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Abstract

In recent years, facial feature point tracking becomes a
research area that is used in human-computer interaction
(HCI), facial expression analysis, etc. In this paper, a sta-
tistical method for facial feature point tracking is proposed.
Feature point tracking is a challenging topic in scenarios
involving arbitrary head movements and uncertain data be-
cause of noise and/or occlusions. As a natural human ac-
tion, people move their heads or occlude their faces with
their hands or fingers. With this motivation, a graphical
model that uses temporal information about feature point
movements as well as the spatial relationships between such
points, which is updated in time to deal with different head
pose variations, is built. Based on this model, an algorithm
that achieves feature point tracking through a video obser-
vation sequence is implemented. Also, an occlusion de-
tector is proposed to automatically detect occluded points.
The proposed method is applied on 2D gray scale video
sequences consisting head movements and occlusions and
the superiority of this approach over existing techniques is
demonstrated.

1. Introduction

Facial feature point tracking is an important step in
problems such as video based facial expression analysis and
human-computer interaction. Generally, a facial expression
analysis system consists of three components: feature
detection, feature tracking, and expression recognition.
Feature detection involves detecting some distinguishable
points that can define the movement of facial components.
This may involve, detection of eyes, eye brows, mouth
or feature points of these components. Then comes the
tracking part which consists of tracking the detected feature
points. Finally, according to tracking results of these fea-
ture points, the expression recognition component outputs
results such as happy, sad, surprised, etc. This paper is
a preliminary work of facial feature point tracking. For
simplicity, proposed work is applied for only eye feature
points. The aim is to produce a robust tracker in the cases
of arbitrary head movements and insufficient data because

of occlusion and/or noise.

For feature point tracking, roughly there are two classes
of methods in literature: general purpose approaches,
face-specific approaches. One of the general purpose ap-
proaches is moving-point-correspondence methods [1, 2].
The smooth motion, limited speed, and no occlusion
assumptions make these methods inapplicable to facial-
feature tracking. Another approach is the patch correlation
method [3, 4] which is sensitive to illumination and
object-pose variations. There are also some optical-flow
based methods [5, 6] which often assume image-intensity
constancy for corresponding pixels, which may not be the
case for facial features.

Compared with the general-purpose feature-tracking
techniques, the face-specific methods are more effective.
There are methods which use Gabor Filters [7, 8] to track
facial feature points. Also, active appearance (AAM) or
active shape models (ASM) [9, 10, 11] are used to track
feature points based on a face model. Additionally, the
work in [7] tracks feature points based on spatial and
temporal connections using non-parametric methods.

Generally, feature point tracking is done by using a
temporal model that is based on pixel values. Conse-
quently, these methods are sensitive to illumination and
pose changes, and ignore the spatial relationships between
feature points. This affects the tracking performance
adversely, causes drifts and physically unreasonable results
when the data are noisy or uncertain due to occlusions. In
[12], a method where the spatial relationships are taken into
account is proposed for contour tracking. However, since
the method is based on non-parametric estimation tech-
niques, it is rather computationally intensive. In addition,
most of the recent methods works for videos when there
is no occlusion on face which is not a case for real human
actions. Not dealing with occlusion results lossy feature
point tracking. Another disadvantage of recent works is the
limitation of possible head movements which is again not
a case for real human actions and causes drifts when head
moves more than assigned limits.



In this paper feature point tracking is performed in a
framework that incorporates the temporal and spatial
information between feature points. This framework is
based on graphical models that have recently been used
in many computer vision problems. The model is based
on a parametric model in which the probability densities
involved are Gaussian. The parametric nature of the
models makes the method computationally efficient. The
spatial connections between points allow the tracking to
continue reasonably well by exploiting the information
from neighboring points, even if a point disappears from
the scene or cannot be observed. Another advantage
of the spatial connections is to build a whole model by
binding the feature points and prevent the possible drifts
occurring because of head movements. The feature values
from video sequences are based on Gabor filters. Filters
are used in a way to detect the edge information in the
image, to be sensitive to different poses, orientations and
different feature sizes. Also, an occlusion detector based
on the Gabor filter outputs is proposed to automatically
detect occluded points. Tests on videos containing head
movements and occlusions showed that tracking of facial
feature points is performed successfully.

2. Proposed Method

2.1. Preprocessing & Occlusion Detection

Gabor filters are used as a preprocessing stage for the
observation section of the proposed work. The filters are
selected as in [13]. Then as in [7], frames are convolved
with 24 filters consisting of 6 different orientations and 4
different wavelengths. The magnitude and phase of the
complex outputs of the filtering for the first frame and
next frames is compared using the similarity metric in
[13]. This produces similarity values for every point in
the convolution region. The location of the best match,
with the highest similarity value, is used as the observation
data for the feature point in the next frame. Since feature
extraction is not in the scope of this paper, feature points
are marked for the first frame.

The output value of the similarity metric gives a quantita-
tive information about how much these points are similar.
For example, the similarity value for an occluded point will
be low, but the similarity value for an unoccluded point
will be high, as illustrated in Figure 1. By thresholding
similarity values, occlusion can be detected for any point in
any frame. A plot of these values for the video sequences
that the proposed method is applied on is given in section
3.

2.2. Graphical Models

Graphical models can be defined as a marriage of graph
theory and probability theory. The visualization property of

graph theory makes even a complex model clear and under-
standable. This provides a powerful, general framework for
developing statistical models of computer vision problems.

Generally a graph G is defined by a set of nodes V ,
and a corresponding set of edges E. The neighborhood of
a node s ∈ V is defined as N(s) = {t|(s, t) ∈ E}. The
models are divided into two main categories: directed and
undirected graphs. Directed graphs are graphs in which
there is a causal relation between random variables. In
undirected graphs the relation is bidirectional.

Figure 1. Similarity  value outputs

Graphical models usually associate each node s ∈ V
with an unobserved, hidden random variable (xs), and a
noisy local observation (ys). Let x = {xs|s ∈ V } and
y = {ys|s ∈ V } denote the sets of all hidden and observed
variables, respectively. This simply makes the factorization
of a joint probability function p(x, y) as shown below.

p(x, y) =
1
Z

∏
(s,t)∈E

ψs,t(xs, xt)
∏

(s)∈V

ψs(xs, ys) (1)

Here, ψs,t(xs, xt) is the edge potential between hidden
variables. The other term, ψs(xs, ys) is the observation
potential.

The graphical model that is used in the proposed method,
when we track two feature points, is shown in Figure 2.
Each hidden variable (xs) in the model is a vector with four
elements. Assuming the movement of the feature points are
in 2D, these four elements are x-coordinates, y-coordinates,
velocity at x-axis and velocity at y-axis of the points. The
observed nodes (ys) are a vector with two elements; x
-coordinates and y-coordinates of observation data.

Actually, the feature points are 3D points that move
in 3D real-world coordinate system. But, building a model
in 3D is a hard problem, because monocular 2D images
doesn’t give enough information on z-axis movements.
There are two main methods for going from 2D coordinate
system to 3D coordinate system; stereo vision and motion.
Stereo vision isn’t in the scope of this paper. According to



some trials, using motion to get the insufficient information
on z-axis doesn’t give stable results. So, the model is built
in 2D. To make the model sufficient to movements in 3D,
some methods are explained in section 2.4.

In this notation, (x1
t ) means hidden variable of the

first feature point at time t and (y2
t+1) is the observed

variable of the second feature point at time t+1.

Figure 2. The graphical model used in this
work

The selection of the edge potentials mentioned in this
section is explained in 2.3–2.5.

2.3. Temporal Model

The temporal model makes the connection of the feature
points with the previous value of the points. This is based
on the translation model shown below.

xt+1 = A · xt + w w v N(0, Q) (2)

Here, A is the translation matrix. Q is the covariance ma-
trix of the noise which is a normal distribution with zero-
mean. Assuming the points move with a constant velocity
and the point coordinates and velocities are independent of
each other, these are selected as:

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

Q =


σ2

x 0 0 0
0 σ2

y 0 0
0 0 σ2

u 0
0 0 0 σ2

v


(3)

Hence the temporal connection between two nodes involves
a Gaussian distribution and the edge potential can be de-
fined as follows:

ψt,t+1(xt, xt+1) =

α exp{−1
2

[
xT

t+1 xT
t

] [
Q−1 −Q−1A

−ATQ−1 ATQ−1A

] [
xT

t+1

xT
t

]
}

(4)

2.4. Spatial Model

The spatial model defines the spatial connection between
feature points. This connection is selected to simply use the
expected spatial distance between feature points, for exam-
ple; the distance between the eye corners. According to
these, the spatial connection is selected as below:

ψ1,2(x1, x2) = α exp

{
[
x1 − (x2 −4x)

]T Σ−1
[
x1 − (x2 −4x)

]
} (5)

Here, 4x is a four elements vector containing the distance
on x–axis and y–axis as: 4x = [ 4xx 4xy 0 0 ]T .
Because the distance will change, the challenging thing, as
explained in section 2.2, is to find the expected distance
between feature points in the cases of head pose variations
like; rotation, z-translation. But, the proposed spatial
model is a general model for the point movements in 3D.
The spatial distances between points can be updated in
two ways: One is by using the pose output of a head pose
tracker algorithm that runs in parallel. Another way is to
find the same information by using reliably tracked feature
points. This method is explained below.

As illustrated in Figure 3, the ratio of the distances
(|AB|, |BC|) between three points (A,B,C) will be
same even if these points move to any arbitrary position
(A

′
, B

′
, C

′
). This theorem is called affine-ratio. Affine-

Figure 3. Affine-Ratio

ratio can be used for the distances on x-axis and y-axis
between feature points. By using the spatial distances on
x and y axes between reliably tracked points, the spatial
distances on x and y axes for the other lossy tracked points
can be found by affine-ratio, as illustrated in Figure 4.
This method makes the spatial model updated in time and
gives an adaptiveness. This also makes the whole model
an online-learning model by an updated spatial model that
learns the spatial distance for every frame.

The covariance matrix for this edge potential is selected
as below:



Figure 4. Adaptation of Affine-Ratio

Σ =


σ′2x 0 0 0
0 σ′2y 0 0
0 0 σ′2u 0
0 0 0 σ′2v

 (6)

2.5. Observation Model

The extraction of the observations from video sequences
is explained in section 2.1.
The observation model makes the connection between the
hidden random variable xs and the noisy local observation
variable ys. The model is as follows:

yt = C · xt + v v v N(0, R) (7)

Here, C is the observation matrix and R is the covariance
matrix of the noise which is a normal distribution with zero-
mean. These are selected as follows:

C =
(

1 0 0 0
0 1 0 0

)
R =

(
σ′′2x 0
0 σ′′2y

)
(8)

As a result, the relation between xs and ys is a normal dis-
tribution and it is defined as follows:

ψs(xs, ys) = N(C · xs, R) = p(ys|xs) (9)

2.6. Loopy Belief Propagation Algorithm

In many computer vision and image processing appli-
cations, the main target is to find the conditional den-
sity function p(xs|y). For graphs which are acyclic or
tree–structured, the desired conditional distributions can
be directly calculated by a local message–passing algo-
rithm known as belief propagation (BP). In chain-structured
graphs, this algorithm is equal to Kalman or Particle filter-
ing. For cyclic graphs, Pearl [14] showed that belief prop-
agation produces excellent empirical results in many cases.
The algorithm is as follows: Each node t ∈ V calculates
a message mt,s(xs) to be sent to each neighboring node

s ∈ N(t):

mt,s(xs) =

α

∫
xt

ψs,t(xs, xt)ψt(xt, yt)×
∏

u∈N(t)\s

mu,t(xt)dxt (10)

Each node combines these messages and its own observa-
tion and produces its own conditional density function :

p(xs|y) = αψs(xs, ys)
∏

t∈N(s)

mt,s(xs) (11)

Since the relations in the model are selected as Gaussian, the
two steps of the algorithm shown above simplify to updating
means and covariances. For this reason, it works faster than
non-parametric methods. Since the hidden random vector
consists of the x,y axis coordinates and velocities, the mean
values of the normal distributions are the estimation of these
values. Each update step is done using the current and the
previous data, as a result the algorithm used becomes a fil-
tering algorithm. For the update equations please see [15].

3. Experimental Results

The performance of the proposed work is shown by
using the data recorded in a laboratory environment. The
data consist of head movements, x-y-z translation and
rotation, and external occlusion.

For simplicity, only four eye corner points are tracked. The
covariance matrices in the temporal, spatial and observation
model are selected suitably according to the videos. The
results of the proposed work are shown in Figure 6-b
and 7-b. For comparison, the results of an algorithm
that exploits only the temporal relations [7] are shown in
Figure 6-a and 7-a. Green dots in the result images are the
estimated point locations obtained using the observation
data up to now.

As shown in Figure 6-b and 7-b, tracking of feature
points is successfully done in the cases of arbitrary head
movements and external occlusion. On the other hand, as
seen in Figure 6-a and 7-a, the method that only use the
temporal relation cannot track well and drifts occur and
unreasonable tracking results.

The occlusion sequence is recorded by occluding a
part of the face by hand. In this case the proposed occlusion
detector, which simply thresholds the Gabor similarity
values, detects the occlusion and the data term is closed
considering the data are useless. The output of the simi-
larity values for this video sequence is shown is Figure 5.
The same occlusion detector is used both for the proposed
method and the method in [7].

4. Conclusion and Future Work

In this paper a robust feature point tracker for applica-
tions, such human-computer interaction (HCI), facial ex-



Figure 5. Similarity values of the four feature
points for the video sequence in Figure 6 and
7

pression analysis etc., is developed. The significant advan-
tage of the algorithm is the incorporation of the temporal
and spatial information. So if a point disappears from the
scene due to an occlusion, the information from the neigh-
boring points will allow the tracking of the lost point to
continue successfully. The spatial connection also provides
a whole facial model to bind the feature points with each
other and make them move altogether. To automatically
detect occlusion an occlusion detector based on similarity
values is proposed. Another advantage of the method is
the computational efficiency. The parametric assumptions
make computations simpler with respect to non-parametric
techniques.
For future work, the model will be improved to track all fa-
cial feature points as an input to a facial expression analysis
system .
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(a) (b)

Figure 6. Tracking results of (a) the method
in [7] (b) the proposed method for a head
rotation sequence

(a) (b)

Figure 7. Tracking results of (a) the method
in [7] (b) the proposed method for a head
z-translation sequence


