernet and Token Ring standards. Restricted user

mobility is supported within the local service area only. The technical

specification for HIPERLAN/1, ETS 300 652, was published by ETSI in

1996 (last revised version published as EN 300 652). HIPERLAN/1

systems are intended to be operated in the 5 GHz band.

• HIPERLAN/2 is a standard for a high-speed radio communication system

with typical data rates from 6 Mbit/s to 54 Mbit/s. It connects portable

devices with broadband networks that are based on IP, ATM and other

technologies. Centralized mode is used to operate HIPERLAN/2 as an

access network via a fixed access point. In addition a capability for direct

link communication is provided. This mode is used to operate

HIPERLAN/2 as an ad-hoc network without relying on a cellular network

infrastructure. In this case a central controller (CC), which is dynamically

selected among the portable devices, provides the same level of QoS

support as the fixed access point. HIPERLAN/2 is capable of supporting

 120

multi-media applications by providing mechanisms to handle QoS.

Restricted user mobility is supported within the local service area; wide

area mobility (e.g. roaming) may be supported by standards outside the

scope of the BRAN project. HIPERLAN/2 systems are intended to be

operated in the 5 GHz band.

• HIPERLINK provides very high-speed (up to 155 Mbit/s data rate) radio

links for static interconnections and is capable of multi-media

applications; a typical use is the interconnection of HIPERACCESS

networks and/or HIPERLAN access points into a fully wireless network. It

should be noted that for HIPERLINK the intended operation frequency is

17 GHz - this in view of the very limited EIRP allowed in CEPT/ERC

TR/22-06.

Since HIPERLAN/2 is used as the standard for the implementation part (ETSI

OFDM STS Synchronizer Hardware Design) of this thesis, only HIPERLAN/2's

parameters and specifications are mentioned below.

D.1. HIPERLAN/2 Services and Functions

D.1.1. Introduction

A HIPERLAN/2 network for business environment consists typically of a number

of APs (access point) each of them covers a certain geographic area. Together they form

a radio access network with full or partial coverage of an area of almost any size. The

coverage areas may or may not overlap each other, thus simplifying roaming of

terminals inside the radio access network. Each AP serves a number of MTs, which

have to be associated to it. In the case where the quality of the radio link degrades to an

unacceptable level, the terminal may move to another AP by performing a handover.

For home environment, HIPERLAN/2 network is operated as an ad-hoc LAN, which

can be put into operation in a plug-and-play manner. The HIPERLAN/2 home system

 121

share the same basic features with the HIPERLAN/2 business system by defining the

following equivalence between both systems:

• A subnet in the ad-hoc LAN configuration is equivalent to a cell in the

cellular access network configuration.

• A central controller in the ad-hoc LAN configuration is equivalent to the

access point in the cellular access network configuration. However, the

central controller is dynamically selected from HIPERLAN/2 portable

devices and can be handed over to another portable device, if the old one

leaves the network.

• Multiple subnets in a home are made possible by having multiple CCs

(central controller) operating at different frequencies.

HIPERLAN/2 supports two basic modes of operation:

• Centralized mode: In this mode, an AP is connected to a core network,

which serves the MTs (mobile terminal) associated to it. All traffic has to

pass the AP, regardless of whether the data exchange is between an MT

and a terminal elsewhere in the core network or between MTs belonging to

this AP. The basic assumption is that a major share of the traffic is

exchanged with terminals elsewhere in the network. This feature is

mandatory for all MTs and APs.

• Direct mode: In this mode, the medium access is still managed in a

centralized manner by a CC. However, user data traffic is exchanged

between terminals without going through the CC. It is expected that in

some applications (especially, in home environment), a large portion of

user data traffic is exchanged between terminals associated with a single

CC. This feature is intended for use within home environment, and hence,

is mandatory in DLC (data link control)-home extensions.

NOTE 1: A central controller may also be connected to a core network and, thus, shall

be able to operate in both direct and centralized mode.

 122

The HIPERLAN/2 basic protocol stack on the AP/CC side and its functions are

shown in Figure D.1. The convergence layer (CL) offers service to the higher layers that

are out of the scope of this document.

The physical layer delivers a basic data transport function by providing means of

a base-band modem and a RF part. The base-band modem will also contain a forward

error correction function.

The DLC layer consists of the Error Control (EC) function, the Medium Access

Control (MAC) function and the Radio Link Control (RLC) function. It is divided in the

user data transport functions and the control functions, located mainly on the right hand

side and on the left-hand side of Figure D.1, respectively.

The user data transport function is fed with user data packets from higher layers

via the User Service Access Point (USAP). This part contains the EC that performs an

ARQ (Automatic Repeat Request) protocol. The DLC protocol operates connection

oriented, which is shown by multiple connection end points in the USAP. One EC

instance is created for each DLC connection. In case the higher layer is connection

oriented, DLC connections can be created and released dynamically. In case the higher

layer is connectionless, at least one DLC connection has to be set up which handles all

user data.

The left part contains the RLC Sub-layer, which delivers a transport service to the

DLC Connection Control (DCC), the Radio Resource Control (RRC) and the

Association Control Function (ACF).

NOTE 2: Only the RLC is standardized which defines implicitly the behavior of the

DCC, ACF and RRC. One RLC instance needs to be created per MT.

The CL on top is also separated in a data transport and a control part. The data

transport part provides the adaptation of the user data format to the message format of

the DLC layer (DLC SDU). In case of higher layer networks other than ATM, it

contains a segmentation and re-assembly (SAR) function. The control part can make use

of the control functions in the DLC, e.g. when negotiating CL parameters at association

time.

 123

Figure D.1 HIPERLAN/2 Protocol Stack and Functions

D.1.2. HIPERLAN/2 DLC Functions

The HIPERLAN/2 DLC functions are divided in data transport and data link

control functions and will be described in two sub-clauses in the following.

D.1.2.1. Medium Access Control

The medium access control is a centrally scheduled TDMA/TDD scheme.

Centrally scheduled means that the AP/CC controls all transmissions over the air. This

concerns uplink, downlink and direct mode phase equally.

The basic structure on the air interface generated by the MAC is shown in Figure

D.2. It consists of a sequence of MAC frames of equal length with 2 ms duration. Each

MAC frame consists of several phases:

• Broadcast (BC) phase: The BC phase carries the BCCH (broadcast control

channel) and the FCCH (frame control channel). The BCCH contains

general announcements and some status bits announcing the appearance of

more detailed broadcast information in the downlink phase (DL). The

 124

FCCH carries the information about the structure of the ongoing frame,

containing the exact position of all following emissions, their usage and

content type. The messages in the FCCH are called resource grants (RG).

• Downlink (DL) phase: The DL phase carries user specific control

information and user data, transmitted from AP/CC to MTs. Additionally,

the DL phase may contain further broadcast information which does not fit

in the fixed BCCH field.

Figure D.2 MAC Frame Format for Sectored Antennas

• Uplink (UL) phase: The UL phase carries control and user data from the

MTs to the AP/CC. The MTs have to request capacity for one of the

following frames in order to get resources granted by the AP/CC.

• Direct Link (DiL) phase: The DiL phase carries user data traffic between

MTs without direct involvement of the AP/CC. However, for control

traffic, the AP/CC is indirectly involved by receiving Resource Requests

from MTs for these connections and transmitting Resource Grants in the

FCCH.

NOTE 1: The DiL phase is mandatory in home environments.

• Random access (RA) phase: The RA phase carriers a number of RCH

(random access channels). MTs to which no capacity has been allocated in

the UL phase use this phase for the transmission of control information.

 125

Non-associated MTs use RCHs for the first contact with an AP/CC. This

phase is also used by MTs performing handover to have their connections

switched over to a new AP/CC.

The structure is slightly different when the AP/CC has a sectored antenna as

shown in Figure D.3. The solution chosen distributes the available MAC frame duration

over the sectors. In this case, each phase is repeated, in time, one for each sector.

NOTE 2: The use of DiL with sectored antennas is not specified.

Figure D.3 MAC Frame Format for Sectored Antennas

The DL, DiL and UL phases consist of two types of PDUs: long PDUs and short

PDUs. The long PDUs have a size of 54 bytes and contain control or user data, see

Figure D.4. The DLC SDU, which is passed from or to the DLC layer via the U-SAP,

has a length of 49.5 bytes. The remaining 4.5 bytes are used by the DLC for a PDU type

field, a sequence number (SN) and a cyclic redundancy check (CRC). The purpose of

the CRC is to detect transmission errors and is used, together with the SN, by the EC.

The short PDUs with a size of 9 bytes contain only control data and are always

generated by the DLC. They may contain resource requests in the uplink, ARQ

messages like acknowledgements and discard messages or RLC information.

The same size of 9 bytes is also used in the RCH. The RCH can only carry RLC

messages and resource requests. The access method to the RCH is a slotted aloha

scheme. The collision resolution is based on a binary back-off procedure, which is

controlled by the MTs. The AP/CC can decide dynamically how many RCH slots it

provides per MAC frame.

 126

Figure D.4 Format of the Long PDUs

D.1.2.2. Error Control

The EC is based on an ARQ (Automatic Repeat Request) scheme. Additional

forward error correction and the EC are complementary but do not collaborate.

The ARQ scheme is based on a selective repeat mechanism. It requires a very

careful transmission window handling in both transmitter and receiver. Therefore the

receiver has to notify the transmitter about the sequence number below, which all

messages have been received correctly (bottom of window) and which messages out of

the received ones were not correct. Moreover, the transmitter may want to discard

messages, e.g. because they have exceeded their maximum lifetime.

D.1.3. Radio Link Control Functions

NOTE: The control functions are closely related to the protocols defined in the

RLC. Only the RLC will be specified, the control functions themselves are out of the

scope of the standard. In the explanations below, the control functions and the actual

RLC will be handled synonymously.

 127

D.1.3.1. Association Control Function

A Terminal intending to communicate with an AP/CC has always to be associated

to this AP/CC. The reasons are:

• The AP/CC always has to create some resources for each MT associated,

e.g. the RLC connection and a MAC ID.

• The MAC protocol is centrally controlled by the AP/CC, regardless of

whether it operates in centralized or in direct mode.

The tasks of the association control are:

• Association: The first step is the allocation of a MAC ID to a terminal,

followed by the negotiation of the link capabilities. These comprise the

selected CL and other features. AP/CC and MT decide in this step whether

encryption and / or authentication are performed or not and which

encryption and authentication mechanisms are used, respectively.

• Encryption key exchange: This step is performed after the link capability

negotiation and is optional. It is based on the Diffie-Hellmann key

exchange procedure. The Diffie-Hellmann secret and public values are

used by both AP/CC and MT to generate and refresh the session key.

• Authentication: This step is performed after the encryption key exchange

and is optional. The authentication affects both MT and AP/CC, i.e. they

perform a mutual authentication.

• Beacon Signaling in the AP/CC: The beacon signaling provides basic

information about essential features and properties of the AP/CC, which

are broadcast in each MAC frame. The ACF provides some of the values

that are broadcast.

• Encryption key refresh: This feature is optional. It can happen periodically

and is requested by the AP/CC.

• Disassociation: This feature shall be performed by the MT if possible.

NOTE: This may not be possible if the MT power drops suddenly.

 128

D.1.3.2. Radio Resource Control

The radio resource control (RRC) is responsible for the surveillance and efficient

use of available frequency resources.

The functions of the RLC for the support of the RRC are:

• Dynamic Frequency Selection: HIPERLAN/2 will operate in a "Plug-and-

Play" manner and will not require frequency planning. The decision on the

selection of a frequency channel is, in the first step when no MTs are

associated, based on the AP/CC’s own measurements. During operation,

the situation may change and the AP/CC has to switch to a different

frequency channel. However, each terminal has a specific interference

situation, which may make it impossible for one or more MTs to

communicate with the AP/CC efficiently. Therefore, the decision when to

perform a frequency change and to which frequency has to be based on

both measurements of the AP/CC and the associated MTs. The DFS

supporting functions of the RLC allow for:

o Measurements of MTs and AP/CC: The terminal may do

measurements on its own or on different channel, either based on

its own decision or ordered by the AP/CC;

o Reporting of the obtained measurements from MTs to the AP/CC;

o Frequency change of the AP/CC and its associated MTs.

• MT alive procedure: In order to make sure that the AP/CC does not

reserve resources unnecessarily for an MT, the AP/CC may request it to

report if it is still alive.

• MT absence function: The MT may want to scan for a different frequency

channel in order to find out whether it shall perform a handover and to

which new AP/CC it shall change. This function is triggered by the MT.

• Power saving function: Many MTs will be battery driven. Therefore,

HIPERLAN/2 will support an efficient scheme to support the conservation

of battery power. The mechanism will be based on sleep intervals after

which the terminal listens periodically whether the AP/CC wants it to

 129

receive data. If no data are pending in DL, or DiL, the MT remains in

sleep modus without communication with the AP/CC in centralized mode

or with another MT in direct mode. The length of the sleep intervals can

be negotiated between AP/CC and MT. This function is triggered by the

AP/CC; the selection of the sleep interval is done by the AP/CC.

• Transmit Power Control: AP/CC and MT will support means to adapt their

transmission power to the current requirements of the radio link.

• Handover: The handover function will be restricted to business and public

applications and will not be supported in home networks in the first phase.

The RRC will decide when to perform a handover and support its

execution.

D.1.3.3. DLC Control Function

The DLC connection control (DCC) is responsible for set up and release of user

connections. The relation to a higher layer connection set up procedure can be created

by a call reference identifier in the DLC connection set up request message. If any kind

of QoS support is required by a higher layer, the necessary parameters have to be

provided by the higher layers. Since the scheduler will not be specified, the

specification of these parameters is out of the scope of HIPERLAN/2. The only DLC

related parameters to be exchanged are a DLC Connection ID and ARQ related values

like maximum window size and number of allowed retransmissions.

The functions of DCC are:

• DLC connection set up: This feature comprises set up procedures for

centralized mode, direct mode and multicasts, all of which can be

originated either by the AP/CC or the MT.

• DLC connection release: This feature comprises release procedures for

centralized mode, direct mode and multicasts, all of which can be

originated either by the AP/CC or the MT.

• DLC connection modify: This feature comprises modify procedures for

centralized mode, direct mode and multicasts all of which can be

 130

originated either by the AP/CC or the MT. The modification refers to the

DLC specific connection parameters, which are described above.

• Multicast join and leave: These features allow a terminal to join already

existing multicast groups and leave one it belongs to.

D.1.4. Convergence Layer

The convergence layers (CL) adapt the core network to the HIPERLAN/2 DLC

layer. The CL provides all functions needed for connection set-up and support mobility

in the core network. For each supported core network a special CL is designed. Support

for packet based networks like Ethernet (IEEE 802.3), IP, PPP and IEEE 1394 (Fire-

wire) as well as cell based networks like ATM and UMTS will be available.

The convergence layers available at the AP/CC are announced via broadcast. MT

and AP/CC negotiate one of them during association. In combination with the QoS

functions of HIPERLAN/2 it shall be possible to support various QoS schemes. Among

others IP like RSVP, Differentiated Services or priority scheduling according to IEEE

802.1D.

The packet based convergence layer is used to integrate HIPERLAN/2 into

existing packet-based networks. To support the different technologies used nowadays

and to be open for future technologies, the Packet CL is structured hierarchically into a

common part and a number of service specific convergence sub-layers (SSCS). The

common part mainly contains a SAR function to fit the packets into the fixed length of a

HIPERLAN/2 packet. The first SSCS to be specified is the Ethernet SSCS, which is

followed by IEEE 1394, IP, and PPP SSCSs in the course of the year 2000. For each

part a specification will be created.

The ATM CL also consists of a common part and SSCSs. The common part shall

not contain a SAR function because ATM cells basically fit into the HIPERLAN/2 DLC

SDU. Nevertheless, a compression of the ATM cell header is necessary, transmitting

only its most important parts.

 131

D.1.5. HIPERLAN/2 Physical Layer

D.1.5.1. Transport Channels and PDU Trains

The radio subsystem provides a set of transport channels describing the message

format over the air interface. Transport channels are used as basic elements in

constructing PDU (Protocol Data Unit) trains. The PDU trains that consist of a sequence

of transport channels represent the interface between the DLC protocol and the PHY

layer. DLC specifies six different PDU train types:

1. Broadcast PDU train;

2. FCH (Frame CHannel) and ACH (Access Feedback CHannel) PDU train;

3. Downlink PDU train;

4. Uplink PDU train with short preamble;

5. Uplink PDU train with long preamble;

6. Direct link PDU train.

D.1.5.2. Reference Configuration

For the purpose of elaborating the specification of physical layer functions, a

reference configuration of the transmission chain is used as shown in Figure D.5. It

should be noted that only the transmission part is specified.

Figure D.5 Reference Configuration of Transmitter

 132

D.1.5.3. PHY Layer Functional Entities

The PHY layer of HIPERLAN/2 offers information transfer services to the DLC

of HIPERLAN/2. For this purpose, it provides for functions to map different DLC PDU

trains into framing formats called PHY bursts appropriate for transmitting and receiving

management and user information between an AP/CC and an MT in the centralized

mode or between two MTs in the direct mode. This includes the following functional

entities at transmitter:

• Configuring the transmission bit rate by choosing appropriate PHY mode

based on the link adaptation mechanism.

• Scrambling the PDU train content.

• Encoding the scrambled bits according to the forward error correction set

during PHY layer configuration.

• Interleaving the encoded bits at the transmitter by using the appropriate

interleaving scheme for the selected PHY layer mode.

• Sub-carrier modulation by mapping the interleaved bits into modulation

constellation points.

• Producing the complex base-band signal by OFDM modulation.

• Inserting pilot sub-carriers, appending appropriate preamble to the

corresponding PDU train at the transmitter and building the PHY layer

burst.

• Performing radio transmission by modulating the radio frequency carrier

with the complex base-band signal at transmitter.

 133

D.1.5.4. Physical Layer

D.1.5.4.1. Introduction

The PHY layer of HIPERLAN/2 is based on the modulation scheme Orthogonal

Frequency Division Multiplexing (OFDM). In order to improve the radio link capability

due to different interference situations and distance of MTs to the access point, a multi-

rate PHY layer is applied, where the "appropriate" mode will be selected by a link

adaptation scheme. The data rate ranging from 6 Mbit/s to 54 Mbit/s can be varied by

using various signal alphabets for modulating the OFDM sub-carriers and by applying

different puncturing patterns to a mother convolutional code.

BPSK, QPSK, 16QAM are used as mandatory modulation formats, whereas

64QAM is applied as an optional one for both AP and MT. The mode dependent

parameters are listed in the Table D.1.

Modulation Coding Rate R Nominal Bit

Rate [Mbit/s]
Coded Bits Per

Sub-Carrier
NBPSC

Coded Bits Per
OFDM Symbol

NCBPS

Data Bits Per
OFDM

Symbol NDBPS

BPSK 1/2 6 1 48 24
BPSK 3/4 9 1 48 36
QPSK 1/2 12 2 96 48
QPSK 3/4 18 2 96 72

16QAM 9/16 27 4 192 108
16QAM 3/4 36 4 192 144
64QAM 3/4 54 6 288 216

Table D.1 Mode Dependent Parameters

 134

D.1.5.4.2. Data Scrambling

The content of each PDU train (NBPDU bits) from the DLC shall be scrambled

with a length-127 scrambler. The scrambler uses the generator polynomial S(x) as given

by:

 1)(47 ++= XXxS (D.1)

and is illustrated in Figure D.6. The same scrambler shall be used to scramble transmit

data and to descramble receive data. All PDU trains belonging to a MAC frame are

transmitted by using the same initial state for scrambling. The initialization shall be

performed as follows:

• Broadcast PDU train in case AP uses one sector: scrambler initialized at

the 5th bit of BCH (Broadcast CHannel), at the 1st bit of FCH and at the

1st bit of ACH;

• Broadcast PDU train in case AP uses one sectors: scrambler initialized at

the 5th bit of BCH;

• FCH -and -ACH PDU train transmitted only in the case of a multiple

sector AP: scrambler initialized at the 1st bit of FCH and at the 1st bit of

ACH;

• Downlink PDU train, Uplink PDU train with short preamble, Uplink PDU

train with long preamble and Direct link PDU train: Scrambler initialized

at the 1st bit of the PDU train.

The initial state shall be set to a pseudo random non-zero state, which is

determined by the Frame counter field in the BCH at the beginning of the corresponding

MAC frame. The Frame counter field consists of the first four bits of BCH, represented

by (n4n3n2n1)2, and shall be transmitted unscrambled. n4 shall be transmitted first. The

initial state shall be derived by appending (n4n3n2n1)2 to the fixed binary number (111)2

in the form (111 n4n3n2n1)2.

 135

As an example if the Frame counter is given as (0100)2, the initial state of the

scrambler shall be (111 0100)2. The transport channel content starting with (10011101

000…)2 shall be scrambled to (00111110 011…)2.

Figure D.6 Scrambler Schematic Diagram

D.1.5.4.3. FEC (Forward Error Correction) Coding

The scrambled PDU train of NBPDU bits shall be encoded by a channel encoder

unit. The mandatory encoder is described in this clause and depicted in Figure D.7. It

consists of four consecutive operational blocks: code termination, encoding, code rate

independent puncturing (P1) and code rate dependent puncturing (P2). It should be

noted that this sequence of operation indicates a logical operation of the encoding

process, but not a specific implementation.

Figure D.7 Functional blocks of FEC coder

Scrambled
PDU train

Channel coded
PDU train

Y

X

Append
six tail

bits

Convoluti
onal

encoder

Puncturing
P1 with
serial
output

Puncturi
ng P2

X7 X5 X4 X1X2X3X6

Input bits

Scrambled output

 136

The codetermination, encoding, and puncturing P1 shall be performed depending

on the PDU train type as follows:

• Broadcast PDU train in omni-antenna case: tail bits shall be appended and

puncturing P1 shall be performed individually to BCH, FCH and ACH.

The encoder shall be initialized at the 1st bit of BCH, at the 1st bit of FCH

and at the 1st bit of ACH;

• Broadcast PDU train in sector-antenna case: tail bits shall be appended and

puncturing P1 shall be performed to BCH. The encoder shall be initialized

at the 1st bit of BCH;

• FCH and ACH PDU train: tail bits shall be appended and puncturing P1

shall be performed separately to FCH and ACH. The encoder shall be

initialized at the 1st bit of FCH, at the 1st bit of ACH without priority, and

at the 1st bit of ACH with priority;

• Downlink PDU train, Uplink PDU train with short preamble, Uplink PDU

train with long preamble, and Direct link PDU train: Tail bits shall be

appended and puncturing P1 shall be performed once for the PDU train.

The encoder shall be initialized at the 1st bit of the PDU train.

Puncturing P2 shall be performed equally to all the PDU train types as described in

clause D.1.5.4.3.2.

D.1.5.4.3.1. Code Termination, Encoding, P1 Puncturing

D.1.1.5.4.3.1. Downlink PDU Train, Uplink PDU Train with Short and Long
Preambles and Direct Link PDU Train

Four of the PDU train types (Downlink PDU train, Uplink PDU train with short

preamble, Uplink PDU train with long preamble, and Direct link PDU train) are

processed by the encoder as a whole. Tail bits are added once and the respective tail bit

puncturing, P1, shall be performed once for the PDU train. The encoder shall also be

initialized once at the beginning of the PDU train.

 137

In the first phase six non-scrambled zero ('0') bits are appended to the input data

for codetermination purposes. These bits, denoted as tail bits, return the convolutional

encoder to "zero state". The resulted (NBPDU + 6) bits shall be coded with a

convolutional encoder of code rate 1/2 with 64 states. The generator polynomials of the

mother code are G1 = 133OCT for X output and G2 = 171OCT [ITU reference for G1

and G2] for Y output (see Figure D.8). The encoder shall be set to "zero state" before

the encoding process.

Figure D.8 The mother convolutional code of rate ½

The first puncturing scheme P1 will be applied independently from the code rate.

The puncturing shall be applied always to the first SCH-PDU (Short Transport

CHannel) of the last DLC Connection of the PDU train to be transmitted over the air

interface. If there is no such an SCH-PDU in the last DLC Connection, P1 shall be

applied to the first LCH-PDU (Long Transport CHannel) of the last DLC Connection of

the PDU train. Four examples of the position of the P1 puncturing inside a PDU train

are illustrated in Figure D.9 as informative information.

The first 156 bits of the PDU, which the P1 puncturing is applied to, are

punctured differently from the rest of the encoded bit stream. The puncturing patterns

are given in Table D.2. In this table X and Y refer to the two outputs of the

convolutional encoder (see Figure D.8) where X1 is sent first.

Output data A

Tb Tb Tb Tb Tb Tb

Output data B

Input data

 138

PDU-wise bit
numbering

Puncturing pattern Transmitted sequence
(after parallel-to-serial conversion)

0-155 X: 1111110111111
Y: 1111111111110

X1Y1X2Y2X3Y3X4Y4X5Y5X6Y6X8Y7X9Y8X10
Y9X11Y10X12Y11X13Y12

>156 X: 1
Y: 1

X1Y1

Table D.2 Puncturing pattern P1 and transmitted sequence after parallel-to-serial
conversion

Figure D.9 Position of Puncturing P1 in cases of,

(a) one DLC Connection (DLCC-ID 1) in a downlink PDU train.
(b) two (or more) DLC Connections (DLCC-ID 1…DLCC-ID m) in a downlink PDU

train,
(c) one DLC Connection (DLCC-ID 1) in an uplink PDU train,

(d) two (or more) DLC Connections (DLCC-ID 1…DLCC-ID m) in an uplink PDU
train, two (or more) DLC Connections (DLCC-ID 1…DLCC-ID m) in an uplink

PDU train when no SCH in the last DLC connection

 139

D.1.1.5.4.3.2. Broadcast PDU Train, FCH-and-ACH PDU train

Two of the PDU train types, i.e. Broadcast PDU train and FCH-and-ACH PDU

train in the case of a multiple sector AP, are processed transport channel by transport

channel. Tail bits shall be appended and additional puncturing shall be performed

individually to each transport channel. The encoder shall be also initialized once at the

beginning of each transport channel, i.e. at the 1st bit of BCH, FCH and ACH.

In the first phase six non-scrambled zero ('0') bits are appended to each transport

channel for codetermination purposes. These bits, denoted as tail bits, return the

convolutional encoder to "zero state". The resulted (NBPDU + 6) bits shall be coded

with a convolutional encoder of coding rate 1/2 with 64 states. The generator

polynomials of the mother code (G1 = 133OCT for X output and G2 = 171OCT for Y

output) are the same as used with other PDU train types shown in Figure D.8. The

encoder shall be set in "zero state" before the encoding process at the beginning of each

transport channel.

The first puncturing scheme P1 will be applied independently from the code rate.

The puncturing shall be applied always to all the transport channels in the PDU train

equally. The first 156 bits of the transport channel, which the P1 puncturing is applied

to, are punctured differently from the rest of the encoded bit stream. The puncturing

patterns are given in Table D.2. In this table X and Y refer to the two outputs of the

convolutional encoder (see Figure D.8) where X1 is sent first.

D.1.5.4.3.2. Code Rate Dependent Puncturing P2

Puncturing P2 is to provide code rates of 9/16 and 3/4 and it is applied to bits

from puncturing P1. It shall be performed equally to all the PDU train types. The input

is de-multiplexed into 2 sub-streams. The de-multiplexing is defined as a mapping of

the input bits xdi onto the output bits be,do (see Figure D.10):

 bdi(mod)2, di(div)2 = xdi (D.2)

 140

where di is the input bit number, do is the output bit number in each sub-stream, mod is

the integer modulo operator, and div is the integer division operator.

Figure D.10 Code Rate Dependent Puncturing P2

Puncturing P2 is applied to the two bit sub-streams b0,do and b1,do as given in Table

D.3. The result is parallel-to-serial converted into a coded and punctured bit stream

from which b0,0 is sent first.

Code Rates
r

Puncturing pattern Transmitted sequence
(after parallel-to-serial

conversion)
1/2 b0,d0: 1

b1,d0: 1

b0,0 b1,0

9/16 b0,d0: 1 1 1 1 1 1 1 1 0
b1,d0: 1 1 1 1 0 1 1 1 1

b0,0 b1,0 b0,1 b1,1 b0,2 b1,2 b0,3
b1,3 b0,4 b0,5 b1,5 b0,6 b1,6 b0,7
b1,7 b1,8

3/4 b0,d0: 1 1 0
b1,d0: 1 0 1

b0,0 b1,0 b0,1 b1,2

Table D.3 Puncturing pattern P2 and transmitted sequence after parallel-to-serial
conversion for the possible code rates

b1,0, b1,b….

b0,0, b1,b….
x0, x1, x2….

Puncturing P2

Channel coded PDU
train

DEMUX Puncturing P2
with serial

output

 141

D.1.5.4.4. Data Interleaving

All encoded data bits shall be interleaved by a block interleaver with a block size

corresponding to the number of bits in a single OFDM symbol, NCBPS. The interleaver is

defined by a two-step permutation. It should be noted that this sequence of permutations

is for the ease of the mathematical representation of the interleaving process, but not a

specific implementation. The first ensures that adjacent coded bits are mapped onto

nonadjacent sub-carriers. The second permutation ensures that adjacent coded bits are

mapped alternately onto less and more significant bits of the constellation, and by this

long runs of low reliability bits are avoided.

k shall be the index of the coded bit before the first permutation; i shall be the

index after the first and before the second permutation and j shall be the index after the

second permutation, just prior to modulation mapping.

The first permutation, is defined by the rule:

i = (NCBPS/16)(k mod 16) + floor(k/16), k=0,1,…, NCBPS-1 (D.3)

The function floor(.) denotes here the largest integer not exceeding the parameter, and

mod is the integer modulo operator.

The second permutation is defined by the rule:

j = s ⋅ floor(i/s) + (i +NCBPS - floor(16 ⋅ i/NCBPS)) mod s, i = 0,1, NCBPS – 1 (D.4)

The value of s is determined by the number of coded bits per sub-carrier, NBPSC,

according to:

 s = max(NBPSC/2,1) (D.5)

 142

D.1.5.4.5. Signal Constellations and Mapping

HIPERLAN/2 PHY layer uses Orthogonal Frequency Division Multiplex

(OFDM) transmission. The OFDM sub-carriers shall be modulated by using BPSK,

QPSK, 16QAM or 64QAM modulation depending on the PHY mode selected for data

transmission. The interleaved binary serial input data is divided into groups of NBPSC (1,

2, 4 or 6) bits and converted into complex numbers representing BPSK, QPSK, 16QAM

or 64QAM constellation points. The conversion shall be performed according to Gray

coded constellation mappings, illustrated in Figure D.11, with the input bit b1 being the

earliest in the stream. Additionally, Table D.4 illustrates encoding from input bits to the

I and Q values for all the modulations. The output values d are formed by multiplying

the resulting (I + jQ) value by a normalization factor KMOD:

 d = (I + jQ) x KMOD (D.6)

The normalization factor KMOD depends on the modulation as prescribed in Table

D.4. Note that the modulation type can vary inside a PDU train from one PDU to

another while inside one PDU only one modulation type is used. The purpose of the

normalization factor is to achieve the same average power for all mappings. The

normalization factor KMOD should indicate this fact and no implementation rule.

Modulation KMOD
BPSK 1
QPSK 2/1

16QAM 1/ 10
64QAM 1/ 42

Table D.4 Modulation Dependent Normalization Factor KMOD

 143

BPSK
Input bit b1 I-out Q-out

0 -1 0
1 1 0

QPSK
Input bit b1 I-out Input bit b2 Q-out

0 -1 0 -1
1 1 1 1

16QAM
Input bit

b1b2

I-out Input b3b4 Q-out

00 -3 00 -3
01 -1 01 -1
11 1 11 1
10 3 10 3

64QAM
Input bit

b1b2b3

I-out Input b4b5b6 Q-out

000 -7 000 -7
001 -5 001 -5
011 -3 011 -3
010 -1 010 -1
110 1 110 1
111 3 111 3
101 5 101 5
100 7 100 7

Table D.5 Encoding Tables for BPSK, QPSK, 16QAM and 64QAM

 144

Figure D.11 BPSK, QPSK, 16QAM and 64QAM constellation bit encoding

D.1.5.4.6. Modulation Technique

The stream of complex valued sub-carrier modulation symbols at the output of

mapper, denoted by dn, shall be divided into groups of NSD = 48 complex numbers:

 Dn (mod) 48, n (div) 48 = dn (D.7)

where mod is the integer modulo operator and div is the integer division operator.

 145

Each group Dm,n shall be transmitted in an OFDM symbol. All data OFDM

symbols contain data in data carriers and reference information in pilot carriers. For data

there are NSD = 48 carriers and for pilots NSP = 4 carriers in each symbol. Thus, each

symbol is constituted by a set of NST = 52 carriers and transmitted with a duration TS.

Two parts compose this symbol interval: a useful symbol part with duration TU and a

cyclic prefix with duration TCP. The cyclic prefix consists of a cyclic continuation of the

useful part, TU, and it is inserted before it. Thus the cyclic prefix is a copy of the last

TCP/T samples of the symbol part sent in front of the symbol part.

The length of the useful symbol part is equal to 64 samples and its duration is TU

= 3,2 µs. For the cyclic prefix length TCP there are two possible values in the

HIPERLAN/2 system: mandatory 800 ns and optional 400 ns.

Numerical values for the OFDM parameters are given in Table D.6. The symbol

format is shown in Figure D.12 in which CP stands for cyclic prefix followed by a

useful part, Data n, of the symbol.

Parameter Value
Sampling rate fs = 1/T 20 MHz
Symbol part duration TU 64*T

3,2 µs
Cyclic prefix duration TCP 16*T

0,8 µs (mandatory)
8*T
0,4 µs (optional)

Symbol interval TS 80*T
4,0 µs (TU+TCP)

72*T
3,6 µs (TU+TCP)

Number of data sub-carriers NSD 48
Number of pilot sub-carriers NSP 4
Total number of sub-carriers NST 52 (NSD+NSP)
Sub-carrier spacing ∆f 0,3125 MHz (1/TU)
Spacing between the two outmost sub-
carriers

16,25 MHz (NST*∆f)

Table D.6 Numerical Values for the OFDM Parameters

 146

Figure D.12 Illustration of an OFDM Symbol with Cyclic Prefix

Base-band format of a transmitted OFDM symbol is:

)()(,

2/

2/
, tCtr nl

N

Nl
nln

ST

ST

Ψ⋅= ∑
−=

 (D.8)

where:

 +≤≤=Ψ

−−∆

else, 0
)1(nT,)(S

)(2

,
S

nTTtlj

nl
Tntet

SCPfπ
 (D.9)

where:

n denotes the OFDM symbol number;

l denotes the sub-carrier number;

Cl,n is complex symbol (data or pilot) for carrier l of the OFDM symbol no. n.

The carriers used for data transmission are:

-26 ≤ l ≤ -22, -20 ≤ l ≤ -8, -6 ≤ l ≤ -1, 1 ≤ l ≤ 6, 8 ≤ l ≤ 20, 22 ≤ l ≤ 26

and the pilot carriers for reference signal transmissions are:

l = -21, -7, 7, 21

 147

The sub-carrier falling at D.C. (0-th sub-carrier, l = 0) is not used.

The mapping from an individual data symbol group Dm,n into symbols Cl,n is

defined as:

≤≤

≤≤

≤≤

−≤≤−

−≤≤−

−≤≤−

=

+

+

+

+

+

+

2622,
208,

61,
16,

820,

2226,

,21

,22

,23

,24

,25

,26

,

lD
lD

lD
lD

lD

lD

C

nl

nl

nl

nl

nl

nl

nl (D.10)

The reference signal transmitted in the pilot carriers is defined as:

=−
=+

−=+
−=+

=

21,
7,

7,
21,

,

lp
lp
lp
lp

C

n

n

n

n

nl (D.11)

where pn is a sequence to randomize the reference signal transmitted. The sequence pn is

a cyclic extension of the 127-element sequence given by:

p0…126 = {1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1,

1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1,

1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1,

1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1,

1, 1, -1, -1, -1, -1, -1, -1, -1}

The sequence pn can be generated with the polynomial S(x) used in data

scrambling (see Figure D.6):

 148

 S(x) = X7 + X4 + 1 (D.12)

when the "all ones" (1111111) initial state is used, and by replacing all '1's with -1 and

all '0's with 1. Each sequence element is used for one OFDM symbol. This scrambler

shall be initialized at the beginning of all PDU trains.

The mapping from data and pilot complex symbols into the sub-carrier

frequencies is shown in Figure D.13.

Figure D.13 Sub-carrier Frequency Allocation

The resulted NSYM OFDM symbols are concatenated as:

)()(
1

s

N

n
nPAYLOAD nTtrfr

SYM
−= ∑

=
 (D.13)

to result the base-band format of the PDU train, called payload. The structure of the

payload section is illustrated in Figure D.14. It consists of variable number (NSYM) of

OFDM symbols required to transmit the PDU train payload.

The following relation relates the actual transmitted signal to the complex base-

band signal:

 { }tfj
BURSTRF

cetrtr π2)(Re2)(= (D.14)

where Re(.) stands for the real part of complex variable, fc denotes the carrier center

frequency, and rBURST(t) is base-band format of a PHY burst composed of payload and

preamble and is defined in the following clause.

 149

Figure D.14 PDU Train Payload (rPAYLOAD) format

D.1.5.4.7. PHY Bursts

System has five different kinds of PHY bursts:

1. Broadcast burst;

2. Downlink burst;

3. Uplink burst with short preamble;

4. Uplink burst with long preamble;

5. Direct link burst (optional).

The PDU trains delivered by DLC are mapped onto the PHY bursts as depicted

below depending on the number of sectors used by AP.

a. Number of sectors per AP=1.

In this case, the Broadcast PDU train shall be concatenated to FCH-and-ACH

PDU train and the resulting Broadcast PDU train is mapped onto the Broadcast burst.

Broadcast PDU Downlink Uplink PDU train Uplink PDU train Direct link

train PDU train with short preamble with long preamble PDU train

Broadcast burst Downlink burst Uplink burst with Uplink burst with Direct link

 short preamble long preamble burst

b. Number of sectors per AP>1

 150

In this case only the Broadcast PDU train shall be mapped onto the Broadcast

burst. The FCH-and-ACH PDU train shall be mapped onto a downlink burst.

Broadcast PDU FCH-and-ACH Downlink Uplink PDU train Uplink PDU train Direct link

train PDU train PDU train with short preamble with long preamble PDU train

Broadcast burst Downlink Downlink Uplink burst with Uplink burst with Direct link

 burst burst short preamble long preamble burst

Independently of the burst type each burst consists of two sections: preamble and

payload. Each burst is started with a preamble section, rPREAMBLE, which is followed by

a payload section, rPAYLOAD, and its base-band format is:

 rBURST(t) = rPREAMBLE(t)+rPAYLOAD(t-tPREAMBLE) (D.15)

The time-offset tPREAMBLE determines the starting point of the payload section of

the burst and depends on the burst type. The basic structure of a PHY burst is illustrated

in Figure D.15.

Preamble rPREAMBLE Payload rPAYLOAD

Figure D.15 PHY burst format

 151

D.1.5.4.7.1. Broadcast burst

Broadcast burst consists of a preamble of length tPREAMBLE = 16,0 µs and a payload

section of length NSYM x TS. Structure of the broadcast burst preamble is illustrated in

Figure D.16.

Figure D.16 Broadcast Burst Preamble

In below the term "short OFDM symbol" refers only to its length that is 16

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2

system.

The broadcast burst preamble is composed of three sections: section 1, section 2

and section 3.

Section 1 consists of 5 specific short OFDM symbols that are denoted in Figure

D.16 by A and IA. The first 4 short OFDM symbols in section 1 (A, IA, A, IA)

constitute a regular OFDM symbol consisting of 12 loaded sub-carriers (±2, ±6, ±10,

±14, ±18, and ±22) given by the frequency-domain sequence SA:

+
++

+++
=−

0 0, 0, 0, j,1 0, 0, 0, j,-1 0, 0, 0,
 j,-1- 0, 0, 0, j,1- 0, 0, 0, j,-1- 0, 0, 0, j,1- 0, 0, 0, j,-1- 0, 0, 0,

j,1- 0, 0, 0, j,-1- 0, 0, 0, j,-1 0, 0, 0, j,1 0, 0, 0, j,1- 0, 0, 0, 0,
 x)6/13(26....26SA

The last short symbol in section 1 (IA) is a repetition of preceding 16 time-domain

samples.

Section 2 consists of 5 specific short OFDM symbols that are denoted in Figure

D.16 by B and IB. The first 4 short OFDM symbols in section 2 (B, B, B, B) constitute

 152

a regular OFDM symbol consisting of 12 loaded sub-carriers (±4, ±8, ±12, ±16, ±20,

and ±24) given by the frequency-domain sequence SB:

+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0,

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x)6/13(26....26SB

The last short symbol in section 2 (IB) is a sign-inverted copy of the preceding

short symbol B, i.e. IB = -B.

Section 3 consists of two OFDM symbols (C) of normal length preceded by a

cyclic prefix (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1,

-1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

The cyclic prefix CP is a copy of the 32 last samples of the C symbols and is thus

double in length compared to the cyclic prefix of the normal data symbols.

The broadcast burst is formed by concatenating the above-described preamble

with the data payload. The resulted broadcast burst is as illustrated in Figure D.21 a.

D.1.5.4.7.2. Downlink Burst

Downlink burst consists of a preamble of length = 8,0 µs and a payload section of

length NSYM x TS. Structure of the downlink burst preamble is illustrated in Figure D.17.

 153

Figure D.17 Downlink Burst Preamble

The downlink burst preamble is equal to the section 3 of the broadcast burst

preamble. It is composed of two OFDM symbols (C) of normal length preceded by a

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1,

-1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is

thus double in length compared to the cyclic prefix of the normal data symbols.

The downlink burst is formed by concatenating the above - described preamble

with the data payload. The resulted downlink burst is as illustrated in Figure D.21 b.

D.1.5.4.7.3. Uplink Burst with Short Preamble

It consists of a preamble of length tPREAMBLE = 12,0 µs and a payload section of

length NSYM x TS. Structure of the short preamble for uplink bursts is illustrated in Figure

D.18.

 154

Figure D.18 Short Preamble for Uplink Bursts

In below the term "short OFDM symbol" refers only to its length that is 16

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2

system.

The short preamble for uplink bursts is composed of two sections: section 5 and

section 6. The sections are equal to the latter two sections of the broadcast burst

preamble: section 5 = section 2, section 6 = section 3.

Section 5 consists of 5 specific short OFDM symbols denoted in Figure D.18 by B

and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a regular

OFDM symbol consisting of 12 loaded sub-carriers (±4, ±8, ±12, ±16, ±20, and ±24)

given by the frequency-domain sequence SB:

+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0,

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x)6/13(26....26SB

The last short symbol in section 5 (IB) is a sign-inverted copy of the preceding

short symbol B, i.e. IB = -B.

Section 6 consists of two OFDM symbols (C) of normal length preceded by a

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1,

-1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

 155

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is

thus double in length compared to the cyclic prefix of the normal data symbols.

The uplink burst with short preamble is formed by concatenating the above -

described preamble with the data payload. The resulted uplink burst is as illustrated in

Figure D.21 c.

D.1.5.4.7.4. Uplink Burst with Long Preamble

It consists of a preamble of length tPREAMBLE = 16,0 µs and a payload section of

length NSYM x TS. Structure of the long preamble for uplink bursts is illustrated in Figure

D.19.

Figure D.19 Long Preamble for Uplink Bursts

In below the term "short OFDM symbol" refers only to its length that is 16

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2

system.

The long preamble for uplink bursts is composed of two sections: section 7 and

section 8.

Section 7 consists of 10 specific short OFDM symbols denoted in figure 15 by B

and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a regular

OFDM symbol consisting of 12 loaded sub-carriers (±4, ±8, ±12, ±16, ±20, and ±24)

given by the frequency-domain sequence SB:

 156

+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0,

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x)6/13(26....26SB

The last short symbol in section 7 (IB) is a sign-inverted copy of the preceding

short symbol B, i.e. IB = -B.

Section 8 consists of two OFDM symbols (C) of normal length preceded by a

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0,

1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is

thus double in length compared to the cyclic prefix of the normal data symbols. Thus

the section 8 is equal to the section 3, section 4, and section 6.

The uplink burst with long preamble is formed by concatenating the above -

described preamble with the data payload. The resulted uplink burst is as illustrated in

Figure D.21 d.

D.1.5.4.7.5. Direct Link Burst

Direct link burst is optional. It consists of a preamble of length tPREAMBLE = 16,0 µs

and a payload section of length NSYM x TS. Structure of the preamble for direct link

bursts is illustrated in Figure D.20.

Figure D.20 Preamble for Direct Link Bursts

 157

In below the term "short OFDM symbol" refers only to its length that is 16

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2

system.

The preamble for direct link bursts is composed of two sections: section 7 and

section 8.

Section 7 consists of 10 specific short OFDM symbols denoted in Figure D.20 by

B and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a

regular OFDM symbol consisting of 12 loaded sub-carriers 6(±4, ±8, ±12, ±16, ±20,

and ±24) given by the frequency sequence SB:

+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0,

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x)6/13(26....26SB

Section 8 consists of two OFDM symbols (C) of normal length preceded by a

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0,

1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is

thus double in length compared to the cyclic prefix of the normal data symbols. Thus

the section 7 is equal to the section 3, section 4, and section 6.

The direct link burst is formed by concatenating the above - described preamble

with the data payload. The resulted direct link burst is as illustrated in Figure D.21 e.

 158

Figure D.21 PHY burst structures: (a) Broadcast burst, (b) Downlink burst, (c) Uplink
burst with short preamble, (d) Uplink burst with long preamble, (e) Direct link burst

 159

E. APPENDIX E: TOOLS THAT WERE USED

During this thesis, the tools listed in Table E.1 have been used.

Tool Version
Cadence Affirma NC Simulator 3.0
Synopsys Design Analyzer 1999.10-4
Matlab 6.1
Simulink 4.1
MS Word 2000

Table E.1 Tools that were used

 160

REFERENCES

1. R. W. Chang, Synthesis of Band Limited Orthogonal Signals for Multi-channel Data

Transmission, Bell Syst. Tech. J., Vol. 45, pp. 1775-1796, Dec. 1966.

2. B. R. Salzberg, Performance of an efficient parallel data transmission system, IEEE

Trans. Comm., Vol. COM-15, pp. 805-813, Dec. 1967.

3. R. Prasad, Wireless Broadband Communication Systems, IEEE Comm. Mag., Vol.

35, pp. 18, Jan. 1998

4. A. John, C. Bingham, Multi-carrier Modulation for Data Transmission: An Idea

Whose Time Has Come, IEEE Communication Magazine, 37:5–14, May 1990.

5. http://www.sce.carleton.ca/~Laszlo.Hazy/OFDM/ofdm.html

6. W. Y. Zhou, Y. Wu, COFDM: an overview, IEEE Transactions on

Communications, Vol. 41, No: 1, pp. 1-8, March 1995.

7. ETSI, Broadband Radio Access Networks (BRAN); HIPERLAN TYPE 2 Technical

Specification; Physical (PHY) Layer, 2001.

8. M. Speth, A. Fechtel, G. Fock and H. Meyr, Optimum Receiver Design for Wireless

Broadband Systems Using OFDM-Part1, IEEE Transactions on Communications,

Vol. 47, No. 11, pp. 1668-1676, November 1999.

 161

9. T. M. Schmidl and D. C. Cox, Robust Frequency and Timing Synchronization for

OFDM, IEEE Transactions on Communications, Vol. 45, No. 12, pp. 1613-1621,

December 1997.

10. F. Adachi, OFDM for the New 5 GHz Wireless LAN standards, IEEE

Communications Magazine, pp. 84-86, December 1999.

11. T. Pollet, M. van Bladel and M. Moeneclaey, BER Sensitivity of OFDM Systems to

Carrier Frequency Offset and Wiener Phase Noise, IEEE Transactions on

Communications, Vol. 43, No. 2/3/4, pp. 191-193, Feb.-Apr. 1995.

12. P. H. Moose, A technique for Orthogonal Frequency Division Multiplexing

Frequency Offset Correction, IEEE Transactions on Communications, Vol. 42, No.

10, pp. 2908-2914, Oct. 1994

13. R. Böhnke and T. Dölle, Preamble Structures for HiperLAN Type 2 Systems, ETSI

BRAN Document No. HL13SON1A, Apr. 7, 1999

14. W. D. Warner and C. Leung, OFDM/FM Frame Synchronization for Mobile Radio

Data Communication, IEEE Transactions on Communications, Vol.42, No. 3, pp.

302-313, Aug. 1993.

15. L. Tomba, On the Effects of Wiener Phase Noise in OFDM systems, IEEE

Transactions on Communications, Vol.46, No. 5, pp. 580-583, May 1998.

16. Fredrik Tufvesson and Ove Edfors, Preamble-based Time and Frequency

Synchronization for OFDM systems, submitted to IEEE Journal on Selected Areas in

Communications, January 2000.

17. J. Armstrong, Analysis of new and existing methods of reducing inter-carrier

interference due to carrier frequency offset in OFDM, IEEE Transactions on

Communications, Vol.47, No. 3, March 1999.

 162

18. J. J. Van de Beek, M. Sandell, M. Isaksson and P. O. Börjesson, Low-Complex

Frame Synchronization in OFDM Systems, Proceedings of International Conference

on Universal Personal Communications ICUP’ 95, Nov. 1995.

19. M. Sandell, J. J. Van de Beek and P. O. Börjesson, Timing and Frequency

Synchronization in OFDM Systems Using the Cyclic Prefix, Proceedings of

International Symp. On Synchronization, Saalbau, Essen, Germany, 1995, pp. 16-

19, Dec. 14-15, 1995.

20. T. N. Zogakis and J. M. Cioffi, The effect of Timing Jitter on the Performance of a

Discrete Multitone System, IEEE Transactions on Communications, Vol. Com-33,

NO. 6, June 1985.

21. U. Lambrette, M. Speth and H. Meyr, OFDM Burst Frequency Synchronization by

Single Carrier Training Data, IEEE Communication Letters, Vol. 44, No. 7, pp.

799-808, July 1996.

22. Ali Zamanian, Orthogonal Frequency Division Multiplex Overview, Microwave

Journal, October 2001

23. Broadband Radio Access Networks, HIPERLAN Type 2, Physical (PHY) Layer,

ETSI TS 101 475 Technical Specification, Apr. 2000.

24. W. Eberle, M. Badaroglu, V. Derudder, S. Thoen, P. Vandenameele, L. Van der

Perre, M. Vergara, B. Gyselinckx, M. Engels, and I. Bolsens, A digital 80 Mb/s

OFDM transceiver IC for wireless LAN in the 5 GHz band, in Proc. IEEE Int. Solid

State Circuits Conf. (ISSCC), pp. 74-75, Feb. 2000.

25. W. Eberle, V. Derudder, G. Vanwijnsberghe, M. Vergara, L. Deneire, L. Van der

Perre, Marc G. E. Engels, I. Bolsens, and Hugo De Man, 80-Mb/s QPSK and 72-

Mb/s 64-QAM Flexible and Scalable Digital OFDM Transceiver ASICs for Wireless

Local Area Networks in the 5-GHz Band, IEEE Journal of Solid-State Circuits, Vol.

36, No. 11, NOVEMBER 2001.

 163

26. Baoguo Yang, Khaled Ben Letaief, Roger S. Cheng, and Zhigang Cao, Timing

Recovery for OFDM Transmission, IEEE Journal on Selected Areas In

Communications, Vol. 18, No. 11, Nov. 2000.

27. L. M. Leibowitz, Multiplexing Techniques for Digital Correlator Speed

Improvement, IEEE Transactions on Communications, Vol. Com-33, NO. 6, June

1985.

28. R. Andraka, A Survey of CORDIC Algorithms for FPGA based computers, Andraka

Consulting Group, In 1998 ACM/SIGDA sixth international symposium on Field

programmable gate arrays.

29. S. Johansson, D. Landström and Peter Nilsson, Hardware Implementation of an

OFDM Synchronizer, Department of Applied Electronics, Lund, Sweden, July 1999.

30. Randy Roberts, Technical Tricks, February 1993: Correlators, RF/SS Consulting

31. Yun Hee Kim, An efficient frequency offset estimator for timing and frequency

synchronization in OFDM system, IEEE Pacific Rim Conference On

Communications, Computers and Signal Processing, pp 580–583, 1999

32. Jan-Jaap van de Beek, M. Sandell, and P.O. Börjesson, ML estimation of time and

frequency offset in OFDM systems, IEEE Trans. on Signal Proc., 45(7): 1800–1805,

July 1997.

33. Richard Herveille, Cordic Core Specification, http://www.opencores.org

34. S. Haykin, Communication Systems, 3rd edition, New York, NY: Wiley, 1994.

35. http://www.etsi.org/bran/bran.html

36. Richard Van Nee, Ramjee Prasad, Wireless Multimedia Communications, Artech

House Universal Personal Communication Library, 2000.

 164

37. Robertson, P., and S. Kaiser, Analysis of the Effects of Phase-Noise in OFDM

Systems, Proceedings of IEEE VTC’95, pp. 1652-1657.

38. J. Proakis, Digital Communications, 3rd edition, McGrawHill, 1995.

39. http://www.hiperlan2.com/web/

