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ABSTRACT

Pseudo random sequences, that are used for stream ciphers, are required to have
the properties of unpredictability and randomness. An important tool for measuring
these features is the linear complexity profile of the sequence in use.

In this thesis we present a survey of some recent results obtained on linear
complexity and linear complexity profile of pseudo random sequences. The relation
between the polynomial degree and the linear complexity of a function over a finite
field is given, bounds for linear complexity of the “power generator” and “the self-
shrinking generator” are presented and a new method of construction of sequences
of high linear complexity profile is illustrated.

Key words : Linear recurrence sequences, linear complexity, linear complexity profile



OZET

Dizi sifreleyicilerde kullanilan yari rasgele dizilerin rasgelelik ve éngoriilememezlik
ozelliklerine sahip olmalar: gerekir. Dogrusal karmasiklik profili bu 6zellikleri 6lgmede
kullanilan onemli bir aractir.

Bu tezde dizilerin dogrusal karmasikligi ve dogrusal karmasiklik profili tizerinde
son yillarda elde edilen bazi énemli sonuclar sunulmaktadir. Ozellike, Bir sonlu
cisim tizerinde verilen bir fonksiyonun polinomsal derecesiyle dogrusal karmasikligi
arasindaki baglanti, “listsel” ve “kendini kiiciilten” tireteclerin dogrusal karmasiklik
sinirlar1 ve dogrusal karmasiklig: yiiksek dizilerin olugturulma yontemleri tizerindeki
caligmalar incelenmistir.

Anahtar kelimeler: Dogrusal indirgemeli diziler, dogrusal karmasiklik, dogrusal

karmasgiklik profili.
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CHAPTER 1

INTRODUCTION

Main methods used in conventional cryptography are “block ciphers” and “stream
ciphers”. In general, while block ciphers encrypt blocks of data at a time, stream
ciphers encrypt one bit a time via XOR operation. In stream ciphers, the security
of the encryption is based on the key stream, which is XORed with the plain text
to produce encrypted text.

To achieve secure transmission, the first aim is to protect the original key. Once
the key is unveiled, the original message is easily obtained. Second aim, especially
for stream ciphers, is to protect the key stream, or formally making the key stream
unpredictable from the known part of it. This can be achieved by using sequences
of high linear complexity. In other words, controlling the linear complexity enables
controlling the security of the stream cipher. Linear complexity profile goes one step
further, gives the behavior of the linear complexity of the key stream, or equivalently,
of the sequence which is generated by the encryption algorithm with the relevant
encryption key.

These concepts will be made precise in section 1.2.

1.1 Preliminaries

Throughout this thesis we will basically follow the famaous book of Lidl and Nei-
derreiter [8] for notation and terminology. Now we give definitions and theorems
which will be used in the rest of the thesis.

F, denotes a finite field with ¢ elements where ¢ is a prime or a prime power.
Fy is the multiplicative group of F, — {0}. As it well known Fy is cyclic and has
order ¢ — 1.

Definition 1.1. A generator of the cyclic group F} is called a primitive element of
F,

q-

Firstly, we recall some facts from the theory of finite fields. We refer to the



books of Lidl and Neiderreiter [8], D. Jungnickel [7] and T.W Cusick, C. Ding and
A. Renvall [4] for the proof of the results we list in the first two sections of this
chapter.

Theorem 1.2. (Lagrange Interpolation Formula) For n > 0 , let ag,ay,...,a, be
n + 1 distinct elements of F'. Let by, by, ..., b, arbitrary elements of F'. Then there
exists exactly one polynomial f € F[x] of degree > n such that f(a;) = b;, for

1=1,...,n. This polynomial given by

fa)y=>"b [] (ai—ar)™"(z—ax). (1.1)

i=0  k=0k#i

Proof. See [8, Theoren 1.71]. O

Proposition 1.3. Let k be a non-negative integer. Then
ch: 0 if k=0 or k is not divisible by ¢ — 1,
ccF, —1 if k is divisible by ¢ — 1.
Proof. See [8, Theorem 6.3]. O

Definition 1.4. For o € F' = Fym» and K = F then the trace Trp k(o) of a over
K is defined by

m—1

Trp/k(a) =a+al+ ... +al

If K is the prime subfield of F', then Trp/k () is called absolute trace of o and it is
simply denoted by Trp(«).

Theorem 1.5. Let K = F, and F' = Fym. Then the trace function Trp/k satisfies
the following properties:

1. TI"F/K<OC + ﬂ) = TI‘F/K(Oé) + TYF/K<5) fO?” all Oé,ﬁ S F,
2. Trp/k(ca) = cTrp/k () foralla € F, c € K,

3. Trp/k is a linear transformation from F onto K, where both F' and K are

viewed as a vector spaces over K,

4. Trp/k(a) = ma for alla € K,



5. Trp/k(af) = Trp/k (o) for alla € F' .
Proof. See [8, Theorem 2.23]. O

If F = F5 and K = F; then the trace map satisfies the following identity, which

is a special form of the Theorem 1.5, property (5) when m = 2,
Trpr (@) = Trpc(a®), forall x € F. (1.2)

For this special case we say that trace is invariant under the squaring automor-

phisms.

Theorem 1.6. Let F be a finite extension of the field K. If T : F — K is any K-
linear function, then there exists a unique ¢ € F with the property that T'(z) = Tr(cz)

for all x € F. In particular the element c is non-zero if and only if T is onto.
Proof. See [8]. O

Definition 1.7. Let K be a finite field and F' be a finite extension of K. Let
{61,...,0,} be a basis of F' over K. The basis {,..., .} of F' over K is called the
dual basis of {d1,...,d,} if for 1 <i,7 <r we have

0 fori#j,

Trryx(6:8;) = (1.3)
1 fori=j

If not otherwise stated, in this thesis K is always the prime subfield of F. Thus,

we will simply use Tr(«) instead of Trp(«).

1.2 Sequences and Linear Complexity

Let k be a positive integer and a, ag, a1, . .., ay_1 be elements of a finite field Fj,. A
sequence 0y, 01, ... of elements of Fj, satisfying the relation

Optk = Qk—10pik—1 + Qfp—20nip—2 + -+ apo, +a forn=0,1,... (1.4)
is called a (kth — order) linear recurrence sequence in F,,. The terms oy, ..., 05_1,

which determine the rest of the sequence are called initial values. The vector formed



by initial values (oq, 01, ...,0,_1) is called the initial vector. A relation of the form
(1.4) is called (kth — order) linear recurrence relation. If a = 0 then the we call the
relation homogeneous linear recurrence relation otherwise we call it inhomogeneous
linear recurrence relation. The coefficients a; are called feedback coefficients.

For the homogenous case of the linear recurrence relation (1.4), it can be written

as
k
Op = E ag—iOn—; formn >k,
i=1
with the convention a;, = —1 we have,

k
0= Z Qp_iOn_;i forn >k.

i=0

The well known property of linear recurrence relations is that they can be im-
plemented in hardware with almost no cost. This implementation is called LF SR
(Linear Feedback Shift Register).

If not otherwise stated we always consider the homogeneous case of the linear
recurrence relations.

There are several mathematical objects that can serve for the description of
linear recurrence relations (or, equivalently, LFSR’s). For instance, one defines the

feedback polynomial of the linear recurrence relation (1.4) by
f(z) = —ap — ap_170 — ... — agx™; (1.5)

we note that f is a polynomial of degree < k with constant term +1. Let us call
the vector o) := (04,0441, ..., 0nsk_1) the t" state vector of the linear recurrence

relation (¢ > 0). Then we may rewrite the Equation (1.4) as

o) = (1) 4 fort>0,



where the feedback matriz A is defined by

00 0 ag
1 0 0 aq
01 :
A=
0
0 ap—o
00 1 ap—

kxk

In general, we have

o® =5OAt for t>1.

Here we note that A is the companion matrix of the reciprocal polynomial
fr(2)=2" —aqp_12" ' — ... —ax —aq

of f, the feedback polynomial. In the view of the following lemma, f* is usually

called the characteristic polynomial of the linear recurrence relation (1.4).

Lemma 1.8. Let f be the feedback polynomial of an LESR of length n over the field
F. Then the feedback matriz A satisfies

*

xa=/",
where x4 denotes the characteristic polynomial of A.

Proof. See Hoffman and Kunze [6]. O

A linear recurrence relation (or equally, LESR) can therefore be described in
terms of each of the three objects f, f* and A. We emphasize that the initial values
has no effect on the feedback polynomial f and hence there is always a family of

shift register sequences correspond to the same f, f* and A.

Definition 1.9. Let S be an arbitrary non-empty set, and let g, 01,... be a se-
quence of elements of S. If there exist integers r > 0 and ng > 0 such that o, = 7,
for all n > ng, then the sequence is called ultimately periodic and r is called a period
of the sequence. The smallest number among all the possible periods of an ultimately

periodic sequence is called the least period of the sequence.
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Definition 1.10. An ultimately periodic sequence g, o1, ... with least period r is

called purely periodic if ¢,,, = 0, holds for all n =0,1,....

When the set S is a finite field it turns out that every kth-order linear recurrence

relation is ultimately periodic, which is given in the next theorem.

Theorem 1.11. Let F, be any finite field and k any positive integer. Then every
kth-order linear recurrence sequence in Fy is ultimately periodic with least period r

satisfying r < ¢*, and r < ¢* — 1 if the sequence is homogeneous.
Proof. See [8, Theorem 8.7]. O

If a homogeneous linear recurrence relation of order k generates a maximal pe-
riodic sequence of period ¢*~! over the field F, then the corresponding sequence is
called an m-sequence.

We note here that there is a family of linear recurrence relations that produce
the same sequence. Hence, we have a family of characteristic polynomials related
to each of the linear recurrence relation that produces the same sequence. It can be
easily shown that the set of all characteristic polynomials of a given linear recurrence
sequence o, together with the zero polynomial forms an non-zero ideal I in F[x] (see

[7]). Since F[z] is a principal ideal domain the following definition makes sense.

Definition 1.12. The unique monic generator m of I, the ideal of the characteristic

polynomials of a linear recurrence sequence o is called the minimal polynomial of o.

Theorem 1.13. Let o be a sequence in Iy satisfying a kth-order homogeneous linear

recurrence relation with characteristic polynomial f(x) € F,lx]. Then f(x) is the

minimal polynomial of the sequence if and only if the state vectors o°, o', ... "1
are linearly independent over Iy,.
Proof. See [8, Theorem 8.51]. O

Since the minimal polynomial is unique then the following definition make sense.

Definition 1.14. The linear complexity L, of a sequence o is defined to be the

degree of the minimal polynomial m of o.



When a sequence ¢ is purely periodic with period ¢ then z* +1 is a characteristic
polynomial for this sequence. Hence the linear complexity of a ¢ does not exceed t.

One can also define the linear complexity of a linear recurrence sequence o as the
order of the linear recurrence relation of least order or equivalently, as the length of
the shortest linear feedback shift register generating the sequence o.

Alternatively, we can take a finite sequence o = (oy,09,...,0,) and consider

consider the homogeneous linear recurrence relation of order k

Ontk = Qg—10n4k—1 T Q—20n 42+ -+ apo, +a (1.6)
for n = 0,1,...,n — k, and ay,...,a; € F,. The linear complexity of the se-
quence o1, ..., 0, is defined as the least k for which equation (1.6) holds for some
ag,...,0x—1 € Fq.

Definition 1.15. Let L,(i) be the linear complexity of the first i terms of the
sequence o, for i = 1,2,... . Then the sequence (L,(i)) = (L,(1),L,(2),...) is

called the linear complexity profile of o.

The following algorithm is the basic tool for calculating the linear complexity

profile of arbitrary sequences.

Algorithm 1.16. (The Berlekamp-Massey Algorithm) Let o be a sequence of finite

length n over F,. The following algorithm computes integers Lj and polynomials
fulz)=1- cgk)x — Cgk)x2 — .= c(Lk::z:L’“ (1.7)

for all k > n.
Ly:=0,L;:=—-1,fo:=1,f =1+=x.
for k=1to N—1 do
0 1= —ay + ZZL:’“I cgk)ak_i
if 6p =0 then
Jre1 = fry Lig1 = Ly,
else m = max{i: L; < L1},

Lk+1 = maX(Lk, kE+1— Lk),
ferr = fio = 0k0,, ' fr ().



Proof. See [7, Algorithm 6.7.5]. O

Theorem 1.17. Let o = (0y,...,0,) be a sequence of finite length n over F,. Then
the Berklamp-Massey algorithm computes the linear complexity profile (L,(1),...,
L,(n)) of o and feedback polynomials fi,..., fn for LFSR’s Iy, of length L,(k) gen-
erating the first k elements of o ( for allk =1,...,n).

Proof. See [7, Theorem 6.7.6]. O

We remark here that the polynomials f; appearing in the above algorithm are

the feedback polynomials corresponding to each sequence (o7, ..., o).

Theorem 1.18. If o = ¢, 04, ... is a maximal periodic sequence, with period 2" —1,
i Fy with minimal polynomial m. Let ¢ be a root of m in the extension field Fon.

Then there exists a uniquely determined ¢ € Fy such that
o; = Tr(cCt),
for all non-negative integers 1.
Proof. See [8, Theorem 8.24]. O

Definition 1.19. The formal power series or the generating function of an infinite

sequence o is defined by

on(z) = Zaixi. (1.8)

Proposition 1.20. The generating function of each periodic sequence o can be

expressed as

with f(0) # 0 and deg(g(x)) < deg(f(z)).

Proof. First we assume that r is a period for o, say oy, = oy for all K > N. Using

this we can write the formal power series o(z) of o as follows

o(z) = (oo+.. . Fon_12V D+ (oy+onpiz+. . o1 T (1 F 2?4 )



Using the identity
l+a" 4+ +...=(1—2")"
we get
(1—2"o(z) = (oo +... Foy_12V DA —2") + (o Foypz+... oy T,

Thus (1 —2")o(z) € F[z]. Call this g. Then o(z) = g(x)/(1 — ") which proves the

proposition. ]

Proposition 1.21. Let o be a periodic sequence over I, and

o(z) =r(z)/f(z), f(0) =1,

a rational form of the generating function of . Then f(x) is the minimal polynomial

of the sequence if and only if ged(f(z),r(z)) = 1.
Proof. See [4, Propostion 2.3.2]. O

With the help of the linear complexity profile we can categorize sequences using

the following definition.

Definition 1.22. If d is a positive integer, than a sequence o of elements in Fj is
called d-perfect if
|2L,(i) —i| <d foralli> 1.

Where L, (i) denotes the linear complexity of the first ¢ elements of o

A 1-perfect sequence is also called perfect. A sequence is called almost perfect if

it is d-perfect for some d.

Theorem 1.23. In order to establish that a sequence o, with irrational generating

function, is d-perfect, it is suffices to prove that

L,(i) < HTd for all i > 1,

or, similarly

Lo(i) > # for all i > 1.

Proof. See [13, Chapter 7]. O



1.3 Algebraic Function Fields

Here we give the basic facts about algebraic function fields. The reader is referred

to the book of Stichtenoth [16] for proofs and further results on function fields.

Definition 1.24. An algebraic function field F'// K of one variable over an arbitrary
field K is an extension field FF O K such that F' is a finite algebraic extension of
K(x) for some element € F, which is transcendental over K. Elements of F'/K

are called functions.
We'll simply refer to F//K as a function field.

Definition 1.25. The set K := {z € F | z is algebraic over K} is called the
constant field of F/K. If K = K, then K is called the full constant field of F/K.
Elements of F/K that are in K are called constants functions. We note that, in

general, K is a finite, hence algebraic extension of K.

Definition 1.26. A valuation ring of the function field F/K is a ring O C F' with

the following properties :
1. K¢ O ¢ F and
2. forany 2z € F,2€Qor 2zt €0.
Proposition 1.27. Let O be a valuation ring of the function field F/K. Then

1. O is local Ting, i.e. O has a unique mazimal ideal P = O\O*, where O is

the group of units of O.
2. For0#£z€F,zePsatgO.
Proof. See [16, Theorem 1.1.5] O

Theorem 1.28. Let O be a valuation ring of the function field F/K and P be its

unique maximal ideal. Then

1. P s a principal ideal.

10



2. If P =tO then any 0 # z € F has a unique representation of the form z = t"u

for some n € Z, u € O*.
Proof. See [16, Theorem 1.1.6] O

Definition 1.29. A place P of the function field F// K is the maximal ideal of some
valuation ring O of F'/K. An element ¢ € P such that P = tO is called a local

parameter.

We denote the valuation ring containing the place P by Op. The set of places
of F/K is denoted by Pg. It can be shown that Pr is a non-empty set, in fact, Pg
is an infinite set, i.e. any function field F'/K has has infinitely many places (see [16,

Corollary 1.1.19] and [16, Corollary 1.3.2]).

Definition 1.30. A discrete valuation of F//K is a function v : F' «— Z U {oco} with

the following properties :
1. v(z) =00 & 2 =0.
2. v(zy) =v(z) +v(y) for any x,y € F.
3. v(x+y) > min {v(x),v(y)} for any z,y € F.
4. There exist an element z € F' with v(z) = 1.
5. v(a) =0 for any 0 # a € K.
Property (3) is called The Triangle Inequality.

Lemma 1.31. (Strict Triangle Inequality) Let v be a discrete valuation of F/K
and x,y € F with v(z) # v(y). Then v(x 4+ y) = min{v(z),v(y)}.

Proof. See [16, Lemma 1.1.10]. O

To any place P of F//K, we can associate a function vp : F' — ZU{oo} as follows
. let t be a local parameter of P. For any 0 # z € F, write z = t"u for some n € Z
and v € O3. Then define vp(2) to be n. If z = 0, then we set vp(0) = co. It can
be shown that vp is independent of the choice of the local parameter ¢ and it is a

discrete valuation of F//K.

11



Theorem 1.32. 1. Let P be a place of F/K, and vp be the corresponding discrete

valuation. Then

Op ={z € F|vp(z) > 0}
P ={z¢€ F|vp(z) >0}

Op ={z € F|lvp(z) =0}
An element t € F is a local parameter of P if and only if vp(t) = 1.

2. Let v be discrete valuation of F/K. Then O = {z € F| v(z) > 0} is a
valuation ring of F/K with the associated place P = {z € F| v(z) > 0}

Proof. See [16, Theorem 1.1.12]. O

Since P is a maximal ideal in Op, Op/P is a field which is denoted by Fp. Fp
is called the residue class field of P. When z € Op, we denote z+ P in Fp by z(P).
If 2 ¢ Op, then z(P) is defined to be oo ( note that the symbol oo is used in a

different sense here, compared to Definition 1.30). The map

z:{F = FrUtoo} (1.9)

z —  z(P).

is called the residue class map with respect to P. Note that K , and K, are embedded
into Fp under this map, since K N P = {0}. Hence, we can view Fp/K as a field

extension.
Definition 1.33. For P € Pp, define the degree of P as degP = [Fp : K]

It can be shown that degP is a finite number. Hence, one knows why K is a

finite extension of K as K C K C Fp and degP = [Fp : K] < co.

Remark 1.34. Degree one places of a function field F/K are of special interest.
They are called the rational places of F/K. Note that if F/K has a rational place
then K = K, i.e. the full constant field of F/K is K. Furthermore, the residue

class map with respect to a rational place takes values in K U {oo}. In particular,

12



if K is algebraically closed field so that all places of F/K are of degree 1, then one

can view elements of F' as functions as follows

P —  z(P).
Note that, this is the case when K = C for instance. This is why we call F/K a

function field and elements a function.

Definition 1.35. Let z € F' and P € Pr. P is a zero of z if vp(z) > 0 and P
is a pole of z if vp(2) < 0. If vp(2z) = m > 0, P is called a zero of order m; if

vp(z) = —m < 0, P is a pole of order m.

Theorem 1.36. Let F)/K be a function field, z € F be transcendental over K. Then
z has at least one zero and one pole. For any z € F', the number of zeroes and poles

18 finite.
Proof. See [16, Corollary 1.1.19 and Corollary 1.3.4] m

The simplest of all function fields is K(z)/K, the rational function field. We
know investigate its places (or equivalently valuation rings or discrete valuations).

Given an arbitrary monic, irreducible polynomial p(z) € K|[z] consider the val-

_ =)
O = {gm

of K(z)/K with the maximal ideal

_ [ f@)
e = {gm

uation ring,

f(@).9(x) € Klal, p(a) xgm)} (1.10)

F(@),9(x) € Klal, p(@)|f(@), ple) xg@s)} (1.11)

In particular case when p(z) is linear, i.e. p(x) = x — a with « € K, we abbreviate

and write

P, =P _,€ PK(CE)‘ (1.12)

There is another valuation ring of K(z)/K

F(o),g() € Klal, deg(f(2)) < deg(gu))} (1.13)
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with the maximal ideal

) 9(o) € Klal deg(f(o) < deglala) ). (110
P, is called the infinite place of K(z)/K.
Proposition 1.37. Let F/K(x) be the rational function field.

1. Let P = Py € Py be the place defined by Equation (1.11), where p(x) €
K|[x] is an irreducible polynomial. Then p(x) is local parameter for P, and the
corresponding discrete valuation vp can be described as follows: if z € K(xz)\0
is written in the form z = p(z)" - (f(x)/g(x)) with n € Z and f(x) fg(z),
p(x) fg(x), then vp(x) = n. The residue class field K(x)p = Op/P is isomor-
phic to K[x]/(p(x)); an isomorphism is give by

Klal/(p(x))  — Klalp,
f(x) mod p(x) —  f(x)(P).

Consequently, degP = deg(p(x)).

2. In special case p(z) = v — a with a € K, the degree of P = P, is one, and

the residue class map is given by
2(P) = z(«) for z € K(x),

where z(«) is defined as follows: write z = f(x)/g(x) with relatively prime

polynomials f(x),g(x) € K[z]. Then

fl@)/gla) if gla)#0,
0.

z(a) =

00 if g(a)

3. Finally, P = Py, be the infinite place of K(x)/K defined by FEquation (1.13).
Then degP = 1. A local parameter for Py ist = 1/x. The corresponding

discrete valuation v, 1S given by
Voo (f () /g(x)) = deg(g(x)) — deg(f(x)),

14



where f(x),g(z) € K(x). The residue class map corresponding to Pu, is de-

termined by z(Px) = z(00) for z € K[z], where z(c0) is defined as usual:

if
apx" + - 4ag .
= th mbm 0,
= ey g Vith ansb #

then
an /by if n=m,

z(00) = 0 if n<m.

oo if n>m.

4. K is the full constant field of K(z)/K.
Proof. See [16, Theorem 1.2.2.] O

From here on F/K will always denote an algebraic function field of one variable

such that K is the full constant field of F.

Definition 1.38. The (additively written) free abelian group D, which is generated
by the places of F'/K is called the divisor group of F/K. The elements of D are
called divisors of F/K. In other words a divisor is a formal sum

D= Z np,where np € Z, and np = 0 for almost all P € Pp.
PePp

For Q) € Pr and D =) npP € Dy we define vg(D) := ng.
The set Supp(D) :={P € Pr ; n, # 0} is called the support of D € Dp.

Definition 1.39. The degree of a divisor is defined by

deg(D) := Z vp(D) - degP. (1.15)

PePp

A partial ordering on D is given by
D <Dy Up(Dl) < ?}P(DQ) for all P € Pr.

A divisor D € Dp which satisfies D > 0 is called a positive (effective) divisor. It
is easy see that for two divisors E and D with £ > D, we have deg(E) > deg(D).
Since any x € F' has finitely many zeroes or poles (Theorem (1.36)) the following

definition makes sense.
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Definition 1.40. Let 0 # = € F and denote by Z ( respectively V) the set of zeros
(respectively poles) of x in Pr. Then define

()0 := Z vp(z)P : the zero divisor ofz,

PeZ
() oo 1= Z —vp(x)P : the pole divisor of x,
pPez
() :=(x)o — (¥)oo : the principal divisor of .
Remark 1.41. The zero (respectively pole) divisor of any 0 # x € is an effective
divisor. One can represent the principal divisor of x as
()= > wvp(x)P.
PePp

Non-zero elements of K are characterized by
reK & (z)=0.

Theorem 1.42. Any principal divisor has degree 0. More precisely, for x € F\K,
we have

deg(x)o = deg(x)y = [F: K(x)] < o0.
Proof. See [16, Theorem 1.4.11] O

Note that the above Theorem essentially says that there are as many zeros as
poles for any z € F' provided that they are counted properly, i.e. taking the orders
of zeros and poles into account.

Let F/K be a function field and P be a degree 1 place of F//K with local

parameter ¢. Then for f € F' we can find an integer v such that vp(f) > v. Hence

o (ti) — up(f) — vp(t") > 0.

Put



Then f/t, — a, has zero at Pp, which implies that

vp (tiv—av) >1orvp(f—1t'a,) >v+1.

Then
vp (%) =vp(f —a,t’) —vp(t’) >0
Let
s = (ft_—flt) (P) € Fp = K.
Then

f B avtv f - CLvtv
( ol tyi ) (P) = T (P) = apt1(P) = a1 — appr = 0.

. p— v . .
Hence, P is a zero of (f tv‘i“f — av+1). This, again, means that

f—a,t’
vp (th —Qyy1 | 21

or equivalently

vp(f — apt” — apyit') > v+ 2.

Continuing this way one gets a sequence (a,)5°, of elements of K such that

Up (f—f:ant") >m+1

for all m > v.

We summarize this construction in the formal expansion

oo
f= Z a,t".
n=v

This is called the local expansion of f at P with respect to t. One can show that

this representation of f is unique, i.e. a;’s are uniquely determined (see [16, Thereom

IV.2.6)).

Example 1.43. Consider the rational function field Fy(z)/F. The rational places
are Py, Py and P,,, which are zeroes of x,x + 1 and 1/x, respectively. Denote the

corresponding discrete valuations by vy, v; and va,. Let t = 2?+2 = x(z+1) € Fy(z).
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Then t is a local parameter at F, since v(t) = 1. Note that v,(t) = 1, v(t) = —2
and vg(t) = 0 for any @ € Ppya) — {Fo, P1, P }. Hence, the principal divisor of t

Now we look at the local expansion of some elements of Fy(z)/Fy at Py with respect

to the local parameter t.

Lo=@+2)+ @ +2)+ (@B +2) + (@20 +28)+... =t+2+t*+ 5+ ...
=0 m=1
2. 2=+ 2) + (@B +aH)+ (@ + %)+ . =2+ P+

— i 2",
m=1

3.
T 1 1T, 1gagm = om g
= = — = — t = t .
4. Using (3),
2 00
T om+l_g
= t .
1) -2
D.
2} = (2P a)2? 4ot =ttt =t = Z t2m+z 2 = Z t2m+1+z 2
m=1 m=1 m=1 m=1

where the expansion of z* at Py with respect to ¢ obtained in an obvious way.

Theorem 1.44. Let P € Pr be a rational place and t € F be a local parameter at
P. Then any element z € F has a unique representation of the form
z:Zaiti withn € Z and a; € K. (1.16)

i=n

Furthermore we have

vp(z) = vp (Z aiti> = min{i| a; # 0}.

Proof. See [16, Theorem 1V.2.6] O

18



CHAPTER 2

POLYNOMIAL DEGREE AND LINEAR COMPLEXITY

In this chapter we will compare the complexities of the polynomial representation
and the periodic sequence representation of a function over a finite field in the
complexity measures degree and linear complexity, based on the joint work of A.

Winterhof and W. Meidel [10].

2.1 The Main Result

Here we fix an ordering F, = {&o,&1,...,&-1} of the elements of the finite field F,
where ¢ is a prime power. Let o be a g-periodic sequence of elements of F,. We can

identify each ¢ by a polynomial f € F,[x] in the light of the following lemma.

Lemma 2.1. Every g-periodic sequence o of elements of F, can be represented by
a uniquely determined polynomial f(x) € F,[x] of degree at most ¢ — 1. Conversely,
every polynomial f(x) € F,lx] of degree at most ¢ — 1 defines a unique g-periodic

sequence over F,. In other words, we have
o= f(&)eF, for 0<n<q and op4qy =0, for n>0. (2.1)

Proof. Apply the Lagrange Interpolation formula (Theorem 1.2) for f(&) = oy,
where ¢ = 0,1,...,¢—1. This results in unique f € F,[z]. Conversely,let f,g € F[z]
be any to polynomials of degree < g—1. Assume that produce same sequence. That
is f(§) = g(§) for every £ € F,. On the other hand the Lagrange Interpolation For-
mula produce a unique polynomial from inputs, which contradicts our assumptions.

Therefore, every f € F,[x] produces a unique sequence. ]

When ¢ = p where p is a prime we have a simple relation between the linear
complexity of o and the degree of its representing polynomial f € F,[z], which is

given by next theorem.
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Theorem 2.2. If q=p is a prime, F, = {0,1,...,p — 1} and deg(f) < p then we
have

L, =deg(f)+ 1. (2.2)

Proof. Let deg(f) = k. We define gy (), ..., grt1(x) € F,[x] such that

gi(x) = [z +1) = f(x) = deg(g1) = deg(f) =1

92(7) = g1(z + 1) — g1(x) = deg(g2) = deg(g1) — 1

9(r) = gr—1(x + 1) — gr—1(x) = deg(gx) = deg(gr-1) — 1

gr+1 = 0.

Using the functions we get

0= grt1 = gr(n+1) —gr(n)

= g1 +2) —gr1(n+1) = gp—1(n + 1) — gr—1(n)

= iii(—l)j (2 ; 1) ge—i(n + ).

7=0
When we put i = k — 1 we get a relation between ;s of order k + 1 = deg(f) + 1.

The smallest degree comes from Lemma 2.1. O

‘A

When g = p", r > 0, power of a prime p the situation is different. For example we
consider the case Fy = Fy(p) = {0, 1, p, p+ 1} where p is the zero of the polynomial
g(zr) = 2> + z+ 1 € Fyfz]. Let o be the sequence o = (0,p + 1,0,p + 1,0,...)
defined by the polynomial f(z) = px + 2% € Fy[z]. This sequence satisfies the linear
recurrence relation o,,_» = o, for n > 2. And this is the linear relation of the
smallest order. Therefore we have L, = deg(f). On the other hand the sequence
o=(0,1,p,p+ 1,0,...) defined by the polynomial f(z) = x does not satisfy any
linear recurrence relation of order < 2 and we have L, > 3 = deg(f) + 2. Indeed

the sequence o satisfies relation o, = 0,1 + 0,2 + 0,_3 for n > 3, implying

L, =deg(f)+ 2.
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For the rest of the this chapter we study the relation between L, and deg(f)
in the case ¢ = p". We consider a fixed basis {1, ..., 5} of F, over F,. Then for
0 <n < g, the element ; € F, is defined by

o= +nafe+ ...+ 0.5, (2.3)

where

n=mny+np+...+np with0<ny<qforl<k<r.

It is clear that F, = {&o, &1, ..., &-1}-
Let us define the polynomial S%(z) € F,[z] by

q—1

Si(x) = Zanx“. (2.4)

n=0

Lemma 2.3. The linear complexity of L, of o is given by
L, = q—deg(ged(z? —1,5%x))) = q — v, (2.5)

where v denotes the multiplicity of 1 as zero of S%(x) and v is defined to be 0 if
s?(1) # 0.

Proof. Let r(z) € F,x] and defined as r(x) := (2™ — 1)/5%(z). By Proposition 1.20

we can write the generating function o(z) of o as

—mwere x)=(x" — cd(x"™ — U x
o(x) = @) here f(x) = (z" —1)/ged(z" —1,5%(x)).

Since f(1) =1 and ged(f(z),r(z)) = 1 then by Proposition 1.21 implies f(x) is the
minimal polynomial of o. Since the linear complexity of sequence is defined to the

degree of the its minimal polynomial then the result follows. m

Remark 2.4. Using the Lemma 2.3 one can easily verify the following
L,=q ifandonlyif S1)#0.
Lemma 2.5. Let f be in the form

flz) = Z ;. (2.6)
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Then we have

Sq(l) = —04—1

and in particular

Lo=qif andonlyif deg(f)=q— 1. (2.7)

Proof. By the construction of o, we have

SU) =) o= f(&).
n=0 £ery

Using the definition of f, we get
q—1
DO =) ¢,
§EF, gery j=0
and by changing the order of summation, we have
q—1 q—1
ISP ICES S Y
j=0 ¢€F, j=0  €¢€F,

Proposition 1.3 yields that when 7 = ¢ — 1 inner sum is equal to -1 or otherwise it

is zero. With the help of this, we have

qg—1

E i— _
g Q; § = —ay1.
=0 ¢cF,

Now if L, = ¢ then v = 0 that is S9(1) # 0 and we found that S9(1) = —a,_; this
implies deg(f) = ¢ — 1. Conversely, if deg(f) = ¢ — 1 then S?(1) # 0. By Remark
2.4 we have L, = ¢, which completes the proof. n

Theorem 2.6. (Lucas Congruence) For every prime p,

()= G () 25

where base p expansion of n and k are n = ng+np+ ... +n,p", n; < p—1, and

k=ko+kip+...+kp", ki <p—1 respectively.

Proof. See [9]. O
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Remark 2.7. To estimate the multiplicity v of 1 we will use the following expression,

q—1
S9(z)®) = (n) o, (2.9)
evaluated at z=1.

Let {01,...,0,} be the dual basis of the basis {f1,...,5,.}, i.e.

0, for i#7],
Tr(0:3;) = o
1 for ©1=7.
Using the trace map and equation (2.3) we can calculate n;’s, that is

n; = Tr(6;&,), fori=1,... r, (2.10)

therefore, for 0 < n < ¢ we have
n=Y Tr(5&)p" " (2.11)
k=1

Applying Lucas’s Congruence (Theorem 2.6) to the equation (2.11), where
t=t+...+t,p 1 0<t <p, we get

(;z) _ (Tr(fllfn)) (Tr(i@)) mod p. 2.12)

Now we can calculate S7(1)®

thus we get get

s = 3 (M) (M) g 213)

¢eF, tl tr

We will use equation (2.13) in our estimation of S9(1)®.

23



Proposition 2.8. Let po(x),p1(z),...,ps(x) € Fylz] and be defined as po(z) = 1

and
1
pe(x) :Ea:(:c—l)-~(a:—t—1) € Flz], 1<t <s<p.
Then po(x),...,ps(x) forms a basis of the linear space of polynomials of degree at
most s.

Proof. Let ay, ...,as € Fj, such that
appo(x) + arpr(z) + ... + asps(z) = 0. (2.14)

Note that deg(ps) > deg(ps—1) > -+ > deg(po) with deg(p;(z)) =i for 0 < i < s.
Expanding equation (2.14) one has a; as the coefficient p,(x)/s!, implying as = 0.

Similarly the rest of a;’s, 0 < i < s — 1 becomes 0, which proves the assertion. [

Lemma 2.9. let f(z) = Z;’;g a;at € Fylz]. If Ly, = q—s with 0 < s < p then some

coefficients ag_1_pmi_pma_..._pms of f(x) with 0 < my,...,ms <1 are non-zero

Proof. For 0 <t < s we have S7(1)®) = 0 and S(1)®) # 1 by Lemma 2.3. By the

Proposition 2.8 the polynomials pg(x) and

1
pt(x)zax(x—l)---(x—t—l)EFq[az], 1<t<s<p

form a basis of the linear space of the polynomials of degree at most s, then one can

write 2°/s! as a linear combination of the polynomials py(z), ..., ps(z), namely
x® i )
o= Zoctpt(x) with ¢, = 1. (2.15)
t=

Using our estimation on S7(1)® (Equation (2.13)), where t = s, we have

S0 = 3 (Tf(51§)) (Triirf))f(g).

S
geky !

Since s < p then s = s; and s; = 0 for 1 < i < r. So we can write S9(1)®) as

s11)@ = 3 (Tr<515)) 1), (2.16)

S
§EFy !
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Using the properties of p;(z) we have

- Z ps(Tr(6:€)) f(£).

¢eF,

We can write the equation (2.16) by calculating ps(z) from the equation (2.15), that
is .
Tr(d; -
SOCEDS (& > (T (w)) (e)
(EF, t=

our estimation on S9(1)® (equation (2.13)) implies

Sq<1)(5) — Z (T( 5§ ZC S9(1 (t

§EFy

In the beginning of the proof we stated that Sq(l)(t) =0for1<t<s—1, then we

have

go(1) = Y2 O

s!
€€F,

In this equation we replace f by its expression

1m0 = 130, S (mae)e

j=0  ¢€F,

and by writing the trace function explicitly we get

. 1 q—2 r—1 . $
s - 1503 (So0) ¢
j=0  &€F, \m=0
Expanding the power s, we have
1 r—1 q—2
Sq(l)(s) = Z gp AP Zaj Z Rt Ay
"mi,...,ms=0 Jj=0 EEly

using Proposition 1.3 on the inner sum we get

r—1

S9(1)® = —= Z S AP gy pmey 0 (2.17)

which proves the lemma. O
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Lemma 2.10. Let 0 < s <p and f(z) = Y - > a1l € Fylx] with
Qgei—(pmi4..4pms) 7 0, for some 0 <m; <r, 1 <1< s,

Then
Ly > q— sq/p.

Proof. Assume that L, < ¢ — sq/p. By Lemma 2.3 we have S9(1)®) =0 for 0 < ¢ <
sq/p-

Now as in the proof of pervious lemma we will calculate S9(1)®). By equation
(2.13), where t = t; + ... +t,p" !t with 0 < t; < p for 0 < i < r, we have

Tr(0q Tr (0,
S0 =3 (M) (M) e
using properties of p;(x) we rewrite as
= i (Te(81€)) -+ pr, (Tr(5,6)) £(£). (2.18)
¢eF,

Now for each p;,, 1 < i < r, write z' /t;! as a linear combination of p;’s as in the

previous lemma, that is

Tr(6:£)"
t;!

t;

= thpt(Tr(5i§)), with ¢, =1,

=0
calculating p, (Tr(9,€))’s we have
ti—1

p(Te(6)) = OIS - Y en(T6

using py, (Tr(6;€))’s we rewrite Equation (2.18) as
Tr(5:8)" = T(66)"
SHOREDY (T = e T50) | - |y = D em(T5) | £(©)
€eF, =0 t=0
by distributing all parenthesis and then multiplying by f then using using properties
of p;(x) and our estimate on S9(1)®) we get

5910 = Z [(%)(%)]f@__

§EFy

<iCtSq(1)(t)> | fE) ==
(Z cts%l)(“) (ictsm)“))] (9, (2.19)
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by the assumption that we made in the beginning of lemma all S(1)®)’s are zero,
whose appear as a term element in the above equation. Then we have
Tr(5:6)" Tr(6,8)"
() — ZATIS) ) L 2SS —
SOEEDY ( I 0 f& =0 (2.20)
gely
For every a € Fj, we have a = 22:1 a0, where o, € F),. Now we want to calculate

> ek, Tr(ag)’ f(§). By linearity of the trace map (Theorem 1.5) we have,

PRVCINIGEDY (Z ay Tr(64€) ) (&),

£EF, (eF; \k=

expanding the inner sum, we have,

Z Tr(66)° f Z Z gy - e, Tr (0, €) - - - Tr(01,6) f(§) =

EEFy EEF k... ks=1

Z ey Y Tr(6r,€) - Te(0,6) £ (£) (2.21)

Now we define a polynomlal

= > Tr(€x) f(€) (2.22)

geky
By equation (2.20) and 1 < k; < r, Hs(x) has ¢ zeroes, namely all & € F,. Since
deg(Hy(x)) < sq/p < q we have Hy(z) = 0. On the other hand analogously to the

proof of previous lemma we get

_ P4 +p™Ts+g pm1+ +pm5
= Z Zaa PR

..... =0 j=0 EEFy
r—1

— pml_i,_.“_i'_pms
= E : Qg—1—(p™14...4p7s)T )

mi,...,ms=0

qg—1
= — E k?q_l_jOéjiL'] =0
J=0
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with
0 if g1+ ...+ F S,
s (s P S -
(jl)(jgl)“.( lj,r 1) Z,f jl+-..+]r—57
where j = j; + ...+ j,p" "t with 0 < j; < p for 0 < i < r. Since k; # 0 if and only
if j1 —+ ... +jr = S wWe get Qg—1—(p™1+...4pms) = 0 for all 0 < Mi,...,Mg <71 which

contradicts our assumption. Then result follows. O

Theorem 2.11. Let f(z) € F,[z] be a polynomial of degree at most g — 1 and o be
a sequence defined by (2.1) and (2.3). Then we have

(deg(f(z) +1+p—q)L < L, < (deg(f(x) + 1)§ +q—p

kKl
p

or equivalently,
p p
(Lo +p— Q)g — 1 <deg(f(x)) < Lo +a-p—1.

Proof. If the linear complexity L, < q — p then the upper bound is satisfied. Then
we may suppose that

L, <qg—s, with0<s<p.

By calculating the smallest possible degree of f by Lemma 2.9, that is m;’s are equal

to r — 1, we have
deg(f) >q—1-— sg,
b
and then we can calculate
5q
q—l—? < deg(f)

pq —sq < (deg(f) +1)p
p

p—s+q—q< (deg(f)+1)5
L, < <deg<f)+1)§+q—s.

If deg(f) < g — 1 — p the lower bound is satisfied. Then we may suppose that

deg(f)=q—1—s,0<s<p.
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By Lemma 2.10 we have

Lan—Sg
p

and then

Ly > (deg(f) +1+p— q>§.

To prove the second inequality we will use the first one. To prove the upper

bound we will calculate

L, < (deg(f) + 1>§ +q—p

Lo = p-+q < (deg(f) + 1)}

q
(Lo —P+CI)5 <deg(f)+1
q
(Lo —p+ Q)]; — 1 < deg(f)
to prove the upper bound we calculate

(deg(f) +1+p—q)= <L,

q
p
(deg(f) +1+p—q) < L,

23

p
feg(f) < Lag +q—p—1,

which prove the theorem. O

2.2 Consequences

Corollary 2.12. If deg(f) > q — 2p+ 1 then we have

L,>2

p
Proof. Using the upper bound for f(x), which is proved in previous theorem ( The-

orem 2.11), we have

q—2p+1§deg(f)§La§+q—p—1

2q —qp
P

< L,
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Example 2.13. Consider Fy = F3(a) with a? +1 = 0 and the basis {3, 52} =
{1,a}. The sequence o defined by the polynomial f(z) = 2 + z satisfies o,, =

—0p_1 — Op_2, n > 2, and we have L, = 2.
Corollary 2.14. L, = q¢ — sq/p with 0 < s < 1 then we have
q
Lo = (deg(f) +1+p— Q)]—).

Proof. For s = 0 the result equivalent to Remark 2.4. For s = 1 Remark 2.4 yields
that deg(f) < q—2. Since the Equation (2.20) is valid for 0 < t < ¢, from Equation
(2.20) and Equation (2.20) we know that

r—1
Hl(x) = — Z Oéq_l_pml'pm
m=0

has ¢/p distinct zeroes, namely all the elements of the form o = >, 6% with
a, = 0. Since deg(f) < q/p all the zeroes have multiplicity 1. Hence the first

derivative of H;(x) is not zero polynomial, i.e.

r—1
Hl(x)(l) - Z O‘Q—l—p"‘pmxpm_l =—a;2#0
m=0
and this simply imply deg(f) > g — 2, therefore deg(f) = ¢ — 1. Now we have

deg(f(fv))zq—ZzLa%qu—p—l.

Corollary 2.15. If deg(f) = q—1— sq/p with 0 < s < p then we have

Lo = (deg(f) + 1)§ +q—p

Proof. For s = 0 the result equivalent to Remark 2.4. For s > 1 the assumption
L, = q— s" with 0 < s < p would imply deg(f) > q¢—1—s'q/p > q— 1 — sq/p,
as in the proof of Theorem 2.11 and by Lemma 2.9. Applying the bounds on the
Theorem 2.11 to deg(f) we have L, < g — s. By equation (2.17) with degree of f we
have

S 1 S
S = ] 0/ tg1—sqsp # 0.
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The two corollaries above show that the upper and lower bounds on the Theorem

2.11 are sharp.
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CHAPTER 3

BOUNDS FOR LINEAR COMPLEXITY

3.1 The Power Generator

In this section we will deal with the linear complexity of the Power Generator. The
exposition in this section follows the work of Igor Shparlinski ( see [15]).
Let v,m and e be integers with ged(v,m) = 1. Then one can define a sequence

o by the recurrence relation
opn=0._ 1 (modm), 0<o,<m-1,n=1,2 ..., (3.1)
with the initial value og = v.

Definition 3.1. The sequence defined by equation (3.1) is called the power gen-
erator. In the special cases, ged(e, o(m)) = 1, where p(m) is the Euler function,
and e = 2, this sequence is called the RSA generator and as the Blum-Blum-Shub

generator (see [3]), respectively.
m is called a Blum integer if m = pl, for some distinct primes p, [.

Lemma 3.2. The sequence given by (3.1) is ultimately periodic with some period

t < p(p(m)). In particular, if ged(e, o(m)) = 1 then the sequence is purely periodic.

Proof. Eventually, we will have o,, = o), (mod m) for some n, k since all the powers

of v cannot have different values to modulo m. Then we have

v = v (mod m) =

e" = v (mod p(m)) =

n < k (mod (p(m)))

then the sequence will be ultimately periodic with period ¢ < @(p(m))). If
ged(e, o(m)) = 1 then we have a generator of the multiplicative group Zg,), that
e have order ¢(m) and so o has zero length pre-period this implies sequence is

periodic. 0
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Throughout this section we assume that the sequence given by (3.1) is purely
periodic, that is 0, = 0,44 beginning with n = 0, otherwise one can consider a shift

of the original sequence.

Lemma 3.3. Let ¢ > 2 and g be integers, let T be the largest positive integer for
which the powers ¢°, x = 1,...,7 are distinct modulo q. Then for any H < 7 and

1 < h <gq, there exists an integer a, 0 < a < q — 1, such that the congruence

g=a+y(modq), 0<x<H-1,0<y<h-1

has
T,(H,h) > 2
q
solutions (z,y).
Proof. Proof can be found in [12]. O

Lemma 3.4. Let o be a homogeneous linear recurrence sequence over a finite field
F with linear complexity L,. Then for anyT > L,+1 pairwise distinct non negative

integers ji, ..., Jjr there exist c1,...,cr € F', not all are equal to zero, such that

T
E Ci0n+j¢:07 n:1,2,....
=1

Proof. 1f any two of the o,,j,’s are equal then the results follows due to periodicity.
So we assume that all 0, ;,’s are distinct.
Since o has linear complexity L, then it satisfies a linear recurrence relation of order

Ly, i.e.
Lo

0="> bmOk-m, fork < L.

m=0

Note that using this relation one can write as 0, 7 > L, as a linear combination of
the first L, terms. That is

Ls—1

On+tj; = E Am;, Ok—m-

m=0
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Now we want to look at

T
0= E CiOn+j;

—_

T Ls—1

G E am]-i Ok—m

1 m=0

-1 T
Ohem E Cillp,, -
i=1

m=0

=

F||1

e

o

Since {0y, ...,or_1} are linearly independent ( Theorem 1.13), the inner sums are

equal to zero. Since we have T' > L, the system

T
E Cilln;, = 0
i=1

form=0,1,..., L, — 1, has a non-trivial solution, which proves the lemma. ]

Theorem 3.5. Let m = p be a prime. Assume that the sequence o, given by (3.1)
with m = p, is purely periodic with period t. Then, for the linear complexity L, of

this sequence the bound

(3.2)
holds.

Proof. Let T be the largest positive integer for which the powers e* forx =1,..., 7,

are pairwise distinct modulo p — 1. Since the sequence can also be written as
o= (v,ve,veQ,veS, ...,v¢",...) the number of distinct powers of e is less then or
equal to the period of the sequence, i.e. 7 > t. From Lemma 3.3 there exists

a, 0 <a < p—1, such that the number of solutions of 7" of the congruence
e"=a+y(modp—1),0<z<7,0<y<t—1

satisfies

t 2
7> >

~p-1 7 p-1
Let (j1,k1),- .., (jr, k) be the corresponding solutions.

Now assume that L, < T — 1. Since

_ e+ eV . _a+k; _ .
Opyj, =0° Pi=0r =op ™ (modp), n=1,2,..., i=1,....T,
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a+k;

by using Lemma 3.4 on of

(where L, < T') we have integers cy, ..., cr, not all
zero modulo p, such that

T

T
Zcmﬁf’“ = J“Zcmﬁi =0 (modp), n=1,2,....
i=1

i=1
on Z 0 (mod p) for n = 1,2, ... since v, the initial value, is not zero. Then we can
conclude that the non zero polynomial

@) = 3 et

=1

has t distinct zeroes, namely u,, n = 1,...,t modulo p, which is impossible since
deg(f) <max{k; | 1 <i<T}<t-—1.
Hence our assumption is false. So L, > T. O]

Theorem 3.6. Let m = pl, where p and | are two distinct primes. Assume that
the sequence o, given by (3.1), is purely periodic with period t. Then for the linear

complexity L, of this sequence the bound
L, > to(m) =12 (3.4)
holds.

Proof. Let t, be the period of the sequence o modulo p and let ¢; be the period of
the sequence o modulo . We have the inequality ¢ < t,¢;. Therefore
g e
(p—D=1) ~ @(m)

Without loss of generality we may assume that

2
tp

>t —1/2,
p_1_<Mm)

Using the fact that L, is not smaller than the linear complexity modulo p from

previous theorem we derive the desired result. O
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3.2 The Self-Shrinking Generator

In 1994, Meier and Staffbelbach proposed the “self-shrinking generator” ([11]), a
stream cipher based on irregular decimation of the output of a maximal periodic
sequence.

Let (s,) = (S0, $1,...) be the output of a maximal periodic sequence of period
2" — 1. At time k, consider the pairs (Sox, Sox11) of the terms of (s,). If (sg) = 1,
then the next term (sgx41) is the output of the self-shrinking generator. If (sq9x) = 0,
no term is output.

One can define the self-shrinking generator in a different way, for all non-negative
integers 7 let 7(7) be the unique non-negative integers with the property that s.; =1
and that there are precisely ¢+ 1 ones in the sequence sg, s, . .., S2,(;). Then output
of the self-shrinking generator is the binary sequence (2) = (S27(0)+1, S2r(1)41; - - -)-

To understand better we look the following example, suppose that (s,,)
100000100001100010100111101000111001001011011101100110101011111 ...

is a maximal periodic sequence of period 26 — 1. Then the self-shrinking generator

bases on this maximal periodic sequence will be the output sequence
(z) = 0000010010011000011111100101111 . ..

of period 2°.

Meier and Staffbelbach showed that the linear complexity L.y of (2) is always
such that 2l7/21-1 < Ly < 2" 1 —1. Meier and Staffbelbach also remarked that, in
their experiments, the linear complexity of (z) never exceeds 2"~! — (n —2). In this
section we prove that the experiments of Meier and Staffbelbach is correct and this
is the work of Simon R. Blackburn (see [2]). Moreover, the expected value of the
linear complexity of randomly chosen binary sequence of period 27! is greater than
2=t — 1 (see [14, Proposition 4.6]). Hence the output of a self-shrinking generator
exhibits non-random behavior with respect to linear complexity.

If o is a sequence of period dividing 27! over a finite field I of characteristic 2,

Then (22" 4+ 1) = (z+ 1)*" is a characteristic polynomial for o. Moreover, since
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the minimal polynomial m is the generator of the ideal of characteristic polynomials
of o then m = (z+1)L, 0 < L, < 2"~ where L, is the linear complexity of 0. And
also note that, L, < 2" ' — (n—2) if and only if (z 4 1)?" ~("=2 is a characteristic
polynomial for o. This condition is equivalent to the statement

2n—1_(n-2)

5 <2n—1 —i(n - 2))%6 .

1=0

for all non-negative integers e. Since (27171_1.(”_2)) is defined to be the zero for all ¢

such that 27! — (n — 2) < ¢ < 27!, we may rephrase this condition as
Y (27— (n—2)
> ( . )aiﬂ =0 (3.5)
i=0 !
for all non-negative integers e.
Lemma 3.7. Let o be a sequence of period dividing 2™ — 1 over a finite field F

of characteristic 2, where n is a fixed integer such that n > 3. Then o has linear

complexity L, < 2" 1 — (n — 2) if and only if

> oipe =0, (3.6)

for all non-negative integers e, where sum is taken over all integers
i€{0,1,...,2"71 — 1} such that the binary expansion of i contains a zero as digit

whenever the corresponding digits of n — 3 is a one.

Before the proof we look at the integers ¢, for example take n = 5 then i is in

the set {0,1,...,15}. Now we will compare this set and n — 3 = 2 in their binary
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representations.

¢ =0=0000 0010 = ¢t =1=0001 0010 =
2=0010 0010 3 =0011 0010
4 = 0100 0010 = 5 =0101 0010 =
6 = 0110 0010 7=0111 0010
8 = 1000 0010 * 9=1001 0010 =
10 = 1010 0010 11 = 1011 0010
12 = 1100 0010 =* 13 =1101 0010 =
14 = 1110 0010 15 =1111 0010,

so i ranges over {0,1,4,5,8,9,12,13}. Here we also note that, one can easily find
the sets by j is in the set if j A (n —3) =0, where A is the binary and operator.

With similar calculations, one can see that, ¢ ranges over the sets

{0,1,2,3},
{0,2,4,6},
{0,1,4,5,8,9,12,13},
{0,4,8,12,16,20, 24, 28},

when n = 3,4, 5 and 6 respectively.

Proof. (of Lemma 3.7) By the Equation (3.5), to prove the lemma it is sufficient

to prove that for all 7 € {0,1,...,2""! — 1}, we have (2"71_1.(”_2)) = 1 if and only if
the binary digits of ¢ are zero whenever the corresponding digits of n — 3 are one.

Now Lucas’s theorem states (see [1, Theorem 4.71])that for all by, by, ..., b,—2
and ¢, cq,...,ch—9 in {0, 1},

(Z;-:é bi2!

27;02 ;2!

Moreover, when n > 3, (2" ' —(n—2))+ (n—3) =2""1—1 = (111...111),, where

> = 1 if and only if ¢; < b; for all 7.

the result has n — 1 digits ( in binary representation). Since 2"~! —(n—2)isan—1
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digit binary integer then the least n — 1 significant binary digits of 2"~! — (n —2) are
the complement of the n —1 least significant binary digits of n — 3. Hence, whenever

n — 3 has a one in a digit then i has a zero in that digit. Hence lemma follows. [J

Let R be the ring Fyn[z] /(2% — 2). Every element of R may be written uniquely
in the form
2n—1
Z a;xt, where ag, ay, . .., am_1 € Fon. (3.7)
=0
Since all the elements 3 € Fya are roots of (22" —x), the evaluation f(3) of an element

f € R at point § € Fyn is well defined, so every f € R induces a function ¢ from
Fon — Fyn, and we say that f represents ¢. Indeed, every function ¢ : Fon — Fon is
represented by a unique element of R.

With the weight wt(i) of a positive integer ¢ we define the number of ones in
its binary representation. For example wt(5) = wt((101)2) = 2 and wt(63) =
wt((111111)5) = 6. Also ,this weight is called the Hamming weight. This weight wt
has some favorable properties, namely wt(i) = 0 if and only if i = 0 and wt(i + j) <
w(i) + wt(j) where i, j € Z.

For all non-negative integers k, let P, and P, C R be defined by

on_1
P, = {Z a;x' € R: a; = 0 for all i such that wt(i) > k} , (3.8)

=0

2n—1
P,;‘:{ZazxiePk: aon}. (3.9)

i=0
One can easily verify that /b, C P, C---C P, = P, =--- = R. And also we

note that P} consists of those elements of P, that represents functions that map 0

to 0. Now we want to investigate some properties of P, and P;.

Lemma 3.8. Let T : Fon — F5 be any Fy — linear function. Then T is represented

by an element in Py.

Proof. There exist ¢ € Fyn such that T'(z) = Tr(cx) for all x € Fyn by Theorem

1.18, where ¢ > 0. Then T is represented by the polynomial

2n71

—

n—

flx) = Fa? = Z a;x’,
i=0

<
Il
o
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where a; = 0 if wt(i) > 1. Hence f(x) is an element of P} O

Lemma 3.9. Let f € Py, and g € Py,. Then fg € Py 1y, If in addition f € P
then fg € P .4,

Proof. Let iy,ip € {0,1,...,2" — 1} be integers such that wt(i;) < k; and wt(iz) <
ko. Then in the ring R we have that
itz if i1+ 9 < 2™ and,

. c_on . . .
phte=2"h g g, > 2n,

L —
In the first case wt(iy + i2) < wt(iy1) + wt(iz) = ki + k2. In the second case, since
the binary digit corresponding to 2" in the binary representation of #; + is is one,
then we have wt(iy +io — 2" + 1) < wt(iy +i2 —2") + 1 = wit(iy +i2) — 1+ 1 <
wt(iy) + wt(is) = k1 + ka. So in either case we have that x4 € Py, 4,. Since the
product of two arbitrary polynomial f € Py, and g € Py, is a linear combinations
of the terms of the form 2122, we have the first result of the lemma holds.

The second statement of the lemma follows from the first statement together

with the fact that fg(0) = f(0)g(0) =0-g(0) = 0. O

Lemma 3.10. Let ¢ € Fyn be a primitive element. Let f € P;. Then there exists
an element g € Py, such that for all i € {0,1,...,2" — 2},

9(¢") = _F(&).

Proof. When k > n, P, = R and the Lagrange Interpolation Formula (Theorem

1.2) gives the solution. Now assume that k < n. We know the following identity

i i+l
: r—1
7=0
now by putting (", 1 < r < 2" — 2 instead of x, we get the following identity which

holds for all i € {0,1,... 272}

CT ir 1
Cr_lg _Cr_]_

14+ 4.+ ("=
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-1
—o arx” for some elements ag, ay, ..., a1 €

Suppose that f is in the form f = )"
Fyn. Since f € P} we have ap = 0 and k£ < n then asm_; = 0 too. Let g be the
polynomial defined by
2n—2 2n—2
_ S 1
g‘ (72‘“0—1’” 2T

Since g is formed by using the coefficients of f, which is in P} then g € Py (indeed
g € P}, since g(0) = 0 ). Moreover, for all i € {0,1,... 2" — 2} we have that

o oo 1
)= o (e - )

r=1

2n—2 i
=2 @) ()
r=1 7=0
i 2"-2

= Z Z ar(¢7)"

j=0 r=1
=> f(&).
J=0

Hence the lemma follows. O

Lemma 3.11. Let f € P}, where k <n. Then
> f@)=o. (3.10)
2€Fyn\{0}
Proof. Since f € P} then f(0) = 0. So we have
S ot =Y ) (3.11)
2€Fyn\{0} 2€Fpn

Since wt(2" — 1) = n and k < n then we can write f in the form

2" -2

f=Y aa (3.12)

r=1

for some elements a, € Fyn. By Lemma 1.3 we have

> 2" =0wherel <r < 2" -2 (3.13)

JIEFQTL
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Hence

as required.

Let n be a positive integer and let ( € Fyn be a primitive root. Let T': Fon — F5
be a non-zero Fy — linear map. We define a sequence o = (0g, 09, ..

2"~ with elements in Fy. by setting o; to be the (i + 1)st element z in the sequence

1,¢,¢?, ... having the property that T'(z) = 1.

To understand this construction let us look at the following example:

Example 3.12. Suppose n = 6, and let ¢ € Fy» be a primitive root of 2% + x + 1.
Let T be map taking 37 a;¢* to ag. The sequence 1,¢,¢?, ... has period 26 — 1

writing the field element Z?:o a;C* as the binary string asasasasaiag, the first 26 —1

elements of this sequence are (reading left to right):

000001
001100
010011
010001
001001
101111
001101

011111

The sequence o is then formed by removing all the terms = of the sequence such

000010
011000
100110
100010
010010
011101
011010

111110

000100
110000
001111
000111
100100
111010
110100

111111

001000
100011
011110
001110
001011
110111
101011

111101

42

010000
000101
111100
011100
010110
101101
010101

111001

100000
001010
111011
111000
101100
011001
101010

110001

000011
010100
110101
110011
011011
110010
010111

100001

000110
101000
101001
100101
110110
100111

101110

.) of period



that T'(x) = 0:
000001 000011 100011 000101 010011 001111 111011 110101
101001 010001 000111 110011 100101 001001 001011 011011

101111 011101 110111 101101 011001 100111 001101 101011

010101 010111 O11111 111111 111101 111001 110001 100001

Here we note that o has always period precisely 2" ! as it consists of 2"~ distinct

elements x € Fyn such that T'(x) = 1 written in some order.

Let define the kth clocking function Ky : Fon — Fy for all k € {0,1,...,n—2} by

kr(x) = (3.14)

1 if = o; where 2¥ divides 1,
0 otherwise,

where o is constructed as above via 7.

Lemma 3.13. x(¢") = 1 if and only if kx_1(¢*) = 1 and there are an even number

of ones in the sequence rj_1(1), kr_1(C°), ..., ke_1(CY).

Proof. If k,(¢*) = 1 then ¢! = o; such that 2*|i. Hence, xp_1(¢*) = 1 since
2811 28 | 4, where ¢* = 0;. Since 2 = 2. 2871 there are even number of ones
in the sequence rg_1(1), kr_1(C%), ..., Kp_1(C).

Conversely, since we have even number of ones in the sequence k;_1(1), ..., 1 (¢%)

then 2¥|i also and hence, x(¢%) = 1 as required. O
Lemma 3.14. kj, can be represented by an element f € Py,

Proof. We will show this assertion by induction on k. If £k = 0, then xy = T since,
Ko(z) = 1 only if x = o; ( and because 1 divides every number), result follows by
Lemma 3.8. Now suppose that £ > 0 and that x;_; may be represented by an
element fy 1 € P} ;. Let g € Pyx—1 be an element such that g(¢*) = Z;:o fro1(¢%)
for all i € {0,1,...,2% — 2}; such an element exist by Lemma 3.10. Now we define
fi = fee1(1+ g). By Lemma 3.9, f;, € P. Consider f,(¢") = fr_1(¢H)(1 + g(¢Y), if
fe-1(¢") = 0 then fi(¢") = 0 as required. If f 1(¢") = 1 then fx(¢) = 1 if there is
even number of ones in the sequence x;_1(1), kx_1(¢%), ..., rkr_1(¢*) by Lemma 3.13.

Moreover ki (0) = fr(0) = 0 hence f; represents ry. O
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Let D : 5. \{0} — Z /2" 'Z be defined by setting D({?) to be one less than the
number of elements z such that T'(z) = 1 in the sequence 1,¢,(?,...,¢?. Hence,
if ¢ = o, for some e € {0,1,...,2"7'} then D(¢") =e. For k € {0,1,...,n —2}
we define the kth digit function 6 : Fon\{0} — F3 to be the function mapping x
to the digit corresponding to 2* in the binary expansion of D(x). So if D(x) =
27;02 d;27 mod 2" where d; € {0,1} then 0x(z) = dj.

Lemma 3.15. The digit functions d;, can be expressed in terms of clocking functions
by ’
0k(C) =14 mr(¢)), (3.15)
5=0

where k € {0,1,...,n—2} and i € {0,1,...,2" —2}.

Proof. Note that the digit of D((?) corresponding to 2% differs from the correspond-
ing digit in D(¢*71) if and only if ¢! = o, where 2¥ divides e. Hence, by Lemma
3.10, there is an element h; € P,x that represents a function that agrees with d; on

Fan\{O}. =

Theorem 3.16. Let n be a positive integer, let ¢ € Fon be a primitive element and

let T': Fon — F5 be a non-zero Fy — linear map. Let o be the sequence over Fon of

period 271 defined above. Then L, < 2" 1 — (n — 2).

Proof. The theorem is trivial when n =1 or n = 2, so from now on we assume that
n > 3.

By Lemma 3.7, it is sufficient to show that for all j € {0,1,...,2"71 — 1} we
have that

Zgi-l-j =0, (3.16)

where sum is over all i € {0,1,...,2"7! — 1} such that the kth binary digit of i is
zero whenever the kth binary digit of n — 3 is one.

Firstly, we will show that it is sufficient to consider case j = 0 only. For this,
Let J € {0,1,...,2"7! — 1} be given. Let 3 € Fy be the (J + 1)st element z

in the sequence 1,(,¢?,... such that T(z) = 1. We define another linear map
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T’ : Fon — F5 to be composition of the map x +— Bz and the map T'. Define another
sequence o, = (0(,04,...) using the map 7" instead of map 7. The new sequence
is nothing but the rotated version of the original sequence ¢ in its period intervals.
This implies 0} = 0,4, for all non-negative integers i. Hence the Equation (3.16) in
the case j = 0 for (o7,) implies the equation (3.16) in the case j = J for o. Thus to

prove the theorem it is sufficient to establish the identity

» oi=0 (3.17)

where the sum is over all 7 € {0,1,...,2""! — 1} such that the kth binary digit of i
is zero whenever the kth binary digit of n — 3 is one.
We may rephrase this problem slightly, as follows. Let ¢ : Fon — F5n be the

function that

o(2) x if x occurs as a summand in equation (3.17)
€Tr) =

0 otherwise.

Then equation (3.17) is equivalent to asserting that

> dx)=0. (3.18)

z€Fyn \{0}
We claim that ¢ may be represented by an element in P ;. By Lemma 3.11, this
claim is sufficient to prove the identity (3.18). Now we prove this with the following
lines.
Define elements by, b, ...,b,—9 € {0,1} by n — 3 = Z?;OQ b;27 (here we note that
n —3 < 2" ! when n > 3, and so this definition makes sense). let p be the element

defined by
p=xfo[J(hs+1),

where the product is over those integers k such that 0 < &k < n — 2, b, = 1,
fo is the function that represent rg ( by lemma 3.14 )and A the function that
represents 0, (by lemma 3.15). Since z, fo € P; and hy + 1 € Py, we have that
p € b, S Pr , by Lemma 3.9. We claim that p represents the function ¢.
Clearly, p(0) = ¢(0) = 0. Let ¢* € Fyn. Now, since the polynomial fy and hy+1 take
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their values in Fy, either p(¢*) = ¢* or p(¢*) = 0.Furthermore, p(¢*) = ¢* if and only
if fo(¢*) =1 and hy(¢?) = 0 for all k such that by = 1. But, using the definitions of
fo and the element Ay, this is exactly the same as the condition T/(¢*) = 1 and that
a binary digit of D((") is zero whenever the corresponding digits of n — 3 are one.
Hence, p € P, represents ¢ as required.

This establishes the identity (3.18), and hence the theorem follows. O

Now are ready to establish that fact that the linear complexity of the output
sequence of a self-shrinking generator based on a is a maximal periodic sequence of
period 2" — 1 is at most 2"~ ! — (n — 2)

Let sq, s1,... be the output of a maximal periodic sequence of period 2" — 1.
Then by Theorem 1.18 there exists a primitive element ( € F5» and an element
¢ € Fyn such that

(2) = Tr(cC")
for all non-negative integers 1.

Let zp, 21, ... be the output of the self-shrinking generator based on the sequence

80,814 .-+ . S0

O = S27(i)+1
where 7(7) is the unique non-negative integers such that s;;;) = 1 and there are
precisely 7 + 1 ones in the sequence sg, s, ..., S2-(;). We may rewrite this condition

in terms of the trace map and the sequence o defined previously, as follows. Let

T : Fyn — Fy be defined by T(x) = Tr(c*" 'z). Here we note that
T(¢") = Tr(c¢*) = so5,

as the trace map is invariant under the squaring automorphism. Define T" : Fypn —

Fy by T'(x) = Tr((¢€)?" ). Then
T,(C) = TT(CCC%) = 52j+1-
Now, for all non-negative integers 1,
2 =T (0;)

46



where 0g, 01, ... is the sequence defined using ( and T" as in previously.

By Theorem 3.16 the sequence oy, o1, . .. satisfies a linear recurrence relation
2n=1—(n—2)
E CiOitj
=0

for all non-negative integers j, where the coefficients are all binomial coefficients in

Fy. But by the Fy-linearity of 77 we have that

271 (n—-2) 271 (n-2) 27—l (n—2)
Z CiZitj = Z CiT,(O'i_;,_j) = T, Z CiOitj = T/(O) = 0.
i=0 i=0 i=0
Hence the linear complexity of the sequence zg, z1, . .. of the self-shrinking generator

is at most 2"~ — (n — 2), as required.
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CHAPTER 4

CONSTRUCTION OF D-PERFECT SEQUENCES USING
FUNCTION FIELDS

In this chapter we present constructions of d-per fect sequences based on algebraic
function field. More on this approach can be found in [17] and [18].

Let F/F, be an algebraic function field . The following notations will be used
throughout the chapter: let P € Pr be a rational (degree 1) place and t be a local
parameter of P. Suppose that the principal divisor (t) of ¢ satisfies

(t)=P+Q—D (4.1)

where () is a rational place other than P and D is a positive divisor of degree two.
The divisor D with its degree will play an important role in constructions. Note

that (t)c = D and hence deg((t)s) = degD = 2.

4.1 The Main Construction

Lemma 4.1. Let f be an element in F' — F,(t) and suppose that it has
f = Z(thj, Q; S Fq
=0

as its local expansion at P with respect to t. Suppose there exist Ao, A1, ..., A € Fy,

where As # 0, such that
As@ips + Ag—1Qiqps—1 + -+ Majpr + Xoa; =0, 1=1,2,3,...,n—s. (4.2)
If L is defined as

Li=(ot® + Mt -+ X)) f
— [/\Sa() + ()\S(ll + )\S_lao)t

+ 4 (Nsas + ..o+ Aoap)t?]
then vp(L) > n+ 1.
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Proof. Being a local parameter at P, hence transcendental over Iy, {1,¢,...,t} are
linearly independent over . If we use the assumption A\; # 0, then the coefficient
of f in L is non-zero. If L = 0, then f is a rational function of ¢ which contradicts
the assumption f € F' — F,(t). Hence L # 0.

Use the local expansion of f to write L as follows:

L =(Xsap — Asap) + (Asa1 + As—1a9 — Asa; — As_1a0)t + ...
+ (Aoao + Mag + ... + Asas — Noag — A1ag — ... — Aga)t*+
+ (Ns@sgr + As_1as + ...+ X))t 4+ (Ng@gpo + Ag_10sp1 + . .. + Noag)t* T2+
4 (N + As1ap1 o Aoyt +
+ Y bt
j=n+1
where b; € F,. The coefficients of ¢°,¢!,...,¢* are zero obviously by cancellations

and the coefficients of ¢!, 2 .. " are zero by the relation between \;’s and a;’s

(4.2). Hence

L= i bt!
j=n+1

and by Theorem 1.44, vp(L) > n + 1. O

Lemma 4.2. Let f and L be as in Lemma 4.1 then
(L)oo < (Foo + () (43)
Proof. We start by defining two functions g;, go € F' defined as
g1 = (Nsas + (Asa1 + As_1ag)t + - -+ + (Asas + ... + Noao)t?),

ga = >\0t8 + )\1ts_1 +-F /\s'

Note that L = gof — g1. Also note that gof # 0 since A\; # 0 and {1,¢,...,t*}
are linearly independent over F,. Let R € P be a pole of L, i.e. vg(L) = —r <0
and hence vg((L)s) = . We claim that vr((L)oo) =7 < r((f)oo + (t°) ). We will

prove this claim in two cases;
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Case 1: R ¢ supp(D)
This means ¢ doesn’t have a pole at R, hence vg(t) > 0 and vg((t°)s) = 0. By the

triangle inequality, we have vg(g;) > 0 and hence

—r = vg(L) > min{vr(g2f), vr(91)} = vr(g2f) = vr(g2) + vr(f). (4.4)

If g1 = 0 then vg(g1) = oo and since gof # 0 then min{vg(gaf),vr(g1)} =
vr(92) + vr(f)
Since vg(t) > 0, then we have vg(ge) = ¢ > 0, by triangle inequality. By equation
(4.4) —r > i4+vr(f) = vr(f) < —r—i <r . Hence r = vp((L)s) < vr((f)s0)-

Remembering that vg((t*)s) = 0, one gets

VR((L)oo) < 0R((f)so) + VR((E)o0).

Now suppose that g # 0. Then vgr(g1) > {vr(Asao), vr(Asa1 + As—1a0)t, ...} > 0.
By equation (4.4),

—r = min{ur(g2) + vr(f),vr(g1)}, vr(f) < —r—1,

where ¢ = vg(g1) as in above. Hence,

VR((L)oo) =1 <UR((f)oo)
=VR((f)oo) + vR((92)0)
=VR((f)oo) + VR((t")o0)-

Combining g; = 0 and ¢g; # 0 we have vp((L)so) < Vr((f)oo) + vr((t*)s) and this
is true for any R with R € Pr where R is a pole of L and R ¢ supp(D). So in case
one we have (L)oo < (f)oo + (%) 0o-

Case 2: R € supp(D).

This means ¢ has a pole at R and vg(t) < 0. Then we have —r > min{vg(g2) +

vr(f), vr(g1)}
If g1 = 0 we have

min{vr(g2) + vr(f),vr(g1)} = vr(g2) + vr(f)
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vr(g2) = vg(t") > vg(t*), for the largest i € {0,1,...,s} with \; # 0

then

= 2 (") + vr(f) = vR((L)oo) < VR((foo) + VR((1%)oo).

If gy # 0
1. If min{vgr(g2) + vr(f),vr(91)} = vr(g2) + vr(f) then follows as above.
2. If min{vr(go) + vr(f),va(g1)} = vr(g) then

vr(g1) = vr(t') = va(t),

for the largest i € {0,1, ..., s}with coefficients of t* # 0. Then
=1 2 vp(t") = vr((L)s) < vR((1)s) < vR((E)s) + vR((f)o0)-

Combining ¢; = 0 and ¢; # 0 we have vg((L)so) < vr((f)oo) + vr((t*)s) and
this is true for any R with R ¢ Pr where R is a pole of L and R ¢ supp(D). So in
case two we have (L)oo < (f)oo + (t*)co-

Combining Case 1 and Case 2, the inequality holds. n

Theorem 4.3. (Construction 1) Let P and Q be two distinct rational places
of the function field F/F,. Suppose t is a local parameter at P such that (t) =
P+ @Q — D, where D is a positive divisor of degree 2. Let f € F — F,(t) with
d > deg((f)o) = deg((f)eo) and vp(f) > 0. Suppose f has the local expansion

f= Zajtj, a; € Fy, at P. (4.5)
=0

Define a sequence
G,l(f) = (CL17 asg, as, . . )
Then ay(f) is d—per fect, i.e.

n+1-—d n—+d
————— < Lgp(n) <

, foralln > 1.
n
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Proof. Since f ¢ F — F,(t) we have d > deg((f)o) > 1. The Berklam-Massey

Algorithm (Algorithm 1.16) for n = 1 results lo(s)(1) = 1. Hence

2—d<1<d+1

2 - = 2

and the result holds for n = 1.

For n > 1, it is sufficient to prove that the linear complexity s of aq, as, as, ... is

at least %i. By the Berlekamp-Massey Algorithm (Algorithm 1.16) we can find

s + 1 elements \g, A1, ..., As of F, with Ay # 0 such that
As@iys + As_1@ips—1 + - + Mg + Aoa; = 0

fort=1,2,...,n—s.

Consider the function

Li=(Not* + Mt -+ ) f
— (Asag + (Nsag + As_1a0)t

+ - 4 (Asas + ...+ Aoag)t?)
Then by Lemma 4.1 and 4.2, we have
UP<L) Z n -+ 17

and
(L)oo < (f)oo + (%) oo-

Since (t)s = D, we have (t*)s = sD.

(4.6)

Since 0 < n+ 1 < vp(L), L has a zero at P and vp(L) < deg((L)y). Combining

these observations together, we get

n+ 1< vp(L) < deg((L)o) = deg((L)us) < deg((f)ow + sD) = d + 2s.

Therefore
> +1-— d7
- 2
and a;(f) is d-perfect.
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Remarks 4.4.

1. The most important condition for this construction is the existence of the local
parameter t at P with pole divisor of degree 2. After successfully finding such
t, d-perfect sequences can be constructed for any given d by choosing function

f with pole divisor of degree d.

2. There can be some curves that doesn’t contain such a local parameter t. For
instance, elliptic curves of divisor class number one have only one rational point
over the finite base field (see [16, Proposition VI.1.6]). Hence one cannot find

such a local parameter t.

Example 4.5. We will consider the local expansions of the functions from the
Example 1.43. Namely, the function field is the rational function field Fy(z)/Fy
and the local parameter is t = 2? + x for the place P of Fiz)/F,. Note that
(t) = Py + P, — 2P, hence the hypothesis of the Theorem are satisfied.

1. Consider the local expansion of = at F,.

o

m—1

T = E 2"
m=1

Now construct a sequence a;(z) = (1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,...) us-
ing the coefficients of the local expansion of x, expect the first coefficient. Since
v &€ Fy(t) = Fy(2* + x) and deg((7)) = 1, the sequence a;(x) is 1-perfect by
Theorem 4.3.

2. Consider the local expansion of 22 at P,.

o

m

x? = E 2"
m=1

Now construct a sequence a;(z*) = (0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,...)
using the coefficients of the local expansion of 22, expect the first coefficient.
Since ? € Fy(t) = Fy(2® + z) and deg((2?)s) = 2, the sequence a;(z?) is
2-perfect by Theorem 4.3
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3. Consider the local expansion of z/(xz + 1) at F.

xf—l B X_:ItQm_l'

Now construct a sequence a;(z/(x + 1)) = (1,0,1,0,0,0,1,0,0,0,0,0,0,...)

using the coefficients of the local expansion of z/(x + 1), expect the first
coefficient. Since z/(z + 1) € Fy(t) = Fy(x® + z) and deg((z/(z + 1)) = 1,
the sequence a;(z/(z + 1)) is 1-perfect by Theorem 4.3

4.2 The Extensions of the Main Construction

We list some further constructions of d-perfect sequences. The proofs, are with
minor changes, similar to that Theorem 4.3. Therefore we omit them and refer the
reader to the related source; namely [18].

The following theorem vp(f) < 0, that is the reverse case of Theorem 4.3.

Theorem 4.6. (Construction 2) Let P and Q) be two distinct rational places
of the function field F/F,. Suppose t is a local parameter at P such that (t) =
P+ Q — D, where D is a positive divisor of degree 2. Let f € F — F,(t) with
d > deg((f)o) = deg((f)eo) and vp(f) < 0. Let v = —vp(f) > 0. Suppose f has the

local expansion

f =t Zajtj, Q. € Fq, at P. (47)

J=0

Define a sequence
ax(f) = (ag, a1, az, . ..).
Then ay(f) is (d+v)—per fect,
From now on, constructions does not omit the first element in the local expansion

to construct the sequence.

The following construction deals with the case vp(f) =v > 0.

Theorem 4.7. (Construction 3) Let P and Q be two distinct rational places
of the function field F/F,. Suppose t is a local parameter at P such that (t) =
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P+ Q — D, where D is a positive divisor of degree 2. Let f € F — F,(t) with
d > deg((f)o) = deg((f)oo) and vp(f) =v > 0. Suppose f has the local expansion

f = tv Zajtj, CLJ' c Fq, at P. (48)
7=0

Define a sequence
ag(f) = (CL(), ai, ag, . . )

Then a3(f) is (d+v-1)—per fect.

Example 4.8. Let ¢ = 3, F' be the rational function field F3(z)/F3, and P be the

2

zero of z. We choose t = x* — x and f = x. Then we have the local expansion

r=—t++ -t + 24004 ...
Then the sequence a;(x) = (—1,1,1,—1,1,0,...) is perfect by Theorem 4.7.
The following construction deals with the case vp(f) = —v < 0.

Theorem 4.9. (Construction 4) Let P and Q be two distinct rational places
of the function field F/F,. Suppose t is a local parameter at P such that (t) =
P+ Q — D, where D is a positive divisor of degree 2. Let f € F — F,(t) with
d > deg((f)o) = deg((f)oo) and vp(f) = —v < 0. Suppose f has the local expansion

f=t"> ait’, a; € Fy, at P. (4.9)

Jj=0
Define a sequence

0,4(f) = (CL(), ai, ag, . . )

Then aq(f) is (d+v+1)—perfect.

Theorem 4.10. (Construction 5) Let P and Q be two distinct rational places
of the function field F/F,. Suppose t is a local parameter at P such that (t) =
P+ Q — D, where D is a positive divisor of degree 2. Let f € F — F,(t) with
d > deg((f)o) = deg((f)so) and vp(f) = —v < 0. Suppose f has the local expansion

F=Y b7 4 ant", bja, € F, (4.10)
j=1 n=0
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Define a sequence
as(f) = (ag,a,as,...).
Then as(f) is d—per fect.

Example 4.11. Let ¢ = 3, F' be the rational function field F3(x)/F3, and P be the

zero of x. We choose t = 22 — x and f = 1/z. Then we have the local expansion
Vo=t —14+t+2 -+t 4H) -2 +0-15+....

Then the sequence a;(1/x) = (1,1,—1,1,0,0,0,0,...) is perfect by Theorem 4.10.

4.3 Consequences of The Constructions

In this section we will give some consequences of the constructions.
For two sequence a = (a1, az,as, ...) and b = (by, be, bs, .. .) of elements of F,, we
define
a+b:=(ay +by,as+be,a3 + b3, ...)
and

axb:= (0, albl, Cllbg + agbl, a1b3 + a21)2 + agbl, - )

Proposition 4.12. Let f,g € F/K with vp(f) > 0 and vp(g) > 0. Construct two
sequences ay(f) and by(f) as in the statement of the Theorem 4.3, then ai(f)+b1(f)
is d-perfect or ultimately periodic, where d = deg((f+9)o0) < deg((f)oo)+deg((g)oo)-

Proof. Tf a;(f) and by(g) in special form, that is
ap, + bn = Qpk + bn+k

for some k € Z and Vn > m for some m > 0 then a;(f) + b1(g) will be ultimately
periodic with period k. Assume that the sequence a1(f) + b1(g) is not ultimately
periodic. Now, observe that a;(f + ¢) is nothing but a;(f) + b1(g). Then Theorem
4.3 implies that ay(f) + bi(f) is d-perfect. O

Proposition 4.13. Let f,g € F/K with vp(f) > 0 and vp(g) > 0. Construct two
sequences ay(f) and by (f) as in the statement of the Theorem 4.3, then ai(f)*by(f)
is d-perfect or ultimately periodic, where d = deg((fg)s) < deg((f)oo) + deg((9)co)-
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Proof. If ay(f) and b1(g) in special form then a; (f)*b;(g) will be ultimately periodic
with period k. Assume that the sequence a;(f) * bi(g) is not ultimately periodic.
Now, observe that a;(f * g) is nothing but a;(f) * b;(g). Then Theorem 4.3 implies
that a1(f) * by(f) is d-perfect. O
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