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ANALYSIS OF TEXTURAL IMAGE FEATURES

FOR CONTENT BASED RETRIEVAL

ABSTRACT

Digital archaelogy and virtual reality with archaeological artefacts have been quite
hot research topics in the last years55,56. This thesis is a preperation study to build the
background knowledge required for the research projects, which aim to computerize the
reconstruction of the archaelogical data like pots, marbles or mosaic pieces by shape
and textural features.

Digitalization of the cultural heritage may shorten the reconstruction time which
takes tens of years currently61; it will improve the reconstruction robustness by
incorporating with the literally available machine vision algorithms and experiences
from remote experts working on a no-cost virtual object together. Digitalization  can
also ease the exhibition of the results for regular people, by multiuser media
applications like internet based virtual museums or virtual tours. And finally, it will
make possible to archive values with their original texture and shapes for long years far
away from the physical risks that the artefacts currently face.

On the literature1,2,3,5,8,11,14,15,16, texture analysis techniques have been throughly
studied and implemented for the purpose of defect analysis purposes by image
processing and machine vision scientists. In the last years, these algorithms have been
started to be used for similarity analysis of content based image retrieval1,4,10. For
retrieval systems, the concurrent problems seem to be building efficient and fast
systems, therefore, robust image features haven’t been focused enough yet. This
document is the first performance review of the texture algorithms developed for
retrieval and defect analysis together. The results and experiences gained during the
thesis study will be used to support the studies aiming to solve the 2D puzzle problem
using textural continuity methods on archaelogical artifects, Appendix A for more
detail.

The first chapter is devoted to learn how the medicine and psychology try to
explain the solutions of similiarity and continuity analysis, which our biological model,
the human vision, accomplishes daily.

In the second chapter, content based image retrieval systems, their performance
criterias, similiarity distance metrics and the systems available have been summarized.

For the thesis work, a rich texture database has been built, including over 1000
images in total. For the ease of the users, a GUI and a platform that is used for content
based retrieval has been designed; The first version of a content based search engine has
been coded which takes the source of the internet pages, parses the metatags of images
and downloads the files in a loop controlled by our texture algorithms. The
preprocessing algorithms and the pattern analysis algorithms required for the robustness
of the textural feature processing have been implemented. In the last section, the most
important textural feature extraction methods have been studied in detail with the
performance results of the codes written in Matlab and run on different databases
developed.
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ÖZET

Sayısal arkeoloji ve sanal gerçeklik uygulamaları ile arkeoloji verilerinin
birleştirilmesi, son yıllarda bilimsel ilgi çeken konulardır55,56. Tez çalışmamız, çömlek
parçaları, mermer röliyef veya mozaikler şeklindeki arkeolojik bulguların, şekil ve doku
bilgileri kullanılarak bilgisayar desteği ile ilişkilendirilmesini hedefleyen projelere ön
araştırma niteliğindedir.

Kültürel mirasın sayısallaştırılarak kullanılması, yıllar süren61 restorasyon
çalışmalarını kısaltacak, geri dönülebilir alternatifler üzerinde daha çok uzman fikrin
paylaşılmasını ve yapay görme sistemleriyle de sonuçların gürbüzlüğünü sağlayacaktır.
Ayrıca, sonlanan çalışmalardan elde edilen veriler sanal müze, sanal tur gibi çoklu
medya uygulamaları ile elektronik ortamlarda kitlelere ulaştırılabilecek, ve objeler yıllar
boyunca fiziksel risklerden uzak arşivlenebilecektir.

Doku analizi günümüze kadar hata analizi amacıyla yapay görme ve imge işleme
bilimlerinde sıkça araştırılmış ve yaygın olarak uygulanmıştır1,2,3,5,8,11,14,15,16. Son yıllarda
ise benzerlik analizi alanına kayarak içerik tabanlı sayısal imge arama yöntemlerinde
kullanılmaya başlanmıştır1,4,10. Bu sistemlerin güncel problemleri verimli yapı ve hız
özellikleri olduğundan imge metrikleri üzerinde henüz fazla yoğunlaşılmamıştır. Tez
çalışmamız hata ve benzerlik analizlerindeki doku algoritmalarının sayısal imge arama
platformunda toplu haldeki ilk karşılaştırma dökümanıdır. Benzerlik analizinden çıkan
veriler ve tez çalışmasında elde edilen deneyimler 2 boyutlu bulmaca çözme, bir başka
ismiyle devamlılık analizi yöntemlerini geliştirmek üzere ilk kez uygulancak olan
arkeolojik verilerin doku metrikleri ile ilişkilendirilmesi çalışmalarında kullanılacaktır.

Tezin ilk bölümünde problemlerimize model teşkil edecek insan görme sistemi
incelenmiş ve biyolojik olarak hata, benzerlik ve devamlılık analizlerinin çözümlerinin
tıp ve psikoloji bilimlerince nasıl açıklandığı araştırılmıştır.

İkinci bölümde, sayısal içerik tabanlı 2 boyutlu durağan imge arama sistemleri,
performans kriterleri ve yakınlık metrikleri incelenmiş, literatürdeki çalışmalar
özetlenmiştir.

Tez çalışması için, literatürde şimdiye kadar kullanılan en geniş doku örnek arşivi
oluşturulmuştur. Doku analizi sonuçlarının görsel olarak izlenebileceği bir arayüz
tasarlanmış, içerik tabanlı imge arama yapılabilecek bir platform geliştirilmiş, internet
sayfaları kaynak kodlarından karakter seti resim bileşeni ayrıştırması yaparak resim
dosyalarını bulup sabit diske indirecek içerik tabanlı arama motoru kod çalışmasının ilk
yapısı uygulanmıştır; Ayrıca, doku analizi yöntemleri öncesi gerekli olan imge işleme
ve doku metriklerinin gürbüz işlenmesi için örüntü analizi yöntemleri
gerçekleştirilmiştir. Son bölümde ise geliştirilen  en yaygın doku analizi ve bu
yöntemlerin tüm metrikleri açıklanmış, yaratılan farklı boyutlardaki doku örnek
arşivlerinde, yazılan kodların performans sonuçları özetlenmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Problem Statement

The aim of this thesis is to study content-based static image retrieval systems and

implement literally available, successful textural feature extraction algorithms. The

knowledge obtained will guide a further research for the texture-based solution of the

2D-puzzle problems to computerise the reconstruction of archaeological artefacts.

Let’s clarify this compact problem statement a little:

First of all, what does the term “texture” mean? There are many definitions

available in the literature37, but no unique one is agreed upon. For simplicity, we include

all the information within the object boundary under the texture title. The colour,

edginess, smoothness, coarseness, periodicity... all the discriminative visual feeling we

get from the surface of the object constructs the textural feature set for our image

retrieval system.

Why do we need content-based systems? Up to recent years, the most data

available in the computer world were text and number based. The new MPEG

standards, rich Internet environment, image databases of the museums, archives of

medicine increase multimedia information day by day, which make text-based

descriptive indexing impossible for the advanced searches and associations. Therefore,

content-based image retrieval systems were initiated in the 1980s56,62. Our concern in this

field is to build a benchmark platform to compare the performance of various texture

algorithms.

This thesis will guide a further research on “puzzle problems” of the vision

literature, as explained in detail at the Appendix A. The artefacts found in

archaeological sites create such real world puzzles. Traditionally, experts analyse the

pieces mainly by their bare eyes and try to find associations to extract neighbourhoods.
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The reconstruction task sometimes faces with tremendous amount of unstructured data,

which may ask years61 to cope with. More important, by such a manual search, the

alternatives during the reconstruction are usually ignored to reach one possible shortest

solution. All the data is non-digital, and for this reason, the information sharing among

remote professionals, visualisation before the final reconstruction and utilising from the

features other than shape and texture are usually skipped. Computerising the solution of

the puzzle problem will definitely benefit the archaeology world to gain effort and

efficiency.

1.2. Outline of the Thesis

For the content retrieval and jigsaw puzzles, one possible solution of designing a

powerful machine vision system is to mimic the nature as a model: The human eye

decomposes the objects seen into piecewise feature windows including edge, texture,

colour, shading, direction, etc. Then the brain composes the global picture again,

associates with the memories and attaches a meaning to the object, exactly like solving

a puzzle by content features. What we try to do is to replicate this biological solution in

our computer systems with the concern to improve textural type of feature. In short,

analysis of eye and brain pair will help us to show what we should care and what kind

of complexity we face. Therefore the first chapter is devoted for the biological vision.

The second chapter introduces us the available computerised content-based

systems. After a complete summary, we will focus on how they process the textural

information.

In the last chapters 5 and 6, the textural algorithms and their retrieval

performances are evaluated. The main target is to find an appropriate algorithm with

enough discrimination power for the first level content based image retrieval, with a

general 2D puzzle problem in mind.

Finally, the last section concludes the study and summarises shortly what other

issues are needed in future to transfer the similarity analysis into a continuity analysis.
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CHAPTER 2

HUMAN VISION

This chapter explores the human vision system, the pair of eye and brain. We’ll

first prove6 the partnership of the brain to the eye on the vision process and describe

how the visual information signals reach to the surface of the brain. Then, some rules

governing the perception will be exampled to show that the vision process doesn’t end

with the image acquisition. Next, we let the reader face with the complexity of the two

piece puzzle problem when it is attempted to be solved by the computers. Finally, we

will focus on what happens to the extracted feature windows in the brain, and how they

are reassembled.

2.1. The Partnership of the Brain and Eye

The human vision is usually thought6,7,17,18,24,25 with its processing unit, the brain,

unified.

Figure 2.1: The human visual system
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The eyes take the pictures like a camera, and different brain regions compose a

meaning, and identify the object or the scene. Both systems depend on each other. A

detailed vision process will be explained soon, but we’ll first prove this collaboration

between the eye and brain by a typical experiment17 from the cognitive sciences:

A californian woman, N.G., was placed in front of a screen that had a small black

dot in the centre. She was asked to fix her eyes on this dot, thus ensuring that images

entering her eyes from the side were sent to one hemisphere only. The experimenter

then briefly flashed a picture of a cup to the right of the dot. The image stayed on the

screen for a very short while -about a twentieth of a second. This is just long enough for

an image to be registered, but not long enough for a person to shift her eyes to bring it

into focus and thus send it to both hemispheres. So the image on the screen went to

N.G.’s left hemisphere only and there it stopped, because the normal route to her other

hemisphere, the corpus callosum, was cut.

Figure 2.2: The retina-geniculate-striate system

Asked what she saw, N.G. replied, quite normally: 'A cup'. Next, a picture of a

spoon was flashed on the left side of the screen so that it entered N.G.’s right

hemisphere. This time, when she was asked what she had seen, she said: 'Nothing'. The
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experimenter then asked N.G. to reach under the screen with her left hand and select, by

touch only, from among a group of concealed items the one that was the same as the

one she had just seen. She felt around, pausing briefly at a cup, a knife, a pen, a comb,

then settled firmly on a spoon. While her hand continued to hold it behind the screen,

the experimenter asked her what she was holding: 'A pencil' she said. These responses,

though inexplicable at first sight, actually gave the researchers a uniquely clear picture

of what was going on in N.G.’s brain:

When the cup image was sent to the left hemisphere she saw it and named it in the

usual way. When the spoon image was fed to her right hemisphere, however, she could

not tell the experimenter about it because her right hemisphere was unable to speak. The

words that came out of her mouth, 'I see nothing', were uttered by the left hemisphere,

the only one that could reply. And, because the left hemisphere is isolated from the

right, it was speaking quite truthfully, it had no knowledge of the spoon picture because,

without the usual passage of information across the corpus callosum, the image never

reached it. That does not mean that the spoon image did not go in, however. When the

subject was asked to use her left hand to select an item it was the knowledge in the right

hemisphere which is wired to the left hand that was brought to bear on the task. Thus

she selected the spoon. But when the experimenter asked her to name it she was up

against the same problem she encountered when asked to name the image of the spoon,

the right hemisphere could not tell of it. Instead the left hemisphere kicked in and did

the logical thing. Because it was unaware of the spoon image, it had no way of knowing

that the left hand had selected a spoon rather than any other item. It could not see the

spoon because the hand that grasped it was under the screen. And it couldn't feel it

because the sensory stimuli from the left hand were going, as normal, to the right

hemisphere, where it stayed in the absence of the carrus callosum. The left hemisphere

knew that something was in the left hand, but it had to identify it by guesswork or

deduction. As it happens the left hemisphere is pretty good at deduction, and it

calculated that of all the objects that might be tucked away behind the screen a pencil

seemed like a good bet. So 'pencil' it said.

The spoon and cup exercises demonstrated that the vision process doesn’t end

with the image acquisition step, brain sensory areas add value to what seen.
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Sensory processing employs the vast majority of the brain cortex, only the frontal

lobes are dedicated to non-sensual tasks. The partition is almost the same for everybody

but excessive use of a single sense can cause the relevant cortical area to expand, just

like a muscle when it is exercised. The vision area is at the backside of the brain.17

Figure 2.3: The senses of the brain and cortex task areas17

2.2. The Vision Process from Light to the Brain

The vision process starts25,18,17,7,23 when the light from a visual stimulus is inverted

as it passes through the lens. The light then hits the back of the eye, where light-

sensitive cells turn it into a message of electrical pulses.

Figure 2.4: The structure of the eye
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To look closely at something is to turn one's eyes so that the image falls near the

centre of the retina, a specialised area smaller than the head of a pin that is named as

fovea. Only in this tiny region, the receptor cells concentrated with sufficient density

provide detailed vision. As a result not more than a thousandth of the entire visual field

can be seen in "hard focus" at a given moment.

Yet the human eye is capable of discerning in considerable detail a scene as

complex and swiftly changing as the one confronting a person driving an automobile in

traffic. This formidable visual task can be accomplished only because the eyes are able

to flick rapidly about the scene, with the two foveae receiving detailed images first from

one part of the scene and then from another. Therefore, most of the times our eyes are

jumping from point to point, each fixation takes only a few milliseconds. This rapid

jump is the most common major eye movement and named as the saccade.

The duration of the fixations depends on the character of the scene and what the

viewer is doing. The flick may be so rapid that the eye's angular velocity may reach

more than 500 degrees per second. This velocity is not under conscious control; an

effort to slow it will only break the saccade into a series of shorter movements.

If at the end of the saccade the fovea is not "on target," the eye adjusts by making

one or more small corrective jumps. The path the eyes follow between two fixation

points may be straight, curved or even hooked, but once the eye is launched on a

saccade it cannot change its target. It is as if the points in the visual field were recorded

as a set of coordinates in the brain. The difference between the coordinates of fixation

point at one instant and the next fixation point constitutes an error signal to the eye-

movement control centres, and the resulting movement of the eye is directed in a

manner analogous to what an engineer would call a simple position servo mechanism.
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At each saccade, messages of electrical pulses from light-sensitive cells are

carried along the optic nerve from each eye and cross over at the optic chiasma, a major

anatomical landmark. The optic track then carries the information to the lateral

geniculate body, part of the thalamus.

Figure 2.5: The primary visual pathway

This shunts the signal on to V1 at the back of the brain, the vision area. The

visual cortex is also split into many areas, each processing an aspect of sight, such as

colour, shape, size and so on.

Figure 2.6: The map of the cortex17

V1 mirrors the world outside in which each point in the external visual field

matches a corresponding point on the V1 cortex. When a person stare at a simple

pattern like a grating the image is reflected by a matching pattern of neural activity on

the surface of the brain.
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2.3. Perception Rules of the Brain

In the last section, we tracked the light up to the brain surface. It is medically hard

to work beyond to the cortex7. Instead, the physiologists and psychologists

proposed19,17,18,6,7 some vision tests, hypothesising the brain as a black box problem which

is solvable by its input and output functions. A few of them are exampled below to

show how complex content-based rules are employed in the brain:

The law of pragnanz (Gestalt Laws19,7,6): This law says that we are innately driven

to experience things in as good a gestalt, form, as possible. “Good” can mean many

things here, such a regular, orderly, simplicity, symmetry...

        Figure 2.7: The pragnanz example

On the figure above, we can still read 'WASHO', see the square and read

'perception' despite the missing information. At the right, we tend to complete the

figure, make it the way it “should” be, and manage to see this as a "B"...

The law of similarity (Gestalt Laws): The dots are seen as horizontal lines because

those forming horizontal lines are more similar than those forming vertical lines.

Figure 2.8: The similar lines
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Occluding surfaces18: The perceptual system decides what is hiding and what is

hidden easily. Although the features don’t change on the figure below, our perception

about the content differs much.

Figure 2.9: The perception of the occluding surfaces

A Bare Bear6: In this example, the evidence is enough to elicit a ‘conceptual’

hypothesis of a bear, but perhaps not sufficient for actually seeing it perceptually.

   Figure 2.10: The conceptual image

The law of enclosure (Gestalt Laws): On the test below, it is much easier to see

the vase than the two faces, because enclosed regions tend to be seen as ‘figure’ rather

than ‘ground’, an example of natural segmentation.

         Figure 2.11: The ‘ground’ and ‘figure’
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The law of proximity (Gestalt Laws): The dots are seen as arranged in horizontal

or vertical lines rather than oblique lines, because they are further apart in the oblique

lines.

   Figure 2.12: The proximity example

The law of good continuity (Gestalt Laws): The small dots below are seen to form

a wavy line superimposed on a profile of battlements rather than as the succession of

shapes shown at the bottom of the figure. The rule is, we perceive the organisation that

interrupts the fewest lines.

            
         Figure 2.13: The continuity example

Memory associations6,17: A patient unable to perceive shape is unable to copy

drawings of an apple or an open book, but was much better at drawing these objects

from memory, as seen on the figure below. The object memory of the brain helps the

vision process much by supported guesses and similarity measures.

 Figure 2.14: The model images, copied images, images drawn from memory



12

These rules can be extended more, but we understand in short is that content-

based image retrieval is not just a feature extraction flow for the human vision system.

There are many other rules6,7,17,18,19,24,25 and many associations utilised by the specific

regions of the brain, which are sometimes called as semantic features in content

retrieval, at a higher level than the acquisition of the image features by the eyes.

2.4. Two Pieces 2D Puzzle Problem

If we attempt to solve a 2 pieces puzzle by computers, we need the following

conditions:

Continuity of colours: Colour continuity is an important factor on the solution of

puzzle problems. If asked which combination below is the right solution of the puzzle,

the second case seems to be more appropriate for most observers. Usually, the colours

are not so homogenous, so right colour spaces, noise filters, shadow eliminators should

be used to work with real images.

     

Figure 2.15: The colour continuity

Continuity of edges: The eyes want to see continuous lines, like a derivative

operator. The problem here is, usually the broken real object pieces have occluded parts

at the boundary zone.

   
Figure 2.16: The continuity of edges
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Continuity of textural information: The two stripes below have a the same colour,

but one is horizontal textured and the other is vertical. It is clear that the human vision

also tracks the continuity of the textural information like the colour. Therefore,

characterising a texture with numerical metrics is needed and as in the edge case, the

changes at the boundary affect our success to label the pieces as continuous.

Figure 2.17: The continuity of textures

Object memory: Just to see is not enough, we conceptually add some meaning to

the objects; the biological similarity analysis is not 1 or 0 function but a most probable

searcher. Below you see two pieces; it cannot be claimed to contain any cues on how

these pieces should be associated. In this case, the only decision taker is our memory,

which favours the first combination by remembering past experiences. It is probably the

most important and difficult factor, if we would like to computerise biological vision

systems.

Figure 2.18: The object memory
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Boundary matching and generalisation of the problem: Up to now, we decreased

the complexity of the puzzle, by regularising the outer boundaries. Let’s use irregular

boundaries. Boundary is another dimension for our feature space; the pieces of various

sized, occluded and missing parts together increase the complexity exponentially.

Figure 2.19: The boundary features

The puzzle problem is an exhaustive search problem with dozens of feature

windows for each single piece. The problem reveals itself when we remember that the

eye supplies 500MB/sec compact feature information7 for the brain to cope with such

ambiguity.
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2.5. Ganglion Cells and  Neurons

To get an idea how the low-level features are utilised in the vision process, we’ll

now study the ganglion cells of the retina and neurones of the cortex7,18,17:

Figure 2.20: The ganglion cells and neurones of the cortex7

In the figure above, a portion of the retina is magnified to show the retinal

ganglion cells, of which there are 106 in each eye. The ganglion cells pick up their

messages from the receptors in the retina, through the intermediate cells, called

bipolars. The complex synaptic connections between the various cell types in the

retina do the computations that determine what property of the light, shade, and

colour in the image excites a ganglion cell. The image information pushed to the

axons of the ganglion cells is then carried to the brain with one more relay at the

lateral geniculate nucleus. In the human retina there are about a million ganglion cells

and consequently about a million axons reach to the visual cortex on each side of the

brain. To the right of the figure 2.20, a portion of visual cortex is magnified. In the
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primary visual cortex, there are at least 100 pyramidal cells for each input fibre,

density of cells exceeds 105/mm2. The axons of these cells carry information to the

other visual areas of the brain, further in order to employ the perception rules7.

We may mimic this model on our computerised content-based systems, by

first extracting local features like edges, colour, shading, texture and utilising from

them through higher level of associations. For the degree of locality, what we know

is, the eye is capable of 2-3 degree angle of view for each saccade, during the

scanning process25. The two-dimensional view angle without distortion is about 30-40

degree. So the proportion should give us approximately, how small our feature

extraction area should be. Let us see now, how the ganglion cells extract local features

from these small image windows:

Figure 2.21: Responses from two typical retinal ganglion cells7
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Figure 2.21 shows the responses of two typical retinal ganglion cells, the type of

nerve cell that takes part in transmitting the retinal image up the optic nerve to the

brain. One cell deals with one small part of the retina, so in order to excite it the light

must be placed in exactly the right position in the visual field, which is called the

receptive field of that cell. The receptive fields of two retinal ganglion cells, an 'on-

centre' and an 'off-centre', are shown at the top of the figure. A cross indicates that

light falling in this region increases the impulse rate from the cell, whereas light in the

regions marked by minus signs slows the cell with a transient increase when it is

extinguished. The next row shows the responses for centred spots and displaced spots

for the two types. The responses consist of electrical impulses propagated along the

nerve, and it will be seen that only one of the cells increased its rate of impulse firing

when the light came on; the rate of the other actually decreased during the stimulus,

but increased when the light went off. The situation is actually more complicated than

this. If the stimulus spot had been displaced from the centre of the receptive field, or

replaced by an annulus illuminating the region around the centre of the cell's receptive

field, exactly the reverse pair of responses would have been recorded; the cell which

increased in rate on illumination with a central spot would have slowed upon

illumination in its annular surround, and speed up on extinction of this light, while the

other cell would have done the reverse. Below this line, the effects of illuminating the

whole of the central region, and illuminating the surround without the centre are

shown, while the bottom part of the figure shows that illumination of both parts

together is relatively ineffective; the two zones inhibit each other. The two types can

be thought of as signalling local 'whiteness' or 'blackness', and the ineffectiveness of

uniform illumination shows that they respond to local contrast, not the absolute level

of illumination. Thus it may seem intuitively right that we have separate cells that

signal 'whiteness' and 'blackness', the two types that respond as described above to

increases and decreases in illumination. It also seems right that they respond to

contrast rather than absolute illumination level, for we are all familiar with the fact

that a level of luminance that looks white when surrounded by blackness can look

black if the material surrounding it has its illumination greatly increased; in the

former case 'on' cells would respond with increased firing, whereas in the latter it

would be the 'off' cells.
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This pattern of brief electrical impulses in two million optic nerve fibres is an

obligatory stage in the representation of everything we see, intervening between the

visual scene and our sensations of it. The retinal ganglion cells convert optical image

signals filtered by the specific receptors of the retina into electrical impulses. In the

cortex, the image is still represented by a pattern of impulses, but at any one time only

a small proportion of the vast array of cortical neurones is active, because cortical

neurones are more selective about what each of them responds to. As a result, when a

cell does respond, it says something important and more specific about the image.

Figure 2.22: The responses of a neuron in the visual cortex

The receptive field of a neuron in primary visual cortex and its responses to

oriented stimuli is shown in figure 2.22. These cells are usually responsive only if the

stimulus is elongated and oriented correctly23,24, as well as being positioned in the

appropriate place in the visual field. The cell above for example responded best to a

nearly vertical stimulus, but there is a full range of cells at each position in the visual

field, each responding best to a different orientation, behaving like edge and pose

detectors.

The circuitry of cerebral cortex contains for each square millimetre over

100,000 of those cells, and there are 100,000 square millimetres of cortex on each

side of our brain. In the optic nerve, the image is carried in some million fibres from

each eye and at any given moment, most of these fibres are carrying impulses at a rate
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between say 5 per second and their maximum of about 500 per second, which equals

approximately 500 million compact feature information per second; 500MB/sec if

each information piece were as simple as a computer bit7.

This is an interesting way to represent an image, and the fact that each

individual nerve cell conveys an important piece of information makes us feel that we

have made some progress in understanding how images are 'digested'. But there is

also something profoundly unsatisfactory about it: what earthly use is an array of 100

million cells, each of which responds to some rather specific characteristic of a small

part of the visual field? The images we are familiar within our heads have a unity and

usefulness that this representation, fragmented into a vast number of tiny pieces like a

jigsaw puzzle, seems to lack. Why is it represented like this? Is it simply a parallel

processing or error preventing structure? How is the picture on the jigsaw puzzle

detected, or rather what neural mechanisms carry the analysis of the image further,

and what is the goal of these further steps?

The brain must do more than 'see' images; it must also solve these neural

problems.

2.6. Understanding the Understanding

The first step in understanding the understanding process must be to analyse the

relationships of the pieces of an image to each other, to find the patterns and

regularities it contains18. The links that show relationships within images were studied

first by a group of psychologists, the Gestalt School19. The Gestalt school appreciated

very clearly that it made no sense to consider images as a large number of separate

fragments, and they were therefore much concerned with internal structure. They

demonstrated that there are interactions between the parts of an image and described

these in terms of principles such as 'grouping', 'good continuation', 'pragnantz', or

'common fate' as seen in the previous sections. Perhaps, because these principles were

given a somewhat mystical status by their proponents, they were not very easily

assimilated by many psychologists. But the attempts to perform visual tasks on

computers now make it very clear what their role really is that they are the links

within an image that the visual system uses, so they define the basis for image

understanding.
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If one considers how the Gestalt program of perception might be achieved one

sees that there are two stages: first, local properties of an image such as colour,

direction of movement, texture, or binocular disparity, must be detected; second, the

information so gained must be re-assembled. We have learned in the previous sections

that the pattern selectivity of cells in primary visual cortex fits in well with the view

that they are performing the first operation, neurones respond selectively to the

characteristics of the image. How can the second step of re-assembly be achieved?

2.7. Reassembly of the Feature Windows

Selective addressing and non-topographical neural images suggest7,17,18 that

reassembly is achieved by the cells in primary visual cortex, such as the pyramidal

cell, grow into other cortical areas where they create new patterns in which the

information is brought together according to new principles that are not necessarily

related to the topography of the original image.

Figure 2.23: From optical to neural images

On the left of the figure above is the familiar ray diagram showing the

formation of an optical image on the retina. Focussing by the lens ensures that light

from a particular point on a distant object reaches a single position on the retina, and

the necessary bending of the rays can be regarded as a form of selective addressing:
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rays are bent upwards under one condition, downwards under another therefore

direction of visual entry, a particular part of an object in the external world, is mapped

to position in the image.

The central block depicts the many types of feature detector, represented as

successive layers each dealing in parallel with the same image specialising in a

different feature such as colour, depth, and motion, etc. Here, the three layers that

respond selectively to the orientations of edges in the head, tail and shaft of the arrow

image are shown. The information from each set of feature detectors is then projected

onto another plane where similarity of features determines the position, not simply

similarity of position in the original image.

It is hypothesised that the next step is the formation of many different neural

images, in which features of the original image are mapped and brought together

according to the principles suggested by Gestalt psychology, and perhaps others yet

unknown. It is thought that cortical neurones achieve this by addressing their axons to

positions that depend upon their own pattern selectivity, as well as their position in

the image as exampled in the last two paragraphs. In this way, parts of the image can

become related by their properties, as well as by their positions in the visual field.

2.8. Data Redundancy and Perception Success

The last issue that we want to observe on the human visual system is the feature

reduction capability, the value estimation of the information18,17,25. Not all the

500MB/sec compact information follow the same route in the brain, some of them are

reserved and used just only if they are required. This is one of the big difficulties that

the current digital retrieval and puzzle problems face, redundancy of the information.

The eyes and brain pair are careful searchers and selectors of important data:

Mervyn Thomas, Jane Mackworth25 used a camera to motion pictures of the eye

movements of drivers in actual traffic. They saw how the driver's eyes dart about in

their search for information, when an automobile is moving, the driver’s eyes are

constantly sampling the road ahead. At intervals he flicks quickly to the near curb, as

if to monitor his position but for such monitoring he seems to rely chiefly on the

streaming effect, the flow of blurred images past the edges of his field of vision. The

edges of other vehicles and sudden gaps between them attract visual attention, as do

signs along the roadside and large words printed on trucks. If something difficult to
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identify is encountered, the fixations are longer and the eyes jump back to view it

again. The faster the automobile is moving, or the heavier the traffic, the more

frequent are the saccades. When the driver stops at a traffic signal, his eyes seem to

move less often and rather aimlessly, but they jump toward anything novel that

appears. On a main highway the cars passing in the opposite direction attract quick

glances. A broken white line along the centre of the road sometimes gives rise to

vertical flicking movements. The eyes are also drawn to objects in the skyline such as

tall buildings. One of the strongest visual attractions seems to be flashing lights, such

as those of a turn indicator on a vehicle ahead or of a neon sign at the side of the road.

This demonstrates an important characteristic of human vision. When the image of an

object strikes the periphery of the retina, the eyes swing involuntarily so that the

object is focused on the two foveas and can be perceived in detail. Although the

periphery of the retina is poorly equipped for resolving detail, it is very sensitive to

movement seen in the "corner of the eye." A flashing light therefore serves as a

powerful visual stimulus. On several occasions during the experiments a driver

continued to glance in the direction of the flashing indicators of a car ahead, even

after it had made its turn.

Another example of peripheral attraction is observed when the eye movements

of a pilot landing a small aircraft are recorded25. At touchdown the pilot usually

maintained his sense of direction by the streaming effect while looking rather

aimlessly ahead up the runway, this aimless looking reflects a readiness to react

visually to the unexpected. On one occasion the pilot's eyes flicked away to fixate

repeatedly on an object at the side of the runway in a flurry of rapid saccades. His

eyes continued to be drawn over even after he must have identified the object as one

of the spruce seedlings used on that airfield as snow markers, which our record

showed he was fixating accurately. This sensitivity to a moving or novel object at the

edge of the scene demonstrates that the retina functions as an effective wide-angle

early-warning system that a strong peripheral, signal will continue to pull the eyes.

This is the objective of the designer of flashing neon signs.

In reading, as in driving an automobile, the predominant eye movement is the

saccade, but the saccade of reading is initiated in different way, when one gazes at a

line on a printed page, only three or four words can be seen distinctly. If every word

in the line is to be read, the eyes must jump two or three times. How often they jump

depends not only on the reader's ability to process the visual information but also on
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his interest in what he is reading. Thus the reading saccade is initiated not so much by

the image on the periphery of the retina as by a decision made within the central

nervous system. Fixation times lengthen as the material becomes harder to

comprehend. The eyes may return at intervals to words scanned earlier; these

regressions indicate the time it has taken the reader to recognize that his processing of

the information was incomplete or faulty.

The human vision is not always perfect. This is one reason why we try to

computerise the content retrieval. Edward L. Lansdown25 recorded the eye movements

of a group of student radiologists as they inspected a selection of chest X-rays. The

records showed that the students had carefully examined the edges of the heart and the

margins of the lung fields, and indeed these are important regions for signs of disease.

But large areas of the lung fields were never inspected by most of the students in the

group, even though they thought they had scanned the films adequately. To be sure,

the students who had made the most complete visual examinations were the ones with

the most experience in X-ray interpretation. William J. Tuddenham25 of the University

of Pennsylvania  School of Medicine and L. Henry Garland of the Stanford University

Figure 2.24: Performance of the human vision

School of Medicine tested groups of trained radiologists and found that they missed

25 to 30 percent of "positive" chest X-rays under conditions in which their errors must

have been largely due to failures of perception. Joseph Zeidner and Robert Sadacca of

the Human Factors Research Branch of the U.S. Army25 have reported similar failures

in the interpretation of aerial photographs by a group of skilled military photo-

interpreters, they neglected to report 54 percent of the significant signs. It appears that

the structure of the image under examination may obliterate the pattern of scanning an
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observer intends to follow; his gaze is drawn away, so that he literally overlooks areas

he believes he has scanned. Moreover, low-resolution peripheral vision often

determines where the viewer does not look.

There are also interesting differences of perception between people: Eight

percent of women see an extra hue component of the colour7; N. Mackworth working

at the Centre for Cognitive Studies at Harvard University25, have found that children

show more short eye movements and concentrate more on less informative details.

A great deal of the information that arrives at the brain from the retina fails to

obtrude on the consciousness. In this connection it is startling to watch a film of one's

own eye movements. The record25 shows hundreds of fixations in which items were

observed of which one has not the slightest recollection. Yet the signals must have

reached the brain because one took motor action and even made rather complex

decisions based on the information that was received during the forgotten fixation.

Parts of the brain appear to function rather like a secretary who handles routine

matters without consulting her employer and apprises him of important points in

incoming letters but who at times makes mistakes.

The link between the image and the mind is a difficult one to investigate

because the brain does not receive information passively but partly controls what

reaches it from the eyes. As Darwin constructed his famous evolution theory, he was

obstructed with the complexity of the eye and called the structure as  ‘cold shudder’6.

The processes in brain related to vision is really like a black box; contains valuable

information for our digital problems but not fully understood yet, every single

observation advances us just a step above.

In concluding the biological vision chapter, we would like to emphasise that the

feature extraction step is just a single face of the content retrieval; proper feature

spaces, distance metrics, similarity analysis techniques, memory behaviours,

indexing, semantic association and the help of the other branches are required to

handle such a complex job. In the following chapters, we’ll see that actually there is

lots of information on how to derive local features with performances quite similar to

the human eye. The reason why we couldn’t realise robust content based retrieval

systems and couldn’t solve puzzle problems as powerful as the human eye may be the

ignorance on how the brain reassembles the pieces again using these local features, at

semantic behaviours.
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CHAPTER 3

CONTENT BASED IMAGE RETRIEVAL SYSTEMS

In this chapter, we’ll cover the content-based systems. We first start with the

needs behind the multimedia databases and then summarise the content-based systems

available in the literature. After listing the application areas and successful platform

examples, we focus on the low level feature systems with their similarity metrics and

performance criteria.

3.1. The Growth of Digital Multimedia Data

The use of images in human communication is hardly new, our cave-dwelling

ancestors painted pictures on the walls of their caves, and the use of maps and

building plans to convey information almost certainly dates back to pre-roman times.

Technology, in the form of inventions such as photography and television, has played

a major role in facilitating the capture and communication of image data. But the real

engine of the imaging revolution has been the computer, bringing with it a range of

techniques for digital image capture, processing, storage and transmission. The

involvement of computers in imaging can be dated back to 1965, with Ivan

Sutherland's Sketchpad project, which demonstrated the feasibility of computerised

creation, manipulation and storage of images, though the high cost of hardware

limited their use until the mid-1980s56. As large amounts of both internal and external

memory become increasingly less expensive and processors become increasingly

more powerful, image databases have gone from an expectation to a firm reality1.

Image production and use now routinely occurs across a broad range of disciplines

and subject fields like art galleries and museum management, architectural and

engineering design, interior design, remote sensing and earth resource management,

geographic information systems, scientific database management, weather

forecasting, retailing, fabric and fashion design, law enforcement and criminal
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investigation, picture archiving and communication systems. The creation of the

worldwide web in the early 1990s, enabling users to access data in a variety of media

from anywhere on the planet, has provided a further massive stimulus to the

exploitation of digital images. The number of images available on the Web was

estimated to be between 10 and 30 million in 1997 by Sclaroff et al.55

3.2. From Databases to Visual Information Retrieval Systems

The need to find the desired image from a collection is shared4,1,55,56,62 by many

professional groups in domains such as crime prevention, medicine, architecture, art,

fashion, publishing etc. Uses vary according to application: art collection users may

wish to find a work of art by a certain artist or to find out who painted a particular

image they have seen. Medical database users may be medical students studying

anatomy or doctors looking for sample instances of a given disease.

Image databases can be huge, containing hundreds of thousands or millions of

images. Based on initial calculations, it was estimated that a single 14"x17"

radiography could be digitised by 24MB approximately depending on the resolution.

This combined with other factors such as an examination requiring several

radiographs, and the average number of examinations per year left results that an

image database for a typical 500-bed hospital would require at least 15 terabytes

storage per year1. In most cases, these databases are only indexed by key words that

have to be decided upon and entered into the database system by a human categoriser.

Titles, authors, captions, and descriptive labels provide a natural means of

summarising massive quantities of information. First-generation visual information

retrieval systems allowed the access to images through these string attributes, which

summarise in words what is represented in and its meaning. Text annotation

consumes little space and provide fast retrieval of large amounts of data with the help

of traditional search engines working in the textual domain either using traditional

query languages, like SQL, or full text retrieval based on natural language processing

and artificial intelligence methods. But, when an image database needs annotation, a

person must enter the labels by hand at great cost and tedium caused by the

subjective, individual interpretation of the 'non-verbal symbolism' of an image. The

basic problem of the first generation systems is what the picture means, or whether it

means anything at all cannot be clearly stated with any certainty.
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3.3. New-generation Visual Information Retrieval Systems

New-generation visual information retrieval systems4 support full retrieval by

visual content. Access to visual information is not only performed at a conceptual

level, using keywords as in the textual domain, but also at a perceptual level, using

objective measurements of the visual content and appropriate similarity models. In

these systems, image processing, pattern recognition and computer vision are an

integral part of the system's architecture and operation. They permit the objective

analysis of pixel distribution and the automatic extraction of measurements from raw

sensory input.

3.3.1. Content Based Image Retrieval (CBIR) systems

The earliest use of the term content-based image retrieval in the literature seems

to have been by Kato in 1992, to describe his experiments into automatic retrieval of

images from a database by colour and shape features4,1. The term has since been

widely used to describe the process of retrieving desired images from a large

collection on the basis of features such as colour, texture and shape that can be

automatically extracted from the images themselves. The features used for retrieval

can be either primitive or semantic, but the extraction process must be predominantly

automatic. Retrieval of images by manually assigned keywords is definitely not CBIR

as the term is generally understood, even if the keywords describe image content.

Alphanumeric databases allow a large amount of data to be stored in a local

repository and accessed by content through appropriate query languages; Information

is structured so as to ensure efficiency. On the other hand, CBIR systems have

provided access to unstructured textual documents since digitised images consist

purely of arrays of pixel intensities, with no inherent meaning. One of the key issues

with any kind of image processing is the need to extract useful information from the

raw data, such as recognising the presence of particular shapes, colours or textures

before any kind of reasoning about the image's contents is possible. Image databases

thus differ fundamentally from alphanumeric databases, where the raw material,

words stored as ASCII character strings, have already been logically structured by the

author.
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Content-based image retrieval involves a direct matching operation between a

query image and a database of stored images. The process involves computing a

feature vector for the unique characteristics of the image. Similarity is computed by

comparing the feature vectors of the images. The result of this process is a quantified

similarity score that measures the visual distance between the two images represented

by the feature vectors.

The problems of image retrieval in image encoding, storage, compression,

transmission, display, feature description and matching have been widely recognized,

and the search for solutions becomes an increasingly active area for research and

development. Some indication of the rate of increase can be gained from the number

of journal articles appearing each year on the subject, growing from 4 in 1991 to 12 in

1994, and 45 in 199856.

The variety of knowledge required in visual information retrieval is large.

Different research fields, which have evolved separately, provide valuable

contributions to this new research subject. Information retrieval, visual data modelling

and representation, image/video analysis and processing, pattern recognition and

computer vision, multimedia database organisation, multi dimensional indexing,

psychological modelling of user behaviour, man-machine interaction and data

visualisation, software engineering are only the most important research fields that

contribute in a separate but interrelated way to visual information retrieval.

3.3.2.Characteristics of Data Types

In visual information retrieval, two different types of information are associated4

with images:

The first type of data is not directly concerned with image/video content, but in

some way related to it; it is also referred to as content-independent metadata.

Examples of such data are the format, the author’s name, date, location, ownership,

etc. Along the thesis, a visual content searcher that works on the Internet is developed,

which gets a code page, parse the image tags, download the content and finally

iterates this loop until information request is satisfied. We see the content-independent

data queries at many CBIR systems but as stated before, the importance of the CBIR

systems originates from image features explained below.
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The second type of data refers to the visual content of images and has two

levels. The first level of the data refers to low/intermediate-level features, like colour,

texture, shape, spatial relationship, motion, and their combinations. It is also referred

as content-dependent metadata and generally, this data is concerned with perceptual

facts. For still images, features immediately perceived are colour and texture; this is

the data class we focused on this thesis. The higher level of data may refer to content

semantics and referred to as content-descriptive metadata. It is concerned with

relationships of image entities with real-world entities or temporal events, emotions

and meaning associated with visual signs and scenes.

The type of data used to access images and characteristics of image queries have

a direct impact on the internal organisation of the retrieval system, on the way in

which retrieval is performed and, naturally, on its effectiveness. Another important

factor for the system design is the characteristics of image queries.

3.3.3. Characteristics of Image Queries

What kinds of query are users likely to put to an image database? Query types

may be classified55,56 into three levels of increasing complexity, which is closely

related with the data types described above:

Level 1 comprises retrieval by primitive features such as color, texture, shape or

the spatial location of image elements. Examples of such queries might include "find

pictures with long thin dark objects in the top left-hand corner", "find images

containing yellow stars arranged in a ring" - or most commonly "find me more

pictures that look like this". This level of retrieval uses features, such as a given shade

of yellow, which are both objective, and directly derivable from the images

themselves, without the need to refer to any external knowledge base. A typical

system allows users to formulate queries by submitting an example of the type of

image being sought. The system then identifies those stored images whose feature

values match those of the query most closely, and displays thumbnails of these images

on the screen. Its use is largely limited to specialist applications such as identification

of drawings in a design archive, or color matching of fashion accessories.

All current CBIR systems, whether commercial or experimental, operate at

level 1. We are also interested in level 1 systems, which will be studied in detail in the

following sections.
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Level 2 comprises retrieval by derived, sometimes known as logical or semantic

features, involving some degree of logical inference about the identity of the objects

depicted in the image. It can usefully be divided further into:

i. Retrieval of objects of a given type, e.g. "find pictures of a double-decker

bus";

ii. Retrieval of individual objects or persons, e.g. "find a picture of the Eiffel

tower".

To answer queries at this level, reference to some outside store of knowledge is

normally required. In the first example above, some prior understanding is necessary

to identify an object as a bus rather than a lorry; in the second example, one needs the

knowledge that a given individual structure has been given the name "the eiffel

tower". Search criteria at this level are usually still reasonably objective. This level of

query is more generally encountered than level 1, for example, most queries received

by newspaper picture libraries appear to fall into this overall category.

Level 3 comprises retrieval by abstract attributes, involving a significant

amount of high-level reasoning about the meaning and purpose of the objects or

scenes depicted. Again, this level of retrieval can usefully be subdivided into:

i. Retrieval of named events or types of activity (e.g. "find pictures of

Scottish folk dancing");

ii. Retrieval of pictures with emotional or religious significance ("find a

picture depicting suffering").

Success in answering queries at this level can require some sophistication on the

part of the searcher. Complex reasoning and often subjective judgement can be

required to make the link between image content and the abstract concepts it is

required to illustrate.

Reports of automatic image retrieval at level 3 are very rare. The only research

that falls even remotely into this category has attempted to use the subjective

connotations of color such as whether a color is perceived to be warm or cold, or

whether two colors go well with each other to allow retrieval of images evoking a

particular mood.

Together with the biological vision chapter, this classification of query types

illustrates the limitations of current image retrieval techniques. The most significant

gap at present lies between levels 1 and 2. The levels 2 and 3 together is referred as
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semantic image retrieval, and hence the gap between levels 1 and 2 as the semantic

gap.

The system designed in this thesis focuses totally on the low level features; but

surely, as a next step, semantic associations should be added.

3.3.4 Practical Applications of CBIR

There are many applications4,1,55,56 where full visual retrieval of still images and

videos is important. However, despite the fact that the interest in this topic is growing

fast, its application in real contexts is in its infancy. Promising fields of application for

still images include:

Crime prevention: Law enforcement agencies typically maintain large archives

of visual evidence, including past suspects' facial photographs, fingerprints, and

shoeprints. Whenever a serious crime is committed, they can compare evidence from

the scene of the crime for its similarity to records in their archives or verify the

identity of a known individual and those capable of searching an entire database to

find the closest matching records.

The military: Military applications of imaging technology are probably the best

developed; though least publicized. Recognition of enemy aircraft from radar screens,

identification of targets from satellite photographs, and provision of guidance systems

for cruise missiles are known examples

Architectural and engineering design: Architectural and engineering design

share a number of common features. The use of stylized 2- and 3-D models to

represent design objects, the need to visualize designs for the benefit of non-technical

clients, and the need to work within externally imposed constraints, often financial,

constrain the designer to be aware of previous designs. Hence the ability to search

design archives for previous examples which are in some way similar, or meet

specified suitability criteria, can be valuable.

Fashion and interior design: Similarities can also be observed in the design

process in other fields, including fashion and interior design. Here again, the designer

has to work within externally imposed constraints, such as choice of materials. The

ability to search a collection of fabrics to find a particular combination of color or

texture is increasingly being recognized as a useful aid to the design process.
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Journalism and advertising: Both newspapers and stock shot agencies maintain

archives of still photographs to illustrate articles or advertising copy. These archives

can often be extremely large, running into millions of images, and dauntingly

expensive to maintain if detailed keyword indexing is provided. Broadcasting

corporations are faced with an even bigger problem, having to deal with millions of

hours of archive video footage, which are almost impossible to annotate without some

degree of automatic assistance. CBIR techniques can be used to break up a video

sequence into individual shots, and generate representative keyframes for each shot. It

is therefore possible to generate a storyboard for each video entirely by automatic

means. This application area is probably one of the prime users of CBIR technology

at present.

Medical diagnosis: The increasing reliance of modern medicine on diagnostic

techniques such as radiology, histopathology, and computerized tomography has

resulted in an explosion in the number and importance of medical images now stored

by most hospitals. While the prime requirement for medical imaging systems is to be

able to display images relating to a named patient, there is increasing interest in the

use of CBIR techniques to aid diagnosis by identifying similar past cases.

Examples of this include the I2C system for retrieving 2-D radiological images

from the University of Crete, and the 3-D neurological image retrieval system being

developed at Carnegie-Mellon University, both developed with the aim of assisting

medical staff in diagnosing brain tumors.

Geographical information systems (GIS) and remote sensing: Although not

strictly a case of image retrieval, managers responsible for planning marketing and

distribution in large corporations need to be able to search by spatial attribute, e.g. to

find the 10 retail outlets closest to a given warehouse. And the military are not the

only group interested in analyzing satellite images. Agriculturists and physical

geographers use such images extensively, both in research and for more practical

purposes, such as identifying areas where crops are diseased or lacking in nutrients or

alerting governments to farmers growing crops on land they have been paid to leave

lying fallow.

Cultural heritage: Museums and art galleries deal in inherently visual objects.

The ability to identify objects sharing some aspect of visual similarity can be useful

both to researchers trying to trace historical influences, and to art lovers looking for

further examples of paintings or sculptures appealing to their taste.
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IBM's QBIC system has received extensive trials in managing art library

databases, and has proved an extremely useful browsing tool. Jain et al has applied

CBIR techniques to the management of image and video data relating to a Hindu

temple in India.

Education and training: It is often difficult to identify good teaching material to

illustrate key points in a lecture or self-study module. The availability of searchable

collections of video clips providing examples of avalanches for a lecture on mountain

safety, or traffic congestion for a course on urban planning, could reduce preparation

time and lead to improved teaching quality.

Home entertainment: Much home entertainment is image or video-based,

including holiday snapshots, home videos and scenes from favorite TV programs or

films. This is one of the few areas where a mass market for CBIR technology could

develop.

Web searching: Cutting across many of the above application areas is the need

for effective location of both text and images on the Web, which has developed over

the last five years into an indispensable source of both information and entertainment.

Text-based search engines have grown rapidly in usage as the Web has expanded; the

well-publicized difficulty of locating images on the Web indicates that there is a clear

need for image search tools of similar power.

Two commercial Web search engines now offer a CBIR option, the Yahoo!

Image Surfer, based on Excalibur technology and AltaVista's AV Photo Finder, using

Virage technology.

3.3.5. Available CBIR Softwares

Despite the shortcomings of current CBIR technology, several image retrieval

systems, are now available as commercial packages4,1,55,56,62. Some of the most

prominent of these are described below:

QBIC:  IBM's QBIC system is probably the best-known of all image content

retrieval systems. It offers retrieval by any combination of color, texture or shape, as

well as by text keyword. Image queries can be formulated by selection from a palette,

specifying an example query image, or sketching a desired shape on the screen. The

system extracts and stores color, shape and texture features from each image added to

the database. For still images, functions available are querying by semantic content,
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by global color similarity, by color-region similarity, by texture similarity; by shape

and spatial relationship similarity.  At search time, the system matches appropriate

features from query and stored images, calculates a similarity score between the query

and each stored image examined, and displays the most similar images on the screen

as thumbnails.

Virage: Another well-known commercial system is the VIR Image Engine from

Virage, Inc. This is available as a series of independent modules, which systems

developers can build into their own programs. This makes it easy to extend the system

by building in new types of query interface, or additional customized modules to

process specialized collections of images. For still images, functions available are

querying by semantic content, by global colour similarity, by texture similarity, by

structure similarity.

Excalibur: A similar philosophy has been adopted by Excalibur Technologies. It

is marketed principally as an applications development tool rather then as a

standalone retrieval package. Its best-known application is probably the Yahoo!

Image Surfer, allowing content-based retrieval of images from the Worldwide Web.

Visual Retrievalware is a framework for retrieval of still images only. Functions

available are querying by semantic content; by global color similarity, by texture

similarity.

Experimental systems: A large number of experimental systems have been

developed, by academic institutions, in order to demonstrate the feasibility of new

techniques. Some of the best-known are the Photobook system, from Massachusetts

Institute of Technology, The VisualSEEk system at Columbia University, the

Surfimage system from INRIA, France.

CBIR at present is still very much a research topic. The technology is exciting

but immature, and few operational image archives have yet shown any serious interest

in adoption. The application areas most likely to benefit from the adoption of CBIR

are those where level 1 techniques can be directly used. Areas where retrieval by

primitive image feature is likely to be beneficial are crime prevention including

identification of faces and fingerprints, architectural design to retrieve of similar

previous designs, and medical diagnosis, retrieval of cases with similar features. It is

also unlikely that general-purpose image retrieval software will meet the needs of

these user communities without a significant degree of customization. Each of these

application areas has their own range of special needs and constraints. Software
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solutions that fail to address these needs are unlikely to perform well enough to

convince users that they are worth adopting.

CBIR systems are also not particularly easy for inexperienced end-users to

understand. It is certainly not obvious to the casual user how to formulate and refine

queries couched in terms of color, texture or shape features. There is thus an argument

for the involvement of an experienced search intermediary who can translate a user's

query into appropriate image primitives, and refine the search in consultation with the

user in the light of output received. This kind of role is less fanciful than it might

seem that it is simply trying to exploit the same approach as some researchers into

semantic image retrieval. The only difference is that it would use humans instead of

machines, and therefore probably has a higher chance of success. Such intermediaries

would be difficult to train because the requisite body of knowledge exists only in

fragmented form, if at all. But they could be enormously helpful in making CBIR

systems usable.

In the next section, we’ll start to explore the level 1 static image retrieval

systems in detail.
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3.4. Level 1 Content Based Static Image Retrieval Systems

Perceptual content of still images includes colour, texture, shape and spatial

relationship. To retrieve images according to perceptual properties, the basic retrieval

paradigm requires4,1 that, for each image, a set of distinguishing features, i.e. model

parameters are precomputed. Queries are expressed through visual examples. To

initiate a query, the user selects which features and model parameter ranges are

important and chooses a similarity measure. Examples can either be authored by the

user or extracted from image samples. The system checks the similarity between the

visual content of the user's query and the database images. Since one cannot expect

results obtained in response to a query to be fully satisfactory, the commonly followed

technique to improve the quality of retrieval is to keep as low as possible the number

of misses at the expense of a larger number of false retrievals. Similarity-based

retrieval differs in two basic respects from matching:

Matching, as it is commonly defined in computer vision for object recognition,

is a binary partition operation, being intrinsically committed to deciding whether or

not the object observed corresponds to a model.

           Figure 3.1: Different types of queries4
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Similarity-based retrieval is, instead, the task of re-ordering database images

according to their measured similarity to a query example. It is therefore concerned

with ranking rather than classification. It does not postulate the existence of a target

image. Re-ordering of database images is performed, even if there is no image close

to the example.

In matching, uncertainties and imprecision are commonly managed during the

process. Features used to perform classification are chosen according to the problem.

The way in which matching is carried out depends on the description adopted.

In retrieval by similarity, the user is in the retrieval loop. Therefore, it is he or

she who defines a query, analyses system responses and refines the query. The

existence of the user in the retrieval loop underlines instead the importance of flexible

interfaces and visualization tools.

Similarity-based retrieval requires that feature matching is robust with respect to

differences between the query and the images. Similarity models should somehow

replicate the way in which humans assess similarity between different objects. This

approach is complicated by the fact that, unfortunately, there is not a single model of

similarity. Moreover, often the user combines different similarity measures, each

specialised on a specific domain, so as to derive a subjective measure suited for the

context of operation.

3.4.1. Similarity Metric Models

Pre-attentive and attentive human similarities differ from each other4,10,1:

Attentive similarity has to do with interpretation and involves previous knowledge, a

form of reasoning. Pre-attentive similarity instead is simply based on the perceived

similarity between stimuli, with no form of interpretation.

        Figure 3.2: Pre-attentive and attentive similarity test
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Figure shows an example of such a distinction. The two faces are in an

unfamiliar position but, at first glance, seem to be the same. Turning the page upside

down, so that the faces are in a more familiar position, the face images are interpreted

and the differences in eye contour can be realised. In the first case, pre-attentive

similarity is involved. Features considered are those prominent in the image, like

colour, texture, presence and location of salient elements of a face such as eyes,

mouth, nose; whereas, the precise identification of these elements and their

recognition through feature matching are tasks performed when attentive similarity is

involved. Attentive similarity is requested in domain-specific retrieval applications

such as facial, iris, mechanical-part or medical databases. These use object matching

and ad-hoc similarity criteria, particular to the application domain.

Pre-attentive similarity, instead, is requested in retrieval applications where

colour, texture, shape and spatial relationship perception is more important. These

need similarity models that closely conform to human similarity perception of

censorial stimuli. Some of these models are briefly summarised in the following

paragraphs because our concern is mainly to focus on pre-attentive similarity:

A very well known theory4 postulates that human similarity perception is

based on the measurement of an appropriate distance in a metric psychological space.

In this theory, it is assumed that a set of features model the stimulus' properties so that

it can be represented as a point in a suitable feature space. If d is a distance function

and S1, S2 and S3 are generic stimuli, the following metric axioms must be verified:

. Constancy of self-similarity:

d(s1,s1)=d(s2,s2)=0;                                                   (3.1)

. Minimality:

d(s1,s2) ≥ d(s1,s1) ≥ 0;                                                 (3.2)

. Symmetry property:

d(s1,s2)=d(s2,s1);                                                     (3.3)

. Triangle inequality property:

d(s1,s2)+ d(s2,s3) ≥ d(s1,s3)                                             (3.4)
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Obeying the axioms above, the commonly used distance functions4,1,10,55 of the

content similarity analysis are:

The Euclidean distance:

2
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where Xk, Yk are generic features of the stimulus Sk.

Many studies in psychology have pointed out certain inadequacies of the

feature vector model and metric distances. For example, for shape similarity, feature

vectors, even of high dimensionality and metric distances such as the Euclidean do

not result as being close to the human judgement of similarity.

Figure 3.3: Euclidean distance in a two-dimensional metric space
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Nevertheless, this model also has several advantages that make it the most

widely employed in visual information retrieval systems:

I.  It is adequate for certain types of human similarity judgement. For example,

similarity judgement of colour stimuli is well approximated through this

model.

II. It is consistent with feature-based description, which is a well-established

approach in pattern recognition and computer vision. A lot of feature

extraction algorithms are available.

III. If visual data are modelled through a feature vector, an index can be built for

these vectors according to classical multi dimensional access methods. Indexes

are very helpful when the number of database images is very large.

As an alternative method to the standard distance metrics, we applied the

Mahalanobis distance, which is dominantly used in machine vision. The quantity r  in

                                               )()( 1'2
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is called the Mahalanobis distance from the feature vector x to the mean vector mx,

where Cx is the covariance matrix for x. It can be shown that the surfaces on which r

is constant are ellipsoids that are centered about the mean mx. In the special case

where the features are uncorrelated and the variances in all directions are the same,

these surfaces are spheres, and the Mahalanobis distance becomes equivalent to the

Euclidean distance. The use of the Mahalanobis metric removes several of the

limitations of the Euclidean metric:

I. It automatically accounts for the scaling of the coordinate axes

II. It corrects for correlation between the different features

III. It can provide curved as well as linear decision boundaries

However, there is a price to be paid for these advantages. The covariance

matrices can be hard to determine accurately, and the memory and time requirements

grow quadratically rather than linearly with the number of features. These problems

may be insignificant when only a few features are needed, but they can become quite

serious when the number of features becomes large.
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Finally, we’ll mention about the texture signatures, which frequently used by

the professional CBIR systems.

Image signatures are obtained by evaluating probability density functions over

the multi-dimensional space of feature vectors. These are estimated as a weighted sum

of gaussians:
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Each gaussian Gi corresponds to a cluster of feature vectors. Clusters are

obtained through a k-means clustering algorithm followed (optionally) by cluster

merging. Mean vectors µ and covariance matrices Σ are derived for each Gaussian.

Weights wi of the gaussians are the number of elements in the cluster.

The similarity between query (IQ) and target (IT) textures is evaluated by

comparing image signatures according to the following distance function:
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3.4.2. Standard Performance Evaluation Criteria

In traditional information retrieval, evaluation is performed10,1 according to the

following table:

                                                    Judgement by evaluator
Relevant Not relevant

Retrieved A (correctly retrieved) B (falsely retrieved)
Not retrieved C (missed) D (correctly rejected)

Table 3.1: Traditional metrics for information retrieval

Traditional performance evaluation metrics are ‘recall’ and ‘precision’. They

are a function of both correct matches and the relevance of a document to a query.

Recall and precision have also been used for visual information retrieval. A more

sophisticated measure of performance takes into account the effectiveness of retrieval.
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It is a measure of the agreement between human evaluators and the system in ranking

retrieved images according to their similarity to a query.

Recall measures the ability of the system to retrieve all documents that are

relevant. It is defined as:

CA
A

relevantall
retrievedcorrectlyrelevantrecall
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==            (3.12)

Precision measures the ability of the system to retrieve only documents that

are relevant. It is defined as:

BA
A
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retrievedcorrectlyrelevantprecision
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==          (3.13)

Recall and precision require a ground truth to assess the relevance of images

for a set of significant queries. Test sets are usually large but only a small fraction of

relevant images is included. The relevance of a retrieved image is measured as the

"perceived contact" between the visual content of a query and that of the image.

In contrast to recall and precision, measuring effectiveness requires a small

image test-set (20-40). Images include visual elements such as textures, shapes,

images that are somewhat different from the query example, yet representing elements

of the same category as the query. For each image i of the test-set, and each query

example j, a window can be used of width σj(i) centred in the rank Pj(i), which is

assigned by the system. A measure of the difference between the system and human

ranking can be represented by the sum of the percentage of people Qj(i,k) who ranked

the ith image in a position between Pj(i)- σj(i) and Pj(i) + σj(i) :

∑
+=

−=

=
)()(

)()(
),()(

iiPk

iiPk
jj

jj

jj

kiQiS
σ

σ
                                        (3.14)

Computational complexity analysis is also important to check the possibility

of real-time implementation which usually considers the most significant operations
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needed to resolve a typical query. As explained before, there is another field of image

retrieval which focuses mainly on the computation time and efficient architectures.

Our target is to create an offline application by evaluating the textural features.

Therefore, this measure is not in our priority.

3.4.3. The Performance Evaluation Metrics of  the Thesis

Since visual information retrieval is context dependent, we want to summarise

below the performance measures that will be used in the thesis. We take two different

reports from a run, a visual and a file report. The file version includes a complete

similarity order report including all images’ ranks for all possible requests. We define

four images taken from the same object as relevant. The visual interface aims to show

how correct the expected places of all the relevant images are filled, therefore only the

closest 3 retrievals are displayed, which can be expanded when need. Such a

definition decreases the success rate because different objects may have relevant

primitive relations but at least doesn’t require human subjective tests.

Precision-Recall: We keep “all retrieved” numbers fixed; For this reason, in

our system the precision and recall metrics are the same. This new measure shows us

how correct we call images on the top three places in rank.

The distribution of the shortest interval length for the closest relevant retrieval:

This measure defines the length of estimated relevant region. It is the answer to the

question how many images we should request to satisfy a success.

The distribution of the shortest interval length for all relevant retrieval: As

stated before, these systems are reordering machines. It is not always possible, also

there is no need, to get all images from a unique object at the top ranks. Sometimes,

the inter-class relationships may be weaker than the intra-class ones. The texture

feature is especially open to this case because of its scale dependency. So the images

from the same object may be ordered at different places. This measure enables us to

see the distribution of the relevant images over the database.

The percentage of the correctness for the closest retrieval: The closest

retrieval’s correctness is especially important for machine vision applications.

Although we establish a similarity analysis, which doesn’t need such strict decisions,

choosing one of the relevant images as closest retrieval is a high quality performance

measure.
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The percentage of the all-first three correct retrieval: For any request, if the

first three retrievals are relevant, then the success rate is optimal because we have

only four samples from each class. Therefore, the ‘all-first three correct retrieval’

measure denotes the percentage of perfect results.

The precision metric by majority voting rule: In pattern analysis, the voting rule

is a popular method to combine the results of different classifiers. In the similarity

analysis, a final decision may be made by a voting rule among the first three retrievals

to extract the performance. As a result, we can tolerate to some non-relevant retrievals

without changing the class decided.

Now, we think that we are equipped enough to continue the topic by

specialising on the ‘texture’ and ‘colour’ similarity retrievals.

3.4.4. Image Retrieval by Colour and Texture Similarity

Colour and texture are powerful discriminating features, present almost

everywhere in nature. For retrieving images on the basis of colour similarity, several

methods have been described in the literature4,10,1,13, but most are variations of the same

simple idea, colour histograms of chromatic content. When a user wants to find an

image similar to a query image, his interest lies on the global image chromatic

content. Colour similarity measures compare the colour content of one image with the

colour content of a second image or of a query specification.  Each image added to the

collection is analysed to compute a colour histogram which shows the proportion of

pixels of each colour within the image. The colour histogram for each image is then

stored in the database. At search time, the user can either specify the desired

proportion of each colour, 75% olive green and 25% red, for example, or submit an

example image from which a colour histogram is calculated. Either way, the matching

process then retrieves those images whose colour histograms match those of the query

most closely, i.e. , the relative number of pixels that are in the histogram bin closest to

the colour in a query. The matching technique most commonly used, histogram

intersection, was first developed by Swain and Ballard in 1991. Variants of this

technique are now used in a high proportion of current CBIR systems. We’ll state

three major colour algorithms in the next chapter.

The ability to retrieve images on the basis of texture similarity can also be

useful, especially for distinguishing between areas of images with similar colour such
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as sky and sea, or leaves and grass. Besides, textural features are more robust against

light and environmental changes if the contrast measures are preferred. A variety of

techniques have been used for measuring texture similarity; textures may be described

according to their spatial, frequency or perceptual properties. Periodicity, coarseness,

preferred direction, degree of complexity are some of the most perceptually salient

attributes of a texture.

Texture queries can be formulated in a similar manner to colour queries, by

selecting examples of desired textures from a palette, or by supplying an example

query image. The system then retrieves images with texture measures most similar in

value to the query.

In the following chapter, we’ll study the colour and textural feature extraction

algorithms for content retrieval in detail.
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CHAPTER 4

TEXTURE ANALYSIS

This chapter aims to build the background knowledge on texture analysis. First,

a taxonomy discussion will be made. Then, texture methods will be categorised and

studied in detail including colour algorithms.

There are many fields of image processing in which texture and colour play

important roles. The most important areas are probably classification, image

segmentation, image encoding and computer graphics. The classification of textures,

often real textures, is a common problem in medical image processing and in process

control. Some typical applications are the recognition of tissues in microscope

images, the quality control of timber, line boards and paper, or the classification of

reconnaissance and remote sensing images. Image segmentation is related to the

classification problem; when other features, like shape, tone or colour, are not

sufficient to discriminate between regions, one criteria of image segmentation might

be texture.

In image coding the image is compressed while conserving the information.

Recently there have been attempts to improve the compression rate by recognizing the

texture in an image and replacing it with a symbolic representation.

Computer graphics has another approach to texture. Textures are used to mimic

natural scenes. The problem is reversed. How to generate a natural texture? The effort

to synthesize textures has also had an effect to texture recognition. Some texture

recognition methods based on texture models have been developed.

There is also research going on to extract three-dimensional information from

two dimensional images. This extraction is based on determining surface orientations.

Surfaces are often textured. The surface orientation is determined by identifying the

texture and the texture projection .
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4.1. Texture Definitions

Even though texture is an intuitive concept, a formal definition of texture has

proven elusive in the literature38,20,21,1,17,35 over the years. In 1973, Haralick, Shanmugam

and Dinstein noted, “texture has been extremely refractory to precise definition.”

Many researchers have expressed this sentiment. Cross and Jain, “There is no

universally accepted definition for texture.” Bovik, Clarke and Geisler, “an exact

definition of texture either as a surface property or as an image property has never

been adequately formulated.” And Jain and Karu, “Texture eludes a formal

definition.”

Despite this lack of a universally agreed definition, all researchers agree on two

points. Firstly, there is significant variation in intensity levels between nearby pixels;

that is, at the limit of resolution, there is non-homogeneity. Secondly, texture is a

homogeneous property at some spatial scale larger than the resolution of the image.

Haralick summarises these two points by his definition, "A fundamental characteristic

of texture is it cannot be analysed without a frame of reference of tonal primitive

being stated or implied. For any smooth grey tone surface, there exists a scale such

that when the surface is examined, it has no texture. Then as resolution increases, it

takes on a fine texture and then a coarse texture."

Some researchers describe texture in terms of the human visual system. They

claim textures do not have uniform intensity, but are none-the-less perceived as

homogeneous regions by a human observer. For example, Bovik, Clarke and Geisler

write, “an image texture may be defined as a local arrangement of image irradiances

projected from a surface patch of perceptually homogeneous irradiances.” Also,

Chaudhuri, Sarkar and Kundu write, “Texture regions give different interpretations at

different distances and at different degrees of visual attention. At a standard distance

with normal attention, it gives the notion of macro-regularity that is characteristic of

the particular texture. When viewed closely and attentively, homogeneous regions and

edges, sometimes constituting texels are noticeable.” However, a definition based on

human acuity poses problems when used as the theoretical basis for a quantitative

texture analysis algorithm. Faugeras and Pratt note, “The basic pattern and repetition

frequency of a texture sample could be perceptually invisible, although quantitatively

present.”



48

Texture is an apparently paradoxical notion. On the one hand, it is commonly

used in the early processing of visual information, especially for practical

classification purposes. On the other hand, no one has succeeded in producing a

commonly accepted definition of texture. A complete definition for texture is really

challenging, nevertheless many experts successed it over the years. Haralick gives the

following definition to the texture, " Image texture is described by the number and

types of its primitives and the spatial organization or layout of its primitives. The

spatial organization may be random, may have a pairwise dependence of one

primitive on a neighbouring primitive, or may have a dependence of n primitives at a

time. The dependence may be structural, probabilistic, or functional." And the

definition given by Van Gool, "Texture can be defined as a structure composed of

many of more or less ordered similar elements or patterns without one of these

drawing special attention. So a global unitary impression is offered to the observer.

We could think of a strictly ordered array of identical subpatterns like a chessboard

for instance. Such a texture is called deterministic. It can be described by the

characteristics of one such subpattern or primitive and by the placement rules defining

the spatial distribution of the primitives. We could also have in mind a pattern merely

obeying some statistical laws. The resulting structure might resemble noise on a

television screen. Such a texture is said to be stochastic. We have to point out,

however, that deterministic textures can be heavily disturbed in their repetitiousness

and their primitives might be similar, but not identical at all. Then the texture is no

longer an ideal one but is referred to as an observable texture.. In fact it is in between

the deterministic and the stochastic model."

Identifying the perceived qualities in an image is an important first step towards

building mathematical models for texture. The intensity variations in an image which

characterize texture are generally due to some underlying physical variation in the

scene such as pebbles on a beach or waves in water. Modelling this physical variation

is very difficult, so texture is usually characterized by the two-dimensional variations

in the intensities present in the image. This explains the fact that no precise, general

definition of texture exists in the computer vision literature.

What we can claim with confidence is that texture is a contextual property of

gray level values in a spatial neighborhood whose size depends upon the texture type.

So it is a property of pixel areas. In the next section, we’ll see the categories of

texture.
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4.2.Texture Taxanomy

Due to its wide variability, people usually describe2,3,37,38,57,1,17 texture as fine,

coarse, grained, smooth, etc., implying that some more precise features must be

defined to make machine recognition possible. Such features can be found in the tone

and structure of a texture. Tone is mostly based on pixel intensity properties in the

primitive, while structure is the spatial relationship between primitives. A texture

primitive, a texel, is a contiguous set of pixels with some tonal and/or regional

property, and can be described by its average intensity, maximum or minimum

intensity, size, shape, etc.. The texels may have various sizes and degrees of

uniformity, may be oriented in various directions, may be spaced at varying distances

in different directions and may have various magnitudes and variations of contrast and

opacity. The placement of a texel in texture could be periodic, quasi-periodic or

random. Natural textures have generally random texels, whereas artificial textures

have deterministic or periodic ones. Let’s see an example:

Figure 4.1: Texture examples

(a) dog fur (b) grass (c) river pebbles (d) cork (e) chequered textile (f) knitted fabric
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Primitives in grass and dog fur are represented by several pixels and correspond

to a stalk or a pile; cork is built from primitives comparable in size with pixels. It is

difficult, however, to define primitives for the chequered textile or fabric which can

be defined in at least two hierarchical levels. The first level of primitives corresponds

to textile checks or knitted stripes, and the second the finer texture of the fabric or

individual stitches.

Image texture as a global representation is described by the number and types of

primitives and by their spatial relationship but it doesn’t mean that we have optimal

differentiability for all textures. Figures a and b show that the same number and the

same type of primitives does not necessarily give the same texture.

          
(a)                                     (b)                                    (c)

Figure 4.2:   Artificial textures

Similarly, Figures 4.2a and 4.2c show that the same spatial relationship of

primitives does not guarantee texture uniqueness, and therefore is not sufficient for

texture description.

Texture tone and structure are not independent; textures always display both

tone and structure even though one or the other usually dominates, and we usually

speak about one or the other only. Tone can be understood as tonal properties of

primitives, taking primitive spatial relationships into consideration. Structure refers to

spatial relationships of primitives considering their tonal properties as well. If the

texture primitives in the image are small and if the tonal differences between

neighbouring primitives are large, a fine texture results, e.g. d in the Figure 4.1. If the

texture primitives are larger and consist of several pixels, a coarse texture results, e.g.

c in the Figure 4.1. Note that the fine/coarse texture characteristic depends on scale.

Further, textures can be classified according to their strength, which then influences
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also the choice of texture description method. Weak textures have small spatial

interactions between primitives, and can be adequately described by frequencies of

primitive types appearing in some neighbourhood. Because of this, many statistical

texture properties are evaluated in the description of weak textures. In strong textures,

the spatial interactions between primitives are somewhat regular. To describe strong

textures, the frequency of occurrence of primitive pairs in some spatial relationship

may be sufficient. Strong texture recognition is usually accompanied by an exact

definition of texture primitives and their spatial relationships.

It remains to define a constant texture. An image region has a constant texture if a set

of its local properties in that region is constant, slowly changing, or approximately

periodic. The set of local properties can be understood as primitive types and their

spatial relationships. An important part of the definition is that the properties must be

repeated inside the constant texture area. How many times must the properties be

repeated? Assume that a large area of constant texture is available, and consider

smaller and smaller parts of that texture, digitizing it at constant resolution as long as

the texture character remains unchanged. Alternatively, consider larger and larger

parts of the texture, digitizing it at constant raster, until details become blurred and the

primitives finally disappear. We see that image resolution is a consistent part of the

texture description; if the image resolution is appropriate, the texture character does

not change for any position in our window, we obtain constant textures.

Most texture research can he characterized by the underlying assumptions made

about the texture formation process described above. Two main texture description

approaches exist: statistical (stochastic) and structural (syntactic). The choice of the

assumption depends primarily on the type of textures.

Statistical methods yield characterizations of textures as smooth, coarse, grainy,

etc. and are suitable if texture primitive sizes are comparable with the pixel sizes.

Textures that are random in nature like sand, water, grass are well suited for statistical

characterization. The structural placement paradigm for textures may also include a

random aspect; in the stochastic point of view, however, we take a more extreme

position and consider that the texture is a sample from a probability distribution on the

image space like noise on a television screen. The image space is usually an N X N

grid and the value at each grid point is a random variable in the range {0,1,…,G-1}.
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Figure 4.3: Smooth, coarse, and regular textures

Syntactic (structural) methods are more suitable for textures where primitives

can be assigned a label, meaning that primitive type can be described using a larger

variety of properties like shape, size than just tonal properties. Purely syntactic texture

description models are based on the idea that textures consist of primitives located in

almost regular relationships. As an example, we could think of a strictly ordered array

of identical sub-patterns like a checkerboard. The sub-patterns may be of

deterministic shape, such as circles, hexagons, or even dot patterns. Macrotextures

have large primitives, whereas microtextures are composed of small primitives. These

terms are again relative to the image resolution.

On the other hand, textures of the real world are usually irregular in which

structural errors, distortions, or even structural variations are frequent. This means

that no strict rule can be used to describe a texture in reality. To make syntactic

description of real textures possible, variable rules must be incorporated.

Nevertheless, purely syntactic methods of texture description are accompanied by

many difficulties with syntactic analyser learning and with complex grammar

inference. This is the main reason why purely syntactic methods are not widely used.

On the other hand, a precise definition of primitives brings many advantages and it is

not wise to avoid it completely. Hybrid methods of texture description combine the

statistical and syntactic approach. The technique proposes deterministic primitives

and probabilistic relations between primitives.

The broad taxonomy map below is derived by combining various charts from

the literature, still doesn’t claim to be an absolute truth due to the variability of the
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texture definitions; In the thesis, we didn’t include the results of the syntactic, fractals

and wavelet based methods. All the other algorithms are studied and implemented as

discussed on the following two chapters.

                Figure 4.4: Texture taxonomy
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4.3. Texture Algorithms

4.3.1. Statistical Approaches

Statistical approaches37,57,20,11 define the texture as “a quantitative measure of the

arrangement of intensities in a region”. Each texture is described by a feature vector

of properties, which represents a point in a multi-dimensional feature space. The

statistical approaches include spatial domain methods, signal processing methods and

model based methods which algorithms will be explained in the following sections.

In spatial domain methods, features are derived from especially second order

statistics of the texture gray level values because human beings are sensitive to

second-order statistics. Examples of such statistics are the gray level cooccurrence

matrix and the gray level variance matrix. Higher order statistics such as the gray

level run length, the Fourier power spectrum and the autocorrelation function can also

be measured.

Frequency based methods like Gabor filters and Wavelet transformations take

the visual system as its model and decomposes images into a number of band-pass

filtered images, each of which contains intensity variations over a narrow range of

frequency (size) and orientation, which will resemble certain textural properties.

Psychophysical experiments have shown that methods based on spatial-frequency

domain features are plausible with the human visual system. In recent years, by the

development of the wavelet theory this method has received special interest, number

of algorithms based on wavelet transforms and Gabor filters have been proposed for

classification and segmentation of textured images. But for this thesis study, wavelet

based solutions are excluded. The other frequency features of the texture like Fourier

transformations, autocorrelation functions can be included under the signal processing

subgroup; such methods will be studied in the following sections.

 Model based texture analysis methods try to capture the process that generated

the texture by determining the parameters of a predefined model. Model based

methods assume textured images as realizations or samples from parametric

probability distributions on the image space, and try to fit simultaneous autoregressive

models, Markov random field models, and fractal models to the textured image.

Model parameters are used as features in the classification and segmentation

problems. Advantage of this method over other statistical methods is that the model
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parameters can be used not only to describe the texture but also to synthesize it. They

have been used for classification, segmentation and compression of textured images.

4.3.1.1. Histogram Statistics

One of the simplest approaches4,5,38 for describing texture is to use statistical

moments of the gray-level histogram of an image or region. Let z be a random

variable denoting gray levels and let p(zi), i = 0,1,2,..., L-1, be the corresponding

histogram, where L is the number of distinct gray levels. The nth moment of z about

the mean is
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where m is the mean value of z, the average gray level:

∑
−

=

=
1

0

)(
L

i
ii zpzm                                              (4.2)

Note from equation 4.1 and 4.2 that µ0=1 and µ1=0. The second moment, the

variance σ2(z)= µ2(z), is of particular importance in texture description. It is a

measure of gray-level contrast that can be used to establish descriptors of relative

smoothness. For example, the measure
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is 0 for areas of constant intensity, the variance is zero there, and approaches 1 for

large values of  σ2(z). Because variance values tend to be large for greyscale images,

it is a good idea to normalize the variance to the interval [0 1]. This is done simply by

dividing σ2(z) by (L-1)2. The standard deviation, σ(z), is also used frequently as a

measure of texture because values of standard deviation tend to be more intuitive to

many people.

The third moment,
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is a measure of the skewness of the histogram while the fourth moment is a measure

of its relative flatness. The fifth and higher moments are not so easily related to

histogram, but they do provide further quantitative discrimination of texture content.
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Some useful additional texture measures based on histograms include a

measure of ‘uniformity’, given by
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and an average entropy measure is defined as,
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Because the p’s have values in the range [0,1] and their sum equals to 1, the

measure U is maximum for an image in which all gray levels are equal, maximally

uniform. Entropy is a measure of variability, 0 for a constant image.

Figure 4.5: Texture examples from Brodatz database

Texture Mean Standard
Deviation

R
(normalized)

Third Moment Uniformity Entro
py

Smooth 60.4 9.8 0.01 -0.01 0.035 4.7
Coarse 136.7 67.9 0.07 0.10 0.010 8.1
Regular 85.5 40.2 0.03 0.22 0.027 5.9

Table 4.1: Histogram statistics

Table 4.1 summarizes the values of the preceding measures for the three types

of textures highlighted in Figure 4.5. The mean just tells us the average gray level of

each region and is useful only as a rough idea of intensity, not really texture. The

standard deviation is much more informative; the numbers clearly show that the first

texture has significantly less variability in gray level it is smoother than the other two

textures. The coarse texture shows up clearly in this measure. The same comments

hold for R, because it measures essentially the same thing as the standard deviation.

The third moment generally is useful for determining the degree of symmetry of

histograms and whether they are skewed to the left, negative value, or the right,

positive value. This gives a rough idea of whether the gray levels are biased toward
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the dark or light side of the mean. In terms of texture, the information derived from

the third moment is useful only when variations between measurements are large.

Looking at the measure of uniformity, we again conclude that the first sub-image is

smoother, more uniform than the rest and that the most random, lowest uniformity

corresponds to the coarse texture. Finally, the entropy values are in the opposite order

and thus lead us to the same conclusions as the uniformity measure did. The first sub-

image has the lowest variation in gray level and the coarse image the most. The

regular texture is in between the two extremes with respect to both of these measures.

There is one more way to work with moment features of a texture, spatial

moments:

The ( )p q th+  moments over an image region R are given by the formula
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where I(x,y) is the image matrix, a two dimensional integer array. If the region R is a

local rectangular area and the moments are computed around each pixel in the image,

then this is equivalent to filtering the image by a set of spatial masks. The resulting

filtered images that correspond to the moments are then used as texture features. The

masks are obtained by defining a window of size WxW and a local coordinate system

centred within the window. Let    (i, j) be the image coordinates at which the moments

are computed. For pixel coordinates (m, n) which fall within the WxW window

centred at (i, j), the normalization coordinates ( , )x ym n  are given by the formula:
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Then, the moments within a window centred at pixel ( i, j) are computed by

the sum in equation 4.7 that uses the normalized coordinates:
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The coefficients for each pixel within the window to evaluate the sum are

what define the mask coefficients. If R is a 3x3 region, then the resulting masks are

given in Figure 4.6. The size W of the window can be adjusted if 3x3 windows can

not define the textural properties adequately. Especially for textures with large low

frequency components i.e. slowly varying textures windows of larger sizes may be

more appropriate.
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Figure 4.6:  Mask coefficients corresponding to first and second moments

Measures of texture computed using only histograms suffer from the limitation

that they carry no information regarding the relative position of pixels with respect to

each other. One way to bring this type of information into the texture-analysis process

is to consider not only the distribution of intensities, but also the positions of pixels

with equal or nearly equal intensity values. The cooccurence probabilities are derived

for this reason, which will be discussed in detail after the autocorrelation function

approach.

4.3.1.2. Autocorrelation (ACF)

Coarse textures are built from larger size primitives, fine textures from smaller

primitives. Fine textures are characterized by higher spatial frequencies, coarse

textures by lower spatial frequencies.

Autocorrelation shows3,37,38,4,11,1,16 up both local intensity variations and also the

repeatability of the texture. In an autocorrelation model, a single pixel is considered a

texture primitive and primitive tone property is the gray level. If the texture primitives

are relatively large, the autocorrelation function value decreases slowly with

increasing distance, while it decreases rapidly if texture consists of small primitives. If

primitives are placed periodically in a texture, the autocorrelation increases and

decreases periodically with distance.

1 1 1 -1 -1 -1 -1 0 1

M00= 1 1 1 M10= 0 0 0 M01= -1 0 1

1 1 1 1 1 1 -1 0 1

1 1 1 1 0 -1 1 0 1

M20= 0 0 0 M11= 0 0 0 M02= 1 0 1

1 1 1 -1 0 1 1 0 1
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Figure 4.7: 1-D profile of the autocorrelation function

The Figure 4.7 shows the possible 1-D profile of the ACF for a piece of

material in which the weave is subject to significant spatial variation; notice that the

periodicity of the autocorrelation function is damped down over quite a short distance.

Mathematically, the spatial size of tonal primitives, i.e. texels, in texture can

be represented by the width of the spatial ACF which is defined as:

r(k,l)=m2(k,l)/m2(0,0)                                         (4.10)
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where k,l is the position difference in the m,n  direction, f(m,n) is the image, two

dimensional integer array, i=1,2,.. and Nw is the number pixels over a small moving

window W.

The coarseness of texture is expected to be proportional to the width of the

ACF which can be represented by distances x0, y0 such that

r(x0,0)=r(0,y0)=1/2.                                         (4.12)

Other measures of spread of the ACF are obtained via the moment-generating

function:
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Features of special interest are the profile spreads M(2,0) and M(0,2), the

cross-relation M(1,1), and the second-degree spread M(2,2).

The calibration of the ACF spread on a fine-coarse texture scale depends on

the resolution of the image. This is because a seemingly flat region, no texture, at a
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given resolution could appear as fine texture at higher resolution and coarse texture at

lower resolution.

The ACF by itself is not sufficient to distinguish among several texture fields

because many different image ensembles can have the same ACF.

4.3.1.3. Cooccurrence Matrices and Features

The gray level cooccurrence matrix approach is based on studies of the

statistics of pixel intensity distributions2,3,4,5,20,37,38,57,21,1,16,14,31,36,45. As hinted above in the

histogram section, with regard to the variance in pixel intensity values, single pixel

statistics do not provide rich enough descriptions of textures for practical applications.

Thus, it is natural to consider second-order statistics obtained by considering pairs of

pixels in certain spatial relations to each other. Co-occurrence matrices express the

relative frequencies or probabilities C(i, j | d, θ) with which two pixels having relative

polar coordinates (d, θ) appear with intensities i, j.

A co-occurrence matrix is a two-dimensional array C in which both the rows

and the columns represent a set of possible pixel values V. For example, for gray-tone

images V can be the set of possible gray tones and for colour images V can be the set

of possible colours. The value of C(i, j) indicates how many times value i cooccurs

with value j in some designated spatial relationship. For example, the spatial

relationship might be that value i occurs immediately to the right of value j. To be

more precise, we will look specifically at the case where the set V is a set of gray

tones and the spatial relationship is given by a vector d that specifies the displacement

between the pixel having value i and the pixel having value j. Let d be a displacement

vector (dr, dc) where dr is a displacement in rows (downward) and dc is a

displacement in columns (to the right). This format is good to represent both the

direction and displacement. Let V be a set of gray tones. The gray-tone co-occurrence

matrix Cd for image I is defined by

[ ] [ ] [ ] [ ]{ }jdccdrrIandicrIcrjiCd =++== ,,|,,          (4.15)

Figure 4.8 below illustrates this concept with a 4 x 4 image I and three

different cooccurrence matrices for I. If the image has G gray levels, then the density

functions can be written as GxG matrices. Each matrix can be computed from a digital

image by counting the number of times each pair of gray levels occurs at separation d

and in the direction specified by Θ.
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       Figure 4.8: Three different cooccurrence matrices for a greyscale image

In C[0,1] note that position [1,0] has a value of 2, indicating that j=0 appears

directly to the right of i=1 two times in the image. However, position [0,1] has a value

of 0, indicating that j=1 never appears directly to the right of i = 0 in the image. The

largest cooccurence value of 4 is in position [0,0], indicating that a 0 appears directly

to the right of another 0 four times in the image.

For this thesis, it is assumed that the textural information is adequately

specified by the full set of four  (Θ = 0o, Θ = 45o, Θ =90o, Θ = 135o) spatial gray

level dependence matrices.

There are two important variations of the standard gray-tone co-occurrence

matrix. The first is the normalized gray-tone co-occurrence matrix Nd defined by
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which normalises the cooccurrence values to lie between zero and one and allows

them to be thought of as probabilities in a large matrix.

The second is the symmetric gray-tone co-occurrence matrix Sd defined by

[ ] [ ] [ ]jiCjiCjiS ddd ,,, −+=                                   (4.17)

which groups pairs of symmetric adjacencies. C-d is just the transpose Cd .
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Cooccurence matrices capture properties of a texture, but they are not directly

useful for further analysis, such as comparing two textures. These data must be

condensed to relatively few numbers before they can be used to classify the texture.

The early paper by Haralick et al. in 1973 gave 14 such measures; However, Conners

and Harlow in 1980 found that only five of these measures were normally used,

namely "energy", "entropy", "correlation", "local homogeneity" and "inertia". The

following are concurrent standard features derivable from a normalized co-occurrence

matrix. Texture classification can be based on criteria derived from these features.

Uniformity of energy or angular second moment: It is an image homogeneity

measure-the more homogeneous the image, the larger the value.
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d ,2∑∑=                                        (4.18)

Entropy: Entropy gives a measure of complexity of the image. Complex

textures tend to have higher entropy.
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Contrast: A measure of local  image variations present and image contrast
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Homogeneity:
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Correlation: It is a measure of image linearity. Linear directional structures in

direction φ result in large correlation values in this direction.

( )( ) [ ]
ji

djiji jiNji
nCorrelatio

σσ
µµ ,−−

= ∑∑           (4.22)

where µi , µj are the means and σi, σj are the standard deviations of the row and

column sums Nd[i] and Nd[j] defined by
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where yx µµ ,  are means and yx σσ ,  standard deviations
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After one extracts these features using the matrices evaluated for four different

directions and various d values, he is ready to use them to identify the texture. The

basic assumption is that the features extracted from matrices that are formed using a

few number of d values and four directions contain sufficient textural information to

identify the texture. One problem with deriving texture measures from co-occurrence

matrices is how to choose the displacement vector d. A solution suggested by Zucker

and Terzopoulos is to use a χ2 statistical test to select the value(s) of d that have the

most structure; that is, to maximize the value:
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The co-occurrence method describes second-order image statistics and works

well for a large variety of textures. Good properties of the co-occurrence method are

the description of spatial relationship between tonal pixels, and invariance to

monotonic gray level transformations. If an appropriate quantization can be applied to

the image, a fast defect inspection can be done. Depending on the types of the textures

considered, the matrices for some directions and/or some d values might not be

evaluated thus time may be saved.

On the other hand, it does not consider primitive shapes, and therefore cannot

be recommended if the texture consists of large primitives. The co-occurrence

approach is not suited to work with textures composed of large patches. As stated

earlier, most of the textural information is assumed to be obtained by using certain

number of matrices. However, this might not be the case especially for complicated

textures. Although the choice of four directions might be adequate in the directional

view, the choice of d values plays a very important role. While some textures can be

identified by small d values, others might be discriminated only if large d values are

used. The selection of the suitable d values is totally texture-dependent and this

decreases the robustness of the algorithm. For eight bit gray level images the size of

each co-occurrence matrix is 256x256 which brings computation and memory

problems. The number of gray levels may be set to 32 or 64 which decreases the co-

occurrence matrix sizes, but loss of gray level accuracy is a resulting negative effect

although this loss is usually insignificant in practice.
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4.3.1.4. Gray Level Variance Matrix(GLVM)

Gray level variance matrices64,20 give the gray level variance around a pixel

within a window of size WxW. The matrix element p i j w( , | )  contains the total number

of occurrences of gray level with variance i within a window of size WxW centred on

pixel with gray level j. Several texture features can be extracted from this matrix.

Changing the size of the windows introduces new sets of feature values.

Some of the features that can be evaluated using gray level variance matrices

are listed below:

Smoothness (SM)          p i j N
i

v

j

G

( , ) /
==
∑∑

11

        (4.26)

where G is number of gray levels in the image. The total number of pixels within the

region of interest, N, is used as a normalizing factor. The value of v ( > 0) has to be

chosen as small as possible such that a window with variance  ( -1)≤ v  can be called

a homogeneous window or region. For example if  v = 1 then all the windows with

variance zero (v-1) or the windows having pixels with same gray level will be

considered. SM will get high values for images which have many smooth windows of

size  WxW.

Gray Level Variance Ratio (GLVR)     
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where V is the highest variance and µ is the mean gray value. Images which have

lightly condensed particles with small local variation will give high GLVR values.

Minimum Gray Level (MGL)     0),()( ≠jipjMIN                     (4.28)

Images with dark areas will give low MGL values.

Roughness (RH)    
[ ( ) ( )]

[ ( ) ( )] ( , )
MAX i MIN i

MAX j MIN j p i j
−

− ≠x 0
                     (4.29)

Images with high local variation and large gray level range will give high RH values.

Low Variance Emphasis (LVE)        p i j N
ji

V

j

G ( , ) /
2

11 ==
∑∑         (4.30)

Images, which have homogeneous areas, areas with low variance, will give high LVE

values.
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High Variance Emphasis (HVE)        j p i j N
i

V

j

G
2

11

x ( , ) /
==
∑∑         (4.31)

HVE will be high for images with high local variance within a window.

Low Gray Level Variance Emphasis (LGVE) p i j N
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High Gray Level Variance Emphasis (HGVE)          i p i j N
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These features may be evaluated for different window sizes depending on the

nature of the texture that is being examined. Local relationships between pixels affect

the feature values.

Besides the advantages that co-occurrence matrices have, gray level variance

matrices extract local information of a texture image which may be useful to

synthesize that particular texture.

On the other hand, like gray level co-occurrence matrices, gray level variance

matrices suffer from high computational cost.

 4.3.1.5. Gray Level Gap Length Matrix

A gray level gap length matrix is defined63,20 in order to obtain structural

information for each gray level in the image. The gray level gap length (GLGL)

method is based on measuring the distribution of gray level gap lengths for each gray

level in an image. A gap for gray level g occurs when g is only found at the beginning

and the end of a set of consecutive, collinear pixels, while all pixel values in between

are either above or below g. The gap length is the distance between these two pixels

minus one. Thus, two neighbouring pixels with identical gray level have zero gap

length. In the case where we never meet another pixel with gray level g again, the gap

length is considered as infinite and is omitted.

The gray level gap length matrix (GLGLM) is a 2-D array, A g ln ( , \ )Θ , where

g is the gray level, l is the gap length, and Θ is the given direction. The number of

rows is equal to the number of gray levels G in the image, and the number of columns

is the maximum gap length, as obtained when searching along a direction Θ. This

matrix can be seen as a complement to the gray level run length matrix (GLRLM). It

gives the size distribution of texture elements for a given direction in the image.
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Given an image of MxN pixels with G gray levels from 0 to G-1, let f(i,j) be

the gray level function at pixel (i,j), and L be the maximum gap length. The element

of GLGLM at angle Θ is defined as:

















<<<<
≠++

=++=
=Θ

yvxu
gvjuif

gyjxifjifji
CardlgA

0,0
),(

,),(),(|),(
)/,(          (4.34)

x l y l
g G l L

= + = +
≤ ≤ − ≤ ≤ ≤ ≤

( ) cos , ( ) sin
, ,

1 1
0 1 0 0 1800 0

Θ Θ
Θ

  (4.35)

where "Card" stands for "the number of".

For an image with isotropic texture patterns, an average matrix from GLGMs,

obtained in different directions will give a rotation invariant representation.

As in the case of gray level cooccurrence matrices, the number of occurrences

decreases as the gap length increases. For statistics at each gap length to be

comparable, normalisation has to be done. The normalized GLGLM, A g ln ( , \ )Θ  can

be obtained by:

A g l A g l
W ln ( , \ ) ( , \ )

( )
Θ Θ=         (4.36)

where the weighting function W(l) varies according to gap length l. For the analysis

along the x or y direction only, the weighting function can be chosen as follows:

when l G≤

))(()( yNxMlW −−=         (4.37)

when l G>
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The special consideration for the case where l G>  is due to the fact that no

repetition of gray level g is allowed in a gap length l. So, the weighting function is

approximately the maximum number of gaps of a length l in an image.
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Normally, only a few gray levels are used in the GLGL matrix to save

computational time and storage, as well as to increase the possibility of finding

significant gaps. Some gray levels are considered more significant than others because

they form the high contrast structures of the texture. Histogram transformation may be

performed first, in order to extend the dynamic range of gray levels. Then the image is

re-quantified into a reduced number of gray levels. Since adjacent gray levels

normally catch similar structural information, a sum of gap lengths among adjacent

gray levels may be able to find the size distribution of the structure, especially in the

case of uneven illumination. For example, the size distributions for darker gray levels

and brighter gray levels can be obtained by:

S l A g l S l A g ln n
g t

G

g

t

1 2
1

1
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−

=
∑∑                        (4.41)

where 0 ≤ ≤l L , and L is limited by the size of the image. Here, t is some chosen

threshold, e.g. t = G/2-1. The S values calculated can be used to estimate the period of

repetitive patterns in a texture. When one obtains the graphs of S1 and S2 , the highest

peaks for dark and bright gray levels indicate the estimated quasi-periodicities. The

period is just the sum of these two quasi-periodicities.

Texture statistics are normally classified into different orders according to the

context information involved. First-order statistics extract parameters from individual

pixels. Second-order statistics describe the joint gray level distribution pairs of pixels,

given a geometrical relation. In order to get a complete structural description, a series

of second order cooccurrence matrices at different distances are to be calculated.

Higher order statistics describe the relationship of three or more pixels, and mix the

global information together into one data set. Therefore, they are suitable for finding

structural characteristics in an image; Gray level gap length matrix reflects directly

the size distribution of texture elements, and the calculation of the matrix and its

features are both simple and fast. After the image is re-quantified the GLGL algorithm

works fast. If the quantization may be done by the aid of a look-up table defined in the

hardware, very fast implementations are possible. For periodicity detection, features

extracted from the normalized GLGL works much faster than the commonly used

gray level cooccurrence matrices (GLCM), and provides very fast and memory-

efficient granulometry. The size features, are very useful in unsupervised texture

segmentation and classification.
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On the other hand, for saving computational time and storage, a pre-

processing of the image is required to quantize the image into a reduced number of

gray levels, not to lose more time.

4.3.1.6. Gray Level Run Length (Primitive length) Matrices

A large number of neighbouring pixels of the same gray level represents a

coarse texture, a small number of these pixels represents a fine texture and the lengths

of texture primitives in different directions can serve as a texture description. A

primitive is a maximum contiguous set of constant gray level pixels located in a line

these can then be described by gray level, length, and direction. The texture

description features can be based on computation of continuous probabilities of the

length and the gray level of primitives in the texture.

The gray level run length method3,20,37 is based on computing the number of

gray level runs of various lengths. A gray level run is a set of linearly adjacent picture

points having the same gray level value. The length of the run is the number of picture

points within the run. The element B(a, r│Ø) of the gray level run length matrix

specifies the number of times a picture contains a run of length j for gray level a in the

angle Ø direction. These matrices usually are calculated for several values of Ø.

Let B(a,r) be the number of primitives of the length r and gray level a, in some

direction Θ ; M, N the image dimensions, and L the number of image gray levels. Let

Nr be the maximum primitive length in the image. The texture description features

can be determined as follows; let K be the total number of runs
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raBK
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,                                         (4.42)

The run length features proposed by Siew et. al. are defined as follows:

Long Primitives(Run) Emphasis (LRE) ( ) 2
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gives greater weight to long runs of any gray level.

Short Primitives (Run) Emphasis (SRE) ( )∑∑
= =
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gives greater weight to short runs of any gray level.
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Gray Level Uniformity (GLU)                          ( )∑ ∑
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This is smallest when runs are evenly distributed.

Primitive (Run) Length Uniformity (RLU)         ( )∑ ∑
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This is smallest when run lengths are evenly distributed.
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where N 2 is the number of points in the image. This is largest when the runs are all

short.

The GLRLM is often used to extract statistical features which characterize the

texture, since the longer runs imply homogeneity and shorter runs indicate rapid gray

level changing.

On the other hand, the computational drawbacks like the other similar methods

and the lack of gray level transition information are the drawbacks of GLRL matrices.

From the viewpoint of one gray level, GLRLM is a partial measurement, it measures

only the continuous parts. For an image with large and deep gaps, the neighbour gray

levels will appear as many small runs, which may not give a proper description of the

gaps.

4.3.1.7.Neighbouring Gray Level Dependence Matrices

This method20 uses angular independent features, by considering the

relationship between an element and all its neighbouring elements at one time instead

of one direction at a time. This eliminates the angular dependency, at the same time

reducing the calculation time required to process an image. It is based on the

assumption that a gray level spatial dependence matrix (NGLDM) of an image can

adequately specify the texture information. The matrix is computed from the gray

level relationship between every element in the image and all its neighbours at a

certain distance d. This matrix takes the form of a two-dimensional array, Q, where

Q i j( , )  can be considered as frequency counts of greyness variation of an image. The

size of the Q array is GxNr where G is the number of gray levels and Nr is the number

of possible neighbours to a pixel in a range specified by d.
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For an image function f i j( , )  it is easy to compute the Q matrix (for positive integer

d, a) by counting the number of times the difference between each element in

f i j( , ) and its neighbours is less than or equal a at a certain distance d. As an

example, if the image is:

            Figure 4.9: Example image

and d = 1, a = 0, then the NGLDM matrix is evaluated as follows: Each element

corresponds to the total number of corresponding gray levels (determined by the row

of the element) which have corresponding number of neighbours (determined by the

column of the element) of the same gray level among the eight neighbours

surrounding them.

                Figure 4.10: NGLDM of the example image

This Q matrix relates to the texture information of an image. The degree of

texture coarseness or fineness of an image is depicted by the distribution of entries in

the Q matrix. Changing a and d can alter the distribution of the NGLDM numbers,

because coarseness and fineness of an image is not absolute. Changing a and d also

makes the NGLDM approach more effective for specific applications.

We obtain the numerical features from the Q matrix by using the functions

where R is the normalizing factor [3]:

Small Number Emphasis (SNE) [ ( , ) / ]/Q k s s R
sk

2∑∑         (4.48)

1 1 2 3 1
0 1 1 2 2
0 0 2 2 1
3 3 2 2 1
0 0 2 0 1

0 1 2 3 4 5 6 7 8

0 0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0

2 0 0 0 0 4 1 0 0 0

3 0 1 0 0 0 0 0 0 0
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SNE is a measure of the fineness of the image. An image consisting of fine

texture will have large values in the NGLDM columns making Q k s s( , ) / 2  large for

small s. Therefore the larger the SNE of an image is, the finer the image is.

Large Number Emphasis (LNE) ∑∑
k s

RskQs /)],([ 2         (4.49)

LNE is a measure of the coarseness of an image. For a coarse texture picture,

the large NGLDM numbers concentrate in the large s columns making s Q k s2 ( , )

larger for large s.

Number Non-uniformity (NNU) RskQ
s k
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         (4.50)

Entropy (ENT) − ∑∑ Q k s Q k s R
sk

( , ) log( ( , )) /         (4.51)

NNU and ENT are related to the coarseness of an image.

Second Moment (SM) [ ( , )] /Q k s R
sk

2∑∑            (4.52)

The measurement of the homogeneity of the image is given by SM.

Homogenous images will have large Q elements resulting in large SM values.

Since the Q matrix is essentially invariant under image rotation, any features

extracted from the Q matrix are independent of angles. These are also invariant under

linear gray level transformations or a linear shift of the gray level because the

NGLDM numbers depend only on the relationship of the gray level values between an

element and its neighbours.

The choice of the suitable a and d values is totally image dependent which

forces one to change those parameters as the examined textures change.

4.3.1.8. Laws' Texture Energy Approach

The texture energy measures were developed2,4,20,37,1 by Kenneth Ivan Laws in

1979 at the University of Southern California. This novel texture energy approach to

texture analysis involved the application of simple filters to digital images. The basic

filters he used were common Gaussian, edge detector and Laplacian filters, and were

designed to highlight points of high "texture energy" in the image. By identifying

these high energy points, smoothing the various filtered images, and pooling the

information from them, he was able to characterize textures highly efficiently and in a
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manner compatible with pipelined hardware implementations. Laws' approach has

strongly influenced much subsequent work.

Laws' approach to texture characterization consists of two main steps. First

micro-statistic features are computed using 3x3,  5x5 or 7x7 convolution masks.

Second, macro-statistic features are obtained over large windows. The most useful

statistics are the sums of the squared or absolute values of the micro feature plane.

The sum of squares justifies Laws' terminology “texture energy measure" but the sum

of absolute values is preferable because it is computationally cheaper without loss of

performance.

Preliminary Step-Kernels: The 2-D convolution kernels typically used for

texture discrimination are generated from the following set of one-dimensional

convolution kernels.

             L5  =  [  1   4   6   4   1  ]

           E5  =  [ -1  -2   0   2   1  ]

               S5  =  [ -1   0   2   0  -1  ]

                W5 = [ -1   2   0  -2   1  ]

               R5  = [  1  -4   6  -4   1  ]

Figure 4.11: One-dimensional convolution kernels of length five

The mnemonics above stands for level, edge, spot, wave, and ripple. Note that

all kernels except L5 are zero-sum. In his dissertation, Laws also presents convolution

kernels of length three and seven kernels.

L3=  [1 2 1]

E3 = [-1 O 1]

S3 = [-1 2 -1]

Figure 4.12: The1x3 kernels

L7=[1  6  15  20  15  6  1]

E7=[-1  -4  -5  – 5   4  1]

S7=[-1  -2   1   4   1  -2  -1]

W7=[-1  0  3  0  -3  0  1]

R7=[1  -2  -1  4  -1  -2  1]

O7=[-1  6  -15  20  -15  6  -1]

Figure 4.13: The 1x7 kernels
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The two dimensional forms are generated from the one-dimensional forms by

outer products. That is if 1k  and 2k  are two one-dimensional forms, each a row vector

of K columns, then 21 kk t  constitutes a KxK kernel. For example, 3x3 kernels:

    Figure 4.14: The nine 3 x 3 Laws' masks

Similarly by taking the inner product a vertical 1-D kernel of length 5 with a

horizontal 1-D kernel of length 5, we can generate 25 different two-dimensional

convolution kernels. Of the 25 two-dimensional convolution, 24 of them are zero-

sum; the L5L5 kernel is not. Some Laws’ 5×5 center weighted masks are exampled

below.

-1 -4 -6 -4 -1 1 -4 6 -4 1
-2 -8 -12 -8 -2 -4 16 -24 16 -4
0 0 0 0 0 6 -24 36 -24 6
2 8 12 8 2 -4 16 -24 16 -4
1 4 6 4 1 1 -4 6 -4 1

 (a) horizontal edge   (b) high freq. spot

-1 0 2 0 -1 -1 0 2 0 -1
-2 0 4 0 -2 -4 0 8 0 -4
0 0 0 0 0 -6 0 12 0 -6
2 0 -4 0 2 -4 0 8 0 -4
1 0 -2 0 1 -1 0 2 0 -1

 (c) V-shape  (d) vertical line

Figure 4.15: 5 x 5 Laws' masks examples
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We now describe how to build up a set of texture energy measures for each

pixel in a digital image.

Step I-Apply Convolution Kernels: Given a sample image with N rows and

M columns that we want to perform texture analysis on, i.e. compute texture features

at each pixel, we first apply each of our 25 convolution kernels to the image. The

result is a set of 25 NxM greyscale images. These will form the basis for our textural

analysis. Let Fk[i,j] be the result of filtering with the kth mask at pixel [i,j]. Then the

texture energy map Ek for filter k of 5x5 kernel is defined by
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Each texture energy map is a full image, representing the application of the kth

mask to the input image.

Step II- Performing Windowing Operation: Having produced images that

indicate local edginess, etc., we now want to replace every pixel in our 25 NxM

separate greyscale images with a Texture Energy Measure (TEM) at the pixel is to

deduce the local magnitudes of these quantities. We do this by looking in a local

neighbourhood around each pixel and summing together the absolute values of the

neighbourhood pixels. Laws used a 15 x 15 smoothing windows. We generate a new

set of images, which we will refer to as the TEM images, during this stage of image

processing. The following non-linear filter is applied to each of our 25 NxM images.

j)yi,OLD(x   SUM   SUMy)NEW(x,
7j
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(4.54)

Laws also suggests the use of another filter instead of the "absolute value

windowing" filter listed above:

)j)yi,OLD(x   SUM   SUM SQRT(y)NEW(x, 27j
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=

+=

=
(4.55)
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While Laws used both squared magnitudes and absolute magnitudes to

estimate texture energy, the former corresponding to true energy and giving a better

response, the latter are useful in requiring less computation.

We have at this point generated 25 TEM images from our original image. Lets denote

these images by the names of the original convolution kernels with an appended ``T''

to indicate that this is a texture energy measure, i.e. the non-linear filtering has been

performed.

       L5L5T  E5L5T   S5L5T    W5L5T    R5L5T

                 L5E5T  E5E5T   S5E5T    W5E5T    R5E5T

                                     L5S5T   E5S5T    S5S5T   W5S5T    R5S5T

                                     L5W5T  E5W5T  S5W5T  W5W5T  R5W5T

                                     L5R5T   E5R5T   S5R5T   W5R5T   R5R5T

Figure 4.16: TEM images

Step III-Normalize Features for Contrast : All convolution kernels used thus

far are zero-mean with the exception of the L5L5 kernel. In accordance with Laws'

suggestions, we can therefore use this as a normalization image; normalizing any

TEM image pixel-by-pixel with the L5L5T image will normalize that feature for

contrast. After this is done, the L5L5T image is typically discarded and not used in

subsequent textural analysis unless a ``contrast'' feature is desirable.

Step IV- Combine Similar Features: For many applications, ''directionality'' of

textures might not be important. If this is the case, then similar features can be

combined to remove a bias from the features from dimensionality. For example,

L5E5T is sensitive to vertical edges and E5L5T is sensitive to horizontal edges. If we

add these TEM images together, we have a single feature sensitive to simple ``edge

content''.

Following this example, features that were generated with transposed

convolution kernels are added together. We will denote these new features with an

appended ``R'' for ``rotational invariance''.
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E5L5TR    =   E5L5T   +   L5E5T

          S5L5TR    =   S5L5T   +   L5S5T

          W5L5TR  =   W5L5T  +   L5W5T

          R5L5TR   =   R5L5T   +   L5R5T

          S5E5TR   =   S5E5T   +    E5S5T

          W5E5TR  =   W5E5T  +   E5W5T

          R5E5TR   =   R5E5T   +   E5R5T

          W5S5TR  =   W5S5T  +   S5W5T

         R5S5TR   =   R5S5T    +   S5R5T

          R5W5TR  =   R5W5T  +  W5R5T

Figure 4.17: Rotational invariant TEM images

To keep all features consistent with respect to size, we can scale the remaining

features by 2:

          E5E5TR     =   E5E5T*2

          S5S5TR      =   S5S5T*2

          W5W5TR   =   W5W5T*2

          R5R5TR     =   R5R5T *2

                                        Figure 4.18: Scaling TEM images

The result, if we assume we have deleted L5L5T altogether as suggested in

Step III, is a set of 14 texture features which are rotationally invariant. If we stack

these images up, we get a data set where every pixel is represented by 14 texture

features.

Laws' method resulted in excellent classification accuracy quoted at, for

example 87% compared with 72% for the cooccurrence matrix method, when applied

to a composite texture image of grass, raffia, sand, wool, pigskin, leather, water and

wood by Laws in1980. Research was undertaken by Pietikainen et al. in 1983

confirms that Laws' texture energy measures are more powerful than measures based

on pairs of pixels i.e. cooccurrence matrices.
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4.3.1.9. Local Binary Partition

Most texture approaches assume, either explicitly or implicitly, that the

requested samples are identical to the database samples with respect to spatial scale,

orientation, and gray scale properties. However, real-world textures can occur at

arbitrary spatial resolutions and rotations and they maybe subjected to varying

illumination conditions. In addition, the degree of computational complexity of most

proposed texture measures is too high.

Very simple, but useful texture measure alternative is the local binary partition

measure34,1. For the basic version of the LBP algorithm, for each pixel p in the image,

the eight neighbours are examined to see if their intensity is greater than that of p.

The results from the eight neighbours are used to construct an eight-digit binary

number b1b2b3b4b5b6b7b8 where bi = 0 if the intensity of the ith neighbour is less than

or equal to that of p and 1 otherwise. A histogram of these numbers is used to

represent the texture of the image. Two images or regions are compared by computing

the L1 distance between their n-bin histograms as defined :
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Now, we’ll study the LBP method in detail by defining a gray scale and

rotation invariant operator. The proposed34 texture operator below al1ows for

detecting "uniform" local binary patterns at circular neighbourhoods of any

quantisation of the angular space and at any spatial resolution.

The operator is derived for a general case based on a circularly symmetric

neighbour set of P members on a circle of radius R, denoting the operator as 2
,

riu
RPLBP .

Parameter P controls the quantisation of the angular space, whereas R determines the

spatial resolution of the operator. The discrete occurrence histogram of the "uniform"

patterns i.e., the responses of the 2
,

riu
RPLBP operator, computed over an image or a

region of the image is a very powerful texture feature. By computing the occurrence

histogram, structural and statistical approaches are effectively combined: The local

binary pattern detects microstructures e.g., edges, lines, spots, areas, whose

underlying distribution is estimated by the histogram.
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We start the derivation of our T gray scale and rotation invariant texture

operator by defining texture T in a local neighbourhood of a monochrome texture

image as the joint distribution of the gray levels of P(P > 1) image pixels:

T=t(gc,g0,...,gp-ı), (1)                                         (4.60)

where gray value gc corresponds to the gray value of the centre pixel of the local

neighbourhood and gp(p =0, ..., P -1) correspond to the gray values of P equally

spaced pixels on a circle of radius R (R > 0) that form a circularly symmetric

neighbour set. If the coordinates of gc are (O, O), then the coordinates of gp are given

by

   (-Rsin(2πp/P), Rcos(2πp/P))                                (4.61)

Figure 4.19: Circularly symmetric neighbour sets for different (P, R)

Fig. 4.19 illustrates circularly symmetric neighbour sets for various (P, R).

The gray level values of neighbours, which do not fall exactly in the centre of pixel,

are estimated by interpolation.

As the first step toward gray-scale invariance, we subtract, without losing

information, the gray value of the centre pixel (gc) from the gray values of the

circularly symmetric neighbourhood gp (p = 0,..., P -1), giving:

T =  t(gc, go-gc, g1-gc, ..., gP-1-gc)  (4.62)

Next, we assume that differences gp-gc are independent of gc, which allows us

to factorise the Equation (4.59) :

T≈t(gc)t(g0 -gc,g1-gc,... ,gP-1 -gc)          (4.63)

In practice, an exact independence is not warranted; hence, the factorised

distribution is only an approximation of the joint distribution. However, the possible

small loss in information is willingly accepted as it allows us to achieve invariance
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with respect to shifts in gray scale. Namely, the distribution t(gc) in the Equation

(4.60) describes the overall luminance of the image, which is unrelated to local image

texture and, consequently, does not provide useful information for texture analysis.

Hence, much of the information in the original joint gray level distribution the

Equation (4.58) about the textural characteristics is conveyed by the joint difference

distribution T≈t(g0 -gc,g1-gc,... ,gP-1 -gc). This is a highly discriminative texture

operator. It records the occurrences of various patterns in the neighbourhood of each

pixel in a P-dimensional histogram. For constant regions, the differences are zero in

all directions on a slowly sloped edge, the operator records the highest difference in

the gradient direction and zero values along the edge and, for a spot, the differences

are high in all directions.

Signed differences gp -gc are not affected by changes in mean luminance;

hence, the joint difference distribution is invariant against gray-scale shifts. We

achieve invariance with respect to the scaling of the gray scale by considering just the

signs of the differences instead of their exact values:

T≈t(s(go -gc), s(g1 -gc),....,s(gP-1 -gc)); (5)                           (4.61)

where

s(x) =  { 1,  x≥0               0,  x<0                                  (4.62)

By assigning a binomial factor 2p for each sign s(gp -gc), we transform (5) into

a unique LBPP,R  number that characterizes the spatial structure of the local image

texture:

∑
−

=

−=
1

0
, 2)(

P

p

p
cpRP ggsLBP                                      (4.63)

The name "Local Binary Pattern" reflects the functionality of the operator, i.e.,

a local neighbourhood is thresholded at the gray value of the centre pixel into a binary

pattern. LBPP,R operator is by definition invariant against any monotonic

transformation of the gray scale, i.e., as long as the order of the gray level values in

the image stays the same, the output of the LBPP,R operator remains constant.

The LBPP,R operator produces 2P different output values, corresponding to the

2P different binary patterns that can be formed by the P pixels in the neighbour set.

When the image is rotated, the gray values gp will correspondingly move along the

perimeter of the circle around go. Since go is always assigned to be the gray value of

element (0 , R) to the right of gc rotating a particular binary pattern naturally results in



80

a different LBPP,R value. This does not apply to patterns comprising of only 0s (or 1s)

which remain constant at all rotation angles. To remove the effect of rotation, i.e., to

assign a unique identifier to each rotation invariant local binary pattern we define:

( ){ }1,...,1,0|,min ,, −== PiiLBPRORLBP RP
ri

RP            (4.64)

where ROR(x, i) performs a circular bit-wise right shift on the P-bit number x i times.

Figure 4.20: Rotation invariant binary patterns

There are 36 unique rotation invariant binary patterns that can occur in the

circularly symmetric neighbour set of 2
,

riu
RPLBP . Black and white circles correspond to

bit values of 0 and 1 in the 8-bit output of the operator. The first row contains the nine

"uniform" patterns and the numbers inside them correspond to their unique 2
,

riu
RPLBP

codes.

In terms of image pixels, (8) simply corresponds to rotating the neighbour set

clockwise so many times that a maximal number of the most significant bits, starting

from gP-1, is 0.
2

,
riu

RPLBP  quantifies the occurrence statistics of individual rotation invariant

patterns corresponding to certain micro features in the image; hence, the patterns can

be considered as feature detectors. Figure 4.20 illustrates the 36 unique rotation

invariant local binary patterns that can occur in the cage of P = 8, i.e., 2
,

riu
RPLBP  can

have 36 different values. For example, pattern #0 detects bright spots, #8 dark spots

and flat areas, and #4 edges. If we set R = 1, 2
,

riu
RPLBP  corresponds to the gray-scale

and rotation invariant operator that we recall as LBP ROT .
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Practical experience, however, has shown that LBP ROT as such does not

provide very good discrimination. There are two reasons:

The occurrence frequencies of the 36 individual patterns incorporated in LBP

ROT vary greatly and the crude quantisation of the angular space at 45° intervals.

Certain local binary patterns are observed to be fundamental properties of

texture, providing the vast majority, sometimes over 90 percent, of all 3 x 3 patterns

present in the observed textures. We call these fundamental patterns "uniform" as they

have one thing in common, namely, uniform circular structure that contains very few

spatial transitions. "Uniform" patterns are illustrated on the first row of Figure 4.20.

They function as templates for microstructures such as bright spot (0), flat area or

dark spot (8), and edges of varying positive and negative curvature (1-7).

To formally define the "uniform" patterns, a uniformity measure U ("pattern")

is introduced, which corresponds to the number of spatial transitions, bitwise 0/1

changes, in the "pattern". For example, patterns 000000002 and 111111112 have U

value of 0, while the other seven patterns in the first row of Figure 4.20 have U value

of  2 as there are exactly two 0/1 transitions in the pattern. Similarly, the other 27

patterns have U value of at least 4. We designate patterns that have U value of at most

2 as "uniform" and propose the following operator for gray-scale and rotation

invariant texture description instead of  2
,

riu
RPLBP :

( ) ( )
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Superscript riu2 reflects the use of rotation invariant "uniform" patterns that have U

value of at most 2.

By definition, exactly P + 1 "uniform" binary patterns can occur in a circularly

symmetric neighbour set of P pixels. Equation (4.65) assigns a unique label to each of

them corresponding to the number of "1" bits in the pattern (O⇒ P), while the "non-

uniform" patterns are grouped under the "miscellaneous" label (P + 1). in Figure 4.20,

the labels of the "uniform" patterns are denoted inside the patterns. In practice, the

mapping from LBPP,R to 2
,

riu
RPLBP , which has P + 2 distinct output values, is best

implemented with a lookup table of 2P elements.
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The final texture feature employed in texture analysis is the histogram of the

operator outputs, pattern labels, accumulated over a texture sample. The reason why

the histogram of "uniform" patterns provides better discrimination in comparison to

the histogram of all individual patterns comes down to differences in their statistical

properties. The relative proportion of "non-uniform" patterns of all patterns

accumulated into a histogram is small that their probabilities cannot be estimated

reliably. Inclusion of their noisy estimates in the dissimilarity analysis of sample and

model histograms would deteriorate performance.

We noted earlier that the rotation invariance of LBPROT( riLBP 1,8 ) is hampered

by the crude 45° quantization of the angular space provided by the neighbour set of

eight pixels. A straight forward fix is to use a larger P since the quantization of the

angular space is defined by (360° / P). However, certain considerations have to be

taken into account in the selection of P. First, P and R are related in the sense that the

circular neighbourhood corresponding to a given R contains a limited number of

pixels (e.g., nine for R = 1), which introduces an upper limit to the number of non-

redundant sampling points in the neighbourhood. Second, an efficient implementation

with a look-up table of 2P elements sets a practical upper limit for P. P values up to

24, which requires a look-up table of 16 MB that can be easily managed by a modern

computer.

The LBP method is manageable in real-world textures that can be subject to

any arbitrary spatial resolution, rotation or varying illumination. Besides, its

computational complexity is quite low. Therefore, LBP became one of the popular

methods of the literature.

 4.3.1.10. Frequency Based Spectral Approach

The psychophysical results indicate4,5,20 that the human visual system analyses

the textured images by decomposing the image into its frequency and orientation

components; therefore, frequency based spectral approaches37,38,8,16,9,36 are quite popular

in the literature. Frequency-based methods rely on the analysis of the power spectral

density function through the Fourier domain transform which may be computed in

real time.
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There are three features of the Fourier spectrum that are useful for texture

description: (1) Prominent peaks in the spectrum give the principal direction of the

texture patterns. A peak in the power spectrum represents a periodical pattern in the

original spatial domain. Since the power spectrum rotates according to the spatial

image's orientation, the orientation of the pattern is given by the direction of the

harmonic frequency, closest to the origin. Images including non-periodical or random

patterns have a power spectrum in which peaks are not easy to detect. (2) The location

of the high-energy, narrow peaks in the frequency plane gives the fundamental spatial

period of the patterns. Since the degree of texture coarseness is proportional to spatial

period, coarse textures have spectral energy concentrated at low spatial frequencies.

Fine textures, instead concentrate at high spatial frequencies.  (3) Eliminating any

periodic components via filtering leaves non-periodic image elements, which can then

be described by statistical techniques. Average values of energy in specific wedges

and rings of the Fourier spectrum, figure 4.21, can be used as textural description

features. Features evaluated from rings reflect coarseness of the texture -high energy

in large radius rings is characteristic of fine textures, high frequencies, while high

energy in small radii is characteristic of coarse textures with lower spatial frequencies.

Features evaluated from wedge slices of the Fourier transform image depend on

directional properties of textures, if a texture has many edges or lines in a direction φ,

high energy will be present in a wedge in direction φ + π/2.

Figure 4.21: Partitioning of Fourier power spectrum: (a) ring filter (b) wedge filter

Detection and interpretation of the spectrum features just mentioned often are

simplified mathematically by expressing the spectrum in polar coordinates to yield a

function S(r,θ), where S is the spectrum function and r and θ are the variables in this

coordinate system. For each direction θ, S(r,θ) may be considered a 1-D function
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Sθ(r). Similarly, for each frequency r, Sr(θ) is a 1-D function. Analysing Sθ(r) for a

fixed value of θ yields the behaviour of the spectrum, such as the presence of peaks,

along a radial direction from the origin, whereas analysing Sr(θ) for a fixed value of r

yields the behaviour along a circle centred on the origin.

A more global description is obtained by integrating these functions:

      ∑
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)()( rSrS                                                 (4.67)
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where R0 is the radius of a circle centred at the origin.

The results of the equations above constitute a pair of values [S(r), S(θ)] for

each pair of coordinates (r, θ). By varying these coordinates, we can generate two 1-D

functions, S(r) and S(θ), that constitute a spectral-energy description of a texture for

an entire image or region under consideration. Furthermore, descriptors of these

functions themselves can be computed in order to characterise their behaviour

quantitatively. Descriptors typically used for this purpose are the location of the

highest value, the mean and variance of both the amplitude and axial variations, and

the distance between the mean and the highest value of the function.

Similarly, a discrete image transform may be used for texture description. In

this method, textured image is usually divided into small square non-overlapping sub-

images. If the sub-image size is n x n , the grey levels of its pixels may be interpreted

as a n2-dimensional vector, and an image can be represented as a set of vectors. These

vectors are transformed applying a Fourier transform. Maxima of the spectrum can be

used as parameters for modelling texture properties. We implemented such a similar

algorithm in which the image is partitioned into 32x32 sub-windows and the Fast

Fourier Transform is taken for each piece. Then, each sub-window is further divided

into 4x4 blocks energies that build the elements of the feature vector for that sub-

window.

Spatial frequency texture description methods are based on a well-known

approach. Despite that, many problems remain, the resulting description is not

invariant even to monotonic image grey level transforms; further, Weszka et al.

claims that the frequency-based approach is less efficient than others. Perhaps more

important is the fact that the Fourier approach is a global one which is difficult to
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apply successfully to an image that is to be segmented by texture analysis and strong

edges and image boundary effects can prevent accurate texture analysis A joint

spatial/spatial-frequency approach is recommended.

4.3.1.11. Markov Random Field Models

The brightness level at a point in an image is highly dependent on the brightness

levels of neighbouring points unless the image is simply random noise. In this section,

we explain a noise model of this dependence, called the Markov random field2,4,20,38,21,31.

The study of Markov random fields has had a long history, beginning with

Ising's 1925 thesis on ferromagnetism. The model has traditionally been applied to the

case of either Gaussian or binary variables, on a lattice. Besag allowed a natural

extension to the case of variables that have integer ranges, either bounded or

unbounded. This extension, coupled with estimation procedures, permit the

application of the Markov random field to various image processing fields such as

texture synthesis, texture classification, image segmentation, image restoration, and

image compression. The Markov random-field model for textures assumes that the

texture field is stochastic, stationary, and satisfies a conditional independence

assumption. Let RxC be the spatial domain of an image, and for any (r,c) ∈  RxC let

N(r, c) denote the neighbours of (r, c).

The stationarity means that the spatial neighbourhood N(r,c) configuration is the

same all over the image. This assumption is not valid at pixels near the image

boundary. It is usual to assume the image is wrapped around a torus.

The conditional independence assumption is that the conditional probability of

the pixel given all the remaining pixels in the image is equal to the conditional

probability of the pixel given just the pixels in its neighbourhood,

P (f (r, c) | f (i, j) : (i, j) ∈  R x C, (i, j) ≠(r, c))

= P (f (r, c) | f (i, j) : (i, j) ∈  N (r, c))                                    (4.69)

When the distributions of { P (f (r, c) : (r, c) ∈  RxC) } are Gaussian, the

discrete Gauss-Markov field can be written as an equation in which each pixel's value

is a linear combination of the values in its neighbourhood plus a correlated noise term.
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where the coefficients of the linear combination are given by the function h and

{ u(r, c) | (r, c) ∈  RXC } represent a joint set of possible correlated Gaussian random

variables.

In the Markov model of the texture analysis, the intensity at any pixel depends

only upon the intensity of the adjacent pixel in a neighbourhood and upon a transition

probability matrix. The brightness level at a point in an image is highly dependent on

the brightness levels of the neighbouring points unless the image is simply random

noise. Markov random fields use a precise model of this dependence, they are able to

capture the local (spatial) contextual information in an image. Let Y(i,j) denote the

brightness level at a point (i,j) on the N x N lattice L. For the sake of simplicity let us

take the labelling of the Y(i,j) to be Y(i), i=1,2,..., M where M = N 2. A colouring of

lattice L, or a colouring of L with G levels, denoted by X is a function from the points

of L to the set {0,1,...,G-1}. The point j is said to be a neighbour of the point i if P

(Y(i) | Y(1), Y(2),..., Y(i-1), Y(i+2),..., Y(M)) depends on Y(j). Note that this definition

does not imply that the neighbors of a point are necessarily close in terms of distance,

although this is the usual case.

Now we can give the definition of a Markov random field:

A Markov random field is a joint probability density on the set of all possible

colourings Y of  the lattice L subject to the following conditions.

Positivity: p(Y) > 0 for all Y.

Markovianity: P(Y(i) | all point in the lattice except i) = P(Y(i)| neighbours of i).

Homogeneity: P(Y(i) | neighbours of i) depends only on the configuration of

neighbours and is translation invariant (with respect to translates with the same

neighbourhood configuration).

Let N i jp ( , )  denote the neighbourhood of the point (i,j). The neighbourhood

N i jp ( , )  is shown in Figure 4.22 for p = 5. If we assume a unit distance between

adjacent graph vertices then the first order MRF corresponds to a neighbourhood

configuration of radius 1 that consists of the four nearest neighbours labelled by 1's,

the second order MRF corresponds to a neighbourhood configuration of radius 2, that

further includes the diagonal neighbours labelled by 2's, and so on. The

neighbourhood N i jp ( , )  is shown in Figure 4.16 for  p = 5.
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Figure 4.22: Natural hierarchy of MRF models determined by neighborhood
configurations of increasing order

As one could guess, the higher the order of the model is, the more powerful

the model will be. For example a model of 0th order deals with only the pixel values,

while a first-order model also encounters the relation between a pixel and its first-

order neighbours.

Hence the GMRF is a non causal 2-D process described by the following

equation

Y r Y v rr v
v N rp

( ) ( ) ( )
( )

= +−
∈
∑β ε                                        (4.71)

where ε( )r  is a Gaussian noise sequence with zero mean and the autocorrelation

function given by

σ2 if v r=

− ∈−σ β2 / r v pif v N                                           (4.72)

 0 otherwise

βi s are the parameters of the model to be estimated. However, estimating those

parameters brings computational cost. Instead, sufficient statistics that define a

parameter set may be estimated. Sufficient statistics are values that can describe a

known model completely. For example for a Gaussian distribution σ and µ are the

sufficient statistics. One can obtain the distribution if he only knows these two

statistics.

Modelling a texture by using Markov random fields is not very difficult if

sufficient statistics are used as model parameters instead of the actual model

parameters. Cliques are used to determine the sufficient statistics. A clique is a graph

whose vertex set is composed of vertices such that each one is a neighbour of all the

others. The collection of cliques associated with a neighbourhood configuration

defines a sufficient statistic for their corresponding MRF.



88

Statistic #1 Statistic #2 Statistic #3 Statistic #4 Statistic #5

Statistic #7 Statistic #8

Statistic #6

Statistic #9 Statistic #10 Statistic #11 Statistic #12

Statistic #13 Statistic #14 Statistic #15 Statistic #16 Statistic #17 Statistic #18

Statistic #19 Statistic #20 Statistic #21 Statistic #22 Statistic #23 Statistic #24

Statistic #25

Figure 4.23: Sufficient statistics of the ninth order model

Ninth-order models introduce 25 sufficient statistic values which are shown in

Figure 4.23. For each pixel, the sufficient statistics are evaluated by multiplying the

pixel gray level value, shaded dark gray in Figure 4.23, by the gray level value of the

neighbouring pixel shown by the arrow, shaded light gray in Figure 4.23.  After one

calculates the sufficient statistics of a requested texture, he can use them to make a

test to determine if the texture is similar enough to the requested texture. As one can

see, all the statistics except for the first one, use pixels in the neighbourhood of a pixel

thus requiring special care to be taken at the window boundaries. The window may

either be considered to have a torroidal structure, or a mirror image of the window

may be assumed to occur at the boundaries of the window, in order to deal with the

boundaries properly. In the implementation, we preferred to omit the pixels near the

boundaries that would force us to pass across the boundary while calculating a

statistic. That means, all the pixels were used for the calculation of the first statistic



89

whereas the pixels belonging to the right-most column were omitted for the

calculation of the second statistic and so on. Although this seems as loss of data, using

a torroidal structure may cause some disturbance due to the non-homogenous lighting

effects.

MRF models are straightforward and easy to use and implement. Most of the

textures may be modelled by them easily. MRF models are used not only for texture

analysis but for texture synthesis also. Using sufficient statistics instead of the model

parameters increase the time performance of the method. The calculated sufficient

statistics may be regarded as feature values and used by any classification method

based on feature vectors.

The biggest negative point is for natural images MRF is too weak a

characterisation. Using Markov Random Field models requires the texture to have

some properties described above. Textures violating some of those requirements may

not be modelled using MRF models successfully. As the order of the model increases,

the discrimination power increases, however, the number of sufficient statistics to be

calculated also increases making the algorithm computationally more intensive. For

finding the distance measure, calculation of the inverse of the covariance matrix may

be required which also cause some trouble: For most textures, the matrix elements

have very large values and the matrix is close to singularity. The precision of some

computers may fail to calculate the inverse of the matrix correctly. Increasing the

precision by using more precise data types, decrease the time performance.

4.3.2. Structural  Approaches

Structural approaches2,3,5,20,37,38,11 define the texture as  “a set of primitive texels

in some regular or repeated relationship”. They assume that the texture is formed by

texture primitives located via a placement rule. It can work well for man-made

patterns but since most of the textures violate this assumption, the structural methods

have limited power.

Suppose that we have a rule of the form S→aS, which indicates that the

symbol S may be rewritten as aS. Three applications of this rule would yield the string

aaaS. If a represents a circle as in the figure 4.24(a) and the meaning of "circles to the

right" is assigned to a string of the form aaa ..., the rule S→aS allows generation of

the texture pattern shown in Fig. 4.24(b).
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Figure 4.24: Texture patterns (a) texture primitive (b) pattern generated by the rule

S→aS (c) 2D texture pattern generated by this and other rules.

Suppose next that we add some new rules to this scheme: S→bA, A→cA,

A→c, A→bS, S→a, where the presence of a ‘b’ means "circle down" and the

presence of a c means "circle to the left." We can now generate a string of the form

aaabccbaa that corresponds to a 3x3 matrix of circles. Larger texture patterns, such as

the one shown in Fig. 4.24(c), can be generated easily in the same way. The basic idea

in the discussion made is that a simple "texture primitive" can be used to form more

complex texture patterns by means of some rules that limit the number of possible

arrangements of the primitive(s). The figure below shows that a simple primitive may

generate various textures.

     Figure 4.25: Three different textures with the same distribution of black and white:

(a) Block pattern (b) Checkerboard (c) Striped pattern

Purely structural textures are deterministic texels, which repeat according to

some placement rules, deterministic or random. In the case of deterministic placement

rules, the spatial relationships may be expressed in terms of adjacency, closest

distance, periodicities, and so on; the texture is labelled as being strong. For randomly
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placed texels, the associated texture is called weak and the placement rules may be

expressed in terms of  edge density, run lengths of maximal connected texels, relative

extrema density, which is the number of pixels per unit area showing gray levels that

are locally maxima or minima relative to their neighbours.

It is important to extract the texture elements (primitives) of a texture if we

want to use structural methods. Usually texture elements consist of regions in the

image with uniform gray levels. The texture primitives and the placement rules may

be examined in spatial-frequency domain  as well as the spatial domain. Given a

texture primitive h x y( , )  and a placement rule c x y( , ) , the texture t x y( , ) can be

defined as

t x y h x y c x y( , ) ( , ) * ( , )=                          (4.73)

where

c x y x x y ym n( , ) ( , )= − −∑δ  (4.74)

and xm  and yn  are the coordinates of impulse functions ( the centres of the texture

primitives located in the associated regions of the images). In the spatial-frequency

domain

T u v H u v C u v( , ) ( , ). ( , )=                  (4.75)

so that

C u v T u v H u v( , ) ( , ). ( , )= −1                       (4.76)

Thus, given a description of the texture primitive h x y( , ) , we can derive a

deconvolution filter H u v−1( , ) . Applying this filter to an image containing the texture

of interest results in an array of impulses in the region of the image containing that

texture. Each impulse is the centre of a texture primitive.

Purely syntactic (structural) methods of texture description are accompanied

by many difficulties with syntactic analyser learning and with graph grammar

inference. This is the main reason why purely syntactic methods are not widely used.

On the other hand, a precise definition of primitives brings many advantages and it is

not wise to avoid it completely.
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4.3.3. Hybrid Approach

Hybrid methods3 of texture description combine the statistical and syntactic

approach. The technique is partly syntactic because the primitives are exactly defined,

and partly statistical because spatial relations between primitives are based on

probabilities.

Hybrid approach to texture description distinguishes between weak and strong

textures. The syntactic part of a weak texture description focuses on extracting texture

primitives on an image. Primitives can be described by their shape, size, etc. The

simplest texture primitive is a pixel and its gray level property. Description of strong

textures is based on the spatial relationships of texture primitives and two-directional

interactions between primitives seem to carry most of the information. The texture

description includes spatial relationships between primitives based on distance and

adjacency relations. Using more complex texture primitives brings more textural

information. On the other hand, all the properties of single pixel primitives are

immediately available without the necessity of being involved in extensive primitive

property computations.

In short, the hybrid system is based on primitive definition and spatial

description of inter-primitive relations. Texture primitives are extracted first, and then

based on recognised texture primitives, spatial relations between primitive classes are

evaluated for each image.

4.4. Colour Algorithms

Besides the textural features studied, human vision utilises also colour

information to judge similarity of objects. It is proven4 by psychoanalysis that

presence/absence of dominant colour, and degree of colourfulness are among

strongest feature dimensions people use.

In the human eye, the overall perception is formed through the interaction of a

luminance component, a chrominance component and an achromatic pattern

component21,13. The luminance and chrominance components approximate signal

representation in early visual cortical areas and extracts colour-based information

while the achromatic pattern component approximates the signal formed at higher

processing levels utilising textural pattern information. Similarly, for the machine

vision, many combinational colour texture algorithms have been developed in the
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literature. Three fundamental colour based algorithms will be studied in the next

section. But first, let us define the RGB colour space, which is our choice for colour

representation throughout the thesis:

RGB colour space is formed to mimic the human colour processing. Eye has

two different kinds of light receptors, called rods and cones. Rods do not respond to

colour information. Cones are located in the central part of the eye, called the fovea.

According to the colour range they respond, cones are divided into three subgroups

called, cones responding to blue, cones responding to green, cones responding to red.

Relative absorption ranges of these three cones are given in Figure 2.1.1.

Figure 4.26: Relative absorption range of cones

RGB space is the most common colour representation but there are many other

spaces developed for robust machine vision. A comparison of algorithms against

different colour representations may be a future work of this study.

4.4.1. Colour Histograms

Evaluation of chromatic similarity, using colour histograms, can be performed

by computing the L1 or L2 distances. The L1 and L2 distances between the query

image histogram H(IQ) and the histograms of database images H(ID), are respectively

defined4,10 as:
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where j is the index of the generic bin in the histogram. Most similar images are those

that minimise these distances. Usually these metrics exhibit poor performance.

Therefore the histogram intersection method is developed.

4.4.2. Histogram Intersection

Swain and Ballard have proposed4 histogram intersection for colour matching

and indexing in large image database. Histogram intersection is defined as:
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Colours that are not present in the query image do not contribute to the

intersection distance. The number of bins in the histogram does not affect histogram

intersection performance.

Figure 4.27: Histogram intersection between two histograms (labelled A and B)

Many applications require simple methods for comparing pairs of images

based on their overall appearance. Colour histograms are a popular solution to this

problem, and are used in the commercially available systems like QBIC and Chabot.

Their advantages are efficiency, and insensitivity to small changes in camera

viewpoint. However, colour histograms lack spatial information, it merely describes

which colours are present in the image, and in what quantities and this can cause

images with very different appearances to have similar histograms. For example, a
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picture of fall foliage might contain a large number of scattered red pixels; this could

have a similar colour histogram to a picture of a single large red object. A histogram-

based method for comparing images that incorporates spatial information is required.

In addition, colour histograms are sensitive to both compression artefacts and camera

auto-gain. Therefore, new algorithms have started to be seen in the literature trying to

inherit the simplicity of the colour histograms but also adding new dimensions to

them to compensate the disadvantages of the global metrics.

4.4.3. Colour Coherence Vectors

The colour's coherence is defined13 as the degree to which pixels of that colour

are members of large similarly coloured regions. These significant regions are

referred as coherent regions, and they are of significant importance in characterising

images. While a colour histogram counts the number of pixels with a given colour, a

colour coherence vector (CCV) measures the spatial coherence of the pixels with a

given colour.  For example, the images below have similar colour histograms, despite

their rather different appearances. The colour red appears in both images in

approximately the same quantities. In the right image, the red pixels are widely

scattered, while in the left image, the red pixels form a single coherent region.

Figure 4.28: Coherent and non-coherent images

The initial stage in computing a CCV is similar to the computation of a colour

histogram. First, the image is blurred slightly by replacing pixel values with the

average value in a small local neighbourhood. Then, the colour space is discretized,

such that there are only ‘n’ distinct colours in the image. The next step is to classify

the pixels within a given colour bucket as either coherent or incoherent. A coherent

pixel is part of a large group of pixels of the same colour, while an incoherent pixel is

not. We determine the pixel groups by computing connected components. A

connected component C is a maximal set of pixels such that for any two pixels

p,p'∈ C, there is a path in C between p and p'. Formally, a path in C is a sequence of
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pixels p = p1,p2,., ,pn = p' such that each pixel pi is in C and any two sequential pixels

pi,pi+1 are adjacent to each other. We consider two pixels to be adjacent if one pixel is

among the eight closest neighbours of the other; in other words, we include diagonal

neighbours. When this step is complete, each pixel will belong to exactly one

connected component. We classify pixels as either coherent or incoherent depending

on the size in pixels of its connected component. A pixel is coherent if the size of its

connected component exceeds a fixed value τ; otherwise, the pixel is incoherent. For

a given discretized colour, some of the pixels with that colour will be coherent and

some will be incoherent. Let us call the number of coherent pixels of the jth

discretized colour αj and the number of incoherent pixels , βj. Clearly, the total

number of pixels with that colour is αj+βj , and so a colour histogram would

summarise an image as <(α1+β2),….,(αn+βn)>. Instead, for each colour we compute

the pair (αj,βj) which we will call the coherence pair for the jth colour. The colour

coherence vector for the image consists of   <(α1 ,β2),….,( αn ,βn)> . This is a vector

of coherence pairs, one for each discretized colour.

Let us example the algorithm, to keep our example small, we will take τ= 4.

Suppose that after we slightly blur the input image; the resulting intensities are as

follows:

22 10 21 22 15 16

24 21 13 20 14 17

23 17 38 23 17 16

25 25 22 14 15 14

27 22 12 11 17 18

24 21 10 12 15 19

                                       Figure 4.29: Average filtered input image
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After discretizing the colour space so that bucket 1 contains intensities 10

through 19, bucket 2 contains 20 through 29, etc. , we obtain

                   2  1  2  2  1  1
   2  2  1  2  1  1
   2  1  3  2  1  1
   2  2  2  1  1  1
   2  2  1  1  1  1

2  2  1  1  1  1
                               Figure 4.30: Quantized input image

The next step is to compute the connected components. Individual components

will be labelled with letters (A,B,.. .) and we will need to keep a table which

maintaining the discretized colour associated with each label, along with the number

of pixels with that label. Of course, the-same discretized colour can be associated with

different labels if multiple contiguous regions of the same colour exist. The image

may then become

B C B B A A

B B C B A A

B C D B A A

B B B A A A

B B A A A A

B B A A A A

                 Figure 4.31: Labelling the quantised image

and the connected components table will be

     Label   A   B   C   D

     Colour  1    2    1   3

     Size     17  15   3   1

              Figure 4.32: Connected Component Sizes

The components A and B have more than τ pixels, and the components C and

D less than τ pixels. Therefore the pixels in A and B are classified as coherent, while

the pixels in C and D are classified as incoherent.

A given colour bucket may thus contain only coherent pixels as does 2, only

incoherent pixels as does 3, or a mixture of coherent and incoherent pixels as does 1.
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The CCV for this image will be

Colour  1    2    3

α         17  15   0

β          3    0    1

  Figure 4.33: CCV of the image

if we assume there are only 3 possible discretized colours, the CCV can also be

written <(17,3),(15,0),(0,1)>.

Consider two images I and I', together with their CCV's GI and GI', and let the

number of coherent pixels in colour bucket j be αj for I and α'j for I'. Similarly, let the

number of incoherent pixels be βj and,β'j. So

GI = <(α1,β2),….,(αn,βn)>          (4.80)

and

GI = <(α1 ,β2),….,(αn,βn)>           (4.81)

Colour histograms will compute the difference between I and I' as
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The CCV method for comparing is based on the quantity
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From equations 1 and 2, it follows that CCV's create a finer distinction than
colour histograms. A given colour bucket j can contain the same number of pixels in I
as in I', i.e.  αj + βj = α'j   + β'j  but these pixels may be entirely coherent in I and
entirely incoherent in I'. In this case βj = α'j =0, and while ∆H = 0, but ∆G will be
large.

In general, ∆H ≤ ∆G. This can be proved by applying the triangle inequality:
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Without normalisation, the distance between the coherence pairs (0,l) and

(0,l00) is as large as the distance between (9000,900l) and (9900,9l00). Therefore, t is

better to add a further normalisation step to ∆G.

The normalised difference between GI and GI' is

∑
= ++

−
+

++
−

=∆
n

j jj

jj

jj

jj

1
'

'

'

'

11 ββ
ββ

αα
αα

                                    (4.85)

The denominators normalise these differences with respect to the total number

of pixels. The factor of  +l is used to avoid division by zero when the α's or β's are

zero.
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CHAPTER 5

IMPLEMENTATION AND RESULTS

This section summarizes the performance results obtained by implementing the

texture algorithms discussed in the previous chapter. We’ll first describe the database built,

and define the features, distance metrics, and the performance criteria used. Next we tabulate

and depict the results for the discussion.

5.1. Texture Databases

We have built a quite powerful image database including over 1000 static images in

total.  Each image is stored in jpeg format with the size of 128x128 pixels. Both  gray scale

and color samples are available, all of them RGB ordered.

The database composes of image groups which are derived from the famous texture

benchmarking archives including MeasTex, VisTex, Outex, Broadatz, Rotated Brodatz and

Columbia. The major problems to build a refined database are the scale dependency of the

textures and the question of successful space coverage of the primitives:

We exclude natural scenes for our database and find the basic texture patterns,

textels, that are unique and with enough differentiability power possibly to represent the

whole texture world. This target may seem to be a bit unrealistic, but we see that as the sizes

of the databases and benchmarking studies increase, more optimal image archives are

reached. For this reason we tried to build one of the biggest image archives ever by using the

proved databases available in the literature. To increase the complexity, we also included

new images obtained from the  Brown University marble archive, internet graphics pages,

textile industry, and pictures taken at Sabancı University.

The performance of the algorithms are evaluated both on the subgroups and on the

main database. Each subgroup has a bit different context and purpose. Brodatz is very widely

used in the literature4,10,27,28. The rotated Brodatz reveals the performance response of the
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algorithms against transformations. Internet images emphasize the color nature of the

problem. The textile section created shows whether the algorithms developed for this

industry is content specific or not. Finally, the Brown database gives us an idea of how

successfully we can use these algorithms on archaeological samples. We checked the

algorithms against three databases: the Brodatz database, the archaelogical marbles and

finally the big database built by including all the image groups mentioned above. You may

find some representative samples of these three databases in Apendix B.

5.2. The System Designed

Our target is to create a CBIR Level 1 benchmarking platform for the texture and

color algorithms available in the literature. The developed system focuses on the feature

extraction step and includes the following algorithms which have been discussed in detail

throughout the chapter 4: Autocorrelation Function, Markov Random Fields, Laws’ Texture

Energies, Color Coherence Vectors, Histogram Difference, Minimum Bin Histogram

Difference, Fast Fourier Transform, Histogram Statistics, Linear Binary Patterns, Co-

occurrence Matrices, Gray Level Variance Matrices, Gray Level Gap Length Matrices, Gray

Level Run Length Matrices and Neighboring Gray Level Dependence Matrices.

The features used for each method are:

Histogram Statistics (HS): mean, standard deviation, normalized standard deviation,

third moment, uniformity, entropy

Autocorrelation Function (AF): profile spreads, cross-relation, second-degree spread

Co-occurrence Matrices (CM): energy, entropy, contrast, homogeneity, correlation

Gray Level Variance Matrices (GLVM): smoothness, gray level variance ratio,

minimum gray level, roughness, low variance emphasis, high variance emphasis, low gray

level variance emphasis, high gray level variance emphasis

Markov Random Fields (MRF): clique matrices

Laws’ Texture Energies (LTE): textural energy matrices

 Neighboring Gray Level Dependence Matrices (NGLDM): small number emphasis,

large number emphasis, number non-uniformity, entropy, second moment

Color Coherence Vectors (CCV): coherence vectors

Histogram Difference (HD): gray level histograms

Minimum Bin Histogram Difference (MBHD): gray level histograms

Fast Fourier Transform (FFT): quantized spectral energies
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Linear Binary Patterns (LBP): 8 digit binary code histograms

Gray Level Gap Length Matrices (GLGLM): period metric, quasi-periodicity metrics

Gray Level Run Length Matrices (GLRLM): long primitives (run) emphases, short

primitives emphasis, gray level uniformity, primitive length uniformity, and primitive

percentage.

All the methods mentioned above require some preprocessing of the images  before

the  main feature extraction codes run, RGB to greyscale conversion or color space channel

filtering is accomplished first. Then the noise is removed and the macro features are

emphasized by the gaussian, median or Wiener filters. For many codes, the number of grey

levels is important for the performance. As the number gets higher, computations become

more complex and probability of similarity between the compared pixels decreases.

Quantization steps are added for these reasons. For the quantization, k-means clustering,

uniform quantization and minimum variance quantization methods are implemented.

Merging may be required if grouping of the similiar texels emphasize the general motif

more. Standard “4-neighboured” , “8-neighboured” and “divide and conquer” algorithms are

implemented for merging.

The system developed is a GUI based application. We used MATLAB interface

design tools and I/O functions. In the GUI, the user easily selects the requested image and

meanwhile the folder of the archive is marked. After selecting the required parameters, the

sorting is accomplished by the code, and finally the closest 3 retrievals are displayed.

Figure 5.1: The GUI of the texture based CBIR system
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For the similiarity distance metrics, Euclidean distance, City-block distance ,

Minkowsky distance , texture signatures and  Mahalanobis distance are used.

Performance criteria of the retrieval are outlined in chapter 3 and results are in the

following section.

The algorithms available in the literature are usually tested against 40-100 images for

a general similarity analysis4. This is quite normal, because the CBIR systems available study

just low level features. As seen in biological vision, higher level of semantic features are

required for robust content retrievals. Therefore, for large databases it is better to find

associations among features than solely depending on the primitive feature differentiability;

otherwise exponential performance drops should be expected. A few current systems

including QBIC, Virage work also on bigger environments including 1000 and over number

of images. Even these systems don’t work in real time, but store the feature data for a fast

response against possible requests. Our archive therefore is a folder system which is an easy

to build but hard to use system that works with real-time processing.

In the databases, each sample has four variants which build their class. If the

retrieved image is from the same class of the requested, we count the case as correct

retrieval. Such a decision criteria, adopted from machine vision, is not a ground–truth as

explained in the previous chapters and furthermore may decrease the success rate because

similiar images don’t need to be from the same object according to the standart CBIR

criteria. We undertake this burden because otherwise human subjective tests should be used

which is not an objective test type. At the retrieval stage and performance criteria we never

count the first retrieval which is surely the asked texel with zero distance.

One more final remark is,  if a sample is associated with a textel in minimum

distance, the reverse matching doesn’t need to be expected always. So we requested from the

platform each sample and recorded the whole order lists, therefore the usual report output of

a single test for the biggest database is a 1000x1000 array.
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5.3. Performance Results

5.3.1. Archaeological Marbles Database

This section explores the performances of the primitive feature extraction algorithms

on databases with archaeological context. The samples are from the Brown University’s

marble archive. The need to follow the patterns on the neighbourhood zone of the broken

marble pieces is a semantic level of problem as discussed. Nevertheless, in the figures and

tables below, we try to get an idea how promising the metrics are, to be used for higher

levels of algorithms. It should be taken account that we didn’t build special environments

controlling resolution, angle of view and lighting. Less freedom of such variables on texture

sampling will surely increase the performances of the algorithms.

 Figure 5.2: Cumulative recall-precision performa

As explained in section 5.2, each database sample has four varia

class. If the retrieved image is from the requested class, we count

otherwise as false retrieval. The overall performance is called ‘recall-p
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detailed in section 3.4.3. In Figure 5.2, it is clear that MBHD measure performs far better.

This partially because our archaeological database doesn’t include rotational variants of the

samples. So, the value of the geometric invariant algorithms like CCV, LBP couldn’t be

understood easily on this archive.

Another observation is the colour feature metrics, used in HD, MBHD, and CCV, are

quite powerful in general, probably because as explained in Chapter 3, the colour is the

primary feature that the human vision utilises.

Finally, it should be cared that each algorithm focuses on different image features

like frequency, colour, pixel gap length, etc. So they are not competitive but complementary

algorithms. Combinational and higher level of algorithms may reduce the false acceptance

by creating a higher dimensional feature space.

1-10 11-20 21-30 31-50 51-75 76-100 101-200 201-1000
100 0 0 0 0 0 0 0

64,5 20,5 14,7 0,1 0,2 0 0 0
58,3 24,4 11 5,3 0,5 0,2 0,2 0,1
75,1 10,8 6,9 4,4 1,7 0,4 0,5 0,2
57,2 26,4 9,7 5,5 0,9 0 0,3 0
62,3 20,5 8,5 3,3 2,5 1,7 0,9 0,3
76,8 19,5 2,5 1,1 0,1 0 0 0
67,4 22,3 0,5 4,2 2,6 1,5 0,7 0,8
89,1 10,2 0,3 0,2 0,2 0 0 0
86,3 10,1 2,3 1 0,1 0,2 0,1 0
99,0 0,4 0,2 0,3 0,1 0 0 0
62,8 22,4 8,5 3,2 1,2 0,8 0,6 0,5
82,7 10,3 4,2 2,1 0,4 0,3 0 0
63,3 20,5 11,8 2,6 1,7 0 0,1 0
62,8 28,4 6,3 1,4 0,9 0,1 0 0,1

We tabulated above performances of the algorithms against the numbe

samples to see the distribution of the shortest interval lengths to retrieve all re

the ones from the same class, over the database. The first row shows us the ide

in which all correct retrievals have been counted in the closest ten distances.

Sharp decreases are seen in MBHD, CCV, HD, LBP methods which a

‘cumulative recall-precision performance’ in Figure 5.2.

One more interesting observation is that the table shows all the algori

successful in decreasing the search space from thousands to tens of samples.
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1-10 11-20 21-30 31-50 51-75 76-100 101-200 201-1000
100 0 0 0 0 0 0 0

91,5 6,6 1,7 0,1 0,1 0 0 0
86 9,9 3,4 0,5 0,1 0 0 0

97,5 1,4 0,9 0,2 0 0 0 0
90,1 7,6 2,3 0 0 0 0 0
96,3 3,1 0,5 0,1 0 0 0 0
96,8 2,2 0,4 0,2 0,1 0,1 0 0
93,2 4,7 1,5 0,3 0,3 0 0 0
99,5 0,2 0,1 0,1 0,1 0 0 0

97 1,5 0,9 0,4 0,2 0 0 0
99,3 0,5 0,1 0,1 0 0 0 0
94,6 5,1 0,1 0,1 0,1 0 0 0
97,3 1,2 0,8 0,4 0,2 0,1 0 0
95,4 2,3 1,9 0,3 0,1 0 0 0
89,7 8,4 1,2 0,4 0,2 0,1 0 0

Table 5.2: Cumulative distribution of the shortest interval lengths to retrieve fir

The measure, ‘cumulative distribution of the shortest interval lengths t

relevant’ explores how many images in average we should evaluate to includ

correct class member for a request. If one accepts that getting a representative

request’s class among first ten closest distances is enough, Table 5.2 in com

Table 5.1 shows that the most algorithms perform with over %95, i.e. reduci

space significantly.
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              Figure 5.3: The cumulative correctness for the closest retrieval
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The cumulative correctness for the closest retrieval demonstrates how successful we

get the right class at the first choice. AF, GLVM, GLRLM are dependent on small rotational

or translational transformations; therefore it is normal to observe such low performances

with them.

Figure 5.4: The distribution of the first three all correct 

 Because the database composes of four variants for each sam

each request, filling the first three closest places in distance with the r

optimal result. The ‘percentage of the first three all correct retrieval

frequency of these optimal cases. Taking the previous figures and t

algorithms can be clustered into two groups with their success: LT

LBP are better in performance because they focus more on globa

textures are primitive space representatives; so, the success of CM, N

GLRLM methods, which count more the distributions of primitive

group of algorithms.
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HS          AF           CM         GLVM      MRF        LTE         NGLDM

CCV         HD          MBHD     FFT         LBP        GLGLM     GLRLM

The majority rule is to take decision not only looking to the closest distance but

taking a number of top distances into account. In the Figure 5.5., we are looking for the

closest three similarities and decide whether the overall retrieval decision with majority rule

applied represents the correct class for the request. In comparision with Figure 5.2, the

correct retrieval pecentage of MBHD seems to increase from %92 to %99 by the majority

rule. Although not always as signaficant as MBHD method, the other metrics perform better

with the majority rule on decision. Also the performance clusters among the retrieval

methods have been more seperated with this measure.

              CORRECT      FALSE

     Figure 5.5: The percentage of the first three correct retrievals- majority rule applied

68 59 78 58   64   79      66

    89     88      99     61     84     62      65
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5.3.2. Brodatz

The Brodatz database is used almost as standard for benchmarking purposes in the

literature. It is composed of 112 gray level primitive samples, which don’t have a special

context. The figures and tables below will give an idea for further studies to compare the

algorithms developed with the non-textural features of the content based retrieval and similar

textural feature extraction experiments done on Brodatz database.

In Figure 5.6, with comparison to Figure 5.2, the performances dropped a little. This

is because the Brodatz database covers much more homogenous features although the

textural feature space dimension is reduced by the missing colour information; the Brodatz

samples are in gray scale and contain rotational variants of the samples. Therefore, the

geometric invariant methods LTE, CCV, HD, MBHD and LBP are more successful.

 Figure 5.6: Cumulative recall-precision performance
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1-10 11-20 21-30 31-50 51-75 76-100 101-200 201-1000
100 0 0 0 0 0 0 0
67 24,1 6,3 2,5 0 0,1 0 0

55,4 26,2 10,4 5,5 2,1 0,2 0,2 0
74,6 14,5 10,1 0,5 0,1 0,1 0 0,1
56,3 22,9 8,4 7,6 4,3 0,3 0 0,2
67,8 19,6 10,2 1,2 0,9 0 0,1 0,2
79,8 10,5 4,5 4 0,8 0,2 0,2 0
71,3 12,7 10,5 4,6 0,9 0 0 0
79,6 9,9 9,4 0,7 0,1 0,2 0,1 0
77,5 10,5 5,7 3,6 2,4 0 0,2 0,1
83,9 11,1 3,1 1,3 0,2 0,1 0,1 0,2
64,7 13,6 12,1 8,6 0,5 0,4 0 0
80,8 10,2 8,8 0,2 0 0 0 0

64 19,6 8,5 5,7 1,4 0,5 0 0,3
56,1 20,7 10,3 6,9 4,8 1 0,1 0,1

Table 5.3: Cumulative distribution of the shortest interval lengths to retrieve a

As observed in Table 5.3, the MBHD, LBP, LTE, HD and CCV 

practically the search space from over 1000 images to approximately 30 retr

the HS, AF and FFT algorithms perform with over %99 success, in the top 75

1-10 11-20 21-30 31-50 51-75 76-100 101-200 201-1000
100 0 0 0 0 0 0 0

90,4 5,8 3,5 0,2 0,1 0 0 0
85,1 12,6 2,1 0,2 0 0 0 0
96,9 2,5 0,5 0,1 0 0 0 0

89 10,4 0,4 0,2 0 0 0 0
95,6 4,3 0 0,1 0 0 0 0
95,4 3,9 0,3 0,3 0,1 0 0 0
92,5 6,3 0,7 0,4 0,1 0 0 0
98,7 1,1 0,2 0 0 0 0 0
96,4 2,7 0,6 0,2 0,1 0 0 0
98,8 0,5 0,5 0,2 0 0 0 0
93,9 5,1 0,7 0,2 0,1 0 0 0
96,1 3,2 0,4 0,2 0,1 0 0 0
94,2 3,3 1,9 0,5 0,1 0 0 0
88,8 10,2 0,7 0,3 0 0 0 0

Table 5.4: Cumulative distribution of the shortest interval lengths to retrieve f

Both of the Tables 5.2 and 5.4 show us the first ten retrievals are clos

the requested image. Although the first interval performances slightly incr

database, the distributions shifted more to the centre, ideal case, in archaeol

This is because the Brodatz database’s samples are homogenously distrib

space and they emphasize the geometric invariance of the algorithms 

confusions of rank among the closest retrievals.

R
et

ri
ev

ed
  
p
er

fo
rm

a
n
ce

 i
n
 p

er
ce

n
ta

g
es

R
et

ri
ev

ed
  
p
er

fo
rm

a
n
ce

 i
n
 p

er
ce

n
ta

g
es
Algorithms:

Ideal Case
1.HS
2.AF
3.CM
4.GLVM
5.MRF
6.LTE
7.NGLDM
8.CCV
9.HD
10.MBHD
11.FFT
12.LBP
13.GLGLM    
14.GLRLM
ll relevant

metrics reduce

ieves. But even

 retrieves.

ir

el

ea

og

u

w

Algorithms:

Ideal Case
1.HS
2.AF
3.CM
4.GLVM
5.MRF
6.LTE
7.NGLDM
8.CCV
9.HD
10.MBHD
11.FFT
12.LBP
13.GLGLM    
14.GLRLM
st relevant

y related with

se in Brodatz

ical database.

ted in feature

hich triggers



111

       Figure 5.7: The cumulative correctness for the closest retr

In Figure 5.7, we observe that because the features are distri

the Brodatz database, the performance results of LTE, CCV, HD

almost the same. This shows once more that the algorithms work on i

in space. If the lighting, resolution and geometric transformation

strictly, some other algorithms like CM, GLVM, NGLDM, GLGL

give similar results.
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As observed in Figure 5.8, the performances are much closer to

database. Each algorithm focuses mainly on a specific feature dimens

textural variability is almost homogenous among Brodatz samples, 

which feature dimension is more dominant.

A better approach would be to use combinatory metrics 

dimensional feature space.
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Although the order changes, the successful algorithms LTE, CCV, HD, MBHD and

LBP preserve their superior performances also in Brodatz database. HS, AF, and FFT have

known theoretical problems of differentiating similar textures; they may produce the same

metrics for different samples. GLGLM, GLRLM, GLVM, NGLDM and CM could perform

better if there weren’t geometric translations on the database and the samples were not just

primitive representatives.

5.3.3. The big database

The most challenging need for content-based retrieval is to preserve the performance,

as the size of the database samples increases. Currently, because the primitive features are

not discriminative enough, we don’t see in the literature image archives with over 1000

samples. In this section, what we call as the ‘big database’ will demonstrate the rate of

change in algorithms’ discrimination power against database size with 1052 samples.

Figure 5.10: Cumulative recall-precision performance
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First of all, in Figure 5.10, we see that the performance drop for AF is quite

significant. This is because from its theory, different samples may have the same AF

distances. The best performance is observed again by MDBH with %75, which is actually a

highly promising result for using in semantic solutions. We would expect that LBP or CCV

methods perform better than the MBHD because of known insufficiencies of histograms.

However because it is highly difficult to create a homogenous database, probably we

overemphasised the colour information but missed the pixel distribution differences as

sampling the textures.

1-10 11-20 21-30 31-50 51-75 76-100 101-200 201-1000
100 0 0 0 0 0 0 0

61,2 24,9 9,5 3,1 1,2 0 0,1 0
42,2 30,6 22,3 3,5 0,9 0,4 0 0,1
70,3 16,4 12,4 0,7 0,2 0 0 0
51,6 36,3 10,9 0,4 0,5 0,2 0,1 0
64,3 20,4 9,4 3,1 1,1 0,9 0,5 0,3
72,6 14,6 6,5 3,4 1,7 0,5 0,4 0,3
69,4 20,3 7,1 1,2 1,3 0,6 0,1 0
76,3 16,2 5,4 0,9 0,7 0,3 0 0,2
74,5 18,6 4,2 2,6 0,1 0 0 0
80,1 10,7 6,5 2,3 0,1 0,3 0 0
60,3 20,1 15,3 3,5 0,5 0,2 0 0,1
75,2 20,9 1,4 1,1 0,8 0,4 0,2 0
59,9 34 5,5 0,2 0,1 0,1 0,1 0,1
50,4 40,2 3,9 2,5 1,2 0,9 0,5 0,4

Table 5.5: Cumulative distribution of the shortest interval lengths to retrieve all

In comparison with the Tables 5.1 and 5.3, we observe the 

exponentially drop in the big database. Nevertheless, if we think that the advan

automatic retrieval procedures is to downsize the search space, we see that t

retrieve the first 50 similiar images including all the related samples with m

success rate. Some algorithms like GLVM and GLRLM don’t perform well at 

ten ranks, but when looking the first 30 samples retrieved, they include the all

over %90 success. Therefore, for content based retrieval, guessing the clo

requested, like in a classification problem, is not always possible and also not m
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1-10 11-20 21-30 31-50 51-75 76-100 101-200 201-1000
100 0 0 0 0 0 0 0

80,9 19 0 0,1 0 0 0 0
69,6 24,5 5,3 0,4 0,2 0 0 0
89,9 9,5 0,3 0,2 0,1 0 0 0

72 24,5 3,4 0,1 0 0 0 0
83,7 14,3 1,7 0,3 0 0 0 0

93 3,8 2,2 0,6 0,4 0 0 0
89,6 10,1 0,2 0,1 0 0 0 0
95,8 3,9 0,2 0 0,1 0 0 0
93,9 4,8 1 0,3 0 0 0 0

97 2,5 0,4 0,1 0 0 0 0
79,8 14,2 5,3 0,7 0 0 0 0
94,9 4,7 0,2 0,2 0 0 0 0
80,3 12 5,7 1,4 0,6 0 0 0

71 19,6 8,6 0,5 0,3 0 0 0

Table 5.6: Cumulative distribution of the shortest interval lengths to retrieve first relevant

Observing Tables 5.6, 5.4 and 5.2, we see that the first relevant is surely in the first

100 out of 1000 images. Combinatory algorithms may reduce this search space further.

Cooccurence based algorithms including CM, GLVM, NGLDM, GLGLM and GLRLM have

problems because they lack of transformational invariants. Nevertheless, since the variants of

a requested image are usually closer in distance to each other than the other samples, we

observe medium level success rates.

 Figure 5.11: The cumulative correctness for the closest retr
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In Figure 5.11, we observe that the retrieval performances are not much promising if

just the closest distance metric is taken into account. This shows that the problem at hand is

different than what we call as sameness analysis or classification problem. The aim in

content-based retrieval is not to find the requested image as the first guess but reduce the

search space.

Figure 5.12: The distribution of the first three all cor

Figures 5.8 and 5.12 are very closely related. It shows th

Brodatz database is distributed quite homogenous and the opti

represent the power of content based algorithms.
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As the number of samples increases, we see in Figure 5.13 that the performances

drop with respect to Figure 5.5 and 5.9. Concluding our comments, the MBHD seems to be a

healthier metric of colour information; CCV, LBP and LTE are the secondary superior

algorithms should be utilised in semantic solutions for texture metrics. CM, GLVM,

NGLDM, GLGLM, GLRLM and MRF methods didn’t perform as successful as they are in

defect analysis. This is probably because they are affected from small geometric

transformations.  For a further research, the successful algorithms may be combined to

obtain a higher dimensional metric space invariant to the transformations.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Texture and colour algorithms used in defect analysis aim to model a non-defective

training sample well and compare the model’s sameness with the test images.

The 2D puzzle problem for the archaeology is of the extreme opposite side. The

continuation of two images is required to be found to define them as neighbours.

To ease the problem and prepare the required background knowledge of texture, we

have worked exactly on the midway, on the similarity analysis. The content based image

retrieval is an excellent performance benchmark place to extract the basics of successful

similarity analysis.

On the basis of feature performances, we reached quite promising results in

comparison to the other methods stated in the literature1,4,10. This may be because we combine

many robust algorithms of the machine vision, pattern analysis and image processing on

which we have experiences.

But, we skipped a very important variable for the comparison of different content-

based systems, the computation time. This is because of the problem type at hand:

As a final goal, we would like to solve the archaeological puzzle problem, which will

minimise the time from the several years, if done manually, to a couple of weeks with a

computerised method. Therefore, we don’t need to bother with the computation complexity

much, although we’ve tried to write the codes as if we do the job for an image-based content

system.

Another important point is that the results shouldn’t be compared with the

classification performances of the same algorithms. As stated earlier, the methods are

specially designed for the machine vision to group textures into two classes, defective and

non-defective. Besides, content retrieval studied and available in the literature is categorised

as level 1 or low level, which needs at least other semantic associations to mimic a
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successful retriever like the human eye. In biological vision, we never compare instantly

1000 images and report as a 1000x1000 matrix. But in fact, all these synthetic obstacles

helped us to decide what kind of a system we face and where we are in knowledge space.

The future of the study is to bring the whole content based system to a literally optimal

condition. The pre-processing algorithms, the pattern analysis techniques should be made

more robust, different feature extraction techniques should be employed together and further

comparisons should be made to catch the works on multimedia mining started as early as

1980s.

The puzzle problem using textural features is original and before solving the continuity

problem, the similarity analysis should be well understood. This thesis is a first step in

building this knowledge. But more is needed:

Global features of the pieces are as important as the ones that we will track in the

neighbourhood zone. That means, we should account for global object properties as well as

continuous piecewise features. These are what we call semantic features.

The sizes and boundaries of the images are transformed to an uncontrolled space which

requires advanced string matching algorithms. Because of this freedom, the global features

should be scale and rotation invariant but we need to use the direction and area feature

differentiation locally.

Memory functionality is needed to mimic the human vision system. For the occlusion

cases we plan some guess type of behaviours. Clustering robustness and efficient indexing

similar to the one seen in the brain are needed.

And finally, the real archaeological problems are usually in 3D, therefore 2D solutions

should be transformed into three dimensional space.

Content based retrieval and the puzzle solving combine many branches of computer

science, pattern analysis and image processing together. For a historical country like Turkey,

this type of work is valuable for the archaeologists and archivists.

As an initial attempt for texture based projects in our university, this thesis aimed to

import the knowledge available in the literature and hopes to trigger ideas for the future.
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APPENDIX A

PUZZLE PROBLEM

In archeology, art restoration and failure analysis, we may encounter a large number

of irregular fragments resulting from one or several broken objects.

The goal of the computer assisted reconstruction is to assist with the reconstruction of

archeological artifacts, such as pottery fragments, marble relief pieces, or mosaics, using

computational tools and to electronically disseminate the reconstructed artifacts, through a

virtual museum or virtual tours.

Traditionally, the archeological findings are usually labeled by a human expert. As

the number of artifacts increase, the task of assembling the pieces together becomes almost

intractable, due to combinatorial explosion of all the possible ways the pieces may fit

together.

  
Figure A.1: Hasankeyf archaeological site, Turkey
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Automation, precision of the data acquisition and reveal of hard-to-see associations

by multimedia mining will be very helpful for the archeologists.

Figure A.2: Digital Forma Urbis Romae Project, Italy

Computational tools to help with this process would be very valuable in speeding up

the reconstruction. Using 2D and 3D shape matching techniques, as well as suitable texture

similarity analysis, the computer may eliminate pieces that do not match, greatly reducing

the number of possible alternatives to search, either by the computer or by humans, which is

tedious and laborious.

Current works in the literature specialize on shape matching61, by which they

approach the automatic 2-D and 3-D jigsaw puzzle solving problem in two stages, local

shape matching followed by global search and reconstruction. Local shape matching aims to

find candidate pairs of matching fragments which are adjacent in the original objects using

only local shape information. In finding a global solution, ambiguities resulting from local

shape matching are resolved and the pieces are merged together. But as the pieces of the

puzzle increase, the system should evaluate a lot of combinations.

Other features can be useful in helping to reduce the search space. We focus on

textural similarity, 3D solutions of which are not available on the literature. Therefore,

before the final solution for the 3-D object puzzle problem, 2-D works on mosaics, ancient

tablet typography solving and 2D-map reconstruction like the one in digital forma urbis romae

project should be studied.
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Figure A.3: Zeugma Archaeological Site, Turkey

Once reconstructed, capability of browsing the archeological artifacts through an

interactive multimedia environment would be invaluable in preserving and sharing the

cultural heritage. Integration of the data will fuse the expert knowledge and will broaden the

overall archaeological base.

Figure A.4: Computerized cultural heritage

As recent attempts, Stanford University has tried to reconstruct the Severan Marble

Plan of Rome on Digital Forma Urbis Project. At the University of Athens, a system called

the Virtual Archaeologist has been developed to match 3D sherds modeled via surface

patches; Brown University is studying the problem of matching 3D curves taken to be

breakcurves of sherds. An international team, led by Brunel University and with support

from the European Union, is developing and using 3D multimedia tools to measure,

reconstruct and visualize archaeological ruins in virtual reality using as a test case the ancient

city of Sagalassos in Turkey.
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APPENDIX B

DATABASE SAMPLES

 Figure B.1: Samples from the Archaeological Marbles Database

Figure B.2: Samples from the Brodatz  Database
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Figure B.3: Samples from the Big Database

Figure B.4: Typical image classes
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