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ABSTRACT 

This thesis presents the design, implementation, verification and synthesis of a 

digital hardware, which performs OFDM symbol synchronization using short training 

symbols (STS) defined in European Telecommunications Standards Institute (ETSI) 

HiperLan/2 Physical Layer specifications. Designed ETSI OFDM Symbol Synchronizer 

IP was synthesized in CMOS 0.13µm technology using Virtual Silicon Technology 

(VST) Standard Cell Libraries.  

In this thesis, we first explain OFDM and OFDM systems in detail. 

Synchronization problems occurring in OFDM systems are classified and techniques 

used to overcome these problems are presented. Then a digital ETSI OFDM Symbol 

Synchronizer IP, which performs OFDM symbol synchronization task based on the 

correlation of the received symbols, is proposed. Proposed architecture has been 

designed using VHDL (VHSIC Hardware Description Language) in the implementation 

part of the thesis. Designed IP has been verified functionally first, then synthesized in 

CMOS 0.13µm technology. Gate-level verification has been also performed after 

synthesis of the IP.  

Like other communication systems, synchronization is a critical problem to be 

solved in OFDM systems. One of the arguments against OFDM is that it is highly 

sensitive to synchronization errors. Before an OFDM receiver can demodulate the sub-

carriers, it has to perform at least two synchronization tasks: First, it has to find out 

where the symbol boundaries are. Second, it has to estimate and correct the carrier 

frequency offset of the received signal and clock offset between transmitter and receiver 

because any offset introduces Inter-carrier interference (ICI) and Inter-symbol 

interference (ISI). This work aims to review OFDM and synchronization issues in 

OFDM systems and to design a digital symbol synchronizer hardware that performs the 

detection of OFDM symbols, which is the first synchronization task mentioned above.  



 v

ETSI HiperLAN/2 standard has been used in this work as the reference for all 

parameters needed and used in the hardware implementation of ETSI OFDM Symbol 

Synchronizer. Although the needed sampling frequency of OFDM receiver is 20 MHz 

in the ETSI standards, the designed IP can be run up to 50 MHz. It can be easily 

adapted to any changes in the standard, such as the increase in speed. 

The generically designed ETSI OFDM STS Symbol Synchronizer IP can be 

integrated to other modules easily and used as part of the whole synchronizer block in 

ETSI OFDM receivers.  
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ÖZET 

Bu tez Avrupa Telekomünikasyon Standartları Enstitüsü (ETSI), Fiziksel Katman 

tarifinde açıklanan STS (Short Training Symbols - STS) sembollerini kullanarak OFDM 

sembol senkronizasyonunu gerçekleyen bir sayısal devrenin tasarımı, uygulanması, 

sınanması ve sentezlenmesi aşamalarından oluşmuştur. Tasarlanan ETSI OFDM 

(Orthogonal Frequency Division Multiplexing) Sembol Senkronizasyon devresi, Virtual 

Silicon Technology (VST) Standart Hücre Kütüphaneleri kullanılarak 0.13 µm sayısal 

CMOS teknolojisinde sentezlenmiştir. 

Bu tezde, öncelikle OFDM ve OFDM sistemleri detaylı olarak açıklanmıştır. 

OFDM sistemlerinde karşılaşılan senkronizasyon problemleri sınıflandırılarak, bu 

problemlerin çözümünde kullanılan senkronizasyon teknikleri sunulmuştur. Bunların 

ardından, alıcıya gelen sembollerin korelasyonuna dayalı OFDM senkronizasyon 

işlemini gerçekleştiren ETSI OFDM Sembol Senkronizasyon devresi önerilmiştir. 

Önerilen mimari, tezin uygulama bölümünde VHDL (Çok Yüksek Hızlı Entegre Devre 

Donanım Tanımlama Dili) kullanılarak gerçeklenmiştir. Bu devre ilk önce işlevsel 

olarak sınanmış, ardından 0.13 µm sayısal CMOS teknolojisinde sentezlenmiştir. 

Devrenin sentezi sonrasında ,kapı düzeyinde işlevselliği yeniden test edilmiştir. 

Diğer haberleşme sistemlerinde olduğu gibi, senkronizasyon, OFDM 

sistemlerinde de çözümlenmesi gereken kritik bir sorundur. OFDM senkronizasyon 

hatalarına çok duyarlı bir yapıya sahiptir. Bir OFDM alıcısı, OFDM alt-taşıyıcılarını 

demodüle etmeden önce, en azından iki senkronizasyon işlevini yerine getirmek 

zorundadır: İlki, alıcıya gelen OFDM sembol sınırlarını, bir başka deyimle OFDM 

sembolünün ne zaman başladığını tespit etmek zorundadır. İkincisi, alınan sinyaldeki 

taşıyıcı frekans ofsetini ve alıcı ve verici arası saat ofsetini tahmin etmeli ve 

düzeltmelidir. Zira, herhangi bir ofset taşıyıcılar arası ve semboller arası girişime neden 

olmaktadır.  
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Bu çalışma, OFDM ve OFDM sistemlerindeki senkronizasyon olgularını ele 

almayı ve yukarıda bahsedilen ilk senkronizasyon işlevi olan, alıcıda OFDM 

sembollerinin saptamasını gerçekleyen bir sayısal sembol senkronizasyon devresi 

tasarlamayı hedeflemektedir. 

ETSI OFDM Sembol Senkronizasyon devresinin uygulamasında ETSI 

HiperLAN/2 Standardı, tüm parametreler için referans olarak alınmıştır. ETSI 

standardında, OFDM alıcısının örnekleme frekansı 20 MHz olmasına karşın, tasarlanan 

devre 50 MHz hıza kadar çalışabilmektedir. Devre, ETSI standardında örnekleme 

frekansında ileride meydana gelebilecek değişikliği, 50 MHz hıza kadar destekleyebilir.  

Jenerik olarak tasarlanan ETSI OFDM STS Sembol Senkronizasyon devresi, diğer 

modüllerle kolaylıkla birleştirilip, ETSI OFDM alıcılarında tüm senkronizasyonu 

sağlayan bloğun bir parçası olarak kullanılabilir.  
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1. INTRODUCTION 

1.1. Motivation 

Over the last decade, the market for wireless service has grown at an 

unprecedented rate. The industry has grown from cellular phones and pagers to 

broadband and ultra-broadband wireless services that can provide voice, data, and full-

motion video in real time. Wireless communications systems are playing currently a 

major role and expected to play a more important role in providing portable access to 

future information services.  

Within the wide variety of wireless communication systems, there are many 

modulation techniques in current use. A very important modulation technique, OFDM, 

is currently of great interest by the researchers in the Universities and research 

laboratories all over the world since it provides data transmission in a bandwidth-

efficient way. Multi-carrier or Orthogonal frequency-division multiplexing (OFDM) 

systems have gained an increased attention during the last years. It is used in the 

European digital broadcast radio system. OFDM has already been accepted for the new 

wireless local area network standards from IEEE 802.11, High Performance Local Area 

Network type 2 (HIPERLAN/2) and Mobile Multimedia Access Communication 

(MMAC) Systems.  

Like other communication systems, synchronization is a critical problem to be 

solved in OFDM systems. One of the arguments against OFDM is that it is highly 

sensitive to synchronization errors. Before an OFDM receiver can demodulate the sub-

carriers, it has to perform at least two synchronization tasks. First, it has to find out 

where the symbol boundaries are and what the optimal timing instants are to minimize 

the effects of inter-carrier interference (ICI) and inter-symbol interference (ISI). Second, 

it has to estimate and correct the carrier frequency offset of the received signal because 

any offset introduces ISI. This work aims to review OFDM and synchronization issues 

and implement a synchronizer hardware that realizes the first synchronization task 
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based on sliding correlation. During the course of study, ETSI standards are considered 

for the design.  

This work analyzes OFDM and the synchronization problems in OFDM systems; 

implements a European Telecommunications Standards Institute (ETSI) OFDM Short 

Training Symbols (STS) Symbol Synchronizer. This work can be taken as a basis of a 

doctoral research for implementing a complete OFDM receiver.  
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1.2. Thesis Organization 

The goal of this thesis is to research OFDM and synchronization problems 

existing in OFDM systems and design and implement the OFDM STS Symbol 

Synchronization system based on ETSI standards.  

The thesis is organized as follows:  

Chapter 2 gives an overview of OFDM. This chapter considers the basic OFDM 

receiver and transmitter structure and mathematical modeling of the blocks.  

Chapter 3 contains synchronization issues in OFDM systems. Symbol and 

frequency synchronization problems are mentioned in detail followed by the 

descriptions of the sensitivity of OFDM to synchronization errors and different 

synchronization techniques.  

Chapter 4 covers the design of ETSI OFDM STS Symbol Synchronizer IP 

including the design pre-study before the implementation, simulation and synthesis. 

First preamble and correlation characteristics are explained, and then the general 

information of STS is given with the generated reference OFDM preamble example. 

Sliding and cross correlation techniques are explained and compared with each other, 

followed by a discussion on why sliding correlation method is more useful than the 

cross one for ETSI STS synchronizer. After a short description of the LTS part of 

preamble, the pre-study section is completed. The proposed architecture for the symbol 

synchronizer is explained in detail then the achieved results at the end of 

implementation of ETSI OFDM STS Symbol Synchronizer are presented with 

simulation and synthesis. Amplitude and phase outputs of the designed symbol 

synchronizer are compared to the reference matlab model graphically. Results of two 

syntheses realized with CMOS 0.13µm for 20 MHz and 50 MHz operation frequencies 

are compared to each other in terms of area and power consumption estimations.  

Finally, conclusions are drawn for the study and based on these assessments some 

possible future research topics are suggested in chapter 5.  
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2. INTRODUCTION TO OFDM (Orthogonal Frequency Division 
Multiplexing) 

Multi-carrier transmission is the principle of transmitting data by dividing the data 

stream into several parallel bit streams, each of which has a much lower bit rate [4]. 

Orthogonal Frequency Division Multiplexing (OFDM) with densely spaced subcarriers 

and overlapping spectra is a special form of multi-carrier transmission. To obtain a high 

spectral efficiency, the sub-carrier center frequencies are selected to have minimum 

values to maintain orthogonality; hence the name OFDM is used. 

OFDM is a special case of multi-carrier transmission, where a single data stream 

is transmitted over a number of lower rate sub-carriers. One of the main advantages to 

use OFDM is to increase the robustness against distortion caused by frequency selective 

channel or narrowband interference. In a single carrier system, a single fade or interferer 

can cause the entire link to fail, but in a multi-carrier system, only a small percentage of 

the sub-carriers will be affected. Error correction coding can then be used to correct for 

the few erroneous sub-carriers.  

The concept of using parallel data transmission and frequency division 

multiplexing was published in the mid-1960s [1, 2]. The history of OFDM dates back to 

the mid 60’s, when R. W. Chang published his paper on the synthesis of band-limited 

signals for multi-channel transmission [1]. He presented a principle for transmitting 

messages simultaneously through a linear band-limited channel without inter-channel 

(ICI) and inter-symbol (ISI) interference.  

In a classical parallel data system, the total signal frequency band is divided into 

N non-overlapping frequency sub-channels. Each sub-channel is modulated with a 

separate symbol and then the N sub-channels are frequency-multiplexed. It is good to 

avoid spectral overlap of channels to eliminate inter-channel interference. However, this 

leads to inefficient use of the available spectrum. To cope with the inefficiency, the 

ideas proposed from mid-1960s were to use parallel data and Frequency Division 

Multiplexing (FDM) with overlapping sub-channels. Figure 2.1 illustrates the difference 

between the conventional non-overlapping multi-carrier technique and overlapping 
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multi-carrier modulation technique. As shown in Figure 2.1, by using the over-lapping 

multi-carrier modulation technique, we save almost 50 % of bandwidth. To realize the 

overlapping multi-carrier technique, however we need to reduce crosstalk between sub-

carriers, which means that we want orthogonality between the different modulation 

carriers.  

The main idea behind OFDM is to split the data stream to be transmitted into N 

parallel streams of reduced data rate and to transmit each of them on a separate sub-

carrier. These carriers are made orthogonal by appropriately choosing the frequency 

spacing between them to obtain a high spectral efficiency. Therefore, spectral 

overlapping among sub-carriers is allowed, since the orthogonality ensure that the 

receiver can separate the OFDM sub-carriers and a better spectral efficiency can be 

achieved than by using simple frequency division multiplex. The word orthogonality 

here indicates that there is a precise mathematical relationship between the frequencies 

of the carriers in the system. In a normal frequency-division multiplex system, many 

carriers are spaced apart in such a way that the signals can be received using 

demodulators. In such receivers, guard bands are introduced between the different 

carriers and in the frequency domain, resulting in a lowering of spectrum efficiency. It 

is possible, however, to arrange the carriers in an OFDM signal so that the sidebands of 

the individual carriers overlap and the signals are still received without adjacent carrier 

interference. To do this the carriers must be mathematically orthogonal. Figure 2.2 

shows spectra of orthogonal OFDM sub-carriers.  
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Figure 2.1 Concept of OFDM signal: (a) Conventional multi-carrier technique, (b) 
Orthogonal multi-carrier modulation technique 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Spectra of individual sub-carriers 

 
 
 
 
 
 

Frequency domain 

Sub-carrier1
Sub-carrier4

Sub-carrier2 Sub-carrier3



 7

The general block diagram of an OFDM transceiver is illustrated in Figure 2.3. In 

the transmitter path, binary input data is encoded. After interleaving, the binary values 

are converted into QAM values: Each n-bit group is assigned to an appropriate complex 

symbol having a signal constellation according to the used digital modulation technique 

(QAM). The bits in each group determine the constellation point according to the 

selected sub-carrier modulation. At this point we have a complex data. After QAM 

mapping, pilot insertion is realized to facilitate coherent reception. To make the system 

robust to multi-path propagation, a cyclic prefix is added. Further, windowing is applied 

to attain a narrower output spectrum. After this step, the digital output signals can be 

converted to analog signals, which are then up-converted to broadcasting band, 

amplified and transmitted through an antenna. 

The OFDM receiver basically performs the reverse operations of the transmitter, 

together with additional training tasks. First, the receiver has to estimate symbol timing 

and frequency offset, using special training symbols in the preamble. Then it can do an 

FFT for every symbol to recover the QAM values of all sub-carriers. The training 

symbols and pilot sub-carriers are used to correct the channel response as well as 

remaining phase drift. The QAM values are then demapped into binary values, after 

which a Viterbi decoder can decode the information bits.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Basic OFDM communication system
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2.1. OFDM Signal 

2.1.1. Generation of Sub-carriers Using IFFT 

As illustrated in Figure 2.4, an OFDM signal consists of a sum of sub-carriers that 

are modulated by using quadrature amplitude modulation (QAM) or phase shift keying 

(PSK). In its most general form, the low-past equivalent OFDM signal can be written as 

a set of modulated carriers transmitted in parallel, as follows [5]: 
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where 

• knC ,  is the QAM modulated data (symbol transmitted on the thk  sub-

carrier in the thn  signaling interval, each of duration is sT ). 

• N is the number of OFDM sub-carriers 

• kf  is the thk  sub-carrier frequency, with 0f  being the lowest frequency 

to be used.  

The thn  OFDM frame can be defined as the transmitted signal for the thn  

signaling interval of duration equal to one symbol period sT , and denote it by )(tFn  in 

Equation (2.1) instead of the term in parenthesis which corresponds to the thn  OFDM 

frame, the relation can be rewritten as 



 9

 

                                                  )()( tFts
n

n∑
∞

−∞=
=                                              (2.4) 

 

and thus, )(tFn  corresponds to the set of symbols knC , , k = 0…N-1, each transmitted 

on the corresponding sub-carriers kf . 

Demodulation is based on the orthogonality of the carriers )(tkg , namely: 
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where δ is kronecker delta function and R indicates data rate. 

Therefore, by assuming no interference and noise in the channel, the demodulator will 

produce transmitted symbol as: 
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The block diagram of an OFDM modulator is given in Figure 2.4, while the 

demodulator is shown in Figure 2.5, where, for simplicity, the impulse response of 

communications systems has been ignored. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 OFDM modulator 
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Figure 2.5 OFDM Demodulator 

 

As an example, Figure 2.6 shows four sub-carriers from one OFDM signal in time 

domain. In this example, all sub-carriers have the same phase and amplitude. But in 

practice the amplitudes and phases may be modulated differently for each sub-carrier. 

Each sub-carrier has exactly an integer number of cycles in the interval sT  and the 

number of cycles between adjacent sub-carriers differs by exactly one. This property 

accounts for the orthogonality between the sub-carriers.  
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Figure 2.6 Example of four sub-carriers within one OFDM symbol 
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The orthogonality of the different OFDM sub-carriers can also be demonstrated in 

another way. According to Equations (2.1), (2.2) and (2.3), each OFDM symbol 

contains sub-carriers that are nonzero over a sT -second interval. Hence, the spectrum of 

a single symbol is a convolution of a group of dirac pulses located at the sub-carrier 

frequencies with the spectrum of the square pulse that is one for a sT -second period and 

zero otherwise. The amplitude spectrum of the square pulse is equal to sinc( sfTπ ), 

which has zeros for all frequencies f that are an integer multiple of 
sT

1 . This effect is 

shown in Figure 2.2, which shows the overlapping sinc spectra of individual sub-

carriers. At the maximum of each sub-carrier spectrum, all other sub-carrier spectra are 

zero. Because an OFDM receiver essentially calculates the spectrum values at those 

points that correspond to the maximum of individual sub-carriers, it can demodulate 

each sub-carrier free from any interference from the other sub-carriers if 

synchronization is perfect and no channel distortion and noise exist.  

The complex base-band OFDM signal as defined by Equation (2.4) is in fact 

nothing more than the inverse Fourier transform of N QAM input symbols. The time 

discrete equivalent is the inverse discrete Fourier (IDFT), which is given by Equation 

(2.8). By sampling the low pass equivalent signal of Equation (2.1) and Equation (2.4) 

at a rate N times higher than the symbol rate 
sT

1 , and assuming 00 =f  (that is the 

carrier frequency is equal to the lowest sub-carrier frequency), the OFDM frame can be 

expressed as:  
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In practice, this transform can be implemented very efficiently by the inverse fast 

fourier transform (IFFT).  
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To point out the difference between OFDM and (Frequency Division 

Multiplexing) FDM, the power spectrum density for the two systems with binary phase 

shift keying (BPSK) data on all carriers is considered in Figure 2.7, illustrating the two 

spectra indicating the occupied bandwidth W as function of the number of carriers N. 

Note that here R indicates data rate.  

 

 
 

Figure 2.7 OFDM versus FDM power spectrum density 

 

From Figure 2.7, one can see that the OFDM signal requires less bandwidth as the 

number of carriers is increased, and in the limit we have:  
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This is possible since there is spectral overlapping, which is resolved making use 

of the orthogonality of the sub-carriers. 

By performing the sampling as indicated, the OFDM signal is subject to no loss 

since the two-sided bandwidth of the low-pass equivalent OFDM signal (neglecting 

side-lobes due to the outer sub-carriers) is sTNW /= . Then, the sampling rate of sTN /  
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is exactly the corresponding Nyquist rate, and hence there will be no frequency domain 

aliasing. 

2.1.2. Guard Time and Cyclic Extension 

One of the most important reasons to use OFDM is the efficient way to deal with 

interference due to multi-path. By dividing the input data-stream in N sub-carriers, the 

symbol duration is made N times smaller, which also reduces the relative multi-path 

delay spread, relative to the symbol time, by the same factor. An OFDM signal retains 

its sub-carrier orthogonality property when transmitted through a non-dispersive 

channel. Most channels of interest, however, contain significant time and/or frequency 

dispersion. These impairments introduce inter symbol interference (ISI) and inter carrier 

interference (ICI), and can destroy the orthogonality of the sub-carriers. A major 

advantage of OFDM, mentioned before, is the ability to enhance the basic signal in 

ways that overcome channel impairments.  

There are two aspects of the multi-path channel that need attention:  

 

• The delay spread, which produces an impulse response extended in time 

• The arrival at the receiver of delayed versions of the transmitted signal 

causing interference manifests itself as frequency-selective fading. 

 

To protect against time dispersions including multi-path, a guard interval equal to 

the length of the channel impulse response is introduced between successive OFDM 

symbols. The guard interval is commonly implemented by the cyclic extension of the 

IFFT output [36]. The problem of ICI is illustrated in Figure 2.8. In this figure, a sub-

carrier1 and a delayed sub-carrier2 are shown. When an OFDM receiver tries to 

demodulate the first sub-carrier, it will encounter some interference from the second 

sub-carrier, because within the FFT interval, there is no integer number of cycle 

difference between sub-carrier 1 and 2. At the same time, there will be cross talk from 

the first to the second sub-carrier for the same reason.  
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Figure 2.8 Effect of multi-path with zero signal in the guard time 

 

To eliminate ICI, the OFDM symbol is cyclically extended in the guard time, as 

shown in Figure 2.9 [36]. This ensures that delayed replicas of the OFDM symbol 

always have an integer number of cycles within the FFT interval, as long as the delay is 

smaller than the guard time. As a result, multi-path signals with delays smaller than the 

guard time don’t cause ICI.  

 

 
Figure 2.9 OFDM symbol with cyclic extension 
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Figure 2.10 illustrates how multi-path affects OFDM symbol [36]. This figure 

shows received signals for the channel as solid lines; the dotted curve is a delayed 

replica of the solid curve. Three separate sub-carriers are shown during three symbol 

intervals. In reality, an OFDM receiver only sees the sum of all these signals, but 

showing the separate components facilitates to see clearly what the effects of multi-path 

are. From the figure, it can be seen that the OFDM sub-carriers are BPSK modulated, 

which means that there can be 180-degree phase jumps at the symbol boundaries. For 

the dotted curve, these phase jumps occur at a certain delay after the first path. In this 

particular example, this multi-path delay is smaller than the guard time, which means 

there are no phase transitions during the FFT interval. Hence, an OFDM receiver "sees" 

the sum of pure sine waves with some phase offsets. This summation does not destroy 

the orthogonality between the sub-carriers; it only introduces a different phase shift for 

each sub-carrier. The orthogonality will be lost if the multi-path delay becomes larger 

than the guard time. In that case, the phase transitions of the delayed path fall within the 

FFT interval of the receiver. The summation of the sine waves of the first path added 

with the phase modulated waves of the delayed path no longer gives a set of orthogonal 

pure sine waves, resulting in a certain level of interference. 

 

 
 

Figure 2.10 Example of an OFDM signal with three sub-carriers in a channel; the 
dashed line represents a delayed multi-path component. 

 

The ratio of the guard interval to useful symbol duration is application dependent. 

Since the insertion of guard interval will reduce data throughput, the guard (cyclic 

prefix) interval guardT  is usually less than 4/T  (see Table D.6. guardT  is represented by 

TCP). T represents here the FFT integration time.  
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When a signal )(ts , which is sent over a channel with impulse response )(th , the 

received signal is given by the convolution:  

 

                                                  )(*)()( tsthtr =                                            (2.10) 

 

and if the channel is not ideal, i.e. h(t) = δ(t), there will be inter symbol interference 

(ISI). It is convenient to view the OFDM signal in terms of data frames, so we can 

anticipate that the channel will produce ISI within the frame, and will also produce inter 

frame interference (IFI) among adjacent frames [5]. Considering the discrete-time 

equivalent signal and the channel L0,.....,i   , =ih , with L being the delay spread of the 

channel, equation (2.10) becomes  
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Figure 2.11 shows this convolution sum for the particular case of L=2. Here, sn,N-1 

represents the OFDM signal carried by (N-1)th sub-carrier in the nth frame. From this 

graphical representation it can be seen that the introduction of a guard interval of length 

equal to the delay spread L of the channel between two adjacent frames will "absorb" 

the channel delay and hence remove IFI. 
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Figure 2.11 Inter Frame Interference in OFDM systems. 

 

This may be accomplished by inserting L leading zeros in each frame at the 

transmitter and removing them at the receiver. However, in order to also eliminate ISI 

from within the frame, it is better to use a cyclic prefix instead of an all zero guard 

interval. In this case, after dumping the prefix at the receiver, one would get the periodic 

(cyclic) convolution of the transmitted data frame and the channel. The cyclically 

extended frame can then be written as [5] 
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After discarding the prefix, the received frame becomes  
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where Nim )( −  represents the modulo N subtraction. After DFT demodulation we get 
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where 1........0 −= Nk  and kH  is the channel's transfer function at the sub-carrier 

frequency kf  from Equation (2.3). Therefore, by using a cyclic prefix, the effect of the 

channel is transformed into a complex multiplication of the data symbols with the 

channel coefficients kH , and all ISI and IFI is removed.  

 

2.1.3. Useful Symbol Duration 

The useful symbol duration T (FFT integration period) affects the carrier spacing 

and coding latency. To maintain the data throughput, longer useful symbol duration 

results in an increase of the number of carriers and the size of FFT (assuming that the 

signal constellation is fixed). The number of carriers corresponds to the number of 

complex points being processed in FFT. In practice the carrier offset and phase stability 

may affect spacing between carriers. 

 

2.1.4. Number of Carriers 

"Less than one quarter" rule of thumb and the use of an FFT algorithm in turn 

drive the selection of the number of carriers, and hence the transform size for a 

particular application [6]. The first-order design of an OFDM scheme for an application 
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using this approach begins by considering the channel delay-spread, which dictates the 

duration of the guard interval. The number of sub-carriers that both maintains the 

information rate needed for the application (also satisfies the channel bandwidth 

constraints) and meets the "less than 1/4 symbol" rule of thumb can be determined. The 

carriers are spaced by the reciprocal of the useful symbol duration. The number of 

carriers corresponds to the number of complex points being processed in FFT.  

 

2.2. Properties of OFDM 

After introducing the OFDM signaling scheme, we can list its major advantages 

and disadvantages as follows: 

 

• OFDM makes efficient use of the spectrum by allowing overlap. 

• By dividing the channel into narrowband flat fading sub-channels, OFDM 

is more resistant to frequency selective fading than single carrier systems 

are. 

• ISI and IFI are eliminated through via cyclic prefix. 

• Using adequate channel coding and interleaving, one can recover symbols 

lost due to the frequency selectivity of the channel 

• Channel is simpler than using adaptive equalization techniques with single 

carrier systems.  

• OFDM is computationally efficient by using FFT techniques to implement 

the modulation and demodulation functions. Also, for multiple 

communication channels, as is the case in digital audio broadcasting 

(DAB) systems, partial FFT algorithms can be used in order to implement 

program selection and decimation. 

 

The disadvantages can be listed as follows: 
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• The OFDM signal has a noise like amplitude with a very large dynamic 

range, therefore it requires RF power amplifiers with a high peak to 

average power ratio. 

• OFDM is more sensitive to carrier frequency offset and phase offsets than 

single carrier systems are. 

2.3. Choice of OFDM Parameters 

The choice of various OFDM parameters is a tradeoff between various, often 

conflicting requirements. Usually, there are three main requirements as follows:  

 

• Bandwidth 

• Bit rate 

• Delay spread 

 

The delay spread directly dictates the guard time. As a rule, the guard time should 

be about two to four times the root-mean-squared delay spread (see chapter 2.1.2). This 

value depends on the type of coding and QAM modulation. Higher order QAM (like 64-

QAM) is more sensitive to ICI and ISI; while heavier coding obviously reduces the 

sensitivity to such interference. 

Since the guard time has been set, the symbol duration can be fixed. To minimize 

the signal-to-noise ratio (SNR) loss caused by the guard time, it is desirable to have the 

symbol duration much larger than the guard time. It cannot be arbitrarily large, 

however, because larger symbol duration means more sub-carriers with a smaller sub-

carrier spacing, a larger implementation complexity, and more sensitivity phase offset 

and frequency offset [11], as well as an increased peak-to-average power ratio.  

After the symbol duration and guard time are fixed, the number of sub-carriers 

can be determined by inverse of the useful symbol duration (symbol duration-guard 

time). Alternatively, the number of sub-carriers may be also determined by the required 

bit rate divided by the bit rate per sub-carrier. The bit rate per sub-carrier is defined by 

the modulation type (e.g. 64-QAM), coding rate and symbol rate. An additional 
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requirement that can affect the chosen parameters is the demand for an integer number 

of samples both within the FFT/IFFT interval and in the symbol interval. 

To see the relation between these three requirements mentioned above, let’s 

assume we want to design a system with the following requirements: 

 

• Bit rate:     24 Mbps 

• Tolerable delay spread:  200 ns 

• Bandwidth:    <16 MHz 

 

First, we can set the guard time to a safe value using the given value for the delay-

spread requirement: Delay spread should be smaller than guard time (see 2.1.2). Let’s 

take the guard time 800 ns, which is four times delay-spread. By choosing the OFDM 

symbol duration 5 times (4.0 µs = guard time (0.8 µs) + useful symbol part duration (3.2 

µs)) the guard time according to ETSI HiperLan/2 standard (see Table D.6), we are now 

ready to find the number of sub-carriers and sub-carrier spacing. The sub-carrier 

spacing is the inverse of 4.0 – 0.8 = 3.2 µs, which gives 312.5 kHz. To determine the 

number of sub-carriers needed, we can look at the ratio of the required bit rate and the 

OFDM symbol rate. To achieve 24 Mbps, each OFDM symbol has to carry 96 bits of 

information (96/4.0 µs = 24 Mbps). To do this, there are several options. One is to use 

16-QAM together with ½ coding rate to get 2 bits per carrier in a symbol. In this case, 

48 sub-carriers are needed to get the required 96 bits per symbol. Another option is to 

use QPSK with rate ¾ coding rate, which gives 1.5 bits per sub-carrier in a symbol. In 

this case, 64 sub-carriers are needed to reach the 96 bits per symbol. However, 64 sub-

carriers means a bandwidth of 64 * 312.5 kHz = 20 MHz, which is larger than the target 

bandwidth. To achieve a bandwidth smaller than 16 MHz, the number of sub-carriers 

needed to be equal to or smaller than 50. Hence, the first option with 48 sub-carriers and 

16-QAM fulfills all the requirements.  

In this section, we reviewed the OFDM, compared it to FDM in terms of 

advantages and drawbacks. We saw how the basic OFDM signal is formed using IFFT 

and adding a cyclic extension. We explained how OFDM avoids the problem of inter-

symbol interference by transmitting a number of narrowband sub-carriers together with 

using a guard time. We gave an example to a basic OFDM communication system and 

summarized the functionality of its sub-blocks. Choice of OFDM parameters for 

communication system was explained with an example. We mentioned an important 
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term for OFDM, i.e. orthogonality. After this introduction, we will see the 

synchronization issues that should be taken care of in OFDM receivers in the next 

chapter. 
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3. SYNCHRONIZATION 

One of the arguments against OFDM is that it is highly sensitive to 

synchronization errors, in particular, to frequency errors. Before an OFDM receiver can 

demodulate the sub-carriers, it has to perform at least two synchronization tasks: 

 

• Symbol (frame) timing synchronization 

• Carrier frequency synchronization (carrier frequency offset) and sampling 

frequency synchronization (clock offset) 

 

An OFDM receiver first, has to find out where the symbol boundaries are and 

what the optimal timing instants are to minimize the effects of inter-carrier interference 

(ICI) and inter-symbol interference (ISI). Symbol (Frame) timing synchronization 

means finding an estimate where the symbol starts. Second, it has to estimate and 

correct for the carrier frequency offset of the received signal, because any offset 

introduces ICI. Notice that these two synchronization tasks are not the only training 

required in an OFDM receiver. For coherent receivers, except for the frequency, the 

carrier phase also needs to be synchronized. Further, a coherent QAM receiver needs to 

learn the amplitudes and phases of all sub-carriers to find out the decision boundaries 

for the QAM constellation of each sub-carrier [9, 14, 16, 17, 19]. 

3.1. Introduction 

In an OFDM link, the sub-carriers are perfectly orthogonal only if transmitter and 

receiver use exactly the same frequencies. Any frequency offset immediately results in 

ICI. A related problem is the phase noise; a practical oscillator does not produce a 

carrier at exactly one frequency, but rather a carrier that is phase modulated by random 
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phase jitter. As a result, the frequency, which is the time derivative of the phase, is 

never perfectly constant, thereby causing ICI in an OFDM receiver. For single-carrier 

systems, phase noise and frequency offsets only give degradation in the received signal-

to-noise ratio (SNR) rather than introducing interference. This is the reason that the 

sensitivity to phase noise and frequency offset are often mentioned as disadvantages of 

OFDM in respect to single-carrier systems. 

3.2. Symbol Synchronization 

3.2.1. Sensitivity To Timing Errors 

In OFDM systems, a great deal of attention is given to symbol synchronization. 

Finding the symbol timing for OFDM systems means finding an estimate of the symbol 

start point. So the objective is to detect the start point of OFDM symbol. However, by 

using a cyclic prefix, the timing requirements are relaxed somewhat. There is usually 

some tolerance for symbol timing errors since a cyclic prefix is used to extend the 

symbol. A timing offset gives rise to a phase rotation of the sub-carriers. This phase 

rotation is largest on the edges of the frequency band. If a timing error is small enough 

to keep the channel impulse response within the cyclic prefix, the orthogonality is 

maintained. In this case a symbol timing delay can be viewed as a phase shift 

introduced by the channel. Then the phase rotations can be estimated by a channel 

estimator. If a time shift is larger than the cyclic prefix and the receiver's FFT interval 

extends over a symbol boundary, ISI will occur. Hence, OFDM demodulation should be 

quite insensitive to timing offsets. To achieve the best possible multi-path robustness, 

however, there exists an optimal timing instant. Any deviation from this timing instant 

means that the sensitivity to delay spread increases, so the system can handle less delay 

spread than the value it was designed for. To minimize this loss of robustness, the 

system should be designed such that the timing error is small compared with the guard 

interval. 
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Figure 3.1 Example of an OFDM signal with three sub-carriers, showing the earliest and 
latest possible symbol timing instants that do not cause ISI or ICI. 

 
An interesting relationship exists between symbol timing and the demodulated 

sub-carrier phases [20]. Looking at Figure 3.1, it can be seen that as the timing changes, 

the phases of the sub-carriers change. The relation between the phase, ϕi, of sub-carrier, 

i, and the timing offset, τ, is given by  

 

                                                    τπϕ ii f2=                                                  (3.1) 

 

where, if  is the frequency of the ith sub-carrier before sampling. For an OFDM system 

with N sub-carriers and a sub-carrier spacing of 1/T, a timing delay of one sampling 

interval of T/N causes a significant phase shift of )/11(2 N−π  between the first and last 

sub-carrier. T represents here useful symbol duration. These phase shifts add to any 

phase shifts that are already present because of multi-path propagation. In a coherent 

OFDM receiver, channel estimation is performed to estimate these phase shifts for all 

sub-carriers [9, 14, 16, 19, 21]. 

 

Earliest possible timing 

Latest possible timing 
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3.2.2. Sensitivity To Phase Noise 

Carrier phase noise is caused by imperfections in the transmitter and receiver 

oscillators. Phase noise basically has two effects. First, it introduces a random phase 

variation that is common to all sub-carriers. If the oscillator line width is much smaller 

than the OFDM symbol rate, which is usually the case, then the common phase error is 

strongly correlated from symbol to symbol; so tracking techniques or differential 

detection can be used to minimize the effects of this common phase error. The second 

and more disturbing effect of phase noise is that it introduces ICI, because the sub-

carriers are no longer spaced at exactly 1/T in the frequency domain. The amount of ICI 

is calculated and translated into a degradation in SNR that is given as [11] 
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11                                       (3.2) 

 

where, β  is the -3 dB one-sided bandwidth of the power density spectrum of the 

carrier, W is the bandwidth and os NE /  is the symbol energy per noise spectral density. 

Note that the degradation increases with the number of sub-carriers and the phase noise 

degradation is proportional to T.β , which is the ratio of the line-width and sub-carrier 

spacing 1/T.  
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3.3. Frequency Synchronization 

3.3.1. Sampling Frequency Synchronization 

The received continuous-time signal is sampled at instants determined by the 

receiver clock. There are two types of methods of dealing with the mismatch in 

sampling frequency. In synchronized-sampling systems a timing algorithm controls a 

voltage-controlled crystal oscillator in order to align the receiver clock with the 

transmitter clock. The other method is non-synchronized sampling, where the sampling 

rate remains fixed, requiring post-processing in the digital domain. The effect of a clock 

frequency offset is that the useful signal component is rotated, attenuated and, also ICI 

is introduced. The bit-error rate performance of a non-synchronized sampling systems 

are much more sensitive to a frequency offset, compared with a synchronized-sampling 

system [11]. For non-synchronized sampling systems, it was shown that the degradation 

(in dB) due to a frequency sampling offset depends on the square of the carrier index 

and the square of relative frequency offset. 

3.3.2. Carrier Frequency Synchronization 

Frequency offsets are created by differences in oscillators in transmitter and 

receiver, Doppler shifts or phase noise introduced by non-linear channels. There are two 

destructive effects caused by a carrier frequency offset in OFDM systems:  
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• One is the reduction of signal amplitude (the sinc functions are shifted and 

no longer sampled at the peak) and the other is the introduction of ICI 

from the other carriers, as illustrated in Figure 3.2 and Figure 3.3.  

• The latter is caused by the loss of orthogonality between the sub-channels. 

Pollet analytically evaluates the degradation of the BER caused by the 

presence of carrier frequency offset and carrier phase noise for an AWGN 

channel [11]. It is found that a multi-carrier system is much more sensitive 

than a single-carrier system. If we denote the normalized relative 

frequency offset, by the sub-carrier spacing with 
NW

Ff
/

∆
=∆  (∆F is the 

frequency offset and N the number of sub-carriers), the degradation D in 

SNR (in dB) can then be approximated by  
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=∆≈ ππ      (3.3) 

 

Note that the degradation (in dB) increases with the square of the number of sub-

carriers, if ∆F and W are fixed. 

Moose derives the signal-to-interference-ratio (SIR) on a fading and dispersive 

channel [12]. The SIR is defined as the ratio of the power of the useful signal to the 

power of the interference signal (ICI and additive noise). 
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Figure 3.2 Effects of a frequency offset ∆F: reduction in signal amplitude (ο) and inter-
carrier interference (•) 
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He assumed that all channel attenuations hk have the same power, { }2

khE . An upper 

bound on the degradation is [12] 
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where sincx ( ) ( )xx ππ / sin≡ . The factor 0.5947 is found from a lower bound of the 

summation of all interfering sub-carriers. In Figure 3.4 the degradation is plotted as a 

function of the normalized frequency offset ∆f, i.e. relative to the sub-carrier spacing 

[12].  
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Figure 3.4 Degradation in SNR due to a frequency offset (normalized to the sub-carrier 
spacing). Analytical expression for AWGN (dashed) and fading channels (solid). 
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3.4. Synchronization Techniques 

3.4.1. Synchronization Using The Cyclic Extension 

Because of the cyclic prefix, the first TG (guard time) seconds part of each OFDM 

symbol is identical to the last part. This property can be exploited for both timing and 

frequency synchronization by using a synchronization system like depicted in Figure 

3.5. Basically, this device correlates a TG long part of the signal with a part that is T 

seconds delayed [18, 19]. The correlator output can be written as  
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Figure 3.5 Synchronization using the cyclic prefix 
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Two examples of the correlation output are shown in Figure 3.6 and Figure 3.7 for 

eight OFDM symbols with 192 and 48 sub-carriers, respectively [19, 36]. These figures 

illustrate a few interesting characteristics of the cyclic extension correlation method. 

First, both figures clearly show eight peaks for the eight different symbols but the peak 

amplitudes show a significant variation. The reason for this is that although the average 

power for a T seconds interval of each OFDM symbol is constant, the power in the 

guard time can substantially vary from this average power level. Another effect is the 

level of the undesired correlation side-lobes between the main correlation peaks. These 

side-lobes reflect the correlation between two pieces of the OFDM signal that belong 

partly or totally to two different OFDM symbols. Because different OFDM symbols 

contain independent data values, the correlation output is a random variable, which may 

reach a value that is larger than the desired correlation peak. The standard deviation of 

the random correlation magnitude is related to the number of independent samples over 

which the correlation is performed. The larger the number of independent samples 

means the smaller the standard deviation. In the extreme case, where the correlation is 

performed over only one sample, the output magnitude is proportional to the signal 

power, and there is no distinct correlation peak in this case. In the other extreme case, 

where the correlation is performed over a very large number of samples, the ratio of 

side-lobes-to-peak amplitude will go to zero. Because the number of independent 

samples is proportional to the number of sub-carriers, the cyclic extension correlation 

technique is only effective when a large number of sub-carriers are used, preferably 

more than 100. An exception to this is the case where instead of random data symbols, 

specially designed training symbols are used [13]. In this case, the integration can be 

done over the entire symbol duration instead of the guard time only. The level of 

undesired correlation side-lobes could be minimized by a proper selection of the 

training symbols. 
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Figure 3.6 Example of correlation output amplitude for eight OFDM symbol with 192 
sub-carriers and a 20% guard time  

 

 
 

Figure 3.7 Example of correlation output amplitude for eight OFDM symbols with 48 
sub carriers and a 20%guard time  
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We know that the undesired correlation side-lobes only create a problem for 

symbol timing. But they do not play a role for frequency offset estimation. Once symbol 

timing is known, the cyclic extension correlation output can be used to estimate the 

frequency offset. The phase of the correlation output is equal to the phase drift between 

samples that are T seconds apart. Hence, the frequency offset can simply be found as the 

correlation phase divided by Tπ2 . This method works up to a maximum absolute 

frequency offset of half the sub-carrier spacing. To increase this maximum range, 

shorter symbols can be used, or special training symbols with different PN sequences on 

odd and even sub-carriers frequencies to identify a frequency offset of an integer 

number of sub-carrier spacing [9].  

The noise performance of the frequency offset estimator is now determined for an 

input signal r(t) that consists of an OFDM signal s(t) with power P and additive 

Gaussian noise n(t) with a one – sided noise power spectral density of N0 within the 

bandwidth of the OFDM signal:  

 

                                              r(t) = s(t) + n(t)                                                 (3.6) 

 

The frequency-offset estimator multiplies the signal by a delayed and conjugated 

version of the input to produce an intermediate signal y(t) given by [9, 36] 

 

)()()()()()()exp()()()()( 2 TtntntsTtnTtstnjtsTtrtrty −+−+−+=−= ∗∗∗∗ ϕ  

(3.7) 

The first term in the right – hand side of Equation (3.7) is the desired output 

component with a phase equal to the phase drift over a T – second interval and a power 

equal to the squared signal power. The next two terms are products of the signal and the 

Gaussian noise. Because the signal and noise are uncorrelated and because noise 

samples separated by T seconds are uncorrelated, the power of the two terms is equal to 

twice the product of signal power and noise power. Finally, the power of the last term of 

Equation (3.7) is equal to the squared noise power. If the input SNR is much larger than 

one, the power of the squared noise component becomes negligible compared with the 

power of the other two noise terms. For practical OFDM systems, the minimum input 

SNR is about 6 dB, so the signal power is four times smaller than the power of the two 

signal – noise product terms.  
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The frequency offset is estimated by averaging y(t) over an interval equal to the 

guard time TG and then the phase of y(t) is estimated. Because the desired output 

component of Equation (3.7) is a constant vector, averaging reduces the noise that is 

added to this vector. Assuming that the squared noise component may be neglected, the 

output SNR is approximated as [36, 37] 
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Figure 3.8 shows a vector representation of the phase estimation, where the noise 

is divided into in phase and quadrature components, both having a noise power of 

GTN /0 . 

 

 

 

 

 

 

Figure 3.8 Vector representation of phase drift estimation 
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The phase error θ is given by Equation (3.9), where the approximation has been 
made that ni and nq are small compared with the signal amplitude P  [37]. 
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Because the frequency offset estimation error is equal to the phase error θ divided 

by 2πT, the standard deviation of the frequency error is given by [36, 37] 
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where, Ts is the symbol interval and Es / N0 is the symbol - to - noise energy ratio, 

defined as 
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Es/N0 is equal to the bit energy - to – noise density Eb/N0 multiplied by the number of 

bits per symbol. Because OFDM typically has a large number of bits per symbol and 

Eb/N0 is larger than 1 for successful communications, typical Es/N0 values are much 

larger than 1. For instance, with 48 sub-carriers using 16-QAM and rate 2
1  coding, 

there are 96 bits per OFDM symbol. In this case, Es/N0 is about 20 dB larger than Eb/N0. 

Typical Eb/N0 value is about 10 dB, typical Es/N0 value is about 30 dB.  

If the required Es/N0 value for an acceptable frequency error level is too large, 

then averaging the vector y(t) in Equation (3.7) over multiple OFDM symbols can be 

used to increase the effective signal - to - noise ratio. For averaging over K symbols, the 

frequency error standard deviation becomes 
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3.4.2. Synchronization Using Special Training Symbols 

The synchronization technique based on the cyclic extension is particularly suited 

to tracking or to blind synchronization in a circuit-switched connection, where no 

special training signals are available. For packet transmission, however, there is a 

drawback because an accurate synchronization needs an averaging over a large (>10) 

number of OFDM symbols to attain a distinct correlation peak and a reasonable SNR. 

For high-rate packet transmission, the synchronization time needs to be as short as 

possible, preferably a few OFDM symbols only. To achieve this, special OFDM 

training symbols can be used for which the data content is known to the receiver [9, 12, 

14]. In this way, the entire received training signal can be used to achieve 

synchronization, whereas the cyclic extension method only uses a fraction of each 

symbol.  

Figure 3.9 shows a block diagram of a matched filter that can be used to correlate 

the input signal with the known OFDM training signal. Here, T is the sampling interval 

and Ci are the matched filter coefficients, which are the complex conjugates of the 

known training signal. From the correlation peaks in the matched filter output signal, 

both symbol timing and frequency offset can be estimated. The matched filter correlates 

with the OFDM time signal before performing a FFT in the receiver. 

 

 

 

 

 

 

 

 

 

Figure 3.9 Matched filter that is matched to a special OFDM training symbol 
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3.4.3. Optimal Timing In The Presence Of Multi-path 

The task of OFDM symbol timing is to minimize the amount of ISI and ICI. This 

type of interference is absent when the FFT is taken over the flat part of the signaling 

window, which is shown in Figure 3.10. This window is the envelope of the transmitted 

OFDM symbols. Within the flat part of the window, all sub-channels maintain perfect 

orthogonality. In the presence of multi-path, however, orthogonality is lost if the multi-

path delays exceed the effective guard time, which is equal to the duration of the flat 

window part minus the FFT period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Raised cosine window 
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The effect of multi-path propagation on ISI and ICI is illustrated in Figure 3.11. It 

shows the windowing envelopes of three OFDM symbols. The radio channel consists of 

two paths with a relative delay of almost half of a symbol and relative amplitude of 0.5. 

The receiver selects the FFT timing such that the FFT is taken over the flat envelope 

part of the strongest path. Because the multi-path delay is larger than the guard time, 

however, the FFT period cannot at the same time cover a totally flat envelope part of the 

weaker signal. As a result, the non-flat part of the symbol envelope causes ICI. At the 

same time, the partial overlap of the previous OFDM symbol in the FFT period causes 

ISI.  

The solution to the timing problem is to find the delay window with a width equal 

to the guard time. This contains maximum signal power. The optimal FFT starting time, 

then, is equal to the following equation:  

The starting delay of the found delay window, plus the delay that occurs between 

a matched filter peak output from a single OFDM pulse and the delay of the last sample 

on the flat part of the OFDM signal envelope, minus the length of the FFT interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 ISI/ICI caused by multi-path signals 
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Figure 3.12 shows the OFDM symbol structure, where T is the time needed by the 

FFT. If a multi-path signal is introduced with a relative delay (relative to the delay of 

the shown reference OFDM signal) exceeding Tg1, it will cause ISI and ICI. Similarly, 

multi-path signals with relative delays less than -Tg2 cause ISI and ICI. The timing 

problem is now to choose Tg1 and Tg2 such that the amount of ICI and ISI after the FFT 

is minimized.  

 
 

 

 

 

 

 

 

Figure 3.12 OFDM symbol structure 

 

It is clear in Figure 3.12 that ISI and ICI are caused by all multi-path signals, 

which delays fall outside a window of Tg = Tg1 + Tg2. All multi-path signals within this 

delay window contribute to the effectively used signal power. Hence, the optimal timing 

circuit maximizes the signal - to - (ISI + ICI) ratio (SIR), given by [36] 
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where, T0 = -Tg2 is the timing offset of the guard time window Tg. St denotes the total 

received signal power and Su is the useful signal power. Because only Su depends on the 

timing offset T0, the SIR is maximized by maximizing Su; that is, choosing the T0 value 

that contains the largest power of h(τ) in the interval {T0, T0 + Tg}. 

In this chapter, we reviewed and classified synchronization problems existing in 

OFDM systems and we provided general overview about synchronization techniques 

used in OFDM receivers. In Chapter 4, the implementation part of our thesis can be 

seen. We proposed and designed a digital synchronizer hardware, which realizes the 

timing synchronization of ETSI OFDM symbol (frame) using sliding correlation 

method. OFDM symbol synchronizer that we designed uses the preambles defined in 

sTβ  

2gT1gT  T
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ETSI HiperLan / 2 standard to detect the OFDM symbol (please see Appendix D for 

detailed information about ETSI standard). We can remember from previous chapter, 

timing synchronization means to find out where the OFDM symbol boundaries are. 

Notice that, in our implementation we assumed a perfect media. That means CO, CFO, 

AWGN and phase offset do not exist. Hence these issues were not considered by our 

synchronizer.  
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4. SYNCHRONIZATION PRACTICE: SYNCHRONIZATION DETECTION 
USING SHORT TRAINING SYMBOLS (STS) 

In the previous chapters, we reviewed OFDM, generation of OFDM signal. We 

analyzed synchronization issues that should be solved in OFDM receivers. This chapter 

presents digital design and hardware implementation of ETSI OFDM symbol 

synchronizer, which detects ETSI OFDM symbols at the receiver using sliding 

correlation method. The goal of this implementation is not to design a whole OFDM 

synchronizer that realizes all synchronization tasks including CFO and CO 

compensations. The first synchronization task that a receiver should perform is to find 

out where OFDM symbols starts. Our aim in this implementation is to design a generic 

digital hardware that can be used in OFDM receivers, which performs the detection of 

ETSI OFDM symbols referenced in Appendix D. In the first part of this chapter, we 

have analyzed preambles and correlation characteristics to be used in our 

implementation. We have given the assumptions and parameters used in the 

implementation. First sliding and cross correlation methods used to solve 

synchronization problems have been described, then they have been compared to each 

other according to matlab OFDM model’s correlation outputs to determine the suitable 

one for our implementation. In the second part, we have explained the details of the 

OFDM symbol synchronizer that we proposed and designed, followed by simulation 

and synthesis results achieved in the implementation. 

4.1. Preamble and Correlation Characteristics 

One of the purposes of the preamble preceding every OFDM packet is to allow 

start-of-symbol detection. Using the fact that it is based on well-known patterns, which 

the receiver can recognize. The beginning of the preamble is based on Short Training 

Symbols (“STS”, 16 samples long instead of 64) while the end is based on Long 
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Training Symbols (“LTS”, having the normal length of 64 samples). The reason why 

the short training symbols are only 16 samples long is due to the frequency domain 

sequence on which they are based, where every fourth carrier carries data while all the 

others do not. The result of the IFFT of such a sequence is that the 64 time domain 

samples can be split in 4 identical sub-symbols or 4 STS’s. Figure 4.1 illustrates an 

example of the ETSI UP LONG preamble, where the short training symbols are the 

consecutive B’s and the IB, while the long training symbols are both final C’s: 

 

 
 
 
          
          
 

B B B B B B B B B IB CP C C 
 

 

 

Figure 4.1 ETSI UP LONG preamble 

 
Here, IB short OFDM symbol is sign-inverted copy of B short OFDM symbol 

(please see Appendix D). 

In this thesis, we refer to Appendix D.1.5 for a complete description of all the 

available preamble structures in the HiperLAN/2 physical layer standards. We consider 

numerical values seen in Table D.6.  

4.1.1. Short Training Symbols (STS) 

We consider the preambles defined by ETSI, which contain an IB symbol at the 

end of the STS section. Since the ETSI preambles are based upon defined symbols, it 

makes sense to compute a sliding correlation over 16 samples of successive received 

STS with each other (see the example in Figure 4.2) in order to find the ending point of 

the STS section and the start of the LTS part. The main idea behind sliding correlation 

is to correlate the successive received OFDM samples to each other within a proper 

correlation window. In our implementation, the correlation window length is 16 because 

received STS has 16 samples length each, which means at each clock cycle, two 16 bits-

Copy 
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long digital inputs are correlated each other. The received complex OFDM symbols are 

sampled at receiver and converted to digital samples, so that real and imaginary parts 

are separated. The digital samples are shifted through a shift register block to 

synchronizer module. This performs correlation process. Figure 4.2 illustrates this 

sliding correlation process of received digital samples. Since the received samples are 

shifted through shift registers and delayed at each clock cycle, it is possible to compute 

a sliding correlation over 16-samples correlation window, which means the newest 16 

samples are correlated to the previous 16 samples. The zoomed view of sliding 

correlation process of two successively received symbols is depicted in Figure 4.3.  

Figure 4.4 illustrates the shape of the amplitude and phase of the 16 samples 

sliding correlation process of the short training symbols contained inside the ETSI 

BROADCAST. The schematic of the ETSI BROADCAST Preamble and reference STS 

data for ETSI BROADCAST Preamble dumped from matlab simulink model is shown 

in Figure 4.5. The goal for the synchronizer is to detect the IB section based upon the 

sequence SB to find out where the OFDM symbol starts. In the ETSI BROADCAST 

case, the correlation amplitude is the same for both SA and SB based section (please see 

D.1.5.4.7.1 for details of SA and SB). However the correlation phase transition (from 

high to low or from low to high) allows us to distinguish one from the other. 

Figure 4.4 reflects the ideal conditions, meaning that there is no AWGN (Additive 

White Gaussian Noise) injected, no perturbation induced by the channel (the channel 

impulse response is a single tap in the time domain), no CFO (Carrier Frequency Offset) 

and no CO (Clock Offset) exist. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Illustration of Sliding Correlation of Received STS 
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Figure 4.3 Sliding correlation of two received STS symbols over a 16 samples 
correlation window 
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Figure 4.4 Sliding Correlation of the ETSI BROADCAST Preamble: (a) Correlation 
Amplitude. (b) Correlation Phase
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Figure 4.5 ETSI BROADCAST Preamble and STS Data dumped from OFDM simulink 
model. 
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OFDM samples. Complex OFDM samples seen in each box below
were generated from OFDM simulink model and they constitue the

STS part of Broadcast preamble together.
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Instead of a sliding correlation, we could also compute the cross correlation, i.e. 

correlate the received data with the ideal transmitted symbol (which is not altered by 

noise, channel etc.). The principle is sketched in Figure 4.6. First difference between the 

sliding correlation and the cross correlation is that cross correlation is realized between 

the received STS and the ideal transmitted symbol while sliding correlation occurs 

between consecutive received STS symbols. Second difference is that two inputs of 

sliding correlator changes at each clock cycle while just one input of cross correlator 

changes at each clock cycle. This is because the transmitted ideal symbol is correlated 

with the newest received 16 samples. The zoomed view of cross correlation process of 

the successively received symbols with the ideal transmitted symbol is depicted in 

Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Example of Cross Correlation of Received STS 
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B
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B

Successively received 
OFDM STS symbols 
(i.e. B and IB) are 
shifted through the 
synchronizer shift 
register sample-by-
sample and correlated 
with the ideal 
transmitted symbol in 
a correlation window 
of 16 samples.  
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I, Q

CrossRLength (here 16 samples)

•CrossRLength is determined 
by the length of STS.

Complex multiplication sample 
by sample

Addition of all values

STS (i.e. B)

Shift 
register

Transmitted ideal B symbol

Register 
(DOES NOT 
shift)

 

Figure 4.7 Cross correlation of the received STS symbols with the transmitted ideal 
symbol in a 16 samples correlation window 

 

Figure 4.8 represents the amplitude and the phase of the ideal cross correlation 

(without any perturbation-no channel effect) of the transmitted symbol with the received 

data. As seen in cross correlation phase graph, the phase of the cross correlation does 

not presents consecutive stable values. The phase jump therefore is not easily 

detectable. The 4 peaks seen in cross correlation amplitude graph correspond to the 

match between received and ideal B symbols, while the last one is due to the correlation 

between the received IB and the ideal B. Synchronization on ETSI preambles is best 

performed by using a sliding correlation of the received samples so that the pattern is 

more easily detectable. This is the main reason why sliding correlation method is used 

for synchronization of ETSI preambles in this thesis.  

Samples 
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                           (a)                                                                        (b)                      

 

Figure 4.8 ETSI Ideal Cross Correlation: (a) Correlation Amplitude. (b) Correlation 
Phase 

 

All the previous figures assume perfect conditions. In realistic situations, various 

effects have to be taken into account that impairs the previous results. Since we assume 

the ideal conditions, we will not analyze these effects.  

 

4.1.2. Long Training Symbols (LTS) 

All the Physical Layer burst structures (please see D.1.5.4.7) have a preamble 

containing two specific OFDM symbols (C) of normal length (64 samples, hence called 

‘long training symbols’), preceded by a cyclic prefix of the symbols copying the last 32 

samples of the C symbols. One might compute the sliding correlation over 32 samples 

of the LTS. 

 

Sample

Cross correlation amplitude Cross correlation phase 

Sample
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4.2. Digital Design and Hardware Implementation of ETSI OFDM STS 
Synchronizer Using Sliding Correlator 

4.2.1. Top-level Architecture 

As mentioned before, the synchronization in OFDM systems is accomplished 

using correlation methods. Since the synchronization pattern of sliding correlation is 

more easily detectable than the one of cross correlation, we have selected the sliding 

correlation method for our synchronization application. The top-level block 

representation of the STS synchronizer is depicted in Figure 4.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Top-level Block Diagram of ETSI OFDM STS Synchronizer 
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In our hardware implementation we assume the followings: 

 

• Transmitted OFDM symbols are received successively by the antenna at 

the OFDM receiver and sampled at 20 MHz sampling clock frequency. 

•  The received complex analog OFDM samples (sub-carriers which carries 

QAM modulated complex data) are already converted to digital data; real 

and imaginary parts are separated each other 

• Our synchronizer takes these digital samples; real and imaginary parts are 

coming separately. 

STS Synchronizer design consists of 3 sub-modules:  

 

1. Sliding Shift Register module: It gets digital samples coming from the 

previous module (Analog to Digital Converter (ADC) Shifter) and stores 

the newest 16 samples. It provides the next block with correct data 

(Sample1 and Sample 2) to be correlated.  

2. Sliding Correlator module: This module realizes sliding correlation process 

of the inputs provided by Sliding Shift Register module. 

3. CORDIC module: This module outputs the amplitude and phase 

characteristics of the correlated OFDM data.  

 

All sub-blocks are handled in more details in the next sections. 

In our implementation, we consider numerical values seen in Table D.6. In the 

simulink OFDM model that we used, the modulation type was selected as 64QAM, 

preamble type was chosen as ETSI_BROADCAST, CO was set to 0 Hz, CFO was set to 

0 ppm and SNR was set to 210 dB that provided perfect conditions. Transmitted 

complex OFDM data was dumped from this model and used as the input stimuli of our 

hardware implementation. Real and imaginary parts of the generated input stimuli were 

separated each other and converted to 8-bits digital samples each. 
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4.2.1.1.Sliding Correlator Shift Register Unit (SlidingShiftRegister) 

The function of the Sliding Correlator Shift Register Unit is to store the newest 16 

samples and to provide SlidingCorrelator block with correct data to be correlated. At 

rising edge of clock, new sample is registered and oldest sample is discarded. 

In SlidingShiftRegister Block there are 17x8x2-Bit shift register to store the most 

recent 16 samples. Each sample consists of real and imaginary parts, stored in 8-Bit 

precision.  

The detailed architecture of SlidingShiftRegister block is depicted in Figure 4.10. 

It simply gets the digital real and imaginary parts of received OFDM samples and it 

stores newest 16 samples. Then it outputs newest sample and 16-clock cycles delayed 

sample to Sliding Correlator module, next block. The reason of this functionality is that 

the length of correlation window is for 16 samples (STS i.e. B, A, IA and IB each 

consists of 16 samples to be correlated). The correct data to be correlated by the next 

block should be the newest one and the 16-clock cycles delayed one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Architecture of SlidingShiftRegister Block 
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4.2.1.2.Sliding Correlator Unit 

The general operation of a correlator is multiplying its input signals “sample-by-

sample” and adding the product of each multiplication. If the signals to be correlated are 

of complex samples, i.e. a+jb and c+jd, then the multiplication occurs between one 

input signal and the “conjugate” of the other input signal. For instance, (a+jb) is 

multiplied by (c-jd), the conjugate of c+jd.  

The implementation of “Sliding Correlator” depends on a serial approach, which 

means at each clock cycle, it’s enough to multiply 2 samples with each other and add 

the product to previous one to take the correlation of two successively received STS 

symbols. This structure requires just one “complex multiplier”. Instead of this, all 16 

samples of two received STS can be multiplied each other in parallel, then all 

multiplication products can be accumulated to perform the sliding correlation of two 

successive received OFDM symbols. This approach requires (# of samples in a STS) 

complex multiplier units. This increases the area.  

Sliding Correlator consists of 2 sub-blocks as shown in Figure 4.11: 

 

1. SRCorrComplexMultiplier: Complex Multiplier Block 

2. SRCorrAccumulator: Accumulator Block 

 

Sliding Correlator basically receives real and imaginary samples from Sliding 

Correlator Shift Register and Complex Multiplier Sub-block in Sliding Correlator 

multiplies each new sample with the conjugate of a sample that has been received 16 

samples before. At each clock cycle, new product of input samples is added to the 

previous sum and the oldest product of samples is subtracted from this sum in 

Accumulator Block. The output of this accumulator is the output of SlidingCorrelator 

block. 
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SRCorrComplexMultiplier SRCorrAccumulator

Sample2Re_Out(7:0)

Sample2Im_Out(7:0)

Sample1Re_Out(7:0)

Sample1Im_Out(7:0)

CorrMultRe_Out(16:0)

CorrMultIm_Out(16:0)

SRCorreRe_Out(x:0)

SRCorreIm_Out(y:0)

 
 

Figure 4.11 The top-level block diagram of Sliding Correlator 

 

A complex multiplier seen in Figure 4.12 is used in SlidingCorrelator block. This 

complex multiplier works on the simple principle of 4 multiplications as explained 

below:  

Let two complex numbers that are going to be multiplied be (A + jB) and (C + jD) and 

the product (P + jQ). We have,  

 

                                             P = (A x C) – (B x D) and 

                                             Q = (A x D) + (B x C)                                           (4.1) 

 

Each of the inputs of the complex multiplier is 8 bits wide. The width of the both 

real and imaginer output is 17.  
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Figure 4.12 Complex Multiplier Structure 

 

As seen in Figure 4.13, the real and imaginary outputs of the 

SRCorrComplexMultiplier are the inputs of the SRCorrAccumulator. There are two 

separate shift registers for both real and imaginary parts. At each clock cycle, a new 

multiplied value for both real and imaginary parts are sent into these internal shift 

registers, which are 16 samples long.  

Real and imaginary shift registers are both 17 bits long. 

 

 

A+jB 

C+jD 
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The methodology of our sliding correlation implementation can be simply 

explained as follows: 

 

• The first rule of correlation implementation is to multiply the first complex 

sample (a+jb) with the conjugate of the second complex sample (c-jd). This is 

done by SRCorrComplexMultiplier.  

• The second rule is to accumulate every new product of the 

SRCorrComplexMultiplier and to subtract the 16 clock cycles delayed product 

from this accumulation. To understand this explained process let’s imagine 17 

clock cycles later from the beginning of STS sliding correlation process. At this 

time the first sample of first B symbol shown in Figure 4.2 is at the output of 

17th flip flop of sliding shift register in Figure 4.10 and the first sample of 

second B symbol is at the output of first flip flop of sliding correlator in Figure 

4.10. This is the critical time for the correlation process because the meaningful 

data begins from this point. The first sample of first B is multiplied by the first 

sample of second B and the product is sent into SRCorrAccumulator. 16 clock 

cycles later, all samples of both first B and second B are multiplied each other 

and the accumulation is done. At each new clock cycle, a new product of 

complex multiplier should be added to the accumulation while the oldest product 

is subtracted. This is needed because our STS symbols have 16 samples each so 

the “correlation window” width is just for 16 samples.  

 

The outputs of sliding correlator are registered at the rising edge of Clk. The reset 

signal is not shown in all figures for clarity. 

Figure 4.11, Figure 4.12 and Figure 4.13 show the detailed diagrams of the 

SlidingCorrelator block with the widths of input, internal and output signals. As seen in 

these figures, the input samples of SlidingCorrelator are 8 bits for real or imaginary 

parts but the internal samples are of 23 bits for real or imaginary parts. This is because 

inside the correlator a much bigger precision than 8 bits is needed in order not to loose 

precision during the computations. 
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                     Figure 4.13 Detailed architecture of SRCorrAccumulator block 

 

4.2.1.3.CORDIC (COrdinate Rotation DIgital Computer) Unit 

In Figure 4.9, at the output of SlidingCorrelator block, we have real and imaginary 

samples of correlated OFDM symbols. But we still need to find out the amplitude and 

the phase values of correlated OFDM samples to implement the OFDM synchronizer. 

Amplitude and phase characteristics should be analyzed to detect the OFDM symbol at 

the receiver. An algorithm called “CORDIC” has been developed for such kind of 

operations, i.e. computing trigonometric functions that are based on vector rotations. 

The CORDIC algorithm provides an iterative method of performing vector rotations by 

arbitrary angles using only shifts and adds which facilitates the digital design of this 

[28]. This is why the CORDIC algorithm was chosen in our thesis.  
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4.2.1.3.1. Functional Description: Cordic Theory 

CORDIC is a hardware-efficient algorithm that brings an iterative solution for 

trigonometric functions and uses only shifts and adds to perform. 

All of the trigonometric functions can be computed or derived from functions 

using vector rotations. Vector rotation can also be used for polar to rectangular and 

rectangular to polar conversions.  

The CORDIC algorithm provides an iterative method of performing vector 

rotations (see Figure 4.14) by arbitrary angles using only shifts and adds. The rotation is 

derived from the general rotation transform as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Vector Rotation 
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which rotates a vector in a Cartesian plane by the angle φ. These can be rearranged so 

that: 
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So far, nothing is simplified. However, if the rotation angles are restricted so that 

Nii
i .....0,2tan =±=∆ −φ , the multiplication by the tangent term is reduced to simple 

shift operation. Arbitrary angles of rotation are obtainable by performing a series of 

successively smaller elementary rotations. If the decision at each iteration, i, is which 

direction to rotate rather than whether or not to rotate, then the cos(δi) term becomes a 

constant (because cos(δi) = cos(-δi)). The iterative rotation can now be expressed as: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Iterative Rotation Solution 

 

Removing the scale constant from the iterative equations yields a shift-add 

algorithm for vector rotation. The product of the Ki’s can be applied elsewhere in the 

system or treated as part of a system processing gain. That product approaches 0.60725 

as the number of iterations goes to infinity. Therefore, the rotation algorithm has a gain, 

An, of approximately 1.647. The exact gain depends on the number of iterations and the 

relation 
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The angle of a composite rotation is uniquely defined by the sequence of the 

directions of the elementary rotations. That sequence can be represented by a decision 

vector. The set of all possible decision vectors is an angular measurement system based 

on binary arctangents. Conversions between this angular system and any other can be 

accomplished using a look-up table. A better conversion method uses an additional 

adder-subtractor that accumulates the elementary rotation angles at each iteration. The 

elementary angles can be expressed in any convenient angular unit. Those angular 

values are supplied by a small lookup table (one entry per iteration) or are hardwired, 

depending on the implementation. The angle accumulator adds a third difference 

equation to the CORDIC algorithm: 

 

                                        )2(tan. 1
1

i
iii dzz −−

+ −=                                            (4.6) 

 

Obviously, in cases where the angle is useful in the arctangent base, this extra 

element is not needed.  

The CORDIC rotator is normally operated in one of two modes. The first, called 

rotation rotates the input vector by a specified angle (given as an argument). The second 

mode, called vectoring, rotates the input vector to the x-axis while recording the angle 

required to make that rotation. 

  

Rotation Mode: 

 

In rotation mode, the angle accumulator is initialized with the desired rotation 

angle. The rotation decision at each iteration is made to diminish the magnitude of the 

residual angle in the angle accumulator. The decision at each iteration is therefore based 

on the sign of the residual angle after each step. Naturally, if the input angle is already 

expressed in the binary arctangent base, the angle accumulator may be eliminated. For 

rotation mode, the CORDIC equations are: 

 



 61

                                           

otherwise 1 ,0 if 1
where

)2(tan.

2..ˆˆˆ

2..ˆˆˆ

1
1

1

1

+<−=

−=

+=

−=

−−
+

−
+

−
+

ii

i
iii

i
iiii

i
iiii

zd

dzz

duvv

dvuu

                                (4.7) 

 

After N iterations, 
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Vectoring Mode: 

 

In the vectoring mode, the CORDIC rotator rotates the input vector through the 

angle necessary to align the result vector with the x-axis. The result of the vectoring 

operation is a rotation angle and the scaled magnitude of the original vector (the x 

component of the result). The vectoring function works by seeking to minimize the y 

component of the residual vector at each rotation. The sign of the residual y component 

is used to determine which direction to rotate next. If the angle accumulator is 

initialized with zero, it will contain the traversed angle at the end of the iterations. In the 

vectoring mode, the CORDIC equations are [28]: 
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After N iterations, 
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The CORDIC rotation and vectoring algorithms as stated are limited to rotation 

angles between -π/2 and π/2. This limitation is due to the use of 20 for the tangent in the 

first iteration. For composite rotation angles larger than π/2, an additional rotation 

shown in Equation (4.11) is required. An initial rotation of either π or 0 can be made 

avoiding reassignment of the x and y components to the rotator elements. This gives the 

correction iteration. There is no growth due to this initial rotation.  
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This reduction forms a modulo 2π  representation of the input angle. In our 

implementation we take this initial rotation into consideration. The CORDIC rotator 

described is usable to compute several trigonometric functions directly and others 

indirectly. Judicious choice of initial values and modes permits direct computation of 

sine, cosine, arctangent, vector magnitude and transformations between polar and 

Cartesian coordinates. In this thesis since we need to find just the vector magnitude 

(amplitude of the sliding correlator output) and the arctangent (phase of the sliding 

correlator output) of the complex output vector of sliding correlator block, only these 

two direct computations of CORDIC rotator are explained in detail below. Note that 

Cartesian to Polar coordinate transformation also consists of finding the magnitude and 

phase angle of the input vector provided by the vectoring mode CORDIC rotator. 

Arctangent: 
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The arctangent, )/tan( xyA=φ , is directly computed using the vectoring mode 

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be 

provided as a ratio has the advantage of being able to represent infinity (by setting x = 

0). Since the arctangent result is taken from the angle accumulator, the CORDIC rotator 

growth does not affect the result.  
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Vector Magnitude: 

 

The vectoring mode CORDIC rotator produces the magnitude of the input vector 

as a byproduct of computing the arctangent. After the vectoring mode rotation, the 

vector is aligned with the x-axis. The magnitude of the vector is therefore the same as 

the x component of the rotated vector. This result is apparent in the result equations for 

the vector mode rotator: 
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where ∏ −+=
N

i
NK 2211 . The magnitude result is compensated by multiplying with 

KN. Note that this product approaches 0.60725 as the number of iterations goes to 

infinity.  

4.2.1.3.2. Structure Overview 

In our ETSI STS synchronizer digital design, the CORDIC algorithm is limited to 

rotation angles between -π/2 and π/2. CORDIC outputs must be compensated by 

multiplying with K=0.60725 (excluding the angle). 
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CORDIC module we designed consists of three blocks seen in Figure 4.16: 

 

1. PRE_CORDIC 

2. CORDIC_CORE 

3. POST_CORDIC 

 

PRE_CORDIC receives real and imaginary parts of correlator data and produces 

the initial values of CORDIC_CORE. 

CORDIC_CORE evaluates the algorithm for Cartesian to Polar conversion 

(namely vectoring mode CORDIC rotator) and outputs the results of desired iteration. 

These results are led to POST_CORDIC. 

Finally, POST_CORDIC compensates the amplitude and corrects the phase and 

then gives them out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Top-level block representation of CORDIC 
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In our design, CORDIC algorithm works only at [-π/2, π/2] interval, so a glue 

logic is required in case there is a data out off this region at the input. PRE_CORDIC is 

designed to represent this data in the region CORDIC algorithm works. Phase 

information is represented in [0, 2π] interval, and this is evaluated in POST_CORDIC 

block. Amplitude is compensated in this block as well. 

In PRE_CORDIC block (see Figure 4.17), after Real_In and Imag_In enter the 

CORDIC module, the region of coming data is checked. If Real_In is less than zero, X0 

is fed by the inverse signed of Real_In. Imag_In feeds Y0 and Z0 (initial phase) is set to 

0. These operations are performed to allocate the data in the region CORDIC_CORE 

works. 

If Real_In is greater than zero, this means that the coming data is already in the 

region CORDIC_CORE works. So, Real_In and Imag_In are led directly to X0 and Y0, 

respectively. And, initial phase is set to zero. 

XOut output of CORDIC_CORE represents the amplitude of the data coming to 

CORDIC module, but differs from exact amplitude by a constant. To compensate this 

difference XOut is multiplied by this constant (K=0.60725) and divided by SQRT (2) 

for normalization to [0,1] region in POST_CORDIC block depicted in Figure 4.18. Also 

in this block, a switching operation is applied to phase information in order to provide 

that phase is between 0 and 2π at the output. Outputs are registered. These registers are 

updated at rising edge of clock, Clk, and reset with asynchronous active low signal, Rst. 

In CORDIC_CORE, depicted in Figure 4.19, N=10 fold ADD/SUB + SHIFTER 

(The shifters are each a fixed shift, which means that they can be implemented in the 

wiring) level is put cascaded in order to perform the CORDIC Algorithm. Outputs of 

each level are led to a mux controlled by NIterations signal (see Figure 4.19). So that, it 

is available to take the outputs of desired iteration step which is NIterations (NIterations 

≤ 10). During the implementation of CORDIC block, it has been seen that 10 iteration 

for the CORDIC Algorithm is quite satisfactory to get the desired result and more 

iteration step requires more logic in terms of preserving accuracy in arithmetic 

operations; more iteration is done more hardware is required. Shifter is performing 

arithmetic shifting to right. The most important point here is to determine all constants 

to be used for the calculation of zi’s. Constants in CORDIC Algorithm can be calculated 

as follows: 
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If we remember that we use vectoring mode CORDIC rotator, our equations are 
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Constants seen in Figure 4.18 to be calculated are determined by  

 

                                                   )2(tan 1 i−−                                                       (4.15) 

 

where i = 0, 1, ……, N-1 and N = 10 in our exercise.  

So, constants needed are calculated and inserted in Table 4.1. 

i.e. Constant0 = tan-1(20) = 45o.  

 

 Constant = tan-1(2i) 

i Constant i Degree Radian 
0 Constant 0 45° 0.78539 
1 Constant 1 26.356° 0.46364 
2 Constant 2 14.036° 0.24497 
3 Constant 3 7.125° 0.12435 
4 Constant 4 3.576° 0.06241 
5 Constant 5 1.789° 0.03123 
6 Constant 6 0.895° 0.01562 
7 Constant 7 0.447° 0.05549 
8 Constant 8 0.223° 0.00390 
9 Constant 9 0.1119° 0.00195 

 

Table 4.1 Constants used in CORDIC_CORE block 
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Figure 4.17 PRE_CORDIC Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 POST_CORDIC Structure 
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Figure 4.19 CORDIC_CORE Structure 
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4.3. Hardware Design of Generic ETSI OFDM STS Synchronizer 

4.3.1. Coding of ETSI OFDM STS Synchronizer 

ETSI OFDM STS Synchronizer seen in Figure 4.9 is coded using VHDL digital 

hardware description language.  

Three sub-modules of ETSI OFDM STS Synchronizer are coded separately. 

These modules are connected to each other in STSSynchronizer, which is the top-level 

module. The SRCorrComplexMultiplier block is located inside the SlidingCorrelator 

module.  

All modules are coded generically so that ETSI OFDM STS Synchronizer gains 

flexibility, which will allow us in the future to use it in a whole synchronizer block of 

an OFDM receiver. 

VHDL codes of ETSI OFDM STS Synchronizer can be seen in Appendix B and 

Appendix C. 

4.3.2. Simulation of ETSI OFDM STS Synchronizer 

ETSI OFDM STS Synchronizer seen in Figure 4.9 was tested and simulated using 

Cadence Affirma NC VHDL Simulation Tool.  

For each of the three sub-modules, separate functional simulations were 

performed. Simulation sections of each module can be seen in Figure 4.23, Figure 4.24, 

Figure 4.25 and Figure 4.26 respectively. After sub-modules were tested and verified 

individually, the following step, which is the top-level verification plan was realized for 

whole system. 

Before giving a start to top-level functional verification, verification environment 

was constructed as follows: 

 

1. Forming of input stimuli to be forced to ETSI OFDM STS Synchronizer: 

 

An OFDM input stimulus was dumped to a matlab file from simulink 

OFDM model. The dumped OFDM stimuli have the characteristics summarized 
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in Table 4.2. As seen in this table, the dumped data is under perfect conditions. 

The STS part of this stimuli can be seen in Figure 4.5.  

 

OFDM Stimuli Characteristics 

Modulation type 64QAM 

Preamble type ETSI_BROADCAST 

SNR 210.0 dB 

CO 0 ppm 

CFO 0 Hz 

 

Table 4.2 Input stimuli characteristics 

 

2. Writing matlab scripts to convert the data from real-complex format to 

binary format: 

 

As seen in Figure 4.5, the dumped OFDM data consists of real-complex 

numbers. This data had to be converted to binary format. Real and imaginary parts 

also had to be separated from each other in order to be ready for being forced to 

ETSI OFDM STS Synchronizer. 

Separation of real and imaginary parts of OFDM stimuli was realized in 

matlab environment without using a script. The conversion of real data to binary 

format was realized with a simple matlab script so that real and imaginary parts 

were stored separately. OFDM input stimuli were written into a file. Since the 

only STS part of all OFDM stimuli was enough for testing the ETSI OFDM STS 

Synchronizer, the stimuli other than STS and some part of LTS samples was 

deleted from file. Input stimuli consist of 250 real and imaginary digital samples.  

 

3. Writing top-level test-bench 

 

In order to test ETSI OFDM STS Synchronizer, a top-level test-bench was 

written. It reads the input stimuli from a file, then applies these stimuli to ETSI 

OFDM STS Synchronizer and writes the outputs of the system into an output file.  
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4. Writing simple matlab script which plots amplitude and phase graphs of 

ETSI OFDM STS Synchronizer in matlab environment  

 

In order to transfer outputs of the top-level simulations, a simple script was 

written. This script reads the outputs from the output file generated by top-level 

test-bench and then plots the amplitude and phase graphs of ETSI OFDM STS 

Synchronizer.  

 

4.3.2.1.Top-level Functional Simulation Results of ETSI OFDM STS Synchronizer 

At the end of top-level functional simulations, we could get the desired results in 

terms of amplitude and phase characteristics in comparison with the graphs seen in 

Figure 4.4. Owing to the fact that the generated OFDM stimuli change each time the 

OFDM simulink model runs (a random data generator generates all data), it is observed 

that the dumped stimuli used for hardware simulations were different from the matlab 

model data. Because of this reason, there have been small differences between the 

graphs of our results and the matlab model.  

As explained in chapter 4.1.1, the goal is to detect the IB short OFDM symbol at 

the end of the preamble section based upon the sequence SB. In the ETSI 

BROADCAST case (see chapter D.1.5.4.7.1 and Figure 4.4), the correlation amplitude 

is the same for both SA and SB based section. However the correlation phase transition 

(from high to low or from low to high) allows distinguishing them.  

Figure 4.20 represents the results achieved in our hardware implementation when 

the number of iterations realized in CORDIC block is equal to 10. When it’s compared 

to Figure 4.4, it can be easily seen that the desired results for both amplitude and phase 

characteristics could be achieved. The first plateau and then first peak seen in Figure 

4.20 a, correspond to SA based section while the second ones are related to SB based 

section respectively. As the first plateau seen in Figure 4.20 a continues, the phase also 

preserves its value (see Figure 4.20 b). Whenever the first plateau finishes, the phase of 

ETSI OFDM STS Synchronizer makes a sharp transition from high-to-low, which is 

what we expect (see Figure 4.4). Then, after the first peak seen in Figure 4.20 a, the 

second plateau begins; while the phase characteristic again preserves its value. The 
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phase jump is realized this time from low-to-high whenever the second plateau finishes. 

This is also same as what we expect (see Figure 4.4). These phase transitions allow us 

to distinguish SA and SB based sections from each other. So amplitude and phase 

characteristics should be processed and analyzed together to detect the short IB symbol 

at the end of STS section. 

First ∼180 output OFDM samples are the outputs for the ETSI BROADCAST 

STS input samples while first ∼18 output samples are zero since the meaningful 

correlation begins after 17 clock cycles later from the beginning of STS sliding 

correlation process (see 4.2.1.2). After ∼180th sample, ETSI OFDM STS Synchronizer 

begins to output the LTS part related results, which we are not interested in. Note that 

the amplitude and phase outputs for LTS part of preamble section are not so meaningful 

since the correlation window width of ETSI OFDM STS Synchronizer is only for 16 

samples. Anyway the LTS part is not used to detect where the OFDM symbol 

boundaries are. 

As mentioned before, CORDIC block runs basically a combinational iterative 

algorithm to implement the needed vector rotations. As the number of iterations realized 

in CORDIC block increases, the achieved results go better in comparison with the 

previous iteration. For instance, Figure 4.21 represents the amplitude and phase 

characteristics at the output of ETSI OFDM STS Synchronizer for NRIterations = 2, 

while Figure 4.22 represents the ones for NRIterations = 5. Since the results achieved 

for 10 iterations were quite satisfactory, the number of iterations was limited to 10 in 

CORDIC block of our implementation. Note that our design does not support more than 

10 iterations and it’s needed to add more logic for this.  

Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26 and Figure 4.27 show the 

simulation sections of each block and the top-level of ETSI OFDM STS Synchronizer. 
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(a) 

 

 
(b) 

Figure 4.20 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST 
Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase 
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(a) 

 
(b) 

Figure 4.21 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST 
Preamble for NRIterations = 2 in CORDIC block: (a) Amplitude (b) Phase 
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(a) 

 
(b) 

Figure 4.22 ETSI OFDM STS Synchronizer output graphs for ETSI BROADCAST 
Preamble for NRIterations = 5 in CORDIC block: (a) Amplitude (b) Phase 
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Figure 4.23 Simulation section of SlidingShiftRegister block 

 

 

 
 

Figure 4.24 Simulation section of SRCorrComplexMultiplier sub-block in 
SlidingCorrelator 
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Figure 4.25 Simulation section of SlidingCorrelator block 

 

 

 



 78

 

 
 

Figure 4.26 Simulation section of CORDIC block 
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Figure 4.27 Top-level simulation section of STSSynchronizer 

4.3.3. Synthesis of ETSI OFDM STS Synchronizer IP and Gate-level Simulations 

4.3.3.1.Synthesis 

As mentioned before, ETSI OFDM STS Synchronizer was not manufactured and 

resulted as a generic “IP”, which means it’s ready to be synthesized, adapted and used 

in an OFDM receiver. But although it was not manufactured, it was necessary to 

synthesize it to see whether it exists any problems or not in terms of static timing 

analysis and also to see its maximum processing speed and the area which it covers.  
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Synthesis was realized with Synopsys Design Analyzer Synthesis tool in CMOS 

0.13µm technology using Virtual Silicon Technology (VST) library cells. It was written 

a synthesis script, which included all necessary constraints for the synthesis. In order to 

get more efficient results in terms of high-level optimization of both timing and area, 

“Synopsys DesignWare Foundation Synthetic Library” components that are a collection 

of reusable intellectual property blocks were used by adding necessary constraints into 

the synthesis script.  

As a synthesis methodology, “top-down” synthesis way was used since it provides 

a push-button approach and our design is not so large. All constraints were applied to 

STSSynchronizer, which is the top-level block.  

Since it was run a preliminary synthesis, it was not constrained a wire load model 

and used the default one that was assigned by the synthesis tool. Top-level schematic 

view of synthesized ETSI OFDM STS Synchronizer IP is shown in Figure 4.28 and 

schematic views of each of sub-modules can be seen in Figure 4.29, Figure 4.30, Figure 

4.31, Figure 4.32, Figure 4.33 respectively.  

 

 
 

Figure 4.28 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer
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Figure 4.29 Schematic view of synthesized SlidingShiftRegister block 
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Figure 4.30 Schematic view of synthesized SRCorrComplexMultiplier block 
instantiated in SlidingCorrelator block 
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Figure 4.31 Schematic view of a DesignWare multiplier component instantiated in 
SRCorrComplexMultiplier block 
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Figure 4.32 Schematic view of synthesized SlidingCorrelator block 
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Figure 4.33 Schematic view of synthesized CORDIC block 

 



 86

Since the ETSI Hiperlan/2 PHY layer standards requires a 20 MHz sampling 

frequency at receiver (please see Table D.6), synthesis was run first setting the system 

operation frequency to 20 MHz. It was seen that the system had not any problem at this 

operation frequency in terms of critical timing issues and we did not get any violations. 

Area results achieved for this synthesis can be seen in Table 4.3. Then, as the second 

step, it was aimed to catch the maximum operation frequency of this IP. After several 

synthesis trials with “low effort” constraint, at the end of static timing analysis, it was 

seen that the maximum operation speed for our IP was 50 MHz and CORDIC block was 

at the critical path since its algorithm was implemented using mostly combinational 

logic. After this clock frequency, system begins to produce setup time violations. This 

result is exactly same as what we expect. To reach speeder frequencies than 50 MHz, 

it’s necessary to implement a pipelined architecture inside the CORDIC block, which 

increases both latency and throughput of the system. This is not aimed to reach the 

possible maximum speeds in our implementation since we accept ETSI Hiperlan/2 

OFDM standard and parameters. But IP is ready to run up to 50 MHz speed, maybe 

more after a serious synthesis trials with correct constraints. Synthesis results for 50 

MHz in terms of area are in Table 4.4. Power estimation reports given by Synopsys 

Design Analyzer for 20MHz and 50MHz-operating frequencies are in Table 4.5 and in 

Table 4.6 respectively. Equation to calculate the approximate power consumption in the 

CMOS 0.13µm technology-VST77000 databook is given by  

 

                        staticswitchingfanoutfallrisediss PFVCEEP +++= ))..(( 2            (4.16) 

 

where: 

• Pdiss is the power dissipation of the gate (in pW). 

• Erise is the energy for the rising transition (in pJ). 

• Efall is the energy for the falling transition (in pJ). 

• Cfanout is the output load capacitance (in pF); the number of loads multiplied by 

the value for a standard load. 

• V is the supply voltage. 

• Fswitching is the switching frequency of the transition (in mHz). 

• Pstatic is the static power dissipation of the library cell (in pW). 



 87

 

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer 

(Total) 

µ2 177.984009 14020.992188 23499.062500 37706.683594 Combinational  

Area Gates 34 2707 4533 7273 

µ2 12690.431641 27527.037109 933.119995 41150.585938 Noncombinational  

Area Gates 2173 5310 180 7938 

µ2 12868.416016 41548.031250 24432.181641 78857.265625 Total Cell Area 

Gates 2207 8017 4713 15211 

Number of Flip-Flops 272 590 20 882 

 

Table 4.3 Area results of synthesis of ETSI OFDM STS Synchronizer for 20MHz 
operation frequency 

 

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer 

(Total) 

µ2 177.984009 14033.087891 53122.183594 67341.890625 Combinational  

Area Gates 34 2707 10247 12990 

µ2 12690.431641 27359.132812 933.119995 41162.683594 Noncombinational  

Area Gates 2173 5278 180 7940 

µ2 12868.416016 41572.218750 54055.304688 108504.578125 Total Cell Area 

Gates 2207 7985 10427 20930 

Number of Flip-Flops 272 590 20 882 

 

Table 4.4 Area results of synthesis of ETSI OFDM STS Synchronizer for 50MHz 
operation frequency  

 

 

 



 88

 
Operating Conditions wc_1.08V_125C 

Global Operating Voltage (V) 1.08 

Library VST77000_wc_1.08V_125C 

Power Consumption Estimation 

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer 

(Total) 

Cell Internal Power µW 99.1853 209.6462 10.8812 319.7526 

Net  

Switching Power 

µW 6.9607 20.1876 2.9840 73.8889 

Total  

Dynamic  

Power = CIP + NSP 

µW 106.1460 229.8338 13.8652 393.6414 

Cell Leakage Power 

(Static Power) 

µW 14.0214 61.3368 52.4857 127.8588 

 

Table 4.5 Power consumption estimation for 20MHz operation frequency 

 
Operating Conditions wc_1.08V_125C 

Global Operating Voltage (V) 1.08 

Library VST77000_wc_1.08V_125C 

Power Consumption Estimation 

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer 

(Total) 

Cell Internal Power µW 248.4968 523.9656 28.2263 800.7877 

Net  

Switching Power 

µW 17.4481 50.3458 7.3146 184.5302 

Total  

Dynamic  

Power = CIP + NSP 

µW 265.9449 574.3114 35.5408 985.3179 

Cell Leakage Power 

(Static Power) 

µW 14.0473 60.8577 109.4740 184.3936 

 

Table 4.6 Power consumption estimation for 50MHz operation frequency 
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4.3.3.2.Gate-level Simulations 

After synthesis of the IP, the net-list of the synthesized design was saved in 

verilog format; then it was generated the sdf (standard delay file) file needed for the 

gate-level simulations. As mentioned before, our design was resulted as an IP and no 

back-end activities were done such place-and-route process. This is why we did not 

have a real sdf file, which is normally produced after the place-and-route operation. So 

gate-level simulations were realized using the sdf file generated by Synopsys Design 

Analyzer, which included the estimated timings for each of library elements.  

Gate-level simulation results seen in Figure 4.35 a and Figure 4.35 b are same as the 

ones we got during functional simulations (see Figure 4.20). A section of gate-level 

simulations of STSSynchronizer is shown in Figure 4.34.  

 

 
 

Figure 4.34 Gate-level simulation section of STSSynchronizer 
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(a) 

 

 
(b) 

Figure 4.35 ETSI OFDM STS Synchronizer output graphs (gate-level) for ETSI BROADCAST 
Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase 
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5. CONCLUSIONS 

This thesis has presented the design, digital implementation, functional and gate-

level verification and synthesis of ETSI OFDM STS Synchronizer IP in digital CMOS 

0.13µm technology using VST libraries. Physical realization of the Symbol 

Synchronizer has not been performed, but it is ready to be integrated as a part of whole 

synchronizer, which implements all needed synchronization tasks in an ETSI OFDM 

receiver. 

The architecture of the ETSI OFDM STS Synchronizer is based on sliding 

correlation methodology. A serial approach is reflected to whole design instead of 

parallel, which decreases the total area reducing the number of arithmetic functional 

blocks used in the design like multipliers.  

The design consists of three main blocks: Sliding Shift Register block, which 

provides the Sliding Correlator block with the correct data to be correlated; Sliding 

Correlator block, which realizes the main functionality of the IP, sliding correlation of 

OFDM samples and includes the Complex Multiplier block; CORDIC block, which 

provides the amplitude and phase values of correlated OFDM samples.  

At the end of functional and gate-level verifications of symbol synchronizer we 

designed, we could achieve very satisfactory results: Amplitude and phase 

characteristics of the slightly correlated received samples were very similar to simulink 

matlab model’s ones. At the output of designed synchronizer, amplitude and phase 

characteristics of the correlated received samples allowed us to detect the OFDM 

symbol. Amplitude and phase transitions of the correlated received STS symbols were 

the same as what we expected. As a result, ETSI OFDM symbols can be easily 

detectable by the hardware we proposed and designed in this thesis.  

Although the current standard requires 20 MHz operation frequency, ETSI OFDM 

STS Synchronizer IP is capable to work up to 50 MHz. This means that it can be easily 

adapted to the future designs up to this speed. The CORDIC block is at the critical path 
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in terms of design timing since it has a huge combinational logic to implement the 

iterative CORDIC algorithm. CORDIC block should be redesigned with a pipelined 

architecture in order to increase the operation frequency higher than 50 MHz.  

To summarize, the proposed and digitally designed ETSI OFDM STS Symbol 

Synchronizer IP is capable to correlate received ETSI OFDM symbols correctly and to 

find out where ETSI OFDM symbol boundaries are. The achieved results are 

satisfactory and can be used as a starting point for possible future works.  

 

Based on the finding of this thesis, for future works, the following issues may be 

proposed: 

 

• In our work, we made our design considering a perfect media and we did 

not consider impairments caused by CFO (Carrier Frequency Offset), CO 

(Clock Offset), AWGN, phase errors and channel effects. First, our design 

can be tested under these effects, then taking these effects into account, it 

can be developed and designed a whole ETSI OFDM Synchronizer that 

deals with all of these impairments, including the ETSI OFDM STS 

Symbol Synchronizer IP as well.  

• A complete digital OFDM receiver can be designed, implemented and 

produced including the whole synchronizer block.  
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A. APPENDIX A: SCHEMATICS OF WHOLE IP 

 

 
 

Figure A.1 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer 
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Figure A.2 Schematic view of synthesized SlidingShiftRegister block 
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Figure A.3 Schematic view of synthesized SRCorrComplexMultiplier block instantiated 
in SlidingCorrelator block 
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Figure A.4 Schematic view of a DesignWare multiplier component instantiated in 
SRCorrComplexMultiplier block 
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Figure A.5 Schematic view of synthesized SlidingCorrelator block 
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Figure A.6 Schematic view of synthesized CORDIC block 
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B. APPENDIX B: FUNCTIONAL VHDL CODES 

1. STSSynchronizerConstants.Package.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
package STSSynchronizerConstants is 
 
 
--SlidingShiftRegConstants 
   
  constant SR_SHIFTREG_LENGTH  : integer := 17; 
  constant SAMPLE_WIDTH   : integer := 8; 
  constant NR_BITS    : integer := 8; 
   
--SRCorrelatorConstants   
  constant m       : integer := 8; 
  constant n     : integer := 8; 
      constant CORRELATION_LENGTH  : integer := 16;  
  constant SAMPLE_IN_WIDTH  : integer := m;     --8 
  constant SAMPLE_INTERN_WIDTH : integer := m+n+7; --23   
  constant SAMPLE_OUT_WIDTH  : integer := 10;  
 
--CordicRPConstants 
   
  constant D_CORDIC_SIGNED_wl  : integer := 10;   
  constant D_CORDIC_UNSIGNED_wl : integer := NR_BITS + 2;    
    constant D_CORDIC_INTERN_wl   : integer := NR_BITS + 8; 
    constant D_CORDIC_INTERN_iwl  : integer := 3; 
   
  constant WIDTH    : integer := D_CORDIC_SIGNED_wl; 
  constant WIDTH_INTERN    : integer := D_CORDIC_INTERN_wl; 
  constant IWIDTH_INTERN   : integer := D_CORDIC_INTERN_iwl; 
   
   
  
end STSSynchronizerConstants; 
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2. SRShiftRegComponent.Package.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
  
package SRShiftRegComponent is 
   
 component SRShiftReg 
         
 port ( 
             
 Clk20M   : in std_logic; 
 Rst_N   : in std_logic; 
 SampleRe_In  : in std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 SampleIm_In  : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);    
 Sample1Re_Out  : out std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 Sample1Im_Out  : out std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 Sample2Re_Out  : out std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 Sample2Im_Out  : out std_logic_vector(SAMPLE_WIDTH-1 downto 0) 
 
 ); 
    end component; 
    
end SRShiftRegComponent; 

 

3. SRShiftReg.Entity.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
 
entity SRShiftReg is 
   
  port( 
    Clk20M  : in std_logic; 
    Rst_N   : in std_logic; 
    SampleRe_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
    SampleIm_In : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);    
    Sample1Re_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
    Sample1Im_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
    Sample2Re_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
    Sample2Im_Out : out std_logic_vector(SAMPLE_WIDTH-1 downto 0)); 
 
end SRShiftReg; 
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4. SRShiftReg.rtl.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
architecture rtl of SRShiftReg is 
 
  type t_SamplesShiftReg is array(SR_SHIFTREG_LENGTH-1 downto 0) of 
std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 
  signal SampleRe_r            : t_SamplesShiftReg; 
  signal SampleIm_r            : t_SamplesShiftReg; 
  
begin 
 
p_SRShiftRegister: process(Clk20M, Rst_N, SampleRe_In, SampleIm_In, 
SampleRe_r, SampleIm_r) 
begin 
  if (Rst_N = '0') then 
    SampleRe_r <= (others=> (others => '0'));  
    SampleIm_r <= (others=> (others => '0'));  
  elsif (Clk20M'event and Clk20M = '1') then 
    SampleRe_r <= SampleRe_r(SR_SHIFTREG_LENGTH-2 downto 0) & 
SampleRe_In; 
    SampleIm_r <= SampleIm_r(SR_SHIFTREG_LENGTH-2 downto 0) & 
SampleIm_In; 
  end if ;   
end process p_SRShiftRegister; 
 
  Sample1Re_Out <= SampleRe_r(SR_SHIFTREG_LENGTH-1); 
  Sample1Im_Out <= SampleIm_r(SR_SHIFTREG_LENGTH-1); 
  Sample2Re_Out <= SampleRe_r(0); 
  Sample2Im_Out <= SampleIm_r(0); 
 
end rtl; 
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5. CmplxMultiplierComponent.Package.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
  
package CmplxMultiplierComponent is 
 
   
    component CmplxMultiplier 
         
        port ( 
     
  InputXI             : in std_logic_vector(m-1 downto 0); 
      InputXQ             : in std_logic_vector(m-1 downto 0); 
      InputYI             : in std_logic_vector(n-1 downto 0); 
      InputYQ             : in std_logic_vector(n-1 downto 0);  
   OutputI             : out std_logic_vector(m+n downto 0); 
      OutputQ             : out std_logic_vector(m+n downto 0) 
     
             ); 
    end component; 
    
end CmplxMultiplierComponent; 
 

6. CmplxMultiplier.Entity.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
entity CmplxMultiplier is 
     

port( 
     
    InputXI             : in std_logic_vector(m-1 downto 0); 
    InputXQ             : in std_logic_vector(m-1 downto 0); 
    InputYI             : in std_logic_vector(n-1 downto 0); 
    InputYQ             : in std_logic_vector(n-1 downto 0);     
    OutputI             : out std_logic_vector(m+n downto 0); 
    OutputQ             : out std_logic_vector(m+n downto 0) 
     
        ); 
end CmplxMultiplier; 
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7. CmplxMultiplier.rtl.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
 
-- Two complex numbers are multiplied: InputX = A+jB, InputY = C+jD 
-- Output = P + jQ where P = A*C - B*D, Q = A*D + B*C. 
 
 
architecture rtl of CmplxMultiplier is 
 
signal AD,BC,AC,BD      : std_logic_vector(m+n-1 downto 0);  
-- AD=A*D, BC=B*C, AC=A*C, BD=B*D 
 
begin 
 
  AD <= CONV_STD_LOGIC_VECTOR(signed(InputXI) * signed(InputYQ),m+n);   
  BC <= CONV_STD_LOGIC_VECTOR(signed(InputXQ) * signed(InputYI),m+n); 
  AC <= CONV_STD_LOGIC_VECTOR(signed(InputXI) * signed(InputYI),m+n); 
  BD <= CONV_STD_LOGIC_VECTOR(signed(InputXQ) * signed(InputYQ),m+n);  
  
  OutputI <= CONV_STD_LOGIC_VECTOR((signed(AC(m+n-1) & AC) - 
signed(BD(m+n-1) & BD)),m+n+1);          
  OutputQ <= CONV_STD_LOGIC_VECTOR((signed(AD(m+n-1) & AD) + 
signed(BC(m+n-1) & BC)),m+n+1);   
   
 
end rtl; 
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8. SRCorrelatorComponent.Package.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
  
package SRCorrelatorComponent is 
 
   
 component SRCorrelator 
         
   port ( 
             
 Clk20M        : in std_logic; 
     Rst_N         : in std_logic; 
     Sample1Re_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
     Sample1Im_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
     Sample2Re_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
     Sample2Im_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
     SRRe_Out      : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0); 
     SRIm_Out      : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0)
  
          ); 
    end component; 
    
end SRCorrelatorComponent; 

 

9. SRCorrelator.Entity.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
entity SRCorrelator is 
  
  port( 
   Clk20M        : in std_logic; 
   Rst_N         : in std_logic; 
   Sample1Re_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
   Sample1Im_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
   Sample2Re_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
   Sample2Im_In  : in std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
   SRRe_Out      : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0); 
   SRIm_Out      : out std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0)); 
 
end SRCorrelator; 
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10. SRCorrelator.rtl.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
use lib_sts.CmplxMultiplierComponent.all; 
 
architecture rtl of SRCorrelator is 
 
 
 
  type t_CorrRegRe is array(CORRELATION_LENGTH-1 downto 0) of 
std_logic_vector(m+n downto 0); 
  type t_CorrRegIm is array(CORRELATION_LENGTH-1 downto 0) of 
std_logic_vector(m+n downto 0); 
 
  signal CorrRegRe_r                   : t_CorrRegRe; 
  signal CorrRegIm_r                   : t_CorrRegIm; 
  signal ProductRe_Intern            : std_logic_vector(m+n downto 0); 
  signal ProductIm_Intern            : std_logic_vector(m+n downto 0); 
  signal ToBeSubtractedRegRe_Intern  : std_logic_vector(m+n downto 0); 
  signal ToBeSubtractedRegIm_Intern  : std_logic_vector(m+n downto 0);   
  signal SubtractRe_Intermediate   : std_logic_vector(m+n+1 downto 0); 
  signal SubtractRe_Intermediate_Signed : signed(m+n+1 downto 0); 
  signal SubtractIm_Intermediate   : std_logic_vector(m+n+1 downto 0); 
  signal SubtractIm_Intermediate_Signed : signed(m+n+1 downto 0); 
  signal I_MSB                          : 
std_logic_vector(SAMPLE_INTERN_WIDTH-(m+n+2)-2 downto 0); -- 4 bits 
  signal Q_MSB                          : 
std_logic_vector(SAMPLE_INTERN_WIDTH-(m+n+2)-2 downto 0); -- 4 bits 
  signal Sample1_Inverted               : 
std_logic_vector(SAMPLE_IN_WIDTH-1 downto 0); 
  signal Sample1_Inverted_Signed : signed(SAMPLE_IN_WIDTH-1 downto 0); 
  signal SubtractRe_Intern              : 
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);   
  signal SubtractIm_Intern              : 
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0);   
  signal SumRe_Intern                   : 
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0); 
  signal SumRe_Intern_Signed : signed(SAMPLE_INTERN_WIDTH-1 downto 0); 
  signal SumIm_Intern                   : 
std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0); 
  signal SumIm_Intern_Signed : signed(SAMPLE_INTERN_WIDTH-1 downto 0); 
  signal SRRe_r : std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0); 
  signal SRIm_r : std_logic_vector(SAMPLE_INTERN_WIDTH-1 downto 0); 
 
begin 
 
I_ComplexMultiplier : CmplxMultiplier port map( 
   InputXI   => Sample2Re_In, 
   InputXQ   => Sample2Im_In, 
   InputYI   => Sample1Re_In, 
   InputYQ   => Sample1_Inverted, 
   OutputI   => ProductRe_Intern, 
   OutputQ   => ProductIm_Intern); 
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Sample1_Inverted_Signed <= - signed(Sample1Im_In); 
Sample1_Inverted <= 
CONV_STD_LOGIC_VECTOR(Sample1_Inverted_Signed,SAMPLE_IN_WIDTH); 
 
 
ToBeSubtractedRegRe_Intern <= CorrRegRe_r(CORRELATION_LENGTH-1);  
--CORRELATION_LENGTH-1=15 
ToBeSubtractedRegIm_Intern <= CorrRegIm_r(CORRELATION_LENGTH-1);  
--CORRELATION_LENGTH-1=15 
 
 
SubtractRe_Intermediate_Signed <= signed(ProductRe_Intern(m+n) & 
ProductRe_Intern) - signed(ToBeSubtractedRegRe_Intern(m+n) & 
ToBeSubtractedRegRe_Intern); 
--SubtractRe_Intermediate is 18-bits-wide ((m+n+1) = (m+n) + (m+n)) 
SubtractRe_Intermediate <= 
CONV_STD_LOGIC_VECTOR(SubtractRe_Intermediate_Signed,(m+n+2)); 
I_MSB <= (others => SubtractRe_Intermediate(m+n+1));          
--I_MSB is 4-bits-wide 
SubtractRe_Intern <= I_MSB & SubtractRe_Intermediate & '0';   
--SubtractRe_Intern is 23-bits-wide 
 
 
SubtractIm_Intermediate_Signed <= signed(ProductIm_Intern(m+n) & 
ProductIm_Intern) - signed(ToBeSubtractedRegIm_Intern(m+n) & 
ToBeSubtractedRegIm_Intern);  
--SubtractIm_Intermediate is 18-bits-wide ((m+n+1) = (m+n) + (m+n)) 
SubtractIm_Intermediate <= 
CONV_STD_LOGIC_VECTOR(SubtractIm_Intermediate_Signed,(m+n+2)); 
Q_MSB <= (others => SubtractIm_Intermediate(m+n+1));          
--Q_MSB is 4-bits-wide 
SubtractIm_Intern <= Q_MSB & SubtractIm_Intermediate & '0';   
--SubtractIm_Intern is 23-bits-wide 
 
SumRe_Intern_Signed <= signed(SRRe_r) + signed(SubtractRe_Intern); 
SumRe_Intern <= CONV_STD_LOGIC_VECTOR(SumRe_Intern_Signed, (m+n+7)); 
 
SumIm_Intern_Signed <= signed(SRIm_r) + signed(SubtractIm_Intern); 
SumIm_Intern <= CONV_STD_LOGIC_VECTOR(SumIm_Intern_Signed, (m+n+7)); 
 
 
SRRe_Out <= SRRe_r(20 downto 11); 
SRIm_Out <= SRIm_r(20 downto 11); 
 
 
p_CorrelatorRegister: process(Clk20M, Rst_N, CorrRegRe_r, CorrRegIm_r, 
ProductRe_Intern, ProductIm_Intern) 
begin 
-- Input Samples are being shifted. 
  if (Rst_N = '0') then 
    CorrRegRe_r <= (others => (others => '0'));  
    CorrRegIm_r <= (others => (others => '0'));   
  elsif (Clk20M'event and Clk20M = '1') then  
    CorrRegRe_r <= CorrRegRe_r(CORRELATION_LENGTH-2 downto 0) & 
ProductRe_Intern ; 
    CorrRegIm_r <= CorrRegIm_r(CORRELATION_LENGTH-2 downto 0) & 
ProductIm_Intern ; 
  end if; 
end process p_CorrelatorRegister; 
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p_Accumulator: process(Clk20M, Rst_N) 
begin 
  if (Rst_N = '0') then 
    SRRe_r <= (others => '0');  
    SRIm_r <= (others => '0');  
  elsif (Clk20M'event and Clk20M = '1') then 
    SRRe_r <= SumRe_Intern; 
    SRIm_r <= SumIm_Intern; 
  end if ;  --Clk 
end process p_Accumulator; 
 
 
end rtl; 

 

11. CordicRPComponent.Package.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
  
package CordicRPComponent is 
   
  component CordicRP 
         
    port ( 
     
       Clk20M                : in std_logic; 
       Rst_N                 : in std_logic; 
       NRIterations_In       : in std_logic_vector(3 downto 0); 
       RReal_In              : in std_logic_vector(WIDTH-1 downto 0); 
       RImag_In              : in std_logic_vector(WIDTH-1 downto 0);
  
       RAmp_Out              : out std_logic_vector(WIDTH-1 downto 0); 
       RPh_Out                : out std_logic_vector(WIDTH-1 downto 0) 
      
  ); 
    end component; 
    
 
end CordicRPComponent; 
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12. CordicRP.Entity.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
 
entity CordicRP is 
     
    port( 
      Clk20M             : in std_logic; 
      Rst_N              : in std_logic; 
      NRIterations_In    : in std_logic_vector(3 downto 0); 
      RReal_In            : in std_logic_vector(WIDTH-1 downto 0); 
      RImag_In            : in std_logic_vector(WIDTH-1 downto 0);  
      RAmp_Out            : out std_logic_vector(WIDTH-1 downto 0); 
      RPh_Out            : out std_logic_vector(WIDTH-1 downto 0) 
        );      
 
end CordicRP; 

 

13. CordicRP.rtl.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
architecture rtl of CordicRP is 
 
signal RReal_Ext : std_logic_vector(WIDTH_INTERN-1 downto 0); 
signal RImag_Ext : std_logic_vector(WIDTH_INTERN-1 downto 0); 
 
signal X_0 ,Y_0, Z_0, Xshft_0, Yshft_0   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_1 ,Y_1, Z_1, Xshft_1, Yshft_1   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_2 ,Y_2, Z_2, Xshft_2, Yshft_2   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_3 ,Y_3, Z_3, Xshft_3, Yshft_3   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_4 ,Y_4, Z_4, Xshft_4, Yshft_4   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_5 ,Y_5, Z_5, Xshft_5, Yshft_5   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_6 ,Y_6, Z_6, Xshft_6, Yshft_6   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_7 ,Y_7, Z_7, Xshft_7, Yshft_7   : signed(WIDTH_INTERN-1 
downto 0); 
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signal X_8 ,Y_8, Z_8, Xshft_8, Yshft_8   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_9 ,Y_9, Z_9, Xshft_9, Yshft_9   : signed(WIDTH_INTERN-1 
downto 0); 
signal X_10 ,Y_10, Z_10                  : signed(WIDTH_INTERN-1 
downto 0); 
 
 
signal LeftHalfPlaneFlag  : std_logic; 
signal RRealSigned    : signed (WIDTH_INTERN-1 downto 0); 
signal RImagSigned    : signed (WIDTH_INTERN-1 downto 0); 
signal NRIterationsUnsigned  : unsigned(3 downto 0); 
signal NRIterationsint   : integer range 0 to 15; 
signal X0      : signed(WIDTH_INTERN-1 downto 0); 
signal Y0      : signed(WIDTH_INTERN-1 downto 0); 
signal Z0      : signed(WIDTH_INTERN-1 downto 0); 
signal Xout     : signed(WIDTH_INTERN-1 downto 0); 
signal Zout     : signed(WIDTH_INTERN-1 downto 0); 
signal compen     : std_logic_vector(2*WIDTH_INTERN-1+1 
downto 0); 
signal RPh_nxt     : signed(WIDTH_INTERN-1 downto 0); 
signal RPh_nxt_left   : unsigned(WIDTH-1 downto 0); 
signal RPhUnsigned    : unsigned(WIDTH_INTERN-1 downto 0); 
constant ZERO     : signed(WIDTH_INTERN-1 downto 0) := 
"0000000000000000"; 
constant ONE     : signed(WIDTH_INTERN-1 downto 0) := 
"0010000000000000"; 
constant TWO     : signed(WIDTH_INTERN-1 downto 0) := 
"0100000000000000"; 
constant FOUR     : signed(WIDTH_INTERN-1 downto 0) := 
"1000000000000000"; 
constant COMPENSATION   : signed(WIDTH_INTERN-1 downto 0) := 
"0001001101101110" ;     
-- 0.607253321089875 --0.607177734375 
constant COMPENSATION_SQRT2 : unsigned(WIDTH_INTERN-1+1 downto 0) := 
"11011011110100101" ; -- 0.607253321089875 / SQRT(2)  
 
--constant StepPhase0  : integer := 4096; -- "0001000000000000" 
--constant StepPhase1  : integer := 2418; -- "0000100101110010" 
--constant StepPhase2  : integer := 1277; -- "0000010011111101" 
--constant StepPhase3  : integer := 648; -- "0000001010001000" 
--constant StepPhase4  : integer := 325; -- "0000000101000101" 
--constant StepPhase5  : integer := 162; -- "0000000010100010" 
--constant StepPhase6  : integer := 81; -- "0000000001010001" 
--constant StepPhase7  : integer := 40; -- "0000000000101000" 
--constant StepPhase8  : integer := 20; -- "0000000000010100" 
--constant StepPhase9  : integer := 10; -- "0000000000001010" 
constant StepPhase0       : signed(WIDTH_INTERN-1 downto 0) := 
"0001000000000000"; 
constant StepPhase1       : signed(WIDTH_INTERN-1 downto 0) := 
"0000100101110010"; 
constant StepPhase2       : signed(WIDTH_INTERN-1 downto 0) := 
"0000010011111101"; 
constant StepPhase3       : signed(WIDTH_INTERN-1 downto 0) := 
"0000001010001000"; 
constant StepPhase4       : signed(WIDTH_INTERN-1 downto 0) := 
"0000000101000101"; 
constant StepPhase5       : signed(WIDTH_INTERN-1 downto 0) := 
"0000000010100010"; 
constant StepPhase6       : signed(WIDTH_INTERN-1 downto 0) := 
"0000000001010001"; 
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constant StepPhase7       : signed(WIDTH_INTERN-1 downto 0) := 
"0000000000101000"; 
constant StepPhase8       : signed(WIDTH_INTERN-1 downto 0) := 
"0000000000010100"; 
constant StepPhase9       : signed(WIDTH_INTERN-1 downto 0) := 
"0000000000001010"; 
 
procedure CordicCore( X_pre : in signed(WIDTH_INTERN-1 downto 0); 
     Y_pre : in signed(WIDTH_INTERN-1 downto 0); 
     Z_pre : in signed(WIDTH_INTERN-1 downto 0); 
     X_shift : in signed(WIDTH_INTERN-1 downto 0); 
     Y_shift : in signed(WIDTH_INTERN-1 downto 0); 
     signal X : out signed(WIDTH_INTERN-1 downto 
0); 
     signal Y: out signed(WIDTH_INTERN-1 downto 0); 
     signal Z: out signed(WIDTH_INTERN-1 downto 0); 
     StepPhase : in signed(WIDTH_INTERN-1 downto 0) 
     ) is 
    begin 
     if Y_pre < 0 then 
       X <= X_pre-Y_shift; 
        Y <= Y_pre+X_shift; 
        Z <= Z_pre-StepPhase; 
     else 
        X <= X_pre+Y_shift; 
        Y <= Y_pre-X_shift; 
        Z <= Z_pre+StepPhase; 
     end if; 
end CordicCore; 
 
procedure ShiftRight( X : in signed(WIDTH_INTERN-1 downto 0); 
     Y : in signed(WIDTH_INTERN-1 downto 0); 
     iteration: in integer; 
     signal X_shift : out signed(WIDTH_INTERN-1 
downto 0); 
     signal Y_shift : out signed(WIDTH_INTERN-1 
downto 0) 
     ) is 
   variable X_int : signed(WIDTH_INTERN-1 downto 0); 
   variable Y_int : signed(WIDTH_INTERN-1 downto 0); 
    begin 
  
    X_int := X; 
    for I in 1 to iteration loop 
     X_int(WIDTH_INTERN-I) := X(WIDTH_INTERN-1); 
    end loop; 
    X_int(WIDTH_INTERN-iteration-1 downto 0) := 
X(WIDTH_INTERN-1 downto iteration); 
      X_shift <= X_int;  
      Y_int := Y; 
    for I in 1 to iteration loop 
     Y_int(WIDTH_INTERN-I) := Y(WIDTH_INTERN-1); 
    end loop; 
    Y_int(WIDTH_INTERN-iteration-1 downto 0) := 
Y(WIDTH_INTERN-1 downto iteration); 
      Y_shift <= Y_int; 
  
end ShiftRight; 
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begin 
 
RReal_Ext <= RReal_In(WIDTH-1) & RReal_In(WIDTH-1) & RReal_In & 
"0000"; 
RImag_Ext <= RImag_In(WIDTH-1) & RImag_In(WIDTH-1) & RImag_In & 
"0000"; 
 
RRealSigned <= signed(RReal_Ext); 
RImagSigned <= signed(RImag_Ext); 
 
NRIterationsUnsigned <= unsigned(NRIterations_In); 
NRIterationsint   <= conv_integer(NRIterationsUnsigned); 
 
---------------------------------------------------------------------- 
 
PreCordicR2PProcess_PROC:process(RRealSigned, RImagSigned) 
 
begin 
if RRealSigned < 0 then 
  X0 <= ZERO - RRealSigned; 
  LeftHalfPlaneFlag <= '1'; 
else 
  X0 <= RRealSigned; 
  LeftHalfPlaneFlag <= '0'; 
end if; 
Y0 <= RImagSigned; 
Z0 <= ZERO; 
end process; 
 
X_0 <= X0;   
Y_0 <= Y0; 
Z_0 <= Z0; 
 
---------------------------------------------------------------------- 
 
Xshft_0 <= X_0; 
Yshft_0 <= Y_0; 
 
CordicCore ( X_0, Y_0, Z_0, Xshft_0, Yshft_0, X_1, Y_1, Z_1, 
StepPhase0 ); 
ShiftRight (X_1, Y_1, 1, Xshft_1, Yshft_1 ); 
 
CordicCore ( X_1, Y_1, Z_1, Xshft_1, Yshft_1, X_2, Y_2, Z_2, 
StepPhase1 ); 
ShiftRight (X_2, Y_2, 2, Xshft_2, Yshft_2 ); 
 
CordicCore ( X_2, Y_2, Z_2, Xshft_2, Yshft_2, X_3, Y_3, Z_3, 
StepPhase2 ); 
ShiftRight (X_3, Y_3, 3, Xshft_3, Yshft_3 ); 
 
CordicCore ( X_3, Y_3, Z_3, Xshft_3, Yshft_3, X_4, Y_4, Z_4, 
StepPhase3 ); 
ShiftRight (X_4, Y_4, 4, Xshft_4, Yshft_4 ); 
 
CordicCore ( X_4, Y_4, Z_4, Xshft_4, Yshft_4, X_5, Y_5, Z_5, 
StepPhase4 ); 
ShiftRight (X_5, Y_5, 5, Xshft_5, Yshft_5 ); 
 
CordicCore ( X_5, Y_5, Z_5, Xshft_5, Yshft_5, X_6, Y_6, Z_6, 
StepPhase5 ); 
ShiftRight (X_6, Y_6, 6, Xshft_6, Yshft_6 ); 
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CordicCore ( X_6, Y_6, Z_6, Xshft_6, Yshft_6, X_7, Y_7, Z_7, 
StepPhase6 ); 
ShiftRight (X_7, Y_7, 7, Xshft_7, Yshft_7 ); 
 
CordicCore ( X_7, Y_7, Z_7, Xshft_7, Yshft_7, X_8, Y_8, Z_8, 
StepPhase7 ); 
ShiftRight (X_8, Y_8, 8, Xshft_8, Yshft_8 ); 
 
CordicCore ( X_8, Y_8, Z_8, Xshft_8, Yshft_8, X_9, Y_9, Z_9, 
StepPhase8 ); 
ShiftRight (X_9, Y_9, 9, Xshft_9, Yshft_9 ); 
 
CordicCore ( X_9, Y_9, Z_9, Xshft_9, Yshft_9, X_10, Y_10, Z_10, 
StepPhase9 ); 
 
---------------------------------------------------------------------- 
 
SelectIteration_PROC: 
process(RRealSigned,RImagSigned,NRIterationsint,X_0,Z_0,X_1,Z_1,X_2,Z_
2,X_3,Z_3,X_4,Z_4,X_5,Z_5,X_6,Z_6,X_7,Z_7,X_8,Z_8,X_9,Z_9,X_10,Z_10) 
 
begin 
 
if RRealSigned = 0 and RImagSigned = 0 then 
  Xout <= ZERO; 
  Zout <= ZERO; 
else 
 case NRIterationsint is  
 when 0 =>  
  Xout <= X_0; 
  Zout <= Z_0; 
 when 1 =>  
  Xout <= X_1; 
  Zout <= Z_1;  
 when 2 =>  
  Xout <= X_2; 
  Zout <= Z_2;  
 when 3 =>  
  Xout <= X_3; 
  Zout <= Z_3;  
 when 4 =>  
  Xout <= X_4; 
  Zout <= Z_4;  
 when 5 =>  
  Xout <= X_5; 
  Zout <= Z_5; 
 when 6 =>  
  Xout <= X_6; 
  Zout <= Z_6;  
 when 7 =>  
  Xout <= X_7; 
  Zout <= Z_7;  
 when 8 =>  
  Xout <= X_8; 
  Zout <= Z_8;  
 when 9 =>  
  Xout <= X_9; 
  Zout <= Z_9;  
 when 10 =>  
  Xout <= X_10; 
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  Zout <= Z_10; 
 when others => 
  Xout <= ZERO; 
  Zout <= ZERO; 
 end case; 
end if; 
end process;  
 
---------------------------------------------------------------------- 
   
PostCordicCom_PROC: process (Zout, LeftHalfPlaneFlag) 
begin 
if LeftHalfPlaneFlag = '1' then  
 RPh_nxt <= TWO - Zout; 
elsif Zout < 0 then 
 RPh_nxt <= FOUR + Zout; 
else 
 RPh_nxt <= Zout; 
end if; 
end process; 
 
RPhUnsigned <= conv_unsigned(RPh_nxt, WIDTH_INTERN); 
RPh_nxt_left <= RPhUnsigned(WIDTH_INTERN-2 downto WIDTH_INTERN-2-
WIDTH+1);    -- RPh_nxt / 4 
 
compen <= conv_unsigned(Xout, WIDTH_INTERN) * COMPENSATION_SQRT2; 
 
---------------------------------------------------------------------- 
 
PostCordicSeq_PROC: process (Rst_N, Clk20M) 
begin 
if Rst_N = '0' then 
  RAmp_Out <= (others => '0'); 
  RPh_Out  <= (others => '0'); 
elsif Clk20M'event and Clk20M='1' then 
 
  RAmp_Out <= compen((2*WIDTH_INTERN-IWIDTH_INTERN+1) downto 
(2*WIDTH_INTERN-IWIDTH_INTERN-WIDTH+1+1)); -- (29 downto 20) 
  RPh_Out <= std_logic_vector(RPh_nxt_left); 
end if;  
end process;  
 
end rtl; 
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14. STSSynchronizerComponent.Package.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
  
package STSSynchronizerComponent is 
 
   
component STSSynchronizer 
         
 port ( 
 Clk20M                : in std_logic; 
 Rst_N                 : in std_logic; 
 NRIterations_In       : in std_logic_vector(3 downto 0); 
 SampleRe_In           : in std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 SampleIm_In           : in std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
 RAmp_Out              : out std_logic_vector(WIDTH-1 downto 0); 
 RPh_Out               : out std_logic_vector(WIDTH-1 downto 0)); 
 
 end component; 
    
end STSSynchronizerComponent; 

 

15. STSSynchronizer.Entity.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
entity STSSynchronizer is 
 
port( 
 
    Clk20M           : in std_logic; 
    Rst_N            : in std_logic; 
    NRIterations_In  : in std_logic_vector(3 downto 0); 
    SampleRe_In      : in std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
    SampleIm_In      : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);  
    RAmp_Out         : out std_logic_vector(WIDTH-1 downto 0); 
    RPh_Out          : out std_logic_vector(WIDTH-1 downto 0)); 
 
end STSSynchronizer; 
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16. STSSynchronizer.rtl.vhd 

 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
use lib_sts.SRShiftRegComponent.all; 
use lib_sts.SRCorrelatorComponent.all; 
use lib_sts.CordicRPComponent.all; 
 
 
 
architecture rtl of STSSynchronizer is 
 
 
signal Sample1Re: std_logic_vector(SAMPLE_WIDTH-1 downto 0);  
signal Sample1Im: std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
signal Sample2Re: std_logic_vector(SAMPLE_WIDTH-1 downto 0);  
signal Sample2Im: std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
signal Rreal    : std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0); 
signal Rimag    : std_logic_vector(SAMPLE_OUT_WIDTH-1 downto 0); 
  
begin 
 
I_SRShiftReg : SRShiftReg port map( 

Clk20M   => Clk20M, 
 Rst_N   => Rst_N, 
 SampleRe_In  => SampleRe_In, 
 SampleIm_In  => SampleIm_In, 
 Sample1Re_Out  => Sample1Re, 
 Sample1Im_Out  => Sample1Im, 
 Sample2Re_Out  => Sample2Re, 
 Sample2Im_Out  => Sample2Im); 
  
I_SRCorrelator :  SRCorrelator port map( 
 Clk20M   => Clk20M, 
 Rst_N   => Rst_N, 
 Sample1Re_In  => Sample1Re, 
 Sample1Im_In   => Sample1Im, 
 Sample2Re_In  => Sample2Re, 
 Sample2Im_In  => Sample2Im, 
 SRRe_Out   => RReal, 
 SRIm_Out   => RImag); 
  
I_CordicRP : CordicRP port map( 
 Clk20M   => Clk20M, 
 Rst_N   => Rst_N, 
 NRIterations_In => NRIterations_In, 
 RReal_In   => RReal, 
 RImag_In   => RImag, 
 RAmp_Out   => RAmp_Out, 
 RPh_Out   => RPh_Out);  
 
end rtl; 
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17. TB_STSSynchronizer.rtl.vhd 

 
library IEEE; 
use IEEE.Std_Logic_1164.all; 
use IEEE.std_logic_arith.all; 
use std.textio.all; 
use ieee.std_logic_textio.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
use lib_sts.STSSynchronizerComponent.all; 
 
entity TBE_STSSynchronizer_rtl is 
end TBE_STSSynchronizer_rtl; 
 
architecture TBA_STSSynchronizer_rtl of TBE_STSSynchronizer_rtl is 
     
   
signal Clk20M    : std_logic:='0'; 
signal Rst_N    : std_logic:='0'; 
signal NRIterations_In  : std_logic_vector(3 downto 0):="1010";  
--N = 10 
signal SampleRe_In   : std_logic_vector(SAMPLE_WIDTH-1 downto 
0):="00000000"; 
signal SampleIm_In   : std_logic_vector(SAMPLE_WIDTH-1 downto 
0):="00000000"; 
signal RAmp_Out   : std_logic_vector(9 downto 0); 
signal RPh_Out    : std_logic_vector(9 downto 0);  
signal FirstChar   : string(1 to 1); 
signal SimEnd    : boolean := false;    
constant c_Period20Mhz  : time:= 50 ns;   
   
begin 
     
  I_STSSynchronizer : STSSynchronizer port map ( 
              Clk20M            => Clk20M, 
              Rst_N             => Rst_N,             
    NRIterations_In   => NRIterations_In, 
    SampleRe_In       => SampleRe_In, 
    SampleIm_In       => SampleIm_In, 
    RAmp_Out          => RAmp_Out, 
    RPh_Out           => RPh_Out 
    ); 
              
 
Rst_N <= '1' after 10 ns; 
    
p_ClkGenerator: process  
    begin 
      Clk20M <= '0'; 
      wait for c_Period20Mhz/2; 
      while not SimEnd loop 
        Clk20M <= '1'; 
        wait for c_Period20Mhz/2; 
        Clk20M <= '0'; 
        wait for c_Period20Mhz/2; 
      end loop; 
    end process p_ClkGenerator; 
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 p_apply_stimuli : process (Clk20M, Rst_N) 
 file InputFile : text is in "./Test_Data_Dir/ETSIStimuli.txt"; 
  variable InputVector : line;       
  variable Command_Col    : string(1 to 1);   
  variable Temp_In  : std_logic_vector(7 downto 0);         
     
  begin 
    
   if (Rst_N = '0') then 
     --Do nothing 
   elsif (Clk20M'event and Clk20M = '1') then  
-- Stimuli on the positive edge  
        
    if not endfile(InputFile) then 
            
    readline(InputFile, InputVector);  
           
  --SampleRe_In    
                 read(InputVector, Temp_In); 
     SampleRe_In <= Temp_In; 
        
  --SampleIm_In    
                 read(InputVector, Temp_In); 
     SampleIm_In <= Temp_In;      
        
    else  
     SimEnd <= true; 
           assert false report " End of Simulation" 
severity failure; 
    end if;     
                
   end if;  
  end process p_apply_stimuli;   
   
--   
-- writing on falling edge 
--       
p_write_outputs: process(Clk20M, Rst_N) 
                 
file OutputFile1: text is out “./Test_Data_Dir/RAmp_Out_thesis.txt"; 
file OutputFile2: text is out "./Test_Data_Dir/RPh_Out_thesis.txt";
  
 variable OutVector1           : line; 
 variable OutVector2           : line;     
       
 begin 
  if (Rst_N = '0') then 
   -- Do nothing 
  elsif Clk20M'event and Clk20M='0' then     
   write(OutVector1,RAmp_Out);      
   write(OutVector2,real(conv_integer(signed(RPh_Out))) / 
512.0 );             
   writeline(OutputFile1,OutVector1); 
   writeline(OutputFile2,OutVector2); 
         
  end if; 
       
  end process p_write_outputs;        
 
end TBA_STSSynchronizer_rtl;  
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C. APPENDIX C: GATE-LEVEL VHDL CODES 

 

1. STSSynchronizer.Shell.vhd 

 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
library lib_sts; 
use lib_sts.STSSynchronizerConstants.all; 
 
entity STSSynchronizer is 
 
port( 
 
    Clk20M            : in std_logic; 
    Rst_N             : in std_logic; 
    NRIterations_In   : in std_logic_vector(3 downto 0); 
    SampleRe_In       : in std_logic_vector(SAMPLE_WIDTH-1 downto 0); 
    SampleIm_In       : in std_logic_vector(SAMPLE_WIDTH-1 downto 0);  
    RAmp_Out          : out std_logic_vector(WIDTH-1 downto 0); 
    RPh_Out           : out std_logic_vector(WIDTH-1 downto 0)); 
 
end STSSynchronizer; 
 
architecture verilog of STSSynchronizer is 
        attribute foreign of verilog: architecture is "VERILOG(event) 
lib_sts.STSSynchronizer:v"; 
begin 
end; 

 

2. TB_STSSynchronizer_GAT.rtl.vhd 

 

It is same as TB_STSSynchronizer.rtl.vhd.  
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D. APPENDIX D: ETSI BRAN HIPERLAN TYPE 2 STANDARD 

The increasing demand for "anywhere, anytime" communications and the merging 

of voice, video and data communications create a demand for broadband wireless 

networks. ETSI has created the BRAN project to develop standards and specifications 

for broadband radio access networks that cover a wide range of applications and are 

intended for different frequency bands. This range of applications covers systems for 

licensed and license exempt use. 

The categories of systems covered by the BRAN project are summarized as 

follows: 

 

• HIPERLAN/1 provides high-speed (20 Mbit/s typical gross data rate) 

radio local area network communications that are compatible with wired 

LANs based on Ethernet and Token Ring standards. Restricted user 

mobility is supported within the local service area only. The technical 

specification for HIPERLAN/1, ETS 300 652, was published by ETSI in 

1996 (last revised version published as EN 300 652). HIPERLAN/1 

systems are intended to be operated in the 5 GHz band. 

 

• HIPERLAN/2 is a standard for a high-speed radio communication system 

with typical data rates from 6 Mbit/s to 54 Mbit/s. It connects portable 

devices with broadband networks that are based on IP, ATM and other 

technologies. Centralized mode is used to operate HIPERLAN/2 as an 

access network via a fixed access point. In addition a capability for direct 

link communication is provided. This mode is used to operate 

HIPERLAN/2 as an ad-hoc network without relying on a cellular network 

infrastructure. In this case a central controller (CC), which is dynamically 

selected among the portable devices, provides the same level of QoS 

support as the fixed access point. HIPERLAN/2 is capable of supporting 
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multi-media applications by providing mechanisms to handle QoS. 

Restricted user mobility is supported within the local service area; wide 

area mobility (e.g. roaming) may be supported by standards outside the 

scope of the BRAN project. HIPERLAN/2 systems are intended to be 

operated in the 5 GHz band. 

 

• HIPERLINK provides very high-speed (up to 155 Mbit/s data rate) radio 

links for static interconnections and is capable of multi-media 

applications; a typical use is the interconnection of HIPERACCESS 

networks and/or HIPERLAN access points into a fully wireless network. It 

should be noted that for HIPERLINK the intended operation frequency is 

17 GHz - this in view of the very limited EIRP allowed in CEPT/ERC 

TR/22-06. 

 

Since HIPERLAN/2 is used as the standard for the implementation part (ETSI 

OFDM STS Synchronizer Hardware Design) of this thesis, only HIPERLAN/2's 

parameters and specifications are mentioned below. 

 

D.1. HIPERLAN/2 Services and Functions 

D.1.1. Introduction 

A HIPERLAN/2 network for business environment consists typically of a number 

of APs (access point) each of them covers a certain geographic area. Together they form 

a radio access network with full or partial coverage of an area of almost any size. The 

coverage areas may or may not overlap each other, thus simplifying roaming of 

terminals inside the radio access network. Each AP serves a number of MTs, which 

have to be associated to it. In the case where the quality of the radio link degrades to an 

unacceptable level, the terminal may move to another AP by performing a handover. 

For home environment, HIPERLAN/2 network is operated as an ad-hoc LAN, which 

can be put into operation in a plug-and-play manner. The HIPERLAN/2 home system 
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share the same basic features with the HIPERLAN/2 business system by defining the 

following equivalence between both systems: 

 

• A subnet in the ad-hoc LAN configuration is equivalent to a cell in the 

cellular access network configuration. 

• A central controller in the ad-hoc LAN configuration is equivalent to the 

access point in the cellular access network configuration. However, the 

central controller is dynamically selected from HIPERLAN/2 portable 

devices and can be handed over to another portable device, if the old one 

leaves the network. 

• Multiple subnets in a home are made possible by having multiple CCs 

(central controller) operating at different frequencies.  

 

HIPERLAN/2 supports two basic modes of operation: 

 

• Centralized mode: In this mode, an AP is connected to a core network, 

which serves the MTs (mobile terminal) associated to it. All traffic has to 

pass the AP, regardless of whether the data exchange is between an MT 

and a terminal elsewhere in the core network or between MTs belonging to 

this AP. The basic assumption is that a major share of the traffic is 

exchanged with terminals elsewhere in the network. This feature is 

mandatory for all MTs and APs. 

• Direct mode: In this mode, the medium access is still managed in a 

centralized manner by a CC. However, user data traffic is exchanged 

between terminals without going through the CC. It is expected that in 

some applications (especially, in home environment), a large portion of 

user data traffic is exchanged between terminals associated with a single 

CC. This feature is intended for use within home environment, and hence, 

is mandatory in DLC (data link control)-home extensions. 

 

NOTE 1: A central controller may also be connected to a core network and, thus, shall 

be able to operate in both direct and centralized mode.  
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The HIPERLAN/2 basic protocol stack on the AP/CC side and its functions are 

shown in Figure D.1. The convergence layer (CL) offers service to the higher layers that 

are out of the scope of this document. 

The physical layer delivers a basic data transport function by providing means of 

a base-band modem and a RF part. The base-band modem will also contain a forward 

error correction function. 

The DLC layer consists of the Error Control (EC) function, the Medium Access 

Control (MAC) function and the Radio Link Control (RLC) function. It is divided in the 

user data transport functions and the control functions, located mainly on the right hand 

side and on the left-hand side of Figure D.1, respectively. 

The user data transport function is fed with user data packets from higher layers 

via the User Service Access Point (USAP). This part contains the EC that performs an 

ARQ (Automatic Repeat Request) protocol. The DLC protocol operates connection 

oriented, which is shown by multiple connection end points in the USAP. One EC 

instance is created for each DLC connection. In case the higher layer is connection 

oriented, DLC connections can be created and released dynamically. In case the higher 

layer is connectionless, at least one DLC connection has to be set up which handles all 

user data. 

The left part contains the RLC Sub-layer, which delivers a transport service to the 

DLC Connection Control (DCC), the Radio Resource Control (RRC) and the 

Association Control Function (ACF). 

 

NOTE 2: Only the RLC is standardized which defines implicitly the behavior of the 

DCC, ACF and RRC. One RLC instance needs to be created per MT. 

 

The CL on top is also separated in a data transport and a control part. The data 

transport part provides the adaptation of the user data format to the message format of 

the DLC layer (DLC SDU). In case of higher layer networks other than ATM, it 

contains a segmentation and re-assembly (SAR) function. The control part can make use 

of the control functions in the DLC, e.g. when negotiating CL parameters at association 

time. 
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Figure D.1 HIPERLAN/2 Protocol Stack and Functions 

D.1.2. HIPERLAN/2 DLC Functions 

The HIPERLAN/2 DLC functions are divided in data transport and data link 

control functions and will be described in two sub-clauses in the following. 

D.1.2.1. Medium Access Control 

The medium access control is a centrally scheduled TDMA/TDD scheme. 

Centrally scheduled means that the AP/CC controls all transmissions over the air. This 

concerns uplink, downlink and direct mode phase equally. 

The basic structure on the air interface generated by the MAC is shown in Figure 

D.2. It consists of a sequence of MAC frames of equal length with 2 ms duration. Each 

MAC frame consists of several phases: 

• Broadcast (BC) phase: The BC phase carries the BCCH (broadcast control 

channel) and the FCCH (frame control channel). The BCCH contains 

general announcements and some status bits announcing the appearance of 

more detailed broadcast information in the downlink phase (DL). The 
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FCCH carries the information about the structure of the ongoing frame, 

containing the exact position of all following emissions, their usage and 

content type. The messages in the FCCH are called resource grants (RG). 

• Downlink (DL) phase: The DL phase carries user specific control 

information and user data, transmitted from AP/CC to MTs. Additionally, 

the DL phase may contain further broadcast information which does not fit 

in the fixed BCCH field. 

 

 

Figure D.2 MAC Frame Format for Sectored Antennas 

 

• Uplink (UL) phase: The UL phase carries control and user data from the 

MTs to the AP/CC. The MTs have to request capacity for one of the 

following frames in order to get resources granted by the AP/CC. 

• Direct Link (DiL) phase: The DiL phase carries user data traffic between 

MTs without direct involvement of the AP/CC. However, for control 

traffic, the AP/CC is indirectly involved by receiving Resource Requests 

from MTs for these connections and transmitting Resource Grants in the 

FCCH. 

 

NOTE 1: The DiL phase is mandatory in home environments. 

 

• Random access (RA) phase: The RA phase carriers a number of RCH 

(random access channels). MTs to which no capacity has been allocated in 

the UL phase use this phase for the transmission of control information. 
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Non-associated MTs use RCHs for the first contact with an AP/CC. This 

phase is also used by MTs performing handover to have their connections 

switched over to a new AP/CC. 

The structure is slightly different when the AP/CC has a sectored antenna as 

shown in Figure D.3. The solution chosen distributes the available MAC frame duration 

over the sectors. In this case, each phase is repeated, in time, one for each sector. 

 

NOTE 2: The use of DiL with sectored antennas is not specified. 

 

 

Figure D.3 MAC Frame Format for Sectored Antennas 

 
The DL, DiL and UL phases consist of two types of PDUs: long PDUs and short 

PDUs. The long PDUs have a size of 54 bytes and contain control or user data, see 

Figure D.4. The DLC SDU, which is passed from or to the DLC layer via the U-SAP, 

has a length of 49.5 bytes. The remaining 4.5 bytes are used by the DLC for a PDU type 

field, a sequence number (SN) and a cyclic redundancy check (CRC). The purpose of 

the CRC is to detect transmission errors and is used, together with the SN, by the EC. 

The short PDUs with a size of 9 bytes contain only control data and are always 

generated by the DLC. They may contain resource requests in the uplink, ARQ 

messages like acknowledgements and discard messages or RLC information. 

The same size of 9 bytes is also used in the RCH. The RCH can only carry RLC 

messages and resource requests. The access method to the RCH is a slotted aloha 

scheme. The collision resolution is based on a binary back-off procedure, which is 

controlled by the MTs. The AP/CC can decide dynamically how many RCH slots it 

provides per MAC frame. 
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Figure D.4 Format of the Long PDUs 

 

D.1.2.2. Error Control 

The EC is based on an ARQ (Automatic Repeat Request) scheme. Additional 

forward error correction and the EC are complementary but do not collaborate. 

The ARQ scheme is based on a selective repeat mechanism. It requires a very 

careful transmission window handling in both transmitter and receiver. Therefore the 

receiver has to notify the transmitter about the sequence number below, which all 

messages have been received correctly (bottom of window) and which messages out of 

the received ones were not correct. Moreover, the transmitter may want to discard 

messages, e.g. because they have exceeded their maximum lifetime. 

D.1.3. Radio Link Control Functions 

NOTE: The control functions are closely related to the protocols defined in the 

RLC. Only the RLC will be specified, the control functions themselves are out of the 

scope of the standard. In the explanations below, the control functions and the actual 

RLC will be handled synonymously. 
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D.1.3.1. Association Control Function 

A Terminal intending to communicate with an AP/CC has always to be associated 

to this AP/CC. The reasons are: 

 

• The AP/CC always has to create some resources for each MT associated, 

e.g. the RLC connection and a MAC ID. 

• The MAC protocol is centrally controlled by the AP/CC, regardless of 

whether it operates in centralized or in direct mode. 

 

The tasks of the association control are: 

• Association: The first step is the allocation of a MAC ID to a terminal, 

followed by the negotiation of the link capabilities. These comprise the 

selected CL and other features. AP/CC and MT decide in this step whether 

encryption and / or authentication are performed or not and which 

encryption and authentication mechanisms are used, respectively. 

• Encryption key exchange: This step is performed after the link capability 

negotiation and is optional. It is based on the Diffie-Hellmann key 

exchange procedure. The Diffie-Hellmann secret and public values are 

used by both AP/CC and MT to generate and refresh the session key. 

• Authentication: This step is performed after the encryption key exchange 

and is optional. The authentication affects both MT and AP/CC, i.e. they 

perform a mutual authentication. 

• Beacon Signaling in the AP/CC: The beacon signaling provides basic 

information about essential features and properties of the AP/CC, which 

are broadcast in each MAC frame. The ACF provides some of the values 

that are broadcast. 

• Encryption key refresh: This feature is optional. It can happen periodically 

and is requested by the AP/CC. 

• Disassociation: This feature shall be performed by the MT if possible. 

 

NOTE: This may not be possible if the MT power drops suddenly. 
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D.1.3.2. Radio Resource Control 

The radio resource control (RRC) is responsible for the surveillance and efficient 

use of available frequency resources. 

The functions of the RLC for the support of the RRC are: 

 

• Dynamic Frequency Selection: HIPERLAN/2 will operate in a "Plug-and-

Play" manner and will not require frequency planning. The decision on the 

selection of a frequency channel is, in the first step when no MTs are 

associated, based on the AP/CC’s own measurements. During operation, 

the situation may change and the AP/CC has to switch to a different 

frequency channel. However, each terminal has a specific interference 

situation, which may make it impossible for one or more MTs to 

communicate with the AP/CC efficiently. Therefore, the decision when to 

perform a frequency change and to which frequency has to be based on 

both measurements of the AP/CC and the associated MTs. The DFS 

supporting functions of the RLC allow for: 

 

o Measurements of MTs and AP/CC: The terminal may do 

measurements on its own or on different channel, either based on 

its own decision or ordered by the AP/CC; 

o Reporting of the obtained measurements from MTs to the AP/CC; 

o Frequency change of the AP/CC and its associated MTs. 

 

• MT alive procedure: In order to make sure that the AP/CC does not 

reserve resources unnecessarily for an MT, the AP/CC may request it to 

report if it is still alive. 

• MT absence function: The MT may want to scan for a different frequency 

channel in order to find out whether it shall perform a handover and to 

which new AP/CC it shall change. This function is triggered by the MT. 

• Power saving function: Many MTs will be battery driven. Therefore, 

HIPERLAN/2 will support an efficient scheme to support the conservation 

of battery power. The mechanism will be based on sleep intervals after 

which the terminal listens periodically whether the AP/CC wants it to 
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receive data. If no data are pending in DL, or DiL, the MT remains in 

sleep modus without communication with the AP/CC in centralized mode 

or with another MT in direct mode. The length of the sleep intervals can 

be negotiated between AP/CC and MT. This function is triggered by the 

AP/CC; the selection of the sleep interval is done by the AP/CC. 

• Transmit Power Control: AP/CC and MT will support means to adapt their 

transmission power to the current requirements of the radio link. 

• Handover: The handover function will be restricted to business and public 

applications and will not be supported in home networks in the first phase. 

The RRC will decide when to perform a handover and support its 

execution. 

D.1.3.3. DLC Control Function 

The DLC connection control (DCC) is responsible for set up and release of user 

connections. The relation to a higher layer connection set up procedure can be created 

by a call reference identifier in the DLC connection set up request message. If any kind 

of QoS support is required by a higher layer, the necessary parameters have to be 

provided by the higher layers. Since the scheduler will not be specified, the 

specification of these parameters is out of the scope of HIPERLAN/2. The only DLC 

related parameters to be exchanged are a DLC Connection ID and ARQ related values 

like maximum window size and number of allowed retransmissions. 

The functions of DCC are: 

 

• DLC connection set up: This feature comprises set up procedures for 

centralized mode, direct mode and multicasts, all of which can be 

originated either by the AP/CC or the MT. 

• DLC connection release: This feature comprises release procedures for 

centralized mode, direct mode and multicasts, all of which can be 

originated either by the AP/CC or the MT. 

• DLC connection modify: This feature comprises modify procedures for 

centralized mode, direct mode and multicasts all of which can be 
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originated either by the AP/CC or the MT. The modification refers to the 

DLC specific connection parameters, which are described above. 

• Multicast join and leave: These features allow a terminal to join already 

existing multicast groups and leave one it belongs to. 

D.1.4. Convergence Layer 

The convergence layers (CL) adapt the core network to the HIPERLAN/2 DLC 

layer. The CL provides all functions needed for connection set-up and support mobility 

in the core network. For each supported core network a special CL is designed. Support 

for packet based networks like Ethernet (IEEE 802.3), IP, PPP and IEEE 1394 (Fire-

wire) as well as cell based networks like ATM and UMTS will be available. 

The convergence layers available at the AP/CC are announced via broadcast. MT 

and AP/CC negotiate one of them during association. In combination with the QoS 

functions of HIPERLAN/2 it shall be possible to support various QoS schemes. Among 

others IP like RSVP, Differentiated Services or priority scheduling according to IEEE 

802.1D. 

The packet based convergence layer is used to integrate HIPERLAN/2 into 

existing packet-based networks. To support the different technologies used nowadays 

and to be open for future technologies, the Packet CL is structured hierarchically into a 

common part and a number of service specific convergence sub-layers (SSCS). The 

common part mainly contains a SAR function to fit the packets into the fixed length of a 

HIPERLAN/2 packet. The first SSCS to be specified is the Ethernet SSCS, which is 

followed by IEEE 1394, IP, and PPP SSCSs in the course of the year 2000. For each 

part a specification will be created. 

The ATM CL also consists of a common part and SSCSs. The common part shall 

not contain a SAR function because ATM cells basically fit into the HIPERLAN/2 DLC 

SDU. Nevertheless, a compression of the ATM cell header is necessary, transmitting 

only its most important parts. 
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D.1.5. HIPERLAN/2 Physical Layer 

D.1.5.1. Transport Channels and PDU Trains 

The radio subsystem provides a set of transport channels describing the message 

format over the air interface. Transport channels are used as basic elements in 

constructing PDU (Protocol Data Unit) trains. The PDU trains that consist of a sequence 

of transport channels represent the interface between the DLC protocol and the PHY 

layer. DLC specifies six different PDU train types: 

 

1. Broadcast PDU train; 

2. FCH (Frame CHannel) and ACH (Access Feedback CHannel) PDU train; 

3. Downlink PDU train; 

4. Uplink PDU train with short preamble; 

5. Uplink PDU train with long preamble; 

6. Direct link PDU train. 

D.1.5.2. Reference Configuration 

For the purpose of elaborating the specification of physical layer functions, a 

reference configuration of the transmission chain is used as shown in Figure D.5. It 

should be noted that only the transmission part is specified. 

  

 

Figure D.5 Reference Configuration of Transmitter 
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D.1.5.3. PHY Layer Functional Entities 

The PHY layer of HIPERLAN/2 offers information transfer services to the DLC 

of HIPERLAN/2. For this purpose, it provides for functions to map different DLC PDU 

trains into framing formats called PHY bursts appropriate for transmitting and receiving 

management and user information between an AP/CC and an MT in the centralized 

mode or between two MTs in the direct mode. This includes the following functional 

entities at transmitter: 

 

• Configuring the transmission bit rate by choosing appropriate PHY mode 

based on the link adaptation mechanism. 

• Scrambling the PDU train content. 

• Encoding the scrambled bits according to the forward error correction set 

during PHY layer configuration. 

• Interleaving the encoded bits at the transmitter by using the appropriate 

interleaving scheme for the selected PHY layer mode. 

• Sub-carrier modulation by mapping the interleaved bits into modulation 

constellation points. 

• Producing the complex base-band signal by OFDM modulation. 

• Inserting pilot sub-carriers, appending appropriate preamble to the 

corresponding PDU train at the transmitter and building the PHY layer 

burst. 

• Performing radio transmission by modulating the radio frequency carrier 

with the complex base-band signal at transmitter. 
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D.1.5.4. Physical Layer 

D.1.5.4.1. Introduction 

The PHY layer of HIPERLAN/2 is based on the modulation scheme Orthogonal 

Frequency Division Multiplexing (OFDM). In order to improve the radio link capability 

due to different interference situations and distance of MTs to the access point, a multi-

rate PHY layer is applied, where the "appropriate" mode will be selected by a link 

adaptation scheme. The data rate ranging from 6 Mbit/s to 54 Mbit/s can be varied by 

using various signal alphabets for modulating the OFDM sub-carriers and by applying 

different puncturing patterns to a mother convolutional code. 

BPSK, QPSK, 16QAM are used as mandatory modulation formats, whereas 

64QAM is applied as an optional one for both AP and MT. The mode dependent 

parameters are listed in the Table D.1. 

 
Modulation Coding Rate R Nominal Bit 

Rate [Mbit/s] 
Coded Bits Per 

Sub-Carrier 
NBPSC 

Coded Bits Per 
OFDM Symbol 

NCBPS 

Data Bits Per 
OFDM 

Symbol NDBPS 

BPSK 1/2 6 1 48 24 
BPSK 3/4 9 1 48 36 
QPSK 1/2 12 2 96 48 
QPSK 3/4 18 2 96 72 

16QAM 9/16 27 4 192 108 
16QAM 3/4 36 4 192 144 
64QAM 3/4 54 6 288 216 

 

Table D.1 Mode Dependent Parameters 
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D.1.5.4.2. Data Scrambling 

The content of each PDU train (NBPDU bits) from the DLC shall be scrambled 

with a length-127 scrambler. The scrambler uses the generator polynomial S(x) as given 

by: 

 

                                                1)( 47 ++= XXxS                                           (D.1) 

 

and is illustrated in Figure D.6. The same scrambler shall be used to scramble transmit 

data and to descramble receive data. All PDU trains belonging to a MAC frame are 

transmitted by using the same initial state for scrambling. The initialization shall be 

performed as follows: 

 

• Broadcast PDU train in case AP uses one sector: scrambler initialized at 

the 5th bit of BCH (Broadcast CHannel), at the 1st bit of FCH and at the 

1st bit of ACH;  

• Broadcast PDU train in case AP uses one sectors: scrambler initialized at 

the 5th bit of BCH; 

• FCH -and -ACH PDU train transmitted only in the case of a multiple 

sector AP: scrambler initialized at the 1st bit of FCH and at the 1st bit of 

ACH; 

• Downlink PDU train, Uplink PDU train with short preamble, Uplink PDU 

train with long preamble and Direct link PDU train: Scrambler initialized 

at the 1st bit of the PDU train. 

 

The initial state shall be set to a pseudo random non-zero state, which is 

determined by the Frame counter field in the BCH at the beginning of the corresponding 

MAC frame. The Frame counter field consists of the first four bits of BCH, represented 

by (n4n3n2n1)2, and shall be transmitted unscrambled. n4 shall be transmitted first. The 

initial state shall be derived by appending (n4n3n2n1)2 to the fixed binary number (111)2 

in the form (111 n4n3n2n1)2. 
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As an example if the Frame counter is given as (0100)2, the initial state of the 

scrambler shall be (111 0100)2. The transport channel content starting with (10011101 

000…)2 shall be scrambled to (00111110 011…)2. 

 

 

 

 

 

 

 

 

 

Figure D.6 Scrambler Schematic Diagram 

 

D.1.5.4.3. FEC (Forward Error Correction) Coding 

The scrambled PDU train of NBPDU bits shall be encoded by a channel encoder 

unit. The mandatory encoder is described in this clause and depicted in Figure D.7. It 

consists of four consecutive operational blocks: code termination, encoding, code rate 

independent puncturing (P1) and code rate dependent puncturing (P2). It should be 

noted that this sequence of operation indicates a logical operation of the encoding 

process, but not a specific implementation. 

 

 

 

 

 

 

 

Figure D.7 Functional blocks of FEC coder 
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The codetermination, encoding, and puncturing P1 shall be performed depending 

on the PDU train type as follows: 

 

• Broadcast PDU train in omni-antenna case: tail bits shall be appended and 

puncturing P1 shall be performed individually to BCH, FCH and ACH. 

The encoder shall be initialized at the 1st bit of BCH, at the 1st bit of FCH 

and at the 1st bit of ACH; 

• Broadcast PDU train in sector-antenna case: tail bits shall be appended and 

puncturing P1 shall be performed to BCH. The encoder shall be initialized 

at the 1st bit of BCH; 

• FCH and ACH PDU train: tail bits shall be appended and puncturing P1 

shall be performed separately to FCH and ACH. The encoder shall be 

initialized at the 1st bit of FCH, at the 1st bit of ACH without priority, and 

at the 1st bit of ACH with priority; 

• Downlink PDU train, Uplink PDU train with short preamble, Uplink PDU 

train with long preamble, and Direct link PDU train: Tail bits shall be 

appended and puncturing P1 shall be performed once for the PDU train. 

The encoder shall be initialized at the 1st bit of the PDU train.  

 

Puncturing P2 shall be performed equally to all the PDU train types as described in 

clause D.1.5.4.3.2. 

D.1.5.4.3.1. Code Termination, Encoding, P1 Puncturing 

D.1.1.5.4.3.1. Downlink PDU Train, Uplink PDU Train with Short and Long 
Preambles and Direct Link PDU Train 

Four of the PDU train types (Downlink PDU train, Uplink PDU train with short 

preamble, Uplink PDU train with long preamble, and Direct link PDU train) are 

processed by the encoder as a whole. Tail bits are added once and the respective tail bit 

puncturing, P1, shall be performed once for the PDU train. The encoder shall also be 

initialized once at the beginning of the PDU train. 
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In the first phase six non-scrambled zero ('0') bits are appended to the input data 

for codetermination purposes. These bits, denoted as tail bits, return the convolutional 

encoder to "zero state". The resulted (NBPDU + 6) bits shall be coded with a 

convolutional encoder of code rate 1/2 with 64 states. The generator polynomials of the 

mother code are G1 = 133OCT for X output and G2 = 171OCT [ITU reference for G1 

and G2] for Y output (see Figure D.8). The encoder shall be set to "zero state" before 

the encoding process. 

 

 

 

 

 

 

 

 

 

Figure D.8 The mother convolutional code of rate ½ 

 

The first puncturing scheme P1 will be applied independently from the code rate. 

The puncturing shall be applied always to the first SCH-PDU (Short Transport 

CHannel) of the last DLC Connection of the PDU train to be transmitted over the air 

interface. If there is no such an SCH-PDU in the last DLC Connection, P1 shall be 

applied to the first LCH-PDU (Long Transport CHannel) of the last DLC Connection of 

the PDU train. Four examples of the position of the P1 puncturing inside a PDU train 

are illustrated in Figure D.9 as informative information. 

The first 156 bits of the PDU, which the P1 puncturing is applied to, are 

punctured differently from the rest of the encoded bit stream. The puncturing patterns 

are given in Table D.2. In this table X and Y refer to the two outputs of the 

convolutional encoder (see Figure D.8) where X1 is sent first. 

Output data A 

Tb Tb Tb Tb Tb Tb 

Output data B 

Input data 
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PDU-wise bit 
numbering 

Puncturing pattern Transmitted sequence  
(after parallel-to-serial conversion) 

0-155 X: 1111110111111 
Y: 1111111111110 

X1Y1X2Y2X3Y3X4Y4X5Y5X6Y6X8Y7X9Y8X10
Y9X11Y10X12Y11X13Y12 

>156 X: 1 
Y: 1 

X1Y1 

 

Table D.2 Puncturing pattern P1 and transmitted sequence after parallel-to-serial 
conversion 

 

 

Figure D.9 Position of Puncturing P1 in cases of,  

(a) one DLC Connection (DLCC-ID 1) in a downlink PDU train. 
(b) two (or more) DLC Connections (DLCC-ID 1…DLCC-ID m) in a downlink PDU 

train,  
(c) one DLC Connection (DLCC-ID 1) in an uplink PDU train, 

(d) two (or more) DLC Connections (DLCC-ID 1…DLCC-ID m) in an uplink PDU 
train, two (or more) DLC Connections (DLCC-ID 1…DLCC-ID m) in an uplink 

PDU train when no SCH in the last DLC connection 
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D.1.1.5.4.3.2. Broadcast PDU Train, FCH-and-ACH PDU train 

Two of the PDU train types, i.e. Broadcast PDU train and FCH-and-ACH PDU 

train in the case of a multiple sector AP, are processed transport channel by transport 

channel. Tail bits shall be appended and additional puncturing shall be performed 

individually to each transport channel. The encoder shall be also initialized once at the 

beginning of each transport channel, i.e. at the 1st bit of BCH, FCH and ACH. 

In the first phase six non-scrambled zero ('0') bits are appended to each transport 

channel for codetermination purposes. These bits, denoted as tail bits, return the 

convolutional encoder to "zero state". The resulted (NBPDU + 6) bits shall be coded 

with a convolutional encoder of coding rate 1/2 with 64 states. The generator 

polynomials of the mother code (G1 = 133OCT for X output and G2 = 171OCT for Y 

output) are the same as used with other PDU train types shown in Figure D.8. The 

encoder shall be set in "zero state" before the encoding process at the beginning of each 

transport channel. 

The first puncturing scheme P1 will be applied independently from the code rate. 

The puncturing shall be applied always to all the transport channels in the PDU train 

equally. The first 156 bits of the transport channel, which the P1 puncturing is applied 

to, are punctured differently from the rest of the encoded bit stream. The puncturing 

patterns are given in Table D.2. In this table X and Y refer to the two outputs of the 

convolutional encoder (see Figure D.8) where X1 is sent first. 

D.1.5.4.3.2. Code Rate Dependent Puncturing P2 

Puncturing P2 is to provide code rates of 9/16 and 3/4 and it is applied to bits 

from puncturing P1. It shall be performed equally to all the PDU train types. The input 

is de-multiplexed into 2 sub-streams. The de-multiplexing is defined as a mapping of 

the input bits xdi onto the output bits be,do (see Figure D.10): 

 

                                          bdi(mod)2, di(div)2 = xdi                                      (D.2) 
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where di is the input bit number, do is the output bit number in each sub-stream, mod is 

the integer modulo operator, and div is the integer division operator. 

 

 

 

 

 

 

 

Figure D.10 Code Rate Dependent Puncturing P2 

 

Puncturing P2 is applied to the two bit sub-streams b0,do and b1,do as given in Table 

D.3. The result is parallel-to-serial converted into a coded and punctured bit stream 

from which b0,0 is sent first. 

 

Code Rates 
r 

Puncturing pattern Transmitted sequence 
(after parallel-to-serial 

conversion) 
1/2 b0,d0: 1 

b1,d0: 1 
 

b0,0 b1,0 

9/16 b0,d0: 1 1 1 1 1 1 1 1 0 
b1,d0: 1 1 1 1 0 1 1 1 1 

b0,0 b1,0 b0,1 b1,1 b0,2 b1,2 b0,3 
b1,3 b0,4 b0,5 b1,5 b0,6 b1,6 b0,7 
b1,7 b1,8 
 

3/4 b0,d0: 1 1 0 
b1,d0: 1 0 1 
 

b0,0 b1,0 b0,1 b1,2 

 

Table D.3 Puncturing pattern P2 and transmitted sequence after parallel-to-serial 
conversion for the possible code rates 

 

 

 

 

b1,0, b1,b…. 

b0,0, b1,b…. 
x0, x1, x2…. 

Puncturing P2

Channel coded PDU 
train 

DEMUX Puncturing P2 
with serial 

output 
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D.1.5.4.4. Data Interleaving 

All encoded data bits shall be interleaved by a block interleaver with a block size 

corresponding to the number of bits in a single OFDM symbol, NCBPS. The interleaver is 

defined by a two-step permutation. It should be noted that this sequence of permutations 

is for the ease of the mathematical representation of the interleaving process, but not a 

specific implementation. The first ensures that adjacent coded bits are mapped onto 

nonadjacent sub-carriers. The second permutation ensures that adjacent coded bits are 

mapped alternately onto less and more significant bits of the constellation, and by this 

long runs of low reliability bits are avoided. 

k shall be the index of the coded bit before the first permutation; i shall be the 

index after the first and before the second permutation and j shall be the index after the 

second permutation, just prior to modulation mapping. 

 

The first permutation, is defined by the rule: 

 

i = (NCBPS/16)(k mod 16) + floor(k/16), k=0,1,…, NCBPS-1                              (D.3) 

 

The function floor(.) denotes here the largest integer not exceeding the parameter, and 

mod is the integer modulo operator. 

 

The second permutation is defined by the rule: 

 

j = s ⋅ floor(i/s) + (i +NCBPS - floor(16 ⋅ i/NCBPS ) ) mod s, i = 0,1,  NCBPS – 1  (D.4) 

 

The value of s is determined by the number of coded bits per sub-carrier, NBPSC, 

according to: 

 

                                                 s = max(NBPSC/2,1)                                           (D.5) 
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D.1.5.4.5. Signal Constellations and Mapping 

HIPERLAN/2 PHY layer uses Orthogonal Frequency Division Multiplex 

(OFDM) transmission. The OFDM sub-carriers shall be modulated by using BPSK, 

QPSK, 16QAM or 64QAM modulation depending on the PHY mode selected for data 

transmission. The interleaved binary serial input data is divided into groups of NBPSC (1, 

2, 4 or 6) bits and converted into complex numbers representing BPSK, QPSK, 16QAM 

or 64QAM constellation points. The conversion shall be performed according to Gray 

coded constellation mappings, illustrated in Figure D.11, with the input bit b1 being the 

earliest in the stream. Additionally, Table D.4 illustrates encoding from input bits to the 

I and Q values for all the modulations. The output values d are formed by multiplying 

the resulting (I + jQ) value by a normalization factor KMOD: 

 

                                            d = (I + jQ) x KMOD                                               (D.6) 

 

The normalization factor KMOD depends on the modulation as prescribed in Table 

D.4. Note that the modulation type can vary inside a PDU train from one PDU to 

another while inside one PDU only one modulation type is used. The purpose of the 

normalization factor is to achieve the same average power for all mappings. The 

normalization factor KMOD should indicate this fact and no implementation rule.  

 

Modulation KMOD 
BPSK 1 
QPSK 2/1  

16QAM 1/ 10  
64QAM 1/ 42  

 

Table D.4 Modulation Dependent Normalization Factor KMOD 
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BPSK 
Input bit b1 I-out Q-out 

0 -1 0 
1 1 0 

 

QPSK 
Input bit b1 I-out Input bit b2 Q-out 

0 -1 0 -1 
1 1 1 1 

 

16QAM 
Input bit 

b1b2 

I-out Input b3b4 Q-out 

00 -3 00 -3 
01 -1 01 -1 
11 1 11 1 
10 3 10 3 

 

64QAM 
Input bit 

b1b2b3 

I-out Input b4b5b6 Q-out 

000 -7 000 -7 
001 -5 001 -5 
011 -3 011 -3 
010 -1 010 -1 
110 1 110 1 
111 3 111 3 
101 5 101 5 
100 7 100 7 

 

Table D.5 Encoding Tables for BPSK, QPSK, 16QAM and 64QAM 
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Figure D.11 BPSK, QPSK, 16QAM and 64QAM constellation bit encoding 

D.1.5.4.6. Modulation Technique 

The stream of complex valued sub-carrier modulation symbols at the output of 

mapper, denoted by dn, shall be divided into groups of NSD = 48 complex numbers: 

 

                                         Dn (mod) 48, n (div) 48 = dn                                 (D.7) 

 

where mod is the integer modulo operator and div is the integer division operator.  
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Each group Dm,n shall be transmitted in an OFDM symbol. All data OFDM 

symbols contain data in data carriers and reference information in pilot carriers. For data 

there are NSD = 48 carriers and for pilots NSP = 4 carriers in each symbol. Thus, each 

symbol is constituted by a set of NST = 52 carriers and transmitted with a duration TS. 

Two parts compose this symbol interval: a useful symbol part with duration TU and a 

cyclic prefix with duration TCP. The cyclic prefix consists of a cyclic continuation of the 

useful part, TU, and it is inserted before it. Thus the cyclic prefix is a copy of the last 

TCP/T samples of the symbol part sent in front of the symbol part. 

The length of the useful symbol part is equal to 64 samples and its duration is TU 

= 3,2 µs. For the cyclic prefix length TCP there are two possible values in the 

HIPERLAN/2 system: mandatory 800 ns and optional 400 ns. 

Numerical values for the OFDM parameters are given in Table D.6. The symbol 

format is shown in Figure D.12 in which CP stands for cyclic prefix followed by a 

useful part, Data n, of the symbol. 

 

Parameter Value 
Sampling rate fs = 1/T 20 MHz 
Symbol part duration TU 64*T 

3,2 µs 
Cyclic prefix duration TCP 16*T 

0,8 µs (mandatory) 
8*T 
0,4 µs (optional) 

Symbol interval TS 80*T 
4,0 µs (TU+TCP) 

72*T 
3,6 µs (TU+TCP) 

Number of data sub-carriers NSD 48 
Number of pilot sub-carriers NSP 4 
Total number of sub-carriers NST 52 (NSD+NSP) 
Sub-carrier spacing ∆f 0,3125 MHz (1/TU) 
Spacing between the two outmost sub-
carriers 

16,25 MHz (NST*∆f) 

 

Table D.6 Numerical Values for the OFDM Parameters 
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Figure D.12 Illustration of an OFDM Symbol with Cyclic Prefix 

 

Base-band format of a transmitted OFDM symbol is: 
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where:  

n denotes the OFDM symbol number; 

l denotes the sub-carrier number;  

Cl,n is complex symbol (data or pilot) for carrier l of the OFDM symbol no. n.  

The carriers used for data transmission are: 

 

-26 ≤ l ≤ -22, -20 ≤ l ≤ -8, -6 ≤ l ≤ -1, 1 ≤ l ≤ 6, 8 ≤ l ≤ 20, 22 ≤ l ≤ 26 

 

and the pilot carriers for reference signal transmissions are: 

 

l = -21, -7, 7, 21 
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The sub-carrier falling at D.C. (0-th sub-carrier, l = 0) is not used. 

The mapping from an individual data symbol group Dm,n into symbols Cl,n is 

defined as: 
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The reference signal transmitted in the pilot carriers is defined as: 
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where pn is a sequence to randomize the reference signal transmitted. The sequence pn is 

a cyclic extension of the 127-element sequence given by: 

 

p0…126 = {1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 

1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 

1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 

1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 

1, 1, -1, -1, -1, -1, -1, -1, -1} 

 

The sequence pn can be generated with the polynomial S(x) used in data 

scrambling (see Figure D.6): 
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                                                       S(x) = X7 + X4 + 1                                              (D.12) 
 

when the "all ones" (1111111) initial state is used, and by replacing all '1's with -1 and 

all '0's with 1. Each sequence element is used for one OFDM symbol. This scrambler 

shall be initialized at the beginning of all PDU trains. 

The mapping from data and pilot complex symbols into the sub-carrier 

frequencies is shown in Figure D.13. 

 

 

Figure D.13 Sub-carrier Frequency Allocation 

 

The resulted NSYM OFDM symbols are concatenated as: 
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to result the base-band format of the PDU train, called payload. The structure of the 

payload section is illustrated in Figure D.14. It consists of variable number (NSYM) of 

OFDM symbols required to transmit the PDU train payload. 

The following relation relates the actual transmitted signal to the complex base-

band signal: 

 

                                           { }tfj
BURSTRF

cetrtr π2)(Re2)( =                          (D.14) 

 

where Re(.) stands for the real part of complex variable, fc denotes the carrier center 

frequency, and rBURST(t) is base-band format of a PHY burst composed of payload and 

preamble and is defined in the following clause. 
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Figure D.14 PDU Train Payload (rPAYLOAD) format 

D.1.5.4.7. PHY Bursts 

System has five different kinds of PHY bursts:  

 

1. Broadcast burst; 

2. Downlink burst; 

3. Uplink burst with short preamble; 

4. Uplink burst with long preamble; 

5. Direct link burst (optional). 

 

The PDU trains delivered by DLC are mapped onto the PHY bursts as depicted 

below depending on the number of sectors used by AP. 

 

a. Number of sectors per AP=1. 

 

In this case, the Broadcast PDU train shall be concatenated to FCH-and-ACH 

PDU train and the resulting Broadcast PDU train is mapped onto the Broadcast burst. 

 
Broadcast PDU     Downlink          Uplink PDU train        Uplink PDU train       Direct link 

train                      PDU train          with short preamble     with long preamble    PDU train 

 

 
 

Broadcast burst    Downlink burst     Uplink burst with      Uplink burst with            Direct link 

                                                           short preamble            long preamble                 burst 

 

b. Number of sectors per AP>1 
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In this case only the Broadcast PDU train shall be mapped onto the Broadcast 

burst. The FCH-and-ACH PDU train shall be mapped onto a downlink burst. 

 
Broadcast PDU   FCH-and-ACH   Downlink       Uplink PDU train       Uplink PDU train     Direct link 

train                    PDU train            PDU train      with short preamble    with long preamble   PDU train 

 

 
 

Broadcast burst    Downlink      Downlink     Uplink burst with        Uplink burst with        Direct link 

                             burst              burst             short preamble             long preamble             burst 

 

Independently of the burst type each burst consists of two sections: preamble and 

payload. Each burst is started with a preamble section, rPREAMBLE, which is followed by 

a payload section, rPAYLOAD, and its base-band format is: 

 

                              rBURST(t) = rPREAMBLE(t)+rPAYLOAD(t-tPREAMBLE)                   (D.15) 

 

The time-offset tPREAMBLE determines the starting point of the payload section of 

the burst and depends on the burst type. The basic structure of a PHY burst is illustrated 

in Figure D.15. 

 

Preamble rPREAMBLE Payload rPAYLOAD 

 

Figure D.15 PHY burst format 

 
 
 
 
 
 
 
 



 151

D.1.5.4.7.1. Broadcast burst 

Broadcast burst consists of a preamble of length tPREAMBLE = 16,0 µs and a payload 

section of length NSYM x TS. Structure of the broadcast burst preamble is illustrated in 

Figure D.16. 

 

 

Figure D.16 Broadcast Burst Preamble 

 

In below the term "short OFDM symbol" refers only to its length that is 16 

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2 

system. 

The broadcast burst preamble is composed of three sections: section 1, section 2 

and section 3. 

Section 1 consists of 5 specific short OFDM symbols that are denoted in Figure 

D.16 by A and IA. The first 4 short OFDM symbols in section 1 (A, IA, A, IA) 

constitute a regular OFDM symbol consisting of 12 loaded sub-carriers (±2, ±6, ±10, 

±14, ±18, and ±22) given by the frequency-domain sequence SA:  

 

















+
++

+++
=−

0 0, 0, 0, j,1 0, 0, 0, j,-1 0, 0, 0,
 j,-1- 0, 0, 0, j,1- 0, 0, 0, j,-1- 0, 0, 0, j,1- 0, 0, 0, j,-1- 0, 0, 0, 

j,1- 0, 0, 0, j,-1- 0, 0, 0, j,-1 0, 0, 0, j,1 0, 0, 0, j,1- 0, 0, 0, 0,
 x )6/13(26....26SA

 

The last short symbol in section 1 (IA) is a repetition of preceding 16 time-domain 

samples.  

Section 2 consists of 5 specific short OFDM symbols that are denoted in Figure 

D.16 by B and IB. The first 4 short OFDM symbols in section 2 (B, B, B, B) constitute 
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a regular OFDM symbol consisting of 12 loaded sub-carriers (±4, ±8, ±12, ±16, ±20, 

and ±24) given by the frequency-domain sequence SB:  

 

















+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0, 

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x )6/13(26....26SB

 

The last short symbol in section 2 (IB) is a sign-inverted copy of the preceding 

short symbol B, i.e. IB = -B. 

Section 3 consists of two OFDM symbols (C) of normal length preceded by a 

cyclic prefix (CP) of the symbols. All the 52 sub-carriers are in use and they are 

modulated by the elements of the frequency-domain sequence SC given by:  

 

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1, 

-1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1} 

 

The cyclic prefix CP is a copy of the 32 last samples of the C symbols and is thus 

double in length compared to the cyclic prefix of the normal data symbols. 

The broadcast burst is formed by concatenating the above-described preamble 

with the data payload. The resulted broadcast burst is as illustrated in Figure D.21 a. 

D.1.5.4.7.2. Downlink Burst 

Downlink burst consists of a preamble of length = 8,0 µs and a payload section of 

length NSYM x TS. Structure of the downlink burst preamble is illustrated in Figure D.17. 
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Figure D.17 Downlink Burst Preamble 

 

The downlink burst preamble is equal to the section 3 of the broadcast burst 

preamble. It is composed of two OFDM symbols (C) of normal length preceded by a 

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are 

modulated by the elements of the frequency-domain sequence SC given by: 

 

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1, 

-1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1} 

 

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is 

thus double in length compared to the cyclic prefix of the normal data symbols. 

The downlink burst is formed by concatenating the above - described preamble 

with the data payload. The resulted downlink burst is as illustrated in Figure D.21 b. 

D.1.5.4.7.3. Uplink Burst with Short Preamble 

It consists of a preamble of length tPREAMBLE = 12,0 µs and a payload section of 

length NSYM x TS. Structure of the short preamble for uplink bursts is illustrated in Figure 

D.18. 
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Figure D.18 Short Preamble for Uplink Bursts 

 

In below the term "short OFDM symbol" refers only to its length that is 16 

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2 

system. 

The short preamble for uplink bursts is composed of two sections: section 5 and 

section 6. The sections are equal to the latter two sections of the broadcast burst 

preamble: section 5 = section 2, section 6 = section 3. 

Section 5 consists of 5 specific short OFDM symbols denoted in Figure D.18 by B 

and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a regular 

OFDM symbol consisting of 12 loaded sub-carriers (±4, ±8, ±12, ±16, ±20, and ±24) 

given by the frequency-domain sequence SB: 

 

















+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0, 

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x )6/13(26....26SB

 

The last short symbol in section 5 (IB) is a sign-inverted copy of the preceding 

short symbol B, i.e. IB = -B. 

Section 6 consists of two OFDM symbols (C) of normal length preceded by a 

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are 

modulated by the elements of the frequency-domain sequence SC given by: 

 

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 1, 

-1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1} 
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The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is 

thus double in length compared to the cyclic prefix of the normal data symbols. 

The uplink burst with short preamble is formed by concatenating the above - 

described preamble with the data payload. The resulted uplink burst is as illustrated in 

Figure D.21 c. 

D.1.5.4.7.4. Uplink Burst with Long Preamble 

It consists of a preamble of length tPREAMBLE = 16,0 µs and a payload section of 

length NSYM x TS. Structure of the long preamble for uplink bursts is illustrated in Figure 

D.19. 

 

 

Figure D.19 Long Preamble for Uplink Bursts 

 
In below the term "short OFDM symbol" refers only to its length that is 16 

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2 

system. 

The long preamble for uplink bursts is composed of two sections: section 7 and 

section 8. 

Section 7 consists of 10 specific short OFDM symbols denoted in figure 15 by B 

and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a regular 

OFDM symbol consisting of 12 loaded sub-carriers (±4, ±8, ±12, ±16, ±20, and ±24) 

given by the frequency-domain sequence SB: 
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+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0, 

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x )6/13(26....26SB

 

The last short symbol in section 7 (IB) is a sign-inverted copy of the preceding 

short symbol B, i.e. IB = -B. 

Section 8 consists of two OFDM symbols (C) of normal length preceded by a 

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are 

modulated by the elements of the frequency-domain sequence SC given by: 

 

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0,  

1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1} 

 

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is 

thus double in length compared to the cyclic prefix of the normal data symbols. Thus 

the section 8 is equal to the section 3, section 4, and section 6. 

The uplink burst with long preamble is formed by concatenating the above - 

described preamble with the data payload. The resulted uplink burst is as illustrated in 

Figure D.21 d. 

D.1.5.4.7.5. Direct Link Burst 

Direct link burst is optional. It consists of a preamble of length tPREAMBLE = 16,0 µs 

and a payload section of length NSYM x  TS. Structure of the preamble for direct link 

bursts is illustrated in Figure D.20. 

 

 

Figure D.20 Preamble for Direct Link Bursts 
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In below the term "short OFDM symbol" refers only to its length that is 16 

samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2 

system. 

The preamble for direct link bursts is composed of two sections: section 7 and 

section 8.  

Section 7 consists of 10 specific short OFDM symbols denoted in Figure D.20 by 

B and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a 

regular OFDM symbol consisting of 12 loaded sub-carriers 6(±4, ±8, ±12, ±16, ±20, 

and ±24) given by the frequency sequence SB: 

 

















+++
++

++
=−

0,0 j,1 0, 0, ,0 j,1 0, 0, 0, j,1 0, 0,
 0, j,1 0, 0, ,0 j,-1- 0, 0, 0, j,-1- 0, ,0 0, 0, 0, 0, 0, j,1 0, 

,0 0, j,-1- 0, 0, 0, j,-1- 0, 0, 0, j,1 0, ,0 0, j,-1- 0, ,0 0, j,1 0, 0,
 x )6/13(26....26SB

 

Section 8 consists of two OFDM symbols (C) of normal length preceded by a 

cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are 

modulated by the elements of the frequency-domain sequence SC given by: 

 

SC-26…26 = {1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 0, 

1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1} 

 

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is 

thus double in length compared to the cyclic prefix of the normal data symbols. Thus 

the section 7 is equal to the section 3, section 4, and section 6. 

The direct link burst is formed by concatenating the above - described preamble 

with the data payload. The resulted direct link burst is as illustrated in Figure D.21 e.  
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Figure D.21 PHY burst structures: (a) Broadcast burst, (b) Downlink burst, (c) Uplink 
burst with short preamble, (d) Uplink burst with long preamble, (e) Direct link burst 
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E. APPENDIX E: TOOLS THAT WERE USED 

During this thesis, the tools listed in Table E.1 have been used.  

 
Tool Version 
Cadence Affirma NC Simulator 3.0 
Synopsys Design Analyzer 1999.10-4 
Matlab 6.1 
Simulink 4.1 
MS Word 2000 

 

Table E.1 Tools that were used 
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