title   
  

Shape-driven segmentation of the arterial wall in intravascular ultrasound images

Ünal, Gözde and Bucher, Susann and Carlier, Stephane and Slabaugh, Greg and Fang, Tong and Tanaka, Kaoru (2007) Shape-driven segmentation of the arterial wall in intravascular ultrasound images. (Accepted/In Press)

WarningThere is a more recent version of this item available.

[img]PDF - Repository staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
13Mb
[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
13Mb
[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
13Mb

Abstract

Segmentation of arterial wall boundaries from intravascular images is an important problem for many applications in the study of plaque characteristics, mechanical properties of the arterial wall, its 3D reconstruction, and its measurements such as lumen size, lumen radius, and wall radius. We present a shape-driven approach to segmentation of the arterial wall from intravascular ultrasound images in the rectangular domain. In a properly built shape space using training data, we constrain the lumen and media-adventitia contours to a smooth, closed geometry, which increases the segmentation quality without any tradeoff with a regularizer term. In addition to a shape prior, we utilize an intensity prior through a non-parametric probability density based image energy, with global image measurements rather than pointwise measurements used in previous methods. Furthermore, a detection step is included to address the challenges introduced to the segmentation process by side branches and calcifications. All these features greatly enhance our segmentation method. The tests of our algorithm on a large dataset demonstrate the effectiveness of our approach.

Item Type:Article
Subjects:Q Science > QA Mathematics > QA075 Electronic computers. Computer science
ID Code:6471
Deposited By:Gözde Ünal
Deposited On:26 Oct 2007 10:26
Last Modified:17 Nov 2008 08:51

Available Versions of this Item

Repository Staff Only: item control page