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ABSTRACT 

 
 
Arithmetic operations in finit,e fields have many applications in cryptography, coding theory, 
and computer algebra. The realization of these operations can often be made more efficient by 
the normal basis representation of the field elements. 
 
This thesis is aimed at giving a survey of recent results concerning normal bases and efficient 
ways of multiplication, inversion, and exponentiation when the normal basis representation is 
used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

ÖZET 
 
Sonlu cisimlerdeki aritmetik işlemlerin kriptografi,kodlama teorisi ve bilgisayar cebirinde 
birçok uygulaması vardır. Bu işlemlerin gerçeklenmesi, genellikle cisim elemanlanrnn normal 
baz gösterimi sayesinde daha verimli yapılabilmektedir . 
 
Bu tez,normal bazlar ve normal baz gosterimi kullanılarak yapılan çarpma, ters alma ve üs 
alma işlemlerinin verimli yollarına dair en son sonuçların incelenerek sunulmasını amaç 
edinmiştir . 
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CHAPTER 1

INTRODUCTION

My thesis consists of five chapters. In the first chapter, we will give some basic def-

initions, theorems and results related with the normal basis for some finite field. In

the second chapter, we will mention the advantages of using normal basis represen-

tation and will address some further properties of normal bases which are obtained

recently. Moreover, we will give whether there is an advantage of using the pair

of dual bases to multiply two elements of finite field. In addition to this, we will

examine the complexity of the normal bases for the finite fields F2mn over F2.

In the third chapter, the concept of optimal normal bases will be introduced.

Thus, we will mentione the constructions and types of optimal normal bases over

finite fields. It will also be proved in this chapter that all the optimal normal bases

in finite fields are completely determined by Theorems 3.1.2 and 3.1.3.

There are many applications of optimal normal bases. In the first section of

fourth chapter, we will study a multiplication algorithm by using optimal normal

basis and simple permutation of the basis elements. Besides, we will mentione the

concept of modified optimal normal bases which also produce efficiency in multipli-

cation. Next, it will be shown that large powers of the generators of optimal normal

bases, which have high multiplicative order, can be computed efficiently. Finally, we

will give an algorithm finding the multiplicative inverse of a field element efficiently.

In this chapter, we essentially follow the terminology and notation of [20]. Fq

denotes the finite field with q elements. A finite extension F = Fqm of the finite
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field K = Fq is regarded as a vector space over K. Then F has a dimension m over

K, and if {α1, ..., αm} is a basis of F over K, each element α ∈ F can be uniquely

represented in the form

α = c1α1 + ... + cmαm

with cj ∈ K for 1 ≤ j ≤ m. We introduce a mapping from F to K which we will

use frequently.

Definition 1.0.1 For α ∈ F = Fqm and K = Fq, the Trace function TrF/K(α) of

α over K is defined by TrF/K(α) = α + αq + ... + αqm−1
.

In other words, the trace of α is the sum of the conjugates α, αq, ..., αqn−1
of α

with respect to K. Another description of the trace may be obtained as follows. Let

f ∈ K[x] be the minimal polynomial of α over K; i.e.; the uniquely determined

monic polynomial f ∈ K[x] generating the ideal J = {g ∈ K[x] : g(α) = 0} of K[x].

Then the degree d of f is a divisor of m. The polynomial g(x) = f(x)m/d ∈ K[x]

is called the characteristic polynomial of α over K. It is well known (see [20]

Theorem 2.14) that, the roots of f in F are given by α, αq, ..., αqd−1
, and then this

implies that the roots of g in F are precisely the conjugates of α with respect to K.

Hence

g(x) = xm + am−1x
m−1 + ... + a0 = (x− α)(x− αq)...(x− αqm−1

),

and a comparison of coefficients shows that TrF/K(α) = −am−1. In particular,

TrF/K(α) is always an element of K.

If α ∈ F is a root of monic, irreducible polynomial g(x) of degree m, then trace of

g(x) is defined as the TrF/K(α).

The properties of the trace function TrF/K are well known. We give them below

for the sake of completeness.

Theorem 1.0.2 Let K = Fq and F = Fqm. Then the trace function TrF/K satisfies

the following properties:

(i) TrF/K(α + β) = TrF/K(α) + TrF/K(β) for all α, β ∈ F ;

(ii) TrF/K(cα) = cTrF/K(α) for all c ∈ K, α ∈ F ;
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(iii) TrF/K is a linear transformation from F onto K, where both F and K are

viewed as vector spaces over K;

(iv) TrF/K(a) = ma for all a ∈ K;

(v) TrF/K(αq) = TrF/K(α) for all α ∈ F .

Proof. (i) Take any α, β ∈ F

TrF/K(α + β) = α + β + (α + β)q + ... + (α + β)qm−1

= α + β + αq + βq + ... + αqm−1

+ βqm−1

= TrF/K(α) + TrF/K(β)

(ii) For c ∈ K we have cqj
= c for all j ≥ 0. Hence, we can conclude for any α ∈ F ,

TrF/K(cα) = cα + cqαq + ... + cqm−1

αqm−1

= cα + cαq + ... + cαqm−1

= cTrF/K(α)

(iii) Using first and second properties, together with the fact that TrF/K ∈ K for

all α ∈ F , show that TrF/K is a linear transformation from F into K. To prove

that this mapping is onto, it suffices then to show the existence of an α ∈ F with

TrF/K(α) 6= 0. Now, TrF/K(α) = 0 if and only if α is a root of the polynomial

xqm−1
+ ... + xq + x ∈ K[x] in F . However, this polynomial can have at most qm−1

roots in F . Indeed, F has qm elements. Hence there exists an element α ∈ F such

that Tr(α) is nonzero. Therefore, trace is onto.

(iv)This follows from the definition of the trace function.

(v)Take any α ∈ F . One has αqm
= α, and so

TrF/K(αq) = αq + αq2

+ ... + αqm

= TrF/K(α).

2

Theorem 1.0.3 Let F be a finite extension of the finite field K, both considered as

vector spaces over K. Then the linear transformations from F into K are exactly

the mappings Lβ, β ∈ F , where Lβ(α) = TrF/K(βα) for all α ∈ F . Furthermore,

we have Lβ 6= Lγ whenever β and γ are distinct elements of F .
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Proof. Each mapping Lβ is a linear transformation from F into K by Theorem

1.0.2(iii). For β, γ ∈ F with β 6= γ, we have

Lβ(α)− Lγ(α) = TrF/K(βα)− TrF/K(γα) = TrF/K((β − γ)α) 6= 0

for suitable α ∈ F since TrF/K maps F onto K, and so the mappings Lβ and Lγ

are different. If K = Fq and F = Fqm , then the mappings Lβ produce qm different

linear transformations from F into K. But, every linear transformation from F

into K can be obtained by assigning arbitrary elements of K to the m elements of a

given basis of F over K. Since this can be done in qm different ways, the mappings

Lβ already exhaust all possible linear transformations from F into K.

2

Theorem 1.0.4 Let F be a finite extension of K = Fq. Then for α ∈ F we have

TrF/K(α) = 0 if and only if α = βq − β for some β ∈ F .

Proof. The sufficiency of condition is obvious by Theorem 1.0.2(v). To prove

the necessity, suppose α ∈ F = Fqm with TrF/K(α) = 0 and β is a root of xq−x−α

in some extension field F . Then βq − β = α and

0 = TrF/K(α) = α + αq + ... + αqm−1

= (βq − β) + (βq − β)q + ... + (βq − β)qm−1

= (βq − β) + (βq2 − βq) + ... + (βqm − βqm−1

)

= βqm − β

so that β ∈ F .

2

Let us recall here that the dimension of F = Fqm over K = Fq is called the

degree of the extension, denoted by [F : K].

Theorem 1.0.5 Let K be a finite field, let F be a finite extension of K and E a

finite extension of F . Then TrE/K(α) = TrF/K(TrE/F (α)) for all α ∈ E.
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Proof. Let K = Fq, let [F : K] = m and [E : F ] = n, so that [E : K] = mn

by using Theorem 1.84 (in [20]). Then for α ∈ E we have

TrF/K(TrE/F (α)) =
m−1∑

i=0

TrE/F (α)qi

=
m−1∑

i=0




n−1∑

j=0

αqjm




qi

=
m−1∑

i=0

n−1∑

j=0

αqjm+i

=
mn−1∑

k=0

αqk

= TrE/K(α).

2

Definition 1.0.6 Let K be a finite field and F a finite extension of K. Then

two bases {α1, ...αm} and {β1, ..., βm} of F over K are said to be dual bases if for

1 ≤ i, j ≤ m we have

TrF/K(αiβj) = δij =





0 for i 6= j

1 for i = j

Note that, δij defined above is called the Kronecker delta function. A basis that

is its own dual basis is called a self dual basis. A basis is called weakly self dual,

if there exists γ ∈ Fqm and a permutation π of the indices {1, 2, ..., m} so that

βi = γαπ(i) for all i, 1 ≤ i < m.

Theorem 1.0.7 For any basis {α1, ..., αm} of F over K there exists a unique dual

basis {β1, ..., βm}.

Proof. If {α1, ..., αm} is a basis of F over K, we can calculate the coefficients

cj(α) ∈ K, 1 ≤ i, j ≤ m, in the unique representation

α = c1(α)α1 + ... + cm(α)αm

of an element α ∈ F . We note that cj : α → cj(α) is a linear transformation from

F into K, and so according the Theorem 1.0.3, there exists βj ∈ F such that

cj(α) = TrF/K(βjαi)
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for all α ∈ F . Putting α = αi, 1 ≤ i ≤ m, we see that TrF/K(βjαi) = 0 for i 6= j

and 1 for i = j. Furthermore, {β1, ..., βm} is again a basis of F over K, for if

d1β1 + ... + dmβm = 0

with di ∈ K for 1 ≤ i ≤ m then by multiplying by a fixed αi and applying the trace

function TrF/K , one shows that di = 0.

Note that the dual basis {β1, ..., βm} of a given basis {α1, ..., αm} is uniquely

determined since the elements βj ∈ F are uniquely determined by the linear trans-

formations cj according to the Theorem 1.0.3. 2 Example: Let α ∈ F4 be a root

of the irreducible polynomial x2 + x + 1 in F2[x]. Then {α, 1 + α} is a basis of F4

over F2. Dual basis of this basis is also itself.

Definition 1.0.8 Let K = Fq and F = Fqm. Then a basis of F over K of the form

{1, α, α2, ..., αm−1}, consisting of a suitable element α ∈ F , is called a polynomial

basis of F over K. The element α is often taken to be a primitive element of F .

Definition 1.0.9 Let K = Fq and F = Fqm. A basis of F over K of the form

{α, αq, ..., αqm−1}, for a suitable element α ∈ F and its conjugates with respect to

K,is called a normal basis of F over K.

Example: The basis {α, α + 1} of F4 over F2 is a normal basis of F4 over F2

since 1 + α = α2.

Theorem 1.0.10 (Gao 1993) The dual basis of a normal basis is also a normal

basis.

Proof. Let M = {α, αq, αq2
, ..., αqn−1} be a normal basis of Fqn over Fq and

N = {β1, β2, ..., βn} its dual. Let

A =




α αq ... αqn−1

αq αq2
... α

. . .

. . .

. . .

αqn−1
α ... αqn−2




, B =




β1 β2 ... βn

βq
1 βq

2 ... βq
n

. . .

. . .

. . .

βqn−1

1 βqn−1

2 ... βqn−1

n




.
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Then AB = In and so BA = In. Observe that

(AB)T = BT AT = BT A = In,

since A is a symmetric matrix. This means BA = BT A = In. Hence BT = B. It

follows that βi = βqi−1

1 . Thus N is normal basis.

2

Lemma 1.0.11 (Artin Lemma). Let Ψ1, ..., Ψm be distinct homomorphisms from

a group G into the multiplicative group F ∗ of an arbitrary field F , and let a1, ..., am

be elements of F that are not all 0. Then for some g ∈ G we have

a1Ψ1(g) + ... + amΨm(g) 6= 0.

Proof. Use induction on m. The case m = 1 being trivial. We assume that

m > 1 and the statement is true for any m − 1 distinct homomorphisms. Now

take Ψ1, ..., Ψm and a1, ..., am as in the lemma. If a1 = 0, the induction hypothesis

immediately produces the result. Thus a1 6= 0. Suppose we had

a1Ψ1(g) + ... + amΨm(g) = 0 (1.1)

for all g ∈ G. Since Ψ1 6= Ψm, there exists h ∈ G with Ψ1(h) 6= Ψm(h). Then

replacing g by hg in (1.1), we get

a1Ψ1(h)Ψ1(g) + ... + amΨm(h)Ψm(g) = 0 (1.2)

for all g ∈ G. After multiplication by Ψm(h)−1 we obtain

b1Ψ1(g) + ... + bm−1Ψm−1(g) + amΨm(g) = 0

for all g ∈ G, where bi = aiΨi(h)Ψm(h)−1 for 1 ≤ i ≤ m− 1. By subtracting this

identity from (1.1), we arrive

c1Ψ1(g) + ... + cm−1Ψm−1(g) = 0

for all g ∈ G, where ci = ai−bi for 1 ≤ i ≤ m− 1. But c1 = a1−a1Ψ1(h)Ψm(h)−1 6=
0, and we have a contradiction to the induction hypothesis.

2

We want to recall a few concepts and facts from linear algebra.

7



Definition 1.0.12 If T is a linear operator on the finite-dimensional vector space

V over the arbitrary field K, then a polynomial f(x) = anx
n + ... + a1x + a0 ∈ K[x]

is said to annihilate T if anT n + ...+a1T +a0I = 0, where I is the identity operator

and 0 is the zero operator on V . The uniquely determined monic polynomial of least

positive degree with this property is called the minimal polynomial for T .

The minimal polynomial for T divides the characteristic polynomial g(x) for T

(Cayley Hamilton Theorem), which is given by g(x) = det(xI − T ) and is a monic

polynomial of degree equal to the dimension of V .

Definition 1.0.13 A vector α ∈ V is called a cyclic vector if the vectors T kα,

k = 0, 1, ..., span V .

Lemma 1.0.14 Let T be a linear operator on the finite-dimensional vector space

V . Then T has a cyclic vector if and only if characteristic and minimal polynomials

for T are identical.

Theorem 1.0.15 (Normal Basis Theorem). For any finite field K and any finite

extension F of K, there exists a normal basis of F over K.

Proof. Let K = Fq and F = Fqm with m ≥ 2. From Theorem 2.21 (in [1])

and remarks following it, we know that the distinct automorphisms of F over K

are given by ε, σ, σ2, ..., σm−1, where ε is the identity mapping on F , σ(α) = αq for

α ∈ F , and a power σj refers to the j-fold composition of σ with itself. Because of

σ(α+β) = σ(α)+σ(β) and σ(cα) = σ(c)σ(α) = cσ(α) for α, β ∈ F and c ∈ K, the

mapping σ may also be considered as a linear operator on the vector space F over K.

Since σm = ε, the polynomial xm−1 ∈ K[x] annihilates σ. Lemma 1.0.11, applied to

ε, σ, σ2, ..., σm−1 viewed as endomorphisms of F ∗, shows that no nonzero polynomial

in K[x] of degree less than m annihilates σ. Consequently, xm − 1 is the minimal

polynomial for the linear operator σ. Since the characteristic polynomial for σ is

a monic polynomial of degree m that is divisible by the minimal polynomial for σ,

it follows that the characteristic polynomial for σ is also given by xm − 1. Lemma

1.0.14 implies then existence of an element α ∈ F such that α, σ(α), σ2(α), ... span

F . By dropping repeated elements, we see that α, σ(α), σ2(α), ..., σm−1(α) span F
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and thus form a basis of F over K. Since this basis consists of α and its conjugates

with respect to K, it is a normal basis of F over K.

2
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CHAPTER 2

NORMAL BASES AND COMPLEXITY

With the development of coding theory and the appearance of several cryptosystems

using finite fields, the implementation of finite field arithmetic, in either hardware

or software, is needed. These implementations based on finite field multiplications

are by the use of normal bases representation. Of course, the advantages of using a

normal basis representation has been known for many years. Actually, Hensel [14]

noticed the advantage of the normal basis representation in 1888. The complexity

of the hardware design of such multiplication schemes is heavily dependent on the

choice of the normal bases used [27]. Hence it is essential to find normal bases of

”low complexity”. This chapter aims at explaining what is meant by complexity of

a normal basis.

2.1 A Recent Result on Normal Bases

Before looking at how the addition and multiplication in Fqn can be done, we address

some further properties of normal bases which are obtained recently [3]. It is known

that when q is a power of a prime p and if either m is a power of p or m itself is a

prime different from p having q as one of its primitive roots, then the roots of any

irreducible polynomial of degree m and of nonzero trace are linearly independent

over Fq. (see [26]) However, converse has been recently proved by Chang, Reed,

Truong [3].

Let q be a power of a prime p, and m ≥ 2 an integer. A monic irreducible
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polynomial f(x) ∈ Fq[x] of degree m is called a normal polynomial over Fq if it is a

minimal polynomial of a normal element of Fqm over Fq. We know from Chapter 1

that the roots of normal polynomial consist of normal basis elements and the sum of

this basis elements is called trace of f(x) which equals to the coefficient of −xm−1.

Let q be pr. Let m = pu.k with p and k are relatively prime, in Fq, one has

xm − 1 = (xk − 1)
pu

= (h1(x)...ht(x))pu

for some distinct irreducible factors hi(x) ∈ Fq[x], i = 1, 2, ..., t, where h1(x) = x−1.

Assume that hi(x) has degree di for i = 1, 2, ..., t, and let

Mi(x) = (xm − 1)/hi(x)

for i = 1, 2, ..., t. Then M1(x) = (xm−1)/h1(x) = xm−1+...+x+1, M2(x), ..., Mt(x)

are the maximal factors of xm−1, and every proper factor of xm−1 divides at least

one of the these Mi(x)’s.

The polynomial
∑n

i=0 cix
qi ∈ F [x] corresponding with the polynomial f(x) =

∑n
i=0 cix

i is called the linearized q−associate of f(x) in F [x], denoted by Lq(f(x)).

A polynomial in Fq[x] is called a q − polynomial over Fq if it is of the form

cnx
qn

+ ... + c1x
q + c0x,

for some nonnegative integer n and c0, c1, ..., cn ∈ Fq. Two special q-polynomials

are used here, namely,

Lq(x
m − 1) = xqm − x,

and

gm(x) = Lq(M1) = Lq(x
m−1 + ... + x + 1)

so gm(x) = xqm−1
+ xqm−2

+ ... + xq + x.

We need the following propositions and lemmas to prove the main result of this

section.

Proposition 2.1.1 (Lidl and Niederreiter) The degree of any irreducible factor of

xqm − x is a divisor of m, and conversely, every monic irreducible polynomial with

degree, a divisor of m, is a factor of xqm − x.
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Proof. Assume that f(x) divides xqm − x where f(x) is an irreducible poly-

nomial in Fq[x]. Let α be a root of f(x). Then αqm
= α. Hence, α ∈ Fqm . This

means Fq(α) ⊆ Fqm . Therefore, deg(f(x))=[Fq(α) : Fq] divides [Fqm : Fq] = m by

Theorem 1.84 in [20].

If deg(f(x))= n divides m, then Fqm contains Fqn as a subfield by Theorem 2.6

in [20]. Hence, [Fq(α) : Fq] = n where α is a root of f(x) and so Fq(α) = Fqn . Thus,

one has α ∈ Fqn , and αqm
= α. This means that f(x) divides xqm − x.

2

Proposition 2.1.2 (Chang, Truong, Reed and Mullen) Let f(x) ∈ Fq[x] be a

monic irreducible polynomial of degree d, with d|m. Then

(i) f(x) divides gm(x), if Tr(f) = 0.

(ii) f(x) divides gm(x) if and only if p divides m/d, provided Tr(f) 6= 0.

Proof. See [4].

2

Proposition 2.1.2 shows that every monic, trace zero, irreducible polynomial

with degree, a divisor of m, is a factor of gm(x), though its converse is not true.

Corollary 2.1.3 (i) If m is relatively prime to p, then every irreducible factor of

gm(x) has trace zero.

(ii) Every m-th degree irreducible factor of gm(x) has trace zero.

Consider; r ∈ Fq,

Ir
q (m) = the product of all monic, trace-r, irreducible polynomials in Fq[x] of

degree m,

and

N r
q (m) = the number of all monic, trace-r, irreducible polynomials in Fq[x] of

degree m,

We have the following properties of N r
q (m), which we give without proof and refer

the reader to [4].

Proposition 2.1.4 (Chang, Truong, Reed and Mullen) For any positive integer m

and for any nonzero r ∈ Fq one has

N1
q (m) = N r

q (m).
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Moreover, if m is relatively prime to p, then one has

N0
q (m) = N1

q (m) =
1

m

∑

d|m
µ(d)qm/d−1,

where µ(d) is

µ(d) =





1 if n = 1,

(−1)k if d is the product of k distinct primes.

0 if d is divisible by the square of a prime.

called Moebius function.

If m is a multiple of p, then for any r ∈ Fq, one has

N r
q (m) =

1

m

∑

d|m
(d,p)=1

µ(d)(qm/d−1 − δ0rq
m/pd),

where δ is the Kronecker delta function.

Now, we can state and prove the main theorem.

Theorem 2.1.5 (Chang, Truong, Reed 2001) Let q be a power of a prime p and

m a positive integer. If every m-th degree irreducible polynomial of nonzero trace is

normal over Fq, then m is either a power of p or a prime number different from p

that has q as a primitive root.

Proof.

Let m = puk with gcd(p,k) = 1. Suppose the contrary that m is neither a power of

p nor a prime number different from p that has q as one of its primitive roots; i.e.,

m is not a positive integer as assumed in Theorem 2.1.5. Then we show that there

exist m-th degree irreducible polynomials of nonzero traces which are not normal

over Fq.

Under the above conditions on m, let h(x) be an irreducible factor of xm − 1

other than x− 1 but with the smallest degree d. Then 1 ≤ d < m− 1, and

M(x) = (xm − 1)/h(x)

is a maximal factor of xm−1 and deg(M(x)) = m−d. Let g(x) denote the greatest

common factor of M(x) and M1(x) = xm−1 + ... + x + 1. Then

g(x) = (xm − 1)/((x− 1)h(x)),
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and the degree of g(x) is m − (d + 1). Because g(x) divides M(x), Lq(g) divides

Lq(M). Let

M∗(x) = Lq(M)/Lq(g).

Then M∗(x) and Lq(g) are relatively prime as both Lq(M) and Lq(g) have no

repeated factors.

The following lemmas will be used in the proof of Theorem 2.1.5.

Lemma 2.1.6 (Chang, Reed, Truong) (i) M∗(x) has no irreducible factor of trace

zero.

(ii) Any mth degree irreducible factor of M∗(x) of nonzero trace is not normal.

(iii) deg(M∗(x)) = (q − 1)qm−d−1.

Proof. (i) When f(x) is an irreducible factor of M∗(x), f(x) divides Lq(M),

and the degree of f(x) is a divisor of m by Proposition 2.1.1. When the trace of

f(x) is zero, f(x) divides gm(x) by Proposition 2.1.2 and so f(x) is a factor of

P (x) =gcd(Lq(M), gm(x)) which is a q polynomial. Therefore, Lc
q(P ) divides both

M(x) and Lc
q(gm) = M1(x). This means Lc

q(P ) divides gcd(M(x),M1(x)) = g(x).

This implies that P (x) divides Lq(g). Hence, f(x) is a factor of Lq(g) and so a

common factor of M∗(x) and Lq(g), which is a contradiction.

(ii) As M∗(x) divides Lq(M), every factor of M∗(x) has a q polynomial multiple

Lq(M), which is not normal.

(iii) deg(M∗(x)) = deg(Lq(M))-deg(Lq(g)) = qm−d − qm−d−1 = (q − 1)qm−d−1.

2

Lemma 2.1.7 (Chang, Reed, Truong) (i) If m is not a prime and θ is the smallest

prime factor of m different from p, then

deg(M∗(x)) ≥ (q − 1)qm−θ.

(ii) If m is a prime number different from p and q not a primitive root of m, then

deg(M∗(x)) > (q − 1)qd.

Proof. We want to remember the the concept of cyclotomic polynomial. The

polynomial

Qn(x) =
n∏

s=1

gcd(s,n)=1

(x− ξs)
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is called the nth cyclotomic polynomial over the field F where ξ is a primitive n-th

root of unity over F and the characteristic of F does not divide n. Then we have

Qn(x) =
∏

d|m Qd(x) = xm − 1 by Theorem 2.45 in [20].

(i) Qθ(x) divides xm − 1 as θ|m. Therefore, d = deg(h(x)) ≤ deg(Qθ(x)) ≤ θ − 1.

Hence, deg(M∗(x)) ≥ (q − 1)qm−θ.

(ii) h(x) is a factor of Qm(x) and Qm(x) can be factored into (m−1)/d distinct monic

irreducible polynomials of the same degree d by Theorem 2.47 in [20]. Since q is not

a primitive root of m, r = (m − 1)/d ≥ 2. Hence, deg(M∗(x))=(q − 1)q(m−1)−d =

(q − 1)q(r−1)d ≥ (q − 1)d.

2

Therefore, Theorem 2.1.5 will be proved once we show that M∗(x) has some

mth degree irreducible factors of nonzero trace; by Lemma 2.1.6 (ii) those factors

are not normal.

Note that, we can factorize xqm − x as

xqm − x =


∏

d|m
I0
q (d)


 ·


∏

d|m

∏

r∈F ∗q

Ir
q (d)




=


∏

d|m
I0
q (d)


 ·




∏

d|m
(d,p)=1

∏

r∈F ∗q

Ir
q (d)


 ·


 ∏

r∈F ∗q

Ir
q (m)


 .

= (I) · (II) · (III)

Since by Lemma 2.1.6(i) each irreducible factor of M∗(x) has a nonzero trace,

such a factor must appear in either (II) or (III). If the number of distinct irreducible

factors of M∗(x) is more than that in (II), then M∗(x) has at least one factor

coming from (III). Since xqm−x has no repeated factor, M∗(x) also has no repeated

factor. Hence, to prove that M∗(x) has more irreducible factors than product (II)

is equivalent to showing that the degree of M∗(x), i.e., (q − 1)qm−d−1, is greater

than the degree of (II). In this case, then M∗(x) has at least one factor coming from

(III), i.e., an m-th degree irreducible factor f(x) of nonzero trace. According to the

Lemma 2.1.6(ii), f(x) is not normal. Hence, we must show deg(II) < deg(M∗(x)),

and indeed by Lemma 2.1.7 show deg(II) < (q − 1)qm−θ, where θ is the smallest

prime divisor of m.

15



Observe that, the degree of (III),

deg


 ∏

r∈F ∗q

Ir
q (m)


 =

∑

r∈F ∗q

deg(Ir
q (m)) = m · ∑

r∈F ∗q

N r
q (m)

can be simplified. Since by Proposition 2.1.4, the degree of (III) becomes

m · ∑

r∈F ∗q

N1
q (m) = m · (q − 1) ·N1

q (m).

Therefore, we can obtain

deg(II) = qm − deg(I)−m(q − 1)N1
q (m).

Obviously, we must determine the degree of (I) and the value of N1
q (m), with

both numbers depending on the whether m is relatively prime to p or not.

If m is relatively prime to p, then by Proposition 2.1.2 and Corollary 2.1.3, (I)

= gm(x), and the degree of (I) is qm−1. Indeed, by Proposition 2.1.4

N1
q (m) =

1

m

∑

d|m
µ(d)qm/d−1.

Therefore,

deg(II) = qm − deg(I)−m(q − 1)N1
q (m)

=
q − 1

q


qm −∑

d|m
µ(d)qm/d


 .

Using an unpublished result of Chang (see [4]), we can conclude that

deg(II) <
q − 1

q
· 2 · qm/θ ≤ (q − 1) · qm/θ,

where θ is the smallest prime factor of m.

If m 6= θ, then m− θ ≥ m
θ
, and so

deg(II) < (q − 1) · qm−θ.

If m = θ then deg(II) = q − 1 and deg(M∗(x)) > q − 1 , so, deg(II) < deg(M∗(x)).

If m is a multiple of p, e.g., m = puk, u ≥ 1, then deg(I) can be determined in

the manner shown next. Since

(I) =
∏

d|m
I0
q (d) =

u∏

i=0


∏

d|k
I0
q (pid)


 ,
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deg(I) =
u∑

i=0

∑

d|k
deg(I0

q (pid)) =
u∑

i=0

∑

d|k
pid ·N0

q (pid),

It follows that

deg(II) = qm −
u∑

i=0

∑

d|k
pid ·N0

q (pid)−m(q − 1)N1
q (m).

To determine the numbers N0
q (m) and N1

q (m), we can use the Proposition 2.1.4.

The upper bounds for the degree of (II) are obtained in [3]:

If θ is the smallest divisor of k, then

(i) deg(II) < 2 · qm/θ +
q − 1

q
· 2 · qm/p, (2.1)

(ii) deg(II) < 4 · qm/θ∗ , where θ∗ = min{p, θ}. (2.2)

Therefore, we should only treat the cases p = 2 and p ≥ 3. If p = 2, then one

has θ > 2 and m ≥ 2θ. When m = 2θ, use Lemma 2.1.7

deg(M∗(x)) ≥ (2− 1)22θ−θ = 2θ,

and using Lemma 2.1.4, we can obtain

deg(II) < 2θ−1 + 3.

This means that deg(M∗(x))− deg(II) > 2θ−1 − 3, so it follows that deg(M∗(x)) >

deg(II) since θ ≥ 3. Otherwise, m > 2θ and thus m > 6. Then by Lemma 2.1(i),

one has deg(II) < 2m/2+1. Since m > 2θ and m is even, m− θ ≥ m
2

+ 1. Hence,

deg(II) < 2m/2+1 ≤ 2m−θ = (2− 1)2m−θ

as required.

If p ≥ 3, one has by Lemma 2.1(ii) that

deg(II) < 4 · pm/θ∗ < 2 · pm/θ∗+1.

Since (m− θ)− m
θ∗ ≥ 1 for either θ∗ = p or θ, one has finally that

deg(II) < 2 · qm/θ∗+1 ≤ 2 · qm−θ ≤ (q − 1) · qm−θ

which proves the Theorem 2.1.5. 2
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2.2 Arithmetic in Finite Fields and Normal Bases

Let us look at how the addition and multiplication in Fqn can be done in general.

We view Fqn as a vector space of dimension n over Fq. Let α0, α1, ..., αn−1 ∈ Fqn be

linearly independent over Fq. Then every element A ∈ Fqn can be represented as

A =
n−1∑

i=0

aiαi, ai ∈ Fq.

Recalling that Fqn can be regarded as a vector space over Fq, so, it can be identified

as Fq
n, the set of all n-tuples over Fq, and A can be written as A = (a0, a1, ..., an−1).

Let B = (b0, b1, ..., bn−1) be another element in Fqn . Then addition is component-

wise and is easy to implement. Multiplication is more complicated. Let A.B = C =

(c0, c1, ..., cn−1). We wish to express the ci’s as simply as possible in terms of the

ai’s and bi’s. Suppose

αiαj =
n−1∑

k=0

t
(k)
ij αk, t

(k)
ij ∈ Fq. (2.3)

Then it is easy to see that

ck =
∑

i,j

aibjt
(k)
ij = ATkB

t, 0 ≤ k ≤ n− 1,

where Tk = (t
(k)
ij ) is an n × n matrix over Fq and Bt is the transpose of B. The

collection of matrices {Tk} is called multiplication table for Fqn over Fq.

Observe that the matrices {Tk} are independent of A and B. If n is big then

this scheme is impractical. Fortunately, there are many available bases of Fqn over

Fq. For some bases the corresponding multiplication tables {Tk} are simpler than

others in the sense that they may have fewer non-zero entries or they may have

more regularities so that one may judiciously choose some multiplication algorithm

to make a hardware or software design of a finite field for large n. For instance, gen-

eralizations [15, 22, 31, 36] of bit-serial multiplication scheme using dual bases are

used. However, we give the Massey Omura Scheme [21] which uses the symmetry

of normal bases.

At this point, we will see the advantage of using normal basis representation. Let

{α0, α1, ..., αn−1} be a normal basis of Fqn over Fq where αqi
= αi. Then αi

qk
= αi+k

for any integer k, where indices of α are reduced modulo n. Let us first consider

the operation of exponentiation by q.
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(
n−1∑

i=0

aiαi

)q

=
n−1∑

i=0

aiαi+1

and

αn = αqn

= α0.

The element Aq has coordinate vector (an−1, a0, a1, ..., an−2). That is, the co-

ordinates of Aq are just a cyclic shift of the coordinates of A, and so the cost of

computing Aq is negligible. Computing q-th roots is a cyclic shift in the reverse

direction. Consequently, exponentiation using the repeated square and multiply

method can be speeded up, especially if q = 2. This is very important in the im-

plementation of cryptosystems as the ElGamal cryptosystem [6] and Diffie-Hellman

key exchange [5] where one needs to compute large powers of elements in finite

fields.

Let the t
(k)
ij terms be defined by (2.1). Raising both sides of equation to the

q−lth power, one finds that

t
(l)
ij = t

(0)
(i−l,j−l)

for any 0 ≤ i, j, l ≤ n− 1.

Thus each term of C is successively generated by shifting the A and B vectors, and

thus C is calculated in n clock cycles. The number of required gates equals the

number of non-zero entries in the matrix T0. Clearly, to aid in implementation, one

should select a normal basis such that the number of non-zero entries in T0 is the

smallest possible.

Let

ααi =
n−1∑

j=0

tijαj, 0 ≤ i ≤ n− 1, tij ∈ Fq. (2.4)

Let n× n matrix (tij) be denoted by T . It is easy to prove that

t
(k)
ij = ti−j,k−j,

for all i, j, k. Therefore, the number of non-zero entries in T0 is equal to the number

of non-zero entries in T . Since the matrices {Tk} are uniquely determined by T , we

call T the multiplication table of the normal basis N .
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Definition 2.2.1 The number of non-zero entries in T is called the complexity of

the normal basis N , denoted by cN .

The following theorem gives us a lower bound for cN .

Theorem 2.2.2 (Mullin, Onyszchuk, Vanstone 1988) For any normal basis N of

Fqn over Fq, cN ≥ 2n− 1

Proof. Let N = {α0, α1, ..., αn−1} be a normal basis of Fqn over Fq. Then

b =
n−1∑

k=0

αk = Tr(α) ∈ Fq.

Let

ααi =
n−1∑

j=0

tijαj.

Summing up these equations and comparing the coefficient of αk we find

n−1∑

i=0

tij =





b, j = 0,

0, 1 ≤ j ≤ n− 1.

Since α is nonzero and {ααi : 0 ≤ i ≤ n − 1} is also a basis of Fqn over Fq, the

matrix T = (tij) is invertible. Thus for each j there is at least one nonzero tij. For

each j 6= 0, in order for each column j of T to sum to zero there must be at least

two nonzero tij’s. So there are at least 2n − 1 nonzero terms in T , with equality

if and only if the element α occurs with a nonzero coefficient in exactly one cross

product term ααi (with coefficient b) and every other member of N occurs exactly

two such products, with coefficients that are additive inverses.

2

Let us look at the dual of the normal basis to use the multiplication of the field

elements. That is, we want to understand whether there is an advantage of using

the dual basis of a normal basis for multiplication or not.

2.3 Complexity of Multiplication with Dual Normal Bases

In this section, the role of dual bases in normal basis multiplication in Fqn is ex-

plored. The structure of normal basis multipliers can be made more precise by this

approach. In particular, the explicit use of dual normal bases or self dual normal

bases do not reduce the complexity of normal basis multiplication [11, 12, 13].
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Lemma 2.3.1 (Geiselmann, Gollmann, 1991) Let A = {α0, α1, ..., αn−1} and {β0,

β1, ..., βn−1} be dual bases of Fqn. Then we have for any u ∈ Fqn

u =
n−1∑

i=0

Tr(βiu)αi =
n−1∑

j=0

Tr(αju)βj.

Proof. Let u be a represented with respect to the basis A by

u =
n−1∑

i=0

uiαi.

Then

Tr(βku) =
n−1∑

i=0

uiTr(βkαi) = uk.

2

Weakly self dual bases can be characterized by a (pseudo)-symmetry of the

representations of the products of basis elements.

Theorem 2.3.2 (Geiselmann, Gollmann 1991) Let A = {α0, α1, ..., αn−1} be a

basis of Fqn. The following propositions are equivalent:

(i) The basis A is weakly self dual.

(ii) There exists a permutation π of indices {0, 1, ..., n− 1} so that

(αkαπ(i))j
= (αkαπ(j))i

for all i, j, k, 0 ≤ i, j, k < n.

Proof. Let {β0, β1, ..., βn−1} be dual basis of A. Assume that A is weakly self

dual. Then, by Lemma 2.3.1,

(αkαπ(i))j
= Tr(αkαπ(i)βj) = Tr(αkαπ(i)γαπ(j)) = Tr(αkαπ(j)βi) = (αkαπ(j))i

for all i, j, k, 0 ≤ i, j, k < n. So (ii) holds. Conversely, we get from (ii) for i = 0 and

for all j, k, 0 ≤ j, k < n, Tr(αkαπ(0)βj) = tr(αkαπ(j)β0). Hence

tr(αk(απ(0)βj − απ(j)β0)) = 0,

for all k, 0 ≤ k < n.

Then from fact that the number of elements in γ ∈ Fqn such that Tr(γ) = a for

every a ∈ Fq is qn−1 implies απ(0)βj = απ(j)β0 and βj = γαπ(j) with γ = β0/απ(0).
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2

Multiplication is more difficult as the products αiαj are, in general, not elements

of the normal basis. We know from previous section that, in F2n , the cost of normal

basis multiplication is measured by α0αi in the normal basis. Various architectures

for normal basis multipliers have been suggested. Multipliers with serial output are

derived from the following observations. We get for u ∈ Fqn

{uqi}n−1 = un−1−i,

0 ≤ i < n.

To obtain w = u.v we thus only require a mapping F : Fqn × Fqn → Fq with

F (u, v) = wn−1. The remaining coefficients of w follow with

wn−1−i = (wqi

)n−1 = F (uqi

, vqi

).

For F2n , this architecture has become known by the name of its inventors, as the

Massey-Omura multiplier. We have

wn−1 =




(
n−1∑

i=0

uiαi

) 


n−1∑

j=0

vjαj







n−1

=
n−1∑

i=0

ui

n−1∑

j=0

vj(αiαj)n−1.

Using the symbol F also for the symmetric n×n matrix F = (ϕij) over Fq, given by

ϕij = (αiαj)n−1, (2.5)

we can write F (u, v) as F (u, v) = ū.F.v̄t, with

ū = (u0, u1, ...., un−1)v̄ = (v0, v1, ...., vn−1) (2.6)

where the vector v̄t is the transpose of v̄.

Multipliers with parallel output are based on the following transformations of the

product u.v

u.v =

(
n−1∑

i=0

uiα
qi

) 


n−1∑

j=0

vjα
qj




=
n−1∑

i=0

ui


α.

n−1∑

j=0

vjα
qj−i




qi
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=
n−1∑

i=0

ui


α.

n−1∑

j=0

vj+iα
qj




qi

=
n−1∑

t=0

un−1−t


α.

n−1∑

j=0

vj−1−tα
qj




qn−1−t

.

In both equations, the outer index counts time steps while the inner sum repre-

sents a power of v that will be replaced at the next time step by its q-th power or

its q-th root. At each time step a coefficient of u is read in, the current power of v

is multiplied by α and the current coefficient of u. The resulting value is added to

the intermediate result. Multiplication is again reduced to computing q-th powers

and roots, and multiplication by α. The multiplication α.v can be written as v̄T ᾱt,

where T = (tij), tij ∈ Fq, tij was defined in the equation 2.4 and

ᾱ = (α0, α1, ..., αn−1).

We now examine the multiplication matrices F and T . Lemma 2.3.1 gives

F (u, v) = wn−1 = Tr(βn−1.u.v)

ϕij = Tr(βn−1αiαj)

tij = Tr(βjα0αi)

Theorem 1.0.2(v) implies

Tr(βn−1αiαj) = Tr((βn−1αiαj)
qn−i

) = Tr(βn−i−1α0αj−i),

and thus

Lemma 2.3.3 The matrix F = (ϕij) of the Massey-Omura multiplier and the ma-

trix T = (tij) are related by

ϕij = tj−i,n−i−1

where indices are computed modulo n.

Let α define a normal basis of Fqn . We know from Theorem 1.0.7 and Theorem

1.0.10 that every normal basis has a dual basis and the dual basis of a normal basis

is again a normal basis, generated by some element β. Using this result, we proceed

to give a new interpretation of the matrix F of the Massey-Omura multiplier.
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Lemma 2.3.4 (Geiselmann, Gollmann 1991) Let α and β generate a pair of dual

normal bases of Fqn. Let the vector ū and the matrix F be defined (with respect

to α) as in equations 2.5 and 2.6 Then the multiplication ū.F gives the dual basis

coefficients of βn−1.u.

Proof. The dual basis coefficients of βn−1.u are (βn−1.u)j = Tr(αjβn−1u),

hence

(βn−1.u)j = Tr

(
αjβn−1

n−1∑

i=0

uiαi

)
=

n−1∑

i=0

uiTr(αjβn−1αi) =
n−1∑

i=0

uiϕij.

The computation of ū.F can be seen as the transformation u → βn−1u with a change

of basis representation. The subsequent multiplication (ū.F ).v̄t is the computation

of Tr(βn−1uv), where βn−1u and v are given in dual bases.

2

Next we apply Theorem 2.3.2 to normal bases and obtain a simplified proof and

extension of a theorem on self-dual normal bases.

Theorem 2.3.5 (Geiselmann, Gollmann 1991) Let α generate a normal basis N

of Fqn. Let the matrix T is the multiplication matrix. Then N is self-dual if and

only if T is symmetric and Tr(α2) = 1.

Proof. We have tij = Tr(βjα0αi). Assume first that N is self-dual. Then

tij = Tr(βjα0αi) = Tr(αjα0αi) = Tr(βiα0αj) = tji,

and

Tr(α2) = Tr(αβ) = 1.

Conversely, assume that T is symmetric. Then

tn−i,n−i+1 = tn−i+1,n−i

and

tn−i,n−i+1 = Tr(βn−i+1α0αn−i) = Tr(αiα0β1)

tn−i+1,n−i = Tr(βn−iα0αn−i+1) = Tr(αiα1β0)
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imply, as in the proof of Theorem 2.3.2, α0β1 = α1β0 and hence β/α = (β/α)q.

Therefore β = γ.α with γ ∈ Fq. Finally, γ.tr(α2) = 1 so γ = 1 if and only if

Tr(α2) = 1.

2

Theorem 2.3.6 (Geiselmann, Gollmann 1991) Let N be a normal basis of F2n.

The following statements are equivalent:

(i) N is self-dual.

(ii) The matrix T is symmetric.

(iii) For all i > 0 the number of nonzero entries in the i-th row of T is even.

Proof. We only prove the equivalence of the first and third condition. Consider

that Tr(α0αi) is just the i-th coefficient of the representation of α0 in the dual basis.

Therefore

Tr(α0αi) =
n−1∑

j=0

tijTr(αj) =
n−1∑

j=0

tij = |{j|tij 6= 0}| mod 2.

|{j|tij 6= 0}| ≡ 0 mod 2 for all i > 0 implies α = β. Conversely, for a self-dual

normal basis we have

0 = Tr(α0αi) = |{j|tij 6= 0}| mod 2.

2

Finally, we investigate the potential benefits of employing dual normal basis

in a multiplier for Fqn , defining the complexity of normal basis multiplication in

previous section.

Let α ∈ Fqn generate a normal basis and β the respective dual normal basis.

Represent u with respect to α and v and w = u.v with respect to β. We get

wn−1 = Tr(αn−1.u.v)

To take advantage of duality of the bases in computing Tr(αn−1.u.v), we write

αn−1.u.v as the product of two elements represented in dual bases. The two options

are (αn−1u).v or (αn−1v).u

In the first case, αn−1u has to be given in the basis generated by α and we require

the coefficients

(αn−1αj)i = Tr(βiαn−1αj) = ϕn−i−2,j−i−1.
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In the second case, αn−1v has to be given in the basis generated by β and we require

(αn−1βj)i = Tr(αiαn−1βj) = ϕn−j−2,i−j−1.

In both cases we return to the main problem of normal basis multiplication, i.e.

the representation of the elements α0αi in the normal basis. If the complexity of

multiplication with a pair of dual normal bases is again defined as the number of

nonzero coefficients in (αn−1αj)i or (αn−1βj)i, then the following theorem holds.

Theorem 2.3.7 (Geiselmann, Gollmann 1991) The complexity of multiplication

with a pair of dual normal bases is the same as the complexity of standard normal

basis multiplication.

2.4 Complexity of Normal Basis for F2mn over F2

In what follows, we give the relation between the complexities of normal bases for

extensions of F2.

In particular, we study multiplication in fields of the form F2mn where n and m

are relatively prime, m ≥ 2, n ≥ 2 also. Specifically, we show that normal bases

of F2m and F2n of respective complexities cM and cN can be combined to give a

normal bases for F2mn of complexity cMcN .

Lemma 2.4.1 Let m > 1, n > 1 be two relatively prime integers. Let B1 = {αi|0 ≤
i ≤ m − 1} and B2 = {βj|0 ≤ j ≤ m − 1} be bases, respectively, for F2m and F2n

over F2. Then B = {αiβj|0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1} is a basis for F2mn over

F2. Moreover, if B1 and B2 are normal bases, then so is B.

Proof. Let

A = {∑
i

∑

j

aijαiβj|aij ∈ F2},

then A is a subring of F2mn , hence automatically a subfield, say F2k . Since F2n ⊂ F2k

and F2m ⊂ F2k , it follows that m|k and n|k, hence mn|k and so k = mn. Since

dimension of F2mn over F2 is mn, the result follows.

Next suppose αi = α2i
and βj = β2j

0 ≤ j ≤ n − 1, 0 ≤ i ≤ m − 1, then

(αβ)2k

= α2k
β2k

where k in α2k
may be reduced modulo m and k in β2k

may be
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reduced modulo n. Hence, (αβ)2k

is of the form α2i
β2j

, 0 ≤ j ≤ n−1, 0 ≤ i ≤ m−1.

To complete the proof, we need only show that the smallest positive integer k for

which (αβ)2k

= αβ is mn.

If (αβ)2k
= αβ, then α2k−1 = (β−1)2k−1 ∈ F2 since intersections of F2m and F2n

is F2. Hence α2k−1 = β2k−1 implies that β2k−1 = 1 and so if M is the order of α,

then M |2k − 1. But the smallest positive integer l such that M |2l − 1 is m and so

m|k. Similarly, we can show n|k and so mn|k and then we are done.

2

Corollary 2.4.2 (Seguin [28], Semaev [29], Jungnickel [18])Let mn > 1,

gcd(m,n)=1, {α2i|0 ≤ i ≤ m−1} , {β2j |0 ≤ j ≤ n−1} be normal bases, respectively

for F2m and F2n . Then αβ generates a normal basis for F2mn over F2 with complexity

cMN(αβ) = cM(α)cN(β).

Proof. Let

β2r

β2s

=
∑

l

γ(l)
r,sβ

2l

α2i

α2j

=
∑

k

λ
(k)
i,j α2k

and let Λk = (λ
(k)
i,j ), Γl = (γ(l)

r,s). Multiplying left hand sides of the equations and

equating the products, we obtain

(αβ)2u(i,r)

(αβ)2v(j,s)

= α2i

β2r

α2j

β2s

=
∑

k

∑

l

λ
(k)
i,j γ(l)

r,sα
2k

β2l

=
∑

k

∑

l

λ
(k)
i,j γ(l)

r,s(αβ)2c(k,l)

where (αβ)2u(i,r)
= α2i

β2r
etc. Look at the number of ones in the λ

(k)
i,j γ(l)

r,s that occur

as i r run over 0, 1, ..., m− 1 and j, s runs over 0, 1, ..., n− 1. But this is the clearly

the product of the matrices Λk and Γl, hence cMN(αβ) = cM(α)cN(β). In fact the

elements λ
(k)
i,j γ(l)

r,s define an mn ×mn matrix, which is the usual tensor product of

Λk and Γl.

2
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CHAPTER 3

OPTIMAL NORMAL BASES

We recall here that cN ≥ 2n− 1 for any normal basis N for Fqn over Fq. (Theorem

2.2.2) In view of this fact, normal bases with the smallest complexity are called

optimal. In other words,

Definition 3.0.3 A normal basis N is optimal if cN = 2n− 1.

3.1 Constructions

Theorem 3.1.1 (Mullin, Onyszchuk, Vanstone 1988) Suppose that Fpn contains

(n + 1)st roots of unity. If the n nonunit roots of unity are linearly independent,

then Fpn contains an optimal normal basis.

Proof. Let β denote a primitive (n + 1)st root of unity in FP n . Then the

conjugates of β are βp, βp2
, ..., βpn−1

. Since N = {β, βp, βp2
, ..., βpn−1} is linearly

independent , it is a normal basis for Fpn . But N is the set of zeros of

p(x) =
xn+1 − 1

x− 1
;

that is N is the of n nonunit roots of unity in Fpn . Let β0 = β, and βi = βpi

i = 1, 2, ..., n − 1. Recall that the number of nonzero terms in the bilinear form

for c0 is also the number of nonzero terms in the expansion of the set {β0βi : i =

0, 1, .., n− 1} in the basis N . But if βi 6= β−1
0 , then β0βi = βj for some exponent j
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(depending on i) whereas

β0β
−1
0 =

n−1∑

i=0

βi.

Hence there are 2n− 1 nonzero terms in the expansion, and N is optimal.

2

Theorem 3.1.2 (Mullin, Onyszchuk, Vanstone, Wilson, 1988, [24] ) The field Fpn

contains an optimal normal basis consisting of the nonunit (n + 1)st roots of unity

if and only if n + 1 is a prime and p is primitive in Zn+1.

Proof. If n+1 is a prime, then n+1 divides pn−1 and Fpn contains a primitive

(n + 1)st root of unity β. Since p is primitive in Zn+1, the minimal polynomial of

β is
xn+1 − 1

x− 1

and the nonunit (n + 1)st roots are linearly independent. Conversely if these roots

are independent in Fpn then p has order n modulo n + 1 and n + 1 is prime.

2

Theorem 3.1.3 (Mullin, Onyszchuk, Vanstone, Wilson, 1988, [24]) If either

(1) 2 is primitive in Z2n+1 , or

(2) 2n + 1 is a prime congruent to 3 modulo 4 and 2 generates the quadratic

residues in Z2n+1,

then there exists an optimal normal basis in F2n.

Proof. Since 2n + 1|22n − 1, there exists a primitive 2n + 1st root of unity, β

in F2n . Let γ = β + β−1.

Since 2n ≡ ±1 mod (2n + 1), either β−1 = β2n
or β = β2n

. Now

γ2n

= (β + β−1)2n

= β2n

+ β2−n

= β + β−1 = γ.

Hence, γ is an element of F2n . Our claim is:

N = {γ, γ2, ..., γ2(n−1)}

is an optimal normal basis of F2n . If

n−1∑

i=0

λiγ
2i

= 0,
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then
n−1∑

i=0

λi(β
2i

+ β2−i

) = 0

Now since either 2 is a generator of the multiplicative group of Z(2n+1) or 2 generates

the quadratic residues of Z(2n+1) with 2n + 1 ≡ 3 mod 4

n−1∑

i=0

λi(β
2i

+ β2−i

) =

(
n−1∑

i=0

λiβ
2i

)
+

(
n−1∑

i=0

λiβ
2−i

)
=

2n∑

j=1

ujβ
j

where each λi occurs in {u1, u2, ..., u2n}. Therefore β is the zero of the polynomial

f(X) =
2n−1∑

i=0

uj+1X
i.

Since f(β)=0, the minimal polynomial of β, mβ(X), divides f(X). If hypothesis

(1) holds then

mβ(X) = 1 + X + X2 + ... + X2n.

Since mβ(X)|f(X) we conclude that f(X) = 0 and all λi = 0. If hypothesis (2)

holds then mβ(X) has degree n as does mβ−1(X) and

X2n+1 − 1 = (X − 1)mβ(X)mβ−1(X).

But mβ(X)|f(X) since f(β) = 0 and mβ−1(X)|f(X) since f(β−1) = 0 and hence,

1+X +X2 + ...+X2n|f(X) implying that f(X) = 0 and that all λi = 0. Therefore,

N is a normal basis for F2n . The cross product terms are

γ2i

γ2j

= (β2i

+ β2j

)(β2−i

+ β2−j

)

= (β2i+2j

+ β−(2i+2j)) + (β(2i−2j) + β−(2i+2j)).

Now 2 is primitive modulo 2n + 1 then each nonzero residue has the form 2k for

some integer k satisfying 0 ≤ k ≤ 2n − 1, whereas if 2 generates the quadratic

residues modulo 2n + 1 and 2n + 1 is congruent to 3 modulo 4, then each nonzero

residue has the form of either 2k or −2k for some integer k satisfying 0 ≤ k ≤ n−1.

Therefore if 2i 6= 2j mod(2n + 1) then there exist integers k1 and k2 such that

2i + 2j = ±2k1

and

2i − 2j = ±2k2
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for at least one choice of the + or - sign in each case. In this event,

γ2i

γ2j

= γ2k1 + γ2k2 .

But, if 2i = ±2j, then one of 2i + 2j is not zero modulo 2n + 1, and so there exists

a k such that at least one of the equations

2i + 2j = 2k,

2i + 2j = −2k,

2i − 2j = 2k,

2i − 2j = −2k

is satisfied. In this case, since we are in the field of characteristic 2,

γ2i

γ2j

= γ2k

.

Let γi = γ2i
for i = 1, ..., n− 1. Then, since γ2

0 = γ1, there at most 2n− 1 terms in

the expansion of the set {γ0, γi} in terms of the basis N , and so there are precisely

2n− 1 such terms and N is an optimal normal basis.

2

Definition 3.1.4 Let N = {α, αq, ..., αqn−1} be a normal basis of Fqn. Let αi = αqi

for i = 1, ..., n− 1. The basis N will be said to be type-I if with the exception of one

value of i, there exists an integer ki satisfying 0 ≤ ki ≤ n− 1 such that α0αi = αki
.

The basis N is said to be of type-II if, for every i satisfying 1 ≤ i ≤ n − 1, there

exists integers ki and mi such that

α0αi = αki
+ αmi

.

Therefore, every optimal basis obtained from using Theorem 3.1.1 is a type-I basis,

and every optimal normal basis constructed by the methods of Theorem 3.1.3 is a

type-II basis.

Lemma 3.1.5 (Ash, Vanstone, Blake, 1989, [1] ) Let k and n be integers such

that nk + 1 is a prime, and let the order of q modulo nk + 1 be e. Suppose that

gcd(nk/e, n) = 1. Let τ be a primitive k-th root of unity in Znk+1. Then every

nonzero element r in Znk+1 can be written uniquely in the form

r = τ iqj, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− 1.

31



Proof. Let e1 = nk/e. There is a primitive element g in Z∗
nk+1 such that

q = ge1 . As the order of g is nk and the order of τ is k, there is an integer a such

that

τ = gna, gcd (a, k) = 1.

Suppose that there are 0 ≤ i, s ≤ k − 1, 0 ≤ j, t ≤ n− 1, such that

τ iqj ≡ τ sqt(mod nk + 1),

i.e.,

τ i−s ≡ qt−j(mod nk + 1)

gna(i−s) ≡ ge1(t−j)(mod nk + 1).

Then

na(i− s) ≡ e1(t− j)(mod nk).

As gcd(n,e1)=1, the last equation implies that n|(t− j). Hence t = j. Thus,

a(i− s) ≡ 0(mod k).

But gcd(a, k)=1, so k|(i− s). Therefore i = s. This proves that

τ iqj(mod nk + 1), i = 0, 1, ..., k − 1; j = 0, 1, ..., n− 1

are all distinct. As τ iqj not congruent to 0 modulo nk + 1, every nonzero element

in Znk+1 can be expressed uniquely in the required form.

2

Theorem 3.1.6 (Wassermann 1989, [37] ) Let q be a prime or prime power, and

n and k be positive integers such that nk + 1 is a prime not dividing q. Let β be a

primitive nk +1th root of unity in Fqnk . Suppose that gcd(nk/e,n)=1 where e is the

order of q modulo nk + 1. Then, for any primitive k-th root of unity τ in Znk+1,

α =
k−1∑

i=0

βτ i

generates a normal basis of Fqn over Fq with complexity at most (k + 1)n− k, and

at most kn− 1 if k ≡ 0 (mod p), where p is the characteristic of Fq.
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Proof. We first prove that α ∈ Fqn . Since qnk ≡ 1 (mod nk + 1), qn is a k-th

root of unity in Znk+1. Thus there is an integer m such that qn = τm. Then

αqn

=
k−1∑

i=0

βτ iqn

=
k−1∑

i=0

βτ i+m

=
k−1∑

i=0

βτ i

= α.

Therefore α is in Fqn .

We next prove that α, αq, ..., αqn−1
are linearly independent over Fq. Suppose

that
n−1∑

i=0

λiα
qi

=
n−1∑

i=0

λi

k−1∑

j=0

βτ jqi

= 0, λi ∈ Fq.

Note that there exist unique ui ∈ Fq, i = 1, 2, ..., kn such that the following holds

for all 2n + 1-th roots γ of unity:

n−1∑

i=0

k−1∑

j=0

λiγ
τ iqj

=
nk∑

j=1

ujγ
j = γ

nk−1∑

j=0

uj+1γ
j,

since, by Lemma 3.1.5, τ iqj modulo nk +1 runs through Z∗
nk+1 for j = 0, 1, ..., k−1

and i = 0, 1, ..., n− 1. Let

f(x) =
nk−1∑

j=0

uj+1x
j.

For any 1 ≤ r ≤ nk, there exist integers u and v such that r = τuqv. As βr is also

a nk + 1-th primitive root of unity,

βrf(βr) =
n−1∑

i=0

λi

k−1∑

j=0

(βr)τ jqi

=
n−1∑

i=0

λi




k−1∑

j=0

βτu+jqi




qv

,

=




n−1∑

i=0

λi

k−1∑

j=0

βτ jqi




qv

= 0.

Therefore βr is a root of f(x) for r = 1, 2, ..., nk, hence

nk∏

r=1

(x− βr) =
xnk+1 − 1

x− 1
= xnk + ... + x + 1

divides f(x). But f(x) has degree at most nk − 1, and so this is impossible. Thus

α, αq, ..., αqn−1
must be linearly independent over Fq, and thus form a normal basis

of Fqn over Fq.

Next we compute the multiplication table of this basis. Note that for 0 ≤ i ≤
n− 1,

α·αqi

=
k−1∑

u=0

k−1∑

v=0

βτu+τvqi

=
k−1∑

u=0

k−1∑

v=0

βτu(1+τv−uqi) =
k−1∑

v=0

(
k−1∑

u=0

βτu(1+τvqi)

)
.
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There is a unique pair (v0, i0), 0 ≤ v0 ≤ k − 1, 0 ≤ i0 ≤ n− 1 such that

1 + τ v0qi0 ≡ 0(mod nk + 1).

If (v, i) 6= (v0, i0), then 1 + τ vqi ≡ τwqj (mod nk + 1), for some 0 ≤ w ≤ k − 1, 0 ≤
j ≤ n− 1, and

k−1∑

u=0

βτu(1+τvqi) =
k−1∑

u=0

βτu+wqj

=

(
k−1∑

u=0

βτu

)qj

= αqj

.

If (v, i) = (v0, i0), then
k−1∑

u=0

βτu(1+τvqi) = k,

which is 0 if k ≡ 0 (mod p). So for all i 6= i0, the sum

k−1∑

v=0

(
k−1∑

u=0

βτu(1+τvqi)

)

is a sum of at most k basis elements. Therefore the complexity of the basis is at

most (n− 1)k + n = (k + 1)n− k. If k ≡ 0 (mod p) and i = i0, then

k−1∑

v=0

(
k−1∑

u=0

βτu(1+τvqi)

)

is a sum of at most k − 1 basis elements. Therefore if k ≡ 0 (mod p) then the

complexity of the basis is at most (n−1)k +k− 1 = kn−1. The proof is complete.

2

As special cases of Theorem 3.1.6, when k = 1 we obtain Theorem 3.1.1, and

when k = 2 and q = 2 we have Theorem 3.1.3. When q is odd, k = 2, it is easy to

see that the complexity of the normal basis generated by the α in Theorem 3.1.6

is exactly 3n − 2. The exact complexity is in general difficult to determine. Some

special cases are treated in the following theorem ([1]) which we give without proof.

Theorem 3.1.7 (Ash, Blake, Vanstone, 1989, [1]) Let q = 2. Then the normal

basis generated by the α of Theorem 2.2.5 has complexity

(a) 4n− 7 if k = 3, 4 and n > 1;

(b) 6n− 21 if k = 5, n > 2 or k = 6, n > 12 ;

(c) 8n− 43 if k = 7, n > 6.
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3.2 Determination of Optimal Normal Bases

We have seen two constructions of optimal normal bases. A natural question to ask

is whether there are any other optimal normal bases. Lenstra [19] proved that if n

does not satisfy the criteria for Theorem 3.1.1 or Theorem 3.1.3, then F2n does not

contain an optimal normal basis.

If the ground field Fq is not F2 we do have other optimal normal bases; suppose

N is an optimal normal basis of Fqn over Fq and a ∈ Fq. Then aN = {aα : α ∈ N}
is also an optimal normal basis of Fqn over Fq. In fact, the bases N and aN are

said to be equivalent.

Another way of obtaining optimal normal bases is given by, Lemma 3.2.1 below.

For any positive integer s with gcd(n, s) = 1, N remains to be a basis of Fqns over

Fqs . Therefore N is an optimal normal basis of Fqns over Fqs provided that gcd(s,

n) = 1. The problem now is whether there are any other optimal normal bases.

Mullin proved that if the distribution of the nonzero elements of the multiplication

table of an optimal normal basis is similar to a type I or type II optimal normal

basis then the basis must be either of type I or type II [23]. Later Gao proved that

any optimal normal basis of a finite field must be equivalent to a type I or type II

optimal normal basis [8]. Finally, Gao and Lenstra extended the result to a any

finite Galois extension of an arbitrary field [9].

Lemma 3.2.1 (Gao, Lenstra 1992, [9]) Let s and n be relatively primes. If B̃ =

{α0, α1, ..., αn−1} is a basis for Fqn over Fq, then B̃ is also a basis for Fqsn over Fqs.

Proof. We should prove that α0, α1, ..., αn−1 are linearly independent over Fqs .

Suppose there are ai ∈ Fqs , 1 ≤ i ≤ n, such that

n−1∑

i=0

aiαi = 0

Note that for any integer j,

(
n−1∑

i=0

aiαi

)qsj

=
n−1∑

i=0

aqsj

i αiq
sj =

n−1∑

i=0

aiαiq
sj.

Since gcd(s, n)=1, when j runs through 0, 1, ..., t − 1 modulo t, sj also runs

through 0, 1, ..., t − 1 modulo n. As αi ∈ Fqn , we have αqn

i = αi and so αqr

i = αqm

i
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whenever r ≡ m mod n.Therefore, by using
∑n−1

i=0 aiαi = 0, we have

n−1∑

i=0

aiα
qj

i = 0,

for each j, 0 ≤ j ≤ n− 1, that is,




α0 α1 ... αn−1

αq
0 αq

1 ... αq
n−1

. . .

. . .

. . .

αqn−1

0 αqn−1

1 ... αqn−1

n−1







a0

a1

.

.

.

an−1




= 0. (3.1)

Since α0, α1, ..., αn−1 are linearly independent over Fq, the coefficient matrix of 3.1

is nonsingular. Thus, a0, a1, ..., an−1 must be 0. This proves α0, α1, ..., αn−1 are

linearly independent over Fqs .

2

We first prove some properties that hold for any normal basis.

Let as usual N = {α0, α1, ..., αn−1} be a normal basis of Fqn over Fq with αi =

αqi
. Let

ααi =
n−1∑

j=0

tijαj, 0 ≤ i ≤ n− 1, tij ∈ Fq.

and T = (tij). Raising the last equation to the q−i-th power, we find that

tij = t−i,j−i

for all 0 ≤ i ≤ n− 1.

From Theorem 1.0.10, we know that the dual of a normal basis is also a normal

basis. Let B = {β0, β1, ..., βn−1} be the dual basis of N with βi = βqi
, 0 ≤ i ≤ n− 1.

Suppose that

αβi =
n−1∑

j=0

dijβj, 0 ≤ i ≤ n− 1, dij ∈ Fq.

We show that

dij = tji,

for all 0 ≤ i, j ≤ n− 1,

i.e, the matrix D = (dij) is the transpose of T = (tij). The reason is as follows. By
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definition of a dual basis, we have

Tr(αiβj) =





0 for i 6= j

1 for i = j

Consider the quantity Tr(αβiαk). On the one hand,

Tr(αβiαk) = Tr((αβi)αk) = Tr




n−1∑

j=0

dijβjαk


 =

n−1∑

j=0

dijTr(βjαk) = dik.

On the other hand,

Tr(αβiαk) = Tr((ααk)βi) = Tr




n−1∑

j=0

tkjαjβi


 =

n−1∑

j=0

tkjTr(αjβi) = tki.

So this proves dij = tji, for all 0 ≤ i, j ≤ n− 1.

Theorem 3.2.2 (Gao, Lenstra, 1992, [9]) Let N = {α, αq, ..., αqn−1} be an opti-

mal normal basis of Fqn over Fq. Let b = Trqn|q(α), the trace of α in Fq. Then either

(i) n + 1 is a prime, q is primitive in Zn+1 and −α/b is a primitive (n + 1)-th

root of unity; or

(ii) (a) q = 2v for some integer v such that gcd(v, n) = 1,

(b) 2n + 1 is a prime, 2 and -1 generate the multiplicative group Z∗
2n+1, and

(c) α/b = ζ + ζ−1 for some primitive 2n + 1-th root ζ of unity.

Proof. Let αi = αqi
, 0 ≤ i ≤ n− 1, and {β0, β1, ..., βn−1} be the dual basis of

N with βi = βqi
. We assume (i, j)- entry of D denoted by d(i, j) where D = dij.

Then, we can write

d(i, j) = d(i− j,−j),

for all 0 ≤ i, j ≤ n− 1.

We saw from the proof of Theorem 2.2.2 that each row of D (or column of T ) has

exactly two nonzero entries which are additive inverses, except the first row which

has exactly nonzero entry with value b. This is equivalent to saying that for each

i 6= 0, αβi is of the form aβk − aβl for some a ∈ Fq and integers 0 ≤ k, l ≤ n− 1,

and αβ0 = bβm for some integer 0 ≤ m ≤ n− 1. Replacing α by −α/b and β by

−bβ we may, without loss of generality, assume that Tr(α) = −1. Then we have

αβ0 = −βm
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Also, from

Tr(α)Tr(β) =
∑

i,j

αiβj =
∑

k

Tr(αβk) = 1

we see that we have Tr(β) = −1.

If m = 0 then from αβ0 = bβm we see that α = −1, so that n = 1, a trivial case.

Let it henceforth be assumed that m 6= 0.

We first deal with the case that 2m ≡ 0 (modn). Raising αβ0 = bβm to qm-th

power we see that

αmβm = −β2m = −β0 = βm/α.

Therefore, we have

ααm = 1 = −Tr(α) =
n−1∑

i=0

−αi.

This shows that d(i,m) = −1 for all i = 0, 1, ..., n− 1. This implies that for each

i 6= 0 there is a unique i∗ 6= m such that

αβi = βi∗ − βm.

If i 6= j then αβi 6= αβj, so i∗ 6= j∗. Therefore i 7→ i∗ is a bijective map from

{0, 1, ..., n− 1} − {0} to {0, 1, ..., n− 1} − {m}. Hence each i∗ 6= m occurs exactly

once, and so

ααi∗ = αi for i∗ 6= m,

ααm = 1.

It follows that the set {1}⋃{αi|i = 0, 1, ..., n− 1} is closed under multiplication by

α. Since it is also closed under the Frobenius map, it is a multiplicative group of

order n + 1. This implies that αn+1 = 1, and we also have α 6= 1. Hence α is a zero

of xn + ... + x + 1. Since α has degree n over Fq, the polynomial xn + ... + x + 1 is

irreducible over Fq. Therefore n + 1 is a prime number. This shows that we are in

case (i) of Theorem 3.2.2.

For the remainder of the proof we assume that 2m is not congruent to 0 modulo

n. By αβ0 = −βm, we have d(0, i) = −1 or 0 according as i = m or i 6= m. Hence

from d(i, j) = d(i− j,−j), for all 0 ≤ i, j ≤ n− 1 we find that

d(i, i) =




−1 for i = −m

0 for i 6= −m
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Therefore αβ−m has a term −β−m. As −m 6= 0, there exists 0 ≤ k ≤ n− 1 such

that

αβ−m = βk − β−m, k 6= −m.

We next prove that the characteristic of Fq is 2. Note that

αm(αβ0) = αm(β−m) = −(αβ0)
qm

= −(−βm)qm

= β2m.

On the other hand,

α(αmβ0) = α(αβ−m)qm

= α(βk − β−m)qm

= αβk+m − αβ0 = αβk+m + βm.

Since αm(αβ0) = α(αmβ0) we obtain

αβk+m = β2m − βm.

Now we compute ααkβ−m in two ways. To this purpose, note that d(−m−k,−k) =

d(−m, k), by αβ−m = βk − β−m, k 6= −m. Since k 6= −m implies that −m− k 6= 0,

we may assume that

αβ−m−k = β−k − βj

for some j is not in the set {−k,−m− k}, hence j + k 6= 0,−m. On the one hand,

αk(αβ−m) = αk(βk − β−m)

= (αβ0 − αβ−k−m)qk

= (−βm − β−k + βj)
qk

= −βk+m − β0 + βj+k.

On the other hand,

α(αkβ−m) = α(αβ−m−k)
qk

= α(β−kβj)
qk

= αβ0 − αβj+k = −βm − αβj+k.

We have

αβj+k = −βj+k + β0 + βm+k − βm.

As j + k 6= −m, βj+k does not appear in αβj+k by the definition of d(i, i). Thus

−βj+k must cancel against one of the last two terms.

If −βj+k + βm+k = 0 then j + k = m + k and thus αβm+k = β0 − βm. But by

αβk+m = β2m − βm, β0 = β2m and 2m ≡ 0 (mod n), contradicting the assumption.
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Consequently, −βj+k−βm = 0 and αβj+k = βm+k +β0. The first relation implies

that j + k = m and -2 = 0. Therefore the characteristic of Fq is 2, and

αβm = βm+k + β0.

From now on we assume that q = 2v for some integer v. The equations αβ0 = −βm

and αβ−m = βk − β−m, k 6= −m can be written as

αβ = βm, αβ−m = βk + β−m.

Raising αβ−m = βk + β−m to the qm-th power and comparing the result to αβm =

βm+k + β0, we find αmβ = αβm, which is the same as

α

β
=

αm

βm

=

(
α

β

)qm

Multiplying the last equation and αβ = βm we find that α2 = αm = αqm
. By

induction on r one deduces from this that αqmr
= α2r

for every nonnegative integer

r. Let r = n/gcd(m,n). Then α2r
= α, which means that α is in F2r and thus of

degree at most r ≤ n over the prime field F2 of Fq. As α has degree n over Fq, it

has degree at least n over F2. Hence r must equal to n, and thus gcd(m, n) = 1.

Also from the fact that α has the same degree over F2 and Fq for q = 2v, we see

immediately that gcd(v, n) = 1 and the conjugates of α over Fq are the same as

those over F2, namely α, α2, ..., α2n−1
.

Let m1 be a positive integer such that mm1 ≡ 1 (mod n). Then by repeatedly

raising α/β to qm-th power we have

α

β
=

(
α

β

)qmm1

=

(
α

β

)q

( Note that (α/β)qn

= α/β. ) This implies that α/β ∈ Fq, and since Tr(α) =

Tr(β) = −1 we have in fact α = β. Thus by dij = tji, for all 0 ≤ i, j ≤ n− 1 we

see that d(i, j) = d(j, i).

Let now ζ be a zero of x2 − αx + 1 in an extension Fq2n of Fq, so that ζ + ζ−1 = α.

The multiplicative order of ζ is a factor of q2n−1 and is thus odd; let it be 2t+1. For

each integer i, write γi = ζ i +ζ−i, so that γ0 = 0 and γ1 = α. It can be seen directly

that γi = γj if and only if i ≡ ±j (mod 2t + 1). Hence there are exactly t different
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nonzero elements among the γi, namely γ1, γ2, ..., γt. Each of the n conjugates of α

is of the form α2j
= ζ2j

+ ζ2−j
= γ2j for some integer j, and therefore occurs among

the γi. This implies that n ≤ t. We show that n = t by proving that, conversely,

every nonzero γi is a conjugate of α. This is done by induction on i. We have

γ1 = α and γ2 = α2, so it suffices to take 3 ≤ i ≤ t. We have

αγi−2 = (ζ + ζ−1)(ζ i−2 + ζ2−i) = γi−1 + γi−3,

where by induction hypothesis each of γi−2, γi−1 is conjugate to α, and γi−3 is either

conjugate to α or equal to zero. Thus when αγi−2 is expressed in the normal basis

{α2i|i = 0, 1, ..., n− 1}, then γi−1 occurs with a coefficient 1. By dij = tji, for all

0 ≤ i, j ≤ n− 1 implies that when αγi−1 is expressed in the same basis, γi−2 likewise

occurs with a coefficient 1. Hence from the fact that β = α and γi−1 6= α we see

that αγi−1 is equal to the sum of γi−2 and some other conjugate of α. But since we

have α · γi−1 = γi−2 + γi, that other conjugate of α must be γi. This completes the

inductive proof that all nonzero γi are conjugate to α and that n = t.

From the fact that each nonzero γi equals a conjugate α2j
of α it follows that

for each integer i that is not divisible by 2n + 1, there is an integer j such that

i ≡ ±2j ( mod 2n + 1). In particular, every integer i that is not divisible by 2n + 1

is relatively prime to 2n + 1, so 2n + 1 is a prime number, and Z2n+1
∗ is generated

by 2 and -1. Thus the conditions (a) and (b) of the Theorem 3.2.2 are satisfied. All

assertions of (ii) have been proved.

2
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CHAPTER 4

MULTIPLICATION AND INVERSION IN

FINITE FIELDS USING NORMAL AND

OPTIMAL NORMAL BASES

There are many applications of optimal normal bases. For example, in the paper

[32] a new parallel multiplier for F2m whose elements are represented using the

optimal normal basis of type II is presented. As it will be shown below the proposed

multiplier requires 1, 5(m2−m) XOR gates, as compared to 2(m2−m) XOR gates

required by the Massey-Omura multiplier.

Let us recall here the conditions of the Theorem 3.1.3: We assume that p =

2m + 1 is a prime and either of the following two conditions also holds:

i) 2 is a primitive root modulo p.

ii)p ≡ 7 (mod8) and the multiplicative order of 2 modulo p is m.

Then, we have an optimal normal basis of type II in F2m based on the normal

element α = γ + γ−1, where γ is the primitive pth root of unity. The basis is given

as

M = {α, α2, α4, ..., α2m−1}.

We can show that there exists another basis N which is obtained by a simple

permutation of the basis elements in M and construct a new parallel multiplication

algorithm in the new basis N . We examine both cases below:
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i) If 2 is a primitive root modulo p, then the set of powers of 2 modulo p

P1 = {2, 22, 23, ..., 22m−1, 22m} mod p

is equivalent to

Q1 = {1, 2, 3, 4, ..., 2m}.

Therefore, a basis element of the form γ2i
+ γ2−i

can be written as γj + γ−j for j ∈
[1, 2m]. Moreover, we can rewrite γj + γ−j as γ(2m+1)−j + γ−(2m+1)+j; if j ≥ m + 1,

then the power of γ becomes in the range [1,m].

ii) If the multiplicative order of 2 modulo p is m, then the set of powers of 2 modulo

p

P1 = {2, 22, 23, ..., 22m−1, 22m} mod p

consists of m distinct integers in the range [1, 2m]. If 2i (modp) is in the range

[1,m],then leave as it is. If 2i (modp) is in the range [m + 1, 2m], we write in its

place the number (2m + 1)− (2imod p) to bring it to the range [1,m]. Since these

numbers are all distinct, the set P2 is equivalent to

Q2 = {1, 2, 3, 4, ..., 2m}.

As a result, a basis element of the form γ2i
+ γ2−i

for i ∈ [1,m] can be written

uniquely as γj + γ−j with j ∈ [1,m].

Consequently, the bases M and N are given as

M = {γ + γ−1, γ2 + γ−2, γ22

+ γ−22

, ..., γ2(m−1)

+ γ−2(m−1)},
N = {γ + γ−1, γ2 + γ−2, γ3 + γ−3, ..., γm + γ−m}

are the same. The basis N is obtained from the basis M using a simple permutation.

Let A be expressed in the basis M as

A = á1α + á2α
2 + á3α

22

+ ... + ámα2m−1

,

where α = γ + γ−1. The representation of A in the basis N is given as

A = a1α1 + a2α2 + a3α3 + ... + amαm,

where αi = γi + γ−i. We can express the permutation between the coefficients

aj = ái as
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j =





k if k ∈ [1,m],

(2m + 1)− k if k ∈ [m + 1, 2m]

where k = 2i−1mod(2m + 1) for i = 1, 2, ..., m. This permutation is the vital part

of the algorithm.

The basis N is not a normal basis, it is a shifted form of the canonical basis.

Note that the exponents of basis elements of the shifted canonical basis is one more

than the ones of the canonical basis. It is constructed an efficient parallel multiplier

in the following section using this new basis.

4.1 New Multiplication Algorithm

Using the terminology we introduced in the beginning of this chapter, we present

the following algorithm:

1. Convert the elements represented in the basis M to the basis N using the

permutation.

2. Multiply the elements in the basis N .

3. Convert the result back to the basis M using the inverse permutation.

The first and third steps are implemented without any gates since the permutation

operation requires a simple rewiring. The second step is a multiplication operation

in the basis N , which are presented below. Let A, B ∈ F2m be represented in the

basis N as

A =
m∑

i=1

aiαi =
m∑

i=1

ai(γ
i + γ−i),

B =
m∑

i=1

biαi =
m∑

i=1

bi(γ
i + γ−i),

The product of these two numbers C = A.B is written as

C = A.B =

(
m∑

i=1

ai(γ
i + γ−i)

)


m∑

j=1

bj(γ
j + γ−j)


.

This product can be transformed to the following form:

C =
m∑

i=1

m∑

j=1

aibj(γ
i−j + γ−(i−j)) +

m∑

i=1

m∑

j=1

aibj(γ
i+j + γ−(i+j)) = C1 + C2.
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The term C1 has the property that the exponent (i− j) of γ is already with in the

proper range, i.e., −m ≤ (i − j) ≤ m for all i, j ∈ [1,m]. Furthermore, if i = j,

then γi−j + γ−(i−j) = γ0 + γ0 = 0. Thus, we can write C1 as

C1 =
m∑

i=1

m∑

j=1

aibj(γ
i−j + γ−(i−j)) =

∑

1≤i,j≤m

i6=j

aibj(γ
i−j + γ−(i−j)).

If k = |i− j|, then the product aibj contributes to the basis element αk = γk + γ−k.

For example, the coefficients of α1 are the sum of all aibj for which |i− j| = 1.

Furthermore, the term C2 is transformed in to the following:

C2 =
m∑

i=1

m∑

j=1

aibj(γ
i+j + γ−(i+j))

=
m∑

i=1

m−i∑

j=1

aibj(γ
i+j + γ−(i+j)) +

m∑

i=1

m∑

j=m−i+1

aibj(γ
i+j + γ−(i+j))

= D1 + D2.

The exponents of the basis elements in D1 are in the proper range i.e., 1 ≤
(i + j) ≤ m for i = 1, 2, ..., m and j = 1, 2, ..., m− i. If k = i + j, then the product

aibj contributes to the basis element αk as i and j take these values.

But, the basis elements of D2 are all out of range. Use the identity γ2m+1 = 1 to

bring them to the proper range:

D2 =
m∑

i=1

m∑

j=m−i+1

aibj(γ
i+j +γ−(i+j)) =

m∑

i=1

m∑

j=m−i+1

aibj(γ
2m+1−(i+j) +γ−(2m+1−(i+j))).

Hence, if k = i + j > m, replace αk by α2m+1−k. The constructions of C1, D1

and D2 are given below:
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The Construction of C1:

α1 α2 ... αm−2 αm−1 αm

a1b2 + a2b1 a1b3 + a3b1 ... a1bm−1 + am−1b1 a1bm + amb1

a2b3 + a3b2 a2b4 + a4b2 ... a2bm + amb2

. .

. .

. .

am−1bm + ambm−1

The Construction of D1:

α1 α2 α3 ... αm−2 αm−1 αm

a1b1 a1b2 ... a1bm−3 a1bm−2 a1bm−1

a2b1 ... a2bm−4 a2bm−3 a2bm−2

. . .

. . .

. . .

am−3b1 am−3b2 am−3b3

am−2b1 am−2b2

am−1b1

The Construction of D2:

α1 α2 α3 ... αm−2 αm−1 αm

ambm am−1bm am−2bm ... a3bm a2bm a1bm

ambm−1 am−1bm−1 ... a4bm−1 a3bm−1 a2bm−1

ambm−2 ... a5bm−2 a4bm−2 a3bm−2

. . .

. . .

. . .

am−1b4 am−2b4 am−3b4

amb3 am−1b3 am−2b3

amb2 am−1b2

amb1
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4.1.1 Details of Multiplication and Complexity Analysis

If these three arrays C1, D1 and D2 are inspected closely, the following observations

can be made:

1. All three arrays are composed of the elements of the form aibj for i, j ∈ [1,m]

2. The height of the ith column in the array C1 is 2(m − i) for i = 1, 2, ..., m.

This is the number of the terms of the form aibj to be summed in the ith

column.

3. The height of the ith column in the array D1 is i− 1.

4. The height of the ith column in the array D2 is i.

5. Therefore, the height of the ith column in the entire array representing the

total sum C is found as 2(m− i) + i− 1 + i = 2m− 1.

6. If there is an element aibj is present in a column, then the element ajbi is also

present in the same column. This is true for all arrays C1, D1 and D2.

7. An element of the form aibi is present only once in a column of either D1 or D2.

8. A column of the entire array representing the total sum C contains a single

element of the form aibi and 2m − 2 elements of the form aibj, where ajbi is

also present.

The proposed multiplication algorithm first computes the terms aibj for i, j ∈
[1,m] using exactly m2 two-input AND gates. Let tij = aibj+ajbi for i = 1, 2, ..., m−
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1 and j = i + 1, i + 2, ..., m. Compute the terms tij using

(m− 1) + (m− 2) + ... + 2 + 1 = m(m− 1)/2

two input XOR gates. The ith column of the entire array contains exactly (2m −
2)/2 = m−1 terms of the form tij and also a single element of the form aibi. These

m numbers are summed using a binary XOR tree, which requires m−1 XOR gates.

Due to the parallelism, all m columns require m(m − 1) XOR gates. Hence, the

construction of the product C requires

# AND Gates = m2 ,

# XOR Gates = m(m− 1)/2 + m(m− 1) = 3/2m(m− 1),

But, the parallel Massey-Omura algorithm uses m2 AND gates and 2m(m−1) XOR

gates. Therefore, the proposed algorithm requires 25 % fewer XOR gates than the

Massey-Omura algorithm.

4.2 Fast Operation Method in F2n Using a Modified Opti-

mal Normal Basis

In this section, we show how to construct an optimal normal basis over finite field

of high degree. We have two methods for fast operations in some finite field F2n .

The first method is to use an optimal normal basis of F2n over F2. On the other

hand, the second method which regards the finite field F2n as an extension field of

F2s and F2t is to use an optimal normal basis of F2t over F2 when n = st where

s and t are relatively primes. Using a polynomial basis, the multiplication of two

elements in F2n is a product of two polynomials modulo an irreducible polynomial.

The inverse of an element is easily computed using the Euclid algorithm.

Moreover, another fast operation method is suggested [25]. In case of n = st

where s and t are relatively primes, F2n is regarded as a vector space of dimension

t over F2s . Each element of F2n is represented by a polynomial basis which is

generated by an irreducible polynomial of degree t over F2s . It is called a modified

polynomial basis.

Let f(x) be a monic irreducible polynomial of degree n over F2 denoted by

f(x) = d0 + d1x + ... + dn−1x
n−1 + xn,
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where d0, d1, ..., dn−1 ∈ F2.

Then we construct the finite field F2n as F2[x]/(f(x)). Let B̃ = {γ0, γ1, ..., γn−1}
be a basis for F2n over F2. Every element A of F2n is identified with the vector

A = (a0, a1, ..., an−1) e.g.

A =
n−1∑

i=0

aiγi, ai ∈ F2.

Now we investigate an addition and multiplication of two elements of F2n for

polynomial (canonical) basis. Let α be a root of an irreducible polynomial f(x).

Then C̃ = {1, α, α2, ..., αn−1} forms a basis for F2n . Let A be the same above and

B =
n−1∑

i=0

biαi = (b0, b1, ..., bn−1).

Then

A + B =
n−1∑

i=0

(ai + bi)αi,

A + B = (a0 + b0, a1 + b1, ..., an−1 + bn−1).

Using the fact that α is a root of f(x), i.e.

d0 + d1α + d2α
2 + ... + dn−1α

n−1 = 0,

we can obtain

A.B =

(
n−1∑

i=0

aiαi

) 


n−1∑

j=0

bjαj


 =

n−1∑

k=0

ckαk.

Observe that addition has the same complexity as an optimal normal basis, because

in both cases there is a component-wise addition. However, multiplication using

polynomial basis is much more complex than using optimal normal basis.

In case that s and t are relatively prime, we may consider the field F2n as an

extension field of two subfields F2s and F2t .

Theorem 4.2.1 (Gao 1994) Let s and t be relatively prime. If Ñ = {α, α2, ...,

α2t−1} is a normal basis for F2t over F2, then Ñ is also a normal basis for F2st over

F2s.

Proof. Follows by the Lemma 3.2.1.

2

Let Ñ be an optimal normal basis of the form Ñ = {α, α2, ..., α2t−1}.
Since every multiplication group F ∗

(2s) is cyclic, there exists a generator ξ of F ∗
2s
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(since s is practically small, it is very simple to find a ξ). So every element of F ∗
2s

is represented by ξai for some integer 0 ≤ ai < 2s. Let us denote the zero element

of F2s as -1. Thus any element A of F2st is represented with respect to Ñ by

A =
t−1∑

i=0

ziξ
aiα2i

, zi ∈ {0, 1}, 0 ≤ ai < 2s.

We denote it by A = (a0, a1, ..., at−1). If zi is zero, put -1 in the i-th coordinate.

(−1,−1, ...,−1) is the zero element of F2st over F2s . So addition of two elements

in F2st is reduced to the addition of 2t elements of F2s . Thus we need the table

of addition of elements of F2s . Using an irreducible polynomial which defines F2s ,

each element ξai can be represented by a polynomial basis. We denote ξai by the

extended vector representation (p0, p1, ..., ps−1, ai) which consists of the polynomial

representation and its exponent ai. So the addition table is composed of 2s rows

and (s + 1) columns. In order to add two elements of F2s , first find elements of

table for two elements, add to use a polynomial basis and find the exponent of an

element of the table matching its result. Using ξ2s
= ξ and α2t

= α, we obtain

A2s

= (z0ξ
a0α + z1ξ

a1α2 + z2ξ
a2α22

+ ... + zt−1ξ
at−1α2s+t−1

)
2s

= z0ξ
a0α2s

+ z1ξ
a1α2s+1

+ z2ξ
a2α2s+2

+ ... + zt−1ξ
at−1α2s+t−1

= (at−s, at−s+1, ..., at−1−s).

It is just the cyclic shifts of the original A. Let C = AB = (c0, c1, ..., ct−1). Then

ck =
t−1∑

i=0

t−1∑

j=0

tijai+kbj+k, k ≡ 0, s, 2s, ..., (t− 1)s mod t

where tij ∈ F2 and subscripts on a and b are taken modulo t. Since s and t are

relatively prime, k varies from 0 to t− 1. So all ci’s are obtained by s times cyclic

shifts of A and B.

Results of implementation

In this section, we will compare the complexity of F21018 with that of F2904 =

F28.113 . According to the Theorem 3.1.1 (type I), F21018 has an optimal normal basis.

This optimal normal basis is generated by a root α of f(x) = 1+x+x2 + ...+x1018.

Since F21018 has an optimal normal basis, the matrix of multiplication has two

1’s for each row except for the last row(the last row has one 1). Using the matrix,
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we compute the multiplication of two elements of F21018 and an exponentiation of

one element of F21018 .

Let n = 904 = 8.113, s = 8 and t = 113. Then F2904 is regarded as an extension

field of F28 and F2113 . Take a primitive polynomial p(x) = 1+x+x3 +x4 +x8, then

its root ξ generates F28
∗. By the Theorem 3.1.3, F2113 has an optimal normal basis.

Let f(x) = 1 + x + x2 + ... + x226. If β is its root then α = β + β−1 generates an

optimal normal basis of F2113 . This normal basis is also a self-dual normal basis.

Table [25] shows the comparison of operation speed of the above two cases. It

is shown that an operation speed using a modified optimal normal basis is faster

than that using an optimal normal basis. The memory size is almost the same as

in the case of a modified optimal normal basis and an optimal normal basis. The

time required for making matrix of F2904 is huge. Since it is a preparation step, it

can be ignorable for an operation speed.

operation speed operation speed memory size memory size

for F21018 for F2904 for F21018 for F2904

making 9.66 sec 3 hour 18 min 2 x 1018- 1 2 x 113 -1

matrix 22.37 sec byte byte

one element 1018 byte 113 byte

making add- 0.02 sec 255 x 9

ition table byte

multiplication 4.4 sec 0.01 sec

exponent- 57.3 sec 0.36 sec

iation (exponent is (exponent is

about 225) about 230)

4.3 Orders of Optimal Normal Basis Generators

In several cryptographic systems (such as, Diffie Hellmann [5]), a fixed element of a

group needs to be repeatedly raised to many different large powers. To make such

system secure, the fixed element must have high order. In any implementation of

these systems, there should be an efficient algorithm for computing large powers of

the fixed element. Therefore, Gao and Vanstone [10] show by experimental results
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that the optimal normal basis generators given in Type II Construction have exactly

this desired property: They have very high multiplicative orders, and large powers

of them can be computed efficiently, as indicated by the following result.

Theorem 4.3.1 (Gao, Vanstone 1995) Let α be an optimal normal basis generator

in type II construction. Then, for any integer e, αe can be computed in O(n.w(e))

bit operations, where w(e) is the number of 1’s in the binary representation of e

which is called the Hamming weight of the element e.

As w(e) ≤ n for 0 ≤ e ≤ 2n − 1, αe can be computed in O(n2) bit operations.

To compare, we should mention that for an arbitrary β ∈ F2n , if F2n is represented

by an optimal normal basis, Stinson [30] and Von Zur Gathen [34] showed that βe

can be computed in about O(n3/log2n) bit operations in F2n ,

In the following, we assume the conditions in Construction II are satisfied. Our

goal is to determine the multiplicative order of α = γ + γ−1.

Here, the standard algorithm for the determining the multiplicative order of

elements in finite fields is used. To apply this algorithm for computing the multi-

plicative order of an element in F2n , one needs to know the complete factorization

of the integer 2n − 1.

The optimal normal basis generated by α is {α, α2, ..., α2n−1}. Here, we arrange

the elements of the basis in a different order. For an integer i, define γi = γi + γ−i.

We recall that (Section 4.1),

{α, α2, ..., α2n−1} = {γ1, γ2, ..., γn}.

To facilitate multiplication of elements represented under this basis, we define a new

function from the set of integers to the set {0, 1, ..., n}. For any integer i, define

s(i) to be the unique integer such that

0 ≤ s(i) ≤ n, and i ≡ s(i)mod 2n + 1or i ≡ −s(i)mod 2n + 1.

Obviously, s(0) = 0, s(i) = −s(i) and

γi = γs(i), α
2i

= γs(2i)
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for all i.

As

γi.γj = γi+j + γi−j

for all i, j, we have

γi.γj = γs(i+j) + γs(i−j),

1 ≤ i, j ≤ n.

Next we show how to compute the product γi.A, where 1 ≤ i ≤ n and A is an

arbitrary element in F2n . Suppose that A =
∑n

k=1 akγk, where ak ∈ F2. Then

γi.A =
n∑

k=1

akγi.γk =
n∑

k=1

ak(γs(k+i) + γs(k−i)).

Note that

n∑

k=1

akγs(k+i) =
n−i∑

k=1

akγk+i +
n∑

k=n+1−i

akγ2n+1−(k+i) (4.1)

=
n∑

k=i+1

ak−iγk +
n∑

k=n+1−i

a2n+1−(k+i)γk (4.2)

=
n∑

k=i+1

as(k−i)γk +
n∑

k=n+1−i

as(k+i)γk, (4.3)

n∑

k=1

akγs(k−i) =
i∑

k=1

akγi−k +
n∑

k=i+1

akγk−i (4.4)

=
i∑

k=1

ai−kγk +
n−i∑

k=1

ak+iγk (4.5)

=
i∑

k=1

as(k−i)γk +
n−i∑

k=1

as(k+i)γk, (4.6)

We assume that a0 = 0 everywhere. We see that

γi.A =
n∑

k=1

(as(k−i) + as(k+i))γk (4.7)

=
c∑

k=1

(ai−k + ai+k)γk +
d∑

k=c+1

f(k)γk +
n∑

k=d+1

(ak−i + a2n+1−(k+i))γk,

where c =min{i, n− i}, d =max{i, n− i} = n− c and

f(k) =





ai−k + a2n+1−(k+i) if i > n− i,

ak−i + ak+i if i < n− i.

This shows that γi.A can be computed in O(n) bit operations.
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Now, to compute αe we can assume that 0 ≤ e < 2n − 1, as α2n−1 = 1. Write

e =
∑n−1

k=0 ek2
k, where ek ∈ {0, 1}. Then

αe = Πn−1
k=0(α

2k
)
ek

= Πn−1
k=0(γs(2k))

ek .

This suggests that αe can be computed iteratively as follows:

Algorithm:

Input: An integer e with 0 ≤ e ≤ 2n − 1.

Output: αe represented in the basis (γ1, ..., γn).

Step 1. Set A := 1 =
∑n

k=1 γk and compute the binary representation: e =
∑n−1

k=0 ek2
k;

Step 2. For k from 0 to n− 1, if ek = 1 then set A := γs(2k).A;

Step 3. Return A;

End.

The correctness of the algorithm is obvious. The major cost is incurred at Step2

where w(e) products of the form γk.A are computed. Since we have shown that each

such product can be computed in O(n) bit operations, the total cost is O(n.w(e)) bit

operations. Therefore, αe can be computed in O(n.w(e)) bit operations as claimed

by the Theorem 4.3.1

2

By using the algorithm described above, S. Gao and S. Vanstone [10] have

computed the multiplicative order of α for n ≤ 1200 where the conditions of Con-

struction II are satisfied and complete factorization of 2n − 1 is known.

Experiments indicate that the multiplicative order of α is at least O((2n−1)/n).

This means that α always has very high multiplicative order. Besides, one can check

that if n is prime, then α is primitive.

4.4 A Fast Algorithm for Multiplicative Inversion Using

Normal Basis

It is known that multiplicative inversion is much more time-consuming than mul-

tiplication. Several algorithms have been proposed for multiplicative inversion in

F2m . N. Takagi, J. Yoshiki and K. Takagi [33] proposed a new fast algorithm for
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multiplicative inversion in F (2m) using normal basis. The new method is an im-

provement of the algorithm proposed by Chang [2] et al.

From Fermat‘s theorem, for any nonzero element β ∈ F2m , β−1 = β2m−2 holds.

But 2m − 2 = 21 + 22 + ... + 2m−1 and

β−1 = β2m−2 = β21 × β22 × ...× β2m−1

.

Wang et al.[35] proposed an algorithm using this expression. This algorithm

requires m− 2 multiplications as well as taking m− 1 squares.

As we mentioned before, squaring is just cyclic shift by using normal basis and,

so is much faster than multiplication. Hence, it is important to reduce the number

of multiplications for accelerating the exponentiation.

Itoh and Tsujii [16], [17] decreased the number of required multiplications to

O(log m). We can call this algorithm Algorithm[IT]. Algorithm[IT] requires l(m−
1) + w(m− 1)− 2 multiplications and l(m− 1) + w(m− 1)− 1 (multiple-bit) cyclic

shifts, where l(m−1) = q is the number of bits of the binary representation of m−1

and w(m− 1) is the number of 1‘s in the representation which is defined before.

Feng [7] proposed a similar algorithm, which requires the same number of mul-

tiplications and cyclic shifts as Algorithm[IT].

Chang [2] improved the Algorithm[IT]. Hereafter, we call the algorithm proposed

by Chang as the Algorithm[Chang]. Algorithm[Chang] requires (l(s) + w(s)− 2) +

(l(t)+w(t)−2) multiplications and (l(s)+w(s)−1)+(l(t)+w(t)−2) (multiple-bit)

cyclic shifts where m− 1 = s× t and l and w defined above.

Algorithm[Chang] is efficient, but it is not applicable if m − 1 is a prime num-

ber. N. Takagi, J. Yoshiki and K. Takagi [33] proposed a new algorithm which is

applicable to the case where m− 1 is prime.

Since

2m − 2 = 2m−1 + 2m−1 − 2 = 2m−1 + 2m−2 + ... + 2m−h + 2m−h − 2,

β−1 = β2m−2 = β2m−1 × β2m−2 × ...× β2m−h × β2m−h−2

β2m−i
can be calculated by i-bit cyclic shift. Therefore, β−1 can be found from

β2m−h−2 by h multiplications. Indeed, β2m−h−2 can be calculated by Algorithm[IT]

or Algorithm[Chang] by replacing m by m− h.
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By this method, the number of multiplications required is reduced for some

integers m. Moreover, it is decreased by factorizing m − 1 into more than two

factors. Thus, this method is adopted when m− h− 1 can be factorized into more

than two factors. Hence, the principle that decomposing m− 1 into several factors

and a small remainder h can be recursively applied to one of the factors of m−h−1.

When m− 1 is decomposed as m− 1 =
∏k

j=1 sj + h and s1 is not decomposed,

the number of multiplications required is
∑k

j=1(l(sj) + w(sj) − 2) + h. This is

because the number of multiplications required corresponding to the factor sj is

l(sj) + w(sj)− 2. When the first factor s1 is decomposed further, we can calculate

the number of multiplications required by using this formula iteratively.

The number of multiplications required depends on the way of decomposition.

There may exist several decompositions which minimize the number of multiplica-

tions. We call the decomposition which minimizes the number of multiplications

required and consists of the fewest factors as the optimal decomposition. More

than one optimal decompositions may exist.

The following propositions can be used for finding optimal decomposition(s) of

m− 1.

Proposition 4.4.1 When m − 1 = 2n, the optimal decomposition is m − 1 itself

(nondecomposition) and the number of required multiplications is n.

Proposition 4.4.2 When m − 1 = 2ñs + h, where s is odd, the smallest number

of required multiplications by a decomposition of m− 1 as
∏k

j=1 sj + h (either s1 is

decomposed further or not) is ñ+h+MR(s) where MR(s) is the number of required

multiplications by the optimal decomposition of s.

When sj = 2ñj s̃j, the number of required multiplications corresponding to sj

and that corresponding to 2ñj× s̃j are identical, i.e., l(s̃j)+w(s̃j)−2+ ñ. Therefore,

the optimal decomposition of m−1 does not include a power of 2 as a factor unless

it is in the form S×2ñ +h and S is a decomposition of s with a nonzero remainder,

where m− 1 = 2ñs + h.

When m − 1 = 2n + c (0 < c < 2n), the decomposition of m − 1 as 2n + c

does not decrease the number of required multiplications because the number of
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multiplications becomes n+c, that is, not less than l(m−1)+w(n−1)−2 = n+w(c).

Hence, in the optimal decomposition of m − 1, the remainder h must be smaller

than c and, so,

l(m− h− 1) = l(m− 1) = n + 1.

When m − 1 is decomposed as
∏k

j=1 sj + h and s1 is not decomposed further, the

number of required multiplications is at least

k∑

j=1

l(sj) + h ≥ l(m− 1) + h

because w(sj) ≥ 2. When the first factor s1 is decomposed further, the number

of required multiplications corresponding to the optimal decomposition of s1 is

at least l(s1) and, hence, the number of required multiplications by the optimal

decomposition of m − 1 is also at least l(m − 1) + h. Therefore, we have the

following propositions also.

Proposition 4.4.3 In the optimal decomposition of m− 1, the remainder h must

be smaller than w(m− 1)− 2.

Proposition 4.4.4 When m− 1 = 2n + 2ñ, where n > ñ, i.e., w(m− 1) = 2, the

optimal decomposition is m− 1 itself and the number of required multiplications is

n + 1.

In practical applications, m is usually chosen as a power of 2. When m =

2n,m − 1 = 2n − 1 and l(m − 1) = w(m − 1) = n. If we do not decompose

m − 1, Algorithm[IT] requires 2n − 2 multiplications. If n is even, then 2n − 1

can be factorized as (2n/2 + 1) × (2n/2 − 1) and, when n/2 is even again, 2n/2 − 1

can be factorized further. The number of multiplications is decreased in this case.

However, 2n − 1 can be a prime number. In this case, as n is odd, we can always

decompose 2n − 1 as 2(2(n−1)/2 + 1) × (2(n−1)/2 − 1) + 1 and reduce the number of

multiplications by Takagi‘s algorithm.

In conclusion, the proposed algorithm reduces the number of required multipli-

cations by decomposing m− 1 into several factors and a small remainder.
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CHAPTER 5

CONCLUSION

In many cryptographic and coding techniques, it is necessary to implement finite

field arithmetic such as addition, squaring and multiplication of two elements. Es-

pecially, multiplication of two field elements is difficult and time consuming. The

actualization of these arithmetic operations can be done more efficiently by a suit-

able choice of field representation. For instance, using normal basis, the squaring of

an element is just a cyclic shift operation of itself. In my thesis, first we gave some

basic definitions, theorems and results related with the normal basis in some finite

field. After that, we mentioned the advantages of using normal basis representation.

Moreover, we gave whether there is an advantage of using the pair of dual bases in

the multiplication operation.

However, Mullin, Onyszchuk and Vanstone proved that there is a lower bound

for the complexity of the normal basis. Hence, the concept of optimal normal bases

was introduced. Next, we gave the answers of questions that how we can construct

the optimal normal bases and what the ways of determination of optimal normal

bases.

There are many applications of optimal normal bases. Therefore, we studied

a multiplication algorithm by using optimal normal basis. Besides, we gave the

concept of modified optimal normal bases which also produce efficiency in multipli-

cation. Next, it was shown that large powers of the generators of optimal normal

bases, which have high multiplicative order, can be computed efficiently. Con-
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sequently, we presented an algorithm finding the multiplicative inverse of a field

element efficiently.

Eventually, we point out some some problems related with my thesis. By our

classification, not all finite fields have optimal normal bases. For fields without

optimal normal bases, it is desirable to have a normal basis of low complexity.

Therefore, the following question is of interest: What is the minimal complexity of

normal bases in Fqn over Fq, and how to construct a normal basis of minimal com-

plexity when there is no optimal normal basis in Fqn over Fq? For cryptographic

purposes it is important to have either a primitive element or an element of high

multiplicative order in F2n . Another interesting problem is the following: Let n be

a positive integer and γ a 2n+1-th primitive root of unity in some extension of F2.

Determine the multiplicative order of α = γ + γ−1.

The following problem is the converse of the above problem.

Let α be an element in an extension field of F2. Given the multiplicative order of

α, determine the order of γ, where α = γ + γ−1.
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