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ABSTRACT 
 
 
 
 

This thesis is composed of two different parts, aiming to predict and understand 

the protein structure from their contact maps. In the first part, residue contacts of a 

protein are predicted using neural networks in order to obtain structural constraints for 

the three-dimensional structure. Physical and chemical properties of residues and their 

primary sequence neighbors are used for the prediction. Our predictor can predict 11% 

of the contacting residuees with a false positive ratio of 2% and it performs 7 times 

better than a random predictor. 

In the second part, a new method is developed to model a protein as a network of 

its interacting residues. Small-world network concept is utilized to interpret the 

parameters of residue networks. It is concluded that proteins are neither regular nor 

randomly packed but between these two extremes. Such a structure gives the proteins 

the ability for fast information relay between their residues. They can undergo necessary 

conformational changes for their functions on very short time scales. Also, residuee 

networks are shown to obey a truncated power-law degree distribution instead of being 

scale-free. This shows that proteins have fewer structurally weak points, whose failure 

would be total damage for the system. This finding conforms to evolutionary plasticity 

of proteins: Having a low number of weak points makes the mild DNA mutations to be 

translated into the protein structure as highly tolerable. 
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ÖZET 
 
 
 
 

Bu tez çalõşmasõnda, proteinlerin temas matrisleri kullanõlarak yapõlarõ tahmin 

edilmeye ve anlaşõlmaya çalõşõlmõştõr. İki bölümden oluşan bu tezin ilk bölümünde, sinir 

ağlarõ kullanõlarak, proteinler için yapõsal sõnõrlamalar bulmak amacõyla residü temaslarõ 

tahmin edilmiştir. Bu tahminler için residülerin fiziksel ve kimyasal özellikleri, ve 

birincil sekanstaki komşularõ kullanõlmõştõr. Sonuç olarak, birbiriyle temas eden 

residülerin % 11�i doğru, temas etmeyen residülarõn % 2�si yanlõş tahmin edilmiştir, ve 

rastlantõsal bir tahminden 7 kat daha iyi sonuçlar elde edilmiştir. 

İkinci bölümde, bir proteini, temas eden residülarõndan oluşan bir ağ olarak 

modellemek için yeni bir yöntem geliştirilmiştir. Bu ağlarõn yapõsal özelliklerini 

anlayabilmek için küçük-dünyalar fikri kullanõlmõştõr. Gösterilmektedir ki, residüler 

proteinler içinde ne düzgün ne de rastlantõsal bir şekilde organizedir, küçük-dünya 

ağlarõna benzer bir organizasyona sahiptirler. Böyle bir yapõ, proteinleri çok kõsa 

zamanlar dahilinde büyük yapõsal değişimler geçirebilmesini olanaklõ kõlmaktadõr. 

Ayrõca, residü ağlarõnõn komşu sayõsõ dağõlõmlarõ da kesik ölçeksiz dağõlõmlar 

şeklindedir. Bu da proteinlerin çok az sayõda yapõsal hassas noktalar içerdiğini 

göstermektedir. Proteinlerin evrim sürecinde sayõsõz biyolojik işlevi gerçekleştirebilecek 

şekildeki değişimleri bu sonucu desteklemektedir. Bunun nedeni,, az sayõda hassas 

noktanõn varlõğõ küçük DNA mutasyonlarõnõn proteinlerinin yapõsõna yansõmasõna 

olanak sağlamasõdõr. 
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protein are predicted using neural networks in order to obtain structural constraints for 

the three-dimensional structure. Physical and chemical properties of residues and their 

primary sequence neighbors are used for the prediction. Our predictor can predict 11% 

of the contacting residuees with a false positive ratio of 2% and it performs 7 times 

better than a random predictor. 

In the second part, a new method is developed to model a protein as a network of 

its interacting residues. Small-world network concept is utilized to interpret the 

parameters of residue networks. It is concluded that proteins are neither regular nor 

randomly packed but between these two extremes. Such a structure gives the proteins 

the ability for fast information relay between their residues. They can undergo necessary 

conformational changes for their functions on very short time scales. Also, residuee 

networks are shown to obey a truncated power-law degree distribution instead of being 

scale-free. This shows that proteins have fewer structurally weak points, whose failure 

would be total damage for the system. This finding conforms to evolutionary plasticity 

of proteins: Having a low number of weak points makes the mild DNA mutations to be 

translated into the protein structure as highly tolerable. 
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1. INTRODUCTION 

 
 
 
 

All biological processes require different kinds of protein molecules and 

biological activity of any protein is achieved by its folded structure. A protein is a very 

complex biological macromolecule; its primary sequence governs its folding in the 

cellular environment and this folded state performs enormous kinds of processes such as 

storage, transport, catalysis, etc. Today, the major problem in biological sciences is to 

understand the hidden mechanisms or forces intrinsic to the primary sequence that 

govern the protein folding process. The answer to this question is a breakpoint for life 

sciences since it will enable us to design specific biological machineries to carry out 

specific tasks in biological cells. People from different backgrounds with different 

methodologies are trying to solve the folding puzzle, but no satisfactory answers could 

be obtained up to this point. Yet, every study contributes to the solution in various ways 

and helps upcoming studies to develop new ideas or strategies. In the first part of this 

thesis, we attempt to contribute to the solution by trying to find the contacting residues 

in the folded state of proteins using neural networks (NNs). The major contribution in 

this study is that the physical and chemical properties of amino acids are also used to 

predict the contacting residues in addition to the properties in previous work. 

 Proteins are designed to bind every conceivable molecule in the cell, from simple 

ions to large complex molecules like fats, sugars, nucleic acids or other proteins. They 

function efficiently and under control in the cells by changing their structural 

conformations upon binding or releasing another molecule. Therefore, resolving the 

structural features of proteins is an important step towards understanding structure-

function duality. Proteins should be flexible enough to undergo fast and accurate 

conformational changes to perform their functions and this flexibility is mediated by the 

concerted actions of residues located at different regions of the protein [1]. Some 

residues play the key role during these communications and without these residues the 

protein would be misfunctional or nonfunctional. In the second part of this thesis, 
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proteins are analyzed as if they are networks of interacting residues in their folded state. 

We try to classify the networks of interacting residues and derive key properties of 

protein structure. Also, we try to determine topological characteristics of residues of a 

protein in three-dimensional space. The proteins are modeled as networks because (i) 

structure affects function in all types of networks, and this is also valid for proteins; and 

(ii) certain network models display a fast information relay between their nodes as well 

as tolerance to random failures of one or more of the nodes; these are also very 

important features for the functionality of proteins. Proteins need fast information relay 

between their residues using interacting residues in the folded state rather than their 

primary sequence, since they perform their functions on short time scales as low as 

femtoseconds. They also need to be tolerant to continuous attacks coming from the 

crowded environment of the cell, which may make some residue interactions 

impossible. Some mild residue substitutions can also be tolerated by the protein.  
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2. PREDICTION OF CONTACTING RESIDUES IN PROTEINS USING 
NEURAL NETWORKS 

 
 
 
 

In this part of the thesis, a number of NNs are designed to predict the contacting 

residues in proteins and their performances are presented. 

 
 
 

2.1 Overview 
 
 
 

In order for a protein to be functional, it has to be correctly folded into its tertiary 

structure. In the folding process, there is interplay of non-covalent and entropic effects 

of the protein main chain and side chains. The folded structure of the protein have a 

marginal stability at its physiological conditions [2]. The hydrophobic effect is widely 

regarded as the major force driving protein folding. This is the energetic preference of 

non-polar atoms to associate and reduce their contact with water. So, the protein folds in 

water in such a way that hydrophobic (or nonpolar) side chains are buried inside and 

protected from water by water-loving (hydrophilic or polar) side-chains that make 

hydrogen bonding with water on the surface of the protein. Atomic packing and 

conformational entropy of the proteins are also important in the folding process.  

The factors process mentioned above lead to a compact protein that lacks a 

specific architecture. The specificity of the folded structure is mediated by the 

hydrogen-bonding and ion pairing groups within the protein. The protein core is closely 

packed and it consists of non-polar and polar residues making necessary hydrogen-

bonding and ion pair requirements leading to balanced charges. Unbalanced charged 

residues, on the other hand, are rarely fully buried. Also, exposed protein surface 

consists of about one-third of non-polar residues and the remaining polar atoms interact 
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with one another or with solvent. Disulfide bridges and salt bridges are important 

interactions which provide the stabilization of the folded structure [2]. 

Thus, in the folded state of a protein, there are specific interactions between the 

residues that shape its tertiary structure. These interactions could occur between two 

charged side chains to balance their charges in the buried space or on the surface of the 

protein. Hydrophobic residues can have attractive or repulsive van der Waals 

interactions between them that are also important for the details of the structure. In other 

words, if two residues are near each other, due to any of the above mentioned reasons or 

their combinations, less than a specific distance in the folded state, then they are called 

contacting residues. The contacting residues are determined by a number of strategies. 

One method takes all the heavy atoms of residue of interest (except its hydrogens) and 

draws a hypothetical sphere of a specific radius around each of the heavy atoms. If any 

heavy atoms of a residue are within the sphere of heavy atoms of another residue, then 

they are assumed to be in contact. In another method, a hypothetical sphere of specific 

radius is drawn around Cβ atoms of each residue (Cα atom for glycine), residues having 

their Cβ (or Cα) atoms within each other�s spheres are assumed as contact. The selection 

of the radius of the sphere, which is called the cutoff radius, is very crucial for the 

specificity and non-degeneracy of the selected contacts. As the cutoff distance increase, 

so does the probability of having non-specific contacts. So, an optimal cutoff radius 

should be selected which is only large enough to select contacts of interacting residues. 

Another factor is that the peptide bond length is approximately is 4.5 Å, which means 

that adjacent residues will be in contact selecting a cutoff radius smaller than or equal 

4.5 Å. So, it may be necessary to exclude these non-specific contacts coming from 

connectivity.  

There are two main types of contacts according to relative position of the residues 

in the primary chain. Short-range contacts are the ones between the near residues in the 

primary sequence and they are mainly occurring within the alpha helices, beta-turns and 

closed loops. Long-range contacts are between distant residues in the primary sequence 

and they are occurring within the beta sheets and secondary structure elements closer in 

the space. Importantly, knowing the long-range contacting residues within a folded 

protein provides structural constraints and gives important clues about the structure of 

the protein.  

All the contacting residues within a protein can be represented in a symmetric 

square matrix with size of square of the length of the protein, which is called a contact 
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map. In the contact map, the primary sequence of the protein is placed in both rows and 

columns of the matrix. If two residues are near to each other within a specific cutoff 

radius, then, the entry in the contact map corresponding to these two residues is 1, 

otherwise it is 0. All short and long-range interactions in a protein of known structure 

can be represented in its contact map. Also, secondary structures can easily be detected 

from contact maps [3]. Alpha helices appear as horizontal and vertical thick bands 

emerging from the main diagonal since they involve contacts between one amino acid 

and its four successors. Parallel or anti-parallel beta sheets are thin bands either parallel 

or perpendicular to the main diagonal respectively. 

Here, long-range contacting residues in a protein are predicted using NNs in order 

to obtain structural constraints. Correctly predicted contacts in the folded state of the 

protein together with a correctly predicted secondary structure can give important clues 

for the structure of that protein i.e. the type of a fold. For example, Vendruscolo and his 

coworkers tried to recover the structure of proteins using contact maps [3]. They 

defined a contact map energy function to evaluate feasibility of a contact map in 

relation to the structural constraints of the protein of interest. By using this energy 

function, they tried to thread a contact map (or a 3D structure) onto a primary sequence 

of a protein. They are successful at recovering Cα atom contacts within 5 � 8 Å. This 

shows that two-dimensional contact map has valuable hidden information about the 

contacts in the 3D structure of the protein. This prediction may also be useful in de novo 

design of the proteins. In general, predicting the contacting residues within a protein 

corresponds to predicting the contact map of that protein. Previous attempts to predict 

the residue contacts within the proteins are summarized below; 

Sander and his coworkers [4] predicted the protein contacts using multiple 

sequence alignments. They used the correlated mutational behavior of pairs of amino 

acids on the contact propensity. The mutational behavior is deduced from multiple 

sequence alignments. They showed that their method is better than other methods which 

do not include correlated mutations. They evaluate their performance by comparing 

their results with a random predictor which is an information-free predictor, and their 

improvement over a random predictor is five, in other words. 

Casadio and Fariselli [5] predicted contact maps using NNs. They used several 

numbers of network architectures and fed each of them with different types of 

information. Their most successful network encodes the hydrophobicity and 

evolutionary information of the pair of residues and its neighbors. Our project involves 
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some of the features used in this study and also, our results with the results of their 

study will be compared since the strategies are similar and allow such a comparison. 

The similar parts of the studies will be mentioned throughout this thesis. They used the 

alignments from HSSP files [6] to encode evolutionary information. They concluded 

that their predictor is six times better than a random predictor. 

Mohammed and his coworkers tried to mine residue contacts using local structure 

predictions [7]. There are thousands of protein structures in protein data base (PDB), but 

most of them cluster into around 700 fold-families based on their similarity. Thus, PDB 

offers a new paradigm to protein structure prediction by employing data mining 

methods like clustering, classification, association rules, hidden Markov models etc [7]. 

This method is based on the folding initiation sites and their propagation by using 

hidden Markov models. Their predictor is 5.2 times better than a random predictor. 

What is missing in all of these attempts is the encoding of the physical and 

chemical features of the residues within proteins. In this study, it is aimed to encode 

such information to predict the contacts within proteins. We concentrate on pairs of 

residues and look for their contact propensity within a specified distance along the 

primary sequence for a given protein length. In the following chapter, NNs and their 

application to the specific problem at hand are summarized. 

 
 
 

2.2 What Are Artificial Neural Networks? 
 
 
 

Our brain is composed of about ten billion of neurons which are information 

processing units of the brain. They are specialized to receive, integrate and transmit the 

information. The input to a neuron is the electrical signals received from other neurons 

through its axons and the output of that neuron is the input of another neuron or a signal 

which directly causes an action somewhere in the body. The point of connection 

between two neurons or between a neuron and muscles or glands is called synapse. The 

physical and neurochemical characteristic of the synapse determines the strength and 

polarity of the new input signal which is to be sent to another neuron or cell. In other 

words, each neuron receives a number of signals from other neurons, but which signal is 

used at which amount in producing the response is decided by the synapses between the 

corresponding neurons. Figure 2.2.1 shows a simplified biological neuron. 
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Figure 2.2.1. Schematic Representation of a Biological Neuron [8]. 

 
The brain has the capability to organize its neurons so as to perform certain 

computations such as pattern recognition, perception and motor control many times 

faster than the fastest digital computer in existence today [9]. How does the brain do 

this enormous computation in a very short time (on the order of milliseconds) to make 

us a living organism aware of his/her environment and respond to it? The answer lies 

within its structure which gives it the capability to build up its own rules through its 

experiences. It continuously produces or destroys connections between the neurons, and 

changes the type of the connections occurring within the synapses to learn and adapt to 

its environment. 

Artificial NNs are the result of the motivation to mimic the learning and 

adaptation process of the brain. They are composed of simple processing units which 

are the artificial neurons. They learn from their environment through a learning process 

and connection between its units, weights, are used to store this acquired knowledge [9]. 

The procedure to perform the learning process is called a learning algorithm and it is 

defined as the modification the synaptic weights of the network to attain a desired 

output [9]. Figure 2.2.2 shows a simple representation of a one processing unit of an 

artificial NN, a neuron. In the figure, (P1, P2, P3....Pn) represent a pattern. Every pattern 

has a corresponding target and the duty of the network is to find this corresponding 

output by adjusting the weights. 

Input to a NN (P1, P2, P3......Pn) in Figure 2.2.2, represents a pattern by means of 

its appropriate features. Patterns are the examples of the problem set that needs a certain 

action performed on it (e.g. classification, pattern recognition etc.). For example, let�s 
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look at training a NN that can differentiate apples from oranges. The patterns of that 

problem are some apples and oranges and the most suitable features to represent them 

would be their color and shape, because these are among their distinguishing features. It 

is important to note that size is not a suitable feature, since both fruits have similar size. 

So, the success of a network is heavily dependent upon the selection of the correct 

features for representing the patterns. 

 
 
 
2.2.1 Training 
 
 

There is a training phase in a NN at which the network receives a number of 

training patterns and adjusts its weights in order to attain corresponding outputs for each 

of the patterns. This phase is analogous to the time that in which the brain acquires 

some experiences and according to them, it makes or destroys connections between the 

neurons or change the nature of the synapses in order to remember and learn them. 

After this training process, the network is ready to test whether it can produce 

reasonable outputs for the patterns not encountered in the training phase, which is called 

generalization. 

It is worth noting that weights are crude approximations to the chemical reactions 

occurring in neural synapses. They decide how much of the input is used in producing 

output as in the biological neurons. 

 
 
 
2.2.2 Multilayer Perceptron: A NN architecture 
 
 

There are many types of NN architectures and each of them has applications in 

different types of problems such as classification, pattern recognition, forecasting, 

modeling [10]. A NN type named as multilayer perceptron is very suitable for the 

problem in this study. Perceptron is the simplest form of a NN used for the 

classification of the patterns which are said linearly separable [9]. Unfortunately, many 

problems are not linearly separable, and they cannot be solved by a perceptron. In order 

to overcome this limitation, multilayer perceptrons are derived which are able to solve 

arbitrary classification problems.  
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Figure 2.2.2. Simple representation of one processing unit of an artificial NN (neuron).  

 
Bias is an optional free parameter of a neuron and it makes the network more 

powerful. A neuron without a bias will always gives an output of zero if the pattern 

features are all zero. This situation may not be desirable and can be avoided by using a 

bias. 

To calculate the output, features of the input nodes are multiplied by the 

corresponding weights and the bias term is added in each summation unit (Σ) of an 

artificial neuron. The total input is given by; 

i
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Pj denotes the input features, Wij is the corresponding weight and bi is bias term. 

The output of the neuron a is given by;  

)(nFa =  (2.2) 

where F is the transfer function. 

There are many types of transfer functions, some of them are mentioned here. In a 

linear transfer function, the output activity is proportional to the total input. In a 

threshold transfer function, the output is set at one of two levels, depending on whether 

the total input is greater than or less than some threshold value. In a log-sigmoid 

transfer function, the output varies continuously but not linearly as the input changes. 

Log-sigmoid units bear a greater resemblance to real neurons than do linear or threshold 

units, but all three must be considered rough approximations [11]. Log-sigmoid transfer 

function is used in our network architectures. In this study, when a residue pair is 
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applied to a network, the network gives a real number output between [0, 1] interval and 

it denotes the contact propensity of the pair of residues applied. 

Figure 2.2.3 is a representation of perceptron network architecture with one layer 

which means there is one set of neurons operating in parallel and producing output for 

each pattern.  

 

Figure 2.2.3. Layer of S number of neurons operating in parallel.  

 
This architecture can solve only linearly separable classification problems. 

Linearly separable patterns mean that it is possible to classify the patterns by a line on a 

hyperplane as shown in Figure 2.2.4.  

Multilayer perceptron architecture has evolved which can solve arbitrary 

classification problems including linearly inseparable pattern classification. The 

architecture in Figure 2.2.5 shows a two-layer perceptron. As can be seen from the 

figure, there are two sets of neurons operating in parallel. The nodes fed by the outputs 

of the first set of neurons are called hidden nodes. The number of hidden nodes varies 

according to the complexity of the problem. 
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Figure 2.2.4. Patterns (white and black circles) are linearly separable 

 

 

Figure 2.2.5. Multilayer perceptron architecture 
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2.2.3 Learning Algorithm 
 
 

Learning algorithm is a procedure by which the weights and biases of a NN are 

modified to attain the desired output. The purpose of the learning rule is to train a 

network to perform a specific task. In this study, supervised learning is used. In 

supervised learning, there is a set of examples whose targets (correct outputs) are 

known, i.e. a training set. As this set is applied to the network, the network output 

generated for corresponding input is compared to the targets. The learning algorithm is 

then used to adjust weights and biases of the network in order to move the network 

output closer to the targets [12]. 

For example, in the classification of apples and oranges, the training set will be a 

selection of examples of apples and oranges. When a pattern in the training set (an apple 

or an orange) is represented to the NN, it gives an output which is the decision of the 

network for that pattern. This output is compared with the target which is the real class 

of the pattern and the weights and biases of the network are adjusted in order to move 

the network output towards the target. Each pattern is represented to the network and 

the weights and biases of the network are adjusted for each pattern. The complete 

representation of all the patterns in the training set to the network is called iteration. In 

order to find the appropriate weights and biases for the correct classification of all 

patterns, this process is iterated many times. 

 
 
 
2.2.4 Learning and Generalization 
 
 

In this project, a multilayer perceptron trained with the backpropagation algorithm 

is used. The essence of backpropagation algorithm is to adjust the weights and biases of 

the network to minimize the mean square error, where the error is the difference 

between the target output and the network output. Therefore, the mean square error is 

calculated at the end of every iteration (one pass through the set of training samples) 

and weights and biases are adjusted to minimize this mean square error by 

backpropagation algorithm. The mean square error calculated after each iteration is 

called training error and it tends to decrease throughout iterations. At this phase, the 

network learns rules in the training set and stores them in its weights and biases. Yet, 

there is an important trade-off in the learning process: The aim of the NN is to capture 



 13

general rules which are valid in any subset of the problem set. So, it is important to end 

the learning process at the correct time to prevent the over learning of the training set 

(generalization capacity). Therefore, in the training phase, there is another dataset, 

validation set, which has no common pattern with the training set. It is used to measure 

the generalization capacity of the network.  

 

Figure 2.2.6. Mean squared error versus number of epochs in the course of training and 
validation phases of a typical perceptron [9] 

 
After a set of iterations, the validation set is passed through the network and the 

validation error is calculated, which is the mean square error of target output and 

network output in the validation set. Validation and training error show a pattern like in 

figure 2.2.6; while the training error drops continuously, validation error increases after 

some time. The reason for this increase is the loosing of the generalization capacity of 

the network, it over-learns the training set. If the inputs used in training are a good 

representative of all possible input patterns, a network with enough complexity can 

successfully generalize what it has learned to the total population. 
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2.2.5 Complexity of the Network 
 
 

The goal of the network is not to learn an exact representation of the training data 

itself, but to learn general rules from the training data which are also valid for the rest of 

the data. A network with enough complexity and a training dataset representative of all 

the dataset can achieve its goal. Complexity of the network can be considered as the 

number of free parameters of the network; i.e. the weights and biases. A network with 

little complexity gives poor generalization because of the little flexibility of the 

network. A very complex network relative to the problem also gives poor generalization 

as it fits too much of the noise on the training data [13]. In a multilayer perceptron, the 

complexity of the network can be adjusted by changing the number of hidden nodes 

since it involves changing the free parameters.  

The size of the training set is an important design factor. It should be sufficient to 

represent the common features of the whole set of the problem. The number of 

iterations required for generalization is inversely proportional with the size of the 

training set for a network of enough complexity [9]. 

 Several multilayer perceptrons are designed as predictors of contacting residues 

in proteins. These networks are trained by a backpropagation algorithm which is a 

supervised training method. Networks at different complexity are tried to find the 

optimal network architecture suitable for the prediction. In the following chapter, the 

problem is described and the architectures used are analyzed in detail.  

 
 
 

2.3 Description of the Problem and the Solution Model 
 
 
 

In this project, physical and chemical features of amino acids as well as other 

features involving the protein length and the primary sequence are used for predicting 

the contacting residues. 

NNs are used for several reasons: (i) It has been shown that NNs have a very good 

performance on prediction problems [10]. Since our problem is also a prediction, we 

can safely use NNs. (ii) NNs are one of the most successful methods in protein 

secondary structure prediction (up to 80%) [14]. (iii) The rules determining the 

contacting residues in a protein are very complex. NNs are quite successful in problems 



 15

where rules crucial to the required decision are subtle or deeply hidden. NNs have the 

ability to discover patterns in data which are so obscure as to be imperceptible to 

standard statistical methods [15]. (iv) NNs have no limitations for the number of 

parameters in the problem to be solved. A network with enough complexity can learn as 

many rules as they can. Since, the number of parameters playing role in the contact 

decision within a protein is very high (protein secondary and tertiary structure, residue 

types etc.), NNs are one of the most convenient methods for a problem of this 

complexity. 

 
 
 

2.3.1 Input and Output of the NN 
 
 

The input of the NN is two residues or a window of residues, the length of the 

protein and the sequence separation of the corresponding residues (number of residues 

between them along the chain). The output of the network is the contact propensity of 

the corresponding residues. In other words, features of two residues and two other 

parameters are applied to the network and the desired action from the network is a 

prediction of these residues is in contact or not. 

Three different network architectures are used in this prediction. The same 

network architecture is trained with different input parameters to encode more 

information to the network. All networks have two global parameters in common: 

(i) Normalized protein length. Normalized length of the protein having the residue 

pair whose contact propensity in under examination. Normalization is achieved by 

dividing the length of the protein to the length of the longest protein within the whole 

protein set. 

(ii) Normalized sequence separation. The number of residues between the residues 

of pair of interest. It is normalized by dividing it to the length of the longest protein 

in the whole protein set. 

It is necessary to represent residues to the network by means of their specific features. 

Three main feature of a residue its surface area, hydrophobicity and charge are used for 

this purpose. 
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2.3.1.1 Surface Area 
 
 

The area of a residue occupies in space is a measure of the size of the residue. It 

is strongly correlated with the size of the side chain of that residue. This feature is used 

to determine contact propensity of residues, because it is known that the substitution 

probability of an amino acid into another is inversely proportional to the difference of 

their sizes [16]. Sizes of the residues around the residue of interest are also important 

factors playing roles in their contact decision of corresponding residues. A bulky 

residue surrounded also by bulky residues may not be close enough to be in contact with 

another bulky residue which is also surrounded by bulky residues. This explains why 

the substitution rate between the amino acids is inversely proportional with the 

difference of their sizes. 

Surface areas of the residues are taken from Baysal et al. study which is 

calculated by naccess program which is an implementation of the method Lee and 

Richards [17, 18] . 

 
 
 
2.3.1.2 Hydrophobicity  
 
 

It is a measure of nonpolarity of the side chains. As the nonpolarity 

(hydrophobicity) of the side chain increases, it avoids being in contact with water and 

buried within the protein nonpolar core. This is seen as the essential driving force in 

protein folding. This quantity is used to encode residue specific information to the 

network. Since the hydrophobicity of a residue affects the non-covalent bonding 

between its surroundings, it can be a contributing factor to contact decision of that 

residue with others. The hydrophobicity information can be encoded in two different 

ways; one method uses the hydrophobicity of the residue of interest, other method uses 

the average hydrophobicity of the neighbors of the residue of interest. First encoding 

gives only the residue-based information, tells nothing about the local environment of 

the residue, while the latter is giving information about the local polarity (or 

nonpolarity) of the environment of the residue. We calculate the average hydrophobicity 

according to; 

 



 17

7

3

3
∑
+

−=

i

i
i

i

Hyd
Hyd  (2.3) 

Hydrophobicity of ith residue is the average of the hydrophobicities of window of 

residues of size seven in the primary sequence of the protein. Three of the residues that 

are on the left, the residue itself and three of the residues on the right of the residue 

constitute the window and the average of the hydrophobicities of residues in that 

window represent the average hydrophobicity of the residue in the middle of that 

window of residues. In Table 2.1, hydrophobicities of amino acids used in this 

prediction are listed. ROSEF hydrophobicity scale is used since it is one of frequently 

used scale [19, 20]. 

 
 
 
2.3.1.3 Charge  
 
 

It denotes the net charge on the residue if there is any. It takes values -1, 0 and 1. 

Electrostatic interactions are important in determining contact propensity of the 

residues. Therefore, having charge feature helps to the network in learning contacts 

because of electrostatic interactions.  

Table 2.1 shows the surface area and hydrophobicity values of 20 residues before 

normalization. As can be seen from the table, they are on different orders of magnitude 

which may not reflect their relative importance in determining the required outputs. In 

order to bring them on the order of unity, linear transformation is applied to the input 

features. Within each feature, mean and variance are calculated according to equation 

3.2 and 3.3 and re-scale them according to the equation 3.4. 
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where ix
~

 is the re-scaled variable. Hence the surface area and hydrophobicity features 
are re-scaled so as to be unit variance with zero mean. Normalized size and 
hydrophobicity and charge features of 20 residues can be seen in Table 2.2. 
 

Residue Type Surface Area Hydrophobicity 
ALA 107.95 0.50 
ARG 238.76 -2.01 
ASN 143.94 -2.26 
ASP 140.39 -2.51 
CYS 134.28 4.77 
GLN 178.50 -2.51 
GLU 172.25 -2.51 
GLY 80.10 0 
HIS 182.88 1.51 
ILE 175.12 4.02 
LEU 178.63 3.27 
LYS 200.81 -5.03 
MET 194.15 3.27 
PHE 199.48 4.02 
PRO 136.13 -2.01 
SER 116.50 -1.51 
THR 139.27 -0.5 
TRP 249.36 3.27 
TYR 212.76 1.01 
VAL 151.44 3.52 

Table 2.1. Surface area and hydrophobicity features before re-scaling  

 
Each amino acid is represented by using three features, surface area, 

hydrophobicity and charge. This representation is aimed to correlate the physical and 

chemical properties of amino acids with the contact propensity. There are no previous 

studies for contact map prediction in which such amino acid features were used. Also, 

in some of the networks, the local environment of the residues is encoded in different 

number of ways in order to give more information to the network for prediction. 

When these features are applied to the network, the output of the network is the 

contact propensity of the corresponding residues. It varies between 0.1 and 0.9 and 0.1 

means these two residues are not contacting, 0.9 is they are in contact. But, the network 

gives the outputs varying from 0.1 to 0.9, so there should be a procedure which decides 

whether the residues are in contact or not according to the output. 
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Residue Type Surface Area Hydrophobicity Charge 
GLY -2.00377 -0.14338 0 
ALA -1.35889 0.02916 0 
SER -1.16091 -0.66444 0 
CYS -0.7492 1.50264 0 
PRO -0.70636 -0.83698 0 
THR -0.63365 -0.31592 0 
ASP -0.60772 -1.00952 -1 
ASN -0.52552 -0.92325 0 
VAL -0.35185 1.07129 0 
GLU 0.13002 -1.00952 -1 
ILE 0.19648 1.24383 0 
GLN 0.27474 -1.00952 0 
LEU 0.27775 0.98502 0 
HIS 0.37616 0.37769 0 
MET 0.63713 0.98502 0 
PHE 0.76055 1.24383 0 
LYS 0.79134 -1.87912 1 
TYR 1.06805 0.20515 0 
ARG 1.6701 -0.83698 1 
TRP 1.91555 0.98502 0 

Table 2.2. Residue features after re-scaling. Note that charge feature is not re-scaled. 

 
 
 
2.3.2 Contact Definition 
 
 

Casadio et al. used a different contact definition that takes the distances of all 

heavy atoms of the residues into account and the cutoff radius is 4.5 Å. This definition 

is not used in this study, because being close of heavy atoms of the residues does not 

always mean that there is an interaction between them. The direction of the residues can 

be totally different but some of their atoms (for example, the backbone atoms) could 

still be close to each other than the cutoff radius. In order to avoid taking such non-

specific contacts into account, we use only Cβ atoms for contact definition. If Cβ atoms 

of a pair of residues (Cα for glycine) are closer to each other less than 7 Å, they are 

assumed to be in contact; else they are assigned as non-contact. 
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2.3.3 Datasets 
 
 

A dataset composed of 608 proteins is used for this analysis. This dataset was 

used before by Casadio et al. [5]. This set does not contain proteins whose backbones 

are interrupted. It is divided into three subsets for training, validation and test 

separately. Training set contains proteins without ligands in order to avoid false contacts 

due to the presence of hetero-atoms. Validation and test sets are composed of proteins 

whose sequence identity is less than 25 %. Table A in the appendix shows proteins in all 

three subsets with their chains. 

The contacts between residues which are less than four residues apart are not 

included while training or testing of the networks. This type of contacts (mostly short-

range contacts) is very high in number and long-range contacts are low in number 

respectively. So, NNs may be biased through short-range contacts because of their high 

number and cannot learn long-range contacts. Since our desire is to find long-range 

contacts in order to have a coarse structure of the protein, we exclude most of the short-

range contacts. 

In a protein, there are contacts much lower than non-contacts. According to our 

dataset and the contact definition (see section 2.3.2), the number of contacts to non-

contacts ratio is 98.4. Because of this disproportion, network cannot be feed by all the 

residue pairs obtained from the dataset in the training phase. By doing so makes the 

network to output for most of the pair as non-contact, since for every contacting pair 

there are approximately 98 non-contacting pairs. Therefore, we have to balance this 

disproportion. We select all the contacting pairs generated in the training set. Then for 

every contacting pair, we randomly select a non-contacting pair within the dataset. 

Hence, a training data is prepared in which there are equal numbers of contacting and 

non-contacting residue pairs.  

Different contact to non-contact ratio has been tried for training the networks such 

as 1to 2 and 1 to 6. In these cases, the network outputs have decreased dramatically and 

most of the pairs were classified as non-contacts by the network. So, 1 to 1 contact non-

contact ratio is used for the training. 
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2.3.4 NN Architectures 
 
 

Three different NN architectures are used to predict contacts within proteins. Each 

architecture differs according to information encoded in it. All the networks take a pair 

of residues whose contact propensity is under examination as an input and the output is 

the contact propensity of this pair which is a number between 0.1 and 0.9. The learning 

rate for all networks is 0.2 and transfer function of both hidden and output nodes are 

log-sigmoid which is given by; 

ne
nsigmoid −+

=−
1
1)(log  (2.7) 

Since, two types of inputs are applied to one of the network architectures, four different 

networks are used to predict the contacting residues.  

 
 
 
2.3.4.1 Network 1 (N1) 
 
 

N1 contains eight input neurons representing the individual features of the pair 

of residues plus two global properties. Every feature of a residue (hydrophobicity, 

charge and size) is encoded by separate input neurons. Figure 2.3.1 shows the 

architecture of the N1. Different number of hidden nodes is used while training this 

network. N1 takes all the features of pair of residues and two global properties 

(normalized protein length and normalized sequence separation). For the sake of clarity, 

not all the hidden nodes and weight connections are shown in figure 2.3.1.  

 
 
 
2.3.4.2 Network 2 (N2) 
 
 

N2 has the same architecture with N1, as shown in figure 2.3.1., but it differs 

according to its information content. N1 takes the individual hydrophobicity of the 

residue while N2 takes the average hydrophobicity of the residue. Inputs to N2 are the 

size, charge and average hydrophobicity features of a pair of residues. Average 

hydrophobicity is calculated according to equation 2.3. It gives the hydrophobicity 

value averaged out over a window of residues which are the neighbors of the residue of 
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interest in the primary sequence. So, it encodes the local environment of the residue and 

our aim for trying N2 is to see how important this information is in the contact decision. 

 
Figure 2.3.1. Architecture of N1 and N2 

 
 
 
2.3.4.3 Network 3 (N3) 
 
 

N3 has a different topology; it is very similar to the topology used by Casadio et 

al. in their study for predicting contact maps of proteins [5]. It contains 218 input nodes, 

210 of them represents all the possible pair of residues. Each residue pair and its 

symmetric are encoded with the same node, which reduces the number of possible pairs 

from 20x20 to 20x (20+1)/2. The topology of the N3 is shown in figure 2.3.2. For the 

sake of clarity, not all the hidden nodes and weight connections are shown. When a 

residue pair is presented to N3, only one out of 210 input nodes will be 1, which is the 

representative of that pair, other 209 input nodes will be zero. Other 8 input nodes 

represent the size, charge and hydrophobicity values of the each residue in the pair of 

interest and two global properties (normalized protein length and sequence separation). 

This architecture is more complex than the previous one; it has more free variables 

(weights and biases) to learn the conditions of being in contact from the features of the 

residues presented to the network.  
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Figure 2.3.2. N3 architecture 

 
 
 
2.3.4.4 Network 4 (N4) 
 
 

In N4, a window of residues, which compromises the primary sequence neighbors 

of the residue and the residue itself, represents each residue. Three neighbors within the 

left and the right of the residue and itself constitute the window. Size, charge and 

hydrophobicity information of all neighbors are applied to the network. N4 topology is 

shown in Figure 2.3.3 and in this topology; the local environment of the residue is 

encoded by its neighbors in the primary sequence. In contrast to N2 where the local 

environment of the residues is presented by only average hydrophobicity of the 

neighboring residues, all the features are taken into account to represent the local 

environment of a residue in N4. Averaging may not be a proper way to encode the local 

environment, since it could not reflect the individual effects of the neighboring residues 

to the residue of interest. In topology of N4, effect of each neighbor is considered and 

an input node is assigned for each feature of the neighboring residues. So, it is a more 

proper way to encode local environment of the residues. 
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2.3.5 Evaluation of the Network Performance 
 
 

In this study, two different methods are used to evaluate the network performance. 

In the first methodology, the number of correctly predicted contacting residues and 

number of false positives which are the pairs assigned by the network as contact while 

they are not in actual are counted. Our aim is to increase the number of correctly 

predicted contacts while decreasing the number false positives as much as possible. The 

network outputs are the real numbers in the interval of [0,1] and higher the output, more 

probable that the input residue pair is contacting. Therefore, in order to determine the 

correctly predicted contacts, we select a threshold. The residue pairs whose outputs are 

equal to or higher than selected threshold are assigned as contacts and other pairs are 

assigned as non-contacts. Correct contacts (CC) is the ratio of number of actual 

contacting residue pairs whose network outputs are higher than the selected threshold to 

the total number of contacts. False positive (FP) is the ratio of number of actual non-

contacting residue pairs whose outputs are higher than the selected threshold to total 

number of non-contacts. They are calculated as follows; 

pairs residue contacting-non ofnumber  Total
Thresholdoutputsnetwork   whosepairs residue contacting-NonFP

(2.8)                                                                                                                             
pairs residue contacting ofnumber  Total

Thresholdoutputsnetwork   whosepairs residue ContactingCC

>=

>=

 

The second method is for the comparison of the performance of our predictor with 

a random predictor. In this method, the network capability of predicting residue contacts 

is of interest [5].  

Accuracy (A) of the network is defined as the ratio of the correctly predicted 

contacts by the network to the actual number of contacts in a protein and calculated 

according to; 

c

*
c

N
NA =  (2.9) 

Nc
* is the number of correctly predicted contacting residues by the network, 

Nc is the actual number of contact within the protein. 
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Now, the question is how correctly predicted contacts are determined. As 

mentioned, the output of every network in this study is a real number in the interval 

[0,1] which denotes the contact propensity of the corresponding pair of residues. Higher 

the network output, more probable that the input residues are in contact or vice versa. 

So, the number of correctly predicted contacts is determined by sorting the network 

outputs and selecting the top outputs as much as the number of actual contacts in that 

protein. Correctly predicted contacts are the actual contacting pairs whose outputs are 

within the selected top outputs. 

A random predictor makes Nc number of guess in order to predict the contacting 

pairs, assuming that there are Np number of residue pairs in which Nc of them are 

contacting. Therefore, its performance (Ar) is calculated by; 

 

p

c
r N

NA =  (2.10) 

 

Since the contact map is symmetric and residues whose sequence separation is less than 

four are not included, Np is calculated by; 

 

2
)3()4( −×−= LpLpN p  (2.11) 

where Lp is the protein length. 

In order to calculate the improvement over a random predictor, accuracy A of the 

network is divided to performance of the random predictor A. Improvement over a 

random predictor is denoted by R and calculated according to, 

 

rA
AR =  (2.12) 
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Figure 2.3.3. N4 architecture for a pair of residue i and j 

 
 
 

2.4 Results and Discussions 
 
 
 

All networks are trained with their corresponding training files. While training, 

they are tested on proteins contained in validation (TS97) dataset (see section 2.3.3). 

This testing is called validation and it is required to stop the training phase with up most 

generalization capability. Otherwise, the network will learn all the patterns in the 

training dataset and loose its generalization capacity over the all dataset. 

The validation set is divided into four subsets according to the length of the 

proteins. First validation set (Val Set 1) comprises proteins whose lengths are smaller 

than 100 amino acids, second set (Val Set 2) comprises proteins whose lengths are 

Size 

Hydrophobicity 
Charge (j+2)th residue 

Size 

Hydrophobicity 
Charge (j-2)th residue 

Size 

Hydrophobicity 
Charge (j-3)th residue 

Size 

Hydrophobicity 
Charge (j+3)th residue 

Size 

Hydrophobicity 
Charge i+2)th residue 

Size 

Hydrophobicity 
Charge (i-2)th residue 

Size 

Hydrophobicity 
Charge (i-3)th residue 

Size 

Hydrophobicity 
Charge (i+3)th residue 

Norm. pr length 
Norm seq. sep. 

Global 
Properties 

Contact 
Propensity ∫



 27

between 100 and 170 amino acids, third set (Val Set 3) comprises proteins whose 

lengths are between 170 and 300 amino acids and fourth set (Val Set 4) comprises 

proteins whose lengths are larger than 300 amino acids. The reason for this division is 

that the performance of any network varies significantly with the length of the protein. 

As protein length increases, the possible number of pairing increases with the square of 

protein length while the actual contact number do not varies that much. Table C in the 

Appendix shows the details of the proteins in the validation set (TS97). In the following 

experiments, network performances are calculated based on the performance on these 

validation datasets. All performance results are represented by a table. There are correct 

contacts (CC), false positives (FP), accuracy (<A>) and comparison with the random 

predictor (R) as explained in section 2.3.5. 

 
 
 

2.4.1  Experiment 1 
 
 

In this experiment, N1 is trained with different number of hidden nodes and the 

performance of it on the validation set is determined. In the training set, there are 

128862 patterns whose half of them is the contacting residues and other half is the non-

contacting residues which are selected randomly from the training dataset. N1 is trained 

using 3 different numbers of hidden nodes; 10, 15 and 20. To recall, there are 8 input 

nodes in the N1, six of them represent the size, charge and hydrophobicity features of 

residue pair of interest plus two global properties. The performances of the N1 with 

different number of hidden nodes are shown in Table 2.3.  

 
 N1 with 10 hidden nodes N1 with 15 hidden nodes N1 with 20 hidden nodes 

 
 

CC 
(%) 

FP 
(%) <A> R CC 

(%) 
FP 
(%) <A> R CC 

(%) 
FP 
(%) <A> R 

Val Set 1 7.1 0.8 0.151± 0.002 4.79 7 0.007 0.140± 0.001 4.42 10 0.014 0.150± 0.001 4.68 

Val Set 2 1.7 0.2 0.091± 0.002 4.71 2.3 0.003 0.094± 0.002 4.77 6.0 0.008 0.125± 0.001 5.37 

Val Set 3 4.1 0.6 0.074± 0.001 5.85 3.9 0.005 0.074± 0.001 5.93 6.3 0.009 0.074± 0.001 6.00 

Val Set 4 7.3 0.9 0.067± 0.001 8.35 10 0.012 0.071± 0.001 9.04 9.2 0.010 0.072± 0.001 9.04 

All pr.  5.8 0.8 0.083±0.002 6.35 7.4 0.010 0.084± 0.001 6.51 7.9 0.010 0.085± 0.001 6.58 

Table 2.3. Performance of N1 on the validation dataset 
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Note that, there are two ways to evaluate the network performance, one method is 

to count correctly predicted contacts with the false positive ratio, and other method is to 

compare it with a random predictor. Table 2.3 shows performances calculated by these 

two evaluation methods. Training of N1 with 10 hidden nodes stopped at 6000th 

iteration, N1 with 15 hidden nodes stopped at 31250thiteration and N1 with 20 hidden 

nodes stopped at 25500th iteration. 

N1 is the simplest network in our system according to the information encoded 

within the network. Input nodes of it encodes two global properties plus individual size, 

charge and hydrophobicity values of residues of interest whose contact propensity is 

under examination. 

 
 
 
2.4.2 Experiment 2 
 
 

It is known that the local environment of the residues influences contact decision 

of two residues in proteins significantly. So, in order to mimic this influence, an average 

hydrophobicity term is used. This method is used by Casadio et al. [5] and they use only 

this entity to represent the hydrophobicities of residues. In this experiment, the same 

network architecture as N1 is used, but, average hydrophobicities of residues are used to 

encode the hydrophobicities of residues in residue pairs of interest. This network is 

called N2 (see section 2.3.4.2.). In the training set, there are 128862 patterns in which 

the numbers of contact and non-contacting pairs are equal. Performance of N2 on the 

validation set is shown in Table 2.4. Again, validation set is divided into 4 subsets 

according to the protein lengths. Training of N2 with 10 hidden nodes stopped at 3550th 

iteration, N1 with 15 hidden nodes stopped at 103000th iteration and N1 with 20 hidden 

nodes stopped at 57000th iteration. 

Since, N1 and N2 have the same network architecture but different information 

content (differing by their hydrophobicity encoding), it is appropriate to compare their 

performance in order to understand which hydrophobicity encoding is meaningful. N1 

with 20 hidden nodes is performed best among all N1 and N2 architectures with 

different hidden nodes. Generally, N1 performs better than N2. Since the only 

difference between these two networks is the encoding of hydrophobicities, it can be 

said that N1 hydrophobicity encoding is more successful that that of N2. It is for sure 

that local environment is very important for the contact decision of residues. Based on 



 29

this, since N2 has performed poorer, it is concluded that taking arithmetic average of 

hydrophobicities of neighbors of residue of interest cannot represent the local 

hydrophobicity of that residue. Individual hydrophobicities of residues of interest are 

more informative for encoding the hydrophobicity. 

 
 N2 with 10 hidden nodes N2 with 15 hidden nodes N2 with 20 hidden nodes 

 
 

CC 
(%) 

FP 
(%) <A> R CC 

(%) 
FP 
(%) <A> R CC 

(%) 
FP 
(%) <A> R 

Val Set 1 0.4 0.1 0.101± 0.001 3.23 0.6 0.1 0.098±0.001 3.18 0.1 0.1 0.097±0.001  3.11 

Val Set 2 0.6 0.1 0.089± 0.002 4.39 0.4 0.1 0.089±0.001 4.75 0.4 0.1 0.086±0.002 4.26 

Val Set 3 3.1 0.6 0.071± 0.001 5.55 2.4 0.4 0.071±0.001 5.54 1.8 0.3 0.067±0.001 5.23 

Val Set 4 6.7 0.8 0.068± 0.001 8.69 8.9 1.0 0.068±0.001 8.74 14.0 3.1 0.065±0.001 8.18 

All pr.  4.9 0.7 0.077±0.001 6.08 6.0 0.8 0.077±0.001 6.19 9.0 2.4 0.074±0.001 5.77 

Table 2.4. Performance of N2 on the validation dataset 

 
 
 
2.4.3 Experiment 3 
 
 

In the previous experiment, it is concluded that individual hydrophobicity is more 

informative than average hydrophobicity. Casadio et al. used average hydrophobicity to 

encode the hydrophobicities of residues in very different network structures than we use 

in the previous experiments; one input node is set for each possible residue pair. Their 

network architecture is mimicked by representing each possible residue pair with one 

input node. Additionally, there are six input nodes representing size, charge and 

individual hydrophobicities of residues in the pair of interest and two global properties. 

This network is called N3 and trained this network with the same training set used for 

N1 and 2 by using 5 and 10 hidden nodes. The same validation set is also used to stop 

the training with up most generalization capacity. Training of N3 with 5 hidden nodes is 

stopped after 100 iterations, and training of N3 with 10 hidden nodes is stopped after 

400 iterations. Performances of the networks with different number of hidden nodes are 

shown in table 2.5.  

As can be seen from table 2.5, N3 performs poorer than N1. Based on the R score 

(the improvement over a random predictor), N3 architecture performs nearly the same 

as the networks presented in Casadio et al. study in which their results are six times 

better than a random predictor (R=6). To understand how our additional features 
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improve the network prediction capability, we need to look at the simplest network 

model in Casadio study, which have 210 nodes representing each possible pair, 2 nodes 

representing average hydrophobicities of residues of interest plus 2 global properties. 

This network performs 5.5 times better than a random predictor over the same 

validation set. Therefore, using size and charge of residues and using individual 

hydrophobicity instead of average hydrophobicity enable the network performs better.  

 
 N3 with 5 hidden nodes N3 with 10 hidden nodes 

 
 

CC 
(%) 

FP 
(%) <A> R CC 

(%) 
FP 
(%) <A> R 

Val Set 1 6.2 0.6 0.146± 0.001 4.63 7.6 0.8 0.147± 0.001 4.56 

Val Set 2 3.0 0.5 0.091± 0.002 4.50 2.9 0.4 0.091±0.002 4.58 

Val Set 3 4.0 0.6 0.072± 0.001 5.67 4.1 0.6 0.073±0.001 5.76 

Val Set 4 8.2 0.9 0.069± 0.001 8.67 6.0 0.6 0.066±0.001 8.17 

All pr.  4.2 0.5 0.081±0.001 6.10 5.1 0.6 0.081±0.001 6.13 

Table 2.5. Performance of N3 on the validation dataset 

 
 
 
2.4.4 Experiment 4 
 
 

In this experiment, the performance of N4 on TS97 validation set is investigated. 

N4 uses size, charge and individual hydrophobicity information of neighbors of residue 

of interest. Neighbors of a residue are represented by a window of residues 

compromising residues whose three of them is on the left and three of them on the right 

in the primary sequence and the residue itself (see section 2.3.4.4.). With this encoding, 

it is aimed to represent the local environment of a residue in a much better way. Table 

2.6 shows the performance of N4 with different number of hidden nodes on validation 

set TS97. Training of N4 with 15 hidden nodes stopped at 9000th iteration, training of 

N4 with 20 hidden nodes stopped at 10500th iteration. 

N4 with 15 different hidden nodes performs better than all other networks in this 

and previous experiment. Its improvement over a random predictor is 6.75, which is 

also higher than the improvement of the networks in Casadio study. By looking at these 

results, it can be concluded that a better way is found to represent the local environment 

of the residues. Instead of averaging of the hydrophobicities, separate input nodes are 
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assigned for each different feature of neighboring residues. This also proves again that, 

local environment of the residues is effecting their contact decision; otherwise, such an 

improvement cannot be seen. 

 
 N4 with 15 hidden nodes N4 with 20 hidden nodes 

 
 

CC 
(%) 

FP 
(%) <A> R CC 

(%) 
FP 
(%) <A> R 

Val Set 1 13.8 2.7 0.143± 0.003 4.19 10.5 2.4 0.123± 0.002 3.50 

Val Set 2 8.1 1.6 0.098± 0.002 4.64 9.3 1.9 0.096±0.002 4.51 

Val Set 3 9.4 0.2 0.082± 0.001 6.21 10.8 2.0 0.081±0.001 6.19 

Val Set 4 14.1 0.2 0.076± 0.001 9.64 12.9 1.6 0.073±0.001 9.23 

All pr.  12.1 1.9 0.089±0.002 6.75 11.9 1.7 0.086±0.001 6.51 

Table 2.6. Performance of N4 on the validation dataset 

 

With these results, which networks are tested on the test dataset (COF) is 

determined. The best networks in each experiment are selected and tested on the test 

dataset. 

 
 
 

2.4.5 Test Results 
 
 

In the previous sections, a number of networks are trained with the contact and 

non-contact information collected from a set of proteins and these networks are tested 

on another set of proteins to stop the training at up most generalization capability of the 

networks so to set the weights of the networks. Now, a different set of proteins is used 

to test these best performed networks whose weights are set. This testing enables us to 

measure the performance of the networks for prediction of contacts in proteins. Protein 

data set which is used for this testing is COF dataset (see section 2.3.3.).  

Four different NNs are designed to predict the contacting residues in proteins and 

the best performed architectures and weights are chosen from each type of the network. 

N1 which is the simplest network is best performed with 20 hidden nodes; hence that 

network is tested on COF dataset. Similarly, N2 is best performed with 15 hidden 

nodes, N3 with 10 hidden nodes and N4 with 15 hidden nodes. Table 2.7 shows the 

performances of these networks with set weights on proteins with different sizes and on 
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all proteins in the test dataset. N4 with 15 hidden is the most successful network on the 

test dataset. In order to assign an average accuracy and improvement over a random 

predictor, the performances of N4 is averaged out over validation and test datasets. 

Therefore, this predictor has an average 0.086 accuracy and 7 times better than a 

random predictor. 

 



 33 

 

 

 N1 with 20 hidden nodes N2 with 15 hidden nodes N3 with 10 hidden nodes N4 with 15 hidden nodes 

 
CC 

(%) 

FP 

(%) 
<A> R 

CC 

(%) 

FP 

(%) 
<A> R 

CC 

(%) 

FP 

(%) 
<A> R 

CC 

(%) 

FP 

(%) 
<A> R 

Val Set 1 10.9 1.7 0.156±0.001 3.99 1.5 0.2 0.086±0.004 1.90 9.0 0.8 0.148±0.001 3.83 12.6 3.6 0.160±0.003 3.52 

ValSet 2 4.5 0.7 0.085±0.001 4.17 0.3 0.1 0.080±0.001 3.99 2.2 0.4 0.081±0.001 3.92 7.3 1.3 0.094±0.002 4.52 

ValSet 3 5.9 0.9 0.076±0.001 5.63 2.5 0.4 0.075±0.001 5.63 3.7 0.6 0.072±0.001 5.30 9.2 1.5 0.081±0.001 5.94 

ValSet 4 9.5 1.0 0.070±0.001 9.14 9.3 1.0 0.071±0.001 9.33 6.1 0.6 0.066±0.001 8.50 13.3 1.7 0.078±0.02 9.85 

All pr�s 8.1 1.0 0.078±0.001 6.68 6.8 0.8 0.0075±0.001 6.64 5.2 0.6 0.074±0.001 6.23 10.8 1.7 0.086±0.031 7.03 

Table 2.7. The performances of the best networks on the test dataset COF 
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3. PROTEINS AS NETWORKS OF THEIR INTERACTING RESIDUES 
 
 
 
 

In this part of the thesis, proteins are analyzed as networks of their interacting residues. 

Small-world network concept is used to explain the characteristics of resulting residue 

networks. 

 
 
 

3.1 Overview 
 
 
 
 All biological processes require different kinds of protein molecules and the 

biological activity of any protein is performed by the folded structure of that protein. At 

physiological temperatures, folded proteins have conformational flexibility that is 

essential for their biological activities. This flexibility is mediated by the concerted 

actions of residues located at different regions of the protein [1, 21, 22]. Some residues 

play a key role during these communications and without these residues the protein 

would be non-functional [23]. 

In this project, structures of folded proteins are analyzed considering them as 

networks. A network is a collection of nodes which are partially or fully connected to 

each other. A node can be any entity such as a substrate in a metabolic network, a 

station in a subway network or a neuron cell in our brain. We are surrounded by an 

enormous number of small or large-scale networks in our real life. In any network, the 

collection of connections between its nodes, which are called edges, give the structural 

(topological) characteristic of the network. 

Since networks are everywhere in our lives, understanding the efficiency, speed 

and accuracy of the networks is crucial. On 10 August 1996, a fault in two power lines 

in Oregon, USA led, through a cascading series of failures, to blackouts in 11 US states 

and two Canadian provinces, leaving about 7 million customers without power for up to 
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16 hours [24]. A computer virus named as Love Bug worm is the worst computer attack 

to date; it spread over the Internet on 4 May 2000 and inflicted billions of dollars worth 

of damage worldwide [24]. In these examples of failed networks, topology 

(connectivity) and its fragility to random failures play a major role. 

Structure of a network always affects its function. The speed, accuracy and 

efficiency of a network are determined by its topology, in other words, structure of the 

network. This sounds very familiar to protein scientists, since the structure of a folded 

protein affects the function of that protein. This partly constitutes our motivation to 

examine folded proteins as networks. A protein is converted into a network of its 

interacting residues by using the Cartesian coordinates of its residues which are in turn 

converted to a contact map [25]. In order to separate these networks from the networks 

of interacting proteins, which are called protein networks, we name them as residue 

networks. From this point on, a residue network refers to a folded protein converted into 

a network of its interacting residues. Then, a number of network parameters is 

calculated from residue networks. These parameters help us analyze the structure of a 

protein as a network of its interacting residues. 

A network can be regular, random or between these two extremes according to the 

mode of its connectivity. Real-life networks that have evolved naturally are neither 

regular nor random, but they have characteristics between these two extremes. In order 

to understand the connectivity of the network, two main parameters are required; 

characteristic path length (L) and clustering density (C). L is the average of the 

shortest paths required to go from one node to another node within a network. It gives 

an idea about the diameter of the network. C is a measure of local clustering within a 

network. If a number of nodes are highly inter-connected to each other, then there is a 

high probability to have a cluster in that location of the network. It is a local property 

and it gives an idea about the attack tolerance of the network. A regular network has 

many clusters with long path lengths while random networks have shorter path lengths 

with a small number of clusters. A small-world network topology, on the other hand, 

has the best of both, with short path length and high C. Small-world network concept 

was first introduced by Watts and Strogats [26]. Networks showing small-world 

network behavior have short path lengths, which makes it easier to go from one node to 

another. They also have high C, which makes the network tolerant to random failures of 

a few numbers of nodes. It is shown that many real-life networks show these properties 

and they are classified as small-world networks such as the World-Wide Web [27], the 
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Internet backbone [28], the NN of the nematode worm Caenorhabditis Elegans [29] and 

metabolic networks [30]. 

There are previous studies to examine the packing of proteins on global and local 

scales. Residue packing in the protein interior has long been considered to be essential 

to the native-like character, stability, and function of proteins [31, 32]. Raghunathan et 

al. found that all residues conform almost perfectly to a simple lattice model for sphere 

packing when a radius of 6.5 Å is used to define non-bonded (virtual) interacting 

residues. Side-chain positions with respect to sequential backbone segments are 

relatively regular as well [32]. However, a regular network model for a protein cannot 

provide short distances which are required for the concerted actions of residues at 

different regions of the protein in very short time scales [1]. A recent study shows that 

packing in proteins is on average similar to random packing of hard spheres 

encountered in soft condensed matter [33]. Another study done by Liang et al. shows 

that packing in proteins behaves like random spheres near their percolation threshold 

[34]. Random packing of proteins would provide the short distances for the fast 

information relay between residues, but this cannot warrant the high clustering similar 

to regular packing. Thus, a special network model is required for proteins to explain 

their conformational flexibility together with their highly packed globular structures. 

Small-world networks characterized by their short path lengths and highly clustered 

structures are candidate topologies to explain such properties of proteins. To explore 

this phenomenon, a method is defined to consider a single protein as a network of its 

residues. 

In order to analyze proteins as networks, each protein is converted into a network 

of its interacting residues. Figure 3.1.1 and 3.1.2 show two different representations of 

residue networks. In figure 3.1.1, it is a three dimensional representation of a residue 

network in which residues that are closer to each other than a given distance (7 Å) are 

connected by an edge. Connectivity is shown by black lines and adjacent neighbors are 

shown by gray lines. In figure 3.1.2, all residues are aligned on an ellipse for a clearer 

understanding of its topology and the connections between them are displayed. In this 

figure, there are no spatial constraints on the place of residues. These figures were 

drawn by a network drawing program named Pajek [35]. We calculate the L and C 

parameters of such residue networks for a large number of proteins. To interpret these 

results, they should be compared with those of random networks. For this purpose, each 
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residue network is randomized by keeping the number of neighbors of each residue 

constant, but changing the neighbors of each residue.  

       

Figure 3.1.1. Residue network of 3chy protein generated at 7 Å 

 

Figure 3.1.2 Another representation of 3chy residue network. No spatial constraints are 
used for the generation of this network. 
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Proteins are also converted into residue networks using Delaunay Triangulation 

(DT) which is a very powerful method for creating networks without having resort to a 

cutoff distance. Network parameters of all these networks are calculated and compared 

with those of actual networks in order to judge the characteristics of residue networks. 

Results are also compared with other parameter sets. 

Another property that is crucial for determining the characteristics of a network, is 

the degree distribution; i.e. the distribution of the number of neighbors of all nodes in 

the network. It is well-known that small-world networks display different degree 

distribution patterns than random and regular networks [36]. Thus, degree distribution 

of residue networks is also calculated and analyzed to understand the characteristics of 

the residue networks. 

Since contact maps of proteins are used to convert the latter to a network of its 

residues, a cutoff radius has to be chosen to determine the interacting residues. Cutoff 

radius is required to decide whether any pair of residues is in contact or not according to 

the Euclidian distance between the selected atoms of corresponding residues. Therefore, 

changing the cutoff radius changes the topology of the network. Because of this, 

network properties of proteins are analyzed as a function of the cutoff radius at which 

the networks are generated. The choice of a cutoff radius to form the contact map may 

be arbitrary at times. A procedure that will decide on the edges connecting the nodes 

automatically, free from a choice of cutoff radius is desirable. Such a procedure is 

offered by DT [37, 38]. By using DT, one can generate a protein network without 

resorting to any cutoff distance to determine the contacting residues, since in the 

triangulated protein, each edge of the tetrahedral is also an edge connecting two 

residues. DT has been used in proteins to understand the nature of packing and the 

structure. [33, 34].  

 
 
 

3.2 A Closer Look at Small-World Networks 
 
 
 
 We live in a world of complex networks. Any complex system can be modeled as 

a network, where the vertices are the elements of the system and the edges represent the 

interactions between them [39]. The global economy is a network of national 

economies, the brain is a network of neurons, and metabolic networks are networks of 
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substrates and products of metabolic reactions. Networks that exist in real life such as 

WWW, food webs, Internet, protein networks in a cell are modeled and it turns out that 

they represent unique properties which give them flexibility, speed and error tolerance. 

Spreading of diseases through social networks or propagation of cascading failures 

through large power grid or financial systems are also mediated by the networks with 

unique properties mentioned above [40]. Therefore, understanding the underlying 

mechanisms and principles behind these efficient networks will be fruitful in a 

remarkable variety of fields [40] and will aid the design of more efficient networks. 

Regular networks or random networks cannot explain the complex topology of 

the real life networks. In the toy model of Watts and Strogats [26], there is a ring lattice 

with n vertices and k edges per vertex as shown in figure 3.2.1. Each edge is rewired at 

random with probability p, and in the course of this rewiring, graph is tuned between 

regularity (p = 0) and disorder (p = 1). As can be seen in figure 3.2.1, the regular 

network is highly clustered while the random network does not have such clusters; on 

the other hand, the latter has much shorter path lengths than its regular counterpart. The 

network in the intermediate region has clusters like regular networks but shorter path 

lengths like random networks. These networks are called small-world networks and 

they are used to model and understand real-life networks. 

Barabasi et al. explored the complex interaction of metabolic networks in 43 

organisms [30]. They examined the topological properties of these 43 different 

organisms based on data in the WIT database [41]. A metabolic network is built up of 

nodes, the substrates, that are connected to one another through links that are the 

metabolic reactions [30]. They show that metabolic networks are best modeled by the 

small-world network model. They are robust and error-tolerant networks which 

indicates that removing a few substrates does not affect the average shortest 

biochemical pathway between the remaining nodes. Nervous system of C. elegans 

which comprises 282 neurons and synaptic connections between them is mapped as a 

network and the properties of the resulting network are analyzed. It is concluded that it 

is a small-world network in the sense that its average number of steps to go from one 

neuron to another is close to that of an equivalent random graph, yet it is highly 

clustered than its random counterpart [40].  
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Figure 3.2.1. The transition from regular to random regime in a simple topology [26] 
 

Figure 3.2.1 displays a regular ring lattice and its rewiring procedure with 

increasing randomness without altering the number of vertices or edges in the graph. A 

ring of n vertices, is connected to its k nearest neighbors by undirected edges. In this 

legend, there are 20 vertices (n = 20) and each of them is connected to 4 vertices (k = 4). 

In the rewiring process, a vertex and the edge that connects it to its nearest neighbor are 

chosen. With probability p, this edge is reconnected to a vertex chosen uniformly at 

random over the entire ring, with duplicate edges forbidden. This process is repeated for 

each vertex in the lattice. Then, the same process is repeated for more distant neighbors 

until each edge in the original lattice has been considered once. For p = 0, the original 

ring is unchanged; as p increases, the graph becomes increasingly disordered until for p 

= 1, all edges are rewired randomly. The claim in this figure is, for the intermediate 

values of p, the graph is a small-world network; highly clustered (large C) like a regular 

graph, yet with a small L, like a random graph [26]. 

To quantify these properties, there are two important network parameters playing 

major role in determining the overall topology of any network; L and C. 
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3.2.1 Characteristic Path Length (L) 
 
 
 

One of the important quantities that may be calculated for networks is the L. It is 

the typical average distance between every vertex (or node) and every other vertex [40]. 

�Distance� does not refer to the metric space between the vertices. It refers to the 

minimum number of edges that must be traversed in order to reach from one vertex to 

another vertex; i.e. the shortest path length between the corresponding vertices [40]. It is 

a measure of the typical separation between two vertices in a graph.  

The specific value of L of a network is not indicative of the topology of the 

corresponding network. Rather, the scaling of the L with the number of nodes or the 

average neighbor number of the nodes which is called �L scale� is indicative of 

topology of the network. As mentioned above, a network can be tuned between order 

(regularity) and randomness by changing the rewiring probability of each edge which is 

p. Different values of p represent different topologies, and the graphs with different 

sizes or average neighbor numbers but with the same p value are qualitatively same. 

Hence, although the L of a set of graphs with different sizes and average neighbor 

numbers, but generated with same p can vary over 1 to infinity, the scaling of the L with 

the number of vertices (size) or average neighbor number remains the same. This means 

that knowing the rewiring probability p of a small network enables us to obtain 

knowledge of its much larger cousins whose properties cannot be computed directly by 

using the L scale [40]. Also, it is a distinctive parameter of a set of networks with the 

same wiring probability p, by giving important information about their topology. 

Since L gives the typical distance required to go from one node to another in a 

network [42], it also defines the diameter of the network. In regular networks, network 

diameter is very high and it proportionally increases with size of the network n (L ~ n) 

[43]. So, in large worlds, like regular networks, as the network grows, the typical 

distance between the nodes is linearly increasing with number of nodes n. Conversely, 

in the small-world regime, the network diameter increases proportionally to the 

logarithm of n (L ~ ln(n)) [43]. 
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3.2.2 Clustering Density (C) 
 
 
 

In a network, how densely the vertices are neighbors of each other is an important 

factor for determining the topology of the network. Clustering coefficient characterizes 

the extent to which vertices neighbor to any vertex are also neighbor of each other. In 

other words, clustering coefficient of a vertex is the measure of the inter-neighboring of 

the neighbors of this vertex. C of a network is the average of the clustering coefficients 

of every vertex in the network. 

The clustering coefficient can be defined as follows; suppose that there is a vertex 

with k number of neighbors. There can exist a maximum of n(n-1)/2 edges between 

these k neighbors of that vertex. This occurs when every neighbor is connected to every 

other neighbor of that vertex. The ratio of the actual number of edges between the 

neighbors of that vertex to the maximum possible number of edges gives the clustering 

coefficient of that vertex. In figure 3.2.2, clustering coefficient of one vertex with three 

neighbors is calculated at different connectivities of its neighbors. 

 
Figure 3.2.2. Calculation of clustering coefficient of ith vertex in a network 
 

 Clustering coefficient of a network determines its C. It is an important property 

which gives us the information about the existence of clusters within the network. 

Nodes or vertices having high clustering densities are candidates for being an element 

of a cluster. Therefore, it is also a local property that quantifies the local regions of the 

network. This parameter is crucial when a network is to be compared with its random 

counterpart. Since random networks lack clusters, the C of an actual network gives an 

idea of how its topology differs from a random one that has a low C. 

 ith node ith node ith node 

 (a) (b) (c) 

1
1)/2-(33

3Ci =
×

=  
3
2

1)/2-(33
2Ci =

×
=  

3
0

1)/2-(33
0Ci =

×
=  



 43

 In order to explain how these two properties of networks are crucial for 

determining the topology, here are some empirical examples. Three real-life networks, 

film actors, power grids and neural network of C. elegans are taken into account and 

their network topologies are explored [26]. Two film actors are joined by an edge if 

they have been in a film together. This information was taken from Internet Movie 

Database (http:\\us.imdb.com) in April 1997. For the power grid, vertices represent 

generators, transforms and substations, and edges represent high-voltage transmission 

lines between them. For C. elegans, an edge joins two neurons if they are connected by 

either a synapse or a gap junction. L and clustering coefficient for all three networks are 

calculated and they are compared to random graphs with the same number of vertices 

and same average number of edges per vertex respectively. Table 3.1 shows the network 

parameters of three networks and their counterparts. In the film actors network, 

n=225,226 and k=61; Power grid, n=4,941 and k=2.67; C. elegans, n=282 and k=14. 

The actual Ls of the three networks are near that of their corresponding random 

counterparts. However, the clustering coefficients of the actual networks are much 

higher than their random counterparts. Therefore, all three of them show the small-

world phenomenon in this perspective. 

Network type Lactual Lrandom Cactual Crandom 

Film actors 3.65 2.99 0.79 0.00027 

Power grid 18.7 12.4 0.080 0.005 

C. elegans 2.65 2.25 0.28 0.05 

Table 3.1.Examples of small-world behavior; L ≥ Lrandom but C >> Crandom 

 
 
 
3.2.3 Degree Distribution 
 
 

In any network, number of neighbors of the nodes carries valuable information on 

the structure of the network. To quantify this, let p(k) denote the fraction of nodes that 

have k links. Here k is called the degree and p(k) is the degree distribution [24].  

The simplest random graph models are presented by a bell-shaped Poisson degree 

distribution [24]. In these networks, there are no rules or preference of incoming nodes 

for attachment to already existing nodes, which results in a normal distribution. Real-

life networks, on the other hand, are analyzed and shown as small-world present 
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different degree distribution patterns than randomly organized networks. Small-world 

networks are shown to have a large number of nodes having few neighbors besides a 

few number of nodes having many neighbors. Such connectivity results in a power-law 

which is also called scale-free distribution, since there is no single scale to define the 

distribution. To be scale-free is common but not universal for small-world networks 

[24]. 

The network of movie-actor collaborators, the NN of the worm C. elegans, WWW 

and the network of citations of scientific papers are scale-free, that is they have a 

distribution of connectivity that decays with a power-law tail. Scale-free networks grow 

in such a way that new vertices connect preferentially to the more highly connected 

vertices in the network; this property is absent in randomly organized networks. Hence, 

there are a few nodes with very high degrees dominating the topology of the networks, 

which are called hubs and there are many nodes having few neighbors. P(k) distribution 

decays as a power law P(k) ~ k-γ in scale-free networks where γ has most commonly 

been observed between 2.1 and 2.4. Log-log plot of scale-free distribution conforms to a 

line whose slope is γ. Figure 3.2.3 shows how random and scale-free organizations 

differ in the topology and degree distribution. 

The growing character of the network is important to be free of scale or not. 

Barabasi et al. correlate the growth of a network model with its degree distribution as a 

function of time [45]. They found that network topologies at different time steps (hence 

having different number of nodes) growing with preferential attachment show the same 

degree distribution independent of time, hence the size of the network. Also, they found 

that networks growing without preferential attachment eliminate this scale-free 

distribution. 

Why scale-free networks?  The advantage of being scale-free is that the network 

is resistant to random failures, because a few hubs dominate the topology [46]. So, the 

probability of having attacks to the nodes having few links is higher because of the 

abundance of these nodes and these attacks can be easily tolerated by the topology. 

However, the weakness of this type of distribution is that any attack to the hubs might 

lead to a drastic failure of the network as mentioned in section 3.2.2.  

It is understandable that many real-life networks have scale-free distributions. 

World Wide Web has a number of pages having high number of links and called hubs. 

Therefore new nodes will link also one or more of these pages in order to be reached 

easily by using the links of those hubs or to reach easily to other pages in the WWW.  
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Figure 3.2.3. Degree distribution of random and small-world networks. The network on 
the left is randomly wired and its degree distribution presents a Gaussian distribution. 
The network on the right is a small-world network and its degree distribution is scale-
free [44].  
 

Also, protein networks, where proteins constitute the vertices and interactions 

between them (binding, catalysis or chemical modification etc.) defined as the edges of 

the networks, present scale-free degree distributions [30]. In this topology, few proteins 

have a high number of links (especially multifunctional ones), although most of them 

have few interactions. Interestingly, it is found that the highly connected (or interacting) 

proteins in 43 organisms are identical while the rest of the proteins are species specific 

[30]. The error-tolerance ability of scale-free architecture can enable such an evolution 

that preserves highly interacting proteins through time. Failures of highly connected 

nodes cannot be tolerated because of their deleterious effect to a large number of 

processes, causing the cell or organism to die. On the other hand, random failures of 

proteins having few links can be tolerated easily, and they can be seen as means of 

adaptability and flexibility. In addition, metabolic networks are shown to have a 

structure whereby there are a small number of connections between the clusters of 

highly connected nodes [47]. This topology gives a metabolic network modularity and 

additional robustness. Modularity refers to the fact that there are a few links between the 
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highly clustered proteins and these clusters can be seen as separate modules of cellular 

processes. This is also validated by compartmentalization and modularity characteristics 

of control of many cellular networks [48]. A failure of a highly connected protein 

affects the multi-protein complex around it dominantly; other complexes or processes 

are not affected as much because of fewer links between other clusters or multi-protein 

complexes. Because of this, such connectivity gives metabolic networks an additional 

robustness. 

Recently, a mechanism is introduced for power laws in complex systems, which is 

referred as highly optimized tolerance (HOT) [49]. HOT systems are robust to 

perturbations they were designed to handle, yet fragile to unexpected perturbations and 

design flaws. The protein network is a HOT system because of its scale-free 

distribution. This network is very robust to random failures of nodes (proteins) in the 

network unless those failed are not highly-connected crucial ones. As an example, RNA 

polymerase which is a part the cellular machinery to transcribe DNA into mRNA in the 

cell, binds to several activator and regulatory proteins, which makes it a highly 

connected and crucial node in the protein network [21]. Failure of this protein is a very 

rare event, but cellular protein network is very fragile to its failure, its result is 

deleterious. In contrast, failure of several proteins can easily be tolerated by the protein 

network in the cell by macro-level mechanisms such as increasing the concentration of 

the activator molecules for the failed protein to reproduce it or switching to an 

alternative cellular state which does not need that protein. 

Being scale-free is not universal for small-world networks, but there could be 

some constraints for being completely scale-free. This type of distribution is called 

truncated power law since the data conforms to a scale-free distribution up to a sharp 

cutoff of neighbor number, then the distribution of data is either an exponential or 

Gaussian decay [50]. In the power-law regime, the number of neighbors of any node is 

not limited. For some network cases, there are constraints which lead to fewer nodes 

having the high degrees expected from a scale-free distribution. These networks present 

a truncated power law distribution and their degree distribution is given by 

)/exp(~ bxxy −−γ  (3.1.) 

where b is the truncation. 

These constraints could be the aging of the vertices: Some vertices with high 

degree stop receiving new links. Although they remain in the network, they will no 
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longer receive new nodes, thus limiting the preferential attachment of new nodes 

expected in a scale-free distribution [50]. The network of movie actors is an example of 

a small world with truncated power law distribution. In this case, famous movie actors 

eventually stop acting in movies hence stop receiving new links in time. Although they 

are still part of the network, they receive much smaller number of links than expected 

from them. Figure 3.2.4a shows how aging affects the degree distribution of the 

network.  

 

Figure 3.2.4. Physical constraints on P(k). (a) Aging of vertices (b) Cost of adding new 
links to highly connected nodes is also a constraint for scale-free distribution. This 

figure is adapted from Amaral et al. [50]. 

 

In the figure 3.2.4.a, circles show a scale-free distribution in which there is no limiting 

factor for preferential attachment of new nodes to nodes with high degree. With slow 

aging, nodes (denoted by blue squares) already having high degree stop receiving new 

nodes which is called the aging of vertices. In this case, the power law is truncated at a 

sharp cutoff. With fast aging, in the case denoted by green triangles, the distribution 

nearly became Gaussian which means that vertices stop receiving new nodes so early 

that they have no time to have high degrees.  

Another constraint that limits the addition of new nodes to nodes of high degree is 

the increasing cost of adding new links to the vertices of high degree. Nodes having 

already high degree cannot receive new links because of reasons of efficiency [50]. This 

is exemplified very well in the network of world airports. There are some airports which 

are very busy and favored by all the airlines. However, because of space and time 

constraints, these airports have a limited number of links although they are hubs of the 
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network. Thus, they can no longer receive new links after a certain number of links. 

This limitation truncates the scale-free behavior of degree distribution of the network 

[50]. The effect of this constraint is exemplified in Figure 3.2.4.b. With no cost (denoted 

by circles), we see the scale-free distribution which means that there are no constraints 

limiting the neighbor number of nodes.  With an intermediate cost denoted by blue 

squares, the distribution is a truncated power scale which means that new links can be 

allowed up to a cost value. With high costs, denoted by blue triangles, the distribution is 

Gaussian. 

In a recent study, a new model is developed to explain the mechanism of 

truncated power law [51]. According to the model, systems having such distributions 

perform on sub-optimal levels (opposed to HOT systems performing at optimum),  but 

they are more robust to any failure of nodes in the system (unlike HOT systems fragile 

to unforeseen failures). Such systems are called constrained optimization with limited 

deviations (COLD). COLD design is more tolerant than a HOT one by avoiding a total 

ruin (see example in section 3.2.2 for RNA polymerase), and accepting some loss in the 

average system performance [51]. 

The constraints to have truncated power law depend on the system or the network 

analyzed. So, different systems have different types of constraints. In the movie actor 

network, the aging of vertices is a constraint limiting the high degree nodes because of 

aging or death. But, world airports network have no such constraint but in this case high 

cost of adding new nodes is the constraint avoiding scale-free distribution. As we will 

see in the residue networks case, we will have different constraint for this system. 

In this chapter, important features of networks and the patterns of these features in 

small-world networks are reviewed. To summarize, in order to decide whether a 

network is a small-world, we need to consider the two factors listed below; 

i) Small-world networks have Cs much larger than random networks, while Ls 

do not vary much [26].  

ii) Diameter of the network increases logarithmically with the number of 

vertices [45]. 

After these conditions are satisfied, the main problem is finding the degree distribution 

of the network. According to the distribution, it is necessary to explain the facts that 

push the network to have such a distribution and find the constraints.  

Our specific interest in this project is the protein molecule as a network of its 

residues and we will do all the analysis listed above and explore what type of networks 
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proteins are. In the following chapter, one can find the methodology to convert proteins 

into networks, generate random networks and calculate the parameters of the resulting 

networks. 

 
 
 

3.3 Network Model for Proteins 
 
 
 

In order to treat a single protein as a network, we develop a method to convert a single 

protein into a network of its residues. We generate a random network which has the 

degree distribution (see section 3.2.3) with the original network but with a different 

connectivity. After generation these two networks using a single protein, we calculate 

particular parameters to characterize them. This work is done for all proteins in the 

dataset used for this project. In this chapter, all details of the methodologies are 

mentioned above. 

 
 
 
3.3.1 Protein Network Generation 
 
 

We convert a single protein into a network, vertices are the residues of the protein 

and edges are the interactions between them [25]. In order to link two residues in the 

protein, they should be located within a given cutoff distance. Such residues are 

assumed to be interacting and they are connected by an edge. In order to find all 

interacting residues, we place the primary sequence protein into both column and row of 

NxN matrix where N is the length of the protein. This matrix represents all possible pair 

of residues in the protein. The position of each amino acid is identified by that of its Cβ 

atom. The distance between Cβ atoms of residues in each pair are calculated and if their 

distance is smaller than a selected cutoff distance, they are assumed to be interacting 

with each other, in other words, they are in contact. Entry of the residue pair in the NxN 

matrix (contact map) will be 1 if the corresponding pair is in contact, otherwise, it will 

be 0. Hence, we have an adjacency matrix where each entry corresponds to a pair of 

residues and its value identifies whether the residues in this pair are in contact or not, 

depending on a selected cutoff distance. A number of networks for the same protein are 
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obtained whose connectivities are different according to the cutoff distance selected. All 

these networks generated with different cutoff distances are analyzed. 

 
 
 
3.3.2 Random Network Generation 
 
 
To interpret the network parameters calculated from protein networks, we need to 

generate their random counterparts. While generating a random network, we keep the 

number of neighbors of each residue the same, but change the neighbors of each 

residue. In order words, we rewire the network randomly such that; 

i) We take a residue n whose degree is k, and we break all connections of this 

residue. 

ii) For each of its neighbors, a random number is generated between 0 and protein 

length. Random numbers represent the residues indices of the residues in the 

primary sequence. 

iii) The first randomly selected residue is taken and checked if it has enough 

neighbors for connection. These two residues are connected if the degree of the 

residue of random index is different from zero. On the other hand, if this residue 

is not available, another random number is generated for that connection. 

iv) The number of neighbors of residue n and residue of random index is decreased 

by 1, since that connection is randomized. We apply the same procedure for all 

the neighbors of residue n. After completing the randomization of the 

connection of residue n, this whole procedure is repeated for all the residues in 

the protein. 

There are some problems in this methodology while randomizing large proteins at high 

cutoff distances. As the number of nodes and the degree of the nodes increase, the 

number of possible networks having the same degree distribution but different 

connectivity decreases. Under such circumstances, the randomization is began with the 

residue with the highest degree and continue to the process with residues with lower 

degrees. The randomization process is also iterated until the algorithm finds another 

configuration desired.  
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3.3.3 Protein Network Generation Using DT 
 
 
Another method is used to convert protein into a network of its residues. This method 

does not use any cutoff distance as a decision criterion for interaction, but it uses the 

geometrical placements of residues in three dimensional space. This method is called 

DT which is the dual of Voronoi. Given N points in a plane, Voronoi tessellation 

divides the domain in a set of polygonal regions, the boundaries of which are the 

perpendicular bisectors of the lines joining the points. Perpendicular bisector is the line 

that is perpendicular to the line connecting Cβ atoms (Cα for Gly) of two residues and 

intersects it in the middle. Polygonal region of a node consists of points in the domain 

which are the closest points to this node than any other node in this domain. If one 

connects all the pairs of points for which the respective Voronoi regions share a 

common edge, one gets a DT. Also, circumcircle of each triangle does not contain any 

other node than the set of this triangle [52]. Figure 3.3.1 shows a number of nodes, its 

Voronoi tessellation, and the corresponding DT. 

 

 
 (a) (b) (c) 

Figure 3.3.1. (a) A set of points in a plane is shown. (b) Voronoi tessellation of the set 
of points shown in (a). Each polyhedron of each node consists of the closest points to 

the corresponding node than any other node in the set. (c) The corresponding DT of the 
tessellation in (b). Note that vertices of each triangle are the nodes in the set and no 

triangle contains other nodes in the set except their vertices [53]. 

 

A set of nodes while using the DT is the Cβ atoms (Cα for glycine) of each residue 

in a protein. DT of this set of points is generated. This is a triangulation in 3D, so there 

are tetrahedrons instead of triangles. The program named as �qhull� is used and it is 

available via anonymous ftp at ftp.ncsa.uiuc.edu [52]. 

 

ftp://ftp.ncsa.uiuc.edu/
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3.3.4 Calculation of L 
 
 

The shortest path length between any two residues of a protein is not directly 

deducible from the topology of the network. To calculate this, the powers of the contact 

map of the protein is used: if the shortest path between two nodes, i and j, is d-1, then 

ijth entry in the dth power of the adjacency matrix (contact map in our case) is equal to 

nonzero [54, 55]. Thus, the contact maps of the proteins are generated and the contact 

map of each protein is multiplied by itself until all of its entries are nonzero. Then, all 

the shortest path lengths are averaged out to obtain the L of the protein. The L of the 

network generated by DT is calculated in the same way. After triangulation, 

connectivity is converted into an adjacency matrix that is the contact map of the protein, 

and the same procedure is applied to calculate L.  

This step is the bottleneck of this project since it is the procedure that takes the 

longest time especially for large proteins. 

 
 
 
3.3.5 Calculation of C 
 
 

As described in section 2.2., C of a network is determined by the average of 

clustering coefficient of every node in the network. The clustering coefficient (Ci) of ith 

residue having n neighbors is given by 
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C of a residue network is calculated according to:  
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The same methodology is valid for calculation of random residue networks and 

networks generated by DTs. 
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3.3.6 Degree Distribution 
 
 

Degree of the ith residue is obtained by counting the number of neighbors of that 

residue by including or excluding connectivity to see its effect on the degree 

distribution. The connectivity is excluded by disregarding its closest neighbors in the 

primary sequence (i-1 and i+1) of any residue.  

 
 
 

3.3.7 Radial Distribution Function 
 
 

Since the cutoff distance is central in our understanding of network properties of 

proteins, their radial distribution functions are also analyzed. Up to this point, the 

methodology followed to treat proteins as networks and how to calculate specific 

network parameters from these residue networks is summarized  

The radial distribution function describes fluctuations in density around a given 

atom [40]. It is the average number of atoms found at a given distance in all directions. 

To calculate the radial distribution function, the procedure below is performed; 

• The Cβ atom of a residue in the protein is selected. A series of concentric 

spheres, each of them are set at a small fixed distance (∆r) apart are drawn 

around the selected atom 

• The number of atoms inside each shell is counted and stored 

• The number of atoms in each shell is divided by the volume of each shell 

(4πr2∆r). 

• Procedure is repeated and averaged for all Cβ atoms. 

Radial distribution function can be deduced experimentally from X-ray or 

neutron diffraction studies. It is denoted as G(r) and calculated according to the formula 

given below; 
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where r denotes radius of the spheres drawn at each counting step, n is the protein 

length, rs is the radius of the smallest sphere drawn, R is the radius of the largest sphere 

drawn, Si(r) is the total number of Cβ atoms found around every Cβ atoms of the protein 

in a shell of thickness ∆r and distant to the ith residue between r and r + ∆r.  
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Radial distribution function is used to correlate the network parameters calculated 

for different number of networks with the favorable distances at which atoms reside 

relative to each other (coordination shells). Peaks in the plot of radial distribution 

function versus distance correspond to the place of coordination shells. The first peak 

corresponds to first coordination shell which is the most favorable distance between Cβ 

atoms of residues, likewise for the second and third peaks. In the results and discussion 

section, the places of these coordination shells and their correlation with our other 

results will be mentioned in detail. 

 
 
 

3.4 RESULTS AND DISCUSSION 
 
 
 

In this study, 196 proteins are used whose sequence homology is less than 25%. This 

protein set was used earlier to predict contact maps of the proteins by Casadio et al. [5]. 

These proteins are selected from protein database PDB by a PDB-select algorithm [56]. 

Proteins with their chains used are listed in Table B in the Appendix. 

 
 
 

3.4.1 Radial Distribution Function 
 
 
 As mentioned in section 3.6, radial distribution functions of proteins for Cβ atoms 

of residues are found. The radial distribution function data coming from 196 proteins is 

combined to obtain an average function for our dataset. The smallest sphere is 0.5 Å, 

the largest sphere used is 50 Å in the calculation. The first and second coordination 

shells specific for Cβ atoms of residues (Cα for glycine) are determined. Figure 3.4.1 

shows a plot of the normalized radial distribution function G(r) averaged out for the 

dataset. Normalization is achieved by dividing the number of atoms in each shell by the 

total area under the curve. 

The first peak in G(r), with maximum 5.5 Å and extending to 6.9 Å, corresponds 

to the first coordination shell. The second peak, with maximum 7.3 Å and extending to 

8.6 Å, corresponds to second coordination shell and the third region with multiple 

maxima (9.9 Å and 10.9 Å) and extending to 11.8 Å is the third coordination shell. A 

cutoff value of ca. 7 Å is used in many studies where coarse graining of the proteins are 
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utilized. This value corresponds to the first coordination shell of the protein (6.8 Å for 

the set utilized here); i.e. the range within which residue pairs are found with the highest 

probability. A great portion of the contribution to this peak is due to chain connectivity; 

all (i, i+1) and most (i, i+2) pairs fall within this range. Non-bonded residue pairs also 

exist in this coordination shell. However, the contribution of non-bonded pairs to higher 

order coordination shells, which is usually neglected in studies employing a cutoff 

distance in proteins, may also be significant (e.g. in the face-centered cubic lattice 

structure, for which collisions can occur between third neighbors at intermediate 

densities in the vicinity of phase transition, there are six neighbors in the second shell 

and 24 neighbors in the third shell [57]. 
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Figure 3.4.1. Radial Distribution Function of Cβ atoms 

 
 
 
3.4.2 Scaling of L 
 
 
 One of the determining characteristics of small-world networks is the scaling of 

the L with the logarithm of the size of the network. Since, residue networks are studied 

here, the scaling of L of proteins with their sizes is investigated. There are different 

residue networks at different cutoff distances, so the scaling analysis for a number of 

networks generated at different cutoff distances and by using DT is made. Figure 3.4.2 

shows the scaling of the L of 196 proteins with the size of the proteins. This data is very 
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scattered and no information may be derived safely. To simplify the data, the proteins 

are grouped according to their sizes such that proteins with length M±20 are in the same 

group, with M being a multiple of 20. The average Ls of the proteins in one group are 

taken. Figure 3.4.3 shows this plot for four different cutoff distances and a curve fit is 

made to each. The general equation of the curves is 

b(N)aL +×= log  (3.5) 

Parameters of the above curve and goodness of fit (r2) values of the curves for different 

cutoff distances are shown in Table 3.2. 

Cutoff distance a b r2 

5 Å 7.1 ± 0.7 -5.9 ± 1.6 0.8 

7 Å 3.7 ± 0.3 -2.8± 0.6 0.9 

9 Å 3.0 ± 0.2 -2.8 ± 0.4 0.9 

12 Å 2.0 ± 0.1 -1.8 ± 0.3 0.9 

Table 3.2. Parameters of L vs log(N) plot in Figure 4.3. 
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Figure 3.4.2. L versus protein length. Data is very scattered, no information can be 
derived. Different cutoff radii display with different symbols denoted above. 

 

As can be seen in figure 3.4.3, network diameter changes with the logarithm of 

the size of the network. Hence, adding more nodes to the network does not affect the 

mean of the shortest distance traveled to go from one node to another significantly. The 
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network is organized such that new nodes make connections that connect them to the 

existing nodes with high degrees. By this organization, newly coming nodes easily 

adapt to the network structure and can transmit information easily by using their high 

degree neighbors. In proteins, such an organization can also be seen. This might be the 

result of the regular structure of the secondary structure elements of a protein and the 

long-range interactions which bridge these elements within the protein. 
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Figure 3.4.3. Scaling of L with protein length. Parameters of linear fit to the data is 
shown in table 4.2. 

 

Also, networks using DTs from proteins are generated and the scaling of the L 

with the size of these networks is investigated. The L of all proteins in the dataset are 

calculated and plotted with respect to protein size. Again, since the data is very 

scattered, we group our data as described above. Figure 3.4.4 shows the scaling of L 

with protein size. The formula of the best-fit curve is  

3461log8691 .N.L −×=  (3.6) 

and goodness of fit (r2) is 0.968. 

These results indicate that residue networks have Ls which are scaled with the 

logarithm of the size of the proteins. One argument for this scaling can be as follows: 

interaction of residues determine the connectivity of the residue network, as the protein 

length increases, interaction of residues are not decreasing, there are still connections 
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(or interactions) that mediate the shorter path lengths. Such a behavior could be the 

result of the globular or high packed structure [58] of proteins, because loosely-packed 

structures cannot provide short path lengths as the network size increases. 
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Figure 3.4.4. Scaling of L versus N in network generated by DT 

 
 
 
3.4.3 L in Actual and Random Networks 
 
 
 The Ls of small-world networks and of their randomly rewired counterparts do not 

differ much while the C differs significantly. In this section, we investigate how L 

differs between residue networks and their random counterparts. For this analysis, first 

each of 196 proteins is converted into networks using different cutoff distances. Then, 

the Ls of these networks are calculated and averaged over all residue networks to 

calculate L at each cutoff distance. The mean of L of proteins at each cutoff distance 

versus cutoff distance is plotted. This is shown in Figure 3.4.5.and labeled with blue 

squares. The counterpart of this data from the randomized networks is also shown with 

circles. 

We also calculate L of residue networks generated using DT. This is shown by a 

solid black line spanning the mean and the standard deviation of the edge distances. We 

calculate distance of each edge in all residue networks generated by DT. The latter is 

the average of the edge distances of the triangulated which is 9.2 + 1.8. 
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Thus it is observed that, one important property of small-world networks i.e. that 

L is on the same order of magnitude as random networks. However, the clustering 

coefficient also has to be analyzed to make a conclusive statement on the type of the 

network.  
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Figure 3.4.5. L in actual and random networks. Plots for all cut-ff radii is shown in the 
inset figure. 

 
 
 
3.4.4  Clustering Coefficient in Actual and Random Networks 
 
 

Clustering coefficient is a measure of neighbourhoodness of neighbors of any 

node in a network. In small-world networks, clustering coefficient is high because if 

node A is linked to node B and B is linked to node C, there is an increased probability 

that A will also be linked to C [59]. On the other hand, random networks are loosely 

clustered; there is no bias in the connectivity of the network as all the connections are 

random. To find how residue networks clustered, we calculate the clustering coefficient 

of 196 residue networks generated at different cutoff radii. Figure 3.4.6 displays average 

C at different cutoff distances (blue squares). The clustering coefficient of randomly 

rewired networks is calculated at different cutoffs (red circles). 
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The C of actual networks increases faster than of their random counterparts with 

increasing cutoff distance. There is one order of magnitude difference between the 

clustering densities of actual networks and their randomly rewired counterparts. The C 

of actual residue networks gives a very good fit to a five degree polynomial (R2=0.96) 

whose inflection point is at 6.7 Å As the cutoff radius increases, the number of 

neighboring residues increases expectedly. Below 6.7 Å, new neighbors that are joining 

as the cutoff distance becomes larger increase the C significantly. However, newly 

joining neighbors do not affect the C of network as much. Moreover, the inflection 

point of this polynomial curve is where the first coordination shell ends (figure 3.4.1). 

This gives us an important clue about the organization of residues in proteins: Main 

clustering around a residue occurs between its first coordination shell neighbors and 

interactions within a cluster are mostly functionally and structurally important ones 

since they are between the neighbors occurring in the first coordination shell.  
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Figure 3.4.6. C in actual and random networks. Plots for all cutoff radii are shown in the 
inset figure. 

In addition, most of the interactions present in these clusters are those within the 

secondary structure elements making them important factors that affect the formation of 

clusters.  
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Random networks lack such clusters which makes them weak to attacks to any 

node in the network. Networks having large clusters and random links (shortcuts) 

between these clusters respond to attacks much more strongly since losing one or more 

links within a cluster is more tolerable [46]. Having high C gives networks error 

tolerance ability. Since secondary structure elements are mostly responsible for the 

clustering within a protein, together with their stabilizing and functional roles of them, 

they also can help the protein to tolerate attacks to single residues occurring in the 

crowded environment of the cell; e.g. random collisions between atoms. 

The logarithmic scaling of L with protein size in actual protein networks is 

observed in Section 3.4.2. Also, the differences between the Ls and clustering 

coefficients of actual protein networks and their randomly rewired counterparts are 

shown in section 3.4.3 and 3.4.4. The Ls of actual and random networks do not differ 

much, although their clustering coefficients differ significantly. Therefore, it is 

concluded that residue interaction based protein networks show small-world network 

behavior. One arrives at the same conclusion by comparing the Delaunay Triangulated 

proteins with their random counterparts. 

It is worth noting the fact that the transition region in the C curve (Figure 3.4.6) 

ends around 9 Å, and that the correlation length obtained from a single exponential fit to 

the L curve (Figure 3.4.5) is 11.8 Å shows that the second and third coordination shells 

are important for local and global interactions, respectively (Figure 3.4.1).  

 
 
 
3.4.5 Degree Distribution 
 
 

The degree distributions of small-world networks are different from those of 

regularly and randomly organized networks (as mentioned in section 3.2.3). Next, the 

degree distributions of residue networks are determined.  

 Instead of presenting degree distributions of each residue network separately, a 

different methodology is applied to represent the degree distribution over all proteins in 

one graph. For each cutoff-distance that residue networks are generated, residues having 

k neighbors in each protein are counted and normalized by dividing by the length of the 

protein. Then, the degree distribution values are calculated according to,  

∑
=

=
196

1
)(~)(~

j
j kPkP  (3.7) 
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for each k where . )(~ kPj is the normalized value. 

Log-log plot of degree distribution of residue networks generated at 7 Å is shown 

in Figure 3.4.7. 
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Figure 3.4.7. Average degree distribution of residue networks generated at 7 Å with and 
without connectivity.  

 

In the figure, data denoted by blue circles include the primary sequence 

neighboring which is the connectivity information and the data denoted by red squares 

exclude the connectivity. Data with connectivity have a lower tail than that of without 

connectivity, since connectivity puts extra neighbors to every residue; residues having a 

low number of neighbors decrease and the average neighbor number increases. For both 

curves, it is observed that there is a fast decay of neighbor number having high degrees. 

This is a sign of truncation of power law because of physical constraints such as the 

excluded volume which put limits on the number of neighboring of residues. 

7 Å is chosen to present the degree distribution of residue networks, because this 

value encompasses the first coordination shell in which functionally and structurally 

important interactions are most likely to occur. Since residue networks are built on the 

interaction of residues, it is convenient to examine the distribution at this cutoff radius. 
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Moreover, most studies which utilize a coarse-grained approach to the treatment of 

proteins were performed at this cutoff radius [57]. 

To understand how degree distributions differ between networks generated at 

different cutoff radii, three degree distributions are shown in Figure 3.4.8. Cutoff 

distances are chosen according to the peaks of radial distribution function; 5.5 Å is the 

peak of the first coordination shell, 6.9 Å is the end of first coordination shell and 11.8 

is the end of third coordination shell. All the curves in figure 3.4.8 include the 

connectivity information. 
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Figure 3.4.8. Log-log plot of degree distribution at three different cutoff radii. 

 

The distribution is a truncated power law distribution at 5.5 Å, red dashed line is a 

curve fit of truncated power law equation shown in section 3.2.3 with an r2 of 0.99. At 

other cutoff radii, although the curves have a lower tail at small neighbor numbers, there 

is a truncation as the neighbor number increases. This lowering of the tail is due to the 

increased effect of connectivity at large cutoff radii. In all distributions, there is a sharp 

cutoff at which the truncation begins as in the case of e.g. scientific collaboration 

networks [60]. 

The constraints preventing addition of more nodes to highly connected nodes 

after a certain neighbor number in residue networks give important clues for the 

structural organization of these networks. One constraint could be the excluded volume 
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effect. The number of residues that could be in the hypothetical sphere of a given radius 

of a residue is not unlimited. This is also valid for residue networks generated by DT 

since this networks shows the average edge distance which corresponds to a 

hypothetical sphere of radius of 9.2 Å drawn around each residue of the protein of 

interest. Polarity of residues also affects neighboring. Some residues cannot come close 

to each other because of the different polarity although their size allows the 

neighboring. The regularity of secondary structures of folded proteins might constitute 

another constraint for addition of new nodes to already highly connected nodes. A 

regular structure, like alpha helix or beta sheet, has a range of number of neighbors, and 

they cannot have more or less neighbors at given distances because of the regularity of 

the structure. 

As discussed in section 3.2.3, small-world networks may have organized in two 

ways; small-world networks which is performing at optimal levels and error-tolerant 

unless these errors not attacking the crucial nodes are HOT systems, and small-world 

networks which are performing at sub-optimal levels but more tolerant to all kinds of 

attacks are called COLD systems. HOT systems have a degree distribution perfectly 

conforming to a power law whereas degree distribution of COLD systems conforms to 

truncated power laws. Residue networks can be classified as COLD systems because of 

their truncated power-law distribution. The strength of COLD design comes from the 

fact that there are less highly crucial nodes hence decreasing the probability of incoming 

attacks to these nodes. Since residue networks have these characteristics, they should 

also be more tolerant than HOT systems such as protein networks [30]. The constraints 

which could be limiting factors for neighbor number of certain residues are mentioned 

before. Excluded volume effect is an intrinsic limitation for the system; for any types of 

design, this constraint is always present. So, this effect can be seen as a cause of a 

COLD design in proteins or any type of macromolecule in general. The secondary 

structure elements which can also be classified as constraints are important for design. 

They control the number of neighbors of residues, creating a more stable and regular 

local environment. Stability is an important criterion for the protein to preserve its 

folded state and also, these elements are the means by which many functional processes 

performed by proteins such as binding. Thus, even in the absence of excluded volume 

effect, residue networks could not be a HOT system since such a configuration would 

not allow a stable and functional environment for the residues. 
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4. CONCLUSIONS 
 
 
 
 
This thesis is aimed at predicting and understanding the protein structure using 

contact maps of proteins. Results show that residue contacts can give important 

information about the structure of proteins. The detailed conclusions of the parts of this 

thesis are mentioned in the following sections. 

 
 
 

4.1 NN Predictor for Contacting Residues 
 
 
 

Contacting residues in a protein are predicted using NNs. A multilayer perceptron 

with backpropagation algorithm is used for finding a correlation between the input and 

output of the network, which is used as a predictor if there is any. The inputs of the 

predictor are the selected physical and chemical features of residues along with or 

without of the selected features of their neighbors, the sequence separation along the 

chain and the length of the protein. The output of the predictor is the contact propensity 

of the residue pair input. In the previous studies, protein-based information was mainly 

used to predict contacting residues; residue-based information was not used much. 

Casadio et al. used evolutionary data and average hydrophobicity of residues to predict 

contact maps of proteins and they are six times better than a random predictor. 

Conversely, we encode size, charge and hydrophobicity information of residues to 

predict the contact propensity of residue pairs in a given content and separation along 

the primary chain. Our results show that this encoding is more than seven times better 

than a random predictor. Since the performance of the predictor developed here is better 

than the previous studies, it can be concluded that residue based information is 

relatively more correlated to contact propensity of residues of interest than other 

protein-based encodings used before.  
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Two identical networks are fed with different information and their performance 

are compared. One network (N1) is fed by individual size, charge and hydrophobicity of 

the residue pair of interest, while other network (N2) is fed by size, charge and average 

hydrophobicity over a residue window of seven neighbors. The results show that the 

network fed by individual hydrophobicity of residues is better than that fed by average 

hydrophobicity. Taking the average hydrophobicity of primary sequence neighbors 

might represent the local environment of the residues, and is expected to improve 

network accuracy since the local environment of the residues is very important for 

contact decision. However, it is observed from the results that averaging the 

hydrophobicities is not a proper way to encode the local environment of residues. 

Although hydrophobicity is a scalar quantity, it is the degree of non-polarity of a residue 

and it changes along the residue atoms. Also, the relative positions of the residues 

determine their non-polarity effects on each other. Two residues that are near along the 

primary chain but directed at different sides of the chain do not feel each other, although 

the averaging method assumes they do. Therefore, individual hydrophobicity 

information is more correlated with the contact propensity, but has the disadvantage of 

not expressing the effect of the environment. 

A new method is developed to encode the local environment of residues. In this 

encoding, selected features of the three neighbors on each side of the residue of interest 

are used to represent the local environment. This network shows the best performance; 

it is seven times better than a random predictor. Based on the better performance of this 

representation, it can be said that introducing the size, charge and hydrophobicity 

information of neighboring residues as separate input nodes rather than averaging the 

selected features is a more appropriate strategy. Also, it is safer than averaging, because 

no information is lost if sufficient number of hidden nodes is used to learn the 

neighboring information. Since each feature of the neighbors is set to an input node, 

they are more successful in representing the effect of the neighbors to the residue of 

interest.  

Our purpose in this work is not to develop a contact map predictor for practical 

purposes. Rather, we attempt to understand the factors influencing the contact decision 

of two residues in a given protein. It is found that encoding of physical and chemical 

features of residues and those of their neighbors improves the prediction. Therefore, this 

new encoding gives an insight on the factors affecting contact decision in the folding 

process. 



 67

Although, our results are compared with the result of Casadio and Fariselli [5], 

this comparison is not completely accurate since our contact definition is different than 

theirs. Here, there are approximately 98.4 times more non-contacts than contacts while, 

this ratio in their study is 60. This explains why our accuracy (<A>) values are lower 

than their accuracy values. However, since the improvement over a random prediction 

is less dependent on these ratios, these values are used for comparison. 

N1 which has eight input nodes and encodes the size, charge, and individual 

hydrophobicity of the residue pair of interest has a lower prediction capability than N4 

which encodes the local environment of residue pairs. This poor performance is due to 

the degeneracy of the training data, because the same residue pair with the same global 

properties can be both in contact or non-contact. This fact makes the learning process 

difficult for the network. Even architecture with enough complexity cannot achieve a 

remarkable generalization capability over all datasets of the problem. Therefore, a 

combination of features is required to separate contacting and non-contacting pairs, to 

present extra information to the predictor as well as to differentiate and learn these two 

cases. Encoding of local environment by using the physical and chemical features of 

neighboring residues serves this purpose. 

To summarize, although our attempts to predict contacting residues in proteins is 

too weak to use for fold or structure prediction, a better prediction is attained by using 

physical and chemical features of residues and their neighbors. It adds a new dimension 

to this area by using parameters which were not considered before. Our predictor can 

achieve better results with the combination of other methods to contribute to the folding 

and design problems of proteins. 

 
 
 

4.2 Characterization of Residue Networks 
 
 
 

In the second part of this thesis, a protein is converted into a network of its 

interacting residues and it is found that this network is neither regular nor randomly 

organized, but it is a small-world network. Small-world networks are advantageous over 

both their random and regular counterparts, since they have shorter path lengths and 

error-tolerance. So, residues in folded proteins are not randomly organized; rather, their 
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distributions in space achieve a number of smart interactions that conform to a small-

world topology and mediate their stability and functionality. 

To perform their functions, proteins often exhibit a significant degree of flexibility 

and dynamics, which may occur on a wide range of time scales from femtoseconds to 

seconds [61]. Flexible parts, such as loop regions and side chains, are often involved in 

mediating specific protein-protein and protein-DNA interactions by changing their 

conformations upon establishment of specific contacts. As an example, let�s take 

calmodulin molecule, which is a Ca+2 binding protein, crucial for muscle contraction. It 

has been shown that this molecule undergoes a large conformational change on the 

nanosecond time scale. In this conformational change, its central α-helix unwinds and 

two of its Ca+2 binding domains reorient themselves to make the molecule accessible for 

binding to target molecules [62]. Such conformational changes occurring on very short 

time scales require concerted actions of atoms and fast communication between 

residues. The latter cannot be achieved via the primary sequence of the protein; rather, 

shortcuts between residues generated by the certain folds of the protein are needed. If 

residues were all regularly packed in proteins, they would not mediate such short 

communication pathways between residues since regular networks always have longer 

path lengths due to a lack of shortcuts (see figure 2.1.). Thus, proteins form a structure, 

which provides fast information relay using residue interactions that are not necessarily 

adjacent in the primary sequence, but are close in the tertiary structure. In other words, 

proteins can carry information between remotely located regions by using a very small 

number of residues. Also, information relay has to be optimized on femtoseconds to 

nanosecond time scales and this might explain why proteins evolve to have structures 

whose interaction network conforms to the small-world topology. 

Another important feature of small-world networks is their tolerance to random 

failures. Small-world networks having scale-free (power law) degree distributions, 

which are also called HOT systems, are tolerant to failures of nodes having low degree 

but are fragile to error on nodes having high degree. In turn, they perform at optimal 

levels. Protein networks in cells are HOT systems, since they are required to perform at 

optimal levels, because of the complexity of the tasks they execute.  

In contrast to protein networks, it is shown here that the degree distribution of 

residue networks conforms to truncated power law that makes them COLD systems. 

Proteins have modular structures with α helices, β sheets or loop regions. These 

structural elements are regular and each residue within one of these elements has a 
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distinct number of neighbors most of which are interconnected; moreover, long-range 

interactions tie remote regions together. These structures can be seen as clusters of the 

residue networks. Residues have approximately the same number of neighbors; if the 

environment is crowded and the size and polarity of residues are favorable, residues 

interact more. This effect could be seen in the circular representation of residue network 

of 3chy protein (figure 2.2). The interactions are clustered as patches, which could be 

seen as the interactions between the secondary structure elements of the protein. Thus, 

proteins are COLD systems, because of their modular structural requirements.  

This structure should be advantageous to proteins since it has been preserved over 

evolutionary time. It should be more important to tolerate attacks to any residue for 

proteins, since they are COLD systems. However, there is a paradox here. Some 

proteins, especially the ones that are functioning by binding over a few residues are not 

tolerant to attacks to these nodes; once these fail, the protein will be non-functional. 

Hemoglobin is a very common example: Changing one specific residue (Glu → Val 

mutation) has drastic effect over the structure of the protein. On the other hand, proteins 

which function by using a larger region, such as their loops or alpha helices (e.g. DNA 

binding proteins) are more tolerant to residue substitutions. So, there may be some 

differences when one looks at the degree distribution of these two different types of 

proteins; it might be expected that proteins which perform their functions via a small 

number of residues might conform to a HOTter design while others resemble COLD 

systems. Even in the hemoglobin example, the fragility of the system to failure of one 

residue is not enough to make it HOT design, because such crucial nodes exist in COLD 

systems, but their numbers is lower than that of HOT systems. Mutational studies and 

high number of proteins with high homologies confirm that proteins do not have a high 

number of hot and dangerous spots. Mild mutations in the DNA sequence that code a 

protein do not result in a total loss of function. Accumulation of such changes might 

generate a protein which can bind to a different molecule or carry out a different 

function. Hence, evolutionary plasticity of proteins requires a COLD design of proteins. 
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APPENDIX 
 
 

153l  1esc  1mhc A 1reg X 2bnh  
1abr B 1etc  1mhl C 1rfb A 2bop A 
1ade A 1exg  1mla  1rib A 2bpa 2 
1aep  1fbr  1mml  1rva A 2bpa 1 
1aps  1fnf  1mmo G 1scm C 2cas  
1arb  1ghr  1mmo B 1scu B 2cpl  
1bbt 3 1gln  1mol A 1ses A 2end  
1ber A 1gpr  1msc  1smn A 2gmf A 
1bip  1hbq  1mse C 1srs A 2gst A 
1bnd A 1hce  1mut  1sva 1 2kau B 
1bpl A 1hcn B 1nal 1 1svc P 2liv  
1bpl B 1hge A 1nar  1svp A 2mev 1 
1bri C 1hjr A 1nhk L 1tam  2min B 
1bvp 1 1hng A 1noy A 1tbr R 2nac A 
1bw4  1hrz A 1omp  1tfs  2ncm  
1cau A 1hsl A 1pba  1thv  2olb A 
1cau B 1htm D 1pbn  1thx  2pii  
1cew I 1huc B 1pcr H 1tii D 2ple A 
1chd  1hul A 1pdn C 1tiv  2pol A 
1chk A 1hvk A 1pgs  1tlk  2rsl B 
1cks B 1ice B 1pi2  1tnr A 2scp A 
1cmb A 1ice A 1pkm  1tpg  2sil  
1cns A 1ilk  1pkp  1trr A 2tgi  
1cnv  1irl  1pls  1ttb A 2tmv P 
1col A 1knb  1pne  1urn A 2vil  
1com B 1kny A 1pnk A 1vca A 3cd4  
1cse I 1kpb A 1pnk B 1vhr A 3pga 1 
1ctn  1kpt A 1prc M 1vin  3pte  
1cus  1l17  1prc C 1vmo A 3sic I 
1cyu  1lau E 1prt F 1was  3tgl  
1dlc  1len A 1prt D 1xaa  4gcr  
1dpb  1lfb  1prt B 1xyz A 4rhv 3 
1dsb A 1lis  1ptd  1ypt B 5tim A 
1dup A 1lki  1ptv A 1ytb A 6fab L 
1dyn A 1lpe  1ptx  1yua  8ruc I 
1ecp A 1lts D 1pvc 2 1zaa C 8tln E 
1ede  1lts A 1pvc 1 2aak    
1edg  1lxa  1pyp  2abd    
1eri A 1mal  1rbu  2acg    
1erw  1mda H 1rcb  2blt A   

Table A. Proteins in the LRN protein subset are shown by their PDB codes and chains. 
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LRN   1hcn B 1pkm   1ypt B 1aih A 1gds   1occ D 1who   1doi  4sbv A 1fjm A 1eft  
153l   1hge A 1pkp   1ytb A 1air   1gnd   1occ B 1xel   3chy  1atl A 1fnc  1phg  
1abr B 1hjr A 1pls   1yua   1ako   1got B 1occ C 1xer   193L  1gen  2por  1qpg  
1ade A 1hng A 1pne   1zaa C 1akz   1gow A 1occ A 1xik A 1rcp A 1iae  1irk  2amg  
1aep   1hrz A 1pnk A 2aak   1alk A 1gpl   1ofg A 1xjo   2aza A 2gsq  8abp  1kbp A 
1aps   1hsl A 1pnk B 2abd   1alo   1gtm A 1otg A 1xsm   1hmt  1sac A 2dln  2dkb  
1arb   1htm D 1prc M 2acg   1amm   1gym   1oun A 1xva A 1htp  1cfb  2ctc  1csh  
1bbt 3 1huc B 1prc C 2blt A 1anu   1hav A 1pax   1yas A 1slt B 1dyr  1gca  4enl  
1ber A 1hul A 1prt F 2bnh   1aoc A 1hcp   1pbw A 1zxq   1poc  1fc2 D 1sbp  1hqa A 
1bip   1hvk A 1prt D 2bop A 1apy A 1hfh   1ped A 1zym A 1snc  1fua  8atc A 1nhp  
1bnd A 1ice B 1prt B 2bpa 2 1asz A 1ihf B 1pmi   2abh   1gtq A 2abk  2cmd  1gcb  
1bpl A 1ice A 1ptd   2bpa 1 1axn   1iml   1pms   2arc A 1pbx A 9pap  1hvd  1pii  
1bpl B 1ilk   1ptv A 2cas   1beo   1iol   1pot   2bbi   3sdh A 1thj A 1gsa  2hpd A 
1bri C 1irl   1ptx   2cpl   1bhm A 1irs A 1ppr M 2fcr   1ash  1vid  1tag  3grs  
1bvp 1 1knb   1pvc 2 2end   1bmf D 1iso   1psc   2fha   1vsd  2ayh  2acq  1gph 1 
1bw4   1kny A 1pvc 1 2gmf A 1bmf A 1ivd   1pud   2hpe A 2fal  1gpc  1tca  1sat  
1cau A 1kpb A 1pyp   2gst A 1bp1   1jac A 1pue E 2myr   8atc B 2brd  1tah A 1dnp A 
1cau B 1kpt A 1rbu   2kau B 1bpy A 1jer   1qap A 2pf1   2hbg  2ak3 A 1quk  2pgd  
1cew I 1l17   1rcb   2liv   1bro A 1jpc   1qba   2pld A 2mta C 1nfp  2pia  6taa  
1chd   1lau E 1reg X 2mev 1 1btv   1jsw A 1rai D 2tbd   1sra  1pya B 1poy 1 1dpg A 
1chk A 1len A 1rfb A 2min B 1bur T 1jud   1rcy   2tys B 1jcv  3pgm  1qor A 1cow A 
1cks B 1lfb   1rib A 2nac A 1cdq   1jvr   1rga   4rhn   2gdm  1din  1hmy  1byb  
1cmb A 1lis   1rva A 2ncm   1cem   1kap P 1rgs   COF 1afb 1 1dhr  1nif  1smd  
1cns A 1lki   1scm C 2olb A 1cex   1kaz   1rie       1mls  1gdo A 1arv  8cat A 
1cnv   1lpe   1scu B 2pii   1ckm A 1kit   1rmd   5rxn  1phr  1cyd A 1atp E 1dpe  
1col A 1lts D 1ses A 2ple A 1cof   1klo   1rvv 1 1aaf  1esl  1bmt A 2dld A 1mmo D 
1com B 1lts A 1smn A 2pol A 1cpo   1kob A 1ryc   1dtx  1hlb  1mrj  1pnr A 1crl  
1cse I 1lxa   1srs A 2rsl B 1cpq   1kuh   1ryt   1cdr  1jap A 1ctm  1kif A 1clc  
1ctn   1mal   1sva 1 2scp A 1crk A 1kve B 1sei A 1cea A 1vhh  1nba A 1mbb  1aoz A 
1cus   1mda H 1svc P 2sil   1csn   1kxu   1sft A 1hcn A 1bcf A 1plq  2omf  3pmg A 
1cyu   1mhc A 1svp A 2tgi   1cyw   1l68   1shc A 1pcn  1cyx  1tys  1rpa  2kau C 
1dlc   1mhl C 1tam   2tmv P 1def   1lbd   1sme A 1fim   1obp A 1dea A 1fkx  4aah A 
1dpb   1mla   1tbr R 2vil   1dek A 1lbi A 1stm A 1umu   1std  1eny  2mnr  1pox A 
1dsb A 1mml   1tfs   3cd4   1dhp A 1lbu   1tcm A 1mhl   3dfr  3fru A 1ece A 1aor A 
1dup A 1mmo G 1thv   3pga 1 1div   1lck A 1tdt A 9rnt   5p21  1ndh  1vsg A 1sly  
1dyn A 1mmo B 1thx   3pte   1dkz A 1lcl   1tf4 A 2psp   1rcf  2dri  1pea  1gof  
1ecp A 1mol A 1tii D 3sic I 1dor A 1lid   1tfe   1put   1mka A 1dih  1cdo A 1trk A 
1ede   1msc   1tiv   3tgl   1dos A 1lit   1tgx A 2fd2   1rci  1qrd A 2btf A 1cyg  
1edg   1mse C 1tlk   4gcr   1drw   1lrv   1uae   1fkj   1prr  2hhm A 1hpm  1lcf  
1eri A 1mut   1tnr A 4rhv 3 1dxy   1lzr   1uby   2cdv   1fcd C 1daa A 1buc A 1oac A 
1erw   1nal 1 1tpg   5tim A 1eal   1mbd   1ucw A 1msa   2prd  2prk  1ubs B 2tmd A 
1esc   1nar   1trr A 6fab L 1ebp A 1mhy G 1ulp   1rtp   1cid  1nip A 1nsc A 8acn  
1etc   1nhk L 1ttb A 8ruc I 1ecr A 1msf C 1uxy   1ccr   1dlh A 2ebn  1pbe  1gpb  
1exg   1noy A 1urn A 8tln E 1edh A 1mty B 1vcc   2hmz A 1lfa A 1tml  4xia A 1bgl A 
1fbr   1omp   1vca A TS97   1emk   1nfa   1vhi A 1sri B 2stv  1han  1svb      
1fnf   1pba   1vhr A 1aa6   1etp A 1nfk A 1vls   1bp2  1xnb  1scu A 1oyc      
1ghr   1pbn   1vin   1aa8 A 1eur   1nkl   1vnc   2mad L 2sas  1amp  1inp      
1gln   1pcr H 1vmo A 1ad2   1fbt A 1nox   1vok A 4fgf  1gky  2cyp  1chm A     
1gpr   1pdn C 1was   1ad3 A 1fib   1npo A 1vsc A 7rsa  1dlh B 2ora  1fcd A     
1hbq   1pgs   1xaa   1afr A 1fro A 1nsy A 1wba   2phy  1isc A 1sch A 1oxa      
1hce   1pi2   1xyz A 1agr E 1gal   1nzy A 1whi   2ccy A 1tup B 1ctt  1psd A     

Table B. Three protein subsets used in the first part are shown with their PDB 
codes and chains. 
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Validation Proteins 
Val Set 1 Val Set 2 Val Set 3 Val Set 4 

Protein 
Name 

Protein 
Length 

Contact 
Number 

Protein 
Name 

Protein 
Length 

Contact 
Number 

Protein 
Name 

Protein 
Length 

Contact 
Number 

Protein 
Name 

Protein 
Length 

Contact 
Number 

1tgx 60 82 1xer 102 176 1aih 170 174 1ecr 305 372 
1psc 69 103 1rga 104 150 1wba 171 318 1dor 311 521 
2bbi 71 77 1msf 105 73 2fha 172 154 1nfk 312 513 
1hcp 75 77 2pld 105 104 2fcr 173 275 1ppr 312 300 
1iml 76 86 1jpc 108 174 1amm 174 323 1ucw 315 475 
1cdq 77 111 1jer 109 159 1aoc 175 255 1ckm 317 504 
1kve 77 85 1irs 112 157 1fro 176 194 2abh 321 551 
1vcc 77 108 4rhn 115 144 1nfa 178 207 1pot 322 492 
1nkl 78 72 1rmd 116 126 1pbw 184 184 1axn 323 367 
1npo 81 146 1hfh 120 209 1fbt 186 265 1bpy 326 404 
1pue 88 85 2pf1 121 183 1etp 190 249 1sme 329 619 
1ihf 94 70 1whi 122 229 1ryt 190 199 1dxy 332 478 
1who 94 135 1bur 123 131 1vok 192 284 1xel 338 564 
1beo 98 107 1otg 125 116 1zxq 192 351 1got 339 697 
2hpe 99 140 1oun 125 152 1shc 195 261 1aa8 340 526 

   1eal 127 170 1vsc 196 314 1uxy 340 588 
   1rie 127 208 1bhm 198 292 1xik 340 364 
   1agr 128 117 1cex 200 333 1afr 345 391 
   1cpq 129 113 1nox 200 220 1uby 348 339 
   1lzr 130 181 1ebp 211 330 1pax 350 500 
   1sei 130 190 1edh 211 371 1ped 351 698 
   1lid 131 173 1lbu 214 301 1air 352 707 
   1lit 131 207 1dkz 215 286 1kob 352 509 
   1kuh 132 193 1hav 216 375 1eur 361 724 
   1jac 133 252 1emk 220 400 1cem 363 571 
   2tbd 134 185 1jud 220 298 1dos 369 596 
   1cof 135 188 1akz 223 311 1pud 372 595 
   1pms 135 163 1ad2 224 310 1kaz 378 608 
   1jvr 137 50 1occ 227 266 1crk 380 563 
   1anu 138 246 1lrv 233 275 1ofg 381 570 
   1vhi 139 175 1lbd 238 227 1sft 382 640 
   1lcl 141 228 1dek 240 286 1mty 384 387 
   1stm 141 231 1zym 247 323 1ivd 388 858 
   1tfe 142 160 1fib 249 427 2tys 396 721 
   1occ 144 58 1tdt 256 432 1iso 414 660 
   1rai 145 204 1yas 256 414 1gtm 417 691 
   1vls 146 102 1occ 261 207 1uae 418 843 
   1def 147 267 1rgs 264 385 1gnd 430 652 
   1div 149 172 1ako 268 407 1gpl 432 793 
   1gds 151 126 1nzy 269 354 1pmi 440 751 
   1rcy 151 275 1nsy 271 339 1ad3 446 655 
   1ulp 152 269 1drw 272 411 1alk 449 860 
   1mbd 153 125 1kxu 276 280 1bp1 456 699 
   1rvv 154 233 1bro 277 433 1jsw 459 612 
   1btv 159 212 1iol 284 354 1bmf 467 753 
   1cyw 159 253 1xsm 288 321 1kap 470 849 
   1xjo 160 233 1qap 289 415 1bmf 487 770 
   1apy 161 191 1ryc 291 382 1gow 489 790 
   2arc 161 238 1dhp 292 483 1asz 490 689 
   1klo 162 303 1xva 292 391 1occ 514 633 
   1l68 162 167 1csn 293 389 2myr 519 169 
   1lck 164 236 1gym 296 485 1vnc 576 928 
   1mhy 167 131 1lbi 296 488 1gal 581 1108 
      1cpo 299 407 1tf4 605 1041 
         1tcm 686 1291 
         1aa6 696 1276 
         1kit 757 1503 
         1qba 863 1575 
         1alo 908 1790 

Table C. Proteins in the validation set TS97. Contact numbers are obtained using the contact 
definition in section 2.3.3 in the second part of the thesis and contacting residues whose 
sequence separation is less than four residues are not included. 
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APPENDIX 
 
 

153l  1esc  1mhc A 1reg X 2bnh  
1abr B 1etc  1mhl C 1rfb A 2bop A 
1ade A 1exg  1mla  1rib A 2bpa 2 
1aep  1fbr  1mml  1rva A 2bpa 1 
1aps  1fnf  1mmo G 1scm C 2cas  
1arb  1ghr  1mmo B 1scu B 2cpl  
1bbt 3 1gln  1mol A 1ses A 2end  
1ber A 1gpr  1msc  1smn A 2gmf A 
1bip  1hbq  1mse C 1srs A 2gst A 
1bnd A 1hce  1mut  1sva 1 2kau B 
1bpl A 1hcn B 1nal 1 1svc P 2liv  
1bpl B 1hge A 1nar  1svp A 2mev 1 
1bri C 1hjr A 1nhk L 1tam  2min B 
1bvp 1 1hng A 1noy A 1tbr R 2nac A 
1bw4  1hrz A 1omp  1tfs  2ncm  
1cau A 1hsl A 1pba  1thv  2olb A 
1cau B 1htm D 1pbn  1thx  2pii  
1cew I 1huc B 1pcr H 1tii D 2ple A 
1chd  1hul A 1pdn C 1tiv  2pol A 
1chk A 1hvk A 1pgs  1tlk  2rsl B 
1cks B 1ice B 1pi2  1tnr A 2scp A 
1cmb A 1ice A 1pkm  1tpg  2sil  
1cns A 1ilk  1pkp  1trr A 2tgi  
1cnv  1irl  1pls  1ttb A 2tmv P 
1col A 1knb  1pne  1urn A 2vil  
1com B 1kny A 1pnk A 1vca A 3cd4  
1cse I 1kpb A 1pnk B 1vhr A 3pga 1 
1ctn  1kpt A 1prc M 1vin  3pte  
1cus  1l17  1prc C 1vmo A 3sic I 
1cyu  1lau E 1prt F 1was  3tgl  
1dlc  1len A 1prt D 1xaa  4gcr  
1dpb  1lfb  1prt B 1xyz A 4rhv 3 
1dsb A 1lis  1ptd  1ypt B 5tim A 
1dup A 1lki  1ptv A 1ytb A 6fab L 
1dyn A 1lpe  1ptx  1yua  8ruc I 
1ecp A 1lts D 1pvc 2 1zaa C 8tln E 
1ede  1lts A 1pvc 1 2aak    
1edg  1lxa  1pyp  2abd    
1eri A 1mal  1rbu  2acg    
1erw  1mda H 1rcb  2blt A   

Table A. Proteins in the LRN protein subset are shown by their PDB codes and chains. 
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LRN   1hcn B 1pkm   1ypt B 1aih A 1gds   1occ D 1who   1doi  4sbv A 1fjm A 1eft  
153l   1hge A 1pkp   1ytb A 1air   1gnd   1occ B 1xel   3chy  1atl A 1fnc  1phg  
1abr B 1hjr A 1pls   1yua   1ako   1got B 1occ C 1xer   193L  1gen  2por  1qpg  
1ade A 1hng A 1pne   1zaa C 1akz   1gow A 1occ A 1xik A 1rcp A 1iae  1irk  2amg  
1aep   1hrz A 1pnk A 2aak   1alk A 1gpl   1ofg A 1xjo   2aza A 2gsq  8abp  1kbp A 
1aps   1hsl A 1pnk B 2abd   1alo   1gtm A 1otg A 1xsm   1hmt  1sac A 2dln  2dkb  
1arb   1htm D 1prc M 2acg   1amm   1gym   1oun A 1xva A 1htp  1cfb  2ctc  1csh  
1bbt 3 1huc B 1prc C 2blt A 1anu   1hav A 1pax   1yas A 1slt B 1dyr  1gca  4enl  
1ber A 1hul A 1prt F 2bnh   1aoc A 1hcp   1pbw A 1zxq   1poc  1fc2 D 1sbp  1hqa A 
1bip   1hvk A 1prt D 2bop A 1apy A 1hfh   1ped A 1zym A 1snc  1fua  8atc A 1nhp  
1bnd A 1ice B 1prt B 2bpa 2 1asz A 1ihf B 1pmi   2abh   1gtq A 2abk  2cmd  1gcb  
1bpl A 1ice A 1ptd   2bpa 1 1axn   1iml   1pms   2arc A 1pbx A 9pap  1hvd  1pii  
1bpl B 1ilk   1ptv A 2cas   1beo   1iol   1pot   2bbi   3sdh A 1thj A 1gsa  2hpd A 
1bri C 1irl   1ptx   2cpl   1bhm A 1irs A 1ppr M 2fcr   1ash  1vid  1tag  3grs  
1bvp 1 1knb   1pvc 2 2end   1bmf D 1iso   1psc   2fha   1vsd  2ayh  2acq  1gph 1 
1bw4   1kny A 1pvc 1 2gmf A 1bmf A 1ivd   1pud   2hpe A 2fal  1gpc  1tca  1sat  
1cau A 1kpb A 1pyp   2gst A 1bp1   1jac A 1pue E 2myr   8atc B 2brd  1tah A 1dnp A 
1cau B 1kpt A 1rbu   2kau B 1bpy A 1jer   1qap A 2pf1   2hbg  2ak3 A 1quk  2pgd  
1cew I 1l17   1rcb   2liv   1bro A 1jpc   1qba   2pld A 2mta C 1nfp  2pia  6taa  
1chd   1lau E 1reg X 2mev 1 1btv   1jsw A 1rai D 2tbd   1sra  1pya B 1poy 1 1dpg A 
1chk A 1len A 1rfb A 2min B 1bur T 1jud   1rcy   2tys B 1jcv  3pgm  1qor A 1cow A 
1cks B 1lfb   1rib A 2nac A 1cdq   1jvr   1rga   4rhn   2gdm  1din  1hmy  1byb  
1cmb A 1lis   1rva A 2ncm   1cem   1kap P 1rgs   COF 1afb 1 1dhr  1nif  1smd  
1cns A 1lki   1scm C 2olb A 1cex   1kaz   1rie       1mls  1gdo A 1arv  8cat A 
1cnv   1lpe   1scu B 2pii   1ckm A 1kit   1rmd   5rxn  1phr  1cyd A 1atp E 1dpe  
1col A 1lts D 1ses A 2ple A 1cof   1klo   1rvv 1 1aaf  1esl  1bmt A 2dld A 1mmo D 
1com B 1lts A 1smn A 2pol A 1cpo   1kob A 1ryc   1dtx  1hlb  1mrj  1pnr A 1crl  
1cse I 1lxa   1srs A 2rsl B 1cpq   1kuh   1ryt   1cdr  1jap A 1ctm  1kif A 1clc  
1ctn   1mal   1sva 1 2scp A 1crk A 1kve B 1sei A 1cea A 1vhh  1nba A 1mbb  1aoz A 
1cus   1mda H 1svc P 2sil   1csn   1kxu   1sft A 1hcn A 1bcf A 1plq  2omf  3pmg A 
1cyu   1mhc A 1svp A 2tgi   1cyw   1l68   1shc A 1pcn  1cyx  1tys  1rpa  2kau C 
1dlc   1mhl C 1tam   2tmv P 1def   1lbd   1sme A 1fim   1obp A 1dea A 1fkx  4aah A 
1dpb   1mla   1tbr R 2vil   1dek A 1lbi A 1stm A 1umu   1std  1eny  2mnr  1pox A 
1dsb A 1mml   1tfs   3cd4   1dhp A 1lbu   1tcm A 1mhl   3dfr  3fru A 1ece A 1aor A 
1dup A 1mmo G 1thv   3pga 1 1div   1lck A 1tdt A 9rnt   5p21  1ndh  1vsg A 1sly  
1dyn A 1mmo B 1thx   3pte   1dkz A 1lcl   1tf4 A 2psp   1rcf  2dri  1pea  1gof  
1ecp A 1mol A 1tii D 3sic I 1dor A 1lid   1tfe   1put   1mka A 1dih  1cdo A 1trk A 
1ede   1msc   1tiv   3tgl   1dos A 1lit   1tgx A 2fd2   1rci  1qrd A 2btf A 1cyg  
1edg   1mse C 1tlk   4gcr   1drw   1lrv   1uae   1fkj   1prr  2hhm A 1hpm  1lcf  
1eri A 1mut   1tnr A 4rhv 3 1dxy   1lzr   1uby   2cdv   1fcd C 1daa A 1buc A 1oac A 
1erw   1nal 1 1tpg   5tim A 1eal   1mbd   1ucw A 1msa   2prd  2prk  1ubs B 2tmd A 
1esc   1nar   1trr A 6fab L 1ebp A 1mhy G 1ulp   1rtp   1cid  1nip A 1nsc A 8acn  
1etc   1nhk L 1ttb A 8ruc I 1ecr A 1msf C 1uxy   1ccr   1dlh A 2ebn  1pbe  1gpb  
1exg   1noy A 1urn A 8tln E 1edh A 1mty B 1vcc   2hmz A 1lfa A 1tml  4xia A 1bgl A 
1fbr   1omp   1vca A TS97   1emk   1nfa   1vhi A 1sri B 2stv  1han  1svb      
1fnf   1pba   1vhr A 1aa6   1etp A 1nfk A 1vls   1bp2  1xnb  1scu A 1oyc      
1ghr   1pbn   1vin   1aa8 A 1eur   1nkl   1vnc   2mad L 2sas  1amp  1inp      
1gln   1pcr H 1vmo A 1ad2   1fbt A 1nox   1vok A 4fgf  1gky  2cyp  1chm A     
1gpr   1pdn C 1was   1ad3 A 1fib   1npo A 1vsc A 7rsa  1dlh B 2ora  1fcd A     
1hbq   1pgs   1xaa   1afr A 1fro A 1nsy A 1wba   2phy  1isc A 1sch A 1oxa      
1hce   1pi2   1xyz A 1agr E 1gal   1nzy A 1whi   2ccy A 1tup B 1ctt  1psd A     

Table B. Three protein subsets used in the first part are shown with their PDB 
codes and chains. 

 



 76

 
 
 

Validation Proteins 
Val Set 1 Val Set 2 Val Set 3 Val Set 4 

Protein 
Name 

Protein 
Length 

Contact 
Number 

Protein 
Name 

Protein 
Length 

Contact 
Number 

Protein 
Name 

Protein 
Length 

Contact 
Number 

Protein 
Name 

Protein 
Length 

Contact 
Number 

1tgx 60 82 1xer 102 176 1aih 170 174 1ecr 305 372 
1psc 69 103 1rga 104 150 1wba 171 318 1dor 311 521 
2bbi 71 77 1msf 105 73 2fha 172 154 1nfk 312 513 
1hcp 75 77 2pld 105 104 2fcr 173 275 1ppr 312 300 
1iml 76 86 1jpc 108 174 1amm 174 323 1ucw 315 475 
1cdq 77 111 1jer 109 159 1aoc 175 255 1ckm 317 504 
1kve 77 85 1irs 112 157 1fro 176 194 2abh 321 551 
1vcc 77 108 4rhn 115 144 1nfa 178 207 1pot 322 492 
1nkl 78 72 1rmd 116 126 1pbw 184 184 1axn 323 367 
1npo 81 146 1hfh 120 209 1fbt 186 265 1bpy 326 404 
1pue 88 85 2pf1 121 183 1etp 190 249 1sme 329 619 
1ihf 94 70 1whi 122 229 1ryt 190 199 1dxy 332 478 
1who 94 135 1bur 123 131 1vok 192 284 1xel 338 564 
1beo 98 107 1otg 125 116 1zxq 192 351 1got 339 697 
2hpe 99 140 1oun 125 152 1shc 195 261 1aa8 340 526 

   1eal 127 170 1vsc 196 314 1uxy 340 588 
   1rie 127 208 1bhm 198 292 1xik 340 364 
   1agr 128 117 1cex 200 333 1afr 345 391 
   1cpq 129 113 1nox 200 220 1uby 348 339 
   1lzr 130 181 1ebp 211 330 1pax 350 500 
   1sei 130 190 1edh 211 371 1ped 351 698 
   1lid 131 173 1lbu 214 301 1air 352 707 
   1lit 131 207 1dkz 215 286 1kob 352 509 
   1kuh 132 193 1hav 216 375 1eur 361 724 
   1jac 133 252 1emk 220 400 1cem 363 571 
   2tbd 134 185 1jud 220 298 1dos 369 596 
   1cof 135 188 1akz 223 311 1pud 372 595 
   1pms 135 163 1ad2 224 310 1kaz 378 608 
   1jvr 137 50 1occ 227 266 1crk 380 563 
   1anu 138 246 1lrv 233 275 1ofg 381 570 
   1vhi 139 175 1lbd 238 227 1sft 382 640 
   1lcl 141 228 1dek 240 286 1mty 384 387 
   1stm 141 231 1zym 247 323 1ivd 388 858 
   1tfe 142 160 1fib 249 427 2tys 396 721 
   1occ 144 58 1tdt 256 432 1iso 414 660 
   1rai 145 204 1yas 256 414 1gtm 417 691 
   1vls 146 102 1occ 261 207 1uae 418 843 
   1def 147 267 1rgs 264 385 1gnd 430 652 
   1div 149 172 1ako 268 407 1gpl 432 793 
   1gds 151 126 1nzy 269 354 1pmi 440 751 
   1rcy 151 275 1nsy 271 339 1ad3 446 655 
   1ulp 152 269 1drw 272 411 1alk 449 860 
   1mbd 153 125 1kxu 276 280 1bp1 456 699 
   1rvv 154 233 1bro 277 433 1jsw 459 612 
   1btv 159 212 1iol 284 354 1bmf 467 753 
   1cyw 159 253 1xsm 288 321 1kap 470 849 
   1xjo 160 233 1qap 289 415 1bmf 487 770 
   1apy 161 191 1ryc 291 382 1gow 489 790 
   2arc 161 238 1dhp 292 483 1asz 490 689 
   1klo 162 303 1xva 292 391 1occ 514 633 
   1l68 162 167 1csn 293 389 2myr 519 169 
   1lck 164 236 1gym 296 485 1vnc 576 928 
   1mhy 167 131 1lbi 296 488 1gal 581 1108 
      1cpo 299 407 1tf4 605 1041 
         1tcm 686 1291 
         1aa6 696 1276 
         1kit 757 1503 
         1qba 863 1575 
         1alo 908 1790 

Table C. Proteins in the validation set TS97. Contact numbers are obtained using the contact 
definition in section 2.3.3 in the second part of the thesis and contacting residues whose 
sequence separation is less than four residues are not included. 
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