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ABSTRACT

’Viscosity Solutions’- An Introduction To The Basics Of The Theory

In this work, concepts that appear in the basic theory of viscosity so-
lutions theory is surveyed. Structures of sub and super differentials and
sub and super semijets, and concepts of generalized second derivative,
generalized 'maximum principle’ and generalized ’comparison principle’
are studied. Basic properties of semiconvex functions and sup (Jensen’s)
convolutions are presented. Existence and uniqueness of solutions of the
Dirichlet Problem for first and second order nonlinear elliptic partial dif-
ferential equations is studied.

Key words: viscosity solutions, nonlinear elliptic partial differential
equations, maximum principles, comparison theorems, Perron’s method.
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OZET

’Viskozite Coziimleri’-Teorinin Temellerine Bir Giris

Bu calismada viskozite ¢oziimleri teorisinin temelini olusturan kavram-
lar ele alinmigtir. Alt ve iist birinci ve ikinci tiirev kiimelerinin yapilari,
genellegtirilmis ikinci tiirev, genellegtirilmis ‘'maksimum prensibi’ ve genellegtir-
ilmis "kargilagtirma prensibi’ kavramlari incelenmigtir. Yar1 konveks fonksiy-
onlar ve sup (Jensen) konviilasyonlarma ait temel ozellikler verilmistir.
Birinci ve ikinci derece dogrusal olmayan elliptik kismi diferansiyel den-
klemler icin Dirichlet problemi ele alinarak bu problemin ¢éziimlerinin
varlik ve tekligi incelenmigtir.

Anahtar kelimler: viskozite ¢oziimleri, dogrusal olmayan elliptik kismi
diferansiyel denklemler, maksimum prensipleri, kargilagtirma teoremleri,
Perron yontemi.
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INTRODUCTION

The first time I was introduced to ’viscosity solutions’ was in Prof. H. Mete Soner’s
lecture during the research semester on ’Qualitative Behavior of Nonlinear Partial
Differential Equations’ that took place at TUBITAK (Turkish National Council of
Scientific and Technical Research)-Feza Giirsey Basic Sciences Research Institute,
Istanbul, Turkey. The idea then fascinated me for two reasons, one was that it was
a complete different way of looking at the things, with a different pair of glasses, in
a different perspective, and the other was that it was a rather new development in
mathematics which proved to be enormously promising in a very short period of time.
Afterwards, I have decided to write my MSc. thesis in this area in order to be able
to learn more on the subject along the way.

"Viscosity Solutions’ was first introduced by M. G. Crandall and P.-L. Lions in
1983. Since then over a thousand papers appeared in well known mathematical jour-
nals. Scope of these papers ranged from the theory to applications and to numerical
computations and they spanned a spectrum of subjects ranging from control theory
to image processing, from phase transitions to mathematical finance. This was an ev-
idence of the importance of the theory in applied mathematics; and in fact ’viscosity
solutions’ turned out to be the right class of weak solutions of certain fully nonlinear
first and second order elliptic and parabolic partial differential equations (pde’s).

The major breakthrough in the theory after 1983, came in 1988 with Jensen when



he was able to show uniqueness for second order equations. Jensen’s observation was
that even if Du?(Z) might not exist at a local maximum # of a semiconvex function
(See Section 2.2 for a definition), near Z one could find a sequence of x,,’s converging
to 2 such that Du?(z,) < 0. Hence this was actually a generalized second derivative
test for semiconvex functions. Most of the above mentioned papers were written after
this breakthrough.

Later on, in the second half of 1990’s, P-L. Lions and P. E. Souganidis introduced
'viscosity solutions’ to the area of nonlinear stochastic pde’s.

Recently, a four year (1998-2002) TMR (Training and Mobility of Researches)-
network project has been organized under the European Union TMR program bring-
ing together researches from 10 different institutions in Europe working on differ-
ent aspects of the theory; and preprints of the latest results from this project can
be obtained from their web page http://www.ceremade.dauphine.fr/reseaux/TMR-
viscosite/.

This survey thesis is mainly based on two major papers in the field. The first one
is ’Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations’ published by
M. G. Crandall, L.. C. Evans and P.-L. Lions in 1984 and the second one is the famous
survey article 'User’s Guide to Viscosity Solutions of Second Order Partial Differential
equations” by M. G. Crandall, H. Ishii and P.-L. Lions, published in 1992. Also, the
books 'Controlled Markov Processes and Viscosity solutions’ by W. H. Fleming and
H. M. Soner, "Fully Nonlinear Elliptic Equations’ by X. Cabré and L .A. Caffarelli,
and "Viscosity Solutions and Applications, C.I.M.E. Lecture Series (1660)’ by Bardi
et.al. are extensively used. (See references for details of the sources.)

The name ’viscosity’ comes from a traditional engineering application where a
nonlinear first order pde is approximated by quasilinear first order equations which
are obtained from the initial pde by adding a regularizing e Au® term, which is called
a ’'viscosity term’, and these approximate equations can be solved by classical or

numerical methods and the limit of their solution hopefully solves the initial equation.



This classical method was called method of vanishing viscosity’; and it was observed
at the very beginning of the research in this area that ’vanishing viscosity’ method
yielded viscosity solutions (See Section 4.2.3). However, this is only a historical
connection and viscosity solutions do not have more to do with this method or the
viscosity term. The definition of viscosity solutions as will be seen in this survey is
an intrinsic one.

"Viscosity Solutions’ theory is a highly nonlinear approach, for it does not make
use of differentiation as is the case in other weak solution approaches. It is a ”maxi-
mum principle”, ”generalized second derivative” approach, and it is a "real analysis”
approach using facts from calculus rather then making use of results from functional
analysis. Throughout this thesis we will try to emphasize these points as much as
possible.

Within this theory, several concepts of classical theory can be relaxed, generalized
and replaced by their correspondents. We can name some of them as follows:

1) Continuity to upper and lower semicontinuity (See Section 2.4 for definition),

2) Differentiation to sub- and super-differentials (See Section 2.2 for definition),

3) Second derivative to second order sub- and super semijets (See Section 2.2 for
definition),

4) Differential equation to pair of differential inequalities.

Throughout this thesis, nonlinear scaler second order pde’s will be considered, and
first order cases and analogues of certain concepts will be introduced along the way.
The presentation is preferred to be a ahistorical one in order to avoid repetitions of
the same ideas.

In Chapter 2, basic definitions and motivation will be given, in particular struc-
tures and properties of semijets and subdifferentials will be emphasized. Later on, the
link between linearization of a nonlinear mapping at a function ug and the 'properness’
property of this nonlinear mapping, and the maximum principle that this nonlinear

mapping is to satisfy will be discussed. Links with linear elliptic theory will be pointed



out by considering several simple examples regarding applications of maximum prin-
ciples. Finally, viscosity solution concept will be introduced via two perspectives and
two equivalent definitions will be stated.

In Chapter 3, since in viscosity solutions theory one inevitably works with upper
and lower semicontinuous functions (See Section 2.4 for a definition), it is important
to know how to work with their regularizations, therefore, the basic tools, namely
semiconvex functions and sup convolutions and their properties and links with semi-
jets, that will be needed in the analysis will be introduced first. Later on Jensen’s
lemma will be proved, and generalization of the second derivative concept, in other
words a 'maximum principle’ for upper semicontinuous solutions will be presented.
In the literature this last result is referred to as 'theorem on sums’.

In Chapter 4, the Dirichlet Problem on a bounded domain is considered. First,
the approach to be able to obtain a comparison result is discussed, then the condi-
tions under which a comparison result can be obtained are derived, and as a trivial
consequence of the comparison result, uniqueness is presented. The method and the
necessary conditions for comparison in first order case is presented shortly and why
the method for first order cases does not work in second order cases is illustrated by a
simple example. In the second part of Chapter 4, existence of solutions is considered
for the same Dirichlet Problem. There are several ways existence schemes can be
shown, and among them Perron’s method, which presupposes comparison, is chosen
to be presented in this work. We note that this is an existence scheme rather then
an existence result, since the existence of solutions in this method depends further
on existence of a subsolution and a supersolution that agrees on the boundary of
the domain. The conditions under which such a sub and super solution exist is very
problem specific and in different problem types it is dealt with different results from
classical analysis. Hence, Perron’s method can be considered more as an existence
scheme. Finally an existence scheme for first order case is presented, and this is the

historical connection we have mentioned above, the method of 'vanishing viscosity’.



This thesis is written with a view of providing the basics of the theory in order
to save time and effort for future students who would want to work on the subject,
and is thought of as a concise guide with basic tools for the beginner with almost no
knowledge on the subject and hence as a guide to the present introductory guides and
books for the theory. Therefore, we have tried to answer the questions of why’s as
much as possible, and tried to state what is in between the lines of usual proofs and
goes unstated. We have tried to visualize certain material along the sequel, and hence
used n = 1 illustrations and in some cases stated the proofs for n = 2. Also, some
of the exercises present in some of the introductory books to the theory are solved
and included as examples. In the notes sections to each chapter, content specific
references are given.

Throughout this thesis, the fact that one is trying to generalize a theory for
nonlinear equations, and that one is trying to generalize a 'weak solution concept’
and that since one will be working with nondifferentiable functions, one needs a

generalization of ’differentiability’ is simultaneously kept in mind.



PRELIMINARIES AND
MOTIVATION

2.1. Introduction

We will first start with directly presenting the below definition for a viscosity sub-
solution, viscosity supersolution and viscosity solution of a certain type of nonlinear
elliptic PDE. As we try to understand what this definition means by going over its

constituent terms, we will find ourselves introduced to viscosity solution theory.

Definition 2.1 Let F' be a continuous proper second order nonlinear elliptic partial
differential operator, and Q0 C R™. Then, a function u € USC(Q) is a viscosity
subsolution of ' =0 on € if

F(z,u(z),p,X) <0 for allz € Q and (p, X) € J3 u(z),
A function u € LSC(Q) is a viscosity supersolution of F'=0 on ) if
F(z,u(x),p,X) >0 for all z € Q and (p, X) € J3 u(x),

and a function u € C(£2) is a viscosity solution of F' =0 on Q if it is both a viscosity

subsolution and a viscosity supersolution of F' =0 on €.



Our first aim will be to investigate this definition and try to understand what it
means. In order to be able to do so, we will begin with exploring its components;
for example, when first presented with such a definition one immediately asks what
a JyTu(x), or a Jy u(x) is, or how F is defined and what ’proper’ is for a second
order nonlinear elliptic operator.

Next, we will ask the questions of ”why do we require F' to be proper, or u to be
upper semicontinuous for a subsolution and lower semicontinuous for a supersolution”,
and "what could be the motivation behind this definition”, "how possibly could its
equivalents be stated”, and ”finally, what could its merits be?”.

Along our way, we will also be defining viscosity subsolutions/supersolutions (and
hence viscosity solutions) of first order nonlinear elliptic partial differential operators,

and first order analogues of J3 " u(z) and J3 u(z).

2.2. Second Order Semijets & First Order Differ-
entials

Definition 2.2 Let (p,X) € R" x S(N), u: Q — R, and & € Q. Then (p,X) €
Jo u(@), if

u(x) <u(i:)—i—(p,m—i:)—l—%(X(m—i:),(m—i))—i—o(]m—i]?) as x — & in .

Jé’Jru(i:) is then called the second order superjet of u at .

Similarly (p, X) € Jé’_u(:?:), if
1
u(z) > u(@) + (p,x — ) + ) (X(z—12),(x—2) +o(lz —2|*) as z — & in Q.
Jé’_u(:?:) is then called the second order subjet of u at Z.

Before proceeding any further in working with these sets, let us try to understand

their first order analogues.



2.2.1. First order case

Let us start by presenting our motivation behind the definitions that will follow.
We call a function u : 2 — R differentiable at a point Z € ), and let Du(z) =
p € R, if

u(x) =u(Z)+ (p,x — ) +o(lz — 2]) asz — & in Q

holds. In fact, we can view this equality as the conjunction of two other inequalities

(u(z) — u(E) — (p,x — 7))

hmsupmﬂgﬁ —~ < O
|z — 2]
and liming. . (@) —u@) = (p.w — 7)) 0
since
u(@) —u(@) = (px =) = oflr—1|) as 2 — & in © implies that
i, @) = 0@ = =B
|z — 3

If w is not differentiable at Z, and however, if it is continuous at this point (and even
if it is not continuous but upper of lower semicontinuous) then one of the inequalities

might still hold at z. Therefore, we define the following:

Definition 2.3 Let u: Q2 — R, and & € Q). The superdifferential of u at T is the set
of p € R™ such that

(u(z) = u(®) = (p,x — 7))
& — &

limsup,_,; < 0 holds. (2.1)

and is denoted by DV u(z).
Stmilarly, the subdifferential of u at T s the set of p € R™ such that

(u(x) — u(E) — (p,x — 7))
|z — 2|

liminf, .5

> 0 holds. (2.2)

and is denoted by D~ u(Z).



Let us take n = 1, and try to get a rough geometrical picture of the above
definition.

Let
u(e) = 1 ifx>2 |
%a: +1 ifz<2
clearly u is continuous, but not differentiable at = 2.

Associate to each p € R, the line with slope p that is touching the graph of u at
x = 2. Let [y be the line with slope p; = lim,_ o+ % = 2 and Iy be the line
with slope po = lim,_.5_ % = % See Figure 2.1 at the end of the chapter. Let
z, — 2%. Then slope of any line whose half graph left to x = 2 lies in the region S1
satisfies (2.2) as x, — 27, and is a candidate to be in D~u(2). Let y,, — 27. Then
slope of any line whose half graph right to x = 2 lies in the region S2 satisfies (2.2) as
yn — 27, and is a candidate to be in D~u(2). Since we require (2.2) to hold as z — 2,
this requires that both of these cases hold simultaneously. Hence, slope of any line
whose graph lies in the shaded region is actually in D~ u(2). Note that this shaded
region is controlled by the lines [; and Iy, and that D~ u(2) = [%7 2} C R. Through
a similar geometrical analysis we see that D7 u(2) = (), since this time there can be
no line whose right half graph is in the corresponding region S3, and whose left half

graph is in the corresponding region S4 simultaneously. We note at this point that

at x = 2 graph of u is concave up.

—sz?  ifx>2
Now let v(z) = —u(x) =
—sr—1 ifz<2

Following the same geometrical approach we see that this time D~ v(2) = () and
D*v(2) = [-3,-2] = =D u(2). See Figure 2.2 at the end of the chapter. We also
note that this time at x = 2 graph of u is concave down.

Finally, it is also important to note that when w is differentiable at © € €2, then
l; = Iy and the corresponding shaded regions for both D*u and D~ u become just the
graph of this unique line and D*u(z) = D~ u(z) = {Du(z)}.

Hence when dealing with continuous functions that are not differentiable at certain

9



points, at the points of nondifferentiability we can in a way replace the concept of
differentiability with the weaker concept of subdifferentials and superdifferentials.
Furthermore, as hinted by above geometrical approach, we can characterize these

sets as follows:

Lemma 2.4 Let u € C(QQ) be differentiable at = € ). Then, there exists @, p, €
CY(Q) such that Dp,(%) = Dy (%) = Du(Z) and u — ¢, has a strict local mazimum

value of zero at T, and uw — @, has a strict local minimum value of zero at .

By strictness of the maximum we mean that there is a nondecreasing function

h:(0,00) — (0,00) and s,7 > 0 such that
u(z) — oy (z) <u(z) —e(z) — h(s) for s < |z —z| <.

Similarly, by strictness of the minimum we mean that there is a nondecreasing function

h:(0,00) — (0,00) and s, > 0 such that
u(z) — () > u(@) — () + h(s) for s < |z — 2| < 7.

See Figure 2.3 at the end of the chapter to have an idea in n = 1 for a differentiable
(locally linearizable) u at z.
Lemma 2.5 is a special case of Proposition 2.6, hence we will not give a separate

proof for it.

Proposition 2.5 Let u € C(Q), & € Q, p € R™. Then the following are equivalent:
i) p € DMu(z) (respectively D~u(&)) and
ii) there exists p € CY(Q) such that uw — ¢ has a local maximum (respectively

minimum) at T and Dp(Z) = p.

Proof. We will give the proof for the DTu(z) and the local maximum case.

Let p € DTu(Z). Then near Z, u(z) < u(z) + (p,x — &) + o]z — Z|). Let a(x) =
{u(z) — u(#) — (p,x — )}, where {h}" = max {h,0}. Then, since a(z) = o(|z — Z|)
and a(z) =0,

alz) = a(z) + (0,2 — &) + o(jJx — Z|)

10



holds and hence a(x) is differentiable at & and Da(z) = 0. Let 8, € C1(Q) be given

for this a by the previous lemma. Then

and near

2
&
|
0
&
IA

a(z) — f1(z) = 0, so that we have

Then

©(z) = wu(z) since §,(z) =0,
Dy(z) = psince DF;(z) = 0;

and near £ we have

I
=
=

|

<

—
=
=

&

|
2
2
[
=

u(z) = p(z)

IN
~
£
&
|
—
S
—
IS
_l_
=
8
|
&
=
|
S
—

< 0=u(z) - p(2).

Hence u — ¢ has a local maximum at & and Dp(z) = p.

Now, if u — ¢ has a local maximum at 2, then near £ we have

u(z) —p(z) < w(E)— (&) so that
w®@) < w(@)— (&) + p(z) by Taylor expansion of ¢,
we have u(z) < u(@) — (@) +p(&) + (Dp(2),x — &) +of|x — &)
which gives us that u(z) < u(Z)+ (Dp(z),z — ) + o|z — )

Hence




and Do(z) € D u(z).

See Figure 2.4 for an illustration forn = 1. mm

Proposition 2.6 Let u € C(Q), & € Q, p € R™. Then, the following are equivalent:
i) p € DMu(z) (respectively D~u()) and
ii) there exists ¢ € CY(Q) such that uw — ¢ has a strict mazimum (respectively

minimum,) at T and Dp(Z) = p.

Proof. This time we will construct such a function ¢.
Let p € D" u(&). Then near z, u(z) < u(Z) + (p,x — ) + o(|Jz — Z|).
Let

v(s) = sup { (u(z) — u(z) — (p,z — Nt ireQ, and |r— 2| < s}.

Then 7(s) is nondecreasing, 0 < «y(s)and as s — 0, y(s) = o(s). Let 7(s) € C(Q) be
such that v(s) < 7(s), and 7(s) is nondecreasing and also 7(s) = o(s).
We will assume that £ = 0 to ease the notation.

Let
1

2s
T(s) = ;/ 7(2)dz for s > 0, and T'(s) = 0 for s = 0, then

for s > 0, T'(s) is continuous, we have to check at s = 0.

1 2s
0 < T(s) < —/ 7(2s)dz since 7(z) < 7(2s) for s < |z| < 2s, then
S S

IN

%7-(23>/ s 0 %T@S)(zs — 8) = 7(2s) hence

0 < T(s) <7(2s).
Then as s — 0, T'(s) — 0 = T'(0), hence T'(s) is continuous at s = 0. Furthermore,
2s
sT(s) = / T(z)dz
d d 2s
6T = ([ )

T(s) + 5 (T(s)) = 27(25) —7(5)
S(T(s) = ~(2r(29) = 7(s) ~ T(s))
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Hence for s > 0, 4(T'(s)) is continuous and we have to check at s = 0.

LT)| < ~(r(2s) +7(2s) +7(25)) = Or(2)
L@E)| < 0ass -0

So, < (T(s)) is continuous at s = 0.
Hence T'(s) and < (7'(s)) are continuous. Furthermore, 7(0) = 4 (7(0)) = 0.
Now we go back using z. Let

p(x) = u(®) + T(|lz — &) + (p,x — &) + |z — ",

then p(2) = w(z), and Dp(z) = p.

Since we have

T(s) = %/ ST(z)dz > %/ ST(s)dz
= é (s)(2s — s) = 7(s) since 7(s) < 7(x) for s < |z| <(23)
and u(z) — (p,x — &) < 7(s) <7(s) (2.4)

then, we have

o) = T(z—2|)+ (p,x— 1)+ |z — 2" by (2.3),

v

7(s)+ (p,x — T) + |x — i]4 by (2.4),

> wu(z) + |z — 2" for all z € Q.
Then we have

0— |z — 2" = u(®) — p(2) — |z — 2|*, hence

I~
—~
8
~
|
5
=
VAN

w(z) —p(z) < u(@)— (@) — |z —&|* forall z € Q.

Now, let (0,00) — (0,00) be h(t) = t* and let r > 0. Then for s < |z — 2| <7

h(t) :
s* = h(s) < h(|x — 2|) = |z — 2|* since h is nondecreasing, hence we have

u(z) — @(z) < u(Z) — p(&) — h(s) for s < |z — 2| <.

13



Hence u — ¢ has a strict maximum at &, with h(s) = s* as strictness.
The proof of i) — @) is same as it is in the previous proposition. mm

One can view Lemma 2.4 as a special case of Proposition 2.6, where u is differen-
tiable at & and therefore DT u(z) = {Du(z)} and Du(z) = p = Dp(z).

Having this insight now, we can go back to the second order case.

2.2.2. Second order case

Let us recall the definition of second order superjet of u at & € () once again:

(p, X) € JZtu() if
u(z) <u(z)+ (p,x— )+ % (X(z—12),(x—2) +o(lz —2]*) as z — & in Q.

Paralleling our discussion for the first order case, we this time note that if a function
u: Q) — R is such that u € C*(Q2), and at at some %, Du(#) = p € R", D*u(Z) =

X € S(N), then by its Taylor expansion around Z, we know that

A

u(z) :u(:%)—i—(p,:v—:f:}+%<X(:E—x),(:c—:%)>+0(]:E—:%]2) as x — & in Q.

Rearranging the terms, we arrive at, as x — Z in {2

1 1

A A

u(z) = u()—(p,2)+ 3 (X, 2) + (p— X&,z) + 3 (Xz,z) + o(|z — 2%

1
= lo+1(z)+ 3 (Az,z) + o|z — &|*)

1
where Iy = u(z) — (p, %) + 3 (XZ,%) is a constant,
l(z) = (p— XzZ,z) is a linear function, and
A = X is a symmetric matrix.

Now, we note that a paraboloid is a polynomial in x of degree 2, and any paraboloid
P can be written as

P(x) =1+ (x) + % (Az, )
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where [y is a constant, [(x) is a linear function, and A is a symmetric matrix. Hence

in the case that u € C?(2), we have
u(x) = P(z) 4+ o(|z — 2*) as z — & in Q
for some paraboloid P(z). Moreover, we will make the following definitions:
Definition 2.7 A paraboloid P will be called of opening M, whenever
P(x)=1l+1(z) £ % 2%,

where M is a positive constant, ly is a constant and | is a linear function. Then, P is

2 2 :
conver when we have +&L |z|°, and concave when we have —% |z|” as the third term.

Definition 2.8 Let u,v € C(Q2). Q be open, and & € Q. If

u(z) < w(z) for all z € Q and

w(z) = wo(z), then
we will say that v touches u by above at . Similarly, if

u(z) > wv(z) for all z € Q and

u(z) = wv(z), then
we will say that v touches u by below at .

In the above case when u € C?(Q), then by letting P.(z) = P(z) + § |z — z|?
where € > 0, we have

u(x) = P(z) + o(|x — 2*) < P(x) + % |z — &> = P.(2) in a neighborhood of &.

Hence, P.(z) is a paraboloid that touches u by above at Z; and similarly, P_.(z) is
a paraboloid that touches u by below at z.

Within this perspective, we can take as our generalized pointwise definition for
second order differentiability at # € 2, when v € C(Q) and fails to be C*(Q), as

follows:
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Definition 2.9 u € C(2) will be called punctually second order differentiable at
T € Q, if there is a paraboloid P such that

u(x) = P(z) + o(|x — %) as © — & in Q holds,
and we will define, D*u(Z) = D*P(%).
In the case that this fails to hold then we can expect either
u(x) < P(z) + o(|z — 2|?) as & — 2 in O

or

u(z) > P(z) + o(|z — 2[°) as & — & in Q to hold.

In the first case then

u(z) < P(z) + o(|z — 2|*) < P(z) + % |z — > = P.(z) in a neighborhood of z,

and P.(x) will be touching u by above at &, and in the second case

u(z) > P(z) + o(|z — &|*) > P(z) — g |z — 2| = P () in a neighborhood of &

and P_.)(z) will be touching u by below at .
Then, whenever (p, X) € Jé’Jru(i:) is given, since upon rearrangement, and as

x — 2 in §,

u(@) + (o — 8) + 3 (X(x—2), (& — 2)) + ol|z — #f*) will imply

< P(z)+o(|z —*) asz — & in Q,

IN

u(z)

we can say that there is a paraboloid
1 €
Pufa) = u(d) + (p,w — ) + 5 (X(2 = &), ( — 8) + 5 Jo —

that touches u by above at z.
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Similarly, whenever (p, X ) € ng’*u(i) is given, we can say that there is a paraboloid

Plo(a) = u(#) +{p,w — &) + 3 (X(x—2), (2~ 8)) — & |0 — 3

that touches u by below at z.

Furthermore, if ¢ is C*(Q) and 7 is a local maximum of u — ¢, then
u(z) — p(z) < u(z) — p(z) for x near z,
and by Taylor expansion of ¢, we have

u@) —pr) < u(d) — (@) + () + (Dp(2), 2 — &)

< w(@) + (Dp(z),z — &) + % (D*¢(2)(x — &), (z — &) + 0|z — %)

so that (Dp(2), D?¢(z)) will be in J& u(#), and

P.(z) =u(z) + (Dp(z),z — &) + % <D290(§:)(:E —2),(z — :T:)> + % |z — :i“|2

will be touching u by above at z.

Following a similar manner as in Proposition 2.6 in first order case, given (p, X) €

9 2s 2k
T(s) = @/ /k 7(z)dzdk,

we can construct a function ¢ such that ¢ € C?(2), and u — ¢ attains its maximum

Jé’Jru(:f:), by taking

at z.
At this point, we will give two rather detailed examples which will assist us in

having a picture of these sets.

Example 2.10 On R let us define the function

0 forx <0,
u(z) = b2
ar + g forx > 0.

We will see that
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0 if a > 0,
J2tu(0) = {0} x [max {0,b}, 00) ifa=0,
((a,0) x R)U ({0} x [0,00)) U ({a} x [b,00)) if a <O0.

Solution: We are looking for pairs of (p, X) € R x S(1) for which the inequality

1
u(w) < ul@) + (po = 3) + 5 (X(2 — 2),2 — &) + ofje — &)
holds as x — Z. Since we will be computing the second order superjet of u (in the

set = R ) at & = 0 this inequality becomes:

u(z) < u(0) + (p,z —0) + % (X(z—0),z —0) +0(!x—0|2)

as ¢ — 0.

Moreover, since u(z) is piecewise defined around & = 0 we actually have two
inequalities to hold simultaneously:

1) 0 <0+ (p,z)+ 35 (Xz,z) + o(|z|*) as  — 0~ and

2) azx + 222 <0+ (p,z) + 1 (Xz,2) + o(|z[*) as z — 0.

At this point, we note that the inequality (1) is independent of the constants a
and b; and that the second inequality leads us to three main cases, namely, a < 0,
a =0 and a > 0; and that S(1) = R, so that (p, X) € R x R; and also that the scaler

product is usual multiplication in R.

0 forz <O,
Case 1: a =0, u(z) =
2% for x > 0.

In this case, we can graph u(z) as in Figure 2.5 (for b > 0), see end of the chapter

N[

for the figure. On the left of x = 0, the graph is a straight line and u has slope 0. On
the right of x = 0, the graph is a quadratic and u has slope bx and second derivative
(bending) b. The function u is differentiable at the point = 0 with «’(0) = 0 however
not twice differentiable at = 0 (unless b = 0).

Then the inequalities (1) and (2) become:
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1.1) 0 < pz + 1 X% + o(|2|*) as ¢ — 0~ and

1.2) 822 < pr + L1Xa? + o(|z*) as z — 0.

For this specific u(z), we are looking for (p, X) € R x R such that (1.1) and(1.2)
will hold simultaneously.

If p = 0, then we have

0 1 Xa? 1
from (1.1) = < 3 + 0, hence 0 < §X, so that
X > 0asz— 0 has to hold,
0 1(X — b)a? 1
from (1.2) =) < R + 0, hence 0 < §(X —b), so that
X > basz— 0" has to hold.

Hence for p = 0 if we have X > max{0,b}, then the desired inequalities will hold as

x — 0in R.
If p < 0 then
—px 1(X —b)z?
from (12) ? S §T + 0, hence
- 1
P < §(X —b) as x — 0" has to hold,
x

however since left hand-side (LHS) of this last inequality— oo as x — 0T, for any
fixed p < 0, b € R, there does not exist any (X — b) (and hence any X) that will
make (1.2) hold.

If p > 0, then pzx is the line with slope p going through the origin, see Figure 2.6
at the end of the chapter,

— 1 Xa?
from (1.1) % < 53:_:5 + 0, hence
—p

1
— < §X as x — 0~ has to hold,
x

however since LHS of this last inequality — oo as x — 07, for any fixed p > 0, there
does not exist any X that will make (1.1) hold.

So, if a = 0, we have
(p, X) € {0} x [max {0,b},00), i.e. Jo u(0)= {0} x [max{0,b},o0)
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0 for x <0,
Case 2: a > 0, u(z) =
ar + %:vz for x > 0.

In this case, we can graph u(x) as in Figure 2.7 (for b > 0), see end of the chapter
for the figure. On the left of z = 0, the graph is a straight line and u has slope 0.
On the right of z = 0, the graph is that of a line az plus a quadratic this time and u
has slope a + bz and second derivative (bending) b. This time, the function u is not
% ah+5h?—0

0 .
L = limy,_or T2 =

differentiable at the point x = 0 since L; = limy,_,g+ 2

a and Lo = limy,_,o- M =0 and L; # L, since a > 0.
Now, the inequalities (1) and (2) become:
2.1) 0 < pz + iX2? + o(|z|*) as z — 0~ and
2.2) ax + 222 < pr + 1X2? + o(|z[*) as x — 0*.
If p > 0, through (2.1), we have the same result given by (1.1) as above in Case

1, since this equation has not changed.

If p < 0, then
(a —p)x 1(X —b)x?
from (2.2) — < 3T 2 + 0, hence
- 1
(a " p) < §(X —b) as x — 0" has to hold,

however since LHS of this last inequality — oo as z — 07, for any fixed p < 0, a > 0,
b € R, there does not exist any (X —b) (and hence any X) that will make (2.2) hold.
If p =0, then

1(X —b)a?
from (2.2) Z—f < 5% + 0, hence
1
, < §(X —b) as * — 0" has to hold,

however, since LHS of this last inequality — oo as  — 0T, for any fixed a > 0, b € R,
there does not exist any (X — b) (and hence any X)) that will make (2.2) hold.
So, if a > 0, we have

(p, X) € @,ieJé’Jru(O) = 0.
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0 for x <0,
Case 3: a <0, u(z) =
ar + %:vz for x > 0.

In this case, we can graph u(z) as in Figure 2.8 (for b > 0) at the end of the
chapter. On the left of x = 0, the graph is again a straight line and u has slope 0.
On the right of x = 0, the graph is that of a line ax plus a quadratic and u has slope
a + bz and second derivative (bending) b. Again the function w is not differentiable

w(0+h)—u(0) 1. ah+2h2—0
" = hmhﬂmzﬁ = a and

at the point z = 0 since L; = limy_g+
Lo = limy,_,o- “(0%)_“(0) =0 and L; # Ly since a < 0.

This case looks quite similar to the previous case, however, let us see that it is
not so.

For this function u(z), the inequalities (1) and (2) become:

3.1) 0 < pz + s Xa2? + o(|z|*) as  — 0~ and

3.2) ar + 22% < pr + 1X2? + o(|7|?) as v — 0*.

If p > 0, then through (3.1), we have the same result given by (1.1) as above in

Case 1, since this equation has not changed.

If p =0, then we have

0 1 Xa? 1
from (3.1) = < 5 :cf + 0, hence 0 < §X, so that
X > 0asz — 0 has to hold,

—azr 1(X —0b)z?

from (3.2) 0 < = + 3 + 0, hence
la| 1 1 al
< 2y ox - (X —b) > -2
0 < . + 2(X b), so that 2(X b) > o and hence
X > b— M as x — 07 has to hold, and since
x

the right hand-side(RHS) of this last inequality — —oo as x — 07, for any fixed
a<0,be R;any X € R would make (3.2) hold.
Hence for p = 0 we need to have X > 0 for the two inequalities to hold simulta-

neously.

Hence if (p, X) € {0} x [0,00) then (p, X) € Jo u(0).
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If p < 0, then

1 X2?
from (3.1) 0 < px 5 f +0, hence 0 < 2 —i— X so that
T
2
X > —asm—>0 , and since
T

RHS of this last inequality — —oc as x — 07, for any fixed p < 0, any X € R would
make (3.1) hold,

0 — 1(X —b)a?
from (3.2) = < b x;z)a: + 5( 2 )z + 0, hence
— 1
0 < p . a) + §(X —b) as z — 07 has to hold, but then

if p < a, this gives

(X; b > “=L and since a — p is positive in this case, RHS of this
last inequality — oo as  — 07, for any fixed p < a, a < 0, b € R, and there does
not exist any (X — b) (and hence any X) that will make (3.2) hold;

(X2 b > “=L and since a — p is negative in this case, RHS of

if p > a, this gives
this last inequality — —oo as  — 07, for any fixed 0 > p > a,b € R,and any X € R
will make (3.2) hold; and

if p = a, this gives (X—Q_b) > 0 and X > b will make (3.2) hold.

Hence for p < 0 we need to have X € R if p > a, and we need to have X > b if
p = a, in order for (3.1) and (3.2) to hold simultaneously.

So, for a < 0, we have

(p,X) € {0} x[0,00)U(a,0) x R)U{a} x [b,00), ie.
J2Tu(0) = {0} x [0,00) U (a,0) x R)U{a} x [b,c0)

Example 2.11 This time, we will look at the second order superjet of the same above

function u(x) at & =0 on the domain Q2 = [—1,0], i.e.. J[QQJ{’O]U(O).

Note that in this case Z = 0 is a boundary point of the domain.
Solution: Again we are looking for pairs of (p, X) € Rx R for which the inequality

u(e) (@) + (p. 2~ 8) + 5 (X(a— 2),2— ) + of|r — &)
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holds as * — Z. Then, this gives us the following simultaneous inequalities:

1) 0 <0+ (p,z)+ 35 (Xz,z) + o(|z|*) as  — 0~ and

2) az + 222 <0+ (p,z) + 3 (Xz,2) + o(|z[*) as x — 0*.

However since in this case £ = 0 is a boundary point of the domain, the second
inequality does not apply (or else we can say that it holds by voidness for this do-
main), and the first inequality is the only governing inequality that we need to satisfy.
Therefore, our result will not depend on a which appears in the second inequality.

Again continuing case by case:

If p =0, then
0 1 Xa? 1
f )— < 5 h < =X, so th
mm()m2 S +0, ence()_2 , so that
X > 0asz — 0 has to hold;
if p > 0, then
— 1 X2
from (1) % < 3 ;26 + 0, hence
— 1
P < §X as x — 0~ has to hold,
x

however since LHS of this last inequality — oo as x — 07, for any fixed p > 0, there

does not exist any X that will make (1) hold.

if p < 0, then
0 pr 1Xz? p 1
from(l); < 2t +0,hence0§;+§X,
-2
so that X > —pas:c—>0_ has to hold,
x

however since RHS of this inequality — —oco as x — 07, for any fixed p < 0, any
X € R would make (1) hold.
Hence if (p, X) € {0} x [0,00) or if (p, X) € (—00,0) x R, the inequality (1) will
hold.
Thus,
I qu(0) = (—o00,0) x RU{0} x [0,00) .
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Remark: After these two examples, let us first note that, as seen in the above ex-

amples Jfﬁu(m) need not be a closed set; and second that we can define the following

mapping
Jotu s Q — 2R

x — Jy u(x)

where J3 u(z) € R* x S(N). Hence, J3tu is a set-valued mapping. (Similarly, we
can define a corresponding set-valued mapping J?fu in the case of second order sub-
jets.) Moreover, as we have seen by the previous two examples, Jé’+u(:n) (respectively
J?fu(a:)) depends on §2; however, once Z is an interior point of the domain, as also
seen from the two examples, both inequalities (1) and (2) are effective and once &
is on the boundary only one of them is effective. Hence, we can say that for all the
sets Q) for which Z is an interior point we will have the same J2tu(Z) (respectively
JZ u(z)) value for the same function independent of the domain Q. We will denote
this common value by J*>Tu(z) (respectively by J* u(z)).

Finally, in this subsection, we will state three properties of semijets, first two of
which we will be using in the following chapters, and next define closures of semijets,

which we also be using in the following chapters.
Proposition 2.12 Let u: Q) — R, and & € ). Then,
Jo u(@) = —Jg" (~u)(#).
Proof. Let (p, X) € J5 u(#). Then as z — &

— &),z — 1) + o(|z — 2|°) if and only if

<
—
=
v
<
—
=
N
+
=
&
|
=2
+
|
>~
—
8

|
£
8
IN

1
—u(®) = (p,x — &) — 5 (X(v = &),2 — &) + oo — #|?) if and only if

(~u)() + .7 — ) + 5 (~X(z — ), — ) +ollx — &)

n
S
~—
—~
=
IA
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if and only if
(—p,—X) € JyT(—u)(2) if and only if
—(p,X) € Jy"(—u)(z) if and only if

(0,X) € —Jg" (~u)(@).

Hence, the desired set equality follows. mm

As a result of Proposition 2.18, the following Proposition 2.19 will also hold when

JT is replaced by J3~ everywhere.
Proposition 2.13 Let u:Q — R, and ¢ : 2 — R be C*(). Then,
Jo " (u—¢)(x) = {(p — Dp(z), X — D*p(2)) : (p, X) € Jy ul)}.
Proof. Fix & € Q2. Then we have the set equality
Jo " (u—¢)(@) = {(p — Dp(2), X — D*p(%)) : (p, X) € Jg u(@)} .

So, we will proceed as follows:
Let (q,Y) € J3 " (u— ¢)(2), then as © — ,

(u—9)(z) = u@)—p@) <(u-e)(@)+{gz—-10)+ % (Y(z - 1),z - 2)

+o(|lz — 2[%)

= (@)~ (@) + (0,2~ 8) + 5 V(2 — )7~ 2) + ol — &),

Furthermore, by Taylor expansion of ¢, we have:

o(z) = p(2) + (Dp(2),x — ) + % (D*p(2)(z — &),z — &) + o(|z — i%) as x — 1.
Hence as z — 7,

u(z) < u(@) + (Dp(d) + .0~ 8) + 5 {(D%p(@) + Y)(& — 8¢ — &) +of|z — &)

so that
(Dp(2) + q, D*p(2) +Y) € J3Tu(#). Then
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q=p1 — Dp(&) and Y = X; — D%*p(&) for some (py, X1) € Jo u(z), hence
(.Y) € {(p—Dp(#),X — D*o(2)): (p,X) € J3Tu(2)}, and
Jo (=)&) C {(p—Dp(@), X — D*(2)) : (p. X) € Jg u(@)} .
This time, let (¢,Y) € {(p — Dp(2), X — D*p(2)) : (p, X) € Jg u(2)}, then
q=p1 — Do(&) and Y = X; — D?p(&) for some (p1, X1) € Jo (&), but then
u(x) <u(@)+ (p1,z— ) + % (X1(z — &),z — 1) + o(|z — &|°) as z — &, and

o(x) = o(2) + (Dp(z),z — &) + % (D*p(2)(z — &),z — &) + o(|z — i) as & — 7,

as r — I, hence
1
(u—)(@) < (u—9)@)+ (g2~ 2) + 5 (Y(z - 2),2 - 2) +of|z — i*) as x — &,

so that
(¢,Y) € 5 (u — ¢)(#), hence

{(0 = Dp(a), X — D*(2)) : (0, X) € Jg " u(@)} C Jg" (u—)(@).

Thus, the desired equality follows from the two inclusions at z, furthermore since &

was arbitrary, it also holds for any z in ). ==

Proposition 2.14 For u,v : Q — R, we have

Jotu(z) + JgTu(z) € T3 (u+v)(x).
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Proof. Fix & € Q. Let (¢,Y) € J3tu(2) + J3 v(2). Since

(0, X) : (p, X) = (p1, X1) + (p2 + X2)

Jy u(z) + J3 u(z) = - -
for some (p1, X1) € J5 u(x) and (p2 + X3) € J5 v(z)

(4,Y) = (p1, X1) + (p2 + X2) for some (py, X1) € J3 u(#) and (ps + Xz) € JZ " 0(3).

Then, as z — z,

u(x) < w(@)+ (p,z—1I)+ % (Xy(x — %),z — &) + o]z — 2|*) and
v(z) < v(@)+ (p,x—2T)+ % (Xy(z — &),z — ) + o(|z — #°) so that

(wto)@) < (uto)d)+ oo —2) + 3 (X + K)o — )2 &)

+o(lz — #)%).
Hence
(P +p2, Xi+X2) € JFT(u+v)(#), so that
(p1, X1) + (P2 + Xo) € J5"(u+0)(2), so that
(@.Y) € Jo"(u+v)(@).
Thus

JEu(@) + Ji (@) € T3 (u+ 0)(@).

Since T was arbitrary, it also holds for any z in ). ==

Definition 2.15 Let x € (), by the closure of set-valued mapping J?fu, we mean
j?fu . () s 9R"XS(N)
x — Jy u(x)
where

(p,X) € R* x S(N) : there is (xp, Pn, X)) € Q@ x R X S(N)
Jy u(z) = such that (pn, X)) € Jo u(x,) and
(Tn, u(xp), Py Xn) — (z,u(z),p, X).
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1s the closure of the second order superjet of u at x. Similarly, by the closure of
set-valued mapping Jé’fu, we mean
Jy u: Q) — 2B xS(N)
r — Jo u(z)
where
(p, X) € R" x S(N) : there is (Tp,Pn, Xn) € 2 x R" X S(N)
Jo u(z) = such that (p, X,)) € J& u(z,) and
(ns u(@n)s Py Xn) — (2, u(2), P, X).

18 the closure of the second order subjet of u at x.

2.3. Ellipticity, Linearization, ”Properness” and
”Maximum Principle”

Before going any further, we will make the following observations:

1) In linear equations the type (namely, ellipticity, parabolicity or hyperbolicity)
of the equation is determined by the differential equation itself; however, in nonlinear
equations "type” depends on the individual solutions. We will elaborate on this
assertion first. Let us for the moment accept u : 2 — R to be twice differentiable
on 2 C R™ and (after leaving aside the lower order terms) consider the second order

nonlinear partial differential equation

Here,

Uz, zq . Uz,
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is the Hessian matrix of second derivatives of u, F' is a mapping such that F': S(N) —
R, and S(N) is the set of real symmetric N x N matrices; and we will assume F
to be smooth. In this case, we can view F as a function of N? variables such that
F(p11,p12, -, P1n, D21, - Pun) Where pij = Ug,,;. Then Z is defined to be ”elliptic” at

some ”solution” C? function u°(z) if

PO = = % 5 (00, > 0 for € £0.

,J

0

Furthermore, ”linearization” of z at some ° is a linear map Dz (u") : C®(Q) —

C*°(Q2) defined as follows: for ¢ € C*(),

z(u® +tgp) — z(u)
t
F(D*u° +tD%p) — F(D*u®)
t

Dz(u’)(¢) = lim, g

= hmtﬂ[)

:Z(‘?F

i7 Opij

(") Pa,a,
and moreover, in this case DZ(u%)(¢) = > (%(u%) @y,0,- Hence Z being "elliptic”
will correspond to its linearization about any fixed u° being an ”elliptic” operator.

2) Now, we will consider some examples of scaler coefficient, linear elliptic partial
differential equations and simple applications of maximum principle. Throughout, u
will be C?(Q):

a) Let n = 1, and consider the linear elliptic partial differential mapping L as
being the Laplacian, i.e. let L(D?u) = —Au = —u”. Let —Au = 1, then any C?({)
function of the form u(z) = a+bx — %:EZ solves this equation on €2, hence is a classical
solution. In this case, if p(z) is a paraboloid (parabola in n = 1) and u — p has a
local maximum at some & € Q, then p”(2) > —1, i.e. L(D?*p(2)) < 1; and if p(x)
is a parabola and u — p has a local minimum at some z € €, then p”(z) < 1; i.e.
L(D?*p(z)) > 1.

b) Let n = 2, and L(D?*u) = —Au. Suppose —Au(i,9) < 0, then ”maximum

principle” says that u cannot have a local maximum at (#,9) € © C R% Proof:
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Suppose (z,9) is a local maximum of wu, then syu(z,9) = 0, and u.,(Z,9) < 0 and
Uyy(Z,79) < 0, but then —Aw(Z,9) = —uy(Z,Y) — wyy(Z,y) > 0 hence we arrive at a
contradiction, so (#,y) cannot be a local maximum of u. We can restate the same
statement as: If u has a local maximum at (Z,9), then —Au(z,y) > 0 has to hold.

c) Let 2 € R"™. This time let L also depend on u. Let L(u, D*u) = —Au+~u. Let
—Au+~yu <0, and v = 0 on 9f2. Suppose u has a local maximum at & € ). Then
Au(z) <0, and yu(z) < Au(z) < 0. In order for the classical maximum principle to
hold we need to have v > 0, since only then the assertion of the classical maximum
principle for this case (which is u(Z) < 0 and hence u(z) < 0 on ) holds. In this case
since L(u, D*u) = —Au + yu = —tr(D?u) + ~yu, the condition of v > 0 corresponds
to L being strictly increasing in u.

d) This time, let L depend on Du as well and be defined as L(u, Du, D*u) =
—Au + aDu + yu. Let w = u — v, and v > 0. Suppose L(w, Dw, D*w) = —Aw +
aDw+~w < 0 (then —Au+aDu+yu < —Av+aDv++v) and w has a maximum at
z. Then, Du(z) — Dv(z) = Dw(z) = 0, hence Du(z) = Dv(z) and Au(z) — Av(z) =
Aw(z) <0, so that Au(z) < Av(z). Hence yu(z) < yv(z), and since v > 0, we have

u(z) < (), ie. w(z) < 0. Note also in this case that,

L(u(2), Du(z), D*v(2)) = —Av(Z)+ aDu(2) + yu()

IN

Au(z) + aDu(z) + yu(z)
= L(u(#), Du(z), D*u(&)).

After these observations, we would like to state that we have two main issues at
hand. One is that generalizing a similar ”maximum principle” approach to nonlinear
equations, and the other is that generalizing the class of solutions to a larger class
than that of classical solutions. In the latter, one when we make such a generalization,
we would like to have consistency in order to have it as an acceptable generalization.
In other words, we would like the classical solutions still be solutions within the new

generalized concept of solution. Within this perspective we are now ready to proceed
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in defining the properties of the mapping F' that will allow it to be considered under
the theory of viscosity solutions.

Let F be a mapping from 2 x R x R" x S(NN) into R. We will consider nonlinear
partial differential equations of the form F(x,u, Du, D*u) = 0 and in the case that
u is C%, Du = (ug,, ..., Uy, ) denotes the gradient matrix of first order partial deriva-
tives of u, and D?*u denotes the Hessian matrix described above. Since later on we
will require u only to be continuous and not necessarily differentiable (but still can
solve the equation within the new solution concept) Du and D?u will not have their
classical meanings and we will write instead F'(z,r,p, X) to indicate the value of F’
at (z,7,p,X) € Q x Rx R" x S(N). Having made these clarifications we can now

proceed as follows:

Definition 2.16 We will say that F satisfies the restricted "maximum principle”, if
for any p,v € C? such that 1) — ¢ has a local mazimum at & and p(Z) = (&) holds
the following inequality

F(&,¢(2), Dp(2), D*p(2)) < F(2,9(), Dp(2), D*())
15 satisfied.

At this point, if we ask the question of "under what condition imposed on F' we

999

can guarantee that F' satisfies this 'maximum principle”’ we arrive at the following

condition:

Proposition 2.17 Above defined F satisfies the restricted "maximum principle” if

and only if the following antimonotonicity condition
F(z,r,p,X) < F(x,r,p,Y) forY <X
holds. Here, X, Y € S(N) andY < X is the ordering in S(N) that is given by:
Y < X if and only if (X&) < (Y, &) for€ € R™.

31



Before proving this proposition, we will interpret it first. Let F be as in our
observation 1) above. Let us fix a matrix Y € S(N) and a vector { € R". Letting
X =Y 4+t ®¢) where t > 0 and

661 &6y

we have by the antimonotonicity condition that

%(F(Y +HE®E)) — F(Y)) <0,

When we let ¢ — 07, since we assume F' to be smooth, we conclude that

(FY +t(E®f)) - FY))
t

Dz(Y)(§ ®¢§) = lim; o+ <0

Since, we have

Bj (Y)] (E®8 =DzY)(E®E) <0,

where - is not the matrix multiplication, but the dot product of the elements in R”Z,

then we have

O*F
p€)=-> 7y

Hence, we can interpret the condition of antimonotonicity as meaning that the ”lin-

(u’(2))€:€; > 0.

earization” of z about any fixed u® being an elliptic” operator, and furthermore
since it allows for the value of zero, then possibly being a ”degenerate elliptic” opera-
tor. Therefore, this antimonotonicity condition will be named as Z being ”degenerate
elliptic”. Now, we will prove the proposition:

Proof. Let o, € C? be such that ¢ — ¢ has a minimum at #, and ¢(Z) =
¥(Z). Then by calculus we have Dp(2) = Di)(z), and D*p(2) > D*)(z). Hence, if

antimonotonicity holds, we have
F(&,0(2), Dp(&), D*p(2)) < F(&, (&), Dy(2), D*P()).
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so that ”"maximum principle” is satisfied. For the converse, assume antimonotonicity

does not hold at some &. Then for z € Q, let p(z) = r+(p,z — 2)+3 (X (z — ),z — &)

and ¢(z) =r + (p,x — ) + 1 (Y (2 — &),z — &). Then ¢ — ¢ has a minimum at &
such that o(#) = 1(2), and ¢, 1) € C?. Then, since monotonicity does not hold at z,
F' does not satisfy ”maximum principle”. mm
Now, let us consider an example where F is first order. Let F(x,r,p, X) =
H(z,r,p) for some function H. Then F is clearly degenerate elliptic. However,
in this case restricted "maximum principle” does not say much for if ¥, p € C?,
Y — ¢ has a maximum at & and ¢(Z) = (&) holds, since then by calculus we
have Dyp(z) = Di(z) and the inequality H(Z,¢(2), Dp(z)) = H(z,9(2), DY(z))
= ()
holds, we can require that at a maximum & of ¥ — ¢, the inequality ¢(z) < ¥(z)

to hold, in other words, we can require ¥V — ¢ to have a nonnegative maximum at

holds automatically. However, instead of having the requirement that o(z)

A
A

z; and additionally require F' to be strictly increasing in r, (i.e. r < s implying

F(z,r,p,X) < F(x,s,p, X)), to guarantee that

F(&, (), Dp(), D*p(2)) < F(2,9(2), DY(), D*)())

will still be satisfied. Hence, by modifying this requirement of ¢(&) = ¢(Z) in the
definition of restricted ” maximum principle” we are imposing on F' a second structural
condition, namely monotonicity in r, so that the inequality of the maximum principle

will still hold.

Hence as a result of this modification, we have the following:

Definition 2.18 We will say that F satisfies the maximum principle, if for any

@, € C? such that 1 — ¢ has a nonnegative mazimum at & the following inequality

F(&, (), Dp(), D*p(2)) < F(2,9(2), D¥(), D*)(&))

15 satisfied.
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Proposition 2.19 In this case, F' satisfies the maximum principle if and only if the

following conditions

(i) F(x,r,p,X) < F(x,r,p,Y) forY <X, and
(i) F(x,r,p,X) < F(x,s,p,X) forr < s hold.

In the case that F' satisfies (i), F' will be called degenerate elliptic, if in addition F

satisfies (ii), F' will then be called proper.

Hence, we are able to provide an answer to another one of our promised questions
at the beginning of this chapter.

In the next section, we will see that if F' satisfies the maximum principle, in other
words if F' is proper, within the context of the new solution concept, classical solutions
will still continue to be a solution and that maximum principle, or in other words F
being proper will guarantee us the consistency. Also, in the next section, we will see

how we define viscosity solutions by taking off from mazximum principle.

2.4. Viscosity Solutions
In this section we will define a generalized solution concept for the equation
F(z,u, Du, D*u) = 0. (2.5)

Throughout this work we will assume F' to be proper and continuous as indicated by
the previous section and try to make us of the maximum principle in our generaliza-
tions. Hence, taking off from maximum principle, let us assume u,v € C?*(2), and
see what type of information we would have in our hands in this case. Let us start
by also assuming that u is a subsolution (classical since u € C?(f2)) of this equation.

Then, we know that

F(z,u(x), Du(x), D*u(z)) < 0 for all z € Q.
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If also 7 is a local maximum of u — v, we would have Du(#) = Dv(%), and D?u(z) <
D?y(2) from calculus. Hence we can use the fact that F is proper (in particular the

degenerate ellipticity part) to obtain
F(#, u(#), Du(#), Do(#)) < F(&, u(#), Du(@), D*u(#)) < 0

at the maximum Z. This would hold true for any v € C?(f2), in the case that u is also
C?(Q). Now, we are aiming at defining a solution concept that would allow functions
u that are not necessarily differentiable to be considered as candidates for solutions.
If we look at the above derived inequality once more closely, we see that we have

actually obtained the following result that is independent of the derivatives of w,
F(z,u(2), Dv(2), D*v(2)) < 0.

Hence, in the case that u were not differentiable, we could take this inequality to
hold for v € C?(£2) whenever u — v has a maximum point, to be the definition of a
subsolution. If we compare this last inequality to the one we obtained from u being

a solution, in other words to the following inequality
F(d,u(2), Du(#), D*u(#)) < 0

we then see that in the case that u is not differentiable, we have as a matter of
fact at 2 'transferred’ the derivative onto a smooth test function v at the expense of
u — v having a local maximum at . Within this perspective let us define viscosity

subsolutions, supersolutions and solutions for (2.5).

Definition 2.20 (1) Let F' be proper, Q open subset of R", and u € USC(Q)), v €
LSC(QY). Then u is a viscosity subsolution of F' =0 in €, if

for every o € C*(Q) and local mazimum point & € Q of u — @

F(2,u(2), Dp(z), D*p(2)) < 0 holds.
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Similarly, v is a viscosity supersolution of F =0 in Q, if
for every ¢ € C*(Q) and local minimum point & € Q of v — ¢

F(2,v(2), Do(2), D*¢(#)) < 0 holds.

A function w is a viscosity solution of F = 0 in €2, if it is both a viscosity subsolution

and a viscosity supersolution of F' = 0.

In the definition we have required a subsolution to be upper semicontinuous and
a super solution to be lower semicontinuous. One of the reasons for this is that upper
semicontinuous functions and lower semicontinuous functions assume their maximums
and respectively minimums on compact sets and we will want to produce maxima
related with these functions. The other reason is that later on we would like to
produce continuous solutions with Perron’s process, in which we obtain continuous
solutions in the limit of a sequence of some functions, and this can be done in more
generality in the classes of upper and lower semicontinuous functions, since these
classes are larger then the class of continuous functions and can still yield continuous
functions in the limit. Hence, the theory will inevitably require us to work with upper
and lower semicontinuous functions consistently. Therefore at the end of this section
we will give shortly the definitions, some properties and examples of upper and lower
semicontinuous functions.

Now, recalling the results we have obtained in Section 2.1 for semijets, we can
immediately give the following equivalent definition for subsolutions, supersolutions,

and solutions.

Definition 2.21 (2) Let F' be a continuous proper second order nonlinear elliptic
partial differential operator, and Q2 C R"™. Then, a functionuw € USC(Q) is a viscosity
subsolution of F' =0 in Q if

F(z,u(x),p,X) <0 for all z € Q and (p, X) € Jy u(x),
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A function u € LSC(Q) is a viscosity supersolution of F' =0 in  if
F(z,u(x),p,X) >0 for all z € Q and (p, X) € J5 u(x),

and a function u € C(Q) is a viscosity solution of F' = 0 in  if it is both a viscosity

subsolution and a viscosity supersolution of F' =0 in €.

Actually, this was the first definition we have presented at the beginning of this
chapter to motivate the whole discussion.

Now, it is easy to see that these two definitions are equivalent since, if u is a
viscosity solution in the sense of Definition (1) , then for every (p, X) € J&  u(%), we
can construct, as indicated in Section 2.1, a ¢ € C?(Q) with Dp(#) = p, D*p(%) = X,
such that u — ¢ will have a maximum at z, then the result follows automatically from
Definition (1) ; conversely, if u is a solution in the sense of Definition (2), then for
@ € C?(Q), if u — ¢ has a local maximum at &, then (Dy(z), D*¢(2)) € J&tu(),
and the result will follow from Definition (2) automatically.

Throughout this work we will work with both definitions interchangeably.

Once having generalized the solution concept for F(x,u, Du, D*u) = 0, next we
need to check that it is consistent with the classical solution concept. In other words,

classical solutions need still continue to be solutions under the new concept.

Proposition 2.22 Let u € C?*(Q) be a solution of F(z,u, Du, D*u) = 0 in the clas-

sical sense. Then u is also a viscosity solution of F(x,u, Du, D*u) = 0.
Proof. Since u € C?(2) and a classical solution then at every & € {2 we have
F(&,u(2), Du(2), D*u(%)) = 0,

also since J3 T u(2) = J3 u(z) = {(Du(z), D*u(#))} then we have F(z,u(z),p, X) =
0 for all z € Q and (p, X) € J3 u(z). =
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Proposition 2.23 Ifu is a viscosity solution of F(z,u, Du, D*u) = 0, and u is twice
differentiable at some &, then u solves F(x,u, Du, D*u) = 0 in the classical sense at
z,

i.e. F(&,u(Z), Du(z), D*u()) = 0.

Proof. If u is twice differentiable at z, then

I u(@) = J5 u(@) = {(Du(#), D*u(#))} .
And since u is a viscosity solution from Definition (2), we obtain that
F(&,u(), Du(), D*u(2)) = 0.

[

From this point on, we will omit the term viscosity, since we will be dealing with
viscosity subsolutions, supersolutions and solutions consistently.

Next, we will have the promised definitions and properties concerning upper and

lower semicontinuous functions.

Definition 2.24 A function u : Q — R is called upper semicontinuous (USC) at
xo € Q, if given any € > 0, there exists a neighborhood of xy in which u(z) < u(zg)+e.
Similarly, u is called lower semicontinuous (LSC) at a point xy € § if given anye > 0,

there exists a neighborhood of xq in which u(zx) > u(xg) — €.

Remark: Equivalently, u: Q — R is called upper semicontinuous if u~*(\, 00) is

open for every \. Similarly, u is called lower semicontinuous if u~!(—o0, \) is open

for every .
0 z<a

Example 2.25 Let up(z) = b x=a , then depending on b, w, is upper or lower
1 z>a

Semicontinuous.

If b = 0, then uy s lower semicontinuous, b = %, then uy is neither lower nor

upper semicontinuous, b =1, then uy, is upper semicontinuous.
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Proposition 2.26 Let u € USC(Q). If x,,x¢ € Q and lim,,_, x, = xo, then
limsupu (x,) < u(zo) .

Proof. Since u is upper semicontinuous, we know that given any 6 > 0, there
is a neighborhood of zy such that for all z in this neighborhood of zy, u(x) <
u(zg) + 6. Hence if we have a sequence z, converging to xo, the sequence u(z,)
cannot have an accumulation point which is strictly greater then w (xg). In other

words, lim sup,,_, . u(z,) < u(zy). =

Theorem 2.27 Let u € USC(2) be bounded from above, and 2 be compact. Then u

attains its supremum on €.

Proof. Let M = supg u(x). Then, there exists a sequence of x,, such that u(z,) —
M. Since (2 is compact z,, has a convergent subsequence say x,, say converging to
some zg € €. Then by semicontinuity we have u(z,,) < u(zrp). But then since
u(x,) — M and u(z,, ) is a subsequence of u(z,), we have u(x,, ) — M also. Hence
we have u(z,, ) < u(xy) < M, and in the limit we achieve M < u(z¢) < M, giving us

u(zg) = M, hence supremum is achieved at zo € 2. ==
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Figure 2.3

i

Figure 2.4
In Figures 2.3 and 2.4, we are neglecting the o(|z — Z|) term. It is possible to have

u(z) > u(z) + (p,z — &) but still u(z) < u(z) + (p,xz — &) + o(|]x — Z|) to hold. In
fact, in the proof of Proposition 2.5, the function «(x) is used to record the intervals
and the differences when the case that u(z) > u(z) 4+ (p, 2 — &) holds, so that u — ¢

can have a local maximum.
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2.6. Notes

Discussion for first order case follows the discussion in [C-E-L]. Proof of Propo-
sition 2.6 is parallel to the proof of second order parabolic version of the same propo-
sition in [F-S]. The idea of paraboloids and punctual second order differentiability
presented in Section 2.2 occurs in [Cab-Caf]. Definition 2.22 and Proposition 2.23
are from [F-S], and interpretation of antimonotonicity appears in L. C. Evans’s lec-
ture note 'Regularity for Fully Nonlinear Elliptic Equations and Motion by Mean

Curvature’ in [B-et.al.].
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GENERALIZATIONS OF
SECOND DERIVATIVE TESTS -
"MAXIMUM & COMPARISON
PRINCIPLES”

3.1. Introduction

In this chapter, our first aim will be to prone a generalized second derivative test
for upper semicontinuous functions and we will call it maximum principle for upper
semicontinuous functions. Once having done that, using this maximum principle, we
will then aim at deriving the conditions under which comparison would hold for the

Dirichlet Problem
F(z,u, Du, D*u) = 0 in ©, and u = 0 on 9. (DP)

where (2 will be a bounded subset of R".
Let us try to identify the problem we have at hand in this process.
In the classical case, if we want to derive a comparison result using maximum

principle, we would use the fact that at a maximum point z, for a C? function w we
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would have

Dw(z) =0 and D*w(%) < 0. (3.1)

It is also important to note that in this case, i.e. when w is C?, we also have that
JPw(z) = J*Tw(@) N J>"w(z) = {Dw(i), D*w(z)} .

We first need to see how this preceding information would work: If u and v are C?
subsolution and supersolution of the (DP) and if w = u — v has an interior maximum

& € 2, then by (3.1) we would have
Du(#) = Dv(2) and D*u(z) < D*v(2).

On the other hand, the other piece of information we have would come from the fact
that v and v are subsolution and supersolution respectively and that also F' is proper.

These pieces of information would lead us respectively to
F(2,u(2), Du(), D*u(2)) < 0 < F(&,v(), Dv(2), D*v(Z))

F(&,v(2), Dv(2), D*v(2)) < F(2,v(&), Du(z), D*u(%)).

Hence we would have
F(&,u(), Du(z), D*u(z)) < F(2,v(&), Du(), D*u()).

If F also satisfies the structure condition of being strictly nondecreasing in r this

would then lead us to conclude that
w(®) < ()
and since £ was a local maximum of u — v would have
u(z) —v(x) <u(@) —ov(z) <0
and hence we would obtain the result that v < v on .
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As we have seen in the preceding chapter, viscosity solutions need not be differen-
tiable, the only regularity we assume for them is continuity. Moreover, subsolutions
and supersolutions are allowed to be even semicontinuous. Therefore, in order to
be able to make a similar deduction as above, we need to define a corresponding
maximum principle for semicontinuous functions.

Also in the preceding chapter, we have defined an alternative way of dealing with
differentiability at a nondifferentiable point x of a semicontinuous function u, which
was considering the elements of the sets J>"u(z), J> u(z) in the place of a possible
derivative value. We can use the same approach here as well. At a maximum Z of w,
we can consider J*>Tw(%), J> w(%), hence actually use the sets J>Tu(z), J> u(Z),

J*%u(#), J5 v(Z). Since the information
Du(z) = Dv(2) and D*u(2) < D*v(%)

is actually a way of comparing the values of Du with Dv, and, D?*u with D?v at &,
i.e. comparing the values of some elements present in the set values of J*>*u, J* u,

J>Tv, J27v at #, (noting that in the case of u and v being C?, we have

JPu(z) = J*u(d) = {(Du(g), D*u(z))}
JEu(3) = J* (@) = {(Du(z), D*(2))} );

then, in this case that v and v might not be differentiable at &, we can try comparing
some elements present in the set values of J>*u and J* u, and ,J*>*v and J*> v at

Z in order to be able to deduce a result paralleling
Du(#) = Dv(2) and D*u(z) < D*v(2).

However, at this point we have a problem. The sets J>Tu(z), J> u(), J>Tv(Z),
J?>~v(Z) could very well be empty and prevent us from deducing any kind of infor-
mation that would have been obtained via comparing their elements in the case that

they were not nonempty. Hence, we have to overcome this obstacle. One way of doing
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this would be approximating & via a sequence of points Z, of which we would like to
have the following first set of information: z, are maximums of some functions w,;
as a — 00, the process of maximization of w, approximates the process of maximiza-
tion of w; and as a — o0, T, — 2. The process of 'doubling the variables’, which
we will introduce in the sequel, will provide us with such an approximation process.
The price of overcoming this obstacle would be however changing the usual setting
in which we were normally comparing the values of Du and Dv,and, D*u and D?v at
#. Hence, we have to interpret what the information of Dw(%) = 0 and D*w(%) < 0
would correspond to under this new setting.

In doubling the variables technique, the functions w, would be of the form

wa(2) = u(x) —v(y) — a2, y)

where ¢ is a C? function and z represents the doubled variable (z,y). If we assume
for the moment that v and v are also C?, then w, would be C?, and assuming further
that Dy, (Za,Ua) = —Dy9a(ZasUa), then at a maximum 2, of w,, by using the

classical maximum principle Dwg(2,) = 0 and D?*w,(2,) < 0 we would obtain that

0 = Dwe(Za) = Du(iﬁa) - DU(QQ) — D(p,(2a, fga))
Du(ia) = Dypo(Ta,¥a) and Dv(ga) = _Dyspa(ia:@a)
Du(2,) = Dv(fa),
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and

Dyrwa(2a) Dyywa(Za)

. Dypt(Za) = Dow(Pa(Za; Ja)) —Dyy (¢4 (Zas Ja))

| _Dyx(SOa(ia: fga)) _Dyyv(fga) - Dyy(wa(im fga))
_ D2u(§:a) 0 B Dm(@a(iﬁmga)) ny(goa(:i“a,ﬂa))

| 0 _Dzv@a> i Dyx(spa(ia:?;a)) Dyy(@a(iaaﬁa»

D%u(z,) 0 ) o . .
= — D*(p, (%4, Ja)) which would give
0 —D2’U(Qa)
D2u(§7a) 0 9 o
<D (@a(maaya»'
0 _DZU(go)

Since these two pieces of information due to maximum principle for C? functions is
again actually a way of comparing the values of Du and Dv,and, D?u and D?v; in our
quest for defining a maximum principle for semicontinuous functions, the second set
of information we would like to have at these maximums 2, would be the existence of
some elements (p, X), (¢,Y) in J>Tu(,) and J>Tv(§,) respectively or in J%~u(Z,)

and J*~v(g,) respectively such that the following type of information

p = 4q
X 0
0 -Y

< D?(pa(dar§i)) holds.

This time, "Theorem of Sums’ will provide us with this kind of information; how-
ever, in a slightly modified manner. Hence 'Theorem of Sums’ can be seen as the
maximum principle for semicontinuous functions. The fact that it will provide us
with a slightly modified version of the above argument will be due to the fact that
the function w, we will be considering will be semicontinuous, and hence that we

have to work with its regularizations. As a consequence of this, the theorem will
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provide us with a result concerning closures of semijets, rather then semijets them-
selves. However, this will not lead to a problem, since the function F' which we will
evaluate using this information will be continuous, and existence of an element in
the closure of a semijet would amount to existence of a corresponding convergent
sequence of quadruples (z,,u(x,), pn, X,) on which we can evaluate F', and pass to
the limit under continuity.

Since along our way, we would have to work with regularizations of semicontinuous
functions, and in particular the ones we will be employing would be sup convolutions,
and that these particular regularizations are semiconvex, we will begin our presenta-
tion with introducing semiconvex functions and some of their related properties, then
we will introduce sup convolutions and some of their related properties. Afterwards
having equipped with this information, we will prove ’theorem of sums’, in other words
maximum principle for semicontinuous functions. Then, we will introduce ’doubling
variables’ technique and its justification, and we would be ready for the next chapter
where we will investigate the conditions under which comparison holds for the above
stated (DP); and once having determined them, assuming that they hold, we will

almost automatically have the uniqueness result for the above stated (DP).

3.2. Semiconvex Functions

Definition 3.1 Let G be a compact subset of R". A function u(z) € C(G) is called
semiconvex if for every bounded B C G there is a constant kg > 0 such that the
function up(z) = u(z) + kp |z|* is convex on every convex subset of B. Then kp is

called a semiconvexity constant for ug.

Lemma 3.2 Let u be a semiconvex function in G, and & be an interior maximum of

u. Then u is differentiable at & with Du(z) = 0.

Proof. Without loss of generality assume & = 0.(Otherwise, we can shift z and

the proof would still work.) Let B C G be a convex, bounded neighborhood of z.
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Since u is semiconvex, there is a kg > 0 such that
up(z) = u(z) + Kp |z (3.2)

is convex on B. Then, the separation theorem for convex functions says that there is
a p € R™ such that

up(z) > up(0) + p.x for x € B.

Since up(0) = u(0) 4+ k5 |0|* = u(0), we then have

up(x) > u(0) + p.z. (3.3)

Then, for all z € B, by (3.2) we have u(z) = up(z) — kg |2/, and then by (3.3) we
have

u(z) > u(0) + p.x — kp ||’ (3.4)

and since Z = 0 is a maximum of u (u(0) > u(z) for all x € B), we have,
u(z) > u(x) +pax — kg |z
This gives us that 0 > p.x — kp |m]2, which implies
kg |z]> > pa for all z € B. (3.5)

If we let € > 0 be sufficiently small so that x. = ep is in B (this is possible since B is

a convex bounded neighborhood of 0), then by (3.5),

v

2
KB | T D.Te

v

kg lepl? p.ep for . = ep

%k |p|? e|pf®

Y

v

ekp |p|° Ip|> upon letting € — 0

0

v

Ip|* since p was a fixed element of R",

Hence,p = 0.
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Since & = 0 is a maximum of u, u(0) — u(z) > 0 for all z € B, and by (3.4) we have

kplz]> —pax > u(0) —u(x) since p =0,
kg lz)® > u(0) —u(x)
kplz)> > 0since = 0 is a maximum of w. (3.6)

Letting * = h and dividing by |h| and taking limits as |h| — 0 in (3.6) gives us that
u is differentiable at £ = 0 and that Du(z) = 0. ==

Theorem 3.3 (Jensen’s Lemma) Let u(x) € C(G) be semiconvex. Let G C R™ be
bounded and let u have a strict local mazimum in G. i.e. let

@ =supu —supu > 0.
G oG

Then, there are constants cog > 0, and 6g > 0 such that m(Ms) > 06> for all 6 < b,

where m denotes the Lebesque measure and the set Ms is defined as follows:

For 6 > 0, let

Iy To € int(G) : there is p € R" such that [p| <6
6 pu—

and u(x) < u(zy) +p.(x —z,) forall z € G

Remark 1: If we observe the set My closely we notice that the condition u(z) <
u(xq) + p.(r — z4) for all x € G implies that u(z) — p.x < u(x,) — p.z, for all
x € G which then implies that z,, is a local maximum for a function us(z) defined as
us(x) = u(z) + s.x where s = —p giving us |s| < 6.

Remark 2: Classical maximum principle states that if a C? function u has a
maximum at some point a interior its domain then Du(a) = 0 and D?u(a) < 0. We
would like to be able to have a similar information concerning the interior maximum
of semiconvex functions. For this we would like to make use of some points near this
interior maximum and the related information we will have about these nearby points

via some limit process. However, in order to be able to do that we need to make sure
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that we have ’enough’ of these points. Actually this theorem and the next theorem
we will be stating will provide us a way of knowing this. The remark at the end of
the proof of the next theorem will make this point more clear.

Proof. We will assume that u(z) € C*(G) and n = 2. Let & € G be a maximum

of u. For p € R? define

Then,

sup up(x) > upy(x) forall z € G
zeG

and in particular for x = z, therefore

A ~

sup u,(x) > uy(2) = u(z) — p.(T — 2) = u(z) = supu(z) = p+ sup u (3.7)

zeG zeG x€0G
and since
sup up(z) = sup (u(z) —p.(z — 2)) < sup u(z) + sup (—p.(z — 2))
2€dG 2€dG e 2€dG
= — inf (p.(z — 2
sup u(z) — inf (p.(z — 1))
gives
sup up(x) + inf (p.(x — z)) < sup u(z) (3.8)
2€0G z€0G 2€0G

then by (3.7) and (3.8) we have
sup u,(x) > p+ sup u,(x) + inf (p.(z — z)) (3.9)
el z€dG z€dG
Since G is bounded let 7 = sup, ,caq |2 — y|. Let zg = 252, Then
G C B(xy, f) gives 2 € B(xo, C) which gives sup |z — | <,
2 2 2€dG
and we have

sup (—p.(x —2)) < sup |p||z — 2| <|p| sup |z — 2| < |p|r
r€EOG r€OG r€EOG

= |[p| sup |z —y|
z,y€0G
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so that

inf (p.(x — 1)) = — —p.(x— 12
Anf (p.(z — 7)) sup (—p-(z — 7))
> —|[p| sup |z —yl
z,y€0G
Hence (3.9) becomes
sup up(z) > p— [p| sup |z —y| + sup u,(w)
zeG z,y€0G x€0G
But then
sup up(z) — sup uy(x) > p—[p| sup |z —y|
zeG r€0G z,y€0
Now if

—|p| sup |z —y|>0
z,y€0G

then u, has an interior maximum, in other words, if

!
SUPg yesa |z —y]

Ip| <

then u, has an interior maximum. Let us call

1
SUP, oG |z —y|

oo =
Letting  be a maximum of u,, then

up(Z) > wup(x) forallz e G

wp(@) = (@) - p.(i - &) > ule) - p.(e - )

w(@) —px+pz > ulr)—px+pi

w(Z) +p.(r —%) > wu(z) for all x € G gives us

& € Ms where |p| <6, in particular Z € M.

If we define u,(z) = w(Z) + p.(r — &), then by (3.11) we have for all z € G

(3.10)

(3.11)



However, u,(z) is a linear function (since u(Z) is a fixed number) and at & the graph
of u touches the graph of u,., furthermore it is also below the graph of u, for all z € G.

Since we have assumed u to be twice differentiable, we then see that at z,

Du(z) = Du,.(Z)=p
D*u(i) < Du,(¥)=0.

Hence, letting p € Bs such that 6§ < &y, then |p| < &, so the above defined function
u, has an interior maximum Z in the set My, and also p = Du(Z), then this gives us

that p € Du(Ms), and hence we have
Bs C Du(Ms). (3.12)

On the other hand, if zy € Mjy then there exists a p such that |p| < ¢, and when
u is twice differentiable, which is the case we have assumed at the very beginning,
via the construction of the above function u,.(z) we can see that Du(zy) = p. i.e.
Du(zy) € Bs and hence

Du(Ms) C Bs. (3.13)

So that, from (3.12 ) and (3.13), we have Du(Ms) = Bs for all § < é,.

In order to be able to derive a conclusion about Lebesque measure of Ms we will use
change of variables formula. To be able to do that we need to define a diffeomorphism
form Mjs onto some set. We can do this through using the set Du(Mjs) = Bjs since
from this equation we see that Du maps M;s onto Bs.

Now, for € > 0 define
¢.(z) = Du(z) — ex for x € G.

If © € Mg then
u(y) < u(z) +p.(y —x) for ally € G.
This implies that

u(y) < u(z) 4+ Du(z).(y — x) (3.14)
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since p = Du(z) when x € My and u is smooth.

On the other hand if also y € M;s then

u(z) < u(y) + Duly).(z —y) (3.15)
Summing up (3.14) and (3.15) we get

u(y) +u(z) < u(z)+u(y) + Duly).(z —y) + Du(z).(y —z)  (3.16)
0 > (Du(x) — Du(y))(x —y) for all z,y € Ms.

Hence

(E(z) =& W) —y) = (Du(z) —ex — Duly) — ey)(z — y)
= (Du(x) = Du(y))(z —y) —e(z — y)(z —y)
< —elz—y|* for all z,y € Ms by (3.16).

Hence
(elz) = &)@ —y) < —e |z —y/|* for all 2,y € M. (3.17)

This implies that &, is a one-to-one mapping of Mj (since otherwise assume we have
z,y € Mg such that x # y but &.(z) = £.(y). Then we would have a contradiction
0< —¢elz—y> >0 by (3.17).) Moreover, Jacobian Je. = Det(D§,) = Det(D*u —
g) < 0 sinceD?u < 0. Hence Jg_ is nonzero. Hence &, is a diffeomorphism from M;

ontoé,(Ms) and we can use change of variables formula which states that

/ dé. (x) = / |Det(DE,)| dm(z) (3.18)
£E(M5) Ms
so that we have
/ d () = / |Det(D?u — €)| dm(x) (3.19)
&.(Ms) Ms

Letting ¢ — 0 we have
/ dé(x) = / |Det(D2u(:E))‘ dm(z)
Du(Ms) Ms
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since boundary of Du(M;s) has measure 0.

Letting
[ /M | Det(D?u(x))| dm(x)
then 6
I= /B 5 dé(x) = m(B,)8° (3.20)

where m(B)) is the measure of the unit ball in R%and § < .

On the other hand, if we let
A = sup { Det(—D*u(z)) : z € G, D*u(z) < 0}
(this supremum exists since u is semiconvex), then we have

I= /M |Det(D2u(m))‘ dm(z) = Det(—D?*u(x))dm(z) < Am(Ms) (3.21)

Ms
since D?u(z) < 0 for all € Ms. From (3.20) and (3.21) we obtain m(B;)é* <

Am(Ms). Letting ¢q = m(fl), we have the desired result that m(Ms) > cy6? for all
6 < .

We have assumed that u was twice differentiable. When « is not twice differen-
tiable an approximation via mollification with smooth functions u,, that have the
same semiconvexity constant with u and that converge uniformly to v on G re-
sults in corresponding sets K,, to obey the above results for large m and then since

lim sup,,, oo M = N33y Une_ps M C Mg holds we have the desired result. mm

Theorem 3.4 (Alexandrov’s Theorem) Let u : R — R be a semiconvex function.
Then u is twice differentiable almost everywhere (i.e. except possibly on a set of

measure 0) on R".

We will accept this classical result without proof.
Remark: Jensen’s lemma can be viewed as generalization of maximum principle

for semiconvex functions. Let us try to explain this by considering a semiconvex
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function v and assuming that Z is a strict interior maximum of u. In this case,
D?u(%) might not exist. However, by letting § = % for positive integers m, we
know by Jensen’s lemma that the set Mg, i.e. M 1 is of positive measure for each
m. Alexandrov’s theorem states that u is twice differentiable almost everywhere.
Therefore, for each m the set M 1 contains points that are twice differentiable. Letting
., be a twice differentiable point of v in M 1, then as m — oo, x,,, — 2. Repeating
an argument in the proof above by defining the function u,(y) = u(z,) + p(y — zm),
for each m, then by (3.11) we have for all y € G

ur(y) > uly) and w, (@) = u(zy).

Since u,(y) is a linear function (because u(x,,) is a fixed number) and at z,, the graph
of u touches the graph of u,, and that it is also below the graph of u, for all y € G, in

addition also because u is twice differentiable at each z,,, we then have at each z,,,

Du(z,,) = Du,(x,,)=pand

D*u(z,,) < Du,(z,,)=0.

Since |p| < L, we then have |Du(z,,)| < +. Hence even if we do not know whether
u is twice differentiable at z, we at least know that there is a sequence z,, — Z, for
which

|Du(z,,)| < % and D*u(z,,) < 0 holds,

in other words for which
lim,, oo | Du(z,,)] < 0 and D*u(z,,) < 0.

Within this perspective we can see Jensen’s lemma as a generalized maximum prin-

ciple for semiconvex functions.
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3.3. Sup Convolution

Sup convolutions will allow us to be able to regularize merely semicontinuous
functions. Throughout this section we will assume u : 2 — R™ to be bounded from
above and we will extend u to R™ by letting u take the value of —oo on unimportant
sets, in other words in our case we will let u(z) = —oo for = ¢ Q. This way, we will
be considering upper semicontinuous functions v : R" — RU {—00}.

Definition 3.5 Let Q0 C R"™ be closed, € > 0, and u : 2 — R"™ be such that u €
USCc(Q). Fory e R™, let
ie(y) = sup(u(x) — oz — o)
FISY) €

This process of constructing u.’s is called ’sup convolution’.

It provides us with an approximation of u in the sense that lim._ot.(y) = u(y) for
y € R™. In the case that u is continuous this convergence is uniform. Furthermore,
it is also a regularization of u since we will see in a moment that . is semiconvex.

We will start by giving some technical lemmas:
Lemma 3.6 u.(y) > u(y).
Proof. Clearly,
A 1 ) 1 ,
i (y) = sup(u(z) — 2% lz—y|") > u(r) — % |z —y|” for all x € Q,
€ €

€N

in particular for x = y, therefore
X 1 2
te(y) = u(@) — o |v —yl” = uly).
[
Lemma 3.7
. 1
iuls) = sup {u(o) = oo fo = o+ o — o] < 2VEN |

where M = ||u|| = supq u(x). Therefore it is attained at some y* € Q with |y* —y| <
2V eM, and thus supremum s finite.
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Proof. Fix y € Q. Let |z — y| > 2v/eM, then
u(e) — o= lr — ol < ula) ~ 2V < M < ufy) < i(y)
hence supremum cannot occur on the set {:E eQ: |z —y| >2vVeM } Since the set
{:EGQ:|:E—y| SZW}
is compact and u € USC(2), u attains its supremum on this set. mm
Lemma 3.8 1, s continuous.

Proof. Let |y — z| <h < 1.
* 1 * 2
i (y) = u(y) -5l —yl
= u(y) - 2—1€|y* — 2" + 2—15 (ly" = 2" = ly" — P
< () + o (I = o 1y o)
= () o (9~ 2+l ) (" 2~ Iy~ o)
< () 4o~y Iy =gl = 2l by )
< ﬁg(z)+2l€<4\/m+h>]y—z]
()~ () < o (WVE+1)y 7.

But by symmetry the opposite also holds, none of the constants depend on y. So

e (4) — e (2)] < 5 (WERT+1) Jy 4

Given € > 0, let h < f&‘zﬁ then |y — z| < f&‘zﬁ, and |t (y) — 4. (2)] <e. mm

Lemma 3.9 Ifs <r then 5. < 7..

Proof. s < r implies that s(x) < r(z), then fixing y € ) we have

1 1
s(x) — % z—y|* < r(z) - % |z -y’
1 2 1 2
|y — < | —
itelg(s(m) % lz—y") < ilelg(r(l‘) 5 lz —y|)
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so that, 8.(y) < 7(y). Since y was arbitrary this holds for all y € Q. Hence §. < 7-.

Proposition 3.10 Let Q C R"™ be compact and u € C(Q), then G.(y) — u(y) uni-

formly on ) as € — 0.

Proof. By the first one of the above technical lemmas, 4.(y) > u(y). Conversely,
let y* be a point at which supremum is attained. Since u is continuos, given h > 0,
there exists d > 0 such that u(z) < u(y) + h. Let € < %. Then, since |y* — y| <
2v/eM, we will have |y* — y| < d, then u (y*) < u(y) + h holds. But then,

e(y) = u(y*) — —ly —y|QSU(y)+h—2—€!y —y]* <u(y) +h.

2¢e

Hence for ¢ < 2= we will have 0 < 4.(y) —u(y) < h. =

d2
aM
Proposition 3.11 Let 2 C R" be closed. Then, u.(y) is semiconvezr on §) .

Proof. We will give the proof using definition of semiconvexity. In other words

we want to find a kg > 0 such that the function defined by
. . 2
Ue(y) = e (y) + Ko |yl

is convex on every convex subset of (2.

Claim 3.12 kg = gi.e. U(y) = te(y) + o ly|* is convex on every convex subset of

Q.
We will show that for every y + h, y — h, and y € 2, we have
U-(y + h) + G:(y — h) — 2t(y) > 0.
Fix y € Q). Let y* be the point supremum is achieved then, we have
ey +h) > uly) — 5l — (g B and

By —h) > uly) ool (= )P

29



Hence,

U:(y + h) +i(y — h) — 2u.(y)

~ 1 2 A~ 1 2 ~ 1 2
= A.(y+h)+— h (y—h)+ — |y —h|? = 20.(y) — 2—
U (y + )+2€!y+ ” + . (y )+2€|y | T (y) 28!yl

> uly’) — o~ (o DE + o ly BE uly) — ol — (B
+2i€ ly — A" = 2u(y’) + 2% v —yl® - 2% ly[*

1 (ly +hP +ly = BI” = 2|yI")
22|~y = w+nlP+ly —y-hP -2y -y

1 ly +h* + 1y = I = [y* = |y’

I e T e e e TRy e A A

~ 0

Hence t.(y + h) + @.(y — h) — 2. (y) > 0. Since y was arbitrary this holds true on €.
[

At this point, we will see the important role sup convolution of a subsolution
plays. However, before that we need another theorem which is important for sup
convolutions and which gives us a relation between second order semijets of a sup
convolution of a function u and second order semijets of the function u itself. More
specifically, it will tell us that if (p, X) is in the second order semijet of 4. at xg
then (p, X)) will also be in a second order semijet of u but this time at = + ep. For
convenience of notation from now on we will drop the lower index ¢ of sup convolution
U of u, and hence write 4 instead of ., however we will keep in mind that @ depends
on €.

In the literature, the theorem below is referred to as "magic properties of sup

convolution”.

Theorem 3.13 Let u : R* — R be USC(R"). If (p,X) € J*Tu(yo), and T is any
real n X n matriz, then

1) (p,t(I=T*)I=T)+T*XT) € J* u(yo+ep), (here T* denotes adjoint of T).
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2) kg = yo + €p is the unique point such that u(yo) = u(wo) — 5= |zo — yol?

3) If we choose T = I, then (p, X) € J*Vu(yo + p).

Proof. We will give the proof in n = 2, and will prove 2) first.

Let (p, X) € J>"4(yp). Then as we know from Chapter 2, there exits a p € C?(R?)
such that 4 — ¢ assumes its maximum at y, i.e. u(y) — p(y) < a(yo) — ¢(yo) for all
y € R?, and Do(y) = p and D?p(yo) = X.

Let y* be the point supremum is achieved, then we have

u(w) — oo — o —ply) < suplu(a) — ol —yf*) — oly)

€N 2e
= a(y) — »(y) < a(yo) — ¢(%o)
= itglg(lb(x) - 2i [z = yol") — #(%0)

IN

1
u(y*) — % ly" — Z/o!2 — (o) for all z € R?.

Hence we have

1 * 1 *
u(w) = o= e =yl — oly) Suly’) — 5o Iy — wl® = lye) for all v € B2 (322)

Then by letting z = y* in (3.22), we see that

u(y) = 5 1y —y)? —oly) < u(y") = 5o Iy — o> — ¢(yo) for all z € R?

1 9 1 2
— |y* = > |yt — .
o =yl +ely) > 5 " —yol|” + ©(yo)

Since y is arbitrary this means that the function a(y) = 5 |y* — yI> + ¢(y) has
a minimum at yy. But this function is C?, hence we can apply first and second

derivative tests to see that

1
Da(yo) = 0 hence — g(y* — o) + D¢(yo) = 0 so that

*

y* = eDy(yo) + yo = €p + yo uniquely, and that

1
D?a(yo) > 0 hence —I + D*p(yo) > 0 hence
£

1 1
D*p(y) > _EI so that X > -
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(Remark: This last inequality, X > —%I will turn out to be important later on).
Since y* = ep + yo uniquely, and we have taken y* as a maximum of 4, then y* is
the unique point for which 4(yy) = u(y*) — 2—16 ly* — y0]2 holds. Next we will prove 1).
In (3.22) if we let y = T'(z — y*) + yo we have for all z € R?
u(e) = o I =Tz + Ty — ol = Tz~ Ty + 30)
< uly) o v~ ol — (wo)
2e

But then letting

1 * *
5($):2—€’(I—T)$+Ty —yo)* + o(Tx — Ty* + yo)

we have
u(z) — B(z) < u(y*) — B(y*) for all z € R?.
In other words y* is a maximum point of u — 3, and since 3 is C?, we have
(DB(y"), D*B(y")) € T uly’)

But then since

DB(a) = (I~ T + Ty —yo)(I ~T) + Dp(Te~ Ty + ),
we have
Dp(y*) = é((l — Dy +Ty" —yo)I =T)+ Dp(Ty" = Ty" + yo)T

= 2~ )~ T) + Dgly)T

= é(ep)(I—T) +pT =p—pT + pT =p,
and since

D*B(x) = %(I —T)(I =T)+T*D*p(Tx — Ty* + yo)T,
we have
DUB(y) = (= T)(I~T)+ T°DP(Ty" — Ty + yo)T
_ é([ ~T)*(I - T)+ T*XT.
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Hence

(7, %(1 T = T) 4+ T*XT) € J> uly"). (3.23)

To prove 3) we then let T = I in (3.23), and have (p, X) € J>Tu(y*) as desired. ==
Corollary 3.14 If (0, X) € J>*a(0), then (0, X) € J>Tu(0).
Proof. Let (0, X) € J>*4(0). But then this means that

there exists (yn, pn, Xn) € R?x R* x S(N) such that
(P, Xn) € J*Ta(y,) and

(yna a(yn>apna Xn) - (O, ’lAL(O), O, X) as n — 0oQ.

But then we know from the previous theorem that (p,, X,,) € J>"u(z,) where z,, =

Yn + €pn, and
1 ’2

W(yn) = u(zn) — % |0 — Yn (3.24)

In order to be able to show that (0, X) € J*%u(0) holds we will claim that
(T, u(xp), Py Xn) — (0,u(0),0, X) as n — oo.

Since as n — oo, ¥, — 0, p, — 0, X,, — 0 is given, we can easily deduce that z,, — 0,

hence we need to show that u(z,) — u(0).

L
? 2e

we know by (3.24) that

Since as n — 00, 5= |y — yn|2 — 0, and also since it is given that u(y,) — 4(0),

u(x,) — 0(0) (3.25)

So we will be done if we can show that 4(0) = w(0). But by the first one of the
above technical lemmas we know that 4(0) > u(0), hence we are left to show that

4(0) < u(0). Since u is upper semicontinuous, as x,, — 0, we have

u(0) > lim sup u(xy).

n—oo
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But then by (3.25) we know that u(z,) — @(0) which implies that
lim sup u(zx,) = 4(0),

thus, we get u(0) > u(0) as desired. As a result, there exits

(Tpy P, Xn) € R?x R*x S(N) such that
(pny Xn) € J*Tu(z,) and

(Tn, u(xp), P, Xn) —  (0,u(0),0,X).
This means that (0, X) € J>*u(0). =
Corollary 3.15 Let F(u, Du, D*u) be proper and let u be a subsolution of
F(u, Du, D*u) = 0.
Then 4 is also a subsolution of F(u, Du, D*u) = 0.
Proof. We need to show that for every y € R" and (p, X) € J>Tai(y),
F(a(y),p, X) <0.
Let yo € R", and (po, Xo) € J>T4(yo). Then by the above theorem we know that
(po, Xo) € J* u(yo +epo) = J> u(x) and (3.26)

1

~ 5 |xo — yg]2 upon denoting xg = o + €po. (3.27)

@(yo) = u(wo)
Since u is a subsolution of F'(u, Du, D*u) = 0 we have
F(u(z0), po, Xo) < 0.
But then this implies that

R 1
F(U(y[)) + 2_5 ’LEO - yO|2 7pU7XU) S 0
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since by (3.26)

. 1
u(zo) = i(yo) + 2% |Zo — Yol
Furthermore, letting
. 1
aly) = aly) + 5 lro —yl",
we have for every y € R",
a(y) < a(y)
which implies that
u<a

and if we combine this with the fact that F' is proper, we get
F(u,p,X) < F(a, p, X)
which gives us

F(a(yo),po, Xo) < F(alyo),po, Xo)
. 1
= F(u(y) + % |z — y0|2 , Do, Xo)
0

IN

hence
F(u(yo), po, Xo) < 0.

Since 1y was arbitrary we have,
F(u(y),p, X) <0 for every y € R" and (p, X) € J*"a(y)
hence 4 is also a subsolution of
F(u, Du, D*u) = 0.
[

Example 3.16 Let B € S(2) such that B < o1, and let u(z) = (Bz,x). Then
i(y) = (B(I —2eB)™"y,y).
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Proof. Let in

1

ily) = sup(u(a) o[z — oI

supremum be achieved at y*, then we have
i(y) W) — — Iy — ol
U = u —— |y =
Y Yy 5z Y 7Y
1 2
= (By*,y*) — — |y —y|*.
(By",y") — 5 ly" — vl
Let
1 2
— (B |y —
a(a) = (Br,a) = o—|e —yf*,
then a(z) is twice differentiable with maximum at y*. Hence

1
Da(y*) = 0 gives 2By* — g(y* —y) = 0 which gives y* = (I — 2¢B) ™y,

then
1 2 1 2
-yl = — |y — (I —2B)y*
52 1Y =l 5 [ — (I = 2eB)y|
1 2
= —|(I —1+2B)y*
(1= T+ 2B)y
1 s (22)(2¢) 2
= — [2eBy*|" = ———— |By*|” = (2¢) (By*, By*
oo =By P = 5 By = (20) (B, By
and then
i(y) (By",y") —1!* °
u = — —_
Yy v,y 2€y Yy
= (By",y") — (2¢) (By", By")
= (By",y" —2eBy*) = <B(I — 253)_1y,y>.
-

The theorem above has given us a relation between second order semijets of a
sup convolution of a function u and second order semijets of the function u itself.
However, we would like to know also when an element that we can control exists in
the closure of second order semijet of a sup convolution of a function u, so that via
this element we can pass to closure of second order semijet of the function u itself.

The following theorem will give us this result.
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Theorem 3.17 Let u(y) € C(R"), B € S(N), and let u(y) + o ly|* be convex. Then
if

u(y) — 5 (By.y)

has a maximum at y = 0, in other words if

max(u(y) — L (By,y)) = u(0),

yeR™ 2

then there is an X € S(N) such that
_ - - 1
(0, X) € J*u(0) = J*Tu(0) N J* u(0) and — g[ <X <B.

Proof. Our aim in this proof is to be able to find a sequence (p,, X,,) € J>Tu(y,)
such that
Yn — 0, p, — 0, X;, — X and u(y,) — u(0) holds,

(since u is continuous, the latter will hold automatically once y,, — 0 holds), and a

sequence (P, X,) € J> u(g,) such that
Jn — 0, P — 0, X,, — X and u(f,) — u(0) holds.

We will localize our attention around y = 0. Hence let G = B(0,r). Since u is
semiconvex on G (with semiconvexity constant kg = 2_15) by the convexity assump-
tion given, by Alexandrov’s Theorem we know that u is twice differentiable almost
everywhere on G. Let I'" be the set of points of G where u is twice differentiable.

Consider the function

a(y) = u(y) — = (By.y) — lyl*

2
Our first claim is that a(y) has a strict maximum at y = 0. Assume there exists
y1 # 0 such that a(y;) = a(0),then we have

1 1
u(y) = 5 (B, ) = " = u(0) — 5 (B0,0) — Jof*

implying
1
u(yr) — 3 (Byr, 1) — ln|* = u(0)
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implying
1
u(yn) = 5 (Byr, ) = u(0) + 11" > u(0),

but then this contradicts to

max(u(y) — 5 {By,y) = u(0).

yeR2

Hence a(y) has a strict maximum at y = 0.

Our second claim is that a(y) is semiconvex on G with semiconvexity constant
1 2
kg = w where v is an eigenvalue of B. In other words, we claim that the

function
v+ % + 1472

| 2
2

By) = aly) +

is convex on every convex subset of G. Now,

ly

1 147“
Bly) =uly) — 5 (By.y) — yl" + 5 !y| +5 |y! + =yl
Since u(y) + o |y is convex we need only to show that
1 14r
oly) = —5 (By.y) =yl + 5 !yl +— ly[* is convex.
1 147“
oly) = —5(Byy) — '+ |y! + Iyl
1 vy 14r 2
- (B
S (Byy) + 5 wy) =y + =1yl

1 1472
= —§<(B—71)y,y>—|y!4+—| ?

9
1472
= —y* +—!y|

and since this function is twice differentiable on G it suffices to check its Hessian.

yi 0 0
D¥(y) = =12 0 .. 0 |+
0 0 o2

r’I
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and since |y| < r in G, we have (D?u (x)v,v) > 0 for every v € R", hence we have
D?p(y) > 0 on G, and hence ¢(y) is convex which implies that §(y) is convex on
G. Thus, a(y) is semiconvex on G. Then we can use Jensen’s Theorem for a(y) and

deduce that the set

y € G : there is a p € R? with |p| < § for which

a,(y) = a(y) + (p,y) has a local maximum at y

has positive measure. But then closure(MsNI') = closure(Ms) in other words MsNT,
the set of points in My where w is also twice differentiable, is dense in Mj, so one can
converge to any point in M; by a sequence in Mg N I'. Furthermore y = 0 is in each
Ms. (It is also the unique such point since it is a strict maximum of a(y).) Hence
there is a sequence in each MsNT such that this sequence converges to y = 0. Let us
consider from now on only 6 = %, m = 1,.... Then we can form a sequence of y,,such
that each

each y,, € M1 NI, |ym| < i, and v, — 0.
m m

Then, at each y,,, there is a p,, € R™ with |p| < % for which

U, (Y) = a(y) + (Pm, y)

has a local maximum, and furthermore at each y,,, u is twice differentiable. Then we

have

Doy, (ym) = Du(ym) — BYm — 4|Ym|* Ym + Pm = 0 implying
Du(yy) = Bym+4 ]ym]2 Ym — Pm implying

| Du(ym)|

|Bym+4|ym|2ym_pm‘
|BYun| + 4 [y + [P
1 1
—(|B|+4(=)*+1
— (1B +4(—)*+1)

1
c(

m

IN

IN

) where c is a constant, implying

|Du(ym)| = O(=)

1
m
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and we also have

v 0 0
D%y, (ym) = D*u(ym)—B—8| 0 .. 0 | <0 implying
0 0 o2
yi 0 0
2 L. .
D*u(yn) < B4+8| 0 .. 0 SB—i—S(E)Ilmplymg
0 0 yi

D’u(yn) = B+ 0(%)

Furthermore since also u(y) + o ly|* is convex and w is twice differentiable at each

Ym, We have

1 1
D?(u(ym) + o lym|?) > 0 implying D*u(y,,) + =1 > 0 so that
€ 5
1
D*u(y,) > —-1I
€

Then, since | Du(yn,)| = O(=%), as m — oo we have Du(y,,) — 0; and since Du(yy,) is
bounded, it has a convergent subsequence D?u(y,,,) that converge to some X € S(N).
We also have Du(y,,) — 0. Furthermore since u is twice differentiable at each y,,,

we have

(Du(Ym), D2u(ym)) € Jzu(ym) = J2’+u<ym) n Jzﬁ“(?/m)’

Hence, we conclude that (0, X) € J2u(0), and as m — 0o, —1/ < X < B. mm

Example 3.18 Let us go back to our previous example and note that the condition
B < 2_151 holds was implicitly imposed by the fact that we were considering t.(y) =
sup(u(z) — 5 @ — y[>) and that it was necessary in order for the supremum to be
achieved at &. Now let us ask the following question:

If we were not given the fact that B < 2—161 holds then under what conditions could

we derive a similar result for u(z) = 3 (Bxz,z) and its sup convolution u(y)?
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Proof. Let us assume for the moment that @.(y) = sup(u(z)— 5 |z — y|*)achieves

its supremum at y*. Then we would have

~ * 1 * 2 1 * % 1 * 2
ua(y>ZU(y)—2—€y—y|=§<By,y>—2—€|y -yl
Let again
(2) = = (Br,z) — — o — y*
a(r) = - (Br,x) — — |v —
g \ T 2 © Y

then a(x) would be twice differentiable and in order for the maximum to be at y*,

we would need to have Da(y*) = 0 and this would require
k 1 *
By ——(y" —y) =0,

i.e. y*(I —eB) =y. But then this would require I —eB to be invertible. Furthermore,
we would also need D?a(y*) < 0, and this would require B < i] . Combining these
two it becomes obvious that we need to have B < é] .

Now our next question is which choice of € would guarantee us that this latter

condition holds. We note that

1 1 1
B<-TiffeB-I1<0iffe(B—-I)<0iff - > |B|
€ € €

since
1 1
B < =I implies (Bz,z) < <—Im,a:> for all x € R™,
€ €
but then
1
sup {(Bz,z) : ||z =1} < sup {<glm,x> ]| = 1} hence
1 1
51 < 2| -2
€ €
where
|B|] = max{|v|: where v is an eigenvalue of B}

— sup{(Br.a) : o] = 1}.
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Hence if 1 = % + ||B|| then the desired condition will hold when v > 0. Also, the

reason we have added to [|B|| a term of the form % is that as v — 0 we want to

penalize the term |z — y|* in 7.(y) more and more, so that as v — 0, t.(y) — u(y).

Example 3.19 Hence we can restate our previous example as follows:
Let B € S(2), and u(x) = 5 (Bx,z). Then for v >0, and L = %4— | B||, where
| B|| is as above,

i(y) = (B(I —eB) 'y, y).

Furthermore, since (I —eB)™" = I +~B we have u(y) = (B(I +vB)y, y).

Now we are ready to prove a preliminary version of our long promised theorem.

3.4. Theorem on Sums - A Comparison Principle
for Semicontinuous Functions

The merits of the "Theorem on Sums’ is mentioned in the introduction to this
chapter, hence we will directly go on proving a preliminary version of this theorem.

Later on, we will extend it to a more general version.
Theorem 3.20 Let uy, uz € USC(R?), u1(0) = uz(0) =0, A € S(4), and let
w(x) = ug(x1) + uz(x2) < % (Az,z) for x = (x1,29) € R*.
Then, for every e > 0, there exists X1, Xo € S(2), such that
(0, X1) € J>Fuy(0), (0, X3) € J>Tug(0)
and the block diagonal matriz with entries satisfies

1 X1

—(;Jr IA]]) < < A4 yA%
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Proof. Let 3(z) = 3 (Az,z). Since w < 8 we have @, < 3. for same ¢ > 0. Then,
since we know by the last example of the previous section 3, (y) = s (A(I +7A)y,y),

1_ 1
where 2 = -+ [|A]], we have

(A(I +~vA)y,y) . (3.28)

(NN

@a(y) <

We will drop the subscript € for the sup convolution for the moment. Now also

A 1
(y) = sup(w(z) = |z - Y1)
rER4 €

1
= sup (ur(@1) + ua(2) — o= (Jo1 — v1|* + |22 — 1)
zER4 2e

1 1
. sup  (w(x1) — — |21 — y1|2 +ug(w2) — — |72 — y2!2)

z=(x1,22)ER* 2e 2e
1
= sup (u(r1) — o= |21 — y1|2) + sup (up(w2) — o= |72 — y2|2)

= U1 (y) + ta(y).

Since

u < @ implies 0 = u;(0) < 41(0) and 0 = uy(0) < uy(0)

we also have

i1(0) 4 2(0) = w(0) < £ (A(I +~A4)0,0) =0

and this implies that

But then

(0 — B)(y) = w(y) — % ((A+~A%y,y) <0 by (3.28) for all y

and (w — £)(0) = w(0) — 0 = 0 implies that w — § has a maximum at y = 0.
Furthermore since w is semiconvex with semiconvexity constant kg = é on a
compact neighborhood of y = 0, we can proceed as in the proof of last theorem of
previous section to obtain
~C A1) < DPi(yz) < A+ 742+ O((?)
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But then since
D2’&,1(£L‘1 ) 0
D¥i(ys) = z
" 0 D2ﬁ2(mi)

letting
X1 = D%y (2h) and X3 = D?iy(z%)

3=

as # — 0 we have

XY — X; and X3 — X,

and hence

1 X: 0 )
—(Z Al < < A4AA%
v X,
Furthermore, in the same way we will also obtain Di(y1) = O(=%). Then, we will

have

letting
pi = Diy(zYy) and pi = Dip(2%)

1
m

we have (p4 ,p%) = O(+). As £ — 0 we have p; — 0, and p3 — 0. Since

(ph,XL) = (Din(xh), D%in(xh)) and
(Din(zy), D*iy(zh)) € JPiu(zh)

m

we have as in the proof of Theorem 3.17,
(0, X;) € J*1;(0) and similarly (0, X3) € J?15(0). (3.29)

Furthermore, noting that u; and uy are bounded from above (since they are upper
semicontinuous, on a compact neighborhood of y = 0 they will be bounded from
above and outside a neighborhood of zero they can be modified to be bounded from

above and this will not affect the analysis) and also that (3.29) implies
(O, X1> € j2’+ﬁ1(0) and (O,XQ) € j2’+ﬁ2(0)
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we have by Corollary 3.14,
(0, X1) € J*Tuy(0) and (0, X3) € J*Tuy(0).

-

In the above proof, the fact that we had u;(0) = u(0) = 0, and w bounded
by a pure quadratic f(x) = (Ax,x) provided us with the fact that 0 is a maximum
point w(y) — %(Ay, y), and hence we could carry out the analysis around y = 0.
Furthermore, note that D3(0) was equal to zero, we had Dﬂ(y%) = O(%), and as a
consequence Dﬁ)(y%) —0as = — 0.

Hence if we can reduce a general problem to this case, then we would be able to
carry out the same analysis. So, let us consider this case. Let £ be a maximum of
w — @, where ¢ is a twice differentiable function. First we will translate Z to 0.

Let ¢(z) = ¢(Z + z), then $(0) = ¢(Z). From now on for simplicity of notation
we will call ¢ as ¢, and keep in mind that the new ¢ is a shifted version of the former

¢ and has carried out the local properties of former ¢ around Z to around 0. Now

since ¢ is C?, by its Taylor expansion near x = 0 we have
¥ Yy Y

p(2) = $(0) + Dp(0)z + 5 (D*p(0)z, ) + ol [af?).

p(z) = @(x) —¢(0) = Dp(0)z then () = % (D*¢(0)z,z) + o(|a|”) and
Do(x) = Dg(x) — De(0) and hence Dp(0) = Dp(0) — Dp(0) = 0 and

D*p(z) = D%*p(x) and hence D*¢(0) = D*p(0) and also ¢(0) = 0.

Similarly, we can translate w so that @w(x) = w(Z + ), then w(0) = w(z), and again
for simplicity of notation we will call w as w, and keep in mind that the new w is a
shifted version of the former w and has carried out the local properties of former w
around Z to around 0.

Moreover, we also have to keep the previous local relation now between our new

w and @. Note that the values of ¢ is obtained by first shifting the values of by
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¢(x) by ¢(0) so that ¢(0) = 0 now and second by modifying ¢(z) around z = 0 by
subtracting a factor of Dy(0)z. Therefore in order to be able to keep the previous
local relation we need to define a new w whose values are shifted by w(0), so that
now w(0) = 0. Furthermore we need to modify w by subtracting a factor of Dp(0)x
so that the previous relation between w and ¢ around & is now preserved between

w and @ around x = 0. Hence we define
w(x) = w(x) —w(0) — Dp(0)x.
But then we have around x = 0,

w(z) =) = wz) —w(0) = Dp(0)x —p(x) +¢(0) + Dp(0)x
= (w=9)() —w(0) = Dp(0)z + ¢(0) + Dp(0)z

) — w(0) + ¢(0)

= w(0) = ¢(0) —w(0) + ¢(0) = Dp(0)0 + Dp(0)0

Dp(0)0 = ¢(0) + ¢(0) + Dy(0)0

I
g
—~
(=]
SN—
|
S
—~~
(e
~—
|

and hence 0 is a maximum point of @ — ¢. Since w(x) — ¢(x) < 0, we have

(z) — % (Az,z) — of|2[?) < 0 where A — D?0(0).

Now the problem at this point is if o(|z|*) > 0, then considering w(z) < 1 (Az, z)
would not suffice as an upper bound for w(z), since we have w(z) < 3 (Az, z) +o(|z]?)
and o(|z|*) > 0. However, if instead of 1 (Az,z), we consider 3 ((A+ nl)z,x), then

this would suffice as an upper bound since we will have
(z) < % (Az,7) + of|z[?) < % (A+nl)z,z) if n>0
Hence we arrive at the following generalization:
Theorem 3.21 Let uy, us € USC(R?), p € C*(R?), and let
w(z) = uy(z1) + ug(wy) for x = (1, 22) € R
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If 2 = (21,%9) € R* is a local mazimum of w — o relative to R*, then for every e > 0,

there exists X1, Xy € S(2), such that
(Dayp(2), X1) € T us(21) and (Dapip(), X2) € T uz(i2)

and the block diagonal matrixz with entries satisfies

1 X, 0 )
—(C 14l = < A+qA%

2

where A = D*p(z) € S(4).

Proof. We apply the previous theorem to the above derived w as w, ¢ asp with

upper bound % ((A+nl)z,z) for w, and note that

w(z) = w(zr)—w(0) — Dp(0)x
= ui(w1) + uz(22) — u1(0) — u2(0) — Day 9(0)z1 — Dayip(0) 2

= ﬁ1<$1) + ﬁ2<$2)
upon letting

y(z1) = wui(xy) —u1(0) — Dyyp(0)zy and

Up(z2) = ua(w2) — u2(0) — Dayp(0)2
and noting that i, iy € USC(R?), we obtain
(O,Xl) € j2’+111(0) and (O,XQ) € j2’+’lv1,2(0) and

X 0

—<§+ A+ nD)]) < < (At D) + (A + 1),

X

Now, since for v € C?, we have

J*H (1 —v)(z) = {(p — Dv(z), X — D*v(z)) : (p,X) € J*7(z)}
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from Chapter 2, letting 7 = @ (z1) and v = —uy(0) — Dy, 0(0)x1, p = 0, and X = X7,
we have

Dv(0) = —D,,(0) and D*v(0) =0,

and hence

(Day0(0), X1) € J** (1 —v)(2) = J* w1 (0)

and similarly we have

(sz(p(O)7 Xg) € j2’+UJ2(0).

Since we had a shifted version of the former w and have carried out the local properties

of former w around Z to around 0, we have:
(Dayp(@), X1) € J*Tui(1) and (De,p(2), Xo) € J*Fus(i2).
Upon letting n — 0, we furthermore obtain:

1 X, 0 )
(4 ]14l) < < A+yal
v 2
|
We can make one more generalization of this theorem:
Let us assume instead of u1, us € USC(R?), we had uy, ug € USC(QQ), where
) was a locally compact subset of R™. Then, we could restrict u; to a compact
neighborhood K; of Z; in 2, and extend it to R™ by u;(z;) = —oo for z; ¢ K;. Then,
the new u; € USC(R") since each K; is compact. Given u;(%;) > —oo, we would also
have J&ui(;) = Jon ui(2;), and & would still be a local maximum of w — ¢ relative

to R?".

Hence we have the ’theorem on sums’ in the following generality:

Theorem 3.22 Let uy, us € USC(2), where §2 is a locally compact subset of R",
¢ be C? in a neighborhood of 1, Set

w(z) = uy (1) + ug(x2) for x = (x1,2) €  x L
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If & = (21, 22) € Q x Q is a local maximum of w — ¢ relative to 2 x Q), then for every

e > 0, there exists X1, Xy € S(2), such that
(Dayip(#), X1) € Jo ua(d1) and (Dayp(2), X2) € J§3 ua(d2)
and the block diagonal matriz with entries X; satisfies

1 Xi 0 ,
—(C 14l < < A+qA%

2

where A = D*p(z) € S(4).

3.5. Notes

Sections 3.2 and 3.3 parallel a similar presentation in Chapter V of [F-S], and
Lemma 3.2 and Theorem 3.3 are also from the same chapter as. Change of variables
formula and related information can be found in [A-B]. Theorem 3.13 is presented
in the form it is given in M.G. Crandall’s lecture note "Viscosity Solutions: A primer’

in [B-et.al.]. Example 3.16 was given as an exercise in the same lecture notes.
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EXISTENCE AND UNIQUENESS
OF SOLUTIONS

4.1. Comparison and Uniqueness (Second Order

Case)

In this section, we would like to prove a comparison result for viscosity solutions of
(DP). In other words, for a u € USC(Q) subsolution and v € LSC(f) supersolution
of F =0 in a bounded open subset {2 of R", if we know that u < v on the boundary
of this subset 2, we want to be able to deduce from this information that © < v on
this subset (2.

In order to be able to do that, we need to be able to compare values of u and v
inside €2, and deduce that u —v < 0 on this subset. However, it would suffice to show
that if & were an interior maximum of u — v then that (u — v)(Z) < 0 holds, since
then (u —v)(z) < (u—v)(z) < 0 would hold.

We also know that since F'(z,r,p, X) is proper it has a relation with u and v in a
way that if u <o then F(z,u,p, X) < F(z,v,p, X), so we would like to deduce at a

maximum Z that

F(2,u(2),p, X) < F(#,0(2), p, X) (4.1)
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which would imply that u — v < 0 if F' is strictly nondecreasing in r. Moreover, we

know that u is a subsolution and v is a supersolution of F' = 0, so that we have
F(,u(2),p, X) <0< F(#,0(2),q,Y)
for every p,q, X, Y; now, if furthermore X <Y holds then we have
F(z,v(2),q,Y) < F(z,v(2),q,X).
Hence, these last two inequalities would provide us with
F(z,u(z),p, X) < F(z,v(2),q,X) (4.2)

which could in return provide us with the inequality (4.1) we would like to have, if
we could make a bridge between them by knowing that some p = ¢ and X <Y such
that (p, X) € J>"u(z), and (q,Y) € J> v(z) exists.

Now, if we suppose for the moment that u,v € C? then we would have for w =

(u —v) € C%and at a local maximum of w in €,
Dw(z) =0 and D*w(#) <0
by first and second order tests for a maximum, and this would give us that
Du(z) = Dv(2) and D*u(z) < D*v(2),
and since we also know that
J¥Tu(@) N JPu(@) = JPu(2) = {(Du(z), D*u(2))},
and similarly for J?v(z), and we could have as our bridge
p=q= Du(2) = Dv(2) and X = D*u(2) and Y = D*v(%)
and plug in (4.2) to obtain (4.1) i.e.
F(2,u(2), Du(), D*u(%)) < F(2,v(2), Du(z), D*u(z))
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as desired.

However, since we do not have u,v € C?, we do not know whether we have
Du, Dv, D*u, D?v etc. Hence we cannot directly make such a substitution.

Instead we have J?"u, J> u, J>Tv, J% v etc. which can play a similar role, and
we can make use of these sets. Yet this time, at a maximum z of u—w, it is possible that
these sets can be empty. Therefore at this point, we have two pieces of information
at hand:

One is that we need to approximate this maximum z with points z, such that
we know that certain elements exist in their J>%u, J> v(z,) etc. that we can use in
place of Du, Dv, D*u, D*v above for each x,. Then, any possible conclusion/control
we may derive about behavior of F' at Z, we need to derive it through its behavior at
these z,’s.

The other is that by the ’theorem on sum’, we know that J%*u, J>*(—v) etc. is
not empty at a local maximum & of w—¢, (where w = u+(—v), noting —v € USC(Q),
and ¢ is some C? function), and contains an element that we can control via D,
and D2 of this C? function ¢.

Hence we would prefer an approximation of £ by some points z,, such that x,
is a maximum of some (w — @), function. Furthermore, in view of the ’theorem on
sum’, we would also desire ¢ to be such that D, o(z,) = —D,,p(z,), (since then we

would have

(p7 X) = (Drﬁo(ma)?Xl) € j2’+u(xa)7
(Dapp(4), Xo) € J*T(—v)(z4) = —J* v(z,) and hence
(,Y) = (=Dgp(ra), —X2) € J* v(1,) so that

p = ¢ would hold for this z,.)

A good candidate then for such a function ¢ would be p(z,y) = %Oz |z — y|°, where
a > 0 is a parameter, and so we would have D, = a(r —y) and Dyp = —a(z — y).

Moreover, since as &« — oo the quantity —%a |z — y|2 would penalize the difference
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between any fixed  and y more and more, and by maximizing the function

u(z) — vfy) — g0l — o’

over ) x  and letting &« — oo, we would approximate maximizing the function

u(z) — v(x) over Q. In other words, if r, were maximum points of

u(w) — oy) ~ gale —yf

for each a, and if z, — & were to hold then  would in return be maximum of
u(z) — v(z).
More formally speaking, this approximation process would be described mathe-

matically as follows:

Proposition 4.1 (Doubling the Variables) Let 2 be a subset of R", w € USC(Q),
p € LSC(Q), ¢ >0, and let

M, = Sgp(ﬂ)(:ﬁ) — ap(x)) for a > 0.
Let M, be finite for large o, and
{N=xeQ:p(x)=0}+#0.
Let x,, € ) be such that
i (M, — (w(za) — aplaa)) = 0.
Then the following holds:
1) algrolo ap(zy) =0 and

2)Ifxa, — T€Q asa— 0o then p(z) =0 and

lim M, = w(Z)=supw(z).
a—00 N
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Proof. Now,

supw = sup(w — ap) < sup(w — ap) = M, < My,
N N Q
and M, decreases as a — oo since ¢ > 0. Hence lim,_,., M, exists, and is finite by

assumption. We will first prove 1): Let

and lim,_.. 0, = 0 since given. Now since,

Ma = sgp(w(a:)—%

> w(Ta) —

()

P(Ta) = W(xa) — ap(wa) + =p(T4)

(67
2 2
+

= M, -4, %gp(ma) this would imply

2(Mg — My +6a) 2 ap(za),

and as a — 00, left hand side (LHS)— 0, hence

lim ap(z,) = 0.

a—00

Next we will prove 2): Let «, be a sequence of . Then, lim,, .., ¢(z,,) = 0, and
assume x,, — &. Since ¢ € LSC(S2), we have

0 = lim sup ¢(z,,) > @(&) > 0, hence ¢(z) = 0.

n—oo

Also,

w(z) > lm w(z,,) — 0= lim (w(z,,) — anp(za,))

T n—oo n—00

= lim M,, >supw > w(z)
N

n—oo

the first and the last inequalities follow from the fact that w € USC(Q)), and € N

respectively, hence we have the result

lim M, = w(&) = supw(z).
a—00 N
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On Q x Q, we can apply this lemma to w(z,y) = u(x) — v(y), since it is upper
semicontinuous, and to p(z,y) = % |z — y[2, since ¢ is lower semicontinuous, ¢(z,y) >

0,and N = {(z,y) : ¢(z,y) = 0} # 0. When we let

M, = gug(w(rc, y) — ap(r,y))

since the supremum is taken over an upper semicontinuous function over a compact
region, M, is finite and is achieved on Q x Q. In other words we have for each a,
(Za, Ya) such that

My = w(Ta, Ya) — @p(Ta, Yo) holds.

But then, since these pairs satisfy the condition

lim (Ma - (U)(xcw ya) - O‘(P(xcw ya)) =0

immediately, we will choose and consider these (z,, y,). They will consist the sequence
of points we want to approximate our Z with.
At this point we need to note one more thing. Since we want to show that v < v

on (), we can assume on the contrary that there is a z € ) such that
u(z) > v(z)

and try to contradict this later on. If we make this assumption then this will imply
that

My > u(z) —v(z) =6 >0 for a > 0.
Now, if (z4,ys) has a limit point Z, then since as o — oo,
ap(Ta, Ya) = 0,

and this limit point has to be of the form (z, ). If € 0, then since u < v on 02,

we would have

lim sup M, = lim sup (w(Za, Ya) — @(Ta; Ya))

a— 00 a—00

< wu(z) —v(z) <0.
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In view of our contrary assumption, we had M, > 6 > 0, so we cannot have such a
limit point on A(2 x ). Hence, for large o we need to have (z4,9,) € Q2 x Q.
Now, we can apply the 'theorem on sums’ to each (z,,y,) with the corresponding

functions they maximize. Let
o 2
Uy = U, U2 = —0, 'LU(IE,y) = 'U,(.’IZ) - U(y), SO(CU,y) = 5 |‘,1j - y| :
Now, (za,Ya) € 2 x £ is a local maximum of w — ¢ relative to 2 x 2. Then, we have
Dwgp(mm ya) = _DySD ma;ya = a ) and

A

= 2a4, [|A] = 2e,
-1 I

and we know that for every € > 0 there exist X,, —Y, € S(N) such that

((Ta = Ya), Xa) € J5 u(zs) and
(—a(Ta = ¥a), —Ya) € J3T(—0)(Ya) = =I5 0(ya) implying
Ya),Ya) € jé v(Ya ), such that
1 a I _I
—(= +2a) a(l+ 2vya) holds.
v —I I
If we let v = Ev then we obtain
I 0 X, 0 I -1
—3a < < 3«
0 I 0 -Y, -1 I
Since then
X, 0 I -1
3 | 3 < 34 § | 3
0 Y, 3 3 -1 I 3 3

= 0,
we have (X,¢,&) — (Yo€, &) <0, which gives us that
X, <Y,
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Now, (a(Zo — Ya), Xa) € JoTu(z,) implies that there exists a sequence

(a(z" —y"), X") € JoTu(z?) such that

n

n
rh = T, u(x

(07

) - u(‘ra)a O‘(xg - yZ) - O‘<ma - Z/a), Xy — X,

similarly for (a(za — ¥a), Ya) € Jo 0(Ya).

Since u is a subsolution, we have
F(ah,u(zh), a(zl —yl), X)) <0 for ever n
and since F' is continuous,
F(zo,u(za), 0(Ta — Ya), Xa) < 0.
Similarly, since v is a supersolution we have
0 < F(Ya) v(Ya), A(ZTa = Ya), Ya)-
Hence we arrive at
F(a, u(2a), (Ta = Ya), Xa) < F(Ya, v(Ya), a(Ta — ¥Ya), Ya).

In order to be able to conclude more information from this inequality we need to
impose on F' certain structure conditions. If we can control F' as x changes via a

modulus of continuity function then this would lead us to the following;:

F(za,u(za), (o = Ya); Xa) < F(Yas (Ya), @(Ta — Ya), Ya) and

F (Yo, w(Ya), (Za = Ya), Ya) —w((a]z —y[ +1) |z — y|)
F(zo,u(za), (Ta — Ya), Xa)

S F(yom ’U(Z/a)7 Oé(.’l?a - ya)7 Ya)7

IN

hence
F(Yo, u(Ya), A(Ta = Ya), Ya) = F(Yar V(Ya); &(Ta — Ya), Ya)
< w((alz—yl+1)|z—yl)
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Then if furthermore, F' is strictly nondecreasing in r this would lead us to
7 (W¥a) = 0(¥a)) < F(Ya, u(Ya), a(Ta = Ya), Ya) = F(Ya; 0(Ya), a(Ta = Ya), Ya)
< w((alz—y[+1) |z —yl)
in the limit giving us u(#) — v(y) < 0. But this would contradict to the fact that
u(@) = () = u(@) —v(§) = 5 7 = 9 = Mo = u(z) =v(z) = § > 0
Hence it would not be possible to have a z € Q such that u(z) > v(z). Therefore, we

have the following;:

Theorem 4.2 Consider the (DP) stated above. Assume, F' is proper and satisfies

the two structure conditions below. Let u € USC(QY), and v € LSC(2) be subsolution
and supersolution of (DP) respectively. Then u < v in €.
The two required structure conditions are as follows:

1) there is a function w : [0, 00] — [0, 00] such that w(0+) =0 and

F(Ya, u(Ya), (Ta = Ya), Ya) —wl(a ]z —y[ + 1) [z = y])
< F(za,u(za),(To — Ya), Xo) holds and

2) there is a v > 0 such that

Y (u(Ya) — v(Ya))
< F(Ya, u(Ya), (o — Ya)s Ya) — F(Yay V(Ya), A(To — Ya), Ya) holds.

Once comparison holds, we would have uniqueness automatically.

Theorem 4.3 Assume the conditions for comparison hold. Then if u and v are both

viscosity solutions of the (DP), then u = v.

Proof. Since comparison holds and u is a subsolution and v is a supersolution,
we have u < v. Also since v is a subsolution and u is a supersolution, we have u < v.

Hence u=von 2 ma
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4.1.1. First order case

This time we would like to show that comparison holds for the Dirichlet Problem

in the first order case. The problem is as follows:
H(z,u,Du) =01in Q, and u = 0 on 0. (DP-2)

where €2 will be bounded subset of R". We want to show that if u is a subsolution
of (DP-2), and v is a supersolution of (DP-2) then u < v. As before since u and
v are USC(), LSC(Q) respectively, we are dealing with functions that might not
have derivatives at certain points. Therefore, in the case that we want to make use
of maximum principles at a maximum Z of u — v with the fact that u is a subsolution
and v is a supersolution of H (z,r, p) in particular at &, in order to be able to conclude
that u(Z) —v(2) < 0, (and as a result to conclude that © < v on ), we cannot directly
employ Du or Dv since they might not exist at this maximum 2, just as we have seen
in the second order case. Hence, we once again employ the technique of doubling
the variables to be able to make use of smooth "test functions” on which we can
transfer the derivatives; however, this time with a slightly different perspective. This
technique will allow us to use the information of u being a subsolution and v being
a supersolution to evaluate H(z,r,p) at maxima of some approximating functions,
from which we could derive a general result for v and v on all of 2 in the limit. Once
again our main tool will be the technique of ’doubling variables’.

Let u be a subsolution, and v be a supersolution of (DP). Let us consider the

functions given by

we(,y) = u(w) — oly) — o= o — .
As we have seen before w. attains its maximum at some (Z., 9.), and since Qx0
is compact these maxima converge to a point of the form (#,z). If this point is on
the boundary of 2, then we will automatically be done since this would imply that

limsup,_,o we(Z,9:) < 0. In the case that these maxima converge to a point in €,
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then for small ¢, (Z.,7.) has to lie in 2, hence we can evaluate H(z,r,p) at these
points upon the following observation.

Consider the map z — u(x)—¢(z, Je), where p(z,y) = 5 |z — y|? is a C? function,
then Z. is a maximum of this map. Then from the definition of u being a subsolution
we have

H(Ze,u(), Dep(Ze, 9e)) < 0.

Similarly, consider the map y — —v(y) — ¢(Z., y), then g. is a maximum of this map,
hence is a minimum of y — v(y) — (—¢(&c,y)). Then from the definition of v being

a supersolution we have
H (Ge, v(4e), —Dyp(ie, ge)) = 0.
Hence we arrive at the following,
H(Ze, u(dc), Dop(Ze, ) — H (G, v(Je), —Dyp(de, 9e)) < 0 at (e, Je).-

From this point on we would like to deduce that © < v. Our question will be as
follows: Under what assumptions we can deduce this result.

Let H(x,u, Du) = u +H(Du), then the above inequality would reduce to

u(j:s) + H(D:r(p(j:s? @s)) - U(g&‘) - H(_Dy@(fij& gs))
U(i'a) + H(ngp(;f’;a, Qa)) - U(?ga) - H(ngp(:fj87 ga))

IA
o

IA
o

since D, = —Dyp. Then we would have
U(i'a) - U(f&a) <0
and since

lim SUPe_0 wf:‘(:i.f:‘:@f:‘) S lim Sllpa_)[)(U(i'g) - U(QE)) S 0 and
u(z) —v(x) = we(z,z) < we(ie,ye) holds

we have u(z) —v(z) < limsup,_,we(Z.,y:) < 0, hence
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in the limit this would tell us that u < wv.

Suppose next H(z,u, Du) = u+ H(Du) — f(x), then similarly we would have

u(Ze) —v(e) < f(&e) — f(7e)
and in the case that f was uniformly continuous, this would give us

u(z) —v(x) < limsup,_ow(Z.,9:) < limsup,_(u(Z:) — v(7e))

< limsup,_, f(2:) = f(3:) <0.

Suppose this time H were also to depend on x. Then, we would need a modulus
of continuity estimate on H in order to be able to have control on it as x changes.

Assume therefore that

|H(z,r,p) = H(y,r,p)| Sw(lz —yl+ple—yl)

where w is a function such that w(0+) = 0, then we would have

H(Ze, u(:), Dap(2=, 9:)) — H(Je, v(9e), —Dyp(2e, ) < 0 implying

H(‘%E7 U’(£E)7 DmSO(jsy QE)) - H(Q&W U’(‘%E)7 D:Egp(jf,‘? gt‘))
+H(Q57 u(j:z-:)7 ng0<f5, gs)) - H(Q& U(@5)7 _Dy@(*%a gs))
< 0 which would in turn imply
H(§e, u(Ze), Dop(Ee, 9e)) — H(Je, v(Ge), —Dyp(2e, 9e)) < w(|z —yl +plz —yl)
and since D, = —D,¢ this would give us

H(@57U<f5), D:r(p(j:s?gs)) S H(Z)E?”(@E)? _D:r(p(j:s?gs)) + w(]a: - y’ +p ’.’13 - y’)

Then we would require H to be ’strictly nondecreasing’ in r, so that this last inequality
would imply

u(iﬁa) < U(Qa)
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and in the limit we would obtain v < v. We would formulate ’strictly nondecreasing’
as follows: if r > s, then there exists v > 0 such that H(z,r,p)— H(x,s,p) > v(r—s).
Since comparison would hold under these assumptions for the corresponding type

of F', we would also have uniqueness as a result.

Theorem 4.4 Assume the conditions for comparison hold. If u and v are both vis-

cosity solutions of the (DP-2), then u = v.

Proof. Since comparison holds and wu is a subsolution and v is a supersolution
we have u < v. Also since v is a subsolution and wu is a supersolution we have u < v.
Hence u =v on () mm

Before concluding this chapter we would like to show that the method for first

order case falls short in the second order case.

Example 4.5 Consider (DP-2) for F(z,r,p,X) =1+ G(p, X), assume G is contin-

uous and degenerate elliptic. Let uw € USC(Q2) and v € LSC(S2) be subsolution and
supersolution of (DP-2) respectively. We will apply the method of first order case.

Let us consider maximum of
1

u(z) —v(y) — % lz —y|* over Q x Q and we will let ¢ — 0.
€

Then, we again consider, when £, is small an interior mazximum (&, ) of this function,

and following the method we arrive at

i—7 1 ) p—g 1
= G —=1).
2D 0@ + G —2D)

u(z) + G(

£

and cannot go any further since I > —1I.

4.2. Existence (Second Order Case)

In this section, we will consider the existence of a solution for the Dirichlet Problem
(DP):
F(z,u, Du, D*u) = 0 in ©, and u = 0 on 99. (DP)
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where 2 will be a bounded subset of R". Among several possible methods, the one
we will be employing here will be a variant of the idea of Perron’s method for the
linear problem, hence will also be called Perron’s method. Classical implementation
of Perron’s Method for linear problems can be found in [J].

Much of the work that would be needed to show existence via this way has been
actually accomplished in the previous chapter and section for Perron’s method pre-
supposes the existence of comparison for the (DP) at hand. Let us try to see how
this works.

In view of the comparison result of the previous section, we can say that if com-
parison holds for (DP), and if the (DP) has a solution, then this solution has to be
the largest subsolution. For if w is the solution of (DP), then w is both a subsolution
and a supersolution. Let u > w be a subsolution of (DP), but then since w is a
supersolution , by comparison we have, w > u. Hence we would have w = u, which
then tells us that w has to be the largest subsolution.

Within this light, as a first step to proving this existence scheme we will show that
a maximal subsolution exists; afterwards in our second step we will show that it is in
fact a subsolution which is also the solution of (DP). As a matter of fact, this second
step actually asserts that a maximal subsolution cannot afford to be not a solution. If
w is the maximal subsolution that we obtain in step 1, and if it is not a solution, then
at some point z it has to fail to be a supersolution. What we have known so far is that

w is USC(2), however, in order to be able to consider it as a supersolution it needs
to be LSC(Q). Therefore, in our second step, to secure lower semicontinuity, we will
look at w,, lower semicontinuous envelope of w, i.e. the largest lower semicontinuous
function that is less then or equal to w, and we will try to get a contradiction to
maximality of w. The best way of doing this will be constructing around Z a function

larger then w, which will also be a subsolution of (DP). Hence the second step of our

proof will be carrying out this construction. Now let us proceed with our first step.
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4.2.1. Step 1: Construction of a maximal subsolution

Let us consider
w(x) = sup {u(x) : u is a subsolution of F' =0 in 2.},

and denote {u(z) : u is a subsolution of F' =0 in Q.} by K, and assume that K is
nonempty.

For upper semicontinuity to hold, we will consider w*, upper semicontinuous en-
velope of w, i.e. the smallest upper semicontinuous function such that w < w* holds.
We will also assume that w*(z) < co. We want to show that w* is a subsolution of

F=01in Q. In other words we want to show that
for (p, X) € J5 w*(2), F(z,w*(2),p,X) < 0 for z in Q.

If we can find a sequence of (yy,, Un(Yn), Pn, Xn) — (2, w*(2), p, X) such that (p,, X,,) €
JZ Uy (yn), and if furthermore u,, are subsolutions of F' = 0 in €, then we will know
that F(Yn, Un(Yn), Pn, Xn) < 0 and since F' is continuous, we can pass to the limit to
conclude that F(z,w*(z),p, X) < 0. The following lemma will provide us with this

sequence.

Lemma 4.6 Let Q@ C R™ be locally compact, u € USC(R?), z € Q, and (p,X) €
J?Z’Jru(z). Suppose u,, is a sequence of USC' functions on 2 such that

i) there exists x,, € 0 such that (x,, un(x,)) — (2,u(2)) and

it) if zn, € Q and z, — x € §, then limsup,,_, . un(2,) < u(z).

Then, there exists

Tn € Q (pn,Xn) € Jé’Jrun(in) such that

(&, un(Zn), P, Xn) — (z,u(z),p, X).

Proof. Since the following analysis is local, without loss of generality we will

take z = 0, and carry it around this point. First, we will find a candidate sequence
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of Z,, and show that &, — 0. Second, we will show that u,(%,) — «(0). Third,

we will find (p,, X,,) such that (pn, X,,) € J5 (&), and finally we will show that

(Pn, Xn) = (p, X)
1) Since (p, X) € JZ u(0), we have

u(z) <u(0) + (p,x) + % (X, z) + o(|z]?) for z € Q.

Let ¢(z) = o(|z|*) term. Then, given any § > 0, there is an r > 0 such that
le(z)] < 6z|* for € Q and |z| < r. Let N, = {z € Q: |z| <r}. N, is compact.

Then, we have

u(z) < u(0) + (p,z) + % (Xz,z)+6|z|)* for z € N,
Let
1
o) = (p,) + 5 (Xo,2) + 26 |-

Then, ¢ € C?*(Q),
0(0) =0, Dp(0) = p, D*p(0) = X + 41

and

u(z) — o(z) < u(0) — 8 |z]> = u(0) — ¢(0) — 6 |z|* for z € N,.
Define h : (0,00) — (0,00) as h(a) = &|a|’. Then, h is nondecreasing and h(s) =
6s% < 6 x| for s < |x| < r. So we have

u(z) — (z) < u(0) — (0) — h(s) for s < [z <r

Hence u — ¢ has a strict maximum at x = 0.
(Recall from Chapter 2 that h, within this respect, is called the strictness of the
maximum. )

Now, assumption i) says that there exists a sequence of z,, € {2 such that

(Zns un(2r)) — (0,u(0)).
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Now, since each u,, is upper semicontinuous, and ¢ € C?, (u,, — ¢) € USC(£2), hence
attains its maximum on N,. Let Z,, € N,., be a maximum point of u,(x) — ¢(x) over

N,.. Then

IN

un(z) — () Un(Zn) — @(Z,) and hence,

un(z) < up(Zn) + o(x) — @(2,) for x € N,.

Since N, is compact, T, € N, it has a convergent subsequence, say &, that converges
to some y € N, as j — oo. Then, in particular for z = z,;, from the last inequality

we will have
unj ('rnj) S unj (ﬁjn]) + QO(.'L'”J) - gp(‘%n])
Taking liminf as j — oo, we have
u(0) < (liminfuy, (Z,,)) +©(0) — ¢(y)
= (liminf u,,; (Z,,)) — ©(y)- (4.3)
By assumption ii), however we have

liminf u,, (Zn;) < lmsup ,, (T,;) < u(y).

Hence,
u(0) < u(y) — (y) < u(0) — 8y’

The last inequality holds since y € N,, and we had u(z) — ¢(z) < u(0) — 6 |z|* for

x € N, before. Hence
u(0) < u(0) =46 |y|2 give us that y = 0, and therefore Z,, — 0.

But then every subsequence of Z,, has a convergent subsequence that converges to
y = 0. Hence z,, converges to 0.

2) But then by (4.3) which gives us that
u(0) < liminf wu,(z,)

96



and by ii) which gives us that

lim sup u, (&) < u(0),

n—oo

we have

uw(0) = lm uy(Z,).

n—o0

3) Since &, is a maximum of u,(z) — ¢(z), we know that

(D(n), D*¢(2n)) € Jg " tn(in).
Hence
(p 4 462y + X, X +461) € JZ un(2).

4) As &, — 0, Do(2,) — Dp(0) = p, D*o(Z,) — D?*p(0) = X +461.

Asd — 0, X +46] - X. mm

We can also interpret this lemma as follows: If 2 is a strict maximum of u — ¢y,
and u,, (p, X) is as given, and (Dys(z), D*ps(2)) — (p, X) as § — 0, then we have a
corresponding sequence of Z,, of maxima of u,, — g such that z,, — z, u,(Z,) — u(z),
(Dps(y), D*ps(i7)) — (p, X) as m — oo and § — 0.

Now that we have the desired sequence, we can proceed in achieving the aim of

our first step:
Lemma 4.7 Let Q) C R" be locally compact, F' continuous and proper. Let
w(x) = sup{u(x) : u is a viscosity subsolution of F'=0 in .},

and denote {u(z) : u is a viscosity subsolution of F =0 in Q.} by K, and assume that
this set is nonempty and also that w*(x) < oo for x € Q. Then w* is a viscosity sub-

solution of F' =0 in ().

Proof. Let z € Q and (p, X) € JTw*(z). Now, by construction of w*, there
exists z,, € 2, and w(zx,) such that w(z,) — w*(z) as x, — z. Furthermore, since w

is supremum of
{u(x) : u is a viscosity subsolution of F' =0 in .},
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we have for any y € Q a sequence of u,(y) such that u,(y) — w(y).In particular
for each x,,, we have a sequence of u,(z,) — w(z,) where choice of the sequence u,,
depends on z,. Thus, we can form a sequence u,(z,) such that u,(z,) — w*(2).

Then, for this u,, if z, € 2 such that z, — z, we have

lim sup u,(z,) < w*(z)

n—oo

by definition of w*. Hence we satisfy the assumptions of the Lemma 4.6 with u = w*.
Then Lemma 4.6 guarantees us the existence of a sequence z,, € Q, and (p,, X,,) €

Jé’Jrun(:f:n) such that
(&, un(Zn), Pn, Xn) — (2, 0" (2),p, X).
Now, since (p,, X,) € Jé’+un(:%n), and u,, are subsolutions we have for each u,,
F (&, un(Zn), pn, Xn) < 0infQ.
Since F' is continuous, as n — 00, in the limit we have
F(z,w*(2),p,X) <0.

Since this holds for any z € €2, w* is a subsolution of F =0 in (). ==

Next, we will proceed to our second step in providing an existence scheme to above

(DP).

4.2.2. Step 2: Perron’s method and existence

Lemma 4.8 Let () be open, u be a subsolution of F = 0 in Q). Ifu, is not a supersolu-
tion at some 7, i.e. if there exists (p, X) € Jo u.(&), for which F(#,u.(2),p, X) <0,
then for any small k > 0, there is a subsolution U, of F =0 in (), such that

Us(z) > wu(z) and supg(Us —u) >0

Ud(z) = wu(z) forx € Q and |z — | > k.
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Proof. Without loss of generality we will assume that 0 € 2 and £ = 0.
Assume u, is not a supersolution at = = 0, i.e. assume that there exists (p, X) €

J& " u,(0), for which F(0,,(0),p, X) < 0. Then since (p, X) € J5 u,(0) we have

wa(z) > 1 (0) + (pr7) + % (Xz,2) + o(|z]) for z € Q.

Let ¢(z) = o(|z|*) term. Then, given any v > 0, there is an 7 > 0 such that

le(z)| < v |z|? for € Q and |2| < r. Then, we have

1
ua(2) 2 0,(0) + (p.2) + L (Xa,a) 7 Jaf? for [o] <7
Let ¢ (2) = u.(0) + (p, ) + 5 (Xz,2) — 27 |z|°. Then, @, € C*(9Q),
0,(0) = u.(0), Do, (z) = p+ X + 4yz, D*p, (x) = X + 491

and

u(r) > ¢, () +7 z|* for |z| <r. (4.5)
Define h : (0,00) — (0,00) as h(a) = &|a|*. Then, h is nondecreasing and h(s) =
6s% < 6x|? for s < |x| < r. So we have

u.(7) > ¢, () + h(s) for s <[z < 7.
Then
Uy (1) — ., (7) > ue(0) — ¢, (0) + h(s) for s < [z < 7.

Hence u — ¢, has a strict minimum at z = 0.
(Recall from Chapter 2 that h, within this respect, is called the strictness of the
minimum.)

Let s (7) = @, (z) + 6. Then,

Dys (z) = Do, (x), D*ps ,(z) = D*p,(x).

Since F'(0,u.(0),p,X) < 0 and F' is continuous there are neighborhoods Ny, Na, N3,

of 0, p, and X respectively on which
F(z,u.(z),p’, X') <0 for z € Nyi,p’ € Ny, X' € Ns.
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Choosing 7 small enough so that {z : |z| < r} C Ny, then by (4.5)
F(x,@,y(fl?),p, X) S F(xyu*(m),p, X) <0 for ’.’13’ <r.

Choosing 7 further smaller if necessary so that Dy, (z) € Ny, D*p () € N3, then

again by continuity of F' we have
F(x, . (), D(pv(m)7D2g07(m)) <0 for |z| <.
Since F' is continuous, this time there is a neighborhood N, of ¢ (z), such that
F(z, 8, Dg, (z), D*¢.(x)) for # € Ny and |z] <.

Hence if we choose ¢ small enough so that ¢; . (z) = (¢,(z) +6) € Ny for |z| < r,
then
F(x, 5., (1), Dgpw(x),D%OW(m)) <0 for |z| <.
Hence
F(z, goM(m)7D(pM(m),D2<pM(m)) <0 for |z| <.
This last inequality tells us that ;. is a classical subsolution of F' < 0 in the
B, ={z : |z| < r} for small v, r, § > 0.

Now, since we had
u(r) > . () + h(s) for s < [z| <7

for s = %, we will have
r r
u. () > @, () + h(§) for 3 <zl <.
If § < h(%) = %7, then for § < |z| < r, we will have

r

u. () > @ () + h(2

) > () + 0= s,

Hence,

u. () > s (x) for g <l|z| <.
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Define
Ule) = max(u(z), ps,(z)) if |z <r .
u(x) otherwise
By the previous lemma, then U(x) is a subsolution of F' =0 in Q.
By definition of u., we have a sequence (x,,u(z,)) that converges to (0, u.(0)).

Then,
limy, oo (U(20) — u(7n)) = @5.,(0) — 1u(0) = u.(0) + 6 — u.(0) > 0.

Hence, in every neighborhood of 0 there are points such that U(z) > u(x).

So, given any x > 0, if we choose 7, r small enough so that r < k, we have

Ues(z) > wu(z) and supg (U, — u) > 0,

Uis(z) = wu(z) for x € Q and |z| > k.

[
Hence we have seen that if for a subsolution u, u, fails to be a supersolution at
some point, then u cannot be the maximal subsolution. Now we are ready to state

and prove the existence scheme for the (DP).

Theorem 4.9 Let comparison hold for (DP). Suppose also that there is a subsolution
u and a supersolution v of (DP) that agree on the boundary, i.e. u and v satisfy the

boundary condition u.(x) = v*(x) =0 for x € Q. Then
W(z) =sup{w(x) : u <w < v and w is a subsolution of (DP)}
is a solution of (DP).

Proof. Let us note first that u, < W, < W < W* < wv*. Hence, on the boundary
we have W, = W = W* = 0. Second, by Lemma 4.7, W* is a subsolution of (DP),
and therefore by comparison we have W* < v. Hence, since W is the supremum over
a set that contains W*, we have the the other inequality W > W* so W = W*.

Thus, W is a subsolution.
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Third, let us assume that W, fails to be a supersolution at some point z € .
Then by Lemma 4.8, we have functions W, with the properties defined in the lemma.
For sufficiently small x, on the boundary, we have W,, = W = 0. Hence W, is a
subsolution of (DP). Then by comparison, W,, < v. Furthermore, v < W < W,,
hence u < W,, < v. Since W is the maximal subsolution between v and v, we have
W, < W, which contradicts to the fact that supg(W, — W) > 0. Hence W, is a
supersolution of the (DP). Then by comparison once again, we have W < W,. but
by definition W, < W. Hence, we have W = W,.

Thus, we have W* = W = W,. Hence by being both upper and lower semicontin-
uous W is continuous, and by being both a subsolution and a supersolution of (DP),

W is a solution of (DP). mm

4.2.3. First order case

In this section, we will give an existence scheme for the (DP-2) in the first order
case. The method we will be employing will make use of addition of a regularizing
term to the original equation and afterwards passing to limit via the solutions of
these approximate equations and showing that the limiting equation of the solutions
of the approximate equations is a solution of the original equation under certain
assumptions. This method will also account for the origin of the term ’viscosity’
in the theory, since the added regularizing term € A u is called a viscosity term in
physical applications, and hence that this method is called the method of 'vanishing
viscosity’. Hence, we will be seeing that the method of ’vanishing viscosity’ is one of

the ways of producing viscosity solutions among several other methods.

Theorem 4.10 Lete > 0 and let F.(z,r,p) be a family of continuous functions such
that F.(x,r,p) converges uniformly on compact subsets of Q2 x Rx R™ to some function

F(x,7,p) as € — 0; and suppose u¢ € C?*(Q) is a solution of
—e Au+ F(z,u*, Du®) =0 in , (4.6)
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and u® converge uniformly on compact subsets of Q2 to some u € C(2). Then u is a

viscosity solution of F(x,u, Du) =0 in .

Proof. We will first use test functions from C?(Q). Let ¢ € C?(Q),we will show
first that u is a subsolution. Assume u — ¢ has a local maximum at Z € 2. We then

have to to show that

F(&,u(2), Dp(z) < 0.

Then, u — (¢ + § |z — #|*) has a strict local maximum at #. Consider the closed ball
B = B(#;r). Then for sufficiently small r > 0, maxgp(u— (646 |z — £|*)) < (u—(¢+
8|z — #°))(&). Then, since u® — u uniformly on B, maxpg(uf — (¢ + & |z — 2|°)) <
(uf — (¢ + 6|z — &*))(2) for e small. As a result uf — (¢ + 6 |# — |%) has a local
maximum at some point x. in the interior of B, and by choosing a sequence of r

converging to 0, x. — z, as € — 0. Then at © = x.,

Du(z.) = D(¢p+ 6|z —2)(z.) and
Auf(z) < NG+ 6|z — i) (xe). (4.7)

Then from (4.6), we have
F.(z.,u(2.), D(¢ + 8 |z — &) (2.)) < e A (¢ + 8 |z — &) (a2) (4.8)
Since, as € — 0,

u(z) — (@),
D(¢+6le—2f*)(z:) — D(¢p+6|x—2")(&) = Dp(#), and
eN(p+ 6|z —2*)(x) — 0

and F' is continuous, we have

F(&,u(), Dp(z) < 0. (4.9)
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However, we have to show this for test functions from C*(Q2). Let ¢ € C(Q), and

assume u — ¢ has a local maximum at z € 2. We then have to to show that
F(z,u(z), Dp(z) < 0.

Let ¢, € C2(Q) such that ¢, — ¢ in C*(Q). Consider ¢, + 6 |# — &|>. For n large
enough, u — (¢, + 8 |z — |*) has a local maximum at some z,, € Q and z,, — &. Then

as shown above, for each n we have,
F(zp, u(x,), D+ D(¢, 4 6|z — 2*)(2,)) < 0. (4.10)
Since, as n — o0,

w(z,) — u(Z), and

D(¢, + 68|z — &) (xn) — D@(@)+ D(6|x —2*)(2) = Do(%)
and F' is continuous, we have,
F(z,u(z), Do(z) < 0. (4.9)

Hence u is a subsolution.

In the case that ¢ € C'(Q), and u — ¢ has a local minimum at & € Q, we consider
¢, — 6|z — &, and we have the reversed inequalities in (4.7)-(4.10), resulting in a
reversed inequality in (4.9). Hence we have that u is a supersolution.

Therefore u is a solution of F'(z,u, Du) =0in ). mm
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