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Abstract. We propose a new joint sensor selection and routing algo-
rithm, which selects a set of sensor nodes (sensing nodes) in a sensor
network to take measurements, and determines a set of paths connect-
ing the sensing nodes to the sink node. Our objective is to maximize the
network lifetime, while satisfying the data precision required by the user.
We first develop a multi-objective optimization model for this problem
and design the near-optimal OPT-RE algorithm based on this model for
network lifetime maximization. Next, we design a low complexity heuris-
tic called SP-RE. SP-RE first labels the links between the nodes with a
metric which trades off the residual energies of the transmitting and re-
ceiving nodes with the required transmission and reception energy. Then,
SP-RE calculates the shortest paths from all nodes to the sink, and iden-
tifies the node which is closest to the sink as a sensing node. This process
is repeated until the required data precision is satisfied. We demonstrate
by simulations that SP-RE and OPT-RE can increase the network life-
time several orders of magnitude compared to naive approaches.

1 Introduction

Sensor networks consist of hundreds or thousands of low cost nodes that come
with wireless communication and certain processing and storage capabilities in
addition to sensing capabilities. One of the most important applications fore-
seen for sensor networks is environmental monitoring, where the sensor nodes
are embedded into a physical environment to monitor and collect data about
the ambient conditions. The nodes are deployed in the sensor field and can be
thought of as distributed streaming data sources supporting various (monitor-
ing) applications running at the base station. The data is collected from sensor
nodes via wireless multi-hop communication. Sensor nodes usually have limited
battery capacities and it is impractical to replace the batteries of thousands of
sensor nodes after they are deployed in the field. Thus, a key challenge in ad-hoc,
data-gathering wireless sensor networks is prolonging the lifetime of the network.

In this paper, we aim to design algorithms which jointly select a set of sensing
nodes in a sensor network, and the paths from each of these nodes to the sink
in an energy-efficient way. The nodes in the sensor network cannot be selected
randomly: First, the required data precision should be considered; and second,
the residual energy of the nodes should be taken into account. As an illustrative
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example, consider a simple application in which sensor nodes are used to monitor
ambient conditions such as temperature, humidity, light, etc., in a physical area.
While monitoring the conditions in this area, one extreme case is to use all the
sensor nodes and get almost a complete picture of the conditions. This option
leads to maximum possible precision; however, using all nodes in the network
leads to very high energy consumption and a short network lifetime. Another
extreme solution is to use a single sensor node to monitor the whole area regard-
less of the area size. This results in a very low resolution picture of the ambient
conditions in the area, but it is clear that for this case the energy consump-
tion would be very low. These two solutions are extreme cases and neither of
them will be useful in real implementations. In a real implementation, a user or
monitoring application will select a certain measurement precision level required
by the application. This precision level determines how close the measurements
should be taken over the field, e.g., every D square meters. Then, if the sensor
network is densely deployed, an important question is to select a node within
every such D square meter area for sensing and also to determine an appropriate
route from this sensing node to the monitoring station so that the network life-
time is maximized. We investigate the answer to this question in the following
sections.

Our work is related to the efforts on topology control and in-network query
processing in wireless ad hoc and sensor networks [2], [3], [4], and [5]. Previously
in the literature, topology control is investigated with the objective of provid-
ing end-to-end traffic, a connected and power/energy efficient path. Our work
brings together application-specific requirements (in the form of measurement
precision), topology control and routing. The closest model to ours is described
in [3]; however, in [3] the objective is to detect the occurrence of an event in
an energy-efficient manner rather than to continuously collect the ambient con-
ditions of the area. More recently, Boulis et al. [1] and Kalpakis et al. [6], con-
sidered the energy-accuracy trade off in sensor networks when the network is
continuously monitored. Boulis et al., investigated the periodic aggregation and
estimation problem when the observed data is time correlated. Kalpakis et al.,
discussed a query-based operation and suggested storing summary data struc-
tures at the monitoring station rather than collecting similar data again for each
new query. This stored aggregate value is used to answer queries at the monitor-
ing station approximately to improve network lifetime. In our paper, we do not
consider in-network processing, but we discuss the optimal selection of sensor
nodes and routing of the sensor data given a required measurement precision.

The paper is organized as follows: In section 2, the system model is presented.
In section 3, the lifetime maximization problem is formulated as a multi-objective
mixed integer program, and a mathematical programming based heuristic for
this problem is proposed. In section 4, a low complexity joint node and path
selection algorithm is developed. In section 5, results of our performance analysis
are presented that include a comparison of our two heuristics along with detailed
simulations that benchmark our heuristics against traditional algorithms from
the literature. Section 6 involves our conclusions and further research directions.
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2 System Model

The sensor network is used to collect information from the sensors distributed
in a field that is required for supporting various (monitoring) applications. Each
node in the sensor network has the same sensing capability. The nodes can be
deployed in this field randomly or according to a predefined topology. If the
nodes are deployed randomly, we assume that the nodes can determine their
respective locations by using methods such as those proposed in [7]. For ease of
instruction, we discuss our model for the case when sensor nodes are deployed in
1-dimension, i.e., nodes are deployed on a line emanating from the monitoring
station. It is easy to extend this model to 2-dimensions.

We consider a query-based operation: A user injects queries to the network,
which includes a precision requirement in the form of “measurement every D
meters”. Upon receipt of this query, the network selects the set of sensing nodes
among a number of candidate nodes (nodes that are within ε distance to the
required measurement points). Note that if the total number of sensor nodes in
the network and their locations are known, then defining the precision by the
measurement interval is equivalent to defining the precision by the number of
sensing nodes and how far off they can be located from each required measure-
ment point. For example, if there are 100 nodes randomly distributed over a line
of 100 meters, then asking for a measurement precision of every 10 meters is
equivalent to selecting 10 sensing nodes that are as equidistant to each other as
possible.

Once the sensing nodes are selected, the sensor data has to be forwarded to
the monitoring station. In general, the message follows a multi-hop path from
a sensing node to the destination. The path is defined by the set of relay nodes
and their transmission powers. We assume that the transmission power of each
node is uniquely determined by the distance between the transmitting node and
the next node on the path receiving the message.

3 Lifetime Maximization Problem

The network lifetime is defined as the duration over which the network can
respond to the measurement queries. In general, every query may require a dif-
ferent precision which we do not know in advance. In other words, the generation
of queries over time is a random process, and we cannot maximize the network
lifetime unless we know the distribution of this random process. Therefore, in
order to prolong the network lifetime we propose a slightly different approach
motivated by the following two observations: first, when data is routed from the
sensing nodes to the monitoring station, it makes sense to avoid using nodes
with small residual energy so that no node dies too early. Second, we would
like to minimize the total energy consumption from sensing, transmission and
receiving when responding to a query. Thus, by not depleting the energy of any
individual node too quickly and minimizing the total energy consumption, we
intend to increase the network lifetime. Below, we formulate these two goals in
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a multi-objective optimization framework and then explain briefly how we solve
this optimization model.

Assume that a given query Q requires that K sensing nodes are chosen out of a
total of N nodes, and data from these sensing nodes are routed to the monitoring
station. The parameter K is the required precision of query Q and is related to
the interval between successive measurements as discussed in Section 2. Note that
the nodes are deployed randomly in 1-dimension within a measurement interval
of I units, and let xi denote the location of node i, i = 1, . . . , N . Without loss
of generality, the monitoring station is denoted by the index i = 0 and located
at x0 = 0. The nodes are numbered in non-decreasing order of their respective
distances to the monitoring station. The main sources of energy consumption
are the sensing, transmission and receiving operations. Let Ei, i = 1, . . . , N,
be the initial energy level of node i before Q is processed, and let ξ and er

be the constant amount of energy required for a single sensing and receiving
operation by any node, respectively. The transmission energy depends on the
distance between two nodes, and eij , i = 1, . . . N, j = 0, . . . , N, denotes the
amount of energy consumed by node i when sending a unit size packet to node
j. The messages generated by the K sensing nodes are routed to the monitoring
station over multi-hop paths where the binary variable fk

ij , k = 1, . . . ,K, i =
1, . . . , N, j = 0, . . . , N , denotes the number of packets generated by a sensing
node k and transmitted from node i to node j.

Ideally, we would like to select K sensing nodes in the network such that
they are approximately equidistant from each other while sensing data at the
required precision of query Q. Note that if the nodes are randomly deployed,
we may not always find a sensing node that is located exactly I/K units away
from the previous sensing node. Moreover, as discussed in the previous section,
it may not be optimal to choose the same sensing nodes for every query over
time. Therefore, we allow the distance between two successive sensing nodes to
change between I/K ∗ (1− ε) and I/K ∗ (1+ ε). In addition, we require that the
first and last sensing nodes are located within I/K ∗(1+ε) units of the lower and
upper bounds of the measurement interval, respectively. (In our computational
experiments we set ε = 0.1.) In order to impose these constraints on the relative
locations of the sensing nodes, we construct the sets SL = {i |xi ≤ I

K ∗ (1 + ε)},
Si = {j |xi+ I

K ∗(1−ε) ≤ xj ≤ xi+ I
K ∗(1+ε)}, i = 1, . . . , N , and SU = {i |xi ≥

I− I
K ∗(1+ε)}. We also define the binary variables sk

i , i = 1, . . . , N, k = 1, . . . , K,
where sk

i = 1 if node i is the kth sensing node, and sk
i = 0 otherwise. Finally,

let Li, i = 1, . . . N, be a variable that denotes the residual energy level of node
i after Q is processed and W = mini Li be the final, i.e., residual, energy of
the node with the smallest final energy in the network. Then, we formulate
the multi-objective residual energy optimization problem OPT-RE as given in
(1)-(11) below.

max{z1 = W, z2 =
N∑

i=1

Li} (1)

Li ≥ W ∀i (2)
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∑

i∈SU

sK
i = 1 (8)

Li ≥ 0 ∀i (9)

fk
ij ∈ {0, 1} ∀i, j, k (10)

sk
i ∈ {0, 1} ∀i, k (11)

The multi-objective function (1) reflects our two goals after the query Q is
processed: maximize the residual energy of the node with the minimum residual
energy (objective z1) while also maximizing the total residual energy of the
network (objective z2). There exists a trade-off between these two objectives,
and we will further elaborate on this issue below. The constraints (3) relate the
initial energy levels Ei to the final energy levels Li. The constraints (4) represent
the flow conservation constraints for nodes i = 1, . . . , N assuming that a single
packet is generated by a sensing node for each query. At a sensing node i, i.e.,
when there exists some k such that sk

i = 1, the net flow out of the node is equal
to 1 which corresponds to the packet generated at this node. Otherwise, when
node i is a relay node, i.e., when sik = 0 ∀k, the net flow at node i is zero.
The constraints (5) ensure that exactly one packet arrives at the monitoring
station from each sensing node. Constraints (6)-(8) select K sensing nodes in
the network such that they are approximately equidistant from each other while
sensing data at the required precision of query Q.

In order to solve OPT-RE, we need to specify the exact relationship between
the two objectives z1 and z2 in (1). The following case illustrates why we need
a multi-objective model for this network lifetime maximization problem and
proposes a way of solving OPT-RE. Assume that we need to process a given
query Q for m times and our only objective is to maximize the total residual
energy after Qm is processed. Clearly, if we determine the optimal sensing nodes
and the optimal routes to the monitoring station such that the total energy
consumption for processing the first query Q1 is minimized, then the optimal
sensing nodes and routes for processing the queries Q2, . . . , Qm are exactly the
same unless a node dies while one of these queries is being processed. In other
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words, maximizing z2 subject to the constraints (3)-(11) yields a solution that
uses the same nodes over and over again until some nodes exhaust their total
energy.

Obviously, this approach does not lead to an increased network lifetime, and
we must make sure that we do not overuse a subset of the nodes in the network
over time. Thus, we implement the following multi-objective approach: First, we
maximize z1 subject to the constraints (2)-(11) given a query Qt and the initial
energy levels Et

i , i = 1, . . . , n, and obtain the optimal minimum energy W ∗ in
the network. Then, for the same query Qt and the same initial energy levels
Et

i , i = 1, . . . , n, we maximize z2 subject to the constraints (2)-(11) except that
we replace the right hand side of (2) with W ∗. In other words, we maximize the
total residual energy subject to the additional constraint that no node can have
a residual energy less than W ∗ after Qt is processed. The optimal solution of
this second single-objective optimization problem yields us the optimal locations
of the sensing nodes and the optimal routes to the monitoring station for query
Qt along with the final energy levels Lt

i of the nodes in the network. Then, we
set Et+1

i = Lt
i, i = 1, . . . , n and solve this multi-objective optimization problem

for the next query Qt+1.
The approach described above requires us two solve two mixed integer pro-

grams for each query processed, and thus is not practical. Furthermore, this is
still a myopic approach for maximizing the network lifetime because when we
select the sensing nodes and the optimal routes for a query Qt, we completely
ignore the queries to be processed in the future. Nevertheless, we expect this
mathematical programming based heuristic to provide a good solution in gen-
eral. In the next section, we propose another heuristic that is easier to implement
and computationally much faster. In Section 5, we compare these two heuristics
for practical size networks and demonstrate the effectiveness of both algorithms.

4 Joint Node Selection and Routing Algorithm

Due to the computational complexity of OPT-RE, we propose a second algo-
rithm with a simpler heuristic, which determines the set of sensing nodes as well
as the paths over which the sensor data is carried to the base station, while
solving the lifetime maximization problem. Our new heuristic considers a new
link cost function cij for link (i, j) with four parameters: the energy expenditure
for transmitting a unit size packet over the link, eij ; the initial energies of nodes
i and j, Ei, and Ej ; and the energy expenditure for the reception of a unit size
packet, er. Note that the energy expenditure due to radio reception is usually
considered as a constant. A good sensing node and path choice should consume
as little total amount of energy as possible and should avoid nodes with small
residual energy. Therefore, the link cost function should be such that when the
transmitting and receiving nodes have plenty of residual energy, the energy ex-
penditure terms are emphasized, and if the residual energies of the transmitting
and receiving nodes become small, the residual energy terms dominate the link
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cost. Thus, we propose a link cost of the form

cij = eij/Ei + er/Ej . (12)

The path cost is computed by the summation of the link costs on the path,
and the shortest path can be found by using any of the existing shortest path
(SP) algorithms (e.g., Dijkstra’s algorithm). For this reason, this new heuristic
approach is named as SP-RE.

The general description of the node selection and routing algorithm for a
given query is given in Figure 1.

Graph G = (V, A) is given where V is the set of sensor nodes and (l, m) ∈ A is
the edge connecting nodes l and m.
1. Initially set k = 1, and select K sensing nodes. While k ≤ K:

– Label each link (l, m) in A, clm = elm/El + er/Em.
– Determine the shortest paths from each node in V to the sink node.

Order the costs of the shortest paths in non-decreasing order, where
SPi = {sink, gi

1, g
i
2, . . . , g

i
|SPi|−2, ni} is the ith lowest cost shortest path,

and let ni denote the sensing node corresponding to SPi.
– i = 1: while sk

ni
= 1 does not satisfy constraints (6)-(8), i = i + 1.

– Select ni as the sensing node, set sk
ni

= 1, and update the link costs of
all nodes on the path SPi with new residual energy values where E′

ni
=

Eni −ξ−eni,gi
|SPi|−2

for the sensing node and E′
gi

t
= Egi

t
−egi

t,gi
t−1

−er

for the relay nodes.
2. k = k + 1 and go to step 1.

Fig. 1. Pseudocode for SP-RE

In the first iteration, the monitoring station determines the shortest cost
paths to every node in the network. Then, among all nodes in the network the
node with the shortest cost path to the destination is selected to sense and the
sensor data flows over its shortest cost path to the destination. The link metrics
are updated according to this decision. In the next iteration, the monitoring
station again determines the shortest cost paths to every node in the network,
but this time with the updated link metrics. If the location of the node with the
shortest cost path to the monitoring station does not satisfy the constraints (6)-
(8), then we examine the node with the next shortest path to the destination and
continue until we determine the next sensing node that satisfies the conditions
(6)-(8) on the relative locations of the sensing nodes. We continue to iterate until
the requested number of sensor nodes are selected.

5 Performance Analysis

In this section, we first present the comparison of the performances of OPT-RE
and SP-RE algorithms. Figure 2 shows the variation of minimum energy (Emin)
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and average energy (Eavg) versus time measured in a network consisting of 200
nodes randomly deployed over a line of 100 meters. Queries are sent every second
and the measurements are taken every 50 meters, i.e., K = 2, with 2 sensing
nodes. Note that the locations of the nodes are static, and the same network
topology is used for both OPT-RE and SP-RE. The initial battery capacities of
the nodes are randomly selected between 0.6 and 1.4 joules. Again, the same bat-
tery capacities are used for both algorithms. The node energies are decremented
according to the Crossbow specifications [9]. Only the energies consumed due to
the sensing and radio operations are included in the performance evaluations.

The solution for OPT-RE is obtained by using CPLEX and OPLStudio [10],
which determines the sensing nodes, routes to the base station, the energy ex-
penditures and the residual energy levels of all nodes. The solution is updated
every 3600 queries (which corresponds to updating the sensor and path selections
every hour), and Emin and Eavg are determined until the first node exhausts its
energy. The heuristic SP-RE runs Dijkstra’s algorithm with the link costs given
in (12) for computing the shortest paths, and the solution is updated every hour.

In Figure 2, we observe that the network lifetime achieved by SP-RE is quite
close to that attained by OPT-RE; the difference is less than 9%. Thus, SP-RE
appears as a promising joint sensor selection and routing algorithm that performs
similarly to more complicated optimization-based algorithms. When we examine
Figure 2 more carefully, we observe certain characteristics of the two algorithms.
With SP-RE, the minimum node energy drops quickly after several hours of
operation in contrast to OPT-RE, where the algorithm keeps the minimum node
energy constant for a long time. Meanwhile, the average node energy with OPT-
RE drops below the average node energy attained by SP-RE. The reason is
clear; unlike SP-RE, the objective of OPT-RE is to maximize the minimum
residual node energy. Thus, OPT-RE tries to choose nodes with energies above
the minimum energy level for sensing and routing before re-using nodes with
minimum energy. In doing so, the average energy in the network drops quickly,
since most of the nodes in the network tend to have similar residual energies.

Unfortunately, the required running time with OPT-RE prohibits us to per-
form the rest of the experiments with OPT-RE. Thus, in the following, we com-
pare the network lifetime achieved by SP-RE with other non-optimization-based
heuristic approaches; TinyDB and TinyDB-RE. We believe that this is accept-
able considering Figure 2, where it is shown that SP-RE closely matches the
network lifetime achieved by OPT-RE. The first method TinyDB [8] is the stan-
dard query and routing algorithm used in Crossbow motes. In TinyDB, each
node transmits at a predetermined, fixed constant power level, and the nodes
separately determine the shortest route to the base station. In this case, sensor
selection is done only based on the physical proximity to the desired measure-
ment point. The second algorithm, TinyDB-RE computes the routes to the base
station in the same way as TinyDB; however, the node with the highest residual
energy within the required proximity to the measurement point is selected for
sensing.
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Fig. 2. Residual energy of nodes with OPT-RE and SP-RE

Figure 3 shows the variation of average and minimum energy levels measured
over the lifetime of the network using SP-RE, TinyDB and TinyDB-RE. There
are 100 nodes distributed over a line of 100 meters, and queries require a measure-
ment every 50 meters. All nodes have the same initial energy of 1.4 joules. The
query is repeated every 1 second, whereas the sensing node and path selection
is updated every hour (every 3600 queries). As depicted in Figure 3, the lifetime
of the network using SP-RE is around 330 hours. The simulations indicate that
the other two methods perform poorly as compared to SP-RE, with an order of
magnitude decrease in the lifetime. More specifically, when TinyDB is used, the
lifetime of the network is measured as 7 hours. TinyDB-RE improves the lifetime
to around 15 hours, with intelligent sensor selection. Nevertheless, since both al-
gorithms apply constant transmission power, the algorithm SP-RE significantly
enhances performance with smart selection of power levels and routing.

Next, we consider several scenarios with different node densities and query
precisions, and compare the lifetimes achieved by three methods. First, we look
into how the network lifetime is influenced by the increasing node density. Fig-
ure 4 depicts the measured lifetime with the three algorithms for values of N
ranging between 10 and 600 where the nodes are placed randomly over a line of
100 meters. The sampling interval is set to 20 meters, i.e., K = 5. From Figure
4, we can infer that the lifetime with TinyDB or TinyDB-RE is not affected by
the increasing node density, resulting in a lifetime of approximately 20 hours.
Note that TinyDB performs the sensor node selections only once based on the
physical proximity to the measurement points, and the routes of packets from
those sensing nodes to the base station remain unchanged. When the algorithm
TinyDB-RE is used, the sensing nodes can be changed according to the residual
energy levels. However, the routing of sensor data is still not performed based
on residual energies. Finally, when SP-RE is employed, both the sensing node
and transmission power selections are performed dynamically, and routes to the
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Fig. 3. Lifetime comparison of SP-RE with TinyDB and TinyDB-RE

base station are updated adaptively. Increasing the node density provides al-
ternate sensing nodes and paths to the sink, and thus the lifetime is increased
significantly. In our experiments, the measured lifetime attained by the algo-
rithm SP-RE is about 2000 hours which is much higher those achieved by other
methods.
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Fig. 4. Lifetime of SP-RE, TinyDB and TinyDB-RE with respect to varying node
density (sampling interval = 20 meters)

In Figure 5, we evaluate the variation of lifetime with respect to the sam-
pling interval for a network with 500 nodes uniformly distributed in an interval
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of 100 meters, and compare the behavior of the three algorithms. Our experi-
ments show that the lifetime of the network remains the same when TinyDB is
used, independent of the network and the sizes of the sampling intervals. The
performance of TinyDB-RE is improved with the increased sampling interval to
about the twice of the lifetime achieved by TinyDB. This is due to the fact that
TinyDB-RE selects the sensor nodes based on residual energies, and increasing
the sampling interval increases the choices for sensing nodes. Meanwhile, the
lifetime attained by SP-RE increases significantly with increasing sampling in-
terval. This behavior is especially apparent in dense networks such as the one
considered in this experiment.
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Fig. 5. Lifetime of SP-RE, TinyDB and TinyDB-RE with respect to varying sampling
intervals

The computational experiments show that SP-RE is definitely a promising
algorithm as compared to both optimization-based and naive methods for en-
hancing the lifetime of sensor networks, due to the incorporated features such as
intelligent sensor selection, transmission power control and data routing. These
experiments, although preliminary, provide us some insight about the extent of
the advantages that SP-RE can provide. Our results show that these advan-
tages become more significant as the network density is increased, which is quite
valuable for environment monitoring applications.

6 Conclusions and Future Work

In this paper, the trade off between measurement precision and energy efficiency
is explored through the lifetime of a sensor network. The goal is to maximize the
network lifetime by determining the set of sensing nodes and the radio transmis-
sion powers for all participating nodes, i.e., network topology, while satisfying the
required measurement precision. A mathematical programming based solution
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and a low complexity heuristic algorithm are proposed for the energy-precision
optimization problem. Our results indicate that with only 10% of deviation from
the requested exact measurement intervals, the improvement in network lifetime
using our algorithms is significant compared to the algorithms currently available
in the literature.

However, in this paper we solved only a part of the energy-efficient monitoring
problem: We assumed that a user is interested in equally spaced measurements.
In a more general setting, a user may be interested in non-uniform measurements
to depict a closer approximation of the current conditions in the field. This
problem has the promise to bring together signal processing and networking
fields, since the current conditions in the field can be viewed as a 2-D image that
is being encoded by the nodes in sensor network in an efficient way. One of our
future goals is to further investigate this problem.

Another future extension of our work is to consider the energy consump-
tion due to MAC; collisions and retransmissions in a realistic wireless network
environment may cause increased consumption of energy.
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