
’VISCOSITY SOLUTIONS’- AN INTRODUCTION TO THE BASICS
OF THE THEORY

by

Banu Baydil

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

in

Mathematics

Sabancı University

September 2002



’VISCOSITY SOLUTIONS’- AN INTRODUCTION TO THE BASICS OF THE

THEORY

APPROVED BY:

Prof. Dr. Albert Erkip

Supervisor Signature

Prof. Dr. Tosun Terzioğlu

Signature

Asst. Prof. Dr. Yuntong Wang

Signature

APPROVAL DATE: September 18th, 2002



c° Banu Baydil 2002

All Rights Reserved



ABSTRACT

’Viscosity Solutions’- An Introduction To The Basics Of The Theory

In this work, concepts that appear in the basic theory of viscosity so-
lutions theory is surveyed. Structures of sub and super differentials and
sub and super semijets, and concepts of generalized second derivative,
generalized ’maximum principle’ and generalized ’comparison principle’
are studied. Basic properties of semiconvex functions and sup (Jensen’s)
convolutions are presented. Existence and uniqueness of solutions of the
Dirichlet Problem for first and second order nonlinear elliptic partial dif-
ferential equations is studied.

Key words: viscosity solutions, nonlinear elliptic partial differential
equations, maximum principles, comparison theorems, Perron’s method.
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ÖZET

’Viskozite Çözümleri’-Teorinin Temellerine Bir Giri̧s

Bu çalı̧smada viskozite çözümleri teorisinin temelini oluşturan kavram-
lar ele alınmı̧stır. Alt ve üst birinci ve ikinci türev kümelerinin yapıları,
genelleştirilmi̧s ikinci türev, genelleştirilmi̧s ’maksimum prensibi’ ve genelleştir-
ilmi̧s ’kaŗsılaştırma prensibi’ kavramları incelenmi̧stir. Yarı konveks fonksiy-
onlar ve sup (Jensen) konvülasyonlarına ait temel özellikler verilmi̧stir.
Birinci ve ikinci derece doğrusal olmayan elliptik kısmi diferansiyel den-
klemler için Dirichlet problemi ele alınarak bu problemin çözümlerinin
varlık ve tekliği incelenmi̧stir.

Anahtar kelimler: viskozite çözümleri, doğrusal olmayan elliptik kısmi
diferansiyel denklemler, maksimum prensipleri, kaŗsılaştırma teoremleri,
Perron yöntemi.
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Prof. Dr. Alev Topuzoğlu, and to Dr. Huriye Arıkan for providing me with a unique

experience during my Masters’ studies.

vii



TABLE OF CONTENTS

1 INTRODUCTION 1

2 PRELIMINARIES AND MOTIVATION 6
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Second Order Semijets & First Order Differentials . . . . . . . . . . . 7

2.2.1. First order case . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2. Second order case . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Ellipticity, Linearization, ”Properness” and ”Maximum Principle” . 28
2.4. Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5. Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6. Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 GENERALIZATIONSOF SECONDDERIVATIVETESTS - ”MAX-
IMUM & COMPARISON PRINCIPLES” 43
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2. Semiconvex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3. Sup Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4. Theorem on Sums - A Comparison Principle for Semicontinuous Func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5. Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 EXISTENCE AND UNIQUENESS OF SOLUTIONS 80
4.1. Comparison and Uniqueness (Second Order Case) . . . . . . . . . . . 80

4.1.1. First order case . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2. Existence (Second Order Case) . . . . . . . . . . . . . . . . . . . . . 92

4.2.1. Step 1: Construction of a maximal subsolution . . . . . . . . . 94
4.2.2. Step 2: Perron’s method and existence . . . . . . . . . . . . . 98
4.2.3. First order case . . . . . . . . . . . . . . . . . . . . . . . . . . 102

BIBLIOGRAPHY 105

viii



LIST OF FIGURES

Figure 2.1   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     40
Figure 2.2   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     40
Figure 2.3    .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    41
Figure 2.4   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .    41
Figure 2.5   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     42
Figure 2.6   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   42
Figure 2.7   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   42
Figure 2.8   .   .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    42

ix



1

INTRODUCTION

The first time I was introduced to ’viscosity solutions’ was in Prof. H. Mete Soner’s

lecture during the research semester on ’Qualitative Behavior of Nonlinear Partial

Differential Equations’ that took place at TUBITAK (Turkish National Council of

Scientific and Technical Research)-Feza Gürsey Basic Sciences Research Institute,

Istanbul, Turkey. The idea then fascinated me for two reasons, one was that it was

a complete different way of looking at the things, with a different pair of glasses, in

a different perspective, and the other was that it was a rather new development in

mathematics which proved to be enormously promising in a very short period of time.

Afterwards, I have decided to write my MSc. thesis in this area in order to be able

to learn more on the subject along the way.

’Viscosity Solutions’ was first introduced by M. G. Crandall and P.-L. Lions in

1983. Since then over a thousand papers appeared in well known mathematical jour-

nals. Scope of these papers ranged from the theory to applications and to numerical

computations and they spanned a spectrum of subjects ranging from control theory

to image processing, from phase transitions to mathematical finance. This was an ev-

idence of the importance of the theory in applied mathematics; and in fact ’viscosity

solutions’ turned out to be the right class of weak solutions of certain fully nonlinear

first and second order elliptic and parabolic partial differential equations (pde’s).

The major breakthrough in the theory after 1983, came in 1988 with Jensen when

1



he was able to show uniqueness for second order equations. Jensen’s observation was

that even if Du2(x̂) might not exist at a local maximum x̂ of a semiconvex function

(See Section 2.2 for a definition), near x̂ one could find a sequence of xn’s converging

to x̂ such that Du2(xn) ≤ 0. Hence this was actually a generalized second derivative
test for semiconvex functions. Most of the above mentioned papers were written after

this breakthrough.

Later on, in the second half of 1990’s, P-L. Lions and P. E. Souganidis introduced

’viscosity solutions’ to the area of nonlinear stochastic pde’s.

Recently, a four year (1998-2002) TMR (Training and Mobility of Researches)-

network project has been organized under the European Union TMR program bring-

ing together researches from 10 different institutions in Europe working on differ-

ent aspects of the theory; and preprints of the latest results from this project can

be obtained from their web page http://www.ceremade.dauphine.fr/reseaux/TMR-

viscosite/.

This survey thesis is mainly based on two major papers in the field. The first one

is ’Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations’ published by

M. G. Crandall, L. C. Evans and P.-L. Lions in 1984 and the second one is the famous

survey article ’User’s Guide to Viscosity Solutions of Second Order Partial Differential

equations” by M. G. Crandall, H. Ishii and P.-L. Lions, published in 1992. Also, the

books ’Controlled Markov Processes and Viscosity solutions’ by W. H. Fleming and

H. M. Soner, ’Fully Nonlinear Elliptic Equations’ by X. Cabré and L .A. Caffarelli,

and ’Viscosity Solutions and Applications, C.I.M.E. Lecture Series (1660)’ by Bardi

et.al. are extensively used. (See references for details of the sources.)

The name ’viscosity’ comes from a traditional engineering application where a

nonlinear first order pde is approximated by quasilinear first order equations which

are obtained from the initial pde by adding a regularizing ε4uε term, which is called
a ’viscosity term’, and these approximate equations can be solved by classical or

numerical methods and the limit of their solution hopefully solves the initial equation.

2



This classical method was called method of ’vanishing viscosity’; and it was observed

at the very beginning of the research in this area that ’vanishing viscosity’ method

yielded viscosity solutions (See Section 4.2.3). However, this is only a historical

connection and viscosity solutions do not have more to do with this method or the

viscosity term. The definition of viscosity solutions as will be seen in this survey is

an intrinsic one.

’Viscosity Solutions’ theory is a highly nonlinear approach, for it does not make

use of differentiation as is the case in other weak solution approaches. It is a ”maxi-

mum principle”, ”generalized second derivative” approach, and it is a ”real analysis”

approach using facts from calculus rather then making use of results from functional

analysis. Throughout this thesis we will try to emphasize these points as much as

possible.

Within this theory, several concepts of classical theory can be relaxed, generalized

and replaced by their correspondents. We can name some of them as follows:

1) Continuity to upper and lower semicontinuity (See Section 2.4 for definition),

2) Differentiation to sub- and super-differentials (See Section 2.2 for definition),

3) Second derivative to second order sub- and super semijets (See Section 2.2 for

definition),

4) Differential equation to pair of differential inequalities.

Throughout this thesis, nonlinear scaler second order pde’s will be considered, and

first order cases and analogues of certain concepts will be introduced along the way.

The presentation is preferred to be a ahistorical one in order to avoid repetitions of

the same ideas.

In Chapter 2, basic definitions and motivation will be given, in particular struc-

tures and properties of semijets and subdifferentials will be emphasized. Later on, the

link between linearization of a nonlinear mapping at a function u0 and the ’properness’

property of this nonlinear mapping, and the maximum principle that this nonlinear

mapping is to satisfy will be discussed. Links with linear elliptic theory will be pointed

3



out by considering several simple examples regarding applications of maximum prin-

ciples. Finally, viscosity solution concept will be introduced via two perspectives and

two equivalent definitions will be stated.

In Chapter 3, since in viscosity solutions theory one inevitably works with upper

and lower semicontinuous functions (See Section 2.4 for a definition), it is important

to know how to work with their regularizations, therefore, the basic tools, namely

semiconvex functions and sup convolutions and their properties and links with semi-

jets, that will be needed in the analysis will be introduced first. Later on Jensen’s

lemma will be proved, and generalization of the second derivative concept, in other

words a ’maximum principle’ for upper semicontinuous solutions will be presented.

In the literature this last result is referred to as ’theorem on sums’.

In Chapter 4, the Dirichlet Problem on a bounded domain is considered. First,

the approach to be able to obtain a comparison result is discussed, then the condi-

tions under which a comparison result can be obtained are derived, and as a trivial

consequence of the comparison result, uniqueness is presented. The method and the

necessary conditions for comparison in first order case is presented shortly and why

the method for first order cases does not work in second order cases is illustrated by a

simple example. In the second part of Chapter 4, existence of solutions is considered

for the same Dirichlet Problem. There are several ways existence schemes can be

shown, and among them Perron’s method, which presupposes comparison, is chosen

to be presented in this work. We note that this is an existence scheme rather then

an existence result, since the existence of solutions in this method depends further

on existence of a subsolution and a supersolution that agrees on the boundary of

the domain. The conditions under which such a sub and super solution exist is very

problem specific and in different problem types it is dealt with different results from

classical analysis. Hence, Perron’s method can be considered more as an existence

scheme. Finally an existence scheme for first order case is presented, and this is the

historical connection we have mentioned above, the method of ’vanishing viscosity’.

4



This thesis is written with a view of providing the basics of the theory in order

to save time and effort for future students who would want to work on the subject,

and is thought of as a concise guide with basic tools for the beginner with almost no

knowledge on the subject and hence as a guide to the present introductory guides and

books for the theory. Therefore, we have tried to answer the questions of why’s as

much as possible, and tried to state what is in between the lines of usual proofs and

goes unstated. We have tried to visualize certain material along the sequel, and hence

used n = 1 illustrations and in some cases stated the proofs for n = 2. Also, some

of the exercises present in some of the introductory books to the theory are solved

and included as examples. In the notes sections to each chapter, content specific

references are given.

Throughout this thesis, the fact that one is trying to generalize a theory for

nonlinear equations, and that one is trying to generalize a ’weak solution concept’

and that since one will be working with nondifferentiable functions, one needs a

generalization of ’differentiability’ is simultaneously kept in mind.

5



2

PRELIMINARIES AND

MOTIVATION

2.1. Introduction

We will first start with directly presenting the below definition for a viscosity sub-

solution, viscosity supersolution and viscosity solution of a certain type of nonlinear

elliptic PDE. As we try to understand what this definition means by going over its

constituent terms, we will find ourselves introduced to viscosity solution theory.

Definition 2.1 Let F be a continuous proper second order nonlinear elliptic partial

differential operator, and Ω ⊂ Rn. Then, a function u ∈ USC(Ω) is a viscosity

subsolution of F = 0 on Ω if

F (x, u(x), p,X) ≤ 0 for all x ∈ Ω and (p,X) ∈ J2,+Ω u(x),

A function u ∈ LSC(Ω) is a viscosity supersolution of F = 0 on Ω if

F (x, u(x), p,X) ≥ 0 for all x ∈ Ω and (p,X) ∈ J2,−Ω u(x),

and a function u ∈ C(Ω) is a viscosity solution of F = 0 on Ω if it is both a viscosity
subsolution and a viscosity supersolution of F = 0 on Ω.

6



Our first aim will be to investigate this definition and try to understand what it

means. In order to be able to do so, we will begin with exploring its components;

for example, when first presented with such a definition one immediately asks what

a J2,+Ω u(x), or a J2,−Ω u(x) is, or how F is defined and what ’proper’ is for a second

order nonlinear elliptic operator.

Next, we will ask the questions of ”why do we require F to be proper, or u to be

upper semicontinuous for a subsolution and lower semicontinuous for a supersolution”,

and ”what could be the motivation behind this definition”, ”how possibly could its

equivalents be stated”, and ”finally, what could its merits be?”.

Along our way, we will also be defining viscosity subsolutions/supersolutions (and

hence viscosity solutions) of first order nonlinear elliptic partial differential operators,

and first order analogues of J2,+Ω u(x) and J2,−Ω u(x).

2.2. Second Order Semijets & First Order Differ-

entials

Definition 2.2 Let (p,X) ∈ Rn × S(N), u : Ω → R, and x̂ ∈ Ω. Then (p,X) ∈
J2,+Ω u(x̂), if

u(x) ≤ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i+ o(|x− x̂|2) as x→ x̂ in Ω.

J2,+Ω u(x̂) is then called the second order superjet of u at x̂.

Similarly (p,X) ∈ J2,−Ω u(x̂), if

u(x) ≥ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i+ o(|x− x̂|2) as x→ x̂ in Ω.

J2,−Ω u(x̂) is then called the second order subjet of u at x̂.

Before proceeding any further in working with these sets, let us try to understand

their first order analogues.
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2.2.1. First order case

Let us start by presenting our motivation behind the definitions that will follow.

We call a function u : Ω → R differentiable at a point x̂ ∈ Ω, and let Du(x̂) =
p ∈ Rn, if

u(x) = u(x̂) + hp, x− x̂i+ o(|x− x̂|) as x→ x̂ in Ω

holds. In fact, we can view this equality as the conjunction of two other inequalities

lim supx→x̂
(u(x)− u(x̂)− hp, x− x̂i)

|x− x̂| ≤ 0

and lim infx→x̂
(u(x)− u(x̂)− hp, x− x̂i)

|x− x̂| ≥ 0

since

u(x)− u(x̂)− hp, x− x̂i = o(|x− x̂|) as x→ x̂ in Ω implies that

limx→x̂
|u(x)− u(x̂)− hp, x− x̂i|

|x− x̂| = 0.

If u is not differentiable at x̂, and however, if it is continuous at this point (and even

if it is not continuous but upper of lower semicontinuous) then one of the inequalities

might still hold at x̂. Therefore, we define the following:

Definition 2.3 Let u : Ω→ R, and x̂ ∈ Ω. The superdifferential of u at x̂ is the set
of p ∈ Rn such that

lim supx→x̂
(u(x)− u(x̂)− hp, x− x̂i)

|x− x̂| ≤ 0 holds. (2.1)

and is denoted by D+u(x̂).

Similarly, the subdifferential of u at x̂ is the set of p ∈ Rn such that

lim infx→x̂
(u(x)− u(x̂)− hp, x− x̂i)

|x− x̂| ≥ 0 holds. (2.2)

and is denoted by D−u(x̂).
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Let us take n = 1, and try to get a rough geometrical picture of the above

definition.

Let

u(x) =

 1
2
x2 if x ≥ 2

1
2
x+ 1 if x ≤ 2

,

clearly u is continuous, but not differentiable at x̂ = 2.

Associate to each p ∈ R, the line with slope p that is touching the graph of u at
x = 2. Let l1 be the line with slope p1 = limx→2+

(u(x)−u(2))
|x−2| = 2 and l2 be the line

with slope p2 = limx→2−
(u(2)−u(x))

|x−2| = 1
2
. See Figure 2.1 at the end of the chapter. Let

xn → 2+. Then slope of any line whose half graph left to x = 2 lies in the region S1

satisfies (2.2) as xn → 2+, and is a candidate to be in D−u(2). Let yn → 2−. Then

slope of any line whose half graph right to x = 2 lies in the region S2 satisfies (2.2) as

yn → 2−, and is a candidate to be in D−u(2). Since we require (2.2) to hold as x→ 2,

this requires that both of these cases hold simultaneously. Hence, slope of any line

whose graph lies in the shaded region is actually in D−u(2). Note that this shaded

region is controlled by the lines l1 and l2, and that D−u(2) =
£
1
2
, 2
¤ ⊂ R. Through

a similar geometrical analysis we see that D+u(2) = ∅, since this time there can be
no line whose right half graph is in the corresponding region S3, and whose left half

graph is in the corresponding region S4 simultaneously. We note at this point that

at x = 2 graph of u is concave up.

Now let v(x) = −u(x) =
 −1

2
x2 if x ≥ 2

−1
2
x− 1 if x < 2

Following the same geometrical approach we see that this time D−v(2) = ∅ and
D+v(2) =

£−1
2
,−2¤ = −D−u(2). See Figure 2.2 at the end of the chapter. We also

note that this time at x = 2 graph of u is concave down.

Finally, it is also important to note that when u is differentiable at x̂ ∈ Ω, then
l1 = l2 and the corresponding shaded regions for both D+u and D−u become just the

graph of this unique line and D+u(x̂) = D−u(x̂) = {Du(x̂)}.
Hence when dealing with continuous functions that are not differentiable at certain
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points, at the points of nondifferentiability we can in a way replace the concept of

differentiability with the weaker concept of subdifferentials and superdifferentials.

Furthermore, as hinted by above geometrical approach, we can characterize these

sets as follows:

Lemma 2.4 Let u ∈ C(Ω) be differentiable at x̂ ∈ Ω. Then, there exists ϕ1,ϕ2 ∈
C1(Ω) such that Dϕ1(x̂) = Dϕ2(x̂) = Du(x̂) and u− ϕ1 has a strict local maximum
value of zero at x̂, and u− ϕ2 has a strict local minimum value of zero at x̂.

By strictness of the maximum we mean that there is a nondecreasing function

h : (0,∞)→ (0,∞) and s, r > 0 such that

u(x)− ϕ1(x) ≤ u(x̂)− ϕ(x̂)− h(s) for s ≤ |x− x̂| ≤ r.

Similarly, by strictness of the minimumwemean that there is a nondecreasing function

h : (0,∞)→ (0,∞) and s, r > 0 such that

u(x)− ϕ1(x) ≥ u(x̂)− ϕ(x̂) + h(s) for s ≤ |x− x̂| ≤ r.

See Figure 2.3 at the end of the chapter to have an idea in n = 1 for a differentiable

(locally linearizable) u at x̂.

Lemma 2.5 is a special case of Proposition 2.6, hence we will not give a separate

proof for it.

Proposition 2.5 Let u ∈ C(Ω), x̂ ∈ Ω, p ∈ Rn. Then the following are equivalent:
i) p ∈ D+u(x̂) (respectively D−u(x̂)) and

ii) there exists ϕ ∈ C1(Ω) such that u − ϕ has a local maximum (respectively

minimum) at x̂ and Dϕ(x̂) = p.

Proof. We will give the proof for the D+u(x̂) and the local maximum case.

Let p ∈ D+u(x̂). Then near x̂, u(x) ≤ u(x̂) + hp, x− x̂i+ o(|x− x̂|). Let α(x) =
{u(x)− u(x̂)− hp, x− x̂i}+, where {h}+ = max {h, 0}. Then, since α(x) = o(|x− x̂|)
and α(x̂) = 0,

α(x) = α(x̂) + h0, x− x̂i+ o(|x− x̂|)
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holds and hence α(x) is differentiable at x̂ and Dα(x̂) = 0. Let β1 ∈ C1(Ω) be given
for this α by the previous lemma. Then

β1(x̂) = α(x̂) = 0, Dβ1(x̂) = Dα(x̂) = 0

and near x̂

α(x)− β1(x) ≤ α(x̂)− β1(x̂) = 0, so that we have
{u(x)− (u(x̂) + hp, x− x̂i)}+ − β1(x) ≤ 0.

Let

ϕ(x) = u(x̂) + hp, x− x̂i+ β1(x).

Then

ϕ(x̂) = u(x̂) since β1(x̂) = 0,

Dϕ(x̂) = p since Dβ1(x̂) = 0;

and near x̂ we have

u(x)− ϕ(x) = u(x)− u(x̂)− hp, x− x̂i− β1(x)
≤ {u(x)− (u(x̂) + hp, x− x̂i)}+ − β1(x)
≤ 0 = u(x̂)− ϕ(x̂).

Hence u− ϕ has a local maximum at x̂ and Dϕ(x̂) = p.

Now, if u− ϕ has a local maximum at x̂, then near x̂ we have

u(x)− ϕ(x) ≤ u(x̂)− ϕ(x̂) so that
u(x) ≤ u(x̂)− ϕ(x̂) + ϕ(x) by Taylor expansion of ϕ,

we have u(x) ≤ u(x̂)− ϕ(x̂) + ϕ(x̂) + hDϕ(x̂), x− x̂i+ o(|x− x̂|)
which gives us that u(x) ≤ u(x̂) + hDϕ(x̂), x− x̂i+ o(|x− x̂|).

Hence

lim supx−x̂
(u(x)− u(x̂)− hDϕ(x̂), x− x̂i)

|x− x̂| ≤ 0
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and Dϕ(x̂) ∈ D+u(x̂).

See Figure 2.4 for an illustration for n = 1.

Proposition 2.6 Let u ∈ C(Ω), x̂ ∈ Ω, p ∈ Rn. Then, the following are equivalent:
i) p ∈ D+u(x̂) (respectively D−u(x̂)) and

ii) there exists ϕ ∈ C1(Ω) such that u − ϕ has a strict maximum (respectively

minimum) at x̂ and Dϕ(x̂) = p.

Proof. This time we will construct such a function ϕ.

Let p ∈ D+u(x̂). Then near x̂, u(x) ≤ u(x̂) + hp, x− x̂i+ o(|x− x̂|).
Let

γ(s) = sup
©
(u(x)− u(x̂)− hp, x− x̂i)+ : x ∈ Ω, and |x− x̂| ≤ sª .

Then γ(s) is nondecreasing, 0 ≤ γ(s)and as s→ 0, γ(s) = o(s). Let τ (s) ∈ C(Ω) be
such that γ(s) ≤ τ(s), and τ(s) is nondecreasing and also τ(s) = o(s).
We will assume that x̂ = 0 to ease the notation.

Let

T (s) =
1

s

Z 2s

s

τ(z)dz for s > 0, and T (s) = 0 for s = 0, then

for s > 0, T (s) is continuous, we have to check at s = 0.

0 ≤ T (s) ≤ 1

s

Z 2s

s

τ(2s)dz since τ(x) ≤ τ (2s) for s ≤ |x| ≤ 2s, then

≤ 1

s
τ(2s)

Z 2s

s

dz =
1

s
τ(2s)(2s− s) = τ(2s) hence

0 ≤ T (s) ≤ τ (2s).

Then as s→ 0, T (s)→ 0 = T (0), hence T (s) is continuous at s = 0. Furthermore,

sT (s) =

Z 2s

s

τ (z)dz

d

ds
(sT (s)) =

d

ds
(

Z 2s

s

τ(z)dz)

T (s) + s
d

ds
(T (s)) = 2τ(2s)− τ (s)

d

ds
(T (s)) =

1

s
(2τ (2s)− τ (s)− T (s)).
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Hence for s > 0, d
ds
(T (s)) is continuous and we have to check at s = 0.¯̄̄̄
d

ds
(T (s))

¯̄̄̄
≤ 1

s
(τ(2s) + τ(2s) + τ(2s)) =

3

s
τ(2s)¯̄̄̄

d

ds
(T (s))

¯̄̄̄
≤ 0 as s→ 0.

So, d
ds
(T (s)) is continuous at s = 0.

Hence T (s) and d
ds
(T (s)) are continuous. Furthermore, T (0) = d

ds
(T (0)) = 0.

Now we go back using x̂. Let

ϕ(x) = u(x̂) + T (|x− x̂|) + hp, x− x̂i+ |x− x̂|4 ,

then ϕ(x̂) = u(x̂), and Dϕ(x̂) = p.

Since we have

T (s) =
1

s

Z 2s

s

τ(z)dz ≥ 1

s

Z 2s

s

τ(s)dz

=
1

s
τ(s)(2s− s) = τ(s) since τ (s) ≤ τ(x) for s ≤ |x| ≤ 2s(2.3)

and u(x)− hp, x− x̂i ≤ γ(s) ≤ τ(s) (2.4)

then, we have

ϕ(x) = T (|x− x̂|) + hp, x− x̂i+ |x− x̂|4 by (2.3),
≥ τ(s) + hp, x− x̂i+ |x− x̂|4 by (2.4),
≥ u(x) + |x− x̂|4 for all x ∈ Ω.

Then we have

u(x)− ϕ(x) ≤ 0− |x− x̂|4 = u(x̂)− ϕ(x̂)− |x− x̂|4 , hence
u(x)− ϕ(x) ≤ u(x̂)− ϕ(x̂)− |x− x̂|4 for all x ∈ Ω.

Now, let h(t) : (0,∞)→ (0,∞) be h(t) = t4 and let r > 0. Then for s ≤ |x− x̂| ≤ r
s4 = h(s) ≤ h(|x− x̂|) = |x− x̂|4 since h is nondecreasing, hence we have

u(x)− ϕ(x) ≤ u(x̂)− ϕ(x̂)− h(s) for s ≤ |x− x̂| ≤ r.
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Hence u− ϕ has a strict maximum at x̂, with h(s) = s4 as strictness.

The proof of ii)→ i) is same as it is in the previous proposition.

One can view Lemma 2.4 as a special case of Proposition 2.6, where u is differen-

tiable at x̂ and therefore D+u(x̂) = {Du(x̂)} and Du(x̂) = p = Dϕ(x̂).
Having this insight now, we can go back to the second order case.

2.2.2. Second order case

Let us recall the definition of second order superjet of u at x̂ ∈ Ω once again:
(p,X) ∈ J2,+Ω u(x̂) if

u(x) ≤ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i+ o(|x− x̂|2) as x→ x̂ in Ω.

Paralleling our discussion for the first order case, we this time note that if a function

u : Ω → R is such that u ∈ C2(Ω), and at at some x̂, Du(x̂) = p ∈ Rn, D2u(x̂) =

X ∈ S(N), then by its Taylor expansion around x̂, we know that

u(x) = u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i+ o(|x− x̂|2) as x→ x̂ in Ω.

Rearranging the terms, we arrive at, as x→ x̂ in Ω

u(x) = u(x̂)− hp, x̂i+ 1
2
hXx̂, x̂i+ hp−Xx̂, xi+ 1

2
hXx, xi+ o(|x− x̂|2)

= l0 + l(x) +
1

2
hAx, xi+ o(|x− x̂|2)

where l0 = u(x̂)− hp, x̂i+ 1
2
hXx̂, x̂i is a constant,

l(x) = hp−Xx̂, xi is a linear function, and
A = X is a symmetric matrix.

Now, we note that a paraboloid is a polynomial in x of degree 2, and any paraboloid

P can be written as

P (x) = l0 + l(x) +
1

2
hAx, xi
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where l0 is a constant, l(x) is a linear function, and A is a symmetric matrix. Hence

in the case that u ∈ C2(Ω), we have

u(x) = P (x) + o(|x− x̂|2) as x→ x̂ in Ω

for some paraboloid P (x). Moreover, we will make the following definitions:

Definition 2.7 A paraboloid P will be called of opening M , whenever

P (x) = l0 + l(x)± M
2
|x|2 ,

where M is a positive constant, l0 is a constant and l is a linear function. Then, P is

convex when we have +M
2
|x|2, and concave when we have −M

2
|x|2 as the third term.

Definition 2.8 Let u, v ∈ C(Ω). Ω be open, and x̂ ∈ Ω. If

u(x) ≤ v(x) for all x ∈ Ω and
u(x̂) = v(x̂), then

we will say that v touches u by above at x̂. Similarly, if

u(x) ≥ v(x) for all x ∈ Ω and
u(x̂) = v(x̂), then

we will say that v touches u by below at x̂.

In the above case when u ∈ C2(Ω), then by letting Pε(x) = P (x) + ε
2
|x− x̂|2

where ε > 0, we have

u(x) = P (x) + o(|x− x̂|2) ≤ P (x) + ε
2
|x− x̂|2 = Pε(x) in a neighborhood of x̂.

Hence, Pε(x) is a paraboloid that touches u by above at x̂; and similarly, P(−ε)(x) is

a paraboloid that touches u by below at x̂.

Within this perspective, we can take as our generalized pointwise definition for

second order differentiability at x̂ ∈ Ω, when u ∈ C(Ω) and fails to be C2(Ω), as
follows:
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Definition 2.9 u ∈ C(Ω) will be called punctually second order differentiable at

x̂ ∈ Ω, if there is a paraboloid P such that

u(x) = P (x) + o(|x− x̂|2) as x→ x̂ in Ω holds,

and we will define, D2u(x̂) = D2P (x̂).

In the case that this fails to hold then we can expect either

u(x) ≤ P (x) + o(|x− x̂|2) as x→ x̂ in Ω

or

u(x) ≥ P (x) + o(|x− x̂|2) as x→ x̂ in Ω to hold.

In the first case then

u(x) ≤ P (x) + o(|x− x̂|2) ≤ P (x) + ε
2
|x− x̂|2 = Pε(x) in a neighborhood of x̂,

and Pε(x) will be touching u by above at x̂, and in the second case

u(x) ≥ P (x) + o(|x− x̂|2) ≥ P (x)− ε
2
|x− x̂|2 = P(−ε)(x) in a neighborhood of x̂

and P(−ε)(x) will be touching u by below at x̂.

Then, whenever (p,X) ∈ J2,+Ω u(x̂) is given, since upon rearrangement, and as

x→ x̂ in Ω,

u(x) ≤ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i+ o(|x− x̂|2) will imply

≤ P (x) + o(|x− x̂|2) as x→ x̂ in Ω,

we can say that there is a paraboloid

Pε(x) = u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i+ ε

2
|x− x̂|2

that touches u by above at x̂.
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Similarly, whenever (p,X) ∈ J2,−Ω u(x̂) is given, we can say that there is a paraboloid

P(−ε)(x) = u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), (x− x̂)i− ε

2
|x− x̂|2

that touches u by below at x̂.

Furthermore, if ϕ is C2(Ω) and x̂ is a local maximum of u− ϕ, then

u(x)− ϕ(x) ≤ u(x̂)− ϕ(x̂) for x near x̂,

and by Taylor expansion of ϕ, we have

u(x)− ϕ(x) ≤ u(x̂)− ϕ(x̂) + ϕ(x̂) + hDϕ(x̂), x− x̂i
+
1

2

­
D2ϕ(x̂)(x− x̂), (x− x̂)®+ o(|x− x̂|2)

≤ u(x̂) + hDϕ(x̂), x− x̂i+ 1
2

­
D2ϕ(x̂)(x− x̂), (x− x̂)®+ o(|x− x̂|2)

so that (Dϕ(x̂), D2ϕ(x̂)) will be in J2,+Ω u(x̂), and

Pε(x) = u(x̂) + hDϕ(x̂), x− x̂i+ 1
2

­
D2ϕ(x̂)(x− x̂), (x− x̂)®+ ε

2
|x− x̂|2

will be touching u by above at x̂.

Following a similar manner as in Proposition 2.6 in first order case, given (p,X) ∈
J2,+Ω u(x̂), by taking

T (s) =
2

3s2

Z 2s

s

Z 2k

k

τ(z)dzdk,

we can construct a function ϕ such that ϕ ∈ C2(Ω), and u− ϕ attains its maximum
at x̂.

At this point, we will give two rather detailed examples which will assist us in

having a picture of these sets.

Example 2.10 On R let us define the function

u(x) =

 0

ax+ b
2
x2

for x ≤ 0,
for x ≥ 0.

 .
We will see that
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J2,+R u(0) =


∅

{0} × [max {0, b} ,∞)
((a, 0)×R) ∪ ({0} × [0,∞)) ∪ ({a} × [b,∞))

if a > 0,

if a = 0,

if a < 0.


Solution: We are looking for pairs of (p,X) ∈ R× S(1) for which the inequality

u(x) ≤ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), x− x̂i+ o(|x− x̂|2)

holds as x → x̂. Since we will be computing the second order superjet of u (in the

set Ω = R ) at x̂ = 0 this inequality becomes:

u(x) ≤ u(0) + hp, x− 0i+ 1
2
hX(x− 0), x− 0i+ o(|x− 0|2)

as x→ 0.

Moreover, since u(x) is piecewise defined around x̂ = 0 we actually have two

inequalities to hold simultaneously:

1) 0 ≤ 0 + hp, xi+ 1
2
hXx, xi+ o(|x|2) as x→ 0− and

2) ax+ b
2
x2 ≤ 0 + hp, xi+ 1

2
hXx, xi+ o(|x|2) as x→ 0+.

At this point, we note that the inequality (1) is independent of the constants a

and b; and that the second inequality leads us to three main cases, namely, a < 0,

a = 0 and a > 0; and that S(1) = R, so that (p,X) ∈ R×R; and also that the scaler
product is usual multiplication in R.

Case 1: a = 0, u(x) =

 0

b
2
x2

for x ≤ 0,
for x ≥ 0.


In this case, we can graph u(x) as in Figure 2.5 (for b > 0), see end of the chapter

for the figure. On the left of x = 0, the graph is a straight line and u has slope 0. On

the right of x = 0, the graph is a quadratic and u has slope bx and second derivative

(bending) b. The function u is differentiable at the point x = 0 with u0(0) = 0 however

not twice differentiable at x = 0 (unless b = 0).

Then the inequalities (1) and (2) become:
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1.1) 0 ≤ px+ 1
2
Xx2 + o(|x|2) as x→ 0− and

1.2) b
2
x2 ≤ px+ 1

2
Xx2 + o(|x|2) as x→ 0+.

For this specific u(x), we are looking for (p,X) ∈ R ×R such that (1.1) and(1.2)
will hold simultaneously.

If p = 0, then we have

from (1.1)
0

x2
≤ 1

2

Xx2

x2
+ 0, hence 0 ≤ 1

2
X, so that

X ≥ 0 as x→ 0− has to hold,

from (1.2)
0

x2
≤ 1

2

(X − b)x2
x2

+ 0, hence 0 ≤ 1

2
(X − b), so that

X ≥ b as x→ 0+ has to hold.

Hence for p = 0 if we have X ≥ max {0, b}, then the desired inequalities will hold as
x→ 0 in R.

If p < 0 then

from (1.2)
−px
x2

≤ 1

2

(X − b)x2
x2

+ 0, hence

−p
x

≤ 1

2
(X − b) as x→ 0+ has to hold,

however since left hand-side (LHS) of this last inequality→ ∞ as x → 0+, for any

fixed p < 0, b ∈ R, there does not exist any (X − b) (and hence any X) that will
make (1.2) hold.

If p > 0, then px is the line with slope p going through the origin, see Figure 2.6

at the end of the chapter,

from (1.1)
−px
x2

≤ 1

2

Xx2

x2
+ 0, hence

−p
x

≤ 1

2
X as x→ 0− has to hold,

however since LHS of this last inequality →∞ as x→ 0−, for any fixed p > 0, there

does not exist any X that will make (1.1) hold.

So, if a = 0, we have

(p,X) ∈ {0} × [max {0, b} ,∞) , i.e. J2,+R u(0) = {0} × [max {0, b} ,∞)
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Case 2: a > 0, u(x) =

 0

ax+ b
2
x2

for x ≤ 0,
for x ≥ 0.

.
In this case, we can graph u(x) as in Figure 2.7 (for b > 0), see end of the chapter

for the figure. On the left of x = 0, the graph is a straight line and u has slope 0.

On the right of x = 0, the graph is that of a line ax plus a quadratic this time and u

has slope a+ bx and second derivative (bending) b. This time, the function u is not

differentiable at the point x = 0 since L1 = limh→0+
u(0+h)−u(0)

h
= limh→0+

ah+ b
2
h2−0
h

=

a and L2 = limh→0−
u(0+h)−u(0)

h
= 0 and L1 6= L2 since a > 0.

Now, the inequalities (1) and (2) become:

2.1) 0 ≤ px+ 1
2
Xx2 + o(|x|2) as x→ 0− and

2.2) ax+ b
2
x2 ≤ px+ 1

2
Xx2 + o(|x|2) as x→ 0+.

If p > 0, through (2.1), we have the same result given by (1.1) as above in Case

1, since this equation has not changed.

If p < 0, then

from (2.2)
(a− p)x
x2

≤ 1

2

(X − b)x2
x2

+ 0, hence

(a− p)
x

≤ 1

2
(X − b) as x→ 0+ has to hold,

however since LHS of this last inequality→∞ as x→ 0+, for any fixed p < 0, a > 0,

b ∈ R, there does not exist any (X − b) (and hence any X) that will make (2.2) hold.
If p = 0, then

from (2.2)
ax

x2
≤ 1

2

(X − b)x2
x2

+ 0, hence

a

x
≤ 1

2
(X − b) as x→ 0+ has to hold,

however, since LHS of this last inequality→∞ as x→ 0+, for any fixed a > 0, b ∈ R,
there does not exist any (X − b) (and hence any X) that will make (2.2) hold.
So, if a > 0, we have

(p,X) ∈ ∅, ieJ2,+R u(0) = ∅.
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Case 3: a < 0, u(x) =

 0

ax+ b
2
x2

for x ≤ 0,
for x ≥ 0.

.
In this case, we can graph u(x) as in Figure 2.8 (for b > 0) at the end of the

chapter. On the left of x = 0, the graph is again a straight line and u has slope 0.

On the right of x = 0, the graph is that of a line ax plus a quadratic and u has slope

a + bx and second derivative (bending) b. Again the function u is not differentiable

at the point x = 0 since L1 = limh→0+
u(0+h)−u(0)

h
= limh→0+

ah+ b
2
h2−0
h

= a and

L2 = limh→0−
u(0+h)−u(0)

h
= 0 and L1 6= L2 since a < 0.

This case looks quite similar to the previous case, however, let us see that it is

not so.

For this function u(x), the inequalities (1) and (2) become:

3.1) 0 ≤ px+ 1
2
Xx2 + o(|x|2) as x→ 0− and

3.2) ax+ b
2
x2 ≤ px+ 1

2
Xx2 + o(|x|2) as x→ 0+.

If p > 0, then through (3.1), we have the same result given by (1.1) as above in

Case 1, since this equation has not changed.

If p = 0, then we have

from (3.1)
0

x2
≤ 1

2

Xx2

x2
+ 0, hence 0 ≤ 1

2
X, so that

X ≥ 0 as x→ 0− has to hold,

from (3.2) 0 ≤ −ax
x2

+
1

2

(X − b)x2
x2

+ 0, hence

0 ≤ |a|
x
+
1

2
(X − b), so that 1

2
(X − b) ≥ − |a|

x
, and hence

X ≥ b− 2 |a|
x

as x→ 0+ has to hold, and since

the right hand-side(RHS) of this last inequality → −∞ as x → 0+, for any fixed

a < 0, b ∈ R; any X ∈ R would make (3.2) hold.
Hence for p = 0 we need to have X ≥ 0 for the two inequalities to hold simulta-

neously.

Hence if (p,X) ∈ {0} × [0,∞) then (p,X) ∈ J2,+R u(0).
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If p < 0, then

from (3.1) 0 ≤ px

x2
+
1

2

Xx2

x2
+ 0, hence 0 ≤ p

x
+
1

2
X, so that

X ≥ −2p
x

as x→ 0−, and since

RHS of this last inequality → −∞ as x→ 0−, for any fixed p < 0, any X ∈ R would
make (3.1) hold,

from (3.2)
0

x2
≤ (p− a)x

x2
+
1

2

(X − b)x2
x2

+ 0, hence

0 ≤ (p− a)
x

+
1

2
(X − b) as x→ 0+ has to hold, but then

if p < a, this gives (X−b)
2

≥ a−p
x
and since a−p is positive in this case, RHS of this

last inequality → ∞ as x → 0+, for any fixed p < a, a < 0, b ∈ R, and there does
not exist any (X − b) (and hence any X) that will make (3.2) hold;
if p > a, this gives (X−b)

2
≥ a−p

x
and since a − p is negative in this case, RHS of

this last inequality→ −∞ as x→ 0+, for any fixed 0 > p > a, b ∈ R, and any X ∈ R
will make (3.2) hold; and

if p = a, this gives (X−b)
2

≥ 0 and X ≥ b will make (3.2) hold.
Hence for p < 0 we need to have X ∈ R if p > a, and we need to have X ≥ b if

p = a, in order for (3.1) and (3.2) to hold simultaneously.

So, for a < 0, we have

(p,X) ∈ {0} × [0,∞) ∪ (a, 0)×R) ∪ {a} × [b,∞) , i.e.
J2,+R u(0) = {0} × [0,∞) ∪ (a, 0)×R) ∪ {a} × [b,∞)

Example 2.11 This time, we will look at the second order superjet of the same above

function u(x) at x̂ = 0 on the domain Ω = [−1, 0], i.e.. J2,+[−1,0]u(0).

Note that in this case x̂ = 0 is a boundary point of the domain.

Solution: Again we are looking for pairs of (p,X) ∈ R×R for which the inequality

u(x) ≤ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), x− x̂i+ o(|x− x̂|2)
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holds as x→ x̂. Then, this gives us the following simultaneous inequalities:

1) 0 ≤ 0 + hp, xi+ 1
2
hXx, xi+ o(|x|2) as x→ 0− and

2) ax+ b
2
x2 ≤ 0 + hp, xi+ 1

2
hXx, xi+ o(|x|2) as x→ 0+.

However since in this case x̂ = 0 is a boundary point of the domain, the second

inequality does not apply (or else we can say that it holds by voidness for this do-

main), and the first inequality is the only governing inequality that we need to satisfy.

Therefore, our result will not depend on a which appears in the second inequality.

Again continuing case by case:

If p = 0, then

from (1)
0

x2
≤ 1

2

Xx2

x2
+ 0, hence 0 ≤ 1

2
X, so that

X ≥ 0 as x→ 0− has to hold;

if p > 0, then

from (1)
−px
x2

≤ 1

2

Xx2

x2
+ 0, hence

−p
x

≤ 1

2
X as x→ 0− has to hold,

however since LHS of this last inequality →∞ as x→ 0−, for any fixed p > 0, there

does not exist any X that will make (1) hold.

if p < 0, then

from (1)
0

x2
≤ px

x2
+
1

2

Xx2

x2
+ 0, hence 0 ≤ p

x
+
1

2
X,

so that X ≥ −2p
x

as x→ 0− has to hold,

however since RHS of this inequality → −∞ as x → 0−, for any fixed p < 0, any

X ∈ R would make (1) hold.
Hence if (p,X) ∈ {0} × [0,∞) or if (p,X) ∈ (−∞, 0)×R, the inequality (1) will

hold.

Thus,

J2,+[−1,0]u(0) = (−∞, 0)×R ∪ {0} × [0,∞) .
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Remark: After these two examples, let us first note that, as seen in the above ex-

amples J2,+Ω u(x) need not be a closed set; and second that we can define the following

mapping

J2,+Ω u : Ω→ 2R
n×S(N)

x→ J2,+Ω u(x)

where J2,+Ω u(x) ⊂ Rn × S(N). Hence, J2,+Ω u is a set-valued mapping. (Similarly, we

can define a corresponding set-valued mapping J2,−Ω u in the case of second order sub-

jets.) Moreover, as we have seen by the previous two examples, J2,+Ω u(x) (respectively

J2,−Ω u(x)) depends on Ω; however, once x̂ is an interior point of the domain, as also

seen from the two examples, both inequalities (1) and (2) are effective and once x̂

is on the boundary only one of them is effective. Hence, we can say that for all the

sets Ω for which x̂ is an interior point we will have the same J2,+Ω u(x̂) (respectively

J2,−Ω u(x)) value for the same function independent of the domain Ω. We will denote

this common value by J2,+u(x̂) (respectively by J2,−u(x)).

Finally, in this subsection, we will state three properties of semijets, first two of

which we will be using in the following chapters, and next define closures of semijets,

which we also be using in the following chapters.

Proposition 2.12 Let u : Ω→ R, and x̂ ∈ Ω. Then,

J2,−Ω u(x̂) = −J2,+Ω (−u)(x̂).

Proof. Let (p,X) ∈ J2,−Ω u(x̂). Then as x→ x̂

u(x) ≥ u(x̂) + hp, x− x̂i+ 1
2
hX(x− x̂), x− x̂i+ o(|x− x̂|2) if and only if

−u(x) ≤ −u(x̂)− hp, x− x̂i− 1
2
hX(x− x̂), x− x̂i+ o(|x− x̂|2) if and only if

(−u)(x) ≤ (−u)(x̂) + h−p, x− x̂i+ 1
2
h−X(x− x̂), x− x̂i+ o(|x− x̂|2)
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if and only if

(−p,−X) ∈ J2,+Ω (−u)(x̂) if and only if
−(p,X) ∈ J2,+Ω (−u)(x̂) if and only if
(p,X) ∈ −J2,+Ω (−u)(x̂).

Hence, the desired set equality follows.

As a result of Proposition 2.18, the following Proposition 2.19 will also hold when

J2,+Ω is replaced by J2,−Ω everywhere.

Proposition 2.13 Let u : Ω→ R, and ϕ : Ω→ R be C2(Ω). Then,

J2,+Ω (u− ϕ)(x) = ©(p−Dϕ(x), X −D2ϕ(x)) : (p,X) ∈ J2,+Ω u(x)
ª
.

Proof. Fix x̂ ∈ Ω. Then we have the set equality

J2,+Ω (u− ϕ)(x̂) = ©(p−Dϕ(x̂), X −D2ϕ(x̂)) : (p,X) ∈ J2,+Ω u(x̂)
ª
.

So, we will proceed as follows:

Let (q, Y ) ∈ J2,+Ω (u− ϕ)(x̂), then as x→ x̂,

(u− ϕ)(x) = u(x)− ϕ(x) ≤ (u− ϕ)(x̂) + hq, x− x̂i+ 1
2
hY (x− x̂), x− x̂i

+o(|x− x̂|2)
= u(x̂)− ϕ(x̂) + hq, x− x̂i+ 1

2
hY (x− x̂), x− x̂i+ o(|x− x̂|2).

Furthermore, by Taylor expansion of ϕ, we have:

ϕ(x) = ϕ(x̂) + hDϕ(x̂), x− x̂i+ 1
2

­
D2ϕ(x̂)(x− x̂), x− x̂®+ o(|x− x̂|2) as x→ x̂.

Hence as x→ x̂,

u(x) ≤ u(x̂) + hDϕ(x̂) + q, x− x̂i+ 1
2

­
(D2ϕ(x̂) + Y )(x− x̂), x− x̂®+ o(|x− x̂|2),

so that

(Dϕ(x̂) + q,D2ϕ(x̂) + Y ) ∈ J2,+Ω u(x̂). Then
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q = p1 −Dϕ(x̂) and Y = X1 −D2ϕ(x̂) for some (p1, X1) ∈ J2,+Ω u(x̂), hence

(q, Y ) ∈ ©
(p−Dϕ(x̂),X −D2ϕ(x̂)) : (p,X) ∈ J2,+Ω u(x̂)

ª
, and

J2,+Ω (u− ϕ)(x̂) ⊂ ©
(p−Dϕ(x̂),X −D2ϕ(x̂)) : (p,X) ∈ J2,+Ω u(x̂)

ª
.

This time, let (q, Y ) ∈ ©(p−Dϕ(x̂), X −D2ϕ(x̂)) : (p,X) ∈ J2,+Ω u(x̂)
ª
, then

q = p1 −Dϕ(x̂) and Y = X1 −D2ϕ(x̂) for some (p1, X1) ∈ J2,+Ω u(x̂), but then

u(x) ≤ u(x̂) + hp1, x− x̂i+ 1
2
hX1(x− x̂), x− x̂i+ o(|x− x̂|2) as x→ x̂, and

ϕ(x) = ϕ(x̂) + hDϕ(x̂), x− x̂i+ 1
2

­
D2ϕ(x̂)(x− x̂), x− x̂®+ o(|x− x̂|2) as x→ x̂,

so that

u(x)− ϕ(x) ≤ u(x̂)− ϕ(x̂) + hp1 −Dϕ(x̂), x− x̂i
+
1

2

­
(X1 −D2ϕ(x̂))(x− x̂), x− x̂®+ o(|x− x̂|2)

as x→ x̂, hence

(u− ϕ)(x) ≤ (u− ϕ)(x̂) + hq, x− x̂i+ 1
2
hY (x− x̂), x− x̂i+ o(|x− x̂|2) as x→ x̂,

so that

(q, Y ) ∈ J2,+Ω (u− ϕ)(x̂), hence©
(p−Dϕ(x̂), X −D2ϕ(x̂)) : (p,X) ∈ J2,+Ω u(x̂)

ª ⊂ J2,+Ω (u− ϕ)(x̂).

Thus, the desired equality follows from the two inclusions at x̂, furthermore since x̂

was arbitrary, it also holds for any x in Ω.

Proposition 2.14 For u, v : Ω→ R, we have

J2,+Ω u(x) + J2,+Ω v(x) ⊂ J2,+Ω (u+ v)(x).
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Proof. Fix x̂ ∈ Ω. Let (q, Y ) ∈ J2,+Ω u(x̂) + J2,+Ω v(x̂). Since

J2,+Ω u(x) + J2,+Ω v(x) =

 (p,X) : (p,X) = (p1, X1) + (p2 +X2)

for some (p1, X1) ∈ J2,+Ω u(x) and (p2 +X2) ∈ J2,+Ω v(x)


(q, Y ) = (p1, X1) + (p2 +X2) for some (p1, X1) ∈ J2,+Ω u(x̂) and (p2 +X2) ∈ J2,+Ω v(x̂).

Then, as x→ x̂,

u(x) ≤ u(x̂) + hp1, x− x̂i+ 1
2
hX1(x− x̂), x− x̂i+ o(|x− x̂|2) and

v(x) ≤ v(x̂) + hp2, x− x̂i+ 1
2
hX2(x− x̂), x− x̂i+ o(|x− x̂|2) so that

(u+ v)(x) ≤ (u+ v)(x̂) + hp1 + p2, x− x̂i+ 1
2
h(X1 +X2)(x− x̂), x− x̂i

+o(|x− x̂|2).

Hence

(p1 + p2, X1 +X2) ∈ J2,+Ω (u+ v)(x̂), so that

(p1,X1) + (p2 +X2) ∈ J2,+Ω (u+ v)(x̂), so that

(q, Y ) ∈ J2,+Ω (u+ v)(x̂).

Thus

J2,+Ω u(x̂) + J2,+Ω v(x̂) ∈ J2,+Ω (u+ v)(x̂).

Since x̂ was arbitrary, it also holds for any x in Ω.

Definition 2.15 Let x ∈ Ω, by the closure of set-valued mapping J2,+Ω u, we mean

J̄2,+Ω u : Ω→ 2R
n×S(N)

x→ J̄2,+Ω u(x)

where

J̄2,+Ω u(x) =


(p,X) ∈ Rn × S(N) : there is (xn, pn, Xn) ∈ Ω×Rn × S(N)

such that (pn,Xn) ∈ J2,+Ω u(xn) and

(xn, u(xn), pn,Xn)→ (x, u(x), p,X).


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is the closure of the second order superjet of u at x. Similarly, by the closure of

set-valued mapping J2,−Ω u, we mean

J̄2,−Ω u : Ω→ 2R
n×S(N)

x→ J̄2,−Ω u(x)

where

J̄2,−Ω u(x) =


(p,X) ∈ Rn × S(N) : there is (xn, pn, Xn) ∈ Ω×Rn × S(N)

such that (pn,Xn) ∈ J2,−Ω u(xn) and

(xn, u(xn), pn,Xn)→ (x, u(x), p,X).


is the closure of the second order subjet of u at x.

2.3. Ellipticity, Linearization, ”Properness” and

”Maximum Principle”

Before going any further, we will make the following observations:

1) In linear equations the type (namely, ellipticity, parabolicity or hyperbolicity)

of the equation is determined by the differential equation itself; however, in nonlinear

equations ”type” depends on the individual solutions. We will elaborate on this

assertion first. Let us for the moment accept u : Ω → R to be twice differentiable

on Ω ⊂ Rn and (after leaving aside the lower order terms) consider the second order
nonlinear partial differential equation

z(u) = F (D2u) = 0.

Here,

D2u =


ux1x1 ... ux1xn

. . .

uxnx1 . uxnxn


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is the Hessian matrix of second derivatives of u, F is a mapping such that F : S(N)→
R, and S(N) is the set of real symmetric N × N matrices; and we will assume F

to be smooth. In this case, we can view F as a function of N2 variables such that

F (p11,p12, ..., p1n, p21, ..., pnn) where pij = uxixj . Then z is defined to be ”elliptic” at

some ”solution” C2 function u0(x) if

p(ξ) = −P
i,j

∂F

∂pij
(u0(x))ξiξj > 0 for ξ 6= 0.

Furthermore, ”linearization” of z at some u0 is a linear map Dz(u0) : C∞(Ω) →
C∞(Ω) defined as follows: for φ ∈ C∞(Ω),

Dz(u0)(φ) = limt→0
z(u0 + tφ)−z(u0)

t

= limt→0
F (D2u0 + tD2φ)− F (D2u0)

t

=
P
i,j

∂F

∂pij
(u0)φxixj

and moreover, in this case Dz(u0)(φ) =
P³

∂F
∂pij
(u0)

´
φxixj . Hence z being ”elliptic”

will correspond to its linearization about any fixed u0 being an ”elliptic” operator.

2) Now, we will consider some examples of scaler coefficient, linear elliptic partial

differential equations and simple applications of maximum principle. Throughout, u

will be C2(Ω):

a) Let n = 1, and consider the linear elliptic partial differential mapping L as

being the Laplacian, i.e. let L(D2u) = −∆u = −u00. Let −∆u = 1, then any C2(Ω)
function of the form u(x) = a+bx− 1

2
x2 solves this equation on Ω, hence is a classical

solution. In this case, if p(x) is a paraboloid (parabola in n = 1) and u − p has a
local maximum at some x̂ ∈ Ω, then p00(x̂) ≥ −1, i.e. L(D2p(x̂)) ≤ 1; and if p(x)

is a parabola and u − p has a local minimum at some x̂ ∈ Ω, then p00(x̂) ≤ 1; i.e.

L(D2p(x̂)) ≥ 1.
b) Let n = 2, and L(D2u) = −∆u. Suppose −∆u(x̂, ŷ) < 0, then ”maximum

principle” says that u cannot have a local maximum at (x̂, ŷ) ∈ Ω ⊂ R2. Proof:
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Suppose (x̂, ŷ) is a local maximum of u, then 5u(x̂, ŷ) = 0, and uxx(x̂, ŷ) ≤ 0 and

uyy(x̂, ŷ) ≤ 0, but then −∆u(x̂, ŷ) = −uxx(x̂, ŷ)− uyy(x̂, ŷ) ≥ 0 hence we arrive at a
contradiction, so (x̂, ŷ) cannot be a local maximum of u. We can restate the same

statement as: If u has a local maximum at (x̂, ŷ), then −∆u(x̂, ŷ) ≥ 0 has to hold.
c) Let x̂ ∈ Rn. This time let L also depend on u. Let L(u,D2u) = −∆u+γu. Let

−∆u + γu ≤ 0, and u = 0 on ∂Ω. Suppose u has a local maximum at x̂ ∈ Ω. Then
∆u(x̂) ≤ 0, and γu(x̂) ≤ ∆u(x̂) ≤ 0. In order for the classical maximum principle to

hold we need to have γ > 0, since only then the assertion of the classical maximum

principle for this case (which is u(x̂) ≤ 0 and hence u(x) ≤ 0 on Ω) holds. In this case
since L(u,D2u) = −∆u + γu = −tr(D2u) + γu, the condition of γ > 0 corresponds

to L being strictly increasing in u.

d) This time, let L depend on Du as well and be defined as L(u,Du,D2u) =

−∆u + αDu + γu. Let w = u − v, and γ > 0. Suppose L(w,Dw,D2w) = −∆w +
αDw+γw ≤ 0 (then −∆u+αDu+γu ≤ −∆v+αDv+γv) and w has a maximum at
x̂. Then, Du(x̂)−Dv(x̂) = Dw(x̂) = 0, hence Du(x̂) = Dv(x̂) and ∆u(x̂)−∆v(x̂) =
∆w(x̂) ≤ 0, so that ∆u(x̂) ≤ ∆v(x̂). Hence γu(x̂) ≤ γv(x̂), and since γ > 0, we have
u(x̂) ≤ v(x̂), i.e. w(x̂) ≤ 0. Note also in this case that,

L(u(x̂), Du(x̂),D2v(x̂)) = −∆v(x̂) + αDu(x̂) + γu(x̂)
≤ −∆u(x̂) + αDu(x̂) + γu(x̂)
= L(u(x̂), Du(x̂), D2u(x̂)).

After these observations, we would like to state that we have two main issues at

hand. One is that generalizing a similar ”maximum principle” approach to nonlinear

equations, and the other is that generalizing the class of solutions to a larger class

than that of classical solutions. In the latter, one when we make such a generalization,

we would like to have consistency in order to have it as an acceptable generalization.

In other words, we would like the classical solutions still be solutions within the new

generalized concept of solution. Within this perspective we are now ready to proceed
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in defining the properties of the mapping F that will allow it to be considered under

the theory of viscosity solutions.

Let F be a mapping from Ω×R×Rn× S(N) into R. We will consider nonlinear
partial differential equations of the form F (x, u,Du,D2u) = 0 and in the case that

u is C2, Du = (ux1 , ..., uxn) denotes the gradient matrix of first order partial deriva-

tives of u, and D2u denotes the Hessian matrix described above. Since later on we

will require u only to be continuous and not necessarily differentiable (but still can

solve the equation within the new solution concept) Du and D2u will not have their

classical meanings and we will write instead F (x, r, p,X) to indicate the value of F

at (x, r, p,X) ∈ Ω × R × Rn × S(N). Having made these clarifications we can now
proceed as follows:

Definition 2.16 We will say that F satisfies the restricted ”maximum principle”, if

for any ϕ,ψ ∈ C2 such that ψ − ϕ has a local maximum at x̂ and ϕ(x̂) = ψ(x̂) holds

the following inequality

F (x̂,ϕ(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ F (x̂,ψ(x̂), Dψ(x̂),D2ψ(x̂))

is satisfied.

At this point, if we ask the question of ”under what condition imposed on F we

can guarantee that F satisfies this ’maximum principle”’ we arrive at the following

condition:

Proposition 2.17 Above defined F satisfies the restricted ”maximum principle” if

and only if the following antimonotonicity condition

F (x, r, p,X) ≤ F (x, r, p, Y ) for Y ≤ X

holds. Here, X, Y ∈ S(N) and Y ≤ X is the ordering in S(N) that is given by:

Y ≤ X if and only if hXξ, ξi ≤ hY ξ, ξi for ξ ∈ Rn.
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Before proving this proposition, we will interpret it first. Let F be as in our

observation 1) above. Let us fix a matrix Y ∈ S(N) and a vector ξ ∈ Rn. Letting
X = Y + t(ξ ⊗ ξ) where t > 0 and

(ξ ⊗ ξ) =


ξ1ξ1 ... ξ1ξn

. . .

ξnξ1 ... ξnξn

 ∈ S(N),
we have by the antimonotonicity condition that

1

t
(F (Y + t(ξ ⊗ ξ))− F (Y )) ≤ 0.

When we let t→ 0+, since we assume F to be smooth, we conclude that

Dz(Y )(ξ ⊗ ξ) = limt→0+

(F (Y + t(ξ ⊗ ξ))− F (Y ))
t

≤ 0

Since, we have ·
∂F

∂rij
(Y )

¸
· (ξ ⊗ ξ) = Dz(Y )(ξ ⊗ ξ) ≤ 0,

where · is not the matrix multiplication, but the dot product of the elements in Rn2
,

then we have

p(ξ) = −P
i,j

∂2F

∂pij
(u0(x))ξiξj ≥ 0.

Hence, we can interpret the condition of antimonotonicity as meaning that the ”lin-

earization” of z about any fixed u0 being an ”elliptic” operator, and furthermore

since it allows for the value of zero, then possibly being a ”degenerate elliptic” opera-

tor. Therefore, this antimonotonicity condition will be named as z being ”degenerate

elliptic”. Now, we will prove the proposition:

Proof. Let ϕ,ψ ∈ C2 be such that ϕ − ψ has a minimum at x̂, and ϕ(x̂) =

ψ(x̂). Then by calculus we have Dϕ(x̂) = Dψ(x̂), and D2ϕ(x̂) ≥ D2ψ(x̂). Hence, if

antimonotonicity holds, we have

F (x̂,ϕ(x̂),Dϕ(x̂), D2ϕ(x̂)) ≤ F (x̂,ψ(x̂), Dψ(x̂), D2ψ(x̂)).
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so that ”maximum principle” is satisfied. For the converse, assume antimonotonicity

does not hold at some x̂. Then for x ∈ Ω, let ϕ(x) = r+hp, x− x̂i+1
2
hX(x− x̂), x− x̂i

and ψ(x) = r + hp, x− x̂i + 1
2
hY (x− x̂), x− x̂i. Then ϕ − ψ has a minimum at x̂

such that ϕ(x̂) = ψ(x̂), and ϕ,ψ ∈ C2. Then, since monotonicity does not hold at x̂,
F does not satisfy ”maximum principle”.

Now, let us consider an example where F is first order. Let F (x, r, p,X) =

H(x, r, p) for some function H. Then F is clearly degenerate elliptic. However,

in this case restricted ”maximum principle” does not say much for if ψ,ϕ ∈ C2,

ψ − ϕ has a maximum at x̂ and ϕ(x̂) = ψ(x̂) holds, since then by calculus we

have Dϕ(x̂) = Dψ(x̂) and the inequality H(x̂,ϕ(x̂), Dϕ(x̂)) = H(x̂,ψ(x̂), Dψ(x̂))

holds automatically. However, instead of having the requirement that ϕ(x̂) = ψ(x̂)

holds, we can require that at a maximum x̂ of ψ − ϕ, the inequality ϕ(x̂) ≤ ψ(x̂)

to hold, in other words, we can require ψ − ϕ to have a nonnegative maximum at

x̂; and additionally require F to be strictly increasing in r, (i.e. r ≤ s implying

F (x, r, p,X) ≤ F (x, s, p,X)), to guarantee that

F (x̂,ϕ(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ F (x̂,ψ(x̂), Dψ(x̂),D2ψ(x̂))

will still be satisfied. Hence, by modifying this requirement of ϕ(x̂) = ψ(x̂) in the

definition of restricted ”maximum principle” we are imposing on F a second structural

condition, namely monotonicity in r, so that the inequality of the maximum principle

will still hold.

Hence as a result of this modification, we have the following:

Definition 2.18 We will say that F satisfies the maximum principle, if for any

ϕ,ψ ∈ C2 such that ψ−ϕ has a nonnegative maximum at x̂ the following inequality

F (x̂,ϕ(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ F (x̂,ψ(x̂), Dψ(x̂),D2ψ(x̂))

is satisfied.
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Proposition 2.19 In this case, F satisfies the maximum principle if and only if the

following conditions

(i) F (x, r, p,X) ≤ F (x, r, p, Y ) for Y ≤ X, and
(ii) F (x, r, p,X) ≤ F (x, s, p,X) for r ≤ s hold.

In the case that F satisfies (i), F will be called degenerate elliptic, if in addition F

satisfies (ii), F will then be called proper.

Hence, we are able to provide an answer to another one of our promised questions

at the beginning of this chapter.

In the next section, we will see that if F satisfies the maximum principle, in other

words if F is proper, within the context of the new solution concept, classical solutions

will still continue to be a solution and that maximum principle, or in other words F

being proper will guarantee us the consistency. Also, in the next section, we will see

how we define viscosity solutions by taking off from maximum principle.

2.4. Viscosity Solutions

In this section we will define a generalized solution concept for the equation

F (x, u,Du,D2u) = 0. (2.5)

Throughout this work we will assume F to be proper and continuous as indicated by

the previous section and try to make us of the maximum principle in our generaliza-

tions. Hence, taking off from maximum principle, let us assume u, v ∈ C2(Ω), and
see what type of information we would have in our hands in this case. Let us start

by also assuming that u is a subsolution (classical since u ∈ C2(Ω)) of this equation.
Then, we know that

F (x, u(x),Du(x), D2u(x)) ≤ 0 for all x ∈ Ω.
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If also x̂ is a local maximum of u− v, we would have Du(x̂) = Dv(x̂), and D2u(x̂) ≤
D2v(x̂) from calculus. Hence we can use the fact that F is proper (in particular the

degenerate ellipticity part) to obtain

F (x̂, u(x̂),Dv(x̂), D2v(x̂)) ≤ F (x̂, u(x̂), Du(x̂),D2u(x̂)) ≤ 0

at the maximum x̂. This would hold true for any v ∈ C2(Ω), in the case that u is also
C2(Ω). Now, we are aiming at defining a solution concept that would allow functions

u that are not necessarily differentiable to be considered as candidates for solutions.

If we look at the above derived inequality once more closely, we see that we have

actually obtained the following result that is independent of the derivatives of u,

F (x̂, u(x̂), Dv(x̂), D2v(x̂)) ≤ 0.

Hence, in the case that u were not differentiable, we could take this inequality to

hold for v ∈ C2(Ω) whenever u − v has a maximum point, to be the definition of a

subsolution. If we compare this last inequality to the one we obtained from u being

a solution, in other words to the following inequality

F (x̂, u(x̂),Du(x̂), D2u(x̂)) ≤ 0

we then see that in the case that u is not differentiable, we have as a matter of

fact at x̂ ’transferred’ the derivative onto a smooth test function v at the expense of

u − v having a local maximum at x̂. Within this perspective let us define viscosity

subsolutions, supersolutions and solutions for (2.5).

Definition 2.20 (1) Let F be proper, Ω open subset of Rn, and u ∈ USC(Ω), v ∈
LSC(Ω). Then u is a viscosity subsolution of F = 0 in Ω, if

for every ϕ ∈ C2(Ω) and local maximum point x̂ ∈ Ω of u− ϕ

F (x̂, u(x̂), Dϕ(x̂),D2ϕ(x̂)) ≤ 0 holds.
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Similarly, v is a viscosity supersolution of F = 0 in Ω, if

for every ϕ ∈ C2(Ω) and local minimum point x̂ ∈ Ω of v − ϕ

F (x̂, v(x̂),Dϕ(x̂), D2ϕ(x̂)) ≤ 0 holds.

A function w is a viscosity solution of F = 0 in Ω, if it is both a viscosity subsolution

and a viscosity supersolution of F = 0.

In the definition we have required a subsolution to be upper semicontinuous and

a super solution to be lower semicontinuous. One of the reasons for this is that upper

semicontinuous functions and lower semicontinuous functions assume their maximums

and respectively minimums on compact sets and we will want to produce maxima

related with these functions. The other reason is that later on we would like to

produce continuous solutions with Perron’s process, in which we obtain continuous

solutions in the limit of a sequence of some functions, and this can be done in more

generality in the classes of upper and lower semicontinuous functions, since these

classes are larger then the class of continuous functions and can still yield continuous

functions in the limit. Hence, the theory will inevitably require us to work with upper

and lower semicontinuous functions consistently. Therefore at the end of this section

we will give shortly the definitions, some properties and examples of upper and lower

semicontinuous functions.

Now, recalling the results we have obtained in Section 2.1 for semijets, we can

immediately give the following equivalent definition for subsolutions, supersolutions,

and solutions.

Definition 2.21 (2) Let F be a continuous proper second order nonlinear elliptic

partial differential operator, and Ω ⊂ Rn. Then, a function u ∈ USC(Ω) is a viscosity
subsolution of F = 0 in Ω if

F (x, u(x), p,X) ≤ 0 for all x ∈ Ω and (p,X) ∈ J2,+Ω u(x),
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A function u ∈ LSC(Ω) is a viscosity supersolution of F = 0 in Ω if

F (x, u(x), p,X) ≥ 0 for all x ∈ Ω and (p,X) ∈ J2,−Ω u(x),

and a function u ∈ C(Ω) is a viscosity solution of F = 0 in Ω if it is both a viscosity
subsolution and a viscosity supersolution of F = 0 in Ω.

Actually, this was the first definition we have presented at the beginning of this

chapter to motivate the whole discussion.

Now, it is easy to see that these two definitions are equivalent since, if u is a

viscosity solution in the sense of Definition (1) , then for every (p,X) ∈ J2,+Ω u(x̂), we

can construct, as indicated in Section 2.1, a ϕ ∈ C2(Ω) withDϕ(x̂) = p, D2ϕ(x̂) = X,

such that u−ϕ will have a maximum at x̂, then the result follows automatically from
Definition (1) ; conversely, if u is a solution in the sense of Definition (2), then for

ϕ ∈ C2(Ω), if u − ϕ has a local maximum at x̂, then (Dϕ(x̂), D2ϕ(x̂)) ∈ J2,+Ω u(x̂),

and the result will follow from Definition (2) automatically.

Throughout this work we will work with both definitions interchangeably.

Once having generalized the solution concept for F (x, u,Du,D2u) = 0, next we

need to check that it is consistent with the classical solution concept. In other words,

classical solutions need still continue to be solutions under the new concept.

Proposition 2.22 Let u ∈ C2(Ω) be a solution of F (x, u,Du,D2u) = 0 in the clas-

sical sense. Then u is also a viscosity solution of F (x, u,Du,D2u) = 0.

Proof. Since u ∈ C2(Ω) and a classical solution then at every x̂ ∈ Ω we have

F (x̂, u(x̂), Du(x̂), D2u(x̂)) = 0,

also since J2,+Ω u(x̂) = J2,−Ω u(x̂) = {(Du(x̂), D2u(x̂))} then we have F (x, u(x), p,X) =
0 for all x ∈ Ω and (p,X) ∈ J2,+Ω u(x).
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Proposition 2.23 If u is a viscosity solution of F (x, u,Du,D2u) = 0, and u is twice

differentiable at some x̂, then u solves F (x, u,Du,D2u) = 0 in the classical sense at

x̂,

i.e. F (x̂, u(x̂), Du(x̂), D2u(x̂)) = 0.

Proof. If u is twice differentiable at x̂, then

J2,+Ω u(x̂) = J2,−Ω u(x̂) =
©
(Du(x̂),D2u(x̂))

ª
.

And since u is a viscosity solution from Definition (2), we obtain that

F (x̂, u(x̂), Du(x̂), D2u(x̂)) = 0.

From this point on, we will omit the term viscosity, since we will be dealing with

viscosity subsolutions, supersolutions and solutions consistently.

Next, we will have the promised definitions and properties concerning upper and

lower semicontinuous functions.

Definition 2.24 A function u : Ω → R is called upper semicontinuous (USC) at

x0 ∈ Ω, if given any ε > 0, there exists a neighborhood of x0 in which u(x) < u(x0)+ε.
Similarly, u is called lower semicontinuous (LSC) at a point x0 ∈ Ω if given any ε > 0,
there exists a neighborhood of x0 in which u(x) > u(x0)− ε.

Remark: Equivalently, u : Ω→ R is called upper semicontinuous if u−1(λ,∞) is
open for every λ. Similarly, u is called lower semicontinuous if u−1(−∞,λ) is open
for every λ.

Example 2.25 Let ub(x) =


0 x < a

b x = a

1 x > a

, then depending on b, ub is upper or lower

semicontinuous.

If b = 0, then ub is lower semicontinuous, b = 1
2
, then ub is neither lower nor

upper semicontinuous, b = 1, then ub is upper semicontinuous.
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Proposition 2.26 Let u ∈ USC(Ω). If xn, x0 ∈ Ω and limn→∞ xn = x0, then

lim sup u (xn) ≤ u (x0) .

Proof. Since u is upper semicontinuous, we know that given any δ > 0, there

is a neighborhood of x0 such that for all x in this neighborhood of x0, u(x) ≤
u(x0) + δ. Hence if we have a sequence xn converging to x0, the sequence u(xn)

cannot have an accumulation point which is strictly greater then u (x0). In other

words, lim supn→∞ u(xn) ≤ u(x0).

Theorem 2.27 Let u ∈ USC(Ω) be bounded from above, and Ω be compact. Then u
attains its supremum on Ω.

Proof. LetM = supΩ u(x). Then, there exists a sequence of xn such that u(xn)→
M . Since Ω is compact xn has a convergent subsequence say xnk say converging to

some x0 ∈ Ω. Then by semicontinuity we have u(xnk) ≤ u(x0). But then since

u(xn)→ M and u(xnk) is a subsequence of u(xn), we have u(xnk) → M also. Hence

we have u(xnk) ≤ u(x0) ≤M , and in the limit we achieve M ≤ u(x0) ≤M , giving us
u(x0) =M , hence supremum is achieved at x0 ∈ Ω.
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2.5. Figures

Figure 2.1

Figure 2.2
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Figure 2.3

Figure 2.4
In Figures 2.3 and 2.4, we are neglecting the o(|x− x̂|) term. It is possible to have

u(x) ≥ u(x̂) + hp, x− x̂i but still u(x) ≤ u(x̂) + hp, x− x̂i + o(|x− x̂|) to hold. In
fact, in the proof of Proposition 2.5, the function α(x) is used to record the intervals

and the differences when the case that u(x) ≥ u(x̂) + hp, x− x̂i holds, so that u− ϕ
can have a local maximum.
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Figure 2.5 Figure 2.6

Figure 2.7 Figure 2.8

2.6. Notes

Discussion for first order case follows the discussion in [C-E-L]. Proof of Propo-

sition 2.6 is parallel to the proof of second order parabolic version of the same propo-

sition in [F-S]. The idea of paraboloids and punctual second order differentiability

presented in Section 2.2 occurs in [Cab-Caf]. Definition 2.22 and Proposition 2.23

are from [F-S], and interpretation of antimonotonicity appears in L. C. Evans’s lec-

ture note ’Regularity for Fully Nonlinear Elliptic Equations and Motion by Mean

Curvature’ in [B-et.al.].
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3

GENERALIZATIONS OF

SECOND DERIVATIVE TESTS -

”MAXIMUM & COMPARISON

PRINCIPLES”

3.1. Introduction

In this chapter, our first aim will be to prone a generalized second derivative test

for upper semicontinuous functions and we will call it maximum principle for upper

semicontinuous functions. Once having done that, using this maximum principle, we

will then aim at deriving the conditions under which comparison would hold for the

Dirichlet Problem

F (x, u,Du,D2u) = 0 in Ω, and u = 0 on ∂Ω. (DP)

where Ω will be a bounded subset of Rn.

Let us try to identify the problem we have at hand in this process.

In the classical case, if we want to derive a comparison result using maximum

principle, we would use the fact that at a maximum point x̂, for a C2 function w we

43



would have

Dw(x̂) = 0 and D2w(x̂) ≤ 0. (3.1)

It is also important to note that in this case, i.e. when w is C2, we also have that

J2w(x̂) = J2,+w(x̂) ∩ J2,−w(x̂) = ©Dw(x̂), D2w(x̂)
ª
.

We first need to see how this preceding information would work: If u and v are C2

subsolution and supersolution of the (DP) and if w = u− v has an interior maximum
x̂ ∈ Ω, then by (3.1) we would have

Du(x̂) = Dv(x̂) and D2u(x̂) ≤ D2v(x̂).

On the other hand, the other piece of information we have would come from the fact

that u and v are subsolution and supersolution respectively and that also F is proper.

These pieces of information would lead us respectively to

F (x̂, u(x̂), Du(x̂), D2u(x̂)) ≤ 0 ≤ F (x̂, v(x̂), Dv(x̂),D2v(x̂))

F (x̂, v(x̂), Dv(x̂), D2v(x̂)) ≤ F (x̂, v(x̂), Du(x̂), D2u(x̂)).

Hence we would have

F (x̂, u(x̂),Du(x̂), D2u(x̂)) ≤ F (x̂, v(x̂), Du(x̂), D2u(x̂)).

If F also satisfies the structure condition of being strictly nondecreasing in r this

would then lead us to conclude that

u(x̂) ≤ v(x̂)

and since x̂ was a local maximum of u− v would have

u(x)− v(x) ≤ u(x̂)− v(x̂) ≤ 0

and hence we would obtain the result that u ≤ v on Ω.
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As we have seen in the preceding chapter, viscosity solutions need not be differen-

tiable, the only regularity we assume for them is continuity. Moreover, subsolutions

and supersolutions are allowed to be even semicontinuous. Therefore, in order to

be able to make a similar deduction as above, we need to define a corresponding

maximum principle for semicontinuous functions.

Also in the preceding chapter, we have defined an alternative way of dealing with

differentiability at a nondifferentiable point x of a semicontinuous function u, which

was considering the elements of the sets J2,+u(x), J2,−u(x) in the place of a possible

derivative value. We can use the same approach here as well. At a maximum x̂ of w,

we can consider J2,+w(x̂), J2,−w(x̂), hence actually use the sets J2,+u(x̂), J2,−u(x̂),

J2,+v(x̂), J2,−v(x̂). Since the information

Du(x̂) = Dv(x̂) and D2u(x̂) ≤ D2v(x̂)

is actually a way of comparing the values of Du with Dv, and, D2u with D2v at x̂,

i.e. comparing the values of some elements present in the set values of J2,+u, J2,−u,

J2,+v, J2,−v at x̂, (noting that in the case of u and v being C2, we have

J2,+u(x̂) = J2,−u(x̂) =
©
(Du(x̂), D2u(x̂))

ª
J2,+v(x̂) = J2,−v(x̂) =

©
(Dv(x̂), D2v(x̂))

ª
);

then, in this case that u and v might not be differentiable at x̂, we can try comparing

some elements present in the set values of J2,+u and J2,−u, and ,J2,+v and J2,−v at

x̂ in order to be able to deduce a result paralleling

Du(x̂) = Dv(x̂) and D2u(x̂) ≤ D2v(x̂).

However, at this point we have a problem. The sets J2,+u(x̂), J2,−u(x̂), J2,+v(x̂),

J2,−v(x̂) could very well be empty and prevent us from deducing any kind of infor-

mation that would have been obtained via comparing their elements in the case that

they were not nonempty. Hence, we have to overcome this obstacle. One way of doing
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this would be approximating x̂ via a sequence of points x̂α of which we would like to

have the following first set of information: x̂α are maximums of some functions wα;

as α→∞, the process of maximization of wα approximates the process of maximiza-
tion of w; and as α → ∞, x̂α → x̂. The process of ’doubling the variables’, which

we will introduce in the sequel, will provide us with such an approximation process.

The price of overcoming this obstacle would be however changing the usual setting

in which we were normally comparing the values of Du and Dv,and, D2u and D2v at

x̂. Hence, we have to interpret what the information of Dw(x̂) = 0 and D2w(x̂) ≤ 0
would correspond to under this new setting.

In doubling the variables technique, the functions wα would be of the form

wα(z) = u(x)− v(y)− ϕα(x, y)

where ϕ is a C2 function and z represents the doubled variable (x, y). If we assume

for the moment that u and v are also C2, then wα would be C2, and assuming further

that Dxϕα(x̂α, ŷα) = −Dyϕα(x̂α, ŷα), then at a maximum ẑα of wα, by using the

classical maximum principle Dwα(ẑα) = 0 and D2wα(ẑα) ≤ 0 we would obtain that

0 = Dwα(ẑα) = Du(x̂α)−Dv(ŷα)−D(ϕα(x̂α, ŷα))
Du(x̂α) = Dxϕα(x̂α, ŷα) and Dv(ŷα) = −Dyϕα(x̂α, ŷα)
Du(x̂α) = Dv(ŷα),

46



and

0 ≥ D2wα(ẑα) =

 Dxxwα(ẑα) Dxywα(ẑα)

Dyxwα(ẑα) Dyywα(ẑα)


=

 Dxxu(x̂α)−Dxx(ϕα(x̂α, ŷα)) −Dxy(ϕα(x̂α, ŷα))
−Dyx(ϕα(x̂α, ŷα)) −Dyyv(ŷα)−Dyy(ϕα(x̂α, ŷα))


=

 D2u(x̂α) 0

0 −D2v(ŷα)

−
 Dxx(ϕα(x̂α, ŷα)) Dxy(ϕα(x̂α, ŷα))

Dyx(ϕα(x̂α, ŷα)) Dyy(ϕα(x̂α, ŷα))


=

 D2u(x̂α) 0

0 −D2v(ŷα)

−D2(ϕα(x̂α, ŷα)) which would give

 D2u(x̂α) 0

0 −D2v(ŷα)

 ≤ D2(ϕα(x̂α, ŷα)).

Since these two pieces of information due to maximum principle for C2 functions is

again actually a way of comparing the values of Du and Dv,and, D2u and D2v; in our

quest for defining a maximum principle for semicontinuous functions, the second set

of information we would like to have at these maximums ẑα would be the existence of

some elements (p,X), (q, Y ) in J2,+u(x̂α) and J2,+v(ŷα) respectively or in J2,−u(x̂α)

and J2,−v(ŷα) respectively such that the following type of information

p = q X 0

0 −Y

 ≤ D2(ϕα(x̂α, ŷα)) holds.

This time, ’Theorem of Sums’ will provide us with this kind of information; how-

ever, in a slightly modified manner. Hence ’Theorem of Sums’ can be seen as the

maximum principle for semicontinuous functions. The fact that it will provide us

with a slightly modified version of the above argument will be due to the fact that

the function wα we will be considering will be semicontinuous, and hence that we

have to work with its regularizations. As a consequence of this, the theorem will
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provide us with a result concerning closures of semijets, rather then semijets them-

selves. However, this will not lead to a problem, since the function F which we will

evaluate using this information will be continuous, and existence of an element in

the closure of a semijet would amount to existence of a corresponding convergent

sequence of quadruples (xn, u(xn), pn, Xn) on which we can evaluate F , and pass to

the limit under continuity.

Since along our way, we would have to work with regularizations of semicontinuous

functions, and in particular the ones we will be employing would be sup convolutions,

and that these particular regularizations are semiconvex, we will begin our presenta-

tion with introducing semiconvex functions and some of their related properties, then

we will introduce sup convolutions and some of their related properties. Afterwards

having equipped with this information, we will prove ’theorem of sums’, in other words

maximum principle for semicontinuous functions. Then, we will introduce ’doubling

variables’ technique and its justification, and we would be ready for the next chapter

where we will investigate the conditions under which comparison holds for the above

stated (DP); and once having determined them, assuming that they hold, we will

almost automatically have the uniqueness result for the above stated (DP).

3.2. Semiconvex Functions

Definition 3.1 Let G be a compact subset of Rn. A function u(x) ∈ C(G) is called
semiconvex if for every bounded B ⊂ G there is a constant κB ≥ 0 such that the

function uB(x) = u(x) + κB |x|2 is convex on every convex subset of B. Then κB is
called a semiconvexity constant for uB.

Lemma 3.2 Let u be a semiconvex function in G, and x̂ be an interior maximum of

u. Then u is differentiable at x̂ with Du(x̂) = 0.

Proof. Without loss of generality assume x̂ = 0.(Otherwise, we can shift x̂ and

the proof would still work.) Let B ⊂ G be a convex, bounded neighborhood of x̂.
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Since u is semiconvex, there is a κB ≥ 0 such that

uB(x) = u(x) + κB |x|2 (3.2)

is convex on B. Then, the separation theorem for convex functions says that there is

a p ∈ Rn such that
uB(x) ≥ uB(0) + p.x for x ∈ B.

Since uB(0) = u(0) + κB |0|2 = u(0), we then have

uB(x) ≥ u(0) + p.x. (3.3)

Then, for all x ∈ B, by (3.2) we have u(x) = uB(x) − κB |x|2, and then by (3.3) we
have

u(x) ≥ u(0) + p.x− κB |x|2 (3.4)

and since x̂ = 0 is a maximum of u (u(0) ≥ u(x) for all x ∈ B), we have,

u(x) ≥ u(x) + p.x− κB |x|2 .

This gives us that 0 ≥ p.x− κB |x|2, which implies

κB |x|2 ≥ p.x for all x ∈ B. (3.5)

If we let ε > 0 be sufficiently small so that xε = εp is in B (this is possible since B is

a convex bounded neighborhood of 0), then by (3.5),

κB |xε|2 ≥ p.xε

κB |εp|2 ≥ p.εp for xε = εp

ε2κB |p|2 ≥ ε |p|2

εκB |p|2 ≥ |p|2 upon letting ε→ 0

0 ≥ |p|2 since p was a fixed element of Rn,
Hence, p = 0.

49



Since x̂ = 0 is a maximum of u, u(0)− u(x) ≥ 0 for all x ∈ B, and by (3.4) we have

κB |x|2 − p.x ≥ u(0)− u(x) since p = 0,
κB |x|2 ≥ u(0)− u(x)
κB |x|2 ≥ 0 since x̂ = 0 is a maximum of u. (3.6)

Letting x = h and dividing by |h| and taking limits as |h|→ 0 in (3.6) gives us that

u is differentiable at x̂ = 0 and that Du(x̂) = 0.

Theorem 3.3 (Jensen’s Lemma) Let u(x) ∈ C(G) be semiconvex. Let G ⊂ Rn be

bounded and let u have a strict local maximum in G. i.e. let

µ = sup
G
u− sup

∂G
u > 0.

Then, there are constants c0 > 0, and δ0 > 0 such that m(Mδ) ≥ c0δ2 for all δ ≤ δ0,
where m denotes the Lebesque measure and the set Mδ is defined as follows:

For δ > 0, let

Mδ =

 xα ∈ int(G) : there is p ∈ Rn such that |p| ≤ δ
and u(x) ≤ u(xα) + p.(x− xα) for all x ∈ G


Remark 1: If we observe the set Mδ closely we notice that the condition u(x) ≤

u(xα) + p.(x − xα) for all x ∈ G implies that u(x) − p.x ≤ u(xα) − p.xα for all
x ∈ G which then implies that xα is a local maximum for a function us(x) defined as
us(x) = u(x) + s.x where s = −p giving us |s| ≤ δ.
Remark 2: Classical maximum principle states that if a C2 function u has a

maximum at some point a interior its domain then Du(a) = 0 and D2u(a) ≤ 0. We
would like to be able to have a similar information concerning the interior maximum

of semiconvex functions. For this we would like to make use of some points near this

interior maximum and the related information we will have about these nearby points

via some limit process. However, in order to be able to do that we need to make sure

50



that we have ’enough’ of these points. Actually this theorem and the next theorem

we will be stating will provide us a way of knowing this. The remark at the end of

the proof of the next theorem will make this point more clear.

Proof. We will assume that u(x) ∈ C2(G) and n = 2. Let x̂ ∈ G be a maximum
of u. For p ∈ R2 define

up(x) = u(x)− p.(x− x̂) for x ∈ G.

Then,

sup
x∈G

up(x) ≥ up(x) for all x ∈ G

and in particular for x = x̂, therefore

sup
x∈G

up(x) ≥ up(x̂) = u(x̂)− p.(x̂− x̂) = u(x̂) = sup
x∈G

u(x) = µ+ sup
x∈∂G

u (3.7)

and since

sup
x∈∂G

up(x) = sup
x∈∂G

(u(x)− p.(x− x̂)) ≤ sup
x∈∂G

u(x) + sup
x∈∂G

(−p.(x− x̂))
= sup

x∈∂G
u(x)− inf

x∈∂G
(p.(x− x̂))

gives

sup
x∈∂G

up(x) + inf
x∈∂G

(p.(x− x̂)) ≤ sup
x∈∂G

u(x) (3.8)

then by (3.7) and (3.8) we have

sup
x∈G

up(x) ≥ µ+ sup
x∈∂G

up(x) + inf
x∈∂G

(p.(x− x̂)) (3.9)

Since G is bounded let r = supx,y∈∂G |x− y|. Let x0 = x+y
2
. Then

G ⊂ B̄(x0, r
2
) gives x̂ ∈ B̄(x0, r

2
) which gives sup

x∈∂G
|x− x̂| ≤ r,

and we have

sup
x∈∂G

(−p.(x− x̂)) ≤ sup
x∈∂G

|p| |x− x̂| ≤ |p| sup
x∈∂G

|x− x̂| ≤ |p| r
= |p| sup

x,y∈∂G
|x− y|
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so that

inf
x∈∂G

(p.(x− x̂)) = − sup
x∈∂G

(−p.(x− x̂))
≥ − |p| sup

x,y∈∂G
|x− y|

Hence (3.9) becomes

sup
x∈G

up(x) ≥ µ− |p| sup
x,y∈∂G

|x− y|+ sup
x∈∂G

up(x) (3.10)

But then

sup
x∈G

up(x)− sup
x∈∂G

up(x) ≥ µ− |p| sup
x,y∈∂G

|x− y|

Now if

µ− |p| sup
x,y∈∂G

|x− y| > 0

then up has an interior maximum, in other words, if

|p| < µ

supx,y∈∂G |x− y|
then up has an interior maximum. Let us call

δ0 =
µ

supx,y∈∂G |x− y|
.

Letting x̃ be a maximum of up, then

up(x̃) ≥ up(x) for all x ∈ G
up(x̃) = u(x̃)− p.(x̃− x̂) ≥ u(x)− p.(x− x̂) = up(x)

u(x̃)− p.x̃+ p.x̂ ≥ u(x)− p.x+ p.x̂
u(x̃) + p.(x− x̃) ≥ u(x) for all x ∈ G gives us (3.11)

x̃ ∈ Mδ where |p| ≤ δ, in particular x̃ ∈M|p|.

If we define ur(x) = u(x̃) + p.(x− x̃), then by (3.11) we have for all x ∈ G

ur(x) ≥ u(x) and ur(x̃) = u(x̃).
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However, ur(x) is a linear function (since u(x̃) is a fixed number) and at x̃ the graph

of u touches the graph of ur, furthermore it is also below the graph of ur for all x ∈ G.
Since we have assumed u to be twice differentiable, we then see that at x̃,

Du(x̃) = Dur(x̃) = p

D2u(x̃) ≤ Dur(x̃) = 0.

Hence, letting p ∈ B̄δ such that δ < δ0, then |p| < δ0, so the above defined function
up has an interior maximum x̃ in the set Mδ, and also p = Du(x̃), then this gives us

that p ∈ Du(Mδ), and hence we have

B̄δ ⊂ Du(Mδ). (3.12)

On the other hand, if x0 ∈ Mδ then there exists a p such that |p| ≤ δ, and when

u is twice differentiable, which is the case we have assumed at the very beginning,

via the construction of the above function ur(x) we can see that Du(x0) = p. i.e.

Du(x0) ∈ B̄δ and hence
Du(Mδ) ⊂ B̄δ. (3.13)

So that, from (3.12 ) and (3.13), we have Du(Mδ) = B̄δ for all δ < δ0.

In order to be able to derive a conclusion about Lebesque measure ofMδ we will use

change of variables formula. To be able to do that we need to define a diffeomorphism

form Mδ onto some set. We can do this through using the set Du(Mδ) = B̄δ since

from this equation we see that Du maps Mδ onto B̄δ.

Now, for ε > 0 define

ξε(x) = Du(x)− εx for x ∈ G.

If x ∈Mδ then

u(y) ≤ u(x) + p.(y − x) for all y ∈ G.

This implies that

u(y) ≤ u(x) +Du(x).(y − x) (3.14)
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since p = Du(x) when x ∈Mδ and u is smooth.

On the other hand if also y ∈Mδ then

u(x) ≤ u(y) +Du(y).(x− y) (3.15)

Summing up (3.14) and (3.15) we get

u(y) + u(x) ≤ u(x) + u(y) +Du(y).(x− y) +Du(x).(y − x) (3.16)

0 ≥ (Du(x)−Du(y))(x− y) for all x, y ∈Mδ.

Hence

(ξε(x)− ξε(y))(x− y) = (Du(x)− εx−Du(y)− εy)(x− y)
= (Du(x)−Du(y))(x− y)− ε(x− y)(x− y)
≤ −ε |x− y|2 for all x, y ∈Mδ by (3.16).

Hence

(ξε(x)− ξε(y))(x− y) ≤ −ε |x− y|2 for all x, y ∈Mδ. (3.17)

This implies that ξε is a one-to-one mapping of Mδ (since otherwise assume we have

x, y ∈ Mδ such that x 6= y but ξε(x) = ξε(y). Then we would have a contradiction
0 ≤ −ε |x− y|2 > 0 by (3.17).) Moreover, Jacobian Jξε = Det(Dξε) = Det(D2u −
ε) < 0 sinceD2u ≤ 0. Hence Jξε is nonzero. Hence ξε is a diffeomorphism from Mδ

ontoξε(Mδ) and we can use change of variables formula which states thatZ
ξε(Mδ)

dξε(x) =

Z
Mδ

|Det(Dξε)| dm(x) (3.18)

so that we have Z
ξε(Mδ)

dξε(x) =

Z
Mδ

¯̄
Det(D2u− ε)¯̄ dm(x) (3.19)

Letting ε→ 0 we haveZ
Du(Mδ)

dξ(x) =

Z
Mδ

¯̄
Det(D2u(x))

¯̄
dm(x)
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since boundary of Du(Mδ) has measure 0.

Letting

I =

Z
Mδ

¯̄
Det(D2u(x))

¯̄
dm(x)

then

I =

Z
Bδ

dξ(x) = m(B̄1)δ
2 (3.20)

where m(B̄1) is the measure of the unit ball in R2and δ < δ0.

On the other hand, if we let

λ = sup
©
Det(−D2u(x)) : x ∈ G, D2u(x) ≤ 0ª

(this supremum exists since u is semiconvex), then we have

I =

Z
Mδ

¯̄
Det(D2u(x))

¯̄
dm(x) =

Z
Mδ

Det(−D2u(x))dm(x) ≤ λm(Mδ) (3.21)

since D2u(x) ≤ 0 for all x ∈ Mδ. From (3.20) and (3.21) we obtain m(B̄1)δ
2 ≤

λm(Mδ). Letting c0 =
m(B̄1)
λ
, we have the desired result that m(Mδ) ≥ c0δ

2 for all

δ ≤ δ0.
We have assumed that u was twice differentiable. When u is not twice differen-

tiable an approximation via mollification with smooth functions um that have the

same semiconvexity constant with u and that converge uniformly to u on G re-

sults in corresponding sets Km to obey the above results for large m and then since

lim supm→∞M
m
δ = ∩∞M=1 ∪∞m=M Mm

δ ⊂Mδ holds we have the desired result.

Theorem 3.4 (Alexandrov’s Theorem) Let u : Rn → R be a semiconvex function.

Then u is twice differentiable almost everywhere (i.e. except possibly on a set of

measure 0) on Rn.

We will accept this classical result without proof.

Remark: Jensen’s lemma can be viewed as generalization of maximum principle

for semiconvex functions. Let us try to explain this by considering a semiconvex
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function u and assuming that x̂ is a strict interior maximum of u. In this case,

D2u(x̂) might not exist. However, by letting δ = 1
m
for positive integers m, we

know by Jensen’s lemma that the set Mδ, i.e. M 1
m
is of positive measure for each

m. Alexandrov’s theorem states that u is twice differentiable almost everywhere.

Therefore, for eachm the setM 1
m
contains points that are twice differentiable. Letting

xm be a twice differentiable point of u in M 1
m
, then as m→∞, xm → x̂. Repeating

an argument in the proof above by defining the function ur(y) = u(xm) + p(y − xm),
for each m, then by (3.11) we have for all y ∈ G

ur(y) ≥ u(y) and ur(xm) = u(xm).

Since ur(y) is a linear function (because u(xm) is a fixed number) and at xm the graph

of u touches the graph of ur, and that it is also below the graph of ur for all y ∈ G, in
addition also because u is twice differentiable at each xm, we then have at each xm,

Du(xm) = Dur(xm) = p and

D2u(xm) ≤ Dur(xm) = 0.

Since |p| ≤ 1
m
, we then have |Du(xm)| ≤ 1

m
. Hence even if we do not know whether

u is twice differentiable at x̂, we at least know that there is a sequence xm → x̂, for

which

|Du(xm)| ≤ 1

m
and D2u(xm) ≤ 0 holds,

in other words for which

limm→∞ |Du(xm)| ≤ 0 and D2u(xm) ≤ 0.

Within this perspective we can see Jensen’s lemma as a generalized maximum prin-

ciple for semiconvex functions.
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3.3. Sup Convolution

Sup convolutions will allow us to be able to regularize merely semicontinuous

functions. Throughout this section we will assume u : Ω → Rn to be bounded from

above and we will extend u to Rn by letting u take the value of −∞ on unimportant

sets, in other words in our case we will let u(x) = −∞ for x /∈ Ω. This way, we will
be considering upper semicontinuous functions u : Rn → R ∪ {−∞}.

Definition 3.5 Let Ω ⊂ Rn be closed, ε > 0, and u : Ω → Rn be such that u ∈
USC(Ω). For y ∈ Rn, let

ûε(y) = sup
x∈Ω
(u(x)− 1

2ε
|x− y|2).

This process of constructing ûε’s is called ’sup convolution’.

It provides us with an approximation of u in the sense that limε→0ûε(y) = u(y) for

y ∈ Rn. In the case that u is continuous this convergence is uniform. Furthermore,
it is also a regularization of u since we will see in a moment that ûε is semiconvex.

We will start by giving some technical lemmas:

Lemma 3.6 ûε(y) ≥ u(y).

Proof. Clearly,

ûε(y) = sup
x∈Ω
(u(x)− 1

2ε
|x− y|2) ≥ u(x)− 1

2ε
|x− y|2 for all x ∈ Ω,

in particular for x = y, therefore

ûε(y) ≥ u(x)− 1

2ε
|x− y|2 = u(y).

Lemma 3.7

ûε(y) = sup

½
u(x)− 1

2ε
|x− y|2 : |x− y| ≤ 2

√
εM

¾
where M = kuk = supΩ u(x). Therefore it is attained at some y∗ ∈ Ω with |y∗ − y| ≤
2
√
εM , and thus supremum is finite.
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Proof. Fix y ∈ Ω. Let |x− y| > 2√εM , then

u(x)− 1

2ε
|x− y|2 < u(x)− 2M ≤ −M ≤ u(y) ≤ ûε(y)

hence supremum cannot occur on the set
n
x ∈ Ω : |x− y| > 2√εM

o
. Since the setn

x ∈ Ω : |x− y| ≤ 2
√
εM
o

is compact and u ∈ USC(Ω), u attains its supremum on this set.

Lemma 3.8 ûε is continuous.

Proof. Let |y − z| < h ≤ 1.

ûε (y) = u (y∗)− 1

2ε
|y∗ − y|2

= u (y∗)− 1

2ε
|y∗ − z|2 + 1

2ε

¡|y∗ − z|2 − |y∗ − y|2¢
≤ ûε (z) +

1

2ε

¡|y∗ − z|2 − |y∗ − y|2¢
= ûε (z) +

1

2ε
(|y∗ − z|+ |y∗ − y|) (|y∗ − z|− |y∗ − y|)

≤ ûε (z) +
1

2ε
(|y∗ − y|+ |y∗ − y|+ |y − z|) |y − z|

< ûε (z) +
1

2ε

³
4
√
εM + h

´
|y − z|

ûε (y)− ûε (z) <
1

2ε

³
4
√
εM + 1

´
|y − z| .

But by symmetry the opposite also holds, none of the constants depend on y. So

|ûε (y)− ûε (z)| < 1

2ε

³
4
√
εM + 1

´
|y − z|

Given ε > 0, let h ≤ 2ε 2√ε
4M+1

then |y − z| < 2ε 2√ε
4M+1

, and |ûε (y)− ûε (z)| < ε.

Lemma 3.9 If s ≤ r then ŝε ≤ r̂ε.

Proof. s ≤ r implies that s(x) ≤ r(x), then fixing y ∈ Ω we have

s(x)− 1

2ε
|x− y|2 ≤ r(x)− 1

2ε
|x− y|2

sup
x∈Ω
(s(x)− 1

2ε
|x− y|2) ≤ sup

x∈Ω
(r(x)− 1

2ε
|x− y|2)
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so that, ŝε(y) ≤ r̂ε(y). Since y was arbitrary this holds for all y ∈ Ω. Hence ŝε ≤ r̂ε.

Proposition 3.10 Let Ω ⊂ Rn be compact and u ∈ C(Ω), then ûε(y) → u(y) uni-

formly on Ω as ε→ 0.

Proof. By the first one of the above technical lemmas, ûε(y) ≥ u(y). Conversely,
let y∗ be a point at which supremum is attained. Since u is continuos, given h > 0,

there exists d > 0 such that u(x) ≤ u (y) + h. Let ε < d2

4M
. Then, since |y∗ − y| ≤

2
√
εM , we will have |y∗ − y| < d, then u (y∗) ≤ u (y) + h holds. But then,

ûε(y) = u (y
∗)− 1

2ε
|y∗ − y|2 ≤ u (y) + h− 1

2ε
|y∗ − y|2 ≤ u (y) + h.

Hence for ε < d2

4M
we will have 0 ≤ ûε(y)− u (y) ≤ h.

Proposition 3.11 Let Ω ⊂ Rn be closed. Then, ûε(y) is semiconvex on Ω .

Proof. We will give the proof using definition of semiconvexity. In other words

we want to find a κΩ > 0 such that the function defined by

ǔε(y) = ûε(y) + κΩ |y|2

is convex on every convex subset of Ω.

Claim 3.12 κΩ = 1
2ε
i.e. ǔε(y) = ûε(y) + 1

2ε
|y|2 is convex on every convex subset of

Ω.

We will show that for every y + h, y − h, and y ∈ Ω, we have

ǔε(y + h) + ǔε(y − h)− 2ǔε(y) ≥ 0.

Fix y ∈ Ω. Let y∗ be the point supremum is achieved then, we have

ûε(y + h) ≥ u(y∗)− 1

2ε
|y∗ − (y + h)|2 and

ûε(y − h) ≥ u(y∗)− 1

2ε
|y∗ − (y − h)|2
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Hence,

ǔε(y + h) + ǔε(y − h)− 2ǔε(y)
= ûε(y + h) +

1

2ε
|y + h|2 + ûε(y − h) + 1

2ε
|y − h|2 − 2ûε(y)− 2 1

2ε
|y|2

≥ u(y∗)− 1

2ε
|y∗ − (y + h)|2 + 1

2ε
|y + h|2 + u(y∗)− 1

2ε
|y∗ − (y − h)|2

+
1

2ε
|y − h|2 − 2u(y∗) + 2 1

2ε
|y∗ − y|2 − 2 1

2ε
|y|2

=
1

2ε

 (|y + h|2 + |y − h|2 − 2 |y|2)
−(|y∗ − (y + h)|2 + |y∗ − (y − h)|2 − 2 |y∗ − y|2


≥ 1

2ε

 |y + h|2 + |y − h|2 − |y|2 − |y∗|2

− |y + h|2 − |y∗|2 − |y − h|2 + 2 |y∗|+ 2 |y|2


= 0

Hence ǔε(y+ h)+ ǔε(y−h)− 2ǔε(y) ≥ 0. Since y was arbitrary this holds true on Ω.

At this point, we will see the important role sup convolution of a subsolution

plays. However, before that we need another theorem which is important for sup

convolutions and which gives us a relation between second order semijets of a sup

convolution of a function u and second order semijets of the function u itself. More

specifically, it will tell us that if (p,X) is in the second order semijet of ûε at x0

then (p,X) will also be in a second order semijet of u but this time at x0 + εp. For

convenience of notation from now on we will drop the lower index ε of sup convolution

ûε of u, and hence write û instead of ûε, however we will keep in mind that û depends

on ε.

In the literature, the theorem below is referred to as ”magic properties of sup

convolution”.

Theorem 3.13 Let u : Rn → R be USC(Rn). If (p,X) ∈ J2,+û(y0), and T is any
real n× n matrix, then
1) (p, 1

ε
(I−T ∗)(I−T )+T ∗XT ) ∈ J2,+u(y0+ εp), (here T ∗ denotes adjoint of T ).
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2) x0 = y0 + εp is the unique point such that û(y0) = u(x0)− 1
2ε
|x0 − y0|2.

3) If we choose T = I, then (p,X) ∈ J2,+u(y0 + εp).

Proof. We will give the proof in n = 2, and will prove 2) first.

Let (p,X) ∈ J2,+û(y0). Then as we know from Chapter 2, there exits a ϕ ∈ C2(R2)
such that û− ϕ assumes its maximum at y0, i.e. û(y)− ϕ(y) ≤ û(y0)− ϕ(y0) for all
y ∈ R2, and Dϕ(y0) = p and D2ϕ(y0) = X.

Let y∗ be the point supremum is achieved, then we have

u(x)− 1

2ε
|x− y|2 − ϕ(y) ≤ sup

x∈Ω
(u(x)− 1

2ε
|x− y|2)− ϕ(y)

= û(y)− ϕ(y) ≤ û(y0)− ϕ(y0)
= sup

x∈Ω
(u(x)− 1

2ε
|x− y0|2)− ϕ(y0)

≤ u(y∗)− 1

2ε
|y∗ − y0|2 − ϕ(y0) for all x ∈ R2.

Hence we have

u(x)− 1

2ε
|x− y|2 − ϕ(y) ≤ u(y∗)− 1

2ε
|y∗ − y0|2 − ϕ(y0) for all x ∈ R2. (3.22)

Then by letting x = y∗ in (3.22), we see that

u(y∗)− 1

2ε
|y∗ − y|2 − ϕ(y) ≤ u(y∗)− 1

2ε
|y∗ − y0|2 − ϕ(y0) for all x ∈ R2

1

2ε
|y∗ − y|2 + ϕ(y) ≥ 1

2ε
|y∗ − y0|2 + ϕ(y0).

Since y is arbitrary this means that the function α(y) = 1
2ε
|y∗ − y|2 + ϕ(y) has

a minimum at y0. But this function is C2, hence we can apply first and second

derivative tests to see that

Dα(y0) = 0 hence − 1
ε
(y∗ − y0) +Dϕ(y0) = 0 so that

y∗ = εDϕ(y0) + y0 = εp+ y0 uniquely, and that

D2α(y0) ≥ 0 hence
1

ε
I +D2ϕ(y0) ≥ 0 hence

D2ϕ(y0) ≥ −1
ε
I so that X ≥ −1

ε
.
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(Remark: This last inequality, X ≥ −1
ε
I will turn out to be important later on).

Since y∗ = εp+ y0 uniquely, and we have taken y∗ as a maximum of û, then y∗ is

the unique point for which û(y0) = u(y∗)− 1
2ε
|y∗ − y0|2 holds. Next we will prove 1).

In (3.22) if we let y = T (x− y∗) + y0 we have for all x ∈ R2

u(x)− 1

2ε
|(I − T )x+ Ty∗ − y0|2 − ϕ(Tx− Ty∗ + y0)

≤ u(y∗)− 1

2ε
|y∗ − y0|2 − ϕ(y0)

But then letting

β(x) =
1

2ε
|(I − T )x+ Ty∗ − y0|2 + ϕ(Tx− Ty∗ + y0)

we have

u(x)− β(x) ≤ u(y∗)− β(y∗) for all x ∈ R2.

In other words y∗ is a maximum point of u− β, and since β is C2, we have

(Dβ(y∗), D2β(y∗)) ∈ J2,+u(y∗)

But then since

Dβ(x) =
1

ε
((I − T )x+ Ty∗ − y0)(I − T ) +Dϕ(Tx− Ty∗ + y0),

we have

Dβ(y∗) =
1

ε
((I − T )y∗ + Ty∗ − y0)(I − T ) +Dϕ(Ty∗ − Ty∗ + y0)T

=
1

ε
(y∗ − y0)(I − T ) +Dϕ(y0)T

=
1

ε
(εp)(I − T ) + pT = p− pT + pT = p,

and since

D2β(x) =
1

ε
(I − T )∗(I − T ) + T ∗D2ϕ(Tx− Ty∗ + y0)T,

we have

D2β(y∗) =
1

ε
(I − T )∗(I − T ) + T ∗D2ϕ(Ty∗ − Ty∗ + y0)T

=
1

ε
(I − T )∗(I − T ) + T ∗XT.
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Hence

(p,
1

ε
(I − T ∗)(I − T ) + T ∗XT ) ∈ J2,+u(y∗). (3.23)

To prove 3) we then let T = I in (3.23), and have (p,X) ∈ J2,+u(y∗) as desired.

Corollary 3.14 If (0,X) ∈ J̄2,+û(0), then (0, X) ∈ J̄2,+u(0).

Proof. Let (0, X) ∈ J̄2,+û(0). But then this means that

there exists (yn, pn,Xn) ∈ R2 ×R2 × S(N) such that
(pn,Xn) ∈ J2,+û(yn) and

(yn, û(yn), pn,Xn) → (0, û(0), 0, X) as n→∞.

But then we know from the previous theorem that (pn, Xn) ∈ J2,+u(xn) where xn =
yn + εpn and

û(yn) = u(xn)− 1

2ε
|xn − yn|2 (3.24)

In order to be able to show that (0, X) ∈ J̄2,+u(0) holds we will claim that

(xn, u(xn), pn,Xn)→ (0, u(0), 0, X) as n→∞.

Since as n→∞, yn → 0, pn → 0, Xn → 0 is given, we can easily deduce that xn → 0,

hence we need to show that u(xn)→ u(0).

Since as n → ∞, 1
2ε
|xn − yn|2 → 0, and also since it is given that û(yn) → û(0),

we know by (3.24) that

u(xn)→ û(0) (3.25)

So we will be done if we can show that û(0) = u(0). But by the first one of the

above technical lemmas we know that û(0) ≥ u(0), hence we are left to show that

û(0) ≤ u(0). Since u is upper semicontinuous, as xn → 0, we have

u(0) ≥ lim sup
n→∞

u(xn).
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But then by (3.25) we know that u(xn)→ û(0) which implies that

lim sup
n→∞

u(xn) = û(0),

thus, we get u(0) ≥ û(0) as desired. As a result, there exits

(xn, pn, Xn) ∈ R2 ×R2 × S(N) such that
(pn, Xn) ∈ J2,+u(xn) and

(xn, u(xn), pn, Xn) → (0, u(0), 0, X).

This means that (0, X) ∈ J̄2,+u(0).

Corollary 3.15 Let F (u,Du,D2u) be proper and let u be a subsolution of

F (u,Du,D2u) = 0.

Then û is also a subsolution of F (u,Du,D2u) = 0.

Proof. We need to show that for every y ∈ Rn and (p,X) ∈ J2,+û(y),

F (û(y), p,X) ≤ 0.

Let y0 ∈ Rn, and (p0, X0) ∈ J2,+û(y0). Then by the above theorem we know that

(p0, X0) ∈ J2,+u(y0 + εp0) = J
2,+u(x0) and (3.26)

û(y0) = u(x0)− 1

2ε
|x0 − y0|2 upon denoting x0 = y0 + εp0. (3.27)

Since u is a subsolution of F (u,Du,D2u) = 0 we have

F (u(x0), p0, X0) ≤ 0.

But then this implies that

F (û(y0) +
1

2ε
|x0 − y0|2 , p0, X0) ≤ 0
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since by (3.26)

u(x0) = û(y0) +
1

2ε
|x0 − y0|2 .

Furthermore, letting

α(y) = û(y) +
1

2ε
|x0 − y|2 ,

we have for every y ∈ Rn,
û(y) ≤ α(y)

which implies that

û ≤ α

and if we combine this with the fact that F is proper, we get

F (u, p,X) ≤ F (α, p,X)

which gives us

F (û(y0), p0, X0) ≤ F (α(y0), p0, X0)

= F (û(y0) +
1

2ε
|x0 − y0|2 , p0, X0)

≤ 0

hence

F (û(y0), p0, X0) ≤ 0.

Since y0 was arbitrary we have,

F (û(y), p,X) ≤ 0 for every y ∈ Rn and (p,X) ∈ J2,+û(y)

hence û is also a subsolution of

F (u,Du,D2u) = 0.

Example 3.16 Let B ∈ S(2) such that B < 1
2ε
I, and let u(x) = hBx, xi. Then

û(y) = hB(I − 2εB)−1y, yi.
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Proof. Let in

û(y) = sup(u(x)− 1

2ε
|x− y|2)

supremum be achieved at y∗, then we have

û(y) = u(y∗)− 1

2ε
|y∗ − y|2

= hBy∗, y∗i− 1

2ε
|y∗ − y|2 .

Let

α(x) = hBx, xi− 1

2ε
|x− y|2 ,

then α(x) is twice differentiable with maximum at y∗. Hence

Dα(y∗) = 0 gives 2By∗ − 1
ε
(y∗ − y) = 0 which gives y∗ = (I − 2εB)−1y,

then

1

2ε
|y∗ − y|2 =

1

2ε
|y∗ − (I − 2εB)y∗|2

=
1

2ε
|(I − I + 2εB)y∗|2

=
1

2ε
|2εBy∗|2 = (2ε)(2ε)

2ε
|By∗|2 = (2ε) hBy∗, By∗i

and then

û(y) = hBy∗, y∗i− 1

2ε
|y∗ − y|2

= hBy∗, y∗i− (2ε) hBy∗, By∗i
= hBy∗, y∗ − 2εBy∗i = ­B(I − 2εB)−1y, y® .

The theorem above has given us a relation between second order semijets of a

sup convolution of a function u and second order semijets of the function u itself.

However, we would like to know also when an element that we can control exists in

the closure of second order semijet of a sup convolution of a function u, so that via

this element we can pass to closure of second order semijet of the function u itself.

The following theorem will give us this result.
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Theorem 3.17 Let u(y) ∈ C(Rn), B ∈ S(N), and let u(y)+ 1
2ε
|y|2 be convex. Then

if

u(y)− 1
2
hBy, yi

has a maximum at y = 0, in other words if

max
y∈Rn

(u(y)− 1
2
hBy, yi) = u(0),

then there is an X ∈ S(N) such that

(0,X) ∈ J̄2u(0) = J̄2,+u(0) ∩ J̄2,−u(0) and − 1
ε
I ≤ X ≤ B.

Proof. Our aim in this proof is to be able to find a sequence (pn,Xn) ∈ J2,+u(yn)
such that

yn → 0, pn → 0, Xn → X and u(yn)→ u(0) holds,

(since u is continuous, the latter will hold automatically once yn → 0 holds), and a

sequence (p̃n, X̃n) ∈ J2,−u(ỹn) such that

ỹn → 0, p̃n → 0, X̃n → X and u(ỹn)→ u(0) holds.

We will localize our attention around y = 0. Hence let G = B̄(0, r). Since u is

semiconvex on G (with semiconvexity constant κG = 1
2ε
) by the convexity assump-

tion given, by Alexandrov’s Theorem we know that u is twice differentiable almost

everywhere on G. Let Γ be the set of points of G where u is twice differentiable.

Consider the function

α(y) = u(y)− 1
2
hBy, yi− |y|4 .

Our first claim is that α(y) has a strict maximum at y = 0. Assume there exists

y1 6= 0 such that α(y1) = α(0),then we have

u(y1)− 1
2
hBy1, y1i− |y1|4 = u(0)− 1

2
hB0, 0i− |0|4

implying

u(y1)− 1
2
hBy1, y1i− |y1|4 = u(0)
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implying

u(y1)− 1
2
hBy1, y1i = u(0) + |y1|4 > u(0),

but then this contradicts to

max
y∈R2

(u(y)− 1
2
hBy, yi) = u(0).

Hence α(y) has a strict maximum at y = 0.

Our second claim is that α(y) is semiconvex on G with semiconvexity constant

κG =
γ+ 1

ε
+14r2

2
where γ is an eigenvalue of B. In other words, we claim that the

function

β(y) = α(y) +
γ + 1

ε
+ 14r2

2
|y|2

is convex on every convex subset of G. Now,

β(y) = u(y)− 1
2
hBy, yi− |y|4 + γ

2
|y|2 + 1

2ε
|y|2 + 14r

2

2
|y|2 .

Since u(y) + 1
2ε
|y|2 is convex we need only to show that

ϕ(y) = −1
2
hBy, yi− |y|4 + γ

2
|y|2 + 14r

2

2
|y|2 is convex.

ϕ(y) = −1
2
hBy, yi− |y|4 + γ

2
|y|2 + 14r

2

2
|y|2

= −1
2
hBy, yi+ γ

2
hy, yi− |y|4 + 14r

2

2
|y|2

= −1
2
h(B − γI)y, yi− |y|4 + 14r

2

2
|y|2

= − |y|4 + 14r
2

2
|y|2

and since this function is twice differentiable on G it suffices to check its Hessian.

D2ϕ(y) = −12


y21 0 0

0 ... 0

0 0 y2n

+
r2I
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and since |y| ≤ r in G, we have hD2u (x) v, vi ≥ 0 for every v ∈ Rn, hence we have
D2ϕ(y) ≥ 0 on G, and hence ϕ(y) is convex which implies that β(y) is convex on

G. Thus, α(y) is semiconvex on G. Then we can use Jensen’s Theorem for α(y) and

deduce that the set

Mδ =

 y ∈ G : there is a p ∈ R2 with |p| < δ for which
αp(y) = α(y) + hp, yi has a local maximum at y


has positive measure. But then closure(Mδ∩Γ) = closure(Mδ) in other wordsMδ∩Γ,
the set of points in Mδ where u is also twice differentiable, is dense in Mδ, so one can

converge to any point in Mδ by a sequence in Mδ ∩ Γ. Furthermore y = 0 is in each
Mδ. (It is also the unique such point since it is a strict maximum of α(y).) Hence

there is a sequence in eachMδ ∩Γ such that this sequence converges to y = 0. Let us
consider from now on only δ = 1

m
, m = 1, .... Then we can form a sequence of ymsuch

that each

each ym ∈M 1
m
∩ Γ, |ym| < 1

m
, and ym → 0.

Then, at each ym, there is a pm ∈ Rn with |p| < 1
m
for which

αpm(y) = α(y) + hpm, yi

has a local maximum, and furthermore at each ym, u is twice differentiable. Then we

have

Dαpm(ym) = Du(ym)−Bym − 4 |ym|2 ym + pm = 0 implying
Du(ym) = Bym + 4 |ym|2 ym − pm implying
|Du(ym)| =

¯̄
Bym + 4 |ym|2 ym − pm

¯̄
≤ |Bym|+ 4 |ym|3 + |pm|
≤ 1

m
(|B|+ 4( 1

m
)3 + 1)

= c(
1

m
) where c is a constant, implying

|Du(ym)| = O(
1

m
)
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and we also have

D2αpm(ym) = D2u(ym)−B − 8


y21 0 0

0 ... 0

0 0 y2n

 ≤ 0 implying

D2u(ym) ≤ B + 8


y21 0 0

0 ... 0

0 0 y2n

 ≤ B + 8( 1m)I implying
D2u(ym) = B +O(

1

m
).

Furthermore since also u(y) + 1
2ε
|y|2 is convex and u is twice differentiable at each

ym, we have

D2(u(ym) +
1

2ε
|ym|2) ≥ 0 implying D2u(ym) +

1

ε
I ≥ 0 so that

D2u(ym) ≥ −1
ε
I.

Then, since |Du(ym)| = O( 1m), asm→∞ we haveDu(ym)→ 0; and sinceD2u(ym) is

bounded, it has a convergent subsequenceD2u(yml
) that converge to someX ∈ S(N).

We also have Du(yml
) → 0. Furthermore since u is twice differentiable at each ym,

we have

(Du(ym), D
2u(ym)) ∈ J2u(ym) = J2,+u(ym) ∩ J2,−u(ym).

Hence, we conclude that (0, X) ∈ J̄2u(0), and as m→∞, −1
ε
I ≤ X ≤ B.

Example 3.18 Let us go back to our previous example and note that the condition

B < 1
2ε
I holds was implicitly imposed by the fact that we were considering ûε(y) =

sup(u(x) − 1
2ε
|x− y|2) and that it was necessary in order for the supremum to be

achieved at x̂. Now let us ask the following question:

If we were not given the fact that B < 1
2ε
I holds then under what conditions could

we derive a similar result for u(x) = 1
2
hBx, xi and its sup convolution û(y)?
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Proof. Let us assume for the moment that ûε(y) = sup(u(x)− 1
2ε
|x− y|2)achieves

its supremum at y∗. Then we would have

ûε(y) = u(y
∗)− 1

2ε
|y∗ − y|2 = 1

2
hBy∗, y∗i− 1

2ε
|y∗ − y|2 .

Let again

α(x) =
1

2
hBx, xi− 1

2ε
|x− y|2 ,

then α(x) would be twice differentiable and in order for the maximum to be at y∗,

we would need to have Dα(y∗) = 0 and this would require

By∗ − 1
ε
(y∗ − y) = 0,

i.e. y∗(I−εB) = y. But then this would require I−εB to be invertible. Furthermore,
we would also need D2α(y∗) ≤ 0, and this would require B ≤ 1

ε
I. Combining these

two it becomes obvious that we need to have B < 1
ε
I.

Now our next question is which choice of ε would guarantee us that this latter

condition holds. We note that

B <
1

ε
I iff εB − I < 0 iff ε(B − 1

ε
I) < 0 iff

1

ε
> kBk

since

B <
1

ε
I implies hBx, xi ≤

¿
1

ε
Ix, x

À
for all x ∈ Rn,

but then

sup {hBx, xi : kxk = 1} ≤ sup

½¿
1

ε
Ix, x

À
: kxk = 1

¾
hence

kBk ≤
°°°°1εI

°°°° = 1

ε

where

kBk = max {|ν| : where ν is an eigenvalue of B}
= sup {hBx, xi : kxk = 1} .
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Hence if 1
ε
= 1

γ
+ kBk then the desired condition will hold when γ > 0. Also, the

reason we have added to kBk a term of the form 1
γ
is that as γ → 0 we want to

penalize the term |x− y|2 in ûε(y) more and more, so that as γ → 0, ûε(y) → u(y).

Example 3.19 Hence we can restate our previous example as follows:

Let B ∈ S(2), and u(x) = 1
2
hBx, xi. Then for γ > 0, and 1

ε
= 1

γ
+ kBk, where

kBk is as above,
û(y) =

­
B(I − εB)−1y, y® .

Furthermore, since (I − εB)−1 = I + γB we have û(y) = hB(I + γB)y, yi.

Now we are ready to prove a preliminary version of our long promised theorem.

3.4. Theorem on Sums - A Comparison Principle

for Semicontinuous Functions

The merits of the ’Theorem on Sums’ is mentioned in the introduction to this

chapter, hence we will directly go on proving a preliminary version of this theorem.

Later on, we will extend it to a more general version.

Theorem 3.20 Let u1, u2 ∈ USC(R2), u1(0) = u2(0) = 0, A ∈ S(4), and let

w(x) = u1(x1) + u2(x2) ≤ 1

2
hAx, xi for x = (x1, x2) ∈ R4.

Then, for every ε > 0, there exists X1, X2 ∈ S(2), such that

(0,X1) ∈ J̄2,+u1(0), (0,X2) ∈ J̄2,+u2(0)

and the block diagonal matrix with entries satisfies

−( 1
γ
+ kAk) ≤

 X1 0

0 X2

 ≤ A+ γA2.
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Proof. Let β(x) = 1
2
hAx, xi. Since w ≤ β we have ŵε ≤ β̂ε for same ε > 0. Then,

since we know by the last example of the previous section β̂ε(y) =
1
2
hA(I + γA)y, yi,

where 1
ε
= 1

γ
+ kAk, we have

ŵε(y) ≤ 1

2
hA(I + γA)y, yi . (3.28)

We will drop the subscript ε for the sup convolution for the moment. Now also

ŵ(y) = sup
x∈R4

(w(x)− 1

2ε
|x− y|2)

= sup
x∈R4

(u1(x1) + u2(x2)− 1

2ε
(|x1 − y1|2 + |x2 − y2|2)

= sup
x=(x1,x2)∈R4

(u1(x1)− 1

2ε
|x1 − y1|2 + u2(x2)− 1

2ε
|x2 − y2|2)

= sup
x∈R2

(u1(x1)− 1

2ε
|x1 − y1|2) + sup

x∈R2

(u2(x2)− 1

2ε
|x2 − y2|2)

= û1(y) + û2(y).

Since

u ≤ û implies 0 = u1(0) ≤ û1(0) and 0 = u2(0) ≤ û2(0)

we also have

û1(0) + û2(0) = ŵ(0) ≤ 1

2
hA(I + γA)0, 0i = 0

and this implies that

û1(0) = 0 and û2(0) = 0.

But then

(ŵ − β)(y) = ŵ(y)− 1
2

­
(A+ γA2)y, y

® ≤ 0 by (3.28) for all y
and (ŵ − β)(0) = ŵ(0)− 0 = 0 implies that ŵ − β has a maximum at y = 0.

Furthermore since ŵ is semiconvex with semiconvexity constant κG = 1
2ε
on a

compact neighborhood of y = 0, we can proceed as in the proof of last theorem of

previous section to obtain

−( 1
γ
+ kAk) ≤ D2ŵ(y 1

m
) ≤ A+ γA2 +O(( 1

m
)2).
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But then since

D2ŵ(y 1
m
) =

 D2û1(x
1
1
m

) 0

0 D2û2(x
2
1
m

)


letting

X1
1
m
= D2û1(x

1
1
m
) and X2

1
m
= D2û2(x

2
1
m
)

as 1
m
→ 0 we have

X1
1
m
→ X1 and X2

1
m
→ X2

and hence

−( 1
γ
+ kAk) ≤

 X1 0

0 X2

 ≤ A+ γA2.

Furthermore, in the same way we will also obtain Dŵ(y 1
m
) = O( 1

m
). Then, we will

have

Dŵ(y 1
m
) = Dŵ(x11

m
, x21

m
) = (Dû1(x

1
1
m
), Dû2(x

2
1
m
))

letting

p11
m
= Dû1(x

1
1
m
) and p21

m
= Dû2(x

2
1
m
)

we have (p11
m

, p21
m

) = O( 1
m
). As 1

m
→ 0 we have p11

m

→ 0, and p21
m

→ 0. Since

(p11
m
, X1

1
m
) = (Dû1(x

1
1
m
),D2û1(x

1
1
m
)) and

(Dû1(x
1
1
m
),D2û1(x

1
1
m
)) ∈ J2û1(x

1
1
m
)

we have as in the proof of Theorem 3.17,

(0, X1) ∈ J̄2û1(0) and similarly (0,X2) ∈ J̄2û2(0). (3.29)

Furthermore, noting that u1 and u2 are bounded from above (since they are upper

semicontinuous, on a compact neighborhood of y = 0 they will be bounded from

above and outside a neighborhood of zero they can be modified to be bounded from

above and this will not affect the analysis) and also that (3.29) implies

(0, X1) ∈ J̄2,+û1(0) and (0,X2) ∈ J̄2,+û2(0)
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we have by Corollary 3.14,

(0, X1) ∈ J̄2,+u1(0) and (0, X2) ∈ J̄2,+u2(0).

In the above proof, the fact that we had u1(0) = u2(0) = 0, and w bounded

by a pure quadratic β(x) = hAx, xi provided us with the fact that 0 is a maximum
point ŵ(y) − 1

2
hAy, yi, and hence we could carry out the analysis around y = 0.

Furthermore, note that Dβ(0) was equal to zero, we had Dβ(y 1
m
) = O( 1

m
), and as a

consequence Dŵ(y 1
m
)→ 0 as 1

m
→ 0.

Hence if we can reduce a general problem to this case, then we would be able to

carry out the same analysis. So, let us consider this case. Let x̂ be a maximum of

w − ϕ, where ϕ is a twice differentiable function. First we will translate x̂ to 0.
Let ϕ̃(x) = ϕ(x̂ + x), then ϕ̃(0) = ϕ(x̂). From now on for simplicity of notation

we will call ϕ̃ as ϕ, and keep in mind that the new ϕ is a shifted version of the former

ϕ and has carried out the local properties of former ϕ around x̂ to around 0. Now

since ϕ is C2, by its Taylor expansion near x = 0 we have

ϕ(x) = ϕ(0) +Dϕ(0)x+
1

2

­
D2ϕ(0)x, x

®
+ o(|x|2).

Now let

ϕ̌(x) = ϕ(x)− ϕ(0)−Dϕ(0)x then ϕ̌(x) = 1

2

­
D2ϕ(0)x, x

®
+ o(|x|2) and

Dϕ̌(x) = Dϕ(x)−Dϕ(0) and hence Dϕ̌(0) = Dϕ(0)−Dϕ(0) = 0 and
D2ϕ̌(x) = D2ϕ(x) and hence D2ϕ̌(0) = D2ϕ(0) and also ϕ̌(0) = 0.

Similarly, we can translate w so that w̃(x) = w(x̂+ x), then w̃(0) = w(x̂), and again

for simplicity of notation we will call w̃ as w, and keep in mind that the new w is a

shifted version of the former w and has carried out the local properties of former w

around x̂ to around 0.

Moreover, we also have to keep the previous local relation now between our new

w and ϕ̌. Note that the values of ϕ̌ is obtained by first shifting the values of by
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ϕ(x) by ϕ(0) so that ϕ̌(0) = 0 now and second by modifying ϕ(x) around x = 0 by

subtracting a factor of Dϕ(0)x. Therefore in order to be able to keep the previous

local relation we need to define a new w̌ whose values are shifted by w(0), so that

now w̌(0) = 0. Furthermore we need to modify w by subtracting a factor of Dϕ(0)x

so that the previous relation between w and ϕ around x̂ is now preserved between

w̌ and ϕ̌ around x = 0. Hence we define

w̌(x) = w(x)− w(0)−Dϕ(0)x.

But then we have around x = 0,

w̌(x)− ϕ̌(x) = w(x)− w(0)−Dϕ(0)x− ϕ(x) + ϕ(0) +Dϕ(0)x
= (w − ϕ)(x)− w(0)−Dϕ(0)x+ ϕ(0) +Dϕ(0)x
≤ (w − ϕ)(0)− w(0) + ϕ(0)
= w(0)− ϕ(0)− w(0) + ϕ(0)−Dϕ(0)0 +Dϕ(0)0
= w(0)− w(0)−Dϕ(0)0− ϕ(0) + ϕ(0) +Dϕ(0)0
= w̌(0)− ϕ̌(0) = 0

and hence 0 is a maximum point of w̌ − ϕ̌. Since w̌(x)− ϕ̌(x) ≤ 0, we have

w̌(x)− 1
2
hAx, xi− o(|x|2) ≤ 0 where A = D2ϕ(0).

Now the problem at this point is if o(|x|2) > 0, then considering w̌(x) ≤ 1
2
hAx, xi

would not suffice as an upper bound for w̌(x), since we have w̌(x) ≤ 1
2
hAx, xi+o(|x|2)

and o(|x|2) > 0. However, if instead of 1
2
hAx, xi, we consider 1

2
h(A+ ηI)x, xi, then

this would suffice as an upper bound since we will have

w̌(x) ≤ 1

2
hAx, xi+ o(|x|2) < 1

2
h(A+ ηI)x, xi if η > 0

Hence we arrive at the following generalization:

Theorem 3.21 Let u1, u2 ∈ USC(R2), ϕ ∈ C2(R2), and let

w(x) = u1(x1) + u2(x2) for x = (x1, x2) ∈ R4.
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If x̂ = (x̂1, x̂2) ∈ R4 is a local maximum of w−ϕ relative to R4, then for every ε > 0,
there exists X1, X2 ∈ S(2), such that

(Dx1ϕ(x̂), X1) ∈ J̄2,+u1(x̂1) and (Dx2ϕ(x̂),X2) ∈ J̄2,+u2(x̂2)

and the block diagonal matrix with entries satisfies

−( 1
γ
+ kAk) ≤

 X1 0

0 X2

 ≤ A+ γA2,

where A = D2ϕ(x̂) ∈ S(4).

Proof. We apply the previous theorem to the above derived w̌ as w, ϕ̌ asϕ with

upper bound 1
2
h(A+ ηI)x, xi for w̌, and note that

w̌(x) = w(x)− w(0)−Dϕ(0)x
= u1(x1) + u2(x2)− u1(0)− u2(0)−Dx1ϕ(0)x1 −Dx2ϕ(0)x2

= ǔ1(x1) + ǔ2(x2)

upon letting

ǔ1(x1) = u1(x1)− u1(0)−Dx1ϕ(0)x1 and

ǔ2(x2) = u2(x2)− u2(0)−Dx2ϕ(0)x2

and noting that ǔ1, ǔ2 ∈ USC(R2), we obtain

(0,X1) ∈ J̄2,+ǔ1(0) and (0, X2) ∈ J̄2,+ǔ2(0) and

−(1
γ
+ k(A+ ηI)k) ≤

 X1 0

0 X2

 ≤ (A+ ηI) + γ(A+ ηI)2.

Now, since for υ ∈ C2, we have

J̄2,+(τ − υ)(x) = ©¡p−Dυ(x), X −D2υ(x)
¢
: (p,X) ∈ J̄2,+τ (x)ª
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from Chapter 2, letting τ = ǔ1(x1) and υ = −u1(0)−Dx1ϕ(0)x1, p = 0, and X = X1,

we have

Dυ(0) = −Dx1ϕ(0) and D
2υ(0) = 0,

and hence

(Dx1ϕ(0), X1) ∈ J̄2,+(τ − υ)(x) = J̄2,+u1(0)

and similarly we have

(Dx2ϕ(0), X2) ∈ J̄2,+u2(0).

Since we had a shifted version of the former w and have carried out the local properties

of former w around x̂ to around 0, we have:

(Dx1ϕ(x̂), X1) ∈ J̄2,+u1(x̂1) and (Dx2ϕ(x̂), X2) ∈ J̄2,+u2(x̂2).

Upon letting η → 0, we furthermore obtain:

−( 1
γ
+ kAk) ≤

 X1 0

0 X2

 ≤ A+ γA2.

We can make one more generalization of this theorem:

Let us assume instead of u1, u2 ∈ USC(R2), we had u1, u2 ∈ USC(Ω), where
Ω was a locally compact subset of Rn. Then, we could restrict ui to a compact

neighborhood Ki of x̂i in Ω, and extend it to Rn by ui(xi) = −∞ for xi /∈ Ki. Then,

the new ui ∈ USC(Rn) since each Ki is compact. Given ui(x̂i) > −∞, we would also
have J̄2,+Ω ui(x̂i) = J̄

2,+
Rn ui(x̂i), and x̂ would still be a local maximum of w−ϕ relative

to R2n.

Hence we have the ’theorem on sums’ in the following generality:

Theorem 3.22 Let u1, u2 ∈ USC(Ω), where Ω is a locally compact subset of Rn,
ϕ be C2 in a neighborhood of Ω, Set

w(x) = u1(x1) + u2(x2) for x = (x1, x2) ∈ Ω× Ω.
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If x̂ = (x̂1, x̂2) ∈ Ω×Ω is a local maximum of w−ϕ relative to Ω×Ω, then for every
ε > 0, there exists X1, X2 ∈ S(2), such that

(Dx1ϕ(x̂), X1) ∈ J̄2,+Ω u1(x̂1) and (Dx2ϕ(x̂),X2) ∈ J̄2,+Ω u2(x̂2)

and the block diagonal matrix with entries Xi satisfies

−( 1
γ
+ kAk) ≤

 X1 0

0 X2

 ≤ A+ γA2,

where A = D2ϕ(x̂) ∈ S(4).

3.5. Notes

Sections 3.2 and 3.3 parallel a similar presentation in Chapter V of [F-S], and

Lemma 3.2 and Theorem 3.3 are also from the same chapter as. Change of variables

formula and related information can be found in [A-B]. Theorem 3.13 is presented

in the form it is given in M.G. Crandall’s lecture note ’Viscosity Solutions: A primer’

in [B-et.al.]. Example 3.16 was given as an exercise in the same lecture notes.
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4

EXISTENCE AND UNIQUENESS

OF SOLUTIONS

4.1. Comparison and Uniqueness (Second Order

Case)

In this section, we would like to prove a comparison result for viscosity solutions of

(DP). In other words, for a u ∈ USC(Ω̄) subsolution and v ∈ LSC(Ω̄) supersolution
of F = 0 in a bounded open subset Ω of Rn, if we know that u ≤ v on the boundary
of this subset Ω, we want to be able to deduce from this information that u ≤ v on
this subset Ω.

In order to be able to do that, we need to be able to compare values of u and v

inside Ω, and deduce that u− v ≤ 0 on this subset. However, it would suffice to show
that if x̂ were an interior maximum of u − v then that (u − v)(x̂) ≤ 0 holds, since

then (u− v)(x) ≤ (u− v)(x̂) ≤ 0 would hold.
We also know that since F (x, r, p,X) is proper it has a relation with u and v in a

way that if u ≤ v then F (x, u, p,X) ≤ F (x, v, p,X), so we would like to deduce at a
maximum x̂ that

F (x̂, u(x̂), p,X) ≤ F (x̂, v(x̂), p,X) (4.1)
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which would imply that u− v ≤ 0 if F is strictly nondecreasing in r. Moreover, we
know that u is a subsolution and v is a supersolution of F = 0, so that we have

F (x̂, u(x̂), p,X) ≤ 0 ≤ F (x̂, v(x̂), q, Y )

for every p, q,X, Y ; now, if furthermore X ≤ Y holds then we have

F (x̂, v(x̂), q, Y ) ≤ F (x̂, v(x̂), q,X).

Hence, these last two inequalities would provide us with

F (x̂, u(x̂), p,X) ≤ F (x̂, v(x̂), q,X) (4.2)

which could in return provide us with the inequality (4.1) we would like to have, if

we could make a bridge between them by knowing that some p = q and X ≤ Y such
that (p,X) ∈ J2,+u(x̂), and (q, Y ) ∈ J2,−v(x̂) exists.
Now, if we suppose for the moment that u, v ∈ C2 then we would have for w =

(u− v) ∈ C2and at a local maximum of w in Ω,

Dw(x̂) = 0 and D2w(x̂) ≤ 0

by first and second order tests for a maximum, and this would give us that

Du(x̂) = Dv(x̂) and D2u(x̂) ≤ D2v(x̂),

and since we also know that

J2,+u(x̂) ∩ J2,−u(x̂) = J2u(x̂) = ©(Du(x̂),D2u(x̂))
ª
,

and similarly for J2v(x̂), and we could have as our bridge

p = q = Du(x̂) = Dv(x̂) and X = D2u(x̂) and Y = D2v(x̂)

and plug in (4.2) to obtain (4.1) i.e.

F (x̂, u(x̂), Du(x̂), D2u(x̂)) ≤ F (x̂, v(x̂),Du(x̂), D2u(x̂))
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as desired.

However, since we do not have u, v ∈ C2, we do not know whether we have

Du,Dv,D2u,D2v etc. Hence we cannot directly make such a substitution.

Instead we have J2,+u, J2,−u, J2,+v, J2,−v etc. which can play a similar role, and

we can make use of these sets. Yet this time, at a maximum x̂ of u−v, it is possible that
these sets can be empty. Therefore at this point, we have two pieces of information

at hand:

One is that we need to approximate this maximum x̂ with points xα such that

we know that certain elements exist in their J2,+u, J2,−v(xα) etc. that we can use in

place of Du,Dv,D2u,D2v above for each xα. Then, any possible conclusion/control

we may derive about behavior of F at x̂, we need to derive it through its behavior at

these xα’s.

The other is that by the ’theorem on sum’, we know that J̄2,+u, J̄2,+(−v) etc. is
not empty at a local maximum x̂ of w−ϕ, (where w = u+(−v), noting−v ∈ USC(Ω̄),
and ϕ is some C2 function), and contains an element that we can control via Dϕ,

and D2ϕ of this C2 function ϕ.

Hence we would prefer an approximation of x̂ by some points xα, such that xα

is a maximum of some (w − ϕ)α function. Furthermore, in view of the ’theorem on

sum’, we would also desire ϕ to be such that Dx1ϕ(xα) = −Dx2ϕ(xα), (since then we

would have

(p,X) = (Dx1ϕ(xα), X1) ∈ J̄2,+u(xα),
(Dx2ϕ(xα), X2) ∈ J2,+(−v)(xα) = −J2,−v(xα) and hence

(q, Y ) = (−Dx2ϕ(xα),−X2) ∈ J2,−v(xα) so that
p = q would hold for this xα.)

A good candidate then for such a function ϕ would be ϕ(x, y) = 1
2
α |x− y|2, where

α > 0 is a parameter, and so we would have Dxϕ = α(x− y) and Dyϕ = −α(x− y).
Moreover, since as α→∞ the quantity −1

2
α |x− y|2 would penalize the difference
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between any fixed x and y more and more, and by maximizing the function

u(x)− v(y)− 1
2
α |x− y|2

over Ω̄ × Ω̄ and letting α → ∞, we would approximate maximizing the function
u(x)− v(x) over Ω̄. In other words, if xα were maximum points of

u(x)− v(y)− 1
2
α |x− y|2

for each α, and if xα → x̂ were to hold then x̂ would in return be maximum of

u(x)− v(x).
More formally speaking, this approximation process would be described mathe-

matically as follows:

Proposition 4.1 (Doubling the Variables) Let Ω be a subset of Rn, w ∈ USC(Ω),
ϕ ∈ LSC(Ω), ϕ ≥ 0, and let

Mα = sup
Ω
(w(x)− αϕ(x)) for α > 0.

Let Mα be finite for large α, and

{N = x ∈ Ω : ϕ(x) = 0} 6= ∅.

Let xα ∈ Ω be such that

lim
α→∞

(Mα − (w(xα)− αϕ(xα)) = 0.

Then the following holds:

1) lim
α→∞

αϕ(xα) = 0 and

2) If xα → x̂ ∈ Ω as α→∞ then ϕ(x̂) = 0 and

lim
α→∞

Mα = w(x̂) = sup
N
w(x).
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Proof. Now,

sup
N
w = sup

N
(w − αϕ) ≤ sup

Ω
(w − αϕ) =Mα ≤M1,

and Mα decreases as α → ∞ since ϕ ≥ 0. Hence limα→∞Mα exists, and is finite by

assumption. We will first prove 1): Let

δα =Mα − (w(xα)− αϕ(xα)

and limα→∞ δα = 0 since given. Now since,

Mα
2
= sup

Ω
(w(x)− α

2
ϕ(x))

≥ w(xα)− α
2
ϕ(xα) = w(xα)− αϕ(xα) + α

2
ϕ(xα)

= Mα − δα + α
2
ϕ(xα) this would imply

2(Mα
2
−Mα + δα) ≥ αϕ(xα),

and as α→∞, left hand side (LHS)→ 0, hence

lim
α→∞

αϕ(xα) = 0.

Next we will prove 2): Let αn be a sequence of α. Then, limn→∞ ϕ(xαn) = 0, and

assume xαn → x̂. Since ϕ ∈ LSC(Ω), we have

0 = lim sup
n→∞

ϕ(xαn) ≥ ϕ(x̂) ≥ 0, hence ϕ(x̂) = 0.

Also,

w(x̂) ≥ lim
n→∞

w(xαn)− 0 = lim
n→∞

(w(xαn)− αnϕ(xαn))
= lim

n→∞
Man ≥ sup

N
w ≥ w(x̂)

the first and the last inequalities follow from the fact that w ∈ USC(Ω), and x̂ ∈ N
respectively, hence we have the result

lim
α→∞

Mα = w(x̂) = sup
N
w(x).
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On Ω̄ × Ω̄, we can apply this lemma to w(x, y) = u(x) − v(y), since it is upper
semicontinuous, and to ϕ(x, y) = 1

2
|x− y|2, since ϕ is lower semicontinuous, ϕ(x, y) ≥

0, and N = {(x, y) : ϕ(x, y) = 0} 6= ∅. When we let

Mα = sup
Ω̄×Ω̄

(w(x, y)− αϕ(x, y))

since the supremum is taken over an upper semicontinuous function over a compact

region, Mα is finite and is achieved on Ω̄ × Ω̄. In other words we have for each α,
(xα, yα) such that

Mα = w(xα, yα)− αϕ(xα, yα) holds.

But then, since these pairs satisfy the condition

lim
α→∞

(Mα − (w(xα, yα)− αϕ(xα, yα)) = 0

immediately, we will choose and consider these (xα, yα). They will consist the sequence

of points we want to approximate our x̂ with.

At this point we need to note one more thing. Since we want to show that u ≤ v
on Ω, we can assume on the contrary that there is a z ∈ Ω such that

u(z) > v(z)

and try to contradict this later on. If we make this assumption then this will imply

that

Mα ≥ u(z)− v(z) = δ > 0 for α > 0.
Now, if (xα, yα) has a limit point x̂, then since as α→∞,

αϕ(xα, yα)→ 0,

and this limit point has to be of the form (x̂, x̂). If x̂ ∈ ∂Ω, then since u ≤ v on ∂Ω,
we would have

lim sup
α→∞

Mα = lim sup
α→∞

(w(xα, yα)− αϕ(xα, yα))
≤ u(x̂)− v(x̂) ≤ 0.
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In view of our contrary assumption, we had Mα ≥ δ > 0, so we cannot have such a
limit point on ∂(Ω×Ω). Hence, for large α we need to have (xα, yα) ∈ Ω×Ω.
Now, we can apply the ’theorem on sums’ to each (xα, yα) with the corresponding

functions they maximize. Let

u1 = u, u2 = −v, w(x, y) = u(x)− v(y), ϕ(x, y) = α

2
|x− y|2 .

Now, (xα, yα) ∈ Ω×Ω is a local maximum of w−ϕ relative to Ω×Ω. Then, we have

Dxϕ(xα, yα) = −Dyϕ(xα, yα) = α(xα − yα), and

A = α

 I −I
−I I

 , A2 = 2αA, kAk = 2α,
and we know that for every ε > 0 there exist Xα,−Yα ∈ S(N) such that

(α(xα − yα),Xα) ∈ J̄2,+Ω u(xα) and

(−α(xα − yα),−Yα) ∈ J̄2,+Ω (−v)(yα) = −J̄2,−Ω v(yα) implying

(α(xα − yα), Yα) ∈ J̄2,−Ω v(yα), such that

−(1
γ
+ 2α)

 I 0

0 I

 ≤
 Xα 0

0 −Yα

 ≤ α(1 + 2γα)
 I −I
−I I

 holds.

If we let γ = 1
α
, then we obtain

−3α
 I 0

0 I

 ≤
 Xα 0

0 −Yα

 ≤ 3α
 I −I
−I I

 .
Since then* Xα 0

0 −Yα

 ξ

ξ

 ,
 ξ

ξ

+ ≤ 3α

* I −I
−I I

 ξ

ξ

 ,
 ξ

ξ

+
= 0,

we have hXαξ, ξi− hYαξ, ξi ≤ 0, which gives us that

Xα ≤ Yα.
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Now, (α(xα − yα), Xα) ∈ J̄2,+Ω u(xα) implies that there exists a sequence

(α(xnα − ynα), Xn
α) ∈ J2,+Ω u(xnα) such that

xnα → xα, u(xnα)→ u(xα), α(xnα − ynα)→ α(xα − yα), Xn
α → X,

similarly for (α(xα − yα), Yα) ∈ J̄2,−Ω v(yα).

Since u is a subsolution, we have

F (xnα, u(x
n
α),α(x

n
α − ynα),Xn

α) ≤ 0 for ever n

and since F is continuous,

F (xα, u(xα),α(xα − yα), Xα) ≤ 0.

Similarly, since v is a supersolution we have

0 ≤ F (yα, v(yα),α(xα − yα), Yα).

Hence we arrive at

F (xα, u(xα),α(xα − yα), Xα) ≤ F (yα, v(yα),α(xα − yα), Yα).

In order to be able to conclude more information from this inequality we need to

impose on F certain structure conditions. If we can control F as x changes via a

modulus of continuity function then this would lead us to the following:

F (xα, u(xα),α(xα − yα), Xα) ≤ F (yα, v(yα),α(xα − yα), Yα) and

F (yα, u(yα),α(xα − yα), Yα)− ω((α |x− y|+ 1) |x− y|)
≤ F (xα, u(xα),α(xα − yα),Xα)
≤ F (yα, v(yα),α(xα − yα), Yα),

hence

F (yα, u(yα),α(xα − yα), Yα)− F (yα, v(yα),α(xα − yα), Yα)
≤ ω((α |x− y|+ 1) |x− y|)
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Then if furthermore, F is strictly nondecreasing in r this would lead us to

γ (u(yα)− v(yα)) ≤ F (yα, u(yα),α(xα − yα), Yα)− F (yα, v(yα),α(xα − yα), Yα)
≤ ω((α |x− y|+ 1) |x− y|)

in the limit giving us u(x̂)− v(ŷ) ≤ 0. But this would contradict to the fact that

u(x̂)− v(ŷ) ≥ u(x̂)− v(ŷ)− α
2
|x̂− ŷ|2 =Mα ≥ u(z)− v(z) = δ > 0

Hence it would not be possible to have a z ∈ Ω such that u(z) > v(z). Therefore, we
have the following:

Theorem 4.2 Consider the (DP) stated above. Assume, F is proper and satisfies

the two structure conditions below. Let u ∈ USC(Ω̄), and v ∈ LSC(Ω̄) be subsolution
and supersolution of (DP) respectively. Then u ≤ v in Ω.
The two required structure conditions are as follows:

1) there is a function ω : [0,∞]→ [0,∞] such that ω(0+) = 0 and

F (yα, u(yα),α(xα − yα), Yα)− ω((α |x− y|+ 1) |x− y|)
≤ F (xα, u(xα),α(xα − yα),Xα) holds and

2) there is a γ > 0 such that

γ (u(yα)− v(yα))
≤ F (yα, u(yα),α(xα − yα), Yα)− F (yα, v(yα),α(xα − yα), Yα) holds.

Once comparison holds, we would have uniqueness automatically.

Theorem 4.3 Assume the conditions for comparison hold. Then if u and v are both

viscosity solutions of the (DP), then u = v.

Proof. Since comparison holds and u is a subsolution and v is a supersolution,

we have u ≤ v. Also since v is a subsolution and u is a supersolution, we have u ≤ v.
Hence u = v on Ω
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4.1.1. First order case

This time we would like to show that comparison holds for the Dirichlet Problem

in the first order case. The problem is as follows:

H(x, u,Du) = 0 in Ω, and u = 0 on ∂Ω. (DP-2)

where Ω will be bounded subset of Rn. We want to show that if u is a subsolution

of (DP-2), and v is a supersolution of (DP-2) then u ≤ v. As before since u and

v are USC(Ω̄), LSC(Ω̄) respectively, we are dealing with functions that might not

have derivatives at certain points. Therefore, in the case that we want to make use

of maximum principles at a maximum x̂ of u− v with the fact that u is a subsolution
and v is a supersolution of H(x, r, p) in particular at x̂, in order to be able to conclude

that u(x̂)−v(x̂) ≤ 0, (and as a result to conclude that u ≤ v on Ω), we cannot directly
employ Du or Dv since they might not exist at this maximum x̂, just as we have seen

in the second order case. Hence, we once again employ the technique of doubling

the variables to be able to make use of smooth ”test functions” on which we can

transfer the derivatives; however, this time with a slightly different perspective. This

technique will allow us to use the information of u being a subsolution and v being

a supersolution to evaluate H(x, r, p) at maxima of some approximating functions,

from which we could derive a general result for u and v on all of Ω in the limit. Once

again our main tool will be the technique of ’doubling variables’.

Let u be a subsolution, and v be a supersolution of (DP). Let us consider the

functions given by

wε(x, y) = u(x)− v(y)− 1

2ε
|x− y|2 .

As we have seen before wε attains its maximum at some (x̂ε, ŷε), and since Ω̄ × Ω̄
is compact these maxima converge to a point of the form (x̂, x̂). If this point is on

the boundary of Ω, then we will automatically be done since this would imply that

lim supε→0wε(x̂ε, ŷε) ≤ 0. In the case that these maxima converge to a point in Ω,
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then for small ε, (x̂ε, ŷε) has to lie in Ω, hence we can evaluate H(x, r, p) at these

points upon the following observation.

Consider the map x→ u(x)−ϕ(x, ŷε), where ϕ(x, y) = 1
2ε
|x− y|2 is a C2 function,

then x̂ε is a maximum of this map. Then from the definition of u being a subsolution

we have

H(x̂ε, u(x̂ε), Dxϕ(x̂ε, ŷε)) ≤ 0.

Similarly, consider the map y → −v(y)−ϕ(x̂ε, y), then ŷε is a maximum of this map,
hence is a minimum of y → v(y) − (−ϕ(x̂ε, y)). Then from the definition of v being

a supersolution we have

H(ŷε, v(ŷε),−Dyϕ(x̂ε, ŷε)) ≥ 0.

Hence we arrive at the following,

H(x̂ε, u(x̂ε), Dxϕ(x̂ε, ŷε))−H(ŷε, v(ŷε),−Dyϕ(x̂ε, ŷε)) ≤ 0 at (x̂ε, ŷε).

From this point on we would like to deduce that u ≤ v. Our question will be as

follows: Under what assumptions we can deduce this result.

Let H(x, u,Du) = u +H(Du), then the above inequality would reduce to

u(x̂ε) +H(Dxϕ(x̂ε, ŷε))− v(ŷε)−H(−Dyϕ(x̂ε, ŷε)) ≤ 0

u(x̂ε) +H(Dxϕ(x̂ε, ŷε))− v(ŷε)−H(Dxϕ(x̂ε, ŷε)) ≤ 0

since Dxϕ = −Dyϕ. Then we would have

u(x̂ε)− v(ŷε) ≤ 0

and since

lim supε→0wε(x̂ε, ŷε) ≤ lim supε→0(u(x̂ε)− v(ŷε)) ≤ 0 and
u(x)− v(x) = wε(x, x) ≤ wε(x̂ε, ŷε) holds

we have u(x)− v(x) ≤ lim supε→0wε(x̂ε, ŷε) ≤ 0, hence
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in the limit this would tell us that u ≤ v.
Suppose next H(x, u,Du) = u+H(Du)− f(x), then similarly we would have

u(x̂ε)− v(ŷε) ≤ f(x̂ε)− f(ŷε)

and in the case that f was uniformly continuous, this would give us

u(x)− v(x) ≤ lim supε→0wε(x̂ε, ŷε) ≤ lim supε→0(u(x̂ε)− v(ŷε))
≤ lim supε→0 f(x̂ε)− f(ŷε) ≤ 0.

Suppose this time H were also to depend on x. Then, we would need a modulus

of continuity estimate on H in order to be able to have control on it as x changes.

Assume therefore that

|H(x, r, p)−H(y, r, p)| ≤ ω(|x− y|+ p |x− y|)

where ω is a function such that ω(0+) = 0, then we would have

H(x̂ε, u(x̂ε),Dxϕ(x̂ε, ŷε))−H(ŷε, v(ŷε),−Dyϕ(x̂ε, ŷε)) ≤ 0 implying

H(x̂ε, u(x̂ε), Dxϕ(x̂ε, ŷε))−H(ŷε, u(x̂ε), Dxϕ(x̂ε, ŷε))
+H(ŷε, u(x̂ε), Dxϕ(x̂ε, ŷε))−H(ŷε, v(ŷε),−Dyϕ(x̂ε, ŷε))

≤ 0 which would in turn imply

H(ŷε, u(x̂ε), Dxϕ(x̂ε, ŷε))−H(ŷε, v(ŷε),−Dyϕ(x̂ε, ŷε)) ≤ ω(|x− y|+ p |x− y|)

and since Dxϕ = −Dyϕ this would give us

H(ŷε, u(x̂ε), Dxϕ(x̂ε, ŷε)) ≤ H(ŷε, v(ŷε),−Dxϕ(x̂ε, ŷε)) + ω(|x− y|+ p |x− y|).

Then we would requireH to be ’strictly nondecreasing’ in r, so that this last inequality

would imply

u(x̂ε) ≤ v(ŷε)
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and in the limit we would obtain u ≤ v. We would formulate ’strictly nondecreasing’
as follows: if r ≥ s, then there exists γ > 0 such that H(x, r, p)−H(x, s, p) ≥ γ(r−s).
Since comparison would hold under these assumptions for the corresponding type

of F , we would also have uniqueness as a result.

Theorem 4.4 Assume the conditions for comparison hold. If u and v are both vis-

cosity solutions of the (DP-2), then u = v.

Proof. Since comparison holds and u is a subsolution and v is a supersolution

we have u ≤ v. Also since v is a subsolution and u is a supersolution we have u ≤ v.
Hence u = v on Ω

Before concluding this chapter we would like to show that the method for first

order case falls short in the second order case.

Example 4.5 Consider (DP-2) for F (x, r, p,X) = r+G(p,X), assume G is contin-

uous and degenerate elliptic. Let u ∈ USC(Ω̄) and v ∈ LSC(Ω̄) be subsolution and
supersolution of (DP-2) respectively. We will apply the method of first order case.

Let us consider maximum of

u(x)− v(y)− 1

2ε
|x− y|2 over Ω× Ω and we will let ε→ 0.

Then, we again consider, when ε, is small an interior maximum (x̂, ŷ) of this function,

and following the method we arrive at

u(x̂) +G(
x̂− ŷ
ε
,
1

ε
I) ≤ v(ŷ) +G( x̂− ŷ

ε
,−1
ε
I).

and cannot go any further since I ≥ −I.

4.2. Existence (Second Order Case)

In this section, we will consider the existence of a solution for the Dirichlet Problem

(DP):

F (x, u,Du,D2u) = 0 in Ω, and u = 0 on ∂Ω. (DP)
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where Ω will be a bounded subset of Rn. Among several possible methods, the one

we will be employing here will be a variant of the idea of Perron’s method for the

linear problem, hence will also be called Perron’s method. Classical implementation

of Perron’s Method for linear problems can be found in [J].

Much of the work that would be needed to show existence via this way has been

actually accomplished in the previous chapter and section for Perron’s method pre-

supposes the existence of comparison for the (DP) at hand. Let us try to see how

this works.

In view of the comparison result of the previous section, we can say that if com-

parison holds for (DP), and if the (DP) has a solution, then this solution has to be

the largest subsolution. For if w is the solution of (DP), then w is both a subsolution

and a supersolution. Let u ≥ w be a subsolution of (DP), but then since w is a

supersolution , by comparison we have, w ≥ u. Hence we would have w = u, which
then tells us that w has to be the largest subsolution.

Within this light, as a first step to proving this existence scheme we will show that

a maximal subsolution exists; afterwards in our second step we will show that it is in

fact a subsolution which is also the solution of (DP). As a matter of fact, this second

step actually asserts that a maximal subsolution cannot afford to be not a solution. If

w is the maximal subsolution that we obtain in step 1, and if it is not a solution, then

at some point x̂ it has to fail to be a supersolution. What we have known so far is that

w is USC(Ω̄), however, in order to be able to consider it as a supersolution it needs

to be LSC(Ω̄). Therefore, in our second step, to secure lower semicontinuity, we will

look at w∗, lower semicontinuous envelope of w, i.e. the largest lower semicontinuous

function that is less then or equal to w, and we will try to get a contradiction to

maximality of w. The best way of doing this will be constructing around x̂ a function

larger then w, which will also be a subsolution of (DP). Hence the second step of our

proof will be carrying out this construction. Now let us proceed with our first step.
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4.2.1. Step 1: Construction of a maximal subsolution

Let us consider

w(x) = sup {u(x) : u is a subsolution of F = 0 in Ω.} ,

and denote {u(x) : u is a subsolution of F = 0 in Ω.} by K, and assume that K is

nonempty.

For upper semicontinuity to hold, we will consider w∗, upper semicontinuous en-

velope of w, i.e. the smallest upper semicontinuous function such that w ≤ w∗ holds.
We will also assume that w∗(x) < ∞. We want to show that w∗ is a subsolution of
F = 0 in Ω. In other words we want to show that

for (p,X) ∈ J2,+Ω w∗(z), F (z, w∗(z), p,X) ≤ 0 for z in Ω.

If we can find a sequence of (yn, un(yn), pn,Xn)→ (z, w∗(z), p,X) such that (pn, Xn) ∈
J2,+Ω un(yn), and if furthermore un are subsolutions of F = 0 in Ω, then we will know

that F (yn, un(yn), pn, Xn) ≤ 0 and since F is continuous, we can pass to the limit to
conclude that F (z, w∗(z), p,X) ≤ 0. The following lemma will provide us with this
sequence.

Lemma 4.6 Let Ω ⊂ Rn be locally compact, u ∈ USC(Ω), z ∈ Ω, and (p,X) ∈
J2,+Ω u(z). Suppose un is a sequence of USC functions on Ω such that

i) there exists xn ∈ Ω such that (xn, un(xn))→ (z, u(z)) and

ii) if zn ∈ Ω and zn → x ∈ Ω, then lim supn→∞ un(zn) ≤ u(x).
Then, there exists

x̂n ∈ Ω, (pn, Xn) ∈ J2,+Ω un(x̂n) such that

(x̂n, un(x̂n), pn,Xn) → (z, u(z), p,X).

Proof. Since the following analysis is local, without loss of generality we will

take z = 0, and carry it around this point. First, we will find a candidate sequence
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of x̂n, and show that x̂n → 0. Second, we will show that un(x̂n) → u(0). Third,

we will find (pn, Xn) such that (pn,Xn) ∈ J2,+Ω un(x̂n), and finally we will show that

(pn, Xn)→ (p,X)

1) Since (p,X) ∈ J2,+Ω u(0), we have

u(x) ≤ u(0) + hp, xi+ 1
2
hXx, xi+ o(|x|2) for x ∈ Ω.

Let c(x) = o(|x|2) term. Then, given any δ > 0, there is an r > 0 such that

|c(x)| ≤ δ |x|2 for x ∈ Ω and |x| ≤ r. Let Nr = {x ∈ Ω : |x| ≤ r} . Nr is compact.
Then, we have

u(x) ≤ u(0) + hp, xi+ 1
2
hXx, xi+ δ |x|2 for x ∈ Nr

Let

ϕ(x) = hp, xi+ 1
2
hXx, xi+ 2δ |x|2 .

Then, ϕ ∈ C2(Ω),

ϕ(0) = 0, Dϕ(0) = p, D2ϕ(0) = X + 4δI

and

u(x)− ϕ(x) ≤ u(0)− δ |x|2 = u(0)− ϕ(0)− δ |x|2 for x ∈ Nr.

Define h : (0,∞) → (0,∞) as h(a) = δ |a|2. Then, h is nondecreasing and h(s) =
δs2 ≤ δ |x|2 for s ≤ |x| ≤ r. So we have

u(x)− ϕ(x) ≤ u(0)− ϕ(0)− h(s) for s ≤ |x| ≤ r

Hence u− ϕ has a strict maximum at x = 0.

(Recall from Chapter 2 that h, within this respect, is called the strictness of the

maximum.)

Now, assumption i) says that there exists a sequence of xn ∈ Ω such that

(xn, un(xn))→ (0, u(0)).
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Now, since each un is upper semicontinuous, and ϕ ∈ C2, (un−ϕ) ∈ USC(Ω), hence
attains its maximum on Nr. Let x̂n ∈ Nr, be a maximum point of un(x)− ϕ(x) over
Nr. Then

un(x)− ϕ(x) ≤ un(x̂n)− ϕ(x̂n) and hence,
un(x) ≤ un(x̂n) + ϕ(x)− ϕ(x̂n) for x ∈ Nr.

SinceNr is compact, x̂n ∈ Nr, it has a convergent subsequence, say x̂nj , that converges
to some y ∈ Nr as j →∞. Then, in particular for x = xnj , from the last inequality

we will have

unj (xnj) ≤ unj(x̂nj ) + ϕ(xnj )− ϕ(x̂nj).

Taking lim inf as j →∞, we have

u(0) ≤ (lim inf unj (x̂nj)) + ϕ(0)− ϕ(y)
= (lim inf unj (x̂nj))− ϕ(y). (4.3)

By assumption ii), however we have

lim inf unj (x̂nj ) ≤ lim supunj(x̂nj) ≤ u(y).

Hence,

u(0) ≤ u(y)− ϕ(y) ≤ u(0)− δ |y|2

The last inequality holds since y ∈ Nr, and we had u(x) − ϕ(x) ≤ u(0) − δ |x|2 for
x ∈ Nr before. Hence

u(0) ≤ u(0)− δ |y|2 give us that y = 0, and therefore x̂nj → 0.

But then every subsequence of x̂n has a convergent subsequence that converges to

y = 0. Hence x̂n converges to 0.

2) But then by (4.3) which gives us that

u(0) ≤ lim inf un(x̂n)
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and by ii) which gives us that

lim sup
n→∞

un(x̂n) ≤ u(0),

we have

u(0) = lim
n→∞

un(x̂n).

3) Since x̂n is a maximum of un(x)− ϕ(x), we know that

(Dϕ(x̂n), D
2ϕ(x̂n)) ∈ J2,+Ω un(x̂n).

Hence

(p+ 4δx̂n +Xx̂n, X + 4δI) ∈ J2,+Ω un(x̂n).

4) As x̂n → 0, Dϕ(x̂n)→ Dϕ(0) = p, D2ϕ(x̂n)→ D2ϕ(0) = X + 4δI.

As δ → 0, X + 4δI → X.

We can also interpret this lemma as follows: If z is a strict maximum of u− ϕδ,
and un, (p,X) is as given, and (Dϕδ(z), D

2ϕδ(z))→ (p,X) as δ → 0, then we have a

corresponding sequence of x̂n of maxima of un−ϕδ such that x̂n → z, un(x̂n)→ u(z),

(Dϕδ(x̂n),D
2ϕδ(x̂n))→ (p,X) as n→∞ and δ → 0.

Now that we have the desired sequence, we can proceed in achieving the aim of

our first step:

Lemma 4.7 Let Ω ⊂ Rn be locally compact, F continuous and proper. Let

w(x) = sup {u(x) : u is a viscosity subsolution of F = 0 in Ω.} ,

and denote {u(x) : u is a viscosity subsolution of F = 0 in Ω.} byK, and assume that
this set is nonempty and also that w∗(x) <∞ for x ∈ Ω. Then w∗ is a viscosity sub-
solution of F = 0 in Ω.

Proof. Let z ∈ Ω and (p,X) ∈ J2,+Ω w∗(z). Now, by construction of w∗, there

exists xn ∈ Ω, and w(xn) such that w(xn)→ w∗(z) as xn → z. Furthermore, since w

is supremum of

{u(x) : u is a viscosity subsolution of F = 0 in Ω.} ,
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we have for any y ∈ Ω a sequence of uα(y) such that uα(y) → w(y).In particular

for each xn, we have a sequence of uα(xn)→ w(xn) where choice of the sequence uα

depends on xn. Thus, we can form a sequence un(xn) such that un(xn)→ w∗(z).

Then, for this un, if zn ∈ Ω such that zn → x, we have

lim sup
n→∞

un(zn) ≤ w∗(x)

by definition of w∗. Hence we satisfy the assumptions of the Lemma 4.6 with u = w∗.

Then Lemma 4.6 guarantees us the existence of a sequence x̂n ∈ Ω, and (pn,Xn) ∈
J2,+Ω un(x̂n) such that

(x̂n, un(x̂n), pn, Xn)→ (z,w∗(z), p,X).

Now, since (pn, Xn) ∈ J2,+Ω un(x̂n), and un are subsolutions we have for each un,

F (x̂n, un(x̂n), pn, Xn) ≤ 0inΩ.

Since F is continuous, as n→∞, in the limit we have

F (z,w∗(z), p,X) ≤ 0.

Since this holds for any z ∈ Ω, w∗ is a subsolution of F = 0 in Ω.
Next, we will proceed to our second step in providing an existence scheme to above

(DP).

4.2.2. Step 2: Perron’s method and existence

Lemma 4.8 Let Ω be open, u be a subsolution of F = 0 in Ω. If u∗ is not a supersolu-

tion at some x̂, i.e. if there exists (p,X) ∈ J2,−Ω u∗(x̂), for which F (x̂, u∗(x̂), p,X) < 0,

then for any small κ > 0, there is a subsolution Uκ of F = 0 in Ω, such that

Uκ(x) ≥ u(x) and supΩ(Uκ − u) > 0
Uκ(x) = u(x) for x ∈ Ω and |x− x̂| ≥ κ.
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Proof. Without loss of generality we will assume that 0 ∈ Ω and x̂ = 0.
Assume u∗ is not a supersolution at x = 0, i.e. assume that there exists (p,X) ∈

J2,−Ω u∗(0), for which F (0, u∗(0), p,X) < 0. Then since (p,X) ∈ J2,−Ω u∗(0) we have

u∗(x) ≥ u∗(0) + hp, xi+ 1
2
hXx, xi+ o(|x|2) for x ∈ Ω.

Let c(x) = o(|x|2) term. Then, given any γ > 0, there is an r > 0 such that

|c(x)| ≤ γ |x|2 for x ∈ Ω and |x| ≤ r. Then, we have

u∗(x) ≥ u∗(0) + hp, xi+ 1
2
hXx, xi− γ |x|2 for |x| ≤ r

Let ϕγ(x) = u∗(0) + hp, xi+ 1
2
hXx, xi− 2γ |x|2. Then, ϕγ ∈ C2(Ω),

ϕγ(0) = u∗(0), Dϕγ(x) = p+Xx+ 4γx, D
2ϕγ(x) = X + 4γI

and

u∗(x) ≥ ϕγ(x) + γ |x|2 for |x| ≤ r. (4.5)

Define h : (0,∞) → (0,∞) as h(a) = δ |a|2. Then, h is nondecreasing and h(s) =
δs2 ≤ δ |x|2 for s ≤ |x| ≤ r. So we have

u∗(x) ≥ ϕγ(x) + h(s) for s ≤ |x| ≤ r.

Then

u∗(x)− ϕγ(x) ≥ u∗(0)− ϕγ(0) + h(s) for s ≤ |x| ≤ r.

Hence u− ϕγ has a strict minimum at x = 0.

(Recall from Chapter 2 that h, within this respect, is called the strictness of the

minimum.)

Let ϕδ,γ(x) = ϕγ(x) + δ. Then,

Dϕδ,γ(x) = Dϕγ(x), D
2ϕδ,γ(x) = D

2ϕγ(x).

Since F (0, u∗(0), p,X) < 0 and F is continuous there are neighborhoods N1, N2, N3,

of 0, p, and X respectively on which

F (x, u∗(x), p0, X 0) < 0 for x ∈ N1, p0 ∈ N2,X 0 ∈ N3.
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Choosing γ small enough so that {x : |x| < r} ⊂ N1, then by (4.5)

F (x,ϕγ(x), p,X) ≤ F (x, u∗(x), p,X) < 0 for |x| < r.

Choosing γ further smaller if necessary so that Dϕγ(x) ∈ N2, D2ϕγ(x) ∈ N3, then
again by continuity of F we have

F (x,ϕγ(x), Dϕγ(x), D
2ϕγ(x)) < 0 for |x| < r.

Since F is continuous, this time there is a neighborhood N4 of ϕγ(x), such that

F (x, β, Dϕγ(x),D
2ϕγ(x)) for β ∈ N4 and |x| < r.

Hence if we choose δ small enough so that ϕδ,γ(x) = (ϕγ(x) + δ) ∈ N4 for |x| < r,

then

F (x,ϕδ,γ(x),Dϕγ(x),D
2ϕγ(x)) < 0 for |x| < r.

Hence

F (x,ϕδ,γ(x), Dϕδ,γ(x),D
2ϕδ,γ(x)) < 0 for |x| < r.

This last inequality tells us that ϕδ,γ is a classical subsolution of F ≤ 0 in the

Br = {x : |x| < r} for small γ, r, δ > 0.
Now, since we had

u∗(x) ≥ ϕγ(x) + h(s) for s ≤ |x| ≤ r

for s = r
2
, we will have

u∗(x) ≥ ϕγ(x) + h(
r

2
) for

r

2
≤ |x| ≤ r.

If δ < 1
2
h( r

2
) = r2

8
γ, then for r

2
≤ |x| ≤ r, we will have

u∗(x) ≥ ϕγ(x) + h(
r

2
) > ϕγ(x) + δ = ϕδ,γ .

Hence,

u∗(x) > ϕδ,γ(x) for
r

2
≤ |x| ≤ r.
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Define

U(x) =

 max(u(x),ϕδ,γ(x)) if |x| < r
u(x) otherwise

.

By the previous lemma, then U(x) is a subsolution of F = 0 in Ω.

By definition of u∗, we have a sequence (xn, u(xn)) that converges to (0, u∗(0)).

Then,

limn→∞(U(xn)− u(xn)) = ϕδ,γ(0)− u∗(0) = u∗(0) + δ − u∗(0) > 0.

Hence, in every neighborhood of 0 there are points such that U(x) > u(x).

So, given any κ > 0, if we choose γ, r small enough so that r ≤ κ, we have

Uκ(x) ≥ u(x) and supΩ(Uκ − u) > 0,
Uκ(x) = u(x) for x ∈ Ω and |x| ≥ κ.

Hence we have seen that if for a subsolution u, u∗ fails to be a supersolution at

some point, then u cannot be the maximal subsolution. Now we are ready to state

and prove the existence scheme for the (DP).

Theorem 4.9 Let comparison hold for (DP). Suppose also that there is a subsolution

u and a supersolution v of (DP) that agree on the boundary, i.e. u and v satisfy the

boundary condition u∗(x) = v∗(x) = 0 for x ∈ ∂Ω. Then

W (x) = sup {w(x) : u ≤ w ≤ v and w is a subsolution of (DP)}

is a solution of (DP).

Proof. Let us note first that u∗ ≤W∗ ≤W ≤W ∗ ≤ v∗. Hence, on the boundary
we have W∗ = W = W ∗ = 0. Second, by Lemma 4.7, W ∗ is a subsolution of (DP),

and therefore by comparison we have W ∗ ≤ v. Hence, since W is the supremum over

a set that contains W ∗, we have the the other inequality W ≥ W ∗, so W = W ∗.

Thus, W is a subsolution.
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Third, let us assume that W∗ fails to be a supersolution at some point x̂ ∈ Ω.
Then by Lemma 4.8, we have functions Wκ with the properties defined in the lemma.

For sufficiently small κ, on the boundary, we have Wκ = W = 0. Hence Wκ is a

subsolution of (DP). Then by comparison, Wκ ≤ v. Furthermore, u ≤ W ≤ Wκ,

hence u ≤ Wκ ≤ v. Since W is the maximal subsolution between u and v, we have

Wκ ≤ W , which contradicts to the fact that supΩ(Wκ − W ) > 0. Hence W∗ is a

supersolution of the (DP). Then by comparison once again, we have W ≤ W∗. but

by definition W∗ ≤W . Hence, we have W = W∗.

Thus, we haveW ∗ = W =W∗. Hence by being both upper and lower semicontin-

uous W is continuous, and by being both a subsolution and a supersolution of (DP),

W is a solution of (DP).

4.2.3. First order case

In this section, we will give an existence scheme for the (DP-2) in the first order

case. The method we will be employing will make use of addition of a regularizing

term to the original equation and afterwards passing to limit via the solutions of

these approximate equations and showing that the limiting equation of the solutions

of the approximate equations is a solution of the original equation under certain

assumptions. This method will also account for the origin of the term ’viscosity’

in the theory, since the added regularizing term ε 4 u is called a viscosity term in

physical applications, and hence that this method is called the method of ’vanishing

viscosity’. Hence, we will be seeing that the method of ’vanishing viscosity’ is one of

the ways of producing viscosity solutions among several other methods.

Theorem 4.10 Let ε > 0 and let Fε(x, r, p) be a family of continuous functions such

that Fε(x, r, p) converges uniformly on compact subsets of Ω×R×Rn to some function
F (x, r, p) as ε→ 0; and suppose uε ∈ C2(Ω) is a solution of

−ε4 u+ Fε(x, uε,Duε) = 0 in Ω, (4.6)
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and uε converge uniformly on compact subsets of Ω to some u ∈ C(Ω). Then u is a
viscosity solution of F (x, u,Du) = 0 in Ω.

Proof. We will first use test functions from C2(Ω). Let φ ∈ C2(Ω),we will show
first that u is a subsolution. Assume u− φ has a local maximum at x̂ ∈ Ω. We then
have to to show that

F (x̂, u(x̂),Dφ(x̂) ≤ 0.

Then, u− (φ+ δ |x− x̂|2) has a strict local maximum at x̂. Consider the closed ball

B = B(x̂; r). Then for sufficiently small r > 0, max∂B(u−(φ+δ |x− x̂|2)) < (u−(φ+
δ |x− x̂|2))(x̂). Then, since uε → u uniformly on B, max∂B(uε − (φ + δ |x− x̂|2)) <
(uε − (φ + δ |x− x̂|2))(x̂) for ε small. As a result uε − (φ + δ |x− x̂|2) has a local
maximum at some point xε in the interior of B, and by choosing a sequence of r

converging to 0, xε → x̂, as ε→ 0. Then at x = xε,

Duε(xε) = D(φ+ δ |x− x̂|2)(xε) and
4uε(xε) ≤ 4(φ+ δ |x− x̂|2)(xε). (4.7)

Then from (4.6), we have

Fε(xε, u
ε(xε), D(φ+ δ |x− x̂|2)(xε)) ≤ ε4 (φ+ δ |x− x̂|2)(xε) (4.8)

Since, as ε→ 0,

uε(xε) → u(x̂),

D(φ+ δ |x− x̂|2)(xε) → D(φ+ δ |x− x̂|2)(x̂) = Dφ(x̂), and
ε4 (φ+ δ |x− x̂|2)(xε) → 0

and F is continuous, we have

F (x̂, u(x̂),Dφ(x̂) ≤ 0. (4.9)
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However, we have to show this for test functions from C1(Ω). Let φ ∈ C1(Ω), and
assume u− φ has a local maximum at x̂ ∈ Ω. We then have to to show that

F (x̂, u(x̂),Dφ(x̂) ≤ 0.

Let φn ∈ C2(Ω) such that φn → φ in C1(Ω). Consider φn + δ |x− x̂|2. For n large
enough, u−(φn+δ |x− x̂|2) has a local maximum at some xn ∈ Ω and xn → x̂. Then

as shown above, for each n we have,

F (xn, u(xn), D +D(φn + δ |x− x̂|2)(xn)) ≤ 0. (4.10)

Since, as n→∞,

u(xn) → u(x̂), and

D(φn + δ |x− x̂|2)(xn) → Dφ(x̂) +D(δ |x− x̂|2)(x̂) = Dφ(x̂)

and F is continuous, we have,

F (x̂, u(x̂),Dφ(x̂) ≤ 0. (4.9)

Hence u is a subsolution.

In the case that φ ∈ C1(Ω), and u−φ has a local minimum at x̂ ∈ Ω, we consider
φn − δ |x− x̂|2, and we have the reversed inequalities in (4.7)-(4.10), resulting in a
reversed inequality in (4.9). Hence we have that u is a supersolution.

Therefore u is a solution of F (x, u,Du) = 0 in Ω.
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