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ABSTRACT

This thesis is composed of two different parts, aiming to predict and understand
the protein structure from their contact maps. In the first part, residue contacts of a
protein are predicted using neural networks in order to obtain structural constraints for
the three-dimensional structure. Physical and chemical properties of residues and their
primary sequence neighbors are used for the prediction. Our predictor can predict 11%
of the contacting residuees with a false positive ratio of 2% and it performs 7 times
better than a random predictor.

In the second part, a new method is developed to model a protein as a network of
its interacting residues. Small-world network concept is utilized to interpret the
parameters of residue networks. It is concluded that proteins are neither regular nor
randomly packed but between these two extremes. Such a structure gives the proteins
the ability for fast information relay between their residues. They can undergo necessary
conformational changes for their functions on very short time scales. Also, residuee
networks are shown to obey a truncated power-law degree distribution instead of being
scale-free. This shows that proteins have fewer structurally weak points, whose failure
would be total damage for the system. This finding conforms to evolutionary plasticity
of proteins: Having a low number of weak points makes the mild DNA mutations to be

translated into the protein structure as highly tolerable.
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OZET

Bu tez c¢alismasinda, proteinlerin temas matrisleri kullanilarak yapilar1 tahmin
edilmeye ve anlasilmaya ¢alisilmustir. Iki bdliimden olusan bu tezin ilk béliimiinde, sinir
aglar1 kullanilarak, proteinler i¢in yapisal sinirlamalar bulmak amaciyla residii temaslari
tahmin edilmistir. Bu tahminler i¢in residiilerin fiziksel ve kimyasal o6zellikleri, ve
birincil sekanstaki komsular1 kullanilmistir. Sonug¢ olarak, birbiriyle temas eden
residiilerin % 11’1 dogru, temas etmeyen residiilarin % 2’si yanlis tahmin edilmistir, ve
rastlantisal bir tahminden 7 kat daha iyi sonuglar elde edilmistir.

Ikinci béliimde, bir proteini, temas eden residiilarindan olusan bir ag olarak
modellemek icin yeni bir yontem gelistirilmistir. Bu aglarin yapisal 6zelliklerini
anlayabilmek icin kiiclik-diinyalar fikri kullanilmistir. Gosterilmektedir ki, residiiler
proteinler i¢inde ne diizglin ne de rastlantisal bir sekilde organizedir, kii¢iik-diinya
aglarina benzer bir organizasyona sahiptirler. Boyle bir yapi, proteinleri ¢ok kisa
zamanlar dahilinde biiyiik yapisal degisimler gecirebilmesini olanakli kilmaktadir.
Ayrica, residii aglarmin komsu sayist dagilimlart da kesik Olgeksiz dagilimlar
seklindedir. Bu da proteinlerin ¢ok az sayida yapisal hassas noktalar icerdigini
gostermektedir. Proteinlerin evrim siirecinde sayisiz biyolojik islevi gergeklestirebilecek
sekildeki degisimleri bu sonucu desteklemektedir. Bunun nedeni,, az sayida hassas
noktanin varligi kiicik DNA mutasyonlarinin proteinlerinin yapisina yansimasina

olanak saglamasidir.
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ABSTRACT

This thesis is composed of two different parts, aiming to predict and understand
the protein structure from their contact maps. In the first part, residue contacts of a
protein are predicted using neural networks in order to obtain structural constraints for
the three-dimensional structure. Physical and chemical properties of residues and their
primary sequence neighbors are used for the prediction. Our predictor can predict 11%
of the contacting residuees with a false positive ratio of 2% and it performs 7 times
better than a random predictor.

In the second part, a new method is developed to model a protein as a network of
its interacting residues. Small-world network concept is utilized to interpret the
parameters of residue networks. It is concluded that proteins are neither regular nor
randomly packed but between these two extremes. Such a structure gives the proteins
the ability for fast information relay between their residues. They can undergo necessary
conformational changes for their functions on very short time scales. Also, residuee
networks are shown to obey a truncated power-law degree distribution instead of being
scale-free. This shows that proteins have fewer structurally weak points, whose failure
would be total damage for the system. This finding conforms to evolutionary plasticity
of proteins: Having a low number of weak points makes the mild DNA mutations to be
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OZET

Bu tez c¢alismasinda, proteinlerin temas matrisleri kullanilarak yapilar1 tahmin
edilmeye ve anlasilmaya ¢alisilmustir. Iki bdliimden olusan bu tezin ilk béliimiinde, sinir
aglar1 kullanilarak, proteinler i¢in yapisal sinirlamalar bulmak amaciyla residii temaslari
tahmin edilmistir. Bu tahminler i¢in residiilerin fiziksel ve kimyasal o6zellikleri, ve
birincil sekanstaki komsular1 kullanilmistir. Sonug¢ olarak, birbiriyle temas eden
residiilerin % 11’1 dogru, temas etmeyen residiilarin % 2’si yanlis tahmin edilmistir, ve
rastlantisal bir tahminden 7 kat daha iyi sonuglar elde edilmistir.

Ikinci béliimde, bir proteini, temas eden residiilarindan olusan bir ag olarak
modellemek icin yeni bir yontem gelistirilmistir. Bu aglarin yapisal 6zelliklerini
anlayabilmek icin kiiclik-diinyalar fikri kullanilmistir. Gosterilmektedir ki, residiiler
proteinler i¢inde ne diizglin ne de rastlantisal bir sekilde organizedir, kii¢iik-diinya
aglarina benzer bir organizasyona sahiptirler. Boyle bir yapi, proteinleri ¢ok kisa
zamanlar dahilinde biiyiik yapisal degisimler gecirebilmesini olanakli kilmaktadir.
Ayrica, residii aglarmin komsu sayist dagilimlart da kesik Olgeksiz dagilimlar
seklindedir. Bu da proteinlerin ¢ok az sayida yapisal hassas noktalar icerdigini
gostermektedir. Proteinlerin evrim siirecinde sayisiz biyolojik islevi gergeklestirebilecek
sekildeki degisimleri bu sonucu desteklemektedir. Bunun nedeni,, az sayida hassas
noktanin varligi kiicik DNA mutasyonlarinin proteinlerinin yapisina yansimasina

olanak saglamasidir.
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1. INTRODUCTION

All biological processes require different kinds of protein molecules and
biological activity of any protein is achieved by its folded structure. A protein is a very
complex biological macromolecule; its primary sequence governs its folding in the
cellular environment and this folded state performs enormous kinds of processes such as
storage, transport, catalysis, etc. Today, the major problem in biological sciences is to
understand the hidden mechanisms or forces intrinsic to the primary sequence that
govern the protein folding process. The answer to this question is a breakpoint for life
sciences since it will enable us to design specific biological machineries to carry out
specific tasks in biological cells. People from different backgrounds with different
methodologies are trying to solve the folding puzzle, but no satisfactory answers could
be obtained up to this point. Yet, every study contributes to the solution in various ways
and helps upcoming studies to develop new ideas or strategies. In the first part of this
thesis, we attempt to contribute to the solution by trying to find the contacting residues
in the folded state of proteins using neural networks (NNs). The major contribution in
this study is that the physical and chemical properties of amino acids are also used to
predict the contacting residues in addition to the properties in previous work.

Proteins are designed to bind every conceivable molecule in the cell, from simple
ions to large complex molecules like fats, sugars, nucleic acids or other proteins. They
function efficiently and under control in the cells by changing their structural
conformations upon binding or releasing another molecule. Therefore, resolving the
structural features of proteins is an important step towards understanding structure-
function duality. Proteins should be flexible enough to undergo fast and accurate
conformational changes to perform their functions and this flexibility is mediated by the
concerted actions of residues located at different regions of the protein [1]. Some
residues play the key role during these communications and without these residues the

protein would be misfunctional or nonfunctional. In the second part of this thesis,



proteins are analyzed as if they are networks of interacting residues in their folded state.
We try to classify the networks of interacting residues and derive key properties of
protein structure. Also, we try to determine topological characteristics of residues of a
protein in three-dimensional space. The proteins are modeled as networks because (i)
structure affects function in all types of networks, and this is also valid for proteins; and
(i1) certain network models display a fast information relay between their nodes as well
as tolerance to random failures of one or more of the nodes; these are also very
important features for the functionality of proteins. Proteins need fast information relay
between their residues using interacting residues in the folded state rather than their
primary sequence, since they perform their functions on short time scales as low as
femtoseconds. They also need to be tolerant to continuous attacks coming from the
crowded environment of the cell, which may make some residue interactions

impossible. Some mild residue substitutions can also be tolerated by the protein.



2. PREDICTION OF CONTACTING RESIDUES IN PROTEINS USING
NEURAL NETWORKS

In this part of the thesis, a number of NNs are designed to predict the contacting

residues in proteins and their performances are presented.

2.1 Overview

In order for a protein to be functional, it has to be correctly folded into its tertiary
structure. In the folding process, there is interplay of non-covalent and entropic effects
of the protein main chain and side chains. The folded structure of the protein have a
marginal stability at its physiological conditions [2]. The hydrophobic effect is widely
regarded as the major force driving protein folding. This is the energetic preference of
non-polar atoms to associate and reduce their contact with water. So, the protein folds in
water in such a way that hydrophobic (or nonpolar) side chains are buried inside and
protected from water by water-loving (hydrophilic or polar) side-chains that make
hydrogen bonding with water on the surface of the protein. Atomic packing and
conformational entropy of the proteins are also important in the folding process.

The factors process mentioned above lead to a compact protein that lacks a
specific architecture. The specificity of the folded structure is mediated by the
hydrogen-bonding and ion pairing groups within the protein. The protein core is closely
packed and it consists of non-polar and polar residues making necessary hydrogen-
bonding and ion pair requirements leading to balanced charges. Unbalanced charged
residues, on the other hand, are rarely fully buried. Also, exposed protein surface

consists of about one-third of non-polar residues and the remaining polar atoms interact



with one another or with solvent. Disulfide bridges and salt bridges are important
interactions which provide the stabilization of the folded structure [2].

Thus, in the folded state of a protein, there are specific interactions between the
residues that shape its tertiary structure. These interactions could occur between two
charged side chains to balance their charges in the buried space or on the surface of the
protein. Hydrophobic residues can have attractive or repulsive van der Waals
interactions between them that are also important for the details of the structure. In other
words, if two residues are near each other, due to any of the above mentioned reasons or
their combinations, less than a specific distance in the folded state, then they are called
contacting residues. The contacting residues are determined by a number of strategies.
One method takes all the heavy atoms of residue of interest (except its hydrogens) and
draws a hypothetical sphere of a specific radius around each of the heavy atoms. If any
heavy atoms of a residue are within the sphere of heavy atoms of another residue, then
they are assumed to be in contact. In another method, a hypothetical sphere of specific
radius is drawn around Cg atoms of each residue (C, atom for glycine), residues having
their Cg (or C,) atoms within each other’s spheres are assumed as contact. The selection
of the radius of the sphere, which is called the cutoff radius, is very crucial for the
specificity and non-degeneracy of the selected contacts. As the cutoff distance increase,
so does the probability of having non-specific contacts. So, an optimal cutoff radius
should be selected which is only large enough to select contacts of interacting residues.
Another factor is that the peptide bond length is approximately is 4.5 A, which means
that adjacent residues will be in contact selecting a cutoff radius smaller than or equal
4.5 A. So, it may be necessary to exclude these non-specific contacts coming from
connectivity.

There are two main types of contacts according to relative position of the residues
in the primary chain. Short-range contacts are the ones between the near residues in the
primary sequence and they are mainly occurring within the alpha helices, beta-turns and
closed loops. Long-range contacts are between distant residues in the primary sequence
and they are occurring within the beta sheets and secondary structure elements closer in
the space. Importantly, knowing the long-range contacting residues within a folded
protein provides structural constraints and gives important clues about the structure of
the protein.

All the contacting residues within a protein can be represented in a symmetric

square matrix with size of square of the length of the protein, which is called a contact



map. In the contact map, the primary sequence of the protein is placed in both rows and
columns of the matrix. If two residues are near to each other within a specific cutoff
radius, then, the entry in the contact map corresponding to these two residues is 1,
otherwise it is 0. All short and long-range interactions in a protein of known structure
can be represented in its contact map. Also, secondary structures can easily be detected
from contact maps [3]. Alpha helices appear as horizontal and vertical thick bands
emerging from the main diagonal since they involve contacts between one amino acid
and its four successors. Parallel or anti-parallel beta sheets are thin bands either parallel
or perpendicular to the main diagonal respectively.

Here, long-range contacting residues in a protein are predicted using NNs in order
to obtain structural constraints. Correctly predicted contacts in the folded state of the
protein together with a correctly predicted secondary structure can give important clues
for the structure of that protein i.e. the type of a fold. For example, Vendruscolo and his
coworkers tried to recover the structure of proteins using contact maps [3]. They
defined a contact map energy function to evaluate feasibility of a contact map in
relation to the structural constraints of the protein of interest. By using this energy
function, they tried to thread a contact map (or a 3D structure) onto a primary sequence
of a protein. They are successful at recovering C, atom contacts within 5 — 8 A. This
shows that two-dimensional contact map has valuable hidden information about the
contacts in the 3D structure of the protein. This prediction may also be useful in de novo
design of the proteins. In general, predicting the contacting residues within a protein
corresponds to predicting the contact map of that protein. Previous attempts to predict
the residue contacts within the proteins are summarized below;

Sander and his coworkers [4] predicted the protein contacts using multiple
sequence alignments. They used the correlated mutational behavior of pairs of amino
acids on the contact propensity. The mutational behavior is deduced from multiple
sequence alignments. They showed that their method is better than other methods which
do not include correlated mutations. They evaluate their performance by comparing
their results with a random predictor which is an information-free predictor, and their
improvement over a random predictor is five, in other words.

Casadio and Fariselli [5] predicted contact maps using NNs. They used several
numbers of network architectures and fed each of them with different types of
information. Their most successful network encodes the hydrophobicity and

evolutionary information of the pair of residues and its neighbors. Our project involves



some of the features used in this study and also, our results with the results of their
study will be compared since the strategies are similar and allow such a comparison.
The similar parts of the studies will be mentioned throughout this thesis. They used the
alignments from HSSP files [6] to encode evolutionary information. They concluded
that their predictor is six times better than a random predictor.

Mohammed and his coworkers tried to mine residue contacts using local structure
predictions [7]. There are thousands of protein structures in protein data base (PDB), but
most of them cluster into around 700 fold-families based on their similarity. Thus, PDB
offers a new paradigm to protein structure prediction by employing data mining
methods like clustering, classification, association rules, hidden Markov models etc [7].
This method is based on the folding initiation sites and their propagation by using
hidden Markov models. Their predictor is 5.2 times better than a random predictor.

What is missing in all of these attempts is the encoding of the physical and
chemical features of the residues within proteins. In this study, it is aimed to encode
such information to predict the contacts within proteins. We concentrate on pairs of
residues and look for their contact propensity within a specified distance along the
primary sequence for a given protein length. In the following chapter, NNs and their

application to the specific problem at hand are summarized.

2.2 What Are Artificial Neural Networks?

Our brain is composed of about ten billion of neurons which are information
processing units of the brain. They are specialized to receive, integrate and transmit the
information. The input to a neuron is the electrical signals received from other neurons
through its axons and the output of that neuron is the input of another neuron or a signal
which directly causes an action somewhere in the body. The point of connection
between two neurons or between a neuron and muscles or glands is called synapse. The
physical and neurochemical characteristic of the synapse determines the strength and
polarity of the new input signal which is to be sent to another neuron or cell. In other
words, each neuron receives a number of signals from other neurons, but which signal is
used at which amount in producing the response is decided by the synapses between the

corresponding neurons. Figure 2.2.1 shows a simplified biological neuron.
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Figure 2.2.1. Schematic Representation of a Biological Neuron [8].

The brain has the capability to organize its neurons so as to perform certain
computations such as pattern recognition, perception and motor control many times
faster than the fastest digital computer in existence today [9]. How does the brain do
this enormous computation in a very short time (on the order of milliseconds) to make
us a living organism aware of his/her environment and respond to it? The answer lies
within its structure which gives it the capability to build up its own rules through its
experiences. It continuously produces or destroys connections between the neurons, and
changes the type of the connections occurring within the synapses to learn and adapt to
its environment.

Artificial NNs are the result of the motivation to mimic the learning and
adaptation process of the brain. They are composed of simple processing units which
are the artificial neurons. They learn from their environment through a learning process
and connection between its units, weights, are used to store this acquired knowledge [9].
The procedure to perform the learning process is called a learning algorithm and it is
defined as the modification the synaptic weights of the network to attain a desired
output [9]. Figure 2.2.2 shows a simple representation of a one processing unit of an
artificial NN, a neuron. In the figure, (P;, P>, Ps....P,) represent a pattern. Every pattern
has a corresponding target and the duty of the network is to find this corresponding
output by adjusting the weights.

Input to a NN (P, P, Ps......P,) in Figure 2.2.2, represents a pattern by means of
its appropriate features. Patterns are the examples of the problem set that needs a certain

action performed on it (e.g. classification, pattern recognition etc.). For example, let’s



look at training a NN that can differentiate apples from oranges. The patterns of that
problem are some apples and oranges and the most suitable features to represent them
would be their color and shape, because these are among their distinguishing features. It
1s important to note that size is not a suitable feature, since both fruits have similar size.
So, the success of a network is heavily dependent upon the selection of the correct

features for representing the patterns.

2.2.1 Training

There is a training phase in a NN at which the network receives a number of
training patterns and adjusts its weights in order to attain corresponding outputs for each
of the patterns. This phase is analogous to the time that in which the brain acquires
some experiences and according to them, it makes or destroys connections between the
neurons or change the nature of the synapses in order to remember and learn them.
After this training process, the network is ready to test whether it can produce
reasonable outputs for the patterns not encountered in the training phase, which is called
generalization.

It is worth noting that weights are crude approximations to the chemical reactions
occurring in neural synapses. They decide how much of the input is used in producing

output as in the biological neurons.

2.2.2 Multilayer Perceptron: A NN architecture

There are many types of NN architectures and each of them has applications in
different types of problems such as classification, pattern recognition, forecasting,
modeling [10]. A NN type named as multilayer perceptron is very suitable for the
problem in this study. Perceptron is the simplest form of a NN used for the
classification of the patterns which are said linearly separable [9]. Unfortunately, many
problems are not linearly separable, and they cannot be solved by a perceptron. In order
to overcome this limitation, multilayer perceptrons are derived which are able to solve

arbitrary classification problems.
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Figure 2.2.2. Simple representation of one processing unit of an artificial NN (neuron).

Bias is an optional free parameter of a neuron and it makes the network more
powerful. A neuron without a bias will always gives an output of zero if the pattern
features are all zero. This situation may not be desirable and can be avoided by using a
bias.

To calculate the output, features of the input nodes are multiplied by the
corresponding weights and the bias term is added in each summation unit (X) of an

artificial neuron. The total input is given by;
n=(Y PW)+, (.1
jZl 7

P; denotes the input features, ¥ is the corresponding weight and b; is bias term.

The output of the neuron a is given by;
a=F(n) (2.2)

where F is the transfer function.

There are many types of transfer functions, some of them are mentioned here. In a
linear transfer function, the output activity is proportional to the total input. In a
threshold transfer function, the output is set at one of two levels, depending on whether
the total input is greater than or less than some threshold value. In a log-sigmoid
transfer function, the output varies continuously but not linearly as the input changes.
Log-sigmoid units bear a greater resemblance to real neurons than do linear or threshold
units, but all three must be considered rough approximations [11]. Log-sigmoid transfer

function is used in our network architectures. In this study, when a residue pair is



applied to a network, the network gives a real number output between [0, 1] interval and
it denotes the contact propensity of the pair of residues applied.

Figure 2.2.3 is a representation of perceptron network architecture with one layer
which means there is one set of neurons operating in parallel and producing output for

each pattern.

Figure 2.2.3. Layer of S number of neurons operating in parallel.

This architecture can solve only linearly separable classification problems.
Linearly separable patterns mean that it is possible to classify the patterns by a line on a
hyperplane as shown in Figure 2.2.4.

Multilayer perceptron architecture has evolved which can solve arbitrary
classification problems including linearly inseparable pattern classification. The
architecture in Figure 2.2.5 shows a two-layer perceptron. As can be seen from the
figure, there are two sets of neurons operating in parallel. The nodes fed by the outputs
of the first set of neurons are called hidden nodes. The number of hidden nodes varies

according to the complexity of the problem.
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Figure 2.2.4. Patterns (white and black circles) are linearly separable
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Figure 2.2.5. Multilayer perceptron architecture




2.2.3 Learning Algorithm

Learning algorithm is a procedure by which the weights and biases of a NN are
modified to attain the desired output. The purpose of the learning rule is to train a
network to perform a specific task. In this study, supervised learning is used. In
supervised learning, there is a set of examples whose targets (correct outputs) are
known, i.e. a training set. As this set is applied to the network, the network output
generated for corresponding input is compared to the targets. The learning algorithm is
then used to adjust weights and biases of the network in order to move the network
output closer to the targets [12].

For example, in the classification of apples and oranges, the training set will be a
selection of examples of apples and oranges. When a pattern in the training set (an apple
or an orange) is represented to the NN, it gives an output which is the decision of the
network for that pattern. This output is compared with the target which is the real class
of the pattern and the weights and biases of the network are adjusted in order to move
the network output towards the target. Each pattern is represented to the network and
the weights and biases of the network are adjusted for each pattern. The complete
representation of all the patterns in the training set to the network is called iteration. In
order to find the appropriate weights and biases for the correct classification of all

patterns, this process is iterated many times.

2.2.4 Learning and Generalization

In this project, a multilayer perceptron trained with the backpropagation algorithm
is used. The essence of backpropagation algorithm is to adjust the weights and biases of
the network to minimize the mean square error, where the error is the difference
between the target output and the network output. Therefore, the mean square error is
calculated at the end of every iteration (one pass through the set of training samples)
and weights and biases are adjusted to minimize this mean square error by
backpropagation algorithm. The mean square error calculated after each iteration is
called training error and it tends to decrease throughout iterations. At this phase, the
network learns rules in the training set and stores them in its weights and biases. Yet,

there is an important trade-off in the learning process: The aim of the NN is to capture
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general rules which are valid in any subset of the problem set. So, it is important to end
the learning process at the correct time to prevent the over learning of the training set
(generalization capacity). Therefore, in the training phase, there is another dataset,
validation set, which has no common pattern with the training set. It is used to measure

the generalization capacity of the network.

blean-
squared
ETTOL

Figure 2.2.6. Mean squared error versus number of epochs in the course of training and
validation phases of a typical perceptron [9]

After a set of iterations, the validation set is passed through the network and the
validation error is calculated, which is the mean square error of target output and
network output in the validation set. Validation and training error show a pattern like in
figure 2.2.6; while the training error drops continuously, validation error increases after
some time. The reason for this increase is the loosing of the generalization capacity of
the network, it over-learns the training set. If the inputs used in training are a good
representative of all possible input patterns, a network with enough complexity can

successfully generalize what it has learned to the total population.
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2.2.5 Complexity of the Network

The goal of the network is not to learn an exact representation of the training data
itself, but to learn general rules from the training data which are also valid for the rest of
the data. A network with enough complexity and a training dataset representative of all
the dataset can achieve its goal. Complexity of the network can be considered as the
number of free parameters of the network; i.e. the weights and biases. A network with
little complexity gives poor generalization because of the little flexibility of the
network. A very complex network relative to the problem also gives poor generalization
as it fits too much of the noise on the training data [13]. In a multilayer perceptron, the
complexity of the network can be adjusted by changing the number of hidden nodes
since it involves changing the free parameters.

The size of the training set is an important design factor. It should be sufficient to
represent the common features of the whole set of the problem. The number of
iterations required for generalization is inversely proportional with the size of the
training set for a network of enough complexity [9].

Several multilayer perceptrons are designed as predictors of contacting residues
in proteins. These networks are trained by a backpropagation algorithm which is a
supervised training method. Networks at different complexity are tried to find the
optimal network architecture suitable for the prediction. In the following chapter, the

problem is described and the architectures used are analyzed in detail.

2.3 Description of the Problem and the Solution Model

In this project, physical and chemical features of amino acids as well as other
features involving the protein length and the primary sequence are used for predicting
the contacting residues.

NNs are used for several reasons: (i) It has been shown that NNs have a very good
performance on prediction problems [10]. Since our problem is also a prediction, we
can safely use NNs. (ii) NNs are one of the most successful methods in protein
secondary structure prediction (up to 80%) [14]. (iii) The rules determining the

contacting residues in a protein are very complex. NNs are quite successful in problems
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where rules crucial to the required decision are subtle or deeply hidden. NNs have the
ability to discover patterns in data which are so obscure as to be imperceptible to
standard statistical methods [15]. (iv) NNs have no limitations for the number of
parameters in the problem to be solved. A network with enough complexity can learn as
many rules as they can. Since, the number of parameters playing role in the contact
decision within a protein is very high (protein secondary and tertiary structure, residue
types etc.), NNs are one of the most convenient methods for a problem of this

complexity.

2.3.1 Input and Output of the NN

The input of the NN is two residues or a window of residues, the length of the
protein and the sequence separation of the corresponding residues (number of residues
between them along the chain). The output of the network is the contact propensity of
the corresponding residues. In other words, features of two residues and two other
parameters are applied to the network and the desired action from the network is a
prediction of these residues is in contact or not.

Three different network architectures are used in this prediction. The same
network architecture is trained with different input parameters to encode more
information to the network. All networks have two global parameters in common:

(1) Normalized protein length. Normalized length of the protein having the residue
pair whose contact propensity in under examination. Normalization is achieved by
dividing the length of the protein to the length of the longest protein within the whole
protein set.

(1))  Normalized sequence separation. The number of residues between the residues
of pair of interest. It is normalized by dividing it to the length of the longest protein
in the whole protein set.

It is necessary to represent residues to the network by means of their specific features.

Three main feature of a residue its surface area, hydrophobicity and charge are used for

this purpose.

15



2.3.1.1 Surface Area

The area of a residue occupies in space is a measure of the size of the residue. It
is strongly correlated with the size of the side chain of that residue. This feature is used
to determine contact propensity of residues, because it is known that the substitution
probability of an amino acid into another is inversely proportional to the difference of
their sizes [16]. Sizes of the residues around the residue of interest are also important
factors playing roles in their contact decision of corresponding residues. A bulky
residue surrounded also by bulky residues may not be close enough to be in contact with
another bulky residue which is also surrounded by bulky residues. This explains why
the substitution rate between the amino acids is inversely proportional with the
difference of their sizes.

Surface areas of the residues are taken from Baysal et al. study which is
calculated by naccess program which is an implementation of the method Lee and

Richards [17, 18] .

2.3.1.2 Hydrophobicity

It is a measure of nonpolarity of the side chains. As the nonpolarity
(hydrophobicity) of the side chain increases, it avoids being in contact with water and
buried within the protein nonpolar core. This is seen as the essential driving force in
protein folding. This quantity is used to encode residue specific information to the
network. Since the hydrophobicity of a residue affects the non-covalent bonding
between its surroundings, it can be a contributing factor to contact decision of that
residue with others. The hydrophobicity information can be encoded in two different
ways; one method uses the hydrophobicity of the residue of interest, other method uses
the average hydrophobicity of the neighbors of the residue of interest. First encoding
gives only the residue-based information, tells nothing about the local environment of
the residue, while the latter is giving information about the local polarity (or
nonpolarity) of the environment of the residue. We calculate the average hydrophobicity

according to;
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Hydrophobicity of i™ residue is the average of the hydrophobicities of window of
residues of size seven in the primary sequence of the protein. Three of the residues that
are on the left, the residue itself and three of the residues on the right of the residue
constitute the window and the average of the hydrophobicities of residues in that
window represent the average hydrophobicity of the residue in the middle of that
window of residues. In Table 2.1, hydrophobicities of amino acids used in this
prediction are listed. ROSEF hydrophobicity scale is used since it is one of frequently
used scale [19, 20].

2.3.1.3 Charge

It denotes the net charge on the residue if there is any. It takes values -1, 0 and 1.
Electrostatic interactions are important in determining contact propensity of the
residues. Therefore, having charge feature helps to the network in learning contacts
because of electrostatic interactions.

Table 2.1 shows the surface area and hydrophobicity values of 20 residues before
normalization. As can be seen from the table, they are on different orders of magnitude
which may not reflect their relative importance in determining the required outputs. In
order to bring them on the order of unity, linear transformation is applied to the input
features. Within each feature, mean and variance are calculated according to equation

3.2 and 3.3 and re-scale them according to the equation 3.4.

_ 1 N
X, =— ) x 2.4
1 N; i ( )
02__1 N(x -x)* (2.5)
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x = (2.6)
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where x; is the re-scaled variable. Hence the surface area and hydrophobicity features
are re-scaled so as to be unit variance with zero mean. Normalized size and
hydrophobicity and charge features of 20 residues can be seen in Table 2.2.

Residue Type | Surface Area | Hydrophobicity
ALA 107.95 0.50
ARG 238.76 -2.01
ASN 143.94 -2.26
ASP 140.39 -2.51
CYS 134.28 4.77
GLN 178.50 -2.51
GLU 172.25 -2.51
GLY 80.10 0
HIS 182.88 1.51
ILE 175.12 4.02
LEU 178.63 3.27
LYS 200.81 -5.03
MET 194.15 3.27
PHE 199.48 4.02
PRO 136.13 -2.01
SER 116.50 -1.51
THR 139.27 -0.5
TRP 249.36 3.27
TYR 212.76 1.01
VAL 151.44 3.52

Table 2.1. Surface area and hydrophobicity features before re-scaling

Each amino acid is represented by using three features, surface area,
hydrophobicity and charge. This representation is aimed to correlate the physical and
chemical properties of amino acids with the contact propensity. There are no previous
studies for contact map prediction in which such amino acid features were used. Also,
in some of the networks, the local environment of the residues is encoded in different
number of ways in order to give more information to the network for prediction.

When these features are applied to the network, the output of the network is the
contact propensity of the corresponding residues. It varies between 0.1 and 0.9 and 0.1
means these two residues are not contacting, 0.9 is they are in contact. But, the network
gives the outputs varying from 0.1 to 0.9, so there should be a procedure which decides

whether the residues are in contact or not according to the output.
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Residue Type | Surface Area | Hydrophobicity | Charge
GLY -2.00377 -0.14338 0
ALA -1.35889 0.02916 0
SER -1.16091 -0.66444 0
CYS -0.7492 1.50264 0
PRO -0.70636 -0.83698 0
THR -0.63365 -0.31592 0
ASP -0.60772 -1.00952 -1
ASN -0.52552 -0.92325 0
VAL -0.35185 1.07129 0
GLU 0.13002 -1.00952 -1
ILE 0.19648 1.24383 0
GLN 0.27474 -1.00952 0
LEU 0.27775 0.98502 0
HIS 0.37616 0.37769 0
MET 0.63713 0.98502 0
PHE 0.76055 1.24383 0
LYS 0.79134 -1.87912 1
TYR 1.06805 0.20515 0
ARG 1.6701 -0.83698 1
TRP 1.91555 0.98502 0

Table 2.2. Residue features after re-scaling. Note that charge feature is not re-scaled.

2.3.2 Contact Definition

Casadio et al. used a different contact definition that takes the distances of all
heavy atoms of the residues into account and the cutoff radius is 4.5 A. This definition
is not used in this study, because being close of heavy atoms of the residues does not
always mean that there is an interaction between them. The direction of the residues can
be totally different but some of their atoms (for example, the backbone atoms) could
still be close to each other than the cutoff radius. In order to avoid taking such non-
specific contacts into account, we use only Cg atoms for contact definition. If Cg atoms
of a pair of residues (C, for glycine) are closer to each other less than 7 A, they are

assumed to be in contact; else they are assigned as non-contact.
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2.3.3 Datasets

A dataset composed of 608 proteins is used for this analysis. This dataset was
used before by Casadio et al. [5]. This set does not contain proteins whose backbones
are interrupted. It is divided into three subsets for training, validation and test
separately. Training set contains proteins without ligands in order to avoid false contacts
due to the presence of hetero-atoms. Validation and test sets are composed of proteins
whose sequence identity is less than 25 %. Table A in the appendix shows proteins in all
three subsets with their chains.

The contacts between residues which are less than four residues apart are not
included while training or testing of the networks. This type of contacts (mostly short-
range contacts) is very high in number and long-range contacts are low in number
respectively. So, NNs may be biased through short-range contacts because of their high
number and cannot learn long-range contacts. Since our desire is to find long-range
contacts in order to have a coarse structure of the protein, we exclude most of the short-
range contacts.

In a protein, there are contacts much lower than non-contacts. According to our
dataset and the contact definition (see section 2.3.2), the number of contacts to non-
contacts ratio is 98.4. Because of this disproportion, network cannot be feed by all the
residue pairs obtained from the dataset in the training phase. By doing so makes the
network to output for most of the pair as non-contact, since for every contacting pair
there are approximately 98 non-contacting pairs. Therefore, we have to balance this
disproportion. We select all the contacting pairs generated in the training set. Then for
every contacting pair, we randomly select a non-contacting pair within the dataset.
Hence, a training data is prepared in which there are equal numbers of contacting and
non-contacting residue pairs.

Different contact to non-contact ratio has been tried for training the networks such
as 1to 2 and 1 to 6. In these cases, the network outputs have decreased dramatically and
most of the pairs were classified as non-contacts by the network. So, 1 to 1 contact non-

contact ratio is used for the training.
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2.3.4 NN Architectures

Three different NN architectures are used to predict contacts within proteins. Each
architecture differs according to information encoded in it. All the networks take a pair
of residues whose contact propensity is under examination as an input and the output is
the contact propensity of this pair which is a number between 0.1 and 0.9. The learning
rate for all networks is 0.2 and transfer function of both hidden and output nodes are
log-sigmoid which is given by;

1
1+e™

log— sigmoid(n) = (2.7)

Since, two types of inputs are applied to one of the network architectures, four different

networks are used to predict the contacting residues.

2.3.4.1 Network 1 (N1)

N1 contains eight input neurons representing the individual features of the pair
of residues plus two global properties. Every feature of a residue (hydrophobicity,
charge and size) is encoded by separate input neurons. Figure 2.3.1 shows the
architecture of the N1. Different number of hidden nodes is used while training this
network. N1 takes all the features of pair of residues and two global properties
(normalized protein length and normalized sequence separation). For the sake of clarity,

not all the hidden nodes and weight connections are shown in figure 2.3.1.

2.3.4.2 Network 2 (N2)

N2 has the same architecture with N1, as shown in figure 2.3.1., but it differs
according to its information content. N1 takes the individual hydrophobicity of the
residue while N2 takes the average hydrophobicity of the residue. Inputs to N2 are the
size, charge and average hydrophobicity features of a pair of residues. Average
hydrophobicity is calculated according to equation 2.3. It gives the hydrophobicity

value averaged out over a window of residues which are the neighbors of the residue of
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interest in the primary sequence. So, it encodes the local environment of the residue and

our aim for trying N2 is to see how important this information is in the contact decision.
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Figure 2.3.1. Architecture of N1 and N2

2.3.4.3 Network 3 (N3)

N3 has a different topologys; it is very similar to the topology used by Casadio et
al. in their study for predicting contact maps of proteins [5]. It contains 218 input nodes,
210 of them represents all the possible pair of residues. Each residue pair and its
symmetric are encoded with the same node, which reduces the number of possible pairs
from 20x20 to 20x (20+1)/2. The topology of the N3 is shown in figure 2.3.2. For the
sake of clarity, not all the hidden nodes and weight connections are shown. When a
residue pair is presented to N3, only one out of 210 input nodes will be 1, which is the
representative of that pair, other 209 input nodes will be zero. Other 8 input nodes
represent the size, charge and hydrophobicity values of the each residue in the pair of
interest and two global properties (normalized protein length and sequence separation).
This architecture is more complex than the previous one; it has more free variables
(weights and biases) to learn the conditions of being in contact from the features of the

residues presented to the network.
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Figure 2.3.2. N3 architecture

2.3.4.4 Network 4 (N4)

In N4, a window of residues, which compromises the primary sequence neighbors
of the residue and the residue itself, represents each residue. Three neighbors within the
left and the right of the residue and itself constitute the window. Size, charge and
hydrophobicity information of all neighbors are applied to the network. N4 topology is
shown in Figure 2.3.3 and in this topology; the local environment of the residue is
encoded by its neighbors in the primary sequence. In contrast to N2 where the local
environment of the residues is presented by only average hydrophobicity of the
neighboring residues, all the features are taken into account to represent the local
environment of a residue in N4. Averaging may not be a proper way to encode the local
environment, since it could not reflect the individual effects of the neighboring residues
to the residue of interest. In topology of N4, effect of each neighbor is considered and
an input node is assigned for each feature of the neighboring residues. So, it is a more

proper way to encode local environment of the residues.
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2.3.5 Evaluation of the Network Performance

In this study, two different methods are used to evaluate the network performance.
In the first methodology, the number of correctly predicted contacting residues and
number of false positives which are the pairs assigned by the network as contact while
they are not in actual are counted. Our aim is to increase the number of correctly
predicted contacts while decreasing the number false positives as much as possible. The
network outputs are the real numbers in the interval of [0,1] and higher the output, more
probable that the input residue pair is contacting. Therefore, in order to determine the
correctly predicted contacts, we select a threshold. The residue pairs whose outputs are
equal to or higher than selected threshold are assigned as contacts and other pairs are
assigned as non-contacts. Correct contacts (CC) is the ratio of number of actual
contacting residue pairs whose network outputs are higher than the selected threshold to
the total number of contacts. False positive (FP) is the ratio of number of actual non-
contacting residue pairs whose outputs are higher than the selected threshold to total
number of non-contacts. They are calculated as follows;

_ Contacting residue pairs whose network outputs > Threshold

CcC
Total number of contacting residue pairs

(2.8)

Fp = Non - contacting residue pairs whose network outputs > Threshold

Total number of non - contacting residue pairs

The second method is for the comparison of the performance of our predictor with
a random predictor. In this method, the network capability of predicting residue contacts
is of interest [5].

Accuracy (4) of the network is defined as the ratio of the correctly predicted
contacts by the network to the actual number of contacts in a protein and calculated

according to;

A="t (2.9)

N, is the number of correctly predicted contacting residues by the network,

N, is the actual number of contact within the protein.
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Now, the question is how correctly predicted contacts are determined. As
mentioned, the output of every network in this study is a real number in the interval
[0,1] which denotes the contact propensity of the corresponding pair of residues. Higher
the network output, more probable that the input residues are in contact or vice versa.
So, the number of correctly predicted contacts is determined by sorting the network
outputs and selecting the top outputs as much as the number of actual contacts in that
protein. Correctly predicted contacts are the actual contacting pairs whose outputs are
within the selected top outputs.

A random predictor makes N, number of guess in order to predict the contacting
pairs, assuming that there are N, number of residue pairs in which N. of them are

contacting. Therefore, its performance (4;) is calculated by;

4 = (2.10)

Since the contact map is symmetric and residues whose sequence separation is less than

four are not included, N is calculated by;

N, :(Lp-4)>2<(Lp-3) @2.11)

where Lp is the protein length.
In order to calculate the improvement over a random predictor, accuracy A of the
network is divided to performance of the random predictor A. Improvement over a

random predictor is denoted by R and calculated according to,

R=2 (2.12)
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2.4 Results and Discussions

All networks are trained with their corresponding training files. While training,

training dataset and loose its generalization capacity over the all dataset.

they are tested on proteins contained in validation (TS97) dataset (see section 2.3.3).
This testing is called validation and it is required to stop the training phase with up most

generalization capability. Otherwise, the network will learn all the patterns in the

The validation set is divided into four subsets according to the length of the
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proteins. First validation set (Val Set 1) comprises proteins whose lengths are smaller

than 100 amino acids, second set (Val Set 2) comprises proteins whose lengths are




between 100 and 170 amino acids, third set (Val Set 3) comprises proteins whose
lengths are between 170 and 300 amino acids and fourth set (Val Set 4) comprises
proteins whose lengths are larger than 300 amino acids. The reason for this division is
that the performance of any network varies significantly with the length of the protein.
As protein length increases, the possible number of pairing increases with the square of
protein length while the actual contact number do not varies that much. Table C in the
Appendix shows the details of the proteins in the validation set (TS97). In the following
experiments, network performances are calculated based on the performance on these
validation datasets. All performance results are represented by a table. There are correct
contacts (CC), false positives (FP), accuracy (<A>) and comparison with the random

predictor (R) as explained in section 2.3.5.

2.4.1 Experiment 1

In this experiment, N1 is trained with different number of hidden nodes and the
performance of it on the validation set is determined. In the training set, there are
128862 patterns whose half of them is the contacting residues and other half is the non-
contacting residues which are selected randomly from the training dataset. N1 is trained
using 3 different numbers of hidden nodes; 10, 15 and 20. To recall, there are 8 input
nodes in the N1, six of them represent the size, charge and hydrophobicity features of
residue pair of interest plus two global properties. The performances of the N1 with

different number of hidden nodes are shown in Table 2.3.

N1 with 10 hidden nodes N1 with 15 hidden nodes N1 with 20 hidden nodes
cc | Fp cc | Fp cc | Fp
W || IRl |lw| M [ Rl w| M R

ValSet1| 7.1 0.8 |0.151+0.002 |4.79] 7 ]0.007]0.140+0.001|4.42] 10 |0.014]0.150+0.001 | 4.68

ValSet2| 1.7 0.2 |0.091+£0.002 |4.71] 2.3 [0.003]0.094+0.002|4.77] 6.0 |0.008]|0.125+0.001 | 5.37

Val Set3| 4.1 0.6 |0.074+0.001 | 5.85] 3.9 |0.005|0.074+0.001 [ 5.93] 6.3 |0.009 | 0.074+0.001 | 6.00

Val Set4| 7.3 0.9 |0.067+£0.001 | 8.35] 10 |0.012|0.071£0.001 [9.04] 9.2 [0.010|0.072+0.001 | 9.04

All pr. 5.8 | 0.8 |0.083+£0.002 [6.35] 7.4 [0.010|0.084+0.001|6.51| 7.9 |0.010 | 0.085+ 0.001 | 6.58

Table 2.3. Performance of N1 on the validation dataset

27




Note that, there are two ways to evaluate the network performance, one method is
to count correctly predicted contacts with the false positive ratio, and other method is to
compare it with a random predictor. Table 2.3 shows performances calculated by these
two evaluation methods. Training of N1 with 10 hidden nodes stopped at 6000™
iteration, N1 with 15 hidden nodes stopped at 31250"jteration and N1 with 20 hidden
nodes stopped at 25500™ iteration.

N1 is the simplest network in our system according to the information encoded
within the network. Input nodes of it encodes two global properties plus individual size,
charge and hydrophobicity values of residues of interest whose contact propensity is

under examination.

2.4.2 Experiment 2

It is known that the local environment of the residues influences contact decision
of two residues in proteins significantly. So, in order to mimic this influence, an average
hydrophobicity term is used. This method is used by Casadio et al. [5] and they use only
this entity to represent the hydrophobicities of residues. In this experiment, the same
network architecture as N1 is used, but, average hydrophobicities of residues are used to
encode the hydrophobicities of residues in residue pairs of interest. This network is
called N2 (see section 2.3.4.2.). In the training set, there are 128862 patterns in which
the numbers of contact and non-contacting pairs are equal. Performance of N2 on the
validation set is shown in Table 2.4. Again, validation set is divided into 4 subsets
according to the protein lengths. Training of N2 with 10 hidden nodes stopped at 3550™"
iteration, N1 with 15 hidden nodes stopped at 103000™ iteration and N1 with 20 hidden
nodes stopped at 57000™ iteration.

Since, N1 and N2 have the same network architecture but different information
content (differing by their hydrophobicity encoding), it is appropriate to compare their
performance in order to understand which hydrophobicity encoding is meaningful. N1
with 20 hidden nodes is performed best among all N1 and N2 architectures with
different hidden nodes. Generally, N1 performs better than N2. Since the only
difference between these two networks is the encoding of hydrophobicities, it can be
said that N1 hydrophobicity encoding is more successful that that of N2. It is for sure

that local environment is very important for the contact decision of residues. Based on
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this, since N2 has performed poorer, it is concluded that taking arithmetic average of
hydrophobicities of neighbors of residue of interest cannot represent the local
hydrophobicity of that residue. Individual hydrophobicities of residues of interest are

more informative for encoding the hydrophobicity.

N2 with 10 hidden nodes N2 with 15 hidden nodes N2 with 20 hidden nodes
CC FP CccC FP CcC FP
ol lew| M IR lw] M | Mew|w| R

ValSet1| 04 | 0.1 |0.101+£0.001 |3.23] 0.6 | 0.1 |0.098+0.001 | 3.18] 0.1 0.1 [0.097+0.001 | 3.11

ValSet2| 0.6 | 0.1 [0.089+0.002|4.39] 0.4 | 0.1 |0.089+0.001|4.75] 0.4 | 0.1 |0.086+0.002 | 4.26

ValSet3| 3.1 0.6 |0.071+£0.001 |5.55| 2.4 0.4 |0.071+£0.001 | 5.54] 1.8 0.3 |0.067+0.001 | 5.23

Val Set4 | 6.7 0.8 |0.068+0.001 |8.69] 8.9 1.0 ]0.068+0.001 | 8.74] 14.0 | 3.1 |0.065+0.001 | 8.18

All pr. 4.9 0.7 10.077+0.001 | 6.08| 6.0 0.8 |0.077+0.001 | 6.19] 9.0 | 2.4 |0.074+0.001 |5.77

Table 2.4. Performance of N2 on the validation dataset

2.4.3 Experiment3

In the previous experiment, it is concluded that individual hydrophobicity is more
informative than average hydrophobicity. Casadio et al. used average hydrophobicity to
encode the hydrophobicities of residues in very different network structures than we use
in the previous experiments; one input node is set for each possible residue pair. Their
network architecture is mimicked by representing each possible residue pair with one
input node. Additionally, there are six input nodes representing size, charge and
individual hydrophobicities of residues in the pair of interest and two global properties.
This network is called N3 and trained this network with the same training set used for
N1 and 2 by using 5 and 10 hidden nodes. The same validation set is also used to stop
the training with up most generalization capacity. Training of N3 with 5 hidden nodes is
stopped after 100 iterations, and training of N3 with 10 hidden nodes is stopped after
400 iterations. Performances of the networks with different number of hidden nodes are
shown in table 2.5.

As can be seen from table 2.5, N3 performs poorer than N1. Based on the R score
(the improvement over a random predictor), N3 architecture performs nearly the same
as the networks presented in Casadio et al. study in which their results are six times

better than a random predictor (R=6). To understand how our additional features
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improve the network prediction capability, we need to look at the simplest network
model in Casadio study, which have 210 nodes representing each possible pair, 2 nodes
representing average hydrophobicities of residues of interest plus 2 global properties.
This network performs 5.5 times better than a random predictor over the same
validation set. Therefore, using size and charge of residues and using individual

hydrophobicity instead of average hydrophobicity enable the network performs better.

N3 with 5 hidden nodes N3 with 10 hidden nodes

CC | FP CC | FP
<A> <A>
(%) | (%) A R (%) | (%) A R

ValSet1| 6.2 | 0.6 |0.146+0.001(4.63] 7.6 | 0.8 |0.147+0.001|4.56
ValSet2| 3.0 | 0.5 [0.091+0.002{4.50] 2.9 | 0.4 |0.091+0.002 |4.58
ValSet3| 4.0 | 0.6 [0.072+£0.001|5.67| 4.1 | 0.6 |0.073+0.001 |5.76
Val Set4| 82 | 0.9 [0.069+0.001|8.67] 6.0 | 0.6 | 0.066+0.001 |8.17

Allpr. | 42 | 0.5 |0.081+0.001 |6.10] 5.1 | 0.6 | 0.081+0.001 |6.13

Table 2.5. Performance of N3 on the validation dataset

2.4.4 Experiment 4

In this experiment, the performance of N4 on TS97 validation set is investigated.
N4 uses size, charge and individual hydrophobicity information of neighbors of residue
of interest. Neighbors of a residue are represented by a window of residues
compromising residues whose three of them is on the left and three of them on the right
in the primary sequence and the residue itself (see section 2.3.4.4.). With this encoding,
it is aimed to represent the local environment of a residue in a much better way. Table
2.6 shows the performance of N4 with different number of hidden nodes on validation
set TS97. Training of N4 with 15 hidden nodes stopped at 9000™ iteration, training of
N4 with 20 hidden nodes stopped at 10500™ iteration.

N4 with 15 different hidden nodes performs better than all other networks in this
and previous experiment. Its improvement over a random predictor is 6.75, which is
also higher than the improvement of the networks in Casadio study. By looking at these
results, it can be concluded that a better way is found to represent the local environment

of the residues. Instead of averaging of the hydrophobicities, separate input nodes are
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assigned for each different feature of neighboring residues. This also proves again that,
local environment of the residues is effecting their contact decision; otherwise, such an

improvement cannot be seen.

N4 with 15 hidden nodes N4 with 20 hidden nodes

CC | FP As CC | FP
) | % A Rleo | @

Val Set 1| 13.8 | 2.7 0.143£0.003 |4.19] 10.5 | 2.4 |0.123+0.002 |3.50
ValSet2| 81 | 1.6 [0.098+0.002|4.64] 9.3 | 1.9 |0.096+0.002 [4.51
ValSet3| 94 | 0.2 [0.082+0.001|6.21] 10.8 | 2.0 | 0.081+0.001 |6.19
Val Set4| 14.1 | 0.2 |0.076+0.001{9.64] 129 | 1.6 | 0.073+0.001 |9.23

Allpr. | 12.1 | 1.9 ]0.089+0.002 |6.75]| 11.9 | 1.7 | 0.086+0.001 | 6.51

<A> R

Table 2.6. Performance of N4 on the validation dataset

With these results, which networks are tested on the test dataset (COF) is
determined. The best networks in each experiment are selected and tested on the test

dataset.

2.4.5 Test Results

In the previous sections, a number of networks are trained with the contact and
non-contact information collected from a set of proteins and these networks are tested
on another set of proteins to stop the training at up most generalization capability of the
networks so to set the weights of the networks. Now, a different set of proteins is used
to test these best performed networks whose weights are set. This testing enables us to
measure the performance of the networks for prediction of contacts in proteins. Protein
data set which is used for this testing is COF dataset (see section 2.3.3.).

Four different NNs are designed to predict the contacting residues in proteins and
the best performed architectures and weights are chosen from each type of the network.
N1 which is the simplest network is best performed with 20 hidden nodes; hence that
network is tested on COF dataset. Similarly, N2 is best performed with 15 hidden
nodes, N3 with 10 hidden nodes and N4 with 15 hidden nodes. Table 2.7 shows the

performances of these networks with set weights on proteins with different sizes and on
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all proteins in the test dataset. N4 with 15 hidden is the most successful network on the
test dataset. In order to assign an average accuracy and improvement over a random
predictor, the performances of N4 is averaged out over validation and test datasets.
Therefore, this predictor has an average 0.086 accuracy and 7 times better than a

random predictor.
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N1 with 20 hidden nodes

N2 with 15 hidden nodes

N3 with 10 hidden nodes

N4 with 15 hidden nodes

CC | FP CC | FP CC | FP CC | FP
<A> R <A> R <A> R <A> R

(%) | (%) (%) |(%0) (%) | (%) (%) | (%)
ValSetl |109]| 1.7 0.156+0.001 39915102 0.0862-0.004 1.90 9.0 0.8 0.14840.001 383 |12.6 3.6 0.16040.003 3.52
ValSet 2 4.5 1 0.7 0.085+0.001 4171 0.3 0.1 0.08040.001 399122104 0.08140.001 392173 | 1.3 0.094+0.002 4.52
ValSet 3 59 109 0.076+0.001 563|25|04 0.075+0.001 563|3.710.6 0.072+0.001 530|192 | 1.5 0.081+0.001 5.94
ValSet 4 95 [ 1.0 0.070+0.001 9.14193 |1.0 0.07140.001 9331 6.1 0.6 0.0663-0.001 8.50 (133 1.7 0.07840.02 9.85
All pr’s 8.1 | 1.0 0.078+0.001 6.68 | 6.8 10.8 0.0075+0.001 6.64 |52 |06 0.074+0.001 6.23 110.8 | 1.7 0.086+0.031 7.03

Table 2.7. The performances of the best networks on the test dataset COF

33




3. PROTEINS AS NETWORKS OF THEIR INTERACTING RESIDUES

In this part of the thesis, proteins are analyzed as networks of their interacting residues.
Small-world network concept is used to explain the characteristics of resulting residue

networks.

3.1 Overview

All biological processes require different kinds of protein molecules and the
biological activity of any protein is performed by the folded structure of that protein. At
physiological temperatures, folded proteins have conformational flexibility that is
essential for their biological activities. This flexibility is mediated by the concerted
actions of residues located at different regions of the protein [1, 21, 22]. Some residues
play a key role during these communications and without these residues the protein
would be non-functional [23].

In this project, structures of folded proteins are analyzed considering them as
networks. A network is a collection of nodes which are partially or fully connected to
each other. A node can be any entity such as a substrate in a metabolic network, a
station in a subway network or a neuron cell in our brain. We are surrounded by an
enormous number of small or large-scale networks in our real life. In any network, the
collection of connections between its nodes, which are called edges, give the structural
(topological) characteristic of the network.

Since networks are everywhere in our lives, understanding the efficiency, speed
and accuracy of the networks is crucial. On 10 August 1996, a fault in two power lines
in Oregon, USA led, through a cascading series of failures, to blackouts in 11 US states

and two Canadian provinces, leaving about 7 million customers without power for up to
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16 hours [24]. A computer virus named as Love Bug worm is the worst computer attack
to date; it spread over the Internet on 4 May 2000 and inflicted billions of dollars worth
of damage worldwide [24]. In these examples of failed networks, topology
(connectivity) and its fragility to random failures play a major role.

Structure of a network always affects its function. The speed, accuracy and
efficiency of a network are determined by its topology, in other words, structure of the
network. This sounds very familiar to protein scientists, since the structure of a folded
protein affects the function of that protein. This partly constitutes our motivation to
examine folded proteins as networks. A protein is converted into a network of its
interacting residues by using the Cartesian coordinates of its residues which are in turn
converted to a contact map [25]. In order to separate these networks from the networks
of interacting proteins, which are called protein networks, we name them as residue
networks. From this point on, a residue network refers to a folded protein converted into
a network of its interacting residues. Then, a number of network parameters is
calculated from residue networks. These parameters help us analyze the structure of a
protein as a network of its interacting residues.

A network can be regular, random or between these two extremes according to the
mode of its connectivity. Real-life networks that have evolved naturally are neither
regular nor random, but they have characteristics between these two extremes. In order
to understand the connectivity of the network, two main parameters are required;
characteristic path length (L) and clustering density (C). L is the average of the
shortest paths required to go from one node to another node within a network. It gives
an idea about the diameter of the network. C is a measure of local clustering within a
network. If a number of nodes are highly inter-connected to each other, then there is a
high probability to have a cluster in that /ocation of the network. It is a local property
and it gives an idea about the attack tolerance of the network. A regular network has
many clusters with long path lengths while random networks have shorter path lengths
with a small number of clusters. A small-world network topology, on the other hand,
has the best of both, with short path length and high C. Small-world network concept
was first introduced by Watts and Strogats [26]. Networks showing small-world
network behavior have short path lengths, which makes it easier to go from one node to
another. They also have high C, which makes the network tolerant to random failures of
a few numbers of nodes. It is shown that many real-life networks show these properties

and they are classified as small-world networks such as the World-Wide Web [27], the
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Internet backbone [28], the NN of the nematode worm Caenorhabditis Elegans [29] and
metabolic networks [30].

There are previous studies to examine the packing of proteins on global and local
scales. Residue packing in the protein interior has long been considered to be essential
to the native-like character, stability, and function of proteins [31, 32]. Raghunathan et
al. found that all residues conform almost perfectly to a simple lattice model for sphere
packing when a radius of 6.5 A is used to define non-bonded (virtual) interacting
residues. Side-chain positions with respect to sequential backbone segments are
relatively regular as well [32]. However, a regular network model for a protein cannot
provide short distances which are required for the concerted actions of residues at
different regions of the protein in very short time scales [1]. A recent study shows that
packing in proteins is on average similar to random packing of hard spheres
encountered in soft condensed matter [33]. Another study done by Liang et al. shows
that packing in proteins behaves like random spheres near their percolation threshold
[34]. Random packing of proteins would provide the short distances for the fast
information relay between residues, but this cannot warrant the high clustering similar
to regular packing. Thus, a special network model is required for proteins to explain
their conformational flexibility together with their highly packed globular structures.
Small-world networks characterized by their short path lengths and highly clustered
structures are candidate topologies to explain such properties of proteins. To explore
this phenomenon, a method is defined to consider a single protein as a network of its
residues.

In order to analyze proteins as networks, each protein is converted into a network
of its interacting residues. Figure 3.1.1 and 3.1.2 show two different representations of
residue networks. In figure 3.1.1, it is a three dimensional representation of a residue
network in which residues that are closer to each other than a given distance (7 A) are
connected by an edge. Connectivity is shown by black lines and adjacent neighbors are
shown by gray lines. In figure 3.1.2, all residues are aligned on an ellipse for a clearer
understanding of its topology and the connections between them are displayed. In this
figure, there are no spatial constraints on the place of residues. These figures were
drawn by a network drawing program named Pajek [35]. We calculate the L and C
parameters of such residue networks for a large number of proteins. To interpret these

results, they should be compared with those of random networks. For this purpose, each
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residue network is randomized by keeping the number of neighbors of each residue

constant, but changing the neighbors of each residue.

L7
¥ S0
.”"
AR
h '1 N
L >

Figure 3.1.2 Another representation of 3chy residue network. No spatial constraints are
used for the generation of this network.
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Proteins are also converted into residue networks using Delaunay Triangulation
(DT) which is a very powerful method for creating networks without having resort to a
cutoff distance. Network parameters of all these networks are calculated and compared
with those of actual networks in order to judge the characteristics of residue networks.
Results are also compared with other parameter sets.

Another property that is crucial for determining the characteristics of a network, is
the degree distribution; i.e. the distribution of the number of neighbors of all nodes in
the network. It is well-known that small-world networks display different degree
distribution patterns than random and regular networks [36]. Thus, degree distribution
of residue networks is also calculated and analyzed to understand the characteristics of
the residue networks.

Since contact maps of proteins are used to convert the latter to a network of its
residues, a cutoff radius has to be chosen to determine the interacting residues. Cutoff
radius is required to decide whether any pair of residues is in contact or not according to
the Euclidian distance between the selected atoms of corresponding residues. Therefore,
changing the cutoff radius changes the topology of the network. Because of this,
network properties of proteins are analyzed as a function of the cutoff radius at which
the networks are generated. The choice of a cutoff radius to form the contact map may
be arbitrary at times. A procedure that will decide on the edges connecting the nodes
automatically, free from a choice of cutoff radius is desirable. Such a procedure is
offered by DT [37, 38]. By using DT, one can generate a protein network without
resorting to any cutoff distance to determine the contacting residues, since in the
triangulated protein, each edge of the tetrahedral is also an edge connecting two
residues. DT has been used in proteins to understand the nature of packing and the

structure. [33, 34].

3.2 A Closer Look at Small-World Networks

We live in a world of complex networks. Any complex system can be modeled as
a network, where the vertices are the elements of the system and the edges represent the
interactions between them [39]. The global economy is a network of national

economies, the brain is a network of neurons, and metabolic networks are networks of
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substrates and products of metabolic reactions. Networks that exist in real life such as
WWW, food webs, Internet, protein networks in a cell are modeled and it turns out that
they represent unique properties which give them flexibility, speed and error tolerance.
Spreading of diseases through social networks or propagation of cascading failures
through large power grid or financial systems are also mediated by the networks with
unique properties mentioned above [40]. Therefore, understanding the underlying
mechanisms and principles behind these efficient networks will be fruitful in a
remarkable variety of fields [40] and will aid the design of more efficient networks.

Regular networks or random networks cannot explain the complex topology of
the real life networks. In the toy model of Watts and Strogats [26], there is a ring lattice
with n vertices and k edges per vertex as shown in figure 3.2.1. Each edge is rewired at
random with probability p, and in the course of this rewiring, graph is tuned between
regularity (p = 0) and disorder (»p = 1). As can be seen in figure 3.2.1, the regular
network is highly clustered while the random network does not have such clusters; on
the other hand, the latter has much shorter path lengths than its regular counterpart. The
network in the intermediate region has clusters like regular networks but shorter path
lengths like random networks. These networks are called small-world networks and
they are used to model and understand real-life networks.

Barabasi et al. explored the complex interaction of metabolic networks in 43
organisms [30]. They examined the topological properties of these 43 different
organisms based on data in the WIT database [41]. A metabolic network is built up of
nodes, the substrates, that are connected to one another through links that are the
metabolic reactions [30]. They show that metabolic networks are best modeled by the
small-world network model. They are robust and error-tolerant networks which
indicates that removing a few substrates does not affect the average shortest
biochemical pathway between the remaining nodes. Nervous system of C. elegans
which comprises 282 neurons and synaptic connections between them is mapped as a
network and the properties of the resulting network are analyzed. It is concluded that it
is a small-world network in the sense that its average number of steps to go from one
neuron to another is close to that of an equivalent random graph, yet it is highly

clustered than its random counterpart [40].
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Regular Small-world Random

Increasing randomness

Figure 3.2.1. The transition from regular to random regime in a simple topology [26]

Figure 3.2.1 displays a regular ring lattice and its rewiring procedure with
increasing randomness without altering the number of vertices or edges in the graph. A
ring of n vertices, is connected to its k nearest neighbors by undirected edges. In this
legend, there are 20 vertices (n = 20) and each of them is connected to 4 vertices (k = 4).
In the rewiring process, a vertex and the edge that connects it to its nearest neighbor are
chosen. With probability p, this edge is reconnected to a vertex chosen uniformly at
random over the entire ring, with duplicate edges forbidden. This process is repeated for
each vertex in the lattice. Then, the same process is repeated for more distant neighbors
until each edge in the original lattice has been considered once. For p = 0, the original
ring is unchanged; as p increases, the graph becomes increasingly disordered until for p
=1, all edges are rewired randomly. The claim in this figure is, for the intermediate
values of p, the graph is a small-world network; highly clustered (large C) like a regular
graph, yet with a small L, like a random graph [26].

To quantify these properties, there are two important network parameters playing

major role in determining the overall topology of any network; L and C.
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3.2.1 Characteristic Path Length (L)

One of the important quantities that may be calculated for networks is the L. It is
the typical average distance between every vertex (or node) and every other vertex [40].
“Distance” does not refer to the metric space between the vertices. It refers to the
minimum number of edges that must be traversed in order to reach from one vertex to
another vertex; i.e. the shortest path length between the corresponding vertices [40]. It is
a measure of the typical separation between two vertices in a graph.

The specific value of L of a network is not indicative of the topology of the
corresponding network. Rather, the scaling of the L with the number of nodes or the
average neighbor number of the nodes which is called “L scale” is indicative of
topology of the network. As mentioned above, a network can be tuned between order
(regularity) and randomness by changing the rewiring probability of each edge which is
p. Different values of p represent different topologies, and the graphs with different
sizes or average neighbor numbers but with the same p value are qualitatively same.
Hence, although the L of a set of graphs with different sizes and average neighbor
numbers, but generated with same p can vary over 1 to infinity, the scaling of the L with
the number of vertices (size) or average neighbor number remains the same. This means
that knowing the rewiring probability p of a small network enables us to obtain
knowledge of its much larger cousins whose properties cannot be computed directly by
using the L scale [40]. Also, it is a distinctive parameter of a set of networks with the
same wiring probability p, by giving important information about their topology.

Since L gives the typical distance required to go from one node to another in a
network [42], it also defines the diameter of the network. In regular networks, network
diameter is very high and it proportionally increases with size of the network n (L ~ n)
[43]. So, in large worlds, like regular networks, as the network grows, the typical
distance between the nodes is linearly increasing with number of nodes n. Conversely,
in the small-world regime, the network diameter increases proportionally to the

logarithm of n (L ~ In(n)) [43].
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3.2.2 Clustering Density (C)

In a network, how densely the vertices are neighbors of each other is an important
factor for determining the topology of the network. Clustering coefficient characterizes
the extent to which vertices neighbor to any vertex are also neighbor of each other. In
other words, clustering coefficient of a vertex is the measure of the inter-neighboring of
the neighbors of this vertex. C of a network is the average of the clustering coefficients
of every vertex in the network.

The clustering coefficient can be defined as follows; suppose that there is a vertex
with & number of neighbors. There can exist a maximum of n(n-1)/2 edges between
these k neighbors of that vertex. This occurs when every neighbor is connected to every
other neighbor of that vertex. The ratio of the actual number of edges between the
neighbors of that vertex to the maximum possible number of edges gives the clustering
coefficient of that vertex. In figure 3.2.2, clustering coefficient of one vertex with three

neighbors is calculated at different connectivities of its neighbors.

i" node i node i node
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Figure 3.2.2. Calculation of clustering coefficient of i vertex in a network

Clustering coefficient of a network determines its C. It is an important property
which gives us the information about the existence of clusters within the network.
Nodes or vertices having high clustering densities are candidates for being an element
of a cluster. Therefore, it is also a local property that quantifies the local regions of the
network. This parameter is crucial when a network is to be compared with its random
counterpart. Since random networks lack clusters, the C of an actual network gives an

idea of how its topology differs from a random one that has a low C.
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In order to explain how these two properties of networks are crucial for
determining the topology, here are some empirical examples. Three real-life networks,
film actors, power grids and neural network of C. elegans are taken into account and
their network topologies are explored [26]. Two film actors are joined by an edge if
they have been in a film together. This information was taken from Internet Movie
Database (http:\\us.imdb.com) in April 1997. For the power grid, vertices represent
generators, transforms and substations, and edges represent high-voltage transmission
lines between them. For C. elegans, an edge joins two neurons if they are connected by
either a synapse or a gap junction. L and clustering coefficient for all three networks are
calculated and they are compared to random graphs with the same number of vertices
and same average number of edges per vertex respectively. Table 3.1 shows the network
parameters of three networks and their counterparts. In the film actors network,
n=225,226 and k=61; Power grid, n=4,941 and k=2.67; C. elegans, n=282 and k=14.
The actual Ls of the three networks are near that of their corresponding random
counterparts. However, the clustering coefficients of the actual networks are much
higher than their random counterparts. Therefore, all three of them show the small-

world phenomenon in this perspective.

Network type | Lactual | Lrandom | Cactual | Crandom
Film actors 3.65 2.99 0.79  10.00027
Power grid 18.7 12.4 0.080 |0.005
C. elegans 2.65 2.25 0.28 0.05

Table 3.1.Examples of small-world behavior; L > L,4u40m but C >> C,undom

3.2.3 Degree Distribution

In any network, number of neighbors of the nodes carries valuable information on
the structure of the network. To quantify this, let p(k) denote the fraction of nodes that
have k links. Here £ is called the degree and p(k) is the degree distribution [24].

The simplest random graph models are presented by a bell-shaped Poisson degree
distribution [24]. In these networks, there are no rules or preference of incoming nodes
for attachment to already existing nodes, which results in a normal distribution. Real-

life networks, on the other hand, are analyzed and shown as small-world present
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different degree distribution patterns than randomly organized networks. Small-world
networks are shown to have a large number of nodes having few neighbors besides a
few number of nodes having many neighbors. Such connectivity results in a power-law
which is also called scale-free distribution, since there is no single scale to define the
distribution. To be scale-free is common but not universal for small-world networks
[24].

The network of movie-actor collaborators, the NN of the worm C. elegans, WWW
and the network of citations of scientific papers are scale-free, that is they have a
distribution of connectivity that decays with a power-law tail. Scale-free networks grow
in such a way that new vertices connect preferentially to the more highly connected
vertices in the network; this property is absent in randomly organized networks. Hence,
there are a few nodes with very high degrees dominating the topology of the networks,
which are called hubs and there are many nodes having few neighbors. P(k) distribution
decays as a power law P(k) ~ k7 in scale-free networks where y has most commonly
been observed between 2.1 and 2.4. Log-log plot of scale-free distribution conforms to a
line whose slope is y. Figure 3.2.3 shows how random and scale-free organizations
differ in the topology and degree distribution.

The growing character of the network is important to be free of scale or not.
Barabasi et al. correlate the growth of a network model with its degree distribution as a
function of time [45]. They found that network topologies at different time steps (hence
having different number of nodes) growing with preferential attachment show the same
degree distribution independent of time, hence the size of the network. Also, they found
that networks growing without preferential attachment eliminate this scale-free
distribution.

Why scale-free networks? The advantage of being scale-free is that the network
is resistant to random failures, because a few hubs dominate the topology [46]. So, the
probability of having attacks to the nodes having few links is higher because of the
abundance of these nodes and these attacks can be easily tolerated by the topology.
However, the weakness of this type of distribution is that any attack to the hubs might
lead to a drastic failure of the network as mentioned in section 3.2.2.

It is understandable that many real-life networks have scale-free distributions.
World Wide Web has a number of pages having high number of links and called hubs.
Therefore new nodes will link also one or more of these pages in order to be reached

easily by using the links of those hubs or to reach easily to other pages in the WWW.
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Figure 3.2.3. Degree distribution of random and small-world networks. The network on
the left is randomly wired and its degree distribution presents a Gaussian distribution.
The network on the right is a small-world network and its degree distribution is scale-

free [44].

Also, protein networks, where proteins constitute the vertices and interactions
between them (binding, catalysis or chemical modification etc.) defined as the edges of
the networks, present scale-free degree distributions [30]. In this topology, few proteins
have a high number of links (especially multifunctional ones), although most of them
have few interactions. Interestingly, it is found that the highly connected (or interacting)
proteins in 43 organisms are identical while the rest of the proteins are species specific
[30]. The error-tolerance ability of scale-free architecture can enable such an evolution
that preserves highly interacting proteins through time. Failures of highly connected
nodes cannot be tolerated because of their deleterious effect to a large number of
processes, causing the cell or organism to die. On the other hand, random failures of
proteins having few links can be tolerated easily, and they can be seen as means of
adaptability and flexibility. In addition, metabolic networks are shown to have a
structure whereby there are a small number of connections between the clusters of
highly connected nodes [47]. This topology gives a metabolic network modularity and

additional robustness. Modularity refers to the fact that there are a few links between the
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highly clustered proteins and these clusters can be seen as separate modules of cellular
processes. This is also validated by compartmentalization and modularity characteristics
of control of many cellular networks [48]. A failure of a highly connected protein
affects the multi-protein complex around it dominantly; other complexes or processes
are not affected as much because of fewer links between other clusters or multi-protein
complexes. Because of this, such connectivity gives metabolic networks an additional
robustness.

Recently, a mechanism is introduced for power laws in complex systems, which is
referred as highly optimized tolerance (HOT) [49]. HOT systems are robust to
perturbations they were designed to handle, yet fragile to unexpected perturbations and
design flaws. The protein network is a HOT system because of its scale-free
distribution. This network is very robust to random failures of nodes (proteins) in the
network unless those failed are not highly-connected crucial ones. As an example, RNA
polymerase which is a part the cellular machinery to transcribe DNA into mRNA in the
cell, binds to several activator and regulatory proteins, which makes it a highly
connected and crucial node in the protein network [21]. Failure of this protein is a very
rare event, but cellular protein network is very fragile to its failure, its result is
deleterious. In contrast, failure of several proteins can easily be tolerated by the protein
network in the cell by macro-level mechanisms such as increasing the concentration of
the activator molecules for the failed protein to reproduce it or switching to an
alternative cellular state which does not need that protein.

Being scale-free is not universal for small-world networks, but there could be
some constraints for being completely scale-free. This type of distribution is called
truncated power law since the data conforms to a scale-free distribution up to a sharp
cutoff of neighbor number, then the distribution of data is either an exponential or
Gaussian decay [50]. In the power-law regime, the number of neighbors of any node is
not limited. For some network cases, there are constraints which lead to fewer nodes
having the high degrees expected from a scale-free distribution. These networks present

a truncated power law distribution and their degree distribution is given by
y~x"Vexp(—x/b) (3.1.)
where b is the truncation.

These constraints could be the aging of the vertices: Some vertices with high

degree stop receiving new links. Although they remain in the network, they will no
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longer receive new nodes, thus limiting the preferential attachment of new nodes
expected in a scale-free distribution [50]. The network of movie actors is an example of
a small world with truncated power law distribution. In this case, famous movie actors
eventually stop acting in movies hence stop receiving new links in time. Although they
are still part of the network, they receive much smaller number of links than expected

from them. Figure 3.2.4a shows how aging affects the degree distribution of the

network.
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Figure 3.2.4. Physical constraints on P(k). (a) Aging of vertices (b) Cost of adding new
links to highly connected nodes is also a constraint for scale-free distribution. This
figure is adapted from Amaral et al. [50].

In the figure 3.2.4.a, circles show a scale-free distribution in which there is no limiting
factor for preferential attachment of new nodes to nodes with high degree. With slow
aging, nodes (denoted by blue squares) already having high degree stop receiving new
nodes which is called the aging of vertices. In this case, the power law is truncated at a
sharp cutoff. With fast aging, in the case denoted by green triangles, the distribution
nearly became Gaussian which means that vertices stop receiving new nodes so early
that they have no time to have high degrees.

Another constraint that limits the addition of new nodes to nodes of high degree is
the increasing cost of adding new links to the vertices of high degree. Nodes having
already high degree cannot receive new links because of reasons of efficiency [50]. This
is exemplified very well in the network of world airports. There are some airports which
are very busy and favored by all the airlines. However, because of space and time

constraints, these airports have a limited number of links although they are hubs of the
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network. Thus, they can no longer receive new links after a certain number of links.
This limitation truncates the scale-free behavior of degree distribution of the network
[50]. The effect of this constraint is exemplified in Figure 3.2.4.b. With no cost (denoted
by circles), we see the scale-free distribution which means that there are no constraints
limiting the neighbor number of nodes. With an intermediate cost denoted by blue
squares, the distribution is a truncated power scale which means that new links can be
allowed up to a cost value. With high costs, denoted by blue triangles, the distribution is
Gaussian.

In a recent study, a new model is developed to explain the mechanism of
truncated power law [51]. According to the model, systems having such distributions
perform on sub-optimal levels (opposed to HOT systems performing at optimum), but
they are more robust to any failure of nodes in the system (unlike HOT systems fragile
to unforeseen failures). Such systems are called constrained optimization with limited
deviations (COLD). COLD design is more tolerant than a HOT one by avoiding a total
ruin (see example in section 3.2.2 for RNA polymerase), and accepting some loss in the
average system performance [51].

The constraints to have truncated power law depend on the system or the network
analyzed. So, different systems have different types of constraints. In the movie actor
network, the aging of vertices is a constraint limiting the high degree nodes because of
aging or death. But, world airports network have no such constraint but in this case high
cost of adding new nodes is the constraint avoiding scale-free distribution. As we will
see in the residue networks case, we will have different constraint for this system.

In this chapter, important features of networks and the patterns of these features in
small-world networks are reviewed. To summarize, in order to decide whether a
network is a small-world, we need to consider the two factors listed below;

1) Small-world networks have Cs much larger than random networks, while Ls

do not vary much [26].
i1) Diameter of the network increases logarithmically with the number of
vertices [45].
After these conditions are satisfied, the main problem is finding the degree distribution
of the network. According to the distribution, it is necessary to explain the facts that
push the network to have such a distribution and find the constraints.
Our specific interest in this project is the protein molecule as a network of its

residues and we will do all the analysis listed above and explore what type of networks
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proteins are. In the following chapter, one can find the methodology to convert proteins
into networks, generate random networks and calculate the parameters of the resulting

networks.

3.3 Network Model for Proteins

In order to treat a single protein as a network, we develop a method to convert a single
protein into a network of its residues. We generate a random network which has the
degree distribution (see section 3.2.3) with the original network but with a different
connectivity. After generation these two networks using a single protein, we calculate
particular parameters to characterize them. This work is done for all proteins in the
dataset used for this project. In this chapter, all details of the methodologies are

mentioned above.

3.3.1 Protein Network Generation

We convert a single protein into a network, vertices are the residues of the protein
and edges are the interactions between them [25]. In order to link two residues in the
protein, they should be located within a given cutoff distance. Such residues are
assumed to be interacting and they are connected by an edge. In order to find all
interacting residues, we place the primary sequence protein into both column and row of
NxN matrix where N is the length of the protein. This matrix represents all possible pair
of residues in the protein. The position of each amino acid is identified by that of its C
atom. The distance between Cp atoms of residues in each pair are calculated and if their
distance is smaller than a selected cutoff distance, they are assumed to be interacting
with each other, in other words, they are in contact. Entry of the residue pair in the NxN
matrix (contact map) will be 1 if the corresponding pair is in contact, otherwise, it will
be 0. Hence, we have an adjacency matrix where each entry corresponds to a pair of
residues and its value identifies whether the residues in this pair are in contact or not,

depending on a selected cutoff distance. A number of networks for the same protein are
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obtained whose connectivities are different according to the cutoff distance selected. All

these networks generated with different cutoff distances are analyzed.

3.3.2 Random Network Generation

To interpret the network parameters calculated from protein networks, we need to

generate their random counterparts. While generating a random network, we keep the

number of neighbors of each residue the same, but change the neighbors of each

residue. In order words, we rewire the network randomly such that;

i)

i)

iii)

We take a residue n whose degree is k, and we break all connections of this
residue.

For each of its neighbors, a random number is generated between 0 and protein
length. Random numbers represent the residues indices of the residues in the
primary sequence.

The first randomly selected residue is taken and checked if it has enough
neighbors for connection. These two residues are connected if the degree of the
residue of random index is different from zero. On the other hand, if this residue
is not available, another random number is generated for that connection.

The number of neighbors of residue # and residue of random index is decreased
by 1, since that connection is randomized. We apply the same procedure for all
the neighbors of residue n. After completing the randomization of the
connection of residue n, this whole procedure is repeated for all the residues in

the protein.

There are some problems in this methodology while randomizing large proteins at high

cutoff distances. As the number of nodes and the degree of the nodes increase, the

number of possible networks having the same degree distribution but different

connectivity decreases. Under such circumstances, the randomization is began with the

residue with the highest degree and continue to the process with residues with lower

degrees. The randomization process is also iterated until the algorithm finds another

configuration desired.
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3.3.3 Protein Network Generation Using DT

Another method is used to convert protein into a network of its residues. This method
does not use any cutoff distance as a decision criterion for interaction, but it uses the
geometrical placements of residues in three dimensional space. This method is called
DT which is the dual of Voronoi. Given N points in a plane, Voronoi tessellation
divides the domain in a set of polygonal regions, the boundaries of which are the
perpendicular bisectors of the lines joining the points. Perpendicular bisector is the line
that is perpendicular to the line connecting Cg atoms (C, for Gly) of two residues and
intersects it in the middle. Polygonal region of a node consists of points in the domain
which are the closest points to this node than any other node in this domain. If one
connects all the pairs of points for which the respective Voronoi regions share a
common edge, one gets a DT. Also, circumcircle of each triangle does not contain any
other node than the set of this triangle [52]. Figure 3.3.1 shows a number of nodes, its

Voronoi tessellation, and the corresponding DT.

(a) (b) (©

Figure 3.3.1. (a) A set of points in a plane is shown. (b) Voronoi tessellation of the set
of points shown in (a). Each polyhedron of each node consists of the closest points to
the corresponding node than any other node in the set. (¢) The corresponding DT of the
tessellation in (b). Note that vertices of each triangle are the nodes in the set and no
triangle contains other nodes in the set except their vertices [53].

A set of nodes while using the DT is the Cp atoms (C, for glycine) of each residue
in a protein. DT of this set of points is generated. This is a triangulation in 3D, so there

are tetrahedrons instead of triangles. The program named as “qhull” is used and it is

available via anonymous ftp at ftp.ncsa.uiuc.edu|[52].
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3.3.4 Calculation of L

The shortest path length between any two residues of a protein is not directly
deducible from the topology of the network. To calculate this, the powers of the contact
map of the protein is used: if the shortest path between two nodes, i and j, is d-1, then
ijth entry in the a" power of the adjacency matrix (contact map in our case) is equal to
nonzero [54, 55]. Thus, the contact maps of the proteins are generated and the contact
map of each protein is multiplied by itself until all of its entries are nonzero. Then, all
the shortest path lengths are averaged out to obtain the L of the protein. The L of the
network generated by DT is calculated in the same way. After triangulation,
connectivity is converted into an adjacency matrix that is the contact map of the protein,
and the same procedure is applied to calculate L.

This step is the bottleneck of this project since it is the procedure that takes the

longest time especially for large proteins.

3.3.5 Calculation of C

As described in section 2.2., C of a network is determined by the average of
clustering coefficient of every node in the network. The clustering coefficient (C;) of i"

residue having n neighbors is given by

C = Actual neighboring between neighbors of i" residue (3.2)
: nx(n-1)+2 o

C of a residue network is calculated according to:
N

ZC.

C==— 33
N (3.3)
The same methodology is valid for calculation of random residue networks and

networks generated by DTs.
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3.3.6 Degree Distribution

Degree of the i"™ residue is obtained by counting the number of neighbors of that
residue by including or excluding connectivity to see its effect on the degree
distribution. The connectivity is excluded by disregarding its closest neighbors in the

primary sequence (i-1 and i+1) of any residue.

3.3.7 Radial Distribution Function

Since the cutoff distance is central in our understanding of network properties of
proteins, their radial distribution functions are also analyzed. Up to this point, the
methodology followed to treat proteins as networks and how to calculate specific
network parameters from these residue networks is summarized

The radial distribution function describes fluctuations in density around a given
atom [40]. It is the average number of atoms found at a given distance in all directions.
To calculate the radial distribution function, the procedure below is performed,

* The Cg atom of a residue in the protein is selected. A series of concentric
spheres, each of them are set at a small fixed distance (Ar) apart are drawn
around the selected atom

e The number of atoms inside each shell is counted and stored

* The number of atoms in each shell is divided by the volume of each shell
(4nr* Ar).

* Procedure is repeated and averaged for all Cg atoms.

Radial distribution function can be deduced experimentally from X-ray or

neutron diffraction studies. It is denoted as G(r) and calculated according to the formula

given below;
R n S(l")
G(r) = = 3.4
D=3 i (34)
where » denotes radius of the spheres drawn at each counting step, n is the protein
length, ry is the radius of the smallest sphere drawn, R is the radius of the largest sphere
drawn, Si(7) is the total number of Cg atoms found around every Cg atoms of the protein

in a shell of thickness Ar and distant to the i residue between » and r + Ar.
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Radial distribution function is used to correlate the network parameters calculated
for different number of networks with the favorable distances at which atoms reside
relative to each other (coordination shells). Peaks in the plot of radial distribution
function versus distance correspond to the place of coordination shells. The first peak
corresponds to first coordination shell which is the most favorable distance between Cg
atoms of residues, likewise for the second and third peaks. In the results and discussion
section, the places of these coordination shells and their correlation with our other

results will be mentioned in detail.

3.4 RESULTS AND DISCUSSION

In this study, 196 proteins are used whose sequence homology is less than 25%. This
protein set was used earlier to predict contact maps of the proteins by Casadio et al. [5].
These proteins are selected from protein database PDB by a PDB-select algorithm [56].

Proteins with their chains used are listed in Table B in the Appendix.

3.4.1 Radial Distribution Function

As mentioned in section 3.6, radial distribution functions of proteins for Cp atoms
of residues are found. The radial distribution function data coming from 196 proteins is
combined to obtain an average function for our dataset. The smallest sphere is 0.5 A,
the largest sphere used is 50 A in the calculation. The first and second coordination
shells specific for Cg atoms of residues (C, for glycine) are determined. Figure 3.4.1
shows a plot of the normalized radial distribution function G(r) averaged out for the
dataset. Normalization is achieved by dividing the number of atoms in each shell by the
total area under the curve.

The first peak in G(r), with maximum 5.5 A and extending to 6.9 A, corresponds
to the first coordination shell. The second peak, with maximum 7.3 A and extending to
8.6 A, corresponds to second coordination shell and the third region with multiple
maxima (9.9 A and 10.9 A) and extending to 11.8 A is the third coordination shell. A

cutoff value of ca. 7 A is used in many studies where coarse graining of the proteins are
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utilized. This value corresponds to the first coordination shell of the protein (6.8 A for
the set utilized here); i.e. the range within which residue pairs are found with the highest
probability. A great portion of the contribution to this peak is due to chain connectivity;
all (i, i+1) and most (7, i+2) pairs fall within this range. Non-bonded residue pairs also
exist in this coordination shell. However, the contribution of non-bonded pairs to higher
order coordination shells, which is usually neglected in studies employing a cutoff
distance in proteins, may also be significant (e.g. in the face-centered cubic lattice
structure, for which collisions can occur between third neighbors at intermediate
densities in the vicinity of phase transition, there are six neighbors in the second shell

and 24 neighbors in the third shell [57].
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Figure 3.4.1. Radial Distribution Function of Cg atoms

3.4.2 Scaling of L

One of the determining characteristics of small-world networks is the scaling of
the L with the logarithm of the size of the network. Since, residue networks are studied
here, the scaling of L of proteins with their sizes is investigated. There are different
residue networks at different cutoff distances, so the scaling analysis for a number of
networks generated at different cutoff distances and by using DT is made. Figure 3.4.2

shows the scaling of the L of 196 proteins with the size of the proteins. This data is very
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scattered and no information may be derived safely. To simplify the data, the proteins
are grouped according to their sizes such that proteins with length /420 are in the same
group, with M being a multiple of 20. The average Ls of the proteins in one group are
taken. Figure 3.4.3 shows this plot for four different cutoff distances and a curve fit is
made to each. The general equation of the curves is

L=axlog(N)+b (3.5)

Parameters of the above curve and goodness of fit (+%) values of the curves for different

cutoff distances are shown in Table 3.2.

2

Cutoff distance |a b r

5A 7.1+£0.7 -59+1.6 0.8
7A 3.7+£0.3 -2.8£ 0.6 0.9
9A 3.0+0.2 -28+04 0.9
12 A 20+0.1 -1.8+0.3 0.9

Table 3.2. Parameters of L vs log(N) plot in Figure 4.3.
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Figure 3.4.2. L versus protein length. Data is very scattered, no information can be
derived. Different cutoff radii display with different symbols denoted above.

As can be seen in figure 3.4.3, network diameter changes with the logarithm of
the size of the network. Hence, adding more nodes to the network does not affect the

mean of the shortest distance traveled to go from one node to another significantly. The
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network is organized such that new nodes make connections that connect them to the
existing nodes with high degrees. By this organization, newly coming nodes easily
adapt to the network structure and can transmit information easily by using their high
degree neighbors. In proteins, such an organization can also be seen. This might be the
result of the regular structure of the secondary structure elements of a protein and the

long-range interactions which bridge these elements within the protein.
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Figure 3.4.3. Scaling of L with protein length. Parameters of linear fit to the data is
shown in table 4.2.

Also, networks using DTs from proteins are generated and the scaling of the L
with the size of these networks is investigated. The L of all proteins in the dataset are
calculated and plotted with respect to protein size. Again, since the data is very
scattered, we group our data as described above. Figure 3.4.4 shows the scaling of L
with protein size. The formula of the best-fit curve is

L =1869 %log N —1.346 (3.6)

and goodness of fit (%) is 0.968.
These results indicate that residue networks have Ls which are scaled with the
logarithm of the size of the proteins. One argument for this scaling can be as follows:
interaction of residues determine the connectivity of the residue network, as the protein

length increases, interaction of residues are not decreasing, there are still connections
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(or interactions) that mediate the shorter path lengths. Such a behavior could be the
result of the globular or high packed structure [58] of proteins, because loosely-packed

structures cannot provide short path lengths as the network size increases.
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Figure 3.4.4. Scaling of L versus N in network generated by DT

3.4.3 L in Actual and Random Networks

The Ls of small-world networks and of their randomly rewired counterparts do not
differ much while the C differs significantly. In this section, we investigate how L
differs between residue networks and their random counterparts. For this analysis, first
each of 196 proteins is converted into networks using different cutoff distances. Then,
the Ls of these networks are calculated and averaged over all residue networks to
calculate L at each cutoff distance. The mean of L of proteins at each cutoff distance
versus cutoff distance is plotted. This is shown in Figure 3.4.5.and labeled with blue
squares. The counterpart of this data from the randomized networks is also shown with
circles.

We also calculate L of residue networks generated using DT. This is shown by a
solid black line spanning the mean and the standard deviation of the edge distances. We
calculate distance of each edge in all residue networks generated by DT. The latter is

the average of the edge distances of the triangulated which is 9.2 + 1.8.
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Thus it is observed that, one important property of small-world networks i.e. that
L is on the same order of magnitude as random networks. However, the clustering
coefficient also has to be analyzed to make a conclusive statement on the type of the

network.

—a— Actual L |—e— Random L | —— Delaunay L
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Figure 3.4.5. L in actual and random networks. Plots for all cut-ff radii is shown in the
inset figure.

3.4.4 Clustering Coefficient in Actual and Random Networks

Clustering coefficient is a measure of neighbourhoodness of neighbors of any
node in a network. In small-world networks, clustering coefficient is high because if
node A is linked to node B and B is linked to node C, there is an increased probability
that A will also be linked to C [59]. On the other hand, random networks are loosely
clustered; there is no bias in the connectivity of the network as all the connections are
random. To find how residue networks clustered, we calculate the clustering coefficient
of 196 residue networks generated at different cutoff radii. Figure 3.4.6 displays average
C at different cutoff distances (blue squares). The clustering coefficient of randomly

rewired networks is calculated at different cutoffs (red circles).
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The C of actual networks increases faster than of their random counterparts with
increasing cutoff distance. There is one order of magnitude difference between the
clustering densities of actual networks and their randomly rewired counterparts. The C
of actual residue networks gives a very good fit to a five degree polynomial (R*=0.96)
whose inflection point is at 6.7 A As the cutoff radius increases, the number of
neighboring residues increases expectedly. Below 6.7 A, new neighbors that are joining
as the cutoff distance becomes larger increase the C significantly. However, newly
joining neighbors do not affect the C of network as much. Moreover, the inflection
point of this polynomial curve is where the first coordination shell ends (figure 3.4.1).
This gives us an important clue about the organization of residues in proteins: Main
clustering around a residue occurs between its first coordination shell neighbors and
interactions within a cluster are mostly functionally and structurally important ones

since they are between the neighbors occurring in the first coordination shell.

—s— Random C | —e— Actual C |— Delaunay C
[

0.0 :
4 6 8 10

Cut-off radius A

Figure 3.4.6. C in actual and random networks. Plots for all cutoff radii are shown in the
inset figure.

In addition, most of the interactions present in these clusters are those within the
secondary structure elements making them important factors that affect the formation of

clusters.
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Random networks lack such clusters which makes them weak to attacks to any
node in the network. Networks having large clusters and random links (shortcuts)
between these clusters respond to attacks much more strongly since losing one or more
links within a cluster is more tolerable [46]. Having high C gives networks error
tolerance ability. Since secondary structure elements are mostly responsible for the
clustering within a protein, together with their stabilizing and functional roles of them,
they also can help the protein to tolerate attacks to single residues occurring in the
crowded environment of the cell; e.g. random collisions between atoms.

The logarithmic scaling of L with protein size in actual protein networks is
observed in Section 3.4.2. Also, the differences between the Ls and clustering
coefficients of actual protein networks and their randomly rewired counterparts are
shown in section 3.4.3 and 3.4.4. The Ls of actual and random networks do not differ
much, although their clustering coefficients differ significantly. Therefore, it is
concluded that residue interaction based protein networks show small-world network
behavior. One arrives at the same conclusion by comparing the Delaunay Triangulated
proteins with their random counterparts.

It is worth noting the fact that the transition region in the C curve (Figure 3.4.6)
ends around 9 A, and that the correlation length obtained from a single exponential fit to
the L curve (Figure 3.4.5) is 11.8 A shows that the second and third coordination shells

are important for local and global interactions, respectively (Figure 3.4.1).

3.4.5 Degree Distribution

The degree distributions of small-world networks are different from those of
regularly and randomly organized networks (as mentioned in section 3.2.3). Next, the
degree distributions of residue networks are determined.

Instead of presenting degree distributions of each residue network separately, a
different methodology is applied to represent the degree distribution over all proteins in
one graph. For each cutoff-distance that residue networks are generated, residues having
k neighbors in each protein are counted and normalized by dividing by the length of the

protein. Then, the degree distribution values are calculated according to,

196

P(k) =y P,(k) (37
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for each k where . 131 (k) is the normalized value.

Log-log plot of degree distribution of residue networks generated at 7 A is shown

in Figure 3.4.7.

—e— without connectivityat 7 A —=—
T T

with connectivity at 7 A
T T T T

-0.6

-1.0

-1.4

log(P(k))

-3.0

-3.4

-3.8¢ ! ! ! ! ! ! ! a
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

log(k)

Figure 3.4.7. Average degree distribution of residue networks generated at 7 A with and
without connectivity.

In the figure, data denoted by blue circles include the primary sequence
neighboring which is the connectivity information and the data denoted by red squares
exclude the connectivity. Data with connectivity have a lower tail than that of without
connectivity, since connectivity puts extra neighbors to every residue; residues having a
low number of neighbors decrease and the average neighbor number increases. For both
curves, it is observed that there is a fast decay of neighbor number having high degrees.
This is a sign of truncation of power law because of physical constraints such as the
excluded volume which put limits on the number of neighboring of residues.

7 A is chosen to present the degree distribution of residue networks, because this
value encompasses the first coordination shell in which functionally and structurally
important interactions are most likely to occur. Since residue networks are built on the

interaction of residues, it is convenient to examine the distribution at this cutoff radius.

62



Moreover, most studies which utilize a coarse-grained approach to the treatment of
proteins were performed at this cutoff radius [57].

To understand how degree distributions differ between networks generated at
different cutoff radii, three degree distributions are shown in Figure 3.4.8. Cutoff
distances are chosen according to the peaks of radial distribution function; 5.5 A is the
peak of the first coordination shell, 6.9 A is the end of first coordination shell and 11.8
is the end of third coordination shell. All the curves in figure 3.4.8 include the

connectivity information.
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Figure 3.4.8. Log-log plot of degree distribution at three different cutoff radii.

The distribution is a truncated power law distribution at 5.5 A, red dashed line is a
curve fit of truncated power law equation shown in section 3.2.3 with an 7 of 0.99. At
other cutoff radii, although the curves have a lower tail at small neighbor numbers, there
is a truncation as the neighbor number increases. This lowering of the tail is due to the
increased effect of connectivity at large cutoff radii. In all distributions, there is a sharp
cutoff at which the truncation begins as in the case of e.g. scientific collaboration
networks [60].

The constraints preventing addition of more nodes to highly connected nodes
after a certain neighbor number in residue networks give important clues for the

structural organization of these networks. One constraint could be the excluded volume
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effect. The number of residues that could be in the hypothetical sphere of a given radius
of a residue is not unlimited. This is also valid for residue networks generated by DT
since this networks shows the average edge distance which corresponds to a
hypothetical sphere of radius of 9.2 A drawn around each residue of the protein of
interest. Polarity of residues also affects neighboring. Some residues cannot come close
to each other because of the different polarity although their size allows the
neighboring. The regularity of secondary structures of folded proteins might constitute
another constraint for addition of new nodes to already highly connected nodes. A
regular structure, like alpha helix or beta sheet, has a range of number of neighbors, and
they cannot have more or less neighbors at given distances because of the regularity of
the structure.

As discussed in section 3.2.3, small-world networks may have organized in two
ways; small-world networks which is performing at optimal levels and error-tolerant
unless these errors not attacking the crucial nodes are HOT systems, and small-world
networks which are performing at sub-optimal levels but more tolerant to all kinds of
attacks are called COLD systems. HOT systems have a degree distribution perfectly
conforming to a power law whereas degree distribution of COLD systems conforms to
truncated power laws. Residue networks can be classified as COLD systems because of
their truncated power-law distribution. The strength of COLD design comes from the
fact that there are less highly crucial nodes hence decreasing the probability of incoming
attacks to these nodes. Since residue networks have these characteristics, they should
also be more tolerant than HOT systems such as protein networks [30]. The constraints
which could be limiting factors for neighbor number of certain residues are mentioned
before. Excluded volume effect is an intrinsic limitation for the system; for any types of
design, this constraint is always present. So, this effect can be seen as a cause of a
COLD design in proteins or any type of macromolecule in general. The secondary
structure elements which can also be classified as constraints are important for design.
They control the number of neighbors of residues, creating a more stable and regular
local environment. Stability is an important criterion for the protein to preserve its
folded state and also, these elements are the means by which many functional processes
performed by proteins such as binding. Thus, even in the absence of excluded volume
effect, residue networks could not be a HOT system since such a configuration would

not allow a stable and functional environment for the residues.
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4. CONCLUSIONS

This thesis is aimed at predicting and understanding the protein structure using
contact maps of proteins. Results show that residue contacts can give important
information about the structure of proteins. The detailed conclusions of the parts of this

thesis are mentioned in the following sections.

4.1 NN Predictor for Contacting Residues

Contacting residues in a protein are predicted using NNs. A multilayer perceptron
with backpropagation algorithm is used for finding a correlation between the input and
output of the network, which is used as a predictor if there is any. The inputs of the
predictor are the selected physical and chemical features of residues along with or
without of the selected features of their neighbors, the sequence separation along the
chain and the length of the protein. The output of the predictor is the contact propensity
of the residue pair input. In the previous studies, protein-based information was mainly
used to predict contacting residues; residue-based information was not used much.
Casadio et al. used evolutionary data and average hydrophobicity of residues to predict
contact maps of proteins and they are six times better than a random predictor.
Conversely, we encode size, charge and hydrophobicity information of residues to
predict the contact propensity of residue pairs in a given content and separation along
the primary chain. Our results show that this encoding is more than seven times better
than a random predictor. Since the performance of the predictor developed here is better
than the previous studies, it can be concluded that residue based information is
relatively more correlated to contact propensity of residues of interest than other

protein-based encodings used before.
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Two identical networks are fed with different information and their performance
are compared. One network (N1) is fed by individual size, charge and hydrophobicity of
the residue pair of interest, while other network (N2) is fed by size, charge and average
hydrophobicity over a residue window of seven neighbors. The results show that the
network fed by individual hydrophobicity of residues is better than that fed by average
hydrophobicity. Taking the average hydrophobicity of primary sequence neighbors
might represent the local environment of the residues, and is expected to improve
network accuracy since the local environment of the residues is very important for
contact decision. However, it is observed from the results that averaging the
hydrophobicities is not a proper way to encode the local environment of residues.
Although hydrophobicity is a scalar quantity, it is the degree of non-polarity of a residue
and it changes along the residue atoms. Also, the relative positions of the residues
determine their non-polarity effects on each other. Two residues that are near along the
primary chain but directed at different sides of the chain do not feel each other, although
the averaging method assumes they do. Therefore, individual hydrophobicity
information is more correlated with the contact propensity, but has the disadvantage of
not expressing the effect of the environment.

A new method is developed to encode the local environment of residues. In this
encoding, selected features of the three neighbors on each side of the residue of interest
are used to represent the local environment. This network shows the best performance;
it is seven times better than a random predictor. Based on the better performance of this
representation, it can be said that introducing the size, charge and hydrophobicity
information of neighboring residues as separate input nodes rather than averaging the
selected features is a more appropriate strategy. Also, it is safer than averaging, because
no information is lost if sufficient number of hidden nodes is used to learn the
neighboring information. Since each feature of the neighbors is set to an input node,
they are more successful in representing the effect of the neighbors to the residue of
interest.

Our purpose in this work is not to develop a contact map predictor for practical
purposes. Rather, we attempt to understand the factors influencing the contact decision
of two residues in a given protein. It is found that encoding of physical and chemical
features of residues and those of their neighbors improves the prediction. Therefore, this
new encoding gives an insight on the factors affecting contact decision in the folding

process.
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Although, our results are compared with the result of Casadio and Fariselli [5],
this comparison is not completely accurate since our contact definition is different than
theirs. Here, there are approximately 98.4 times more non-contacts than contacts while,
this ratio in their study is 60. This explains why our accuracy (<A>) values are lower
than their accuracy values. However, since the improvement over a random prediction
is less dependent on these ratios, these values are used for comparison.

N1 which has eight input nodes and encodes the size, charge, and individual
hydrophobicity of the residue pair of interest has a lower prediction capability than N4
which encodes the local environment of residue pairs. This poor performance is due to
the degeneracy of the training data, because the same residue pair with the same global
properties can be both in contact or non-contact. This fact makes the learning process
difficult for the network. Even architecture with enough complexity cannot achieve a
remarkable generalization capability over all datasets of the problem. Therefore, a
combination of features is required to separate contacting and non-contacting pairs, to
present extra information to the predictor as well as to differentiate and learn these two
cases. Encoding of local environment by using the physical and chemical features of
neighboring residues serves this purpose.

To summarize, although our attempts to predict contacting residues in proteins is
too weak to use for fold or structure prediction, a better prediction is attained by using
physical and chemical features of residues and their neighbors. It adds a new dimension
to this area by using parameters which were not considered before. Our predictor can
achieve better results with the combination of other methods to contribute to the folding

and design problems of proteins.

4.2 Characterization of Residue Networks

In the second part of this thesis, a protein is converted into a network of its
interacting residues and it is found that this network is neither regular nor randomly
organized, but it is a small-world network. Small-world networks are advantageous over
both their random and regular counterparts, since they have shorter path lengths and

error-tolerance. So, residues in folded proteins are not randomly organized; rather, their
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distributions in space achieve a number of smart interactions that conform to a small-
world topology and mediate their stability and functionality.

To perform their functions, proteins often exhibit a significant degree of flexibility
and dynamics, which may occur on a wide range of time scales from femtoseconds to
seconds [61]. Flexible parts, such as loop regions and side chains, are often involved in
mediating specific protein-protein and protein-DNA interactions by changing their
conformations upon establishment of specific contacts. As an example, let’s take
calmodulin molecule, which is a Ca™ binding protein, crucial for muscle contraction. It
has been shown that this molecule undergoes a large conformational change on the
nanosecond time scale. In this conformational change, its central a-helix unwinds and
two of its Ca™ binding domains reorient themselves to make the molecule accessible for
binding to target molecules [62]. Such conformational changes occurring on very short
time scales require concerted actions of atoms and fast communication between
residues. The latter cannot be achieved via the primary sequence of the protein; rather,
shortcuts between residues generated by the certain folds of the protein are needed. If
residues were all regularly packed in proteins, they would not mediate such short
communication pathways between residues since regular networks always have longer
path lengths due to a lack of shortcuts (see figure 2.1.). Thus, proteins form a structure,
which provides fast information relay using residue interactions that are not necessarily
adjacent in the primary sequence, but are close in the tertiary structure. In other words,
proteins can carry information between remotely located regions by using a very small
number of residues. Also, information relay has to be optimized on femtoseconds to
nanosecond time scales and this might explain why proteins evolve to have structures
whose interaction network conforms to the small-world topology.

Another important feature of small-world networks is their tolerance to random
failures. Small-world networks having scale-free (power law) degree distributions,
which are also called HOT systems, are tolerant to failures of nodes having low degree
but are fragile to error on nodes having high degree. In turn, they perform at optimal
levels. Protein networks in cells are HOT systems, since they are required to perform at
optimal levels, because of the complexity of the tasks they execute.

In contrast to protein networks, it is shown here that the degree distribution of
residue networks conforms to truncated power law that makes them COLD systems.
Proteins have modular structures with o helices, [3 sheets or loop regions. These

structural elements are regular and each residue within one of these elements has a
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distinct number of neighbors most of which are interconnected; moreover, long-range
interactions tie remote regions together. These structures can be seen as clusters of the
residue networks. Residues have approximately the same number of neighbors; if the
environment is crowded and the size and polarity of residues are favorable, residues
interact more. This effect could be seen in the circular representation of residue network
of 3chy protein (figure 2.2). The interactions are clustered as patches, which could be
seen as the interactions between the secondary structure elements of the protein. Thus,
proteins are COLD systems, because of their modular structural requirements.

This structure should be advantageous to proteins since it has been preserved over
evolutionary time. It should be more important to tolerate attacks to any residue for
proteins, since they are COLD systems. However, there is a paradox here. Some
proteins, especially the ones that are functioning by binding over a few residues are not
tolerant to attacks to these nodes; once these fail, the protein will be non-functional.
Hemoglobin is a very common example: Changing one specific residue (Glu — Val
mutation) has drastic effect over the structure of the protein. On the other hand, proteins
which function by using a larger region, such as their loops or alpha helices (e.g. DNA
binding proteins) are more tolerant to residue substitutions. So, there may be some
differences when one looks at the degree distribution of these two different types of
proteins; it might be expected that proteins which perform their functions via a small
number of residues might conform to a HOTter design while others resemble COLD
systems. Even in the hemoglobin example, the fragility of the system to failure of one
residue is not enough to make it HOT design, because such crucial nodes exist in COLD
systems, but their numbers is lower than that of HOT systems. Mutational studies and
high number of proteins with high homologies confirm that proteins do not have a high
number of hot and dangerous spots. Mild mutations in the DNA sequence that code a
protein do not result in a total loss of function. Accumulation of such changes might
generate a protein which can bind to a different molecule or carry out a different

function. Hence, evolutionary plasticity of proteins requires a COLD design of proteins.
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APPENDIX

1531 lesc Imhc A Ireg X | 2bnh

labr B letc 1mhl C 1rfb A | 2bop | A
lade A lexg Imla 1rib A 2bpa 2
laep 1fbr Imml Irva A | 2bpa 1
laps 1fnf Immo G Iscm | C 2cas

larb 1ghr Immo B Iscu B 2¢pl

1bbt 3 1gln 1mol A Ises A | 2end

Iber A 1gpr Imsc Ismn | A | 2gmf | A
1bip 1hbq Imse C Isrs A 2gst A
lbnd | A lhce Imut Isva 1 2kau B
1bpl A lhen B Inal 1 Isvc P 2liv

1bpl B lhge A Inar Isvp A | 2mev 1
1bri C lhjr A Inhk L Itam 2min | B
lbvp 1 lhng | A Inoy A 1tbr R 2nac A
1bw4 lhrz A lomp 1tfs 2ncm

Icau A 1hsl A 1pba 1thv 20lb A
Icau B lhtm | D 1pbn 1thx 2pii

lcew I lhuc B Ipcr H 1tii D 2ple A
Ichd 1hul A Ipdn C Itiv 2pol A
Ichk | A lhvk | A Ipgs 1tlk 2rsl B
Icks B lice B 1pi2 Itnr A 2scp A
lecmb | A lice A 1pkm Itpg 2sil

Icns A lilk Ipkp 1trr A 2tgi

lenv lirl Ipls 1ttb A | 2tmv P
Icol A 1knb 1pne lurn A 2vil
Icom | B lkny | A 1pnk A lvca A 3cd4

Icse I 1kpb A 1pnk B 1vhr A 3pga 1
Ictn lkpt A 1prc M lvin 3pte

Icus 1117 1prc C lvmo | A 3sic I
lcyu 1lau E lprt F 1was 3tgl

1dlc 1len A lprt D 1xaa 4gcr

1dpb 11fb 1prt B I1xyz A 4rhv 3
Idsb | A 1lis Iptd lypt B Stim | A
Idup | A 11ki Iptv A lytb A 6fab L
Idyn | A 1lpe Iptx lyua 8ruc I
lecp A 11ts D Ipve 2 1zaa C 8tln E
lede 1lts A Ipve 1 2aak

ledg 11xa 1pyp 2abd

leri A Imal Irbu 2acg

lerw Imda | H Irch 2blt A

Table A. Proteins in the LRN protein subset are shown by their PDB codes and chains.
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LRN |_|lhen |B|lpkm lypt |B|laih |A]|lgds locc | D | Iwho 1doi 4sbv | A | 1fim | A | left
1531 lhge | A | lpkp lytb | A | lair lgnd locc | B | Ixel 3chy latl | A | lfnc 1phg
labr |B|lhjr |A|lpls lyua lako Igot |B|[locc | C | Ixer 193L lgen 2por 1gpg
lade | A|lhng |A|lpne 1zaa | C | lakz Igow |A|locc |A |1xik |A|lrcp | A liae lirk 2amg
laep lhrz | A|lpnk | A |2aak lalk | A|lgpl lofg | A | Ixjo 2aza | A |2gsq 8abp lkbp |A
laps lhsl | A|lpnk |B |2abd lalo Igtm |A|lotg | A | 1xsm lhmt Isac | A |2dIn 2dkb
larb lhtm |D|lprc |M | 2acg lamm lgym loun | A |[1xva | A | lhtp lctb 2cte lcsh
Ibbt | 3| lhuc [B|lprc [C |2blt |A|lanu lhav | A | 1pax lyas |A|lslt |B|1dyr lgca 4enl
Iber |A|lhul [A|lprt |F |2bnh laoc | A | lhep Ipbw | A | 1zxq Ipoc 1fc2 | D | 1sbp lhga |A
1bip lhvk |A|lprt |D |2bop | A |lapy |A | lhth Iped | A [ lzym | A | Isnc 1fua 8atc | A | Inhp
Ibnd |A|lice |B|lprt |B |2bpa | 2|lasz |A|1lihf |B|lpmi 2abh lgtq | A | 2abk 2cmd lgcb
Ibpl |A|lice [A|lptd 2bpa | 1| laxn liml 1pms 2arc | A | lpbx | A |9pap lhvd 1pii
1bpl | B | lilk Iptv | A |2cas 1beo liol Ipot 2bbi 3sdh |A|1thj |A]|lgsa 2hpd | A
Ibri | C | lirl Iptx 2cpl Ibhm |A|lirs |A|lppr | M |2fcr lash lvid ltag 3grs
Ibvp | 1| lknb Ipve | 2 |2end Ibmf | D| liso Ipsc 2fha lvsd 2ayh 2acq Igph |1
1bw4 lkny |A|lpve | 1|2gmf |A|1bmf | A | livd Ipud 2hpe | A | 2fal lgpc Itca Isat
lcau | A|lkpb [A|lpyp 2gst | A | 1bpl ljac |A|lpue |E |2myr 8atc | B |2brd Itah |[A|ldnp |A
lcau |B|1lkpt |A|lrbu 2kau |B |1bpy |A | ljer lqap | A | 2pfl 2hbg 2ak3 | A | lquk 2pgd
leew |1 | 1117 Ircb 2liv lbro | A | ljpc Igba 2pld | A|[2mta | C | Infp 2pia 6taa
Ichd llau |E |lreg | X |2mev | 1| 1btv Ijsw |A|lrai |D |2tbd Isra Ipya |B|lpoy | 1 |1dpg |A
Ichk |A|llen |[A|lrfb |A [2min [B|1lbur |T | ljud Ircy 2tys | B | ljev 3pgm Iqor |A|lcow |A
Icks | B | 1lfb Irib | A |2nac |A|lcdg 1jvr Irga 4rhn 2gdm 1din lhmy 1byb
lemb | A | 1lis Irva | A |2ncm lcem lkap |P | lrgs COF |[lafb | 1]1dhr Inif Ismd
lens | A | 1lki Iscm |C |20lb | A | lcex lkaz Irie Imls lgdo | A | larv 8cat | A
lenv 1lpe Iscu |B | 2pii Ickm | A | 1kit Irmd Srxn Iphr Icyd |A|latp |E | 1dpe
Icol |A|llts D|lses |A |[2ple |A]|lcof 1klo Irvv | 1] laaf lesl Ibmt |[A|[2dld |A|1lmmo |D
lcom | B | 1lts A|lsmn |A [2pol |A|lcpo 1kob | A | Iryc 1dtx 1hlb 1 mrj Ipnr | A | lcrl
Icse |1 |llxa Isrs |A |2rs] |B | lcpq 1kuh Iryt ledr ljap |A|lctm 1kif | A | lcle
lctn Imal Isva | 1|2scp |A|lcrk |A|lkve |B|lsei |A |lcea |A|lvhh Inba | A | lmbb laoz | A
lcus Imda |H|lsve |P |2sil lesn lkxu Isft | A [lhen | A | lbef |A| 1plg 2omf 3pmg | A
lcyu Imhc |A|lsvp |A |2tgi lecyw 1168 Ishc | A | lpcn leyx Itys Irpa 2kau | C
1dlc Imhl | C | Itam 2tmv | P | 1def 11bd Isme | A | 1fim lobp |A|ldea |A|1fkx 4aah | A
1dpb Imla Itbr |R |2vil Idek |A[llbi |A|lstm |A | lumu Istd leny 2mnr Ipox |A
1dsb | A | Imml 1tfs 3cd4 Idhp |A|llbu Item | A | Imhl 3dfr 3fru |Aflece |A|laor |A
Idup | A| Immo | G| lthv 3pga | 1] 1div Ilck |A|1tdt |A |9mt 5p21 Indh lvsg | A | lsly
Idyn | A | Ilmmo | B | 1thx 3pte 1dkz | A|1lel 1tf4 | A | 2psp Ircf 2dri Ipea 1gof
lecp |A|{lmol |[A|1tii [D |3sic |I |[ldor |A|1lid 1tfe Iput Imka | A | 1dih ledo |A|ltrk | A
lede Imsc Itiv 3tgl ldos | A | 1lit Itgx | A |2fd2 Irci Iqrd | A [2btf | A | lcyg
ledg Imse |C |1tk 4gcr ldrw rv luae 11kj Lprr 2hhm | A | lhpm 1lcf
leri |A|lmut Itnr | A |4rhv | 3| 1dxy 11zr luby 2cdv Ifcd |[C|ldaa |A|1lbuc |A|loac |A
lerw 1nal 1| 1tpg Stim | A | leal 1mbd lucw | A | Imsa 2prd 2prk lubs |B [2tmd |A
lesc Inar Itrr |A |6fab |L |lebp |A|Imhy |G| lulp Irtp lcid Inip |A|lnsc |A|8acn
letc Inhk |L |[1ttb |A |8ruc |I |[lecr |A|lmsf |C | luxy lcer 1dlh | A |2ebn Ipbe 1gpb
lexg Inoy |A|lumn |A |8tln |E |ledh |A|lmty |B| lvcc 2hmz | A | llfa | A | 1tml 4xia |A|lbgl |A
1fbr lomp lvca |A | TS97 lemk Infa Ivhi |A |[Isri |B|2stv lhan Isvb
1fnf 1pba Ivhr | A | laa6 letp |A|lntk [A|1lvls 1bp2 1xnb Iscu | A | loyc
1ghr 1pbn lvin laa8 | A | leur Inkl lvnc 2mad | L | 2sas lamp linp
Igln Ipcr |H|1lvmo | A | lad2 1fbt | A| lnox Ivok | A | 4fgf 1gky 2cyp Ichm | A
lgpr Ipdn | C | lwas lad3 | A | Ifib Inpo |A|lvsc | A | Trsa 1dlh | B |2ora Ifed |A
1hbq Ipgs 1xaa laft |A|1fro |A|lnsy |A|lwba 2phy lisc |A|lsch |A|loxa
lhce 1pi2 Ixyz | A |lagr |E |lgal Inzy | A|lwhi 2ccy |A|ltup |B | lett Ipsd |A

Table B. Three protein subsets used in the first part are shown with their PDB

codes and chains.
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Validation Proteins
Val Set 1 Val Set 2 Val Set 3 Val Set 4
Protein Protein Contact Protein Protein Contact Protein Protein Contact Protein Protein Contact
Name Length Number Name Length Number Name Length Number Name Length Number

1tgx 60 82 Ixer 102 176 laih 170 174 lecr 305 372
1psc 69 103 Irga 104 150 Iwba 171 318 1dor 311 521
2bbi 71 77 Imsf 105 73 2fha 172 154 Infk 312 513
lhep 75 77 2pld 105 104 2fcr 173 275 1ppr 312 300
liml 76 86 1jpc 108 174 lamm 174 323 lucw 315 475
lcdq 77 111 1jer 109 159 laoc 175 255 Ickm 317 504
lkve 77 85 lirs 112 157 1fro 176 194 2abh 321 551
lvce 77 108 4rhn 115 144 Infa 178 207 1pot 322 492
1nkl 78 72 Irmd 116 126 1pbw 184 184 laxn 323 367
Inpo 81 146 1hfh 120 209 1fbt 186 265 1bpy 326 404
lpue 88 85 2pfl 121 183 letp 190 249 Isme 329 619
1ihf 94 70 1whi 122 229 Iryt 190 199 1dxy 332 478
1who 94 135 1bur 123 131 1vok 192 284 1xel 338 564
1beo 98 107 lotg 125 116 1zxq 192 351 1got 339 697
2hpe 99 140 loun 125 152 1shc 195 261 laa8 340 526
leal 127 170 1vsc 196 314 luxy 340 588

1rie 127 208 1bhm 198 292 1xik 340 364

lagr 128 117 lcex 200 333 lafr 345 391

lepq 129 113 Inox 200 220 luby 348 339

1lzr 130 181 lebp 211 330 1pax 350 500

1sei 130 190 ledh 211 371 1ped 351 698

1lid 131 173 1lbu 214 301 lair 352 707

11it 131 207 1dkz 215 286 1kob 352 509

1kuh 132 193 lhav 216 375 leur 361 724

1jac 133 252 lemk 220 400 lcem 363 571

2tbd 134 185 1jud 220 298 1dos 369 596

1cof 135 188 lakz 223 311 Ipud 372 595

Ipms 135 163 lad2 224 310 lkaz 378 608

1jvr 137 50 locc 227 266 lerk 380 563

lanu 138 246 11rv 233 275 lofg 381 570

1vhi 139 175 11bd 238 227 1sft 382 640

1lcl 141 228 1dek 240 286 Imty 384 387

1stm 141 231 1zym 247 323 livd 388 858

1tfe 142 160 1fib 249 427 2tys 396 721

locc 144 58 1tdt 256 432 liso 414 660

Irai 145 204 lyas 256 414 lgtm 417 691

1vls 146 102 locc 261 207 luae 418 843

1def 147 267 1rgs 264 385 lgnd 430 652

1div 149 172 lako 268 407 1gpl 432 793

lgds 151 126 Inzy 269 354 1pmi 440 751

lrcy 151 275 Insy 271 339 lad3 446 655

lulp 152 269 ldrw 272 411 lalk 449 860

Imbd 153 125 lkxu 276 280 1bpl 456 699

Irvv 154 233 1bro 277 433 1jsw 459 612

1btv 159 212 liol 284 354 1bmf 467 753

leyw 159 253 1xsm 288 321 lkap 470 849

1xjo 160 233 1qap 289 415 Ibmf 487 770

lapy 161 191 Iryc 291 382 1gow 489 790

2arc 161 238 1dhp 292 483 lasz 490 689

1klo 162 303 Ixva 292 391 locc 514 633

1168 162 167 lcsn 293 389 2myr 519 169

11ck 164 236 lgym 296 485 lvnc 576 928

Imhy 167 131 11bi 296 488 1gal 581 1108

lcpo 299 407 1tf4 605 1041

Item 686 1291
laa6 696 1276

1kit 757 1503

1gba 863 1575
lalo 908 1790

Table C. Proteins in the validation set TS97. Contact numbers are obtained using the contact
definition in section 2.3.3 in the second part of the thesis and contacting residues whose
sequence separation is less than four residues are not included.

76



10.

11.

12.

13.

REFERENCES

Doruker, P., I. Bahar, C. Baysal, and B. Erman, Collective Deformations in
Proteins Determined by a Mode Analysis of Molecular Dynamics Trajectories.
Polymer, 2002. 43: p. 431-439.

Micheal, J.E., Protein Structure Prediction: Principles and Approaches. 1996,
New York: Oxford University Press. 1-26.

Vendruscolo, M., E. Kussell, and E. Domany, Recovery of Protein Structure
from Contact Maps. Structure Fold. Des., 1997. 2: p. 295-306.

Thomas, D.J., G. Casari, and C. Sander, The Prediction of Protein Contacts
from Multiple Sequence Alignments. Protein Eng., 1996. 9: p. 941-948.

Fariselli, P. and R. Casadio, 4 Neural Network Based Predictor of Residue
Contacts in Proteins. Protein Eng., 1999. 12: p. 15-21.

Sander, C. and R. Schneider, Database of Homology-Derived Protein Structures
and the Structural Meaning of Sequence Alignment. Proteins, 1991. 9: p. 56-68.

Zaki, M.J., S. Jin, and C. Bystroff. Mining Residue Contacts in Proteins Using
Local Structure Predictions. in [IEEE International symposium on
Bioinformatics and Biomedical Engineering. 2000. Washington D.C.

http://vv.carleton.ca/~neil/neural/neuron-a.html.

Haykin, S., Neural Networks: A Comprehensive Foundation. Second ed. 1999,
Upper Saddle River, N.J.: Prentice Hall.

http://www-personal.usyd.edu.au/~desm/afc-ann.html.

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/cs11/article2.html.

Hagan, M.T., H.B. Demuth, and M. Beale, Neural Network Design. 1996,
Boston: PWS Publishing Company.

Bishop, C.M., Neural Networks in Pattern Recognition. 1996, New York:
Oxford University Press.

70



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Petersen, T.N., C. Lundegaard, M. Nielsen, H. Bohr, S. Brunak, G.P. Gippert,
and O. Lund, Prediction of Protein Secondary Structure at 80% Accuracy.
Proteins, 2000. 41: p. 17-20.

Master, T., Practical Neural Network Recipes in C++. 1993: Academic Press.
http://www.biochem.ucl.ac.uk/bsm/sidechains/.

Baysal, C. and A.R. Atilgan, Coordination topology and stability for the native
and binding conformers of chymotrypsin inhibitor 2. Proteins, 2001. 45: p. 62-
70.

Lee, B. and F. Richards, The interpretation of protein structures. estimation of
static accessibility. J. Mol. Biol., 1971. 55: p. 379-400.

http://pref.etfos.hr/scacor/.

Rose, G.D., A.R. Geselowitz, G.J. Lesser, RH. Lee, and M.H. Zehfus,
Hydrophobicity of Amino Acid Residues in Globular Proteins. Science, 1985.
229: p. 834-838.

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson, Molecular
Biology of the Cell. Third Edition ed. 1994, New York: Garland Publishing.

Wang, J., B.D. Sykes, and R.O. Ryan, Structural Basis for the Conformational
Adaptability of Apolipophorin I1I, a Helix-Bundle Exchangeable Apolipoprotein.
Proc. Natl. Acad. Sci. U S A, 2002. 99(3): p. 1188-93.

Stryer, L., Biochemistry. Fourth Edition ed. 1996, New York: W. H. Freeman
and Company.

Strogatz, S.H., Exploring Complex Networks. Nature, 2001. 410: p. 268-276.

Yilmaz, L.S. and A.R. Atilgan, Identifying the Adaptive Mechanism in Globular
Proteins: Fluctuations in Densely Packed Regions Manipulate Flexible Parts. J.
Chem. Phys., 2000. 113: p. 4454-4464.

Watts, D.J. and S.H. Strogats, Collective Dynamics of 'Small-World' Networks.
Nature, 1998. 393: p. 440-442.

Broder, A.e.a., Graph structure in the web. Comput. Netw., 2000. 33: p. 309-
320.

Faloutsos, M.F., P. Faloutsos, C., On power-law relationships of the Internet
topology. Computer Communication Review, 1999. 29: p. 251-262.

Achacoso, T.B. and W.S. Yamamoto, AY's Neuroanatomy of C. elegans for
Computation. 1992, Boca Raton, FL: CRC Press.

Jeong, H., B. Tombor, R. Albert, Z.N. Oltval, and A.-L. Barabasi, The Large-
Scale Organization of Metabolic Networks. Nature, 2000. 407: p. 651-654.

71



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Richards, F.M. and W.A. Lim, An Analysis of Packing in the Protein Folding
Problem. Q. Rev. Biophys., 1993. 26(4): p. 423-98.

Raghunathan, G. and R.L. Jernigan, Ideal architecture of residue packing and its
observation in protein structures. Prot. Sci., 1997. 6(10): p. 2072-83.

Soyer, A., J. Chomilier, J.-P. Mornon, R. Jullien, and J.-F. Sadoc, Voronoi
Tessellation Reveals the Condensed Matter Character of Folded Proteins. Phys.
Rev. Lett., 2000. 85: p. 3532-3535.

Liang, J. and K.A. Dill, Are proteins Well-Packed? Biophys. J., 2001. 81: p.
751-766.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm.

Erdos, P. and A. Renyi, On the Evolution of Random Graphs. Publ. Math. Inst.
Hung. Acad. Sci., 1960. 5: p. 17-61.

Delaunay, B.N., Sur La Sphere vide. 1zv. Akad. Nauk SSSR, 1934. 7: p. 793-
800.

Voronoi, G.F., Nouvelles Applications des Parametres Continus a la Theorie
des Formes Quadratiques. J. Reine Angew. Math., 1907. 133(97-178).

Latora, V. and M. Marciori, Efficient Behavior of Small-World Networks. Phys.
Rev. Lett., 2001. 87(19).

Watts, D.J., Small Worlds: the Dynamics of Networks Between Order and
Randomness. 1999, Princeton, NJ, USA: Princeton University Press.

Overbeek, R.e.a., WIT: Integrated System for High-Throughput Genome
Sequence Analysis and Metabolic Reconstruction. Nucleic Acids Res., 2000. 28:
p. 123 -125.

http://www.ssec.wisc.edu/~billh/gbrain0.html.

Barthelemy, M. and L.A.N. Amaral, Small-World Networks:Evidence for a
Crossover Picture. Phys. Rev. Lett., 1999. 82: p. 3180-3183.

http://www.physicsweb.org/article/world/14/7/9/1/pw1407091.

Barabasi, A.-L. and R. Albert, Emergence of Scaling in Random Networks.
Science, 1999. 286: p. 509-512.

Albert, R., H. Jeong, and A.-L. Barabasi, Error and Attact Tolerance of
Complex Networks. Nature, 2000. 406: p. 378-381.

Maslov, S. and K. Sneppen, Specificity and Stability in Topology of Protein
Networks. Science, 2002. 296: p. 910-913.

Hartwell, L.H., J.J. Hopfield, S. Leibler, and A.W. Murray, From Molecular to
Modular Cell Biology. Nature, 1999. 402(6761 Suppl): p. C47-52.

72



49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Carlson, J.M. and J. Doyle, Highly Optimized Tolerance: Robustness and
Design in Complex Systems. Phys. Rev. Lett., 2000. 84: p. 2529-2532.

Amaral, L.A.N., M. Scala, A. Barthelemy, and H.E. Stanley, Classes of Small-
World Networks. Proc. Natl. Acad. Sci. U S A, 2000. 97: p. 11149-11152.

Newman, M.E.J., M. Girvan, and J.D. Farmer, Optimal Design, Robustness and
Risk Aversion. to be submitted, 2002.

Facello, M.A., Implementation of a Randomized Algorithm for Delaunay and
Regular Triangulation in the Three Dimensions. Comput. Aided Geom. Des.,
1995. 12: p. 349-370.

http://www.neuroinformatik.ruhr-uni-
bochum.de/ini/VDM/research/gsn/JavaPaper/node3.html.

A.R. Atilgan, T.H., 1. Bahar, B. Erman, Correlated fluctuations in polymer
networks. Computational and theoretical polymer science, 1998. 8: p. 55-59.

Cvetkovic, D., Rowlinson, P., Simic, S., Eigenspaces of Graphs. 1997,
Cambridge: Cambridge University Press.

Hobohm, U., M. Scharf, R. Schneider, and C. Sander, Selection of
representative protein data sets. Protein Science : a Publication of the Protein
Society, 1992. 1(3): p. 409-17.

Miyazawa, S. and R.L. Jernigan, Residue-Residue Potentials with a Favorable
Contact Pair Term and an Favorable High Packing Density Term, for
Simulation and Threading. J. Mol. Biol., 1996. 256: p. 623-644.

Richards, F.M., Areas, Volumes, Packing, and Protein Structures. Annu. Rev.
Biophys. Bioeng., 1977. 6: p. 151-176.

Davidsen, J., H. Ebel, and S. Bornholdt, Emergence of a Small World from
Local Interactions: Modeling Acquaintance Networks. Phys. Rev. Lett., 2002.
88.

Newman, M.E., The Structure of Scientific Collaboration Network. Proc. Natl.
Acad. Sci. U S A, 2001. 98: p. 404-409.

http://www.hfsp.org/pubs/Awards_articles/Prompers.htm.

Wriggers, W., E. Mehler, F. Pitici, H. Weinstein, and K. Schulten, Structure and
Dynamics of Calmodulin in Solution. Biophys. J., 1998. 74: p. 1622-1639.

73



APPENDIX

1531 lesc Imhc A Ireg X | 2bnh

labr B letc 1mhl C 1rfb A | 2bop | A
lade A lexg Imla 1rib A 2bpa 2
laep 1fbr Imml Irva A | 2bpa 1
laps 1fnf Immo G Iscm | C 2cas

larb 1ghr Immo B Iscu B 2¢pl

1bbt 3 1gln 1mol A Ises A | 2end

Iber A 1gpr Imsc Ismn | A | 2gmf | A
1bip 1hbq Imse C Isrs A 2gst A
lbnd | A lhce Imut Isva 1 2kau B
1bpl A lhen B Inal 1 Isvc P 2liv

1bpl B lhge A Inar Isvp A | 2mev 1
1bri C lhjr A Inhk L Itam 2min | B
lbvp 1 lhng | A Inoy A 1tbr R 2nac A
1bw4 lhrz A lomp 1tfs 2ncm

Icau A 1hsl A 1pba 1thv 20lb A
Icau B lhtm | D 1pbn 1thx 2pii

lcew I lhuc B Ipcr H 1tii D 2ple A
Ichd 1hul A Ipdn C Itiv 2pol A
Ichk | A lhvk | A Ipgs 1tlk 2rsl B
Icks B lice B 1pi2 Itnr A 2scp A
lecmb | A lice A 1pkm Itpg 2sil

Icns A lilk Ipkp 1trr A 2tgi

lenv lirl Ipls 1ttb A | 2tmv P
Icol A 1knb 1pne lurn A 2vil
Icom | B lkny | A 1pnk A lvca A 3cd4

Icse I 1kpb A 1pnk B 1vhr A 3pga 1
Ictn lkpt A 1prc M lvin 3pte

Icus 1117 1prc C lvmo | A 3sic I
lcyu 1lau E lprt F 1was 3tgl

1dlc 1len A lprt D 1xaa 4gcr

1dpb 11fb 1prt B I1xyz A 4rhv 3
Idsb | A 1lis Iptd lypt B Stim | A
Idup | A 11ki Iptv A lytb A 6fab L
Idyn | A 1lpe Iptx lyua 8ruc I
lecp A 11ts D Ipve 2 1zaa C 8tln E
lede 1lts A Ipve 1 2aak

ledg 11xa 1pyp 2abd

leri A Imal Irbu 2acg

lerw Imda | H Irch 2blt A

Table A. Proteins in the LRN protein subset are shown by their PDB codes and chains.
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LRN |_|lhen |B|lpkm lypt |B|laih |A]|lgds locc | D | Iwho 1doi 4sbv | A | 1fim | A | left
1531 lhge | A | lpkp lytb | A | lair lgnd locc | B | Ixel 3chy latl | A | lfnc 1phg
labr |B|lhjr |A|lpls lyua lako Igot |B|[locc | C | Ixer 193L lgen 2por 1gpg
lade | A|lhng |A|lpne 1zaa | C | lakz Igow |A|locc |A |1xik |A|lrcp | A liae lirk 2amg
laep lhrz | A|lpnk | A |2aak lalk | A|lgpl lofg | A | Ixjo 2aza | A |2gsq 8abp lkbp |A
laps lhsl | A|lpnk |B |2abd lalo Igtm |A|lotg | A | 1xsm lhmt Isac | A |2dIn 2dkb
larb lhtm |D|lprc |M | 2acg lamm lgym loun | A |[1xva | A | lhtp lctb 2cte lcsh
Ibbt | 3| lhuc [B|lprc [C |2blt |A|lanu lhav | A | 1pax lyas |A|lslt |B|1dyr lgca 4enl
Iber |A|lhul [A|lprt |F |2bnh laoc | A | lhep Ipbw | A | 1zxq Ipoc 1fc2 | D | 1sbp lhga |A
1bip lhvk |A|lprt |D |2bop | A |lapy |A | lhth Iped | A [ lzym | A | Isnc 1fua 8atc | A | Inhp
Ibnd |A|lice |B|lprt |B |2bpa | 2|lasz |A|1lihf |B|lpmi 2abh lgtq | A | 2abk 2cmd lgcb
Ibpl |A|lice [A|lptd 2bpa | 1| laxn liml 1pms 2arc | A | lpbx | A |9pap lhvd 1pii
1bpl | B | lilk Iptv | A |2cas 1beo liol Ipot 2bbi 3sdh |A|1thj |A]|lgsa 2hpd | A
Ibri | C | lirl Iptx 2cpl Ibhm |A|lirs |A|lppr | M |2fcr lash lvid ltag 3grs
Ibvp | 1| lknb Ipve | 2 |2end Ibmf | D| liso Ipsc 2fha lvsd 2ayh 2acq Igph |1
1bw4 lkny |A|lpve | 1|2gmf |A|1bmf | A | livd Ipud 2hpe | A | 2fal lgpc Itca Isat
lcau | A|lkpb [A|lpyp 2gst | A | 1bpl ljac |A|lpue |E |2myr 8atc | B |2brd Itah |[A|ldnp |A
lcau |B|1lkpt |A|lrbu 2kau |B |1bpy |A | ljer lqap | A | 2pfl 2hbg 2ak3 | A | lquk 2pgd
leew |1 | 1117 Ircb 2liv lbro | A | ljpc Igba 2pld | A|[2mta | C | Infp 2pia 6taa
Ichd llau |E |lreg | X |2mev | 1| 1btv Ijsw |A|lrai |D |2tbd Isra Ipya |B|lpoy | 1 |1dpg |A
Ichk |A|llen |[A|lrfb |A [2min [B|1lbur |T | ljud Ircy 2tys | B | ljev 3pgm Iqor |A|lcow |A
Icks | B | 1lfb Irib | A |2nac |A|lcdg 1jvr Irga 4rhn 2gdm 1din lhmy 1byb
lemb | A | 1lis Irva | A |2ncm lcem lkap |P | lrgs COF |[lafb | 1]1dhr Inif Ismd
lens | A | 1lki Iscm |C |20lb | A | lcex lkaz Irie Imls lgdo | A | larv 8cat | A
lenv 1lpe Iscu |B | 2pii Ickm | A | 1kit Irmd Srxn Iphr Icyd |A|latp |E | 1dpe
Icol |A|llts D|lses |A |[2ple |A]|lcof 1klo Irvv | 1] laaf lesl Ibmt |[A|[2dld |A|1lmmo |D
lcom | B | 1lts A|lsmn |A [2pol |A|lcpo 1kob | A | Iryc 1dtx 1hlb 1 mrj Ipnr | A | lcrl
Icse |1 |llxa Isrs |A |2rs] |B | lcpq 1kuh Iryt ledr ljap |A|lctm 1kif | A | lcle
lctn Imal Isva | 1|2scp |A|lcrk |A|lkve |B|lsei |A |lcea |A|lvhh Inba | A | lmbb laoz | A
lcus Imda |H|lsve |P |2sil lesn lkxu Isft | A [lhen | A | lbef |A| 1plg 2omf 3pmg | A
lcyu Imhc |A|lsvp |A |2tgi lecyw 1168 Ishc | A | lpcn leyx Itys Irpa 2kau | C
1dlc Imhl | C | Itam 2tmv | P | 1def 11bd Isme | A | 1fim lobp |A|ldea |A|1fkx 4aah | A
1dpb Imla Itbr |R |2vil Idek |A[llbi |A|lstm |A | lumu Istd leny 2mnr Ipox |A
1dsb | A | Imml 1tfs 3cd4 Idhp |A|llbu Item | A | Imhl 3dfr 3fru |Aflece |A|laor |A
Idup | A| Immo | G| lthv 3pga | 1] 1div Ilck |A|1tdt |A |9mt 5p21 Indh lvsg | A | lsly
Idyn | A | Ilmmo | B | 1thx 3pte 1dkz | A|1lel 1tf4 | A | 2psp Ircf 2dri Ipea 1gof
lecp |A|{lmol |[A|1tii [D |3sic |I |[ldor |A|1lid 1tfe Iput Imka | A | 1dih ledo |A|ltrk | A
lede Imsc Itiv 3tgl ldos | A | 1lit Itgx | A |2fd2 Irci Iqrd | A [2btf | A | lcyg
ledg Imse |C |1tk 4gcr ldrw rv luae 11kj Lprr 2hhm | A | lhpm 1lcf
leri |A|lmut Itnr | A |4rhv | 3| 1dxy 11zr luby 2cdv Ifcd |[C|ldaa |A|1lbuc |A|loac |A
lerw 1nal 1| 1tpg Stim | A | leal 1mbd lucw | A | Imsa 2prd 2prk lubs |B [2tmd |A
lesc Inar Itrr |A |6fab |L |lebp |A|Imhy |G| lulp Irtp lcid Inip |A|lnsc |A|8acn
letc Inhk |L |[1ttb |A |8ruc |I |[lecr |A|lmsf |C | luxy lcer 1dlh | A |2ebn Ipbe 1gpb
lexg Inoy |A|lumn |A |8tln |E |ledh |A|lmty |B| lvcc 2hmz | A | llfa | A | 1tml 4xia |A|lbgl |A
1fbr lomp lvca |A | TS97 lemk Infa Ivhi |A |[Isri |B|2stv lhan Isvb
1fnf 1pba Ivhr | A | laa6 letp |A|lntk [A|1lvls 1bp2 1xnb Iscu | A | loyc
1ghr 1pbn lvin laa8 | A | leur Inkl lvnc 2mad | L | 2sas lamp linp
Igln Ipcr |H|1lvmo | A | lad2 1fbt | A| lnox Ivok | A | 4fgf 1gky 2cyp Ichm | A
lgpr Ipdn | C | lwas lad3 | A | Ifib Inpo |A|lvsc | A | Trsa 1dlh | B |2ora Ifed |A
1hbq Ipgs 1xaa laft |A|1fro |A|lnsy |A|lwba 2phy lisc |A|lsch |A|loxa
lhce 1pi2 Ixyz | A |lagr |E |lgal Inzy | A|lwhi 2ccy |A|ltup |B | lett Ipsd |A

Table B. Three protein subsets used in the first part are shown with their PDB

codes and chains.
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Validation Proteins
Val Set 1 Val Set 2 Val Set 3 Val Set 4
Protein Protein Contact Protein Protein Contact Protein Protein Contact Protein Protein Contact
Name Length Number Name Length Number Name Length Number Name Length Number

1tgx 60 82 Ixer 102 176 laih 170 174 lecr 305 372
1psc 69 103 Irga 104 150 Iwba 171 318 1dor 311 521
2bbi 71 77 Imsf 105 73 2fha 172 154 Infk 312 513
lhep 75 77 2pld 105 104 2fcr 173 275 1ppr 312 300
liml 76 86 1jpc 108 174 lamm 174 323 lucw 315 475
lcdq 77 111 1jer 109 159 laoc 175 255 Ickm 317 504
lkve 77 85 lirs 112 157 1fro 176 194 2abh 321 551
lvce 77 108 4rhn 115 144 Infa 178 207 1pot 322 492
1nkl 78 72 Irmd 116 126 1pbw 184 184 laxn 323 367
Inpo 81 146 1hfh 120 209 1fbt 186 265 1bpy 326 404
lpue 88 85 2pfl 121 183 letp 190 249 Isme 329 619
1ihf 94 70 1whi 122 229 Iryt 190 199 1dxy 332 478
1who 94 135 1bur 123 131 1vok 192 284 1xel 338 564
1beo 98 107 lotg 125 116 1zxq 192 351 1got 339 697
2hpe 99 140 loun 125 152 1shc 195 261 laa8 340 526
leal 127 170 1vsc 196 314 luxy 340 588

1rie 127 208 1bhm 198 292 1xik 340 364

lagr 128 117 lcex 200 333 lafr 345 391

lepq 129 113 Inox 200 220 luby 348 339

1lzr 130 181 lebp 211 330 1pax 350 500

1sei 130 190 ledh 211 371 1ped 351 698

1lid 131 173 1lbu 214 301 lair 352 707

11it 131 207 1dkz 215 286 1kob 352 509

1kuh 132 193 lhav 216 375 leur 361 724

1jac 133 252 lemk 220 400 lcem 363 571

2tbd 134 185 1jud 220 298 1dos 369 596

1cof 135 188 lakz 223 311 Ipud 372 595

Ipms 135 163 lad2 224 310 lkaz 378 608

1jvr 137 50 locc 227 266 lerk 380 563

lanu 138 246 11rv 233 275 lofg 381 570

1vhi 139 175 11bd 238 227 1sft 382 640

1lcl 141 228 1dek 240 286 Imty 384 387

1stm 141 231 1zym 247 323 livd 388 858

1tfe 142 160 1fib 249 427 2tys 396 721

locc 144 58 1tdt 256 432 liso 414 660

Irai 145 204 lyas 256 414 lgtm 417 691

1vls 146 102 locc 261 207 luae 418 843

1def 147 267 1rgs 264 385 lgnd 430 652

1div 149 172 lako 268 407 1gpl 432 793

lgds 151 126 Inzy 269 354 1pmi 440 751

lrcy 151 275 Insy 271 339 lad3 446 655

lulp 152 269 ldrw 272 411 lalk 449 860

Imbd 153 125 lkxu 276 280 1bpl 456 699

Irvv 154 233 1bro 277 433 1jsw 459 612

1btv 159 212 liol 284 354 1bmf 467 753

leyw 159 253 1xsm 288 321 lkap 470 849

1xjo 160 233 1qap 289 415 Ibmf 487 770

lapy 161 191 Iryc 291 382 1gow 489 790

2arc 161 238 1dhp 292 483 lasz 490 689

1klo 162 303 Ixva 292 391 locc 514 633

1168 162 167 lcsn 293 389 2myr 519 169

11ck 164 236 lgym 296 485 lvnc 576 928

Imhy 167 131 11bi 296 488 1gal 581 1108

lcpo 299 407 1tf4 605 1041

Item 686 1291
laa6 696 1276

1kit 757 1503

1gba 863 1575
lalo 908 1790

Table C. Proteins in the validation set TS97. Contact numbers are obtained using the contact
definition in section 2.3.3 in the second part of the thesis and contacting residues whose
sequence separation is less than four residues are not included.
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