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Abstract

In this work, a new model that combines the concepts of wavelet transformation and subspace analysis tools, like Independent Component Analysis, Topographic Independent Component Analysis, and Independent Subspace Analysis, is developed for the purpose of defect detection in textile images. In previous works, it has been shown that reduction of the textural components of the textile image by preprocessing has increased the performance of the system. Based on this observation, in present work, the aforementioned subspace analysis tools are aimed to be applied on the sub-band images. The feature vector of a sub-window of a test image is compared with that of the defect-free image in order to make a decision. This decision is based on a Euclidean distance classifier. The performance increase that results using wavelet transformation prior to subspace analysis has been discussed in detail. While all the subspace analysis methods has been found to lead to the same detection performances, as a further step, independent subspace analysis is used to classify the detected defects according to their directionalities.

1. Introduction

Automated industrial inspection systems based on hardware and/or software tools have been very successful in their application to on-line quality control applications by virtue of their ability to make repetitive measurements accurately, fast and objectively. One of the industry fields where automated visual inspection systems are mostly needed is the textile industry. Especially the quality control of products in textile industry is a significant problem, while the detection of defects in a fabric quality control system with a width of 1.60-2.0 m and which moves with an average speed of 10 m per minute is difficult to be performed by human observers. Thus, automated visual inspection systems play a great role in assessing the quality of fabrics. Other than classifying a certain appearance of the fabric, registration of the exact location of the defects and determining the type of them are also important in some applications. The important point for the manufacturer is to get a warning when a certain amount of anomaly or imperfection occurs during the production of the fabric so that necessary precautions can be taken before the product reaches the market.
Texture analysis plays an important role in the automated visual inspection of surfaces. There have been number of works on the use of texture analysis for inspection purposes by artificial visual methods. Amet et al. [1] have used sub-band domain co-occurrence matrices for texture defect detection; Karras et al. [18] have suggested to focus on detecting defects from the wavelet transformation of images and to vector quantizing related properties of the associated wavelet coefficients. Chen and Jain [6] used a structural approach to defect detection in textured images. Dewaele et.al [9] used signal processing methods to detect point defects and line defects in texture images. Cohen et.al. [7] used MRF models for defect inspection of textile surfaces while Erçil et.al. [10] used similar techniques for inspection of painted metallic surfaces. Atalay [2] has implemented MRF model-based method on a TMS320C40 parallel processing system for real-time defect inspection of textile fabrics. Lambert et.al. [20] introduced an approach to exploit multiscale wavelet methods for texture defect detection, whereas Meylani et. al. [23, 24] used lattice filters for the same purpose. Iivarinen [17] compared the performances of histogram based texture analysis techniques, namely co-occurence matrix method and the local binary pattern method for surface defect detection. Bodnarova et.al. [3] computed the parameters of a Gabor filter through optimization of Fisher cost function and constrained these parameters to specific values to detect specific defects. Chan and Pang [5] used three-dimensional frequency spectrum for the analysis of defects. For surveys of texture analysis, see Van Gool et.al. [31], Reed et.al.[26], Rao [25], Tuceryan and Jain [30]. The first application of ICA on image data was the pioneering work of Hurri [11] where he examined the general characteristics of independent components of texture images. Some preliminary results on use of ICA for defect detection are presented in [27, 28, 29].
In this work, we propose a new defect detection algorithm based on the ICA of the sub-band images that are obtained by decomposing the original texture images. Wavelets are shown [22] to form a complete basis for the representation of images in multi-resolution. Wavelet transform analysis facilitates inspection of spatial/spatial-frequency contents of a signal in a unified framework.  This constitutes the background for their use in texture analysis.  

Our work is intended to be a continuation of the works conducted by Amet et. al. [1], and Sezer et. al. [28]. In [1], a method that depends on the principle of decomposing gray-level images into their sub-bands using Pyramid Structured Wavelet Transform (PSWT), and Wavelet Packet Signatures (WPS), and then extracting the co-occurrence properties using these sub-band images, was built. In [28], Sezer et. al. increased the defect detection performance by applying some preprocessing methods like median filtering and histogram modification on the textile fabric images before applying ICA. These two works pronounced the idea that decomposing the textile fabric image into its sub-bands by wavelet transforms as a preprocessing step and applying ICA on these sub-bands will increase the performance. Previous work of Serdaroglu et. al. showed that the defect detection performance in textile fabric images improved when the concepts of Wavelet transformation were combined with ICA [27].  
In this paper, we have conducted several experiments with combining Wavelet transformation and ICA. We also investigated Topographic Independent Component Analysis (TICA), and Independent Subspace Analysis (ISA) as a feature extraction step on these sub-bands. General concepts about ICA, TICA, and ISA are provided in Section 2. Section 3 gives a short explanation about the theory of wavelet transforms and wavelet packets. The methodologies used to conduct the experiments are explained in Section 4. Section 5 describes the performed experiments, and section 6 concludes the paper. 

2. Subspace Analysis Methods

2.1 Independent Component Analysis
ICA aims to find a linear transformation of original data such that the new representation minimizes the statistical dependence of the components of the representation. In other words, ICA tries to find the hidden components inside the original data, and these components capture the essential structure of the data. The representation achieved by ICA facilitates the analysis of the data encountered in such fields like data compression, pattern recognition, de-noising, etc. [12, 13].

Transformation methods like principal component analysis (PCA), factor analysis, and projection pursuit are closely related to ICA. As in projection pursuit, ICA tries to find the interesting directions that give the independent components. ICA can also be considered as a nongaussian factor analysis. Both PCA and ICA formulate an objective function in order to define a linear representation, and then maximize that function. From this perspective, PCA and ICA look similar; however, they define their objective functions in very different ways. While PCA uses the second order statistics in order to find the principal components, ICA needs higher order statistics in order to find the independent components. A much stronger relation can be seen between ICA and the nonlinear principal component analysis (NLPCA) [32]. In [32], Xu uses the concept of Least Mean Square Error Reconstruction (LMSER) in order to estimate the nonlinear principal components. It turns out that, the nonlinear principal components are, in some cases, aligned with the independent components of the input data.

The basic ICA model is given as [12, 13].

                                                                                   x = As                                                                          (2.1)

where x is the random vector containing the mixtures, s is the random vector containing the independent sources, and A is the mixing matrix. No a priori information about the mixing matrix and the sources is known. These sources can be different parts of the brain emitting different signals, people speaking in a cocktail party so that many speech signals are emitted, different mobile phones radiating different electromagnetic signals from their antennas, or some other sources that we do not know and assume to exist, though producing the observed signals somehow. In order to estimate the independent components by observing the mixtures x, the sources s must be assumed to be independent from each other with each having a nongaussian probability distribution. The sources s can be estimated after finding the demixing matrix B, given in equation (2.2):

                                                                                   s = Bx                                                                          (2.2)

where B is the (pseudo) inverse of A.

These estimated sources are called as independent components. The ICA model can estimate the independent components up to some ambiguities such as scaling and ordering. The scaling problem can be solved by restricting the variances of the independent components to unity. However, there still remains a sign ambiguity, which is not a problem in many cases. In order to solve the ordering problem, some ordering methods have been advised in [12, 13].

The demixing matrix can be estimated by maximization of the nongaussianity of the sources [12,13].Using the approximation of the negentropy or kurtosis in measuring the nongaussianity of data, a corresponding cost function can be built, and maximized by either gradient ascent method, or by a fixed point algorithm. 

There are two standard preprocessing steps, centering and whitening, that are used in ICA [12, 13]. These steps are applied in order to make ICA estimation better conditioned and simpler; hence they do not change the ICA model given in Eq. (2.1).  After whitening the data, which can be achieved by PCA, the independent sources can be obtained as:

                                                                                  s = W z                                                                         (2.3)

where W is the whitened demixing matrix that we aim to estimate and z is the whitened data. After finding W, the estimation of the original mixing matrix A can be done using equation (2.4):

                                                                             A = ED1/2W T                                                                    (2.4)

where D is a diagonal matrix consisting of the eigenvalues of the correlation matrix of x and E is the matrix of corresponding eigenvectors. So, only the estimation of the rows of W is left to be done. As mentioned before, this is achieved by maximizing the nongaussianity of the data. In order to maximize nongaussianity, either the absolute value of the kurtosis or the negentropy can be maximized [12, 13].Then the rows of the demixing matrix can be updated using a gradient based algorithm or a fixed point algorithm [14].
2.2. Topographic Independent Component Analysis

In ordinary ICA, the components are assumed to be independent. However, the estimated independent components are not often statistically independent. In fact it is not possible, in general, to decompose a random vector x linearly into its components that are perfectly independent. One of the possible solutions to this problem is to relax the independence assumption, and to use the dependence of the neighboring “independent” components as a way to develop new tools for feature extraction. Multidimensional ICA [4], ISA [15], and TICA [16], are concepts that are built using this independence relaxation idea.

In TICA, an “independent” component is made dependent with its neighboring “independent” components according to a predefined topographic neighborhood scheme. By this way, an ordering of the “independent” components in terms of dependencies can be achieved. The dependency between near-by components is modeled by correlation of energies, which is a certain kind of high-order correlation. This means that

                                                      cov (si2, sj2) = E{si2sj2} – E{si2} E{sj2} ( 0                                            (2.5)
if si and sj are close in topography.

The topography scheme is defined according to a predefined 1-D or 2-D neighborhood function. A simple one-dimensional topography can be defined by the following neighborhood function [16]
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The learning rule can be defined as in equations (2.7) and (2.8), where the i-th row vector wi of W is updated by a gradient algorithm:

                                                                         (wi ( E{z(wiTz)ri}                                                                 (2.7)

where
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The vectors wi must be normalized to unit variance and orthogonalized after every step. 
2.3. Independent Subspace Analysis

In ISA [15], on the other hand, some dependencies between the components are modeled. It combines the concepts of multidimensional ICA [4] with the principle of invariant-feature subspaces [19]. 

2.3.1 Invariant-feature subspaces

In the classical approaches of feature extraction, the presence of a given feature is detected taking the dot product of input data with a given feature vector. Linear features found this way bring out the disadvantage of lacking any invariance with respect to spatial shift or change in phase. Kohonen, [19], developed the concept of invariant-feature subspaces in order to represent features with some invariances. 
2.3.2 Multidimensional ICA

In multidimensional independent component analysis, [4], it is assumed that the “independent” components, si , can be divided into couples, triplets, or in general n-tuples, such that the si inside a given n-tuple may be dependent on each other, but dependencies among different n-tuples are not allowed.

In order to combine the concepts of invariant-feature subspaces and the multidimensional ICA, the probability distributions of the n-tuples of the “independent” components si that are taken to be spherically symmetric, i.e. they depend only on the norm. So, the logarithm of the likelihood L of the data, that is, the K observed image sub-windows (or patches) Ik(x, y), k = 1, …, K, given the model, can be expressed as follows:
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where 
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 gives the probability density inside the j-th n-tuple of si. J is the number of subspace groups. wi are the rows of the demixing matrix W. Since, a pre-whitening is done, W is an orthogonal matrix, so the second term in the above summation is zero.

By gradient ascent of the log-likelihood given in equation (2.9), the learning algorithm for the extraction of independent subspaces can be obtained. The vectors wi are constrained to be orthogonal and of unit norm, as in ordinary ICA. Learning rule for ISA can be stated as in equation (2.10):
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where j(i) is the index of the subspace to which wi belongs, and g = p΄ / p is a nonlinear function.

2.4 Independent Components of Images 

In this project, we are aiming to find the independent components of textile fabric images for the purpose of defect detection. In the work of Hurri et al [11], sub-windows from images are taken in order to form the samples of the data vector x. Each pixel of the image sub-window is a random variable, and as the number of image sub-windows taken from images is increased, one can have a more thorough picture of the statistics of that random variable. The aim of ICA is to make these image pixels as mutually independent as possible.

An image sub-window I(x,y) can be represented as a linear sum of its basis functions (i.e. independent components) which can be extracted by ICA (or TICA or ISA).
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Here, ai(x,y) are called as basis functions, and the si constitute the feature vector that is going to be used in the proposed defect detection system.

3. Wavelet Transforms

Wavelet transformation is a tool used to decompose a signal in to its sub-bands. Advantages of multiresolution analysis have been widely investigated. Any signal can be decomposed into multiple frequency bands using a single set of filter coefficients.  Furthermore wavelet transforms have good spatial/spatial-frequency localization. Directional information is inherent in wavelet coefficients. Namely the LH, HL and HH bands contain details in horizontal, vertical and diagonal directions respectively. 
Wavelets, although were known for many years, received the attention of the image processing society only after the papers of Daubechies [8], who provided the discretization of the wavelet transform, and Mallat [22] who established the connection between multiresolution theory and wavelet transforms.  

In this section, the background theory about discrete wavelet transform and decomposition of a signal using wavelet filters are provided.  By the translations and dilation of a function represented as 
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 and the decomposition of a signal is performed by these bases. The construction of basis function from the mother wavelet can be represented by the following formula:
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The analysis and synthesis formulas for a signal
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are given as follows:
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For the construction of the mother wavelet, a function known as scaling function, 
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Then 
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Here 
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 are called as reconstruction low-pass filter, and reconstruction high-pass filter, respectively. Their mutual relation can be given by,
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The transformation coefficients can be obtained recursively, there is no need to calculate explicitly the scaling and mother wavelet functions.  J-level decomposition can be written as in equations (3.7) to (3.9):                                                                
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 where
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and
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for  0 ≤ j ≤ J.  Equations (3.8) and (3.9) are in fact the convolution of coefficients 
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 are called as low-resolution coefficients, and the coefficients 
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 are called as detail coefficients. 
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 is the decomposition high-pass filter. They have a mutual relationship given as
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Decomposition: The output of J-level decomposition will contain the low-resolution coefficient 
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 and detail coefficients 
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 for each level (1 ≤ j ≤ J). The decomposition scheme is shown in the Figure 3.1:
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Figure 3.1: 2-Level wavelet decomposition diagram

Synthesis: The procedure works opposite this case. The low-resolution coefficient 
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 are first upsampled and then filtered with the reconstruction low-pass and high-pass filters 
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3.1. Wavelet Packets

The decomposition of a signal can be done via the conventional method of wavelet transform and is called as pyramid structured wavelet transform. Each time the low frequency band is split, the other bands are not touched. This is suitable for signals with most of their energy concentrated in the low frequency regions. However, for some signals, energy is concentrated at the middle frequencies. In this case, we have to split all the bands. This is called as wavelet packet decomposition. Two-dimensional wavelet packet tree decomposition and the terminology we used are shown (Figure 3.2). Letter A represents approximation, letters H, V, and D represent horizontal, vertical, and diagonal details, respectively. The left letter is the first, and the right letter is the second decomposition.


[image: image41.png]
Figure 3.2: 2-D wavelet packet tree decomposition

4. Methodology

The method that depends on the idea that the performance will increase by decomposing the textile fabric images into their sub-bands by wavelet transforms as a preprocessing step and applying the three subspace analysis tools, ICA, TICA, and ISA, on these sub-bands can be summarized as follows:

The mean of every image is subtracted from itself, and then every image is divided by its variance in order to make the ICA (or TICA, or ISA) estimation better conditioned [12, 13].
The block scheme of the proposed method is given in Figure 4.1. 

[image: image42.jpg]
Figure 4.1: Proposed Defect Detection System 

In the off-line block or the learning phase, the independent components for a set of texture images are extracted to be used as the basis vectors in the online block. Once the ICA (or TICA or ISA) basis vectors are calculated, they are used to construct the columns of matrix A in the ICA (or TICA or ISA) model. Hence the columns of A represent the ICA (or TICA or ISA) basis vectors. Fix-point algorithm with tanh nonlinearity is used to extract the independent components. Number of iterations is taken as 2000 in order to guarantee convergence [14]. 
The feature vector (also will be referred to as the coefficient vector) is a vector whose elements are the coefficients of the corresponding independent components. It is calculated for a defect-free image in the off-line part using Eq. (2.3) and is stored as the reference feature vector, sk, true, to be used in the on-line detection part. The subscript k here denotes the corresponding sub-band. The calculation of the true feature vector, sk, true, can be summarized as follows: After the sub-windows of the defect-free image(s) are extracted, the sub-bands of these image sub-windows are decomposed before constructing the data matrix X. These sub-bands are extracted by 2-level wavelet transformation. According to the application, one or more sub-bands can be taken from the possible 16 sub-bands of the 2-level wavelet packet tree scheme. Let K represent the number of sub-bands taken during the algorithm.

Since 2-level Wavelet transformation is used, this means that the resulting size of the sub-band will be (N/4)((N/4) where N is the size of the sub-windows if no sub-band analysis is done. This makes the size of each X matrix (N2/16)(10000. The i-th column of the X matrix corresponds to the i-th sub-window of the corresponding sub-band. The number of X matrices generated depends on the number of sub-bands used in the analysis. There will be K X matrices each corresponding to a different sub-band of the image sub-windows. If only the AA sub-band is used, the i-th column of the X will be the AA sub-band of the i-th sub-window.  Accordingly other X matrices will be constructed for other sub-bands.
After the data acquisition part, the dimension of the data is reduced to a number that is equal to the number of desired independent components. However, note that, if the dimension has already been reduced to the number of desired independent components by wavelet transform, this step can be skipped without loss of generality. Dimension reduction is performed by PCA to reduce the computation time. If m represents the number of desired independent components, m eigenvectors with the m highest eigenvalues of the covariance matrix of X are chosen in PCA.

As mentioned previously, feature vectors used are the coefficients of the independent components; namely, the si’s constitute the feature vectors. Feature vectors, sk,i, are extracted for the k-th sub-band of the i-th sub-window by multiplying the pixel values of the sub-window by the corresponding de-mixing matrices which are found by the ICA (or TICA, or ISA) algorithm. The de-mixing matrix is the (pseudo) inverse of the A matrix that is constructed in terms of the ICA (or TICA, or ISA) basis vectors in the off-line part. This makes a total of K feature vectors of size m for each sub-window. In order to find the sk,true vector, which is the true feature vector representing the non-defective regions, mean of those 10000 feature vectors (coefficients of the independent components) are taken for each sub-band. This makes a total of K strue vectors (sk,true) where each true vector corresponds to the appropriate sub-band used. 
In the on-line detection part, the de-mixing matrix found in the off-line part is used. The image to be tested is divided into N(N non-overlapping sub-windows making a total of 2562/N2 sub-windows, since the size of each fabric image is 256(256. Each sub-band of each sub-window is multiplied by the corresponding de-mixing matrices, and the related s vectors (feature vectors) are obtained. The Euclidian distances between these vectors and the K true feature vectors are computed. If the mean of these K distances is above the threshold value, α, determined using Eq. (4.1), the corresponding sub-window is said to be defective, otherwise it is said to be non-defective. This procedure is done for all the test windows.

                                                                    ( = Dm + ((Du -Dl )                                                                  (4.1)

where Dm is the median value of the feature vector of a sub-window, Du-Dl = IQR (IQR is the inter quartile range) and η is a constant determined experimentally. η can be found by trial and error or automatically by methods like cross-validation.  In the simulations, the choice of the η value is a compromise to reduce the false alarm rate in defect-free images and to increase the detection rate in defective images.

If wavelet analysis is not used, the formation of the X matrix will be done using the original pixel values of the sub-windows of the texture image and there will be one true feature vector sk,rue to be used in the on-line part for defect detection.  
The algorithm we use has two basic parameters to be determined: (i) Defect threshold value, α, for each textile type, and (ii) the size of sub-windows. The threshold value for best performance can be determined by trial and error for each textile type separately. It is also important to decide on appropriate sub-window size for better defect detection performance. The choice of sub-window size depends on two factors [7,]: (i) How localized the defects are.(i.e., size of the defects).  The size of sub-window must be small enough to contain almost only the defect in it. and (ii) for a non-defective sample how representative of the texture is the data in a window of such size. The sub-window must be large enough to represent the textural properties of the images. 

Performance rate of defect detection is calculated by the following formula:

                                      Detection Rate (%) = 100((NCC + NDD) / NTotal                                         (4.2)

where NCC is the number of sub-windows being correctly classified as non-defective, NDD is the number of sub-windows being correctly classified as defective and NTotal is the total number of sub-windows being tested.

5. Experiments

The method explained in the previous section is used to detect the weaving defects in textile fabric images. For this purpose, real fabric images were obtained in the laboratory environment by using a CCD camera. Our database contains 36 8-bit grey-level images each of size 256×256. 16 of these images are defect-free, and the others are chosen as to represent the several defect types that can be encountered in textile industry. Several experiments are conducted in order to assess and compare the defect detection performances of our method.  Many different scenarios are generated by using various wavelet transformation methods, different sub-window widths, different numbers of independent components, and several sub-bands.

The first 13 scenarios rely on the intuition obtained from previous works [27] that combining the concepts of wavelet transformation and ICA should increase the defect detection performance in textile images as compared to the performances obtained by applying these methods separately on the same images. Further experiments are performed by applying two other sub-band analysis tools, TICA and ISA, instead of ICA on the sub-bands. We used the FastICA algorithm [14] which estimates the independent components by maximizing the nongaussianity. 
As a first scenario, defects are detected by using only ICA. In this case, wavelet transformation block is ignored and ICA is applied on the original sub-windows rather than on the sub-bands of them.  16 independent components are extracted with a window size of 16×16. The independent components show the textural properties of the defect free images as shown in Figure 5.1. Independent components corresponding to high frequency characteristics show directional properties as vertical, horizontal, and diagonal and those components corresponding to low frequency characteristics on the other hand do not show any directional characteristics, or the directional characteristics are weak. 


[image: image43.png]
Figure 5.1: Independent components of defect free textile fabric images

We then applied sub-band analysis prior to ICA. The data matrix X is formed by the AA sub-bands of the sub-windows. The wavelet transformation is performed by 16-tap Daubachies wavelet filters. Battle-Lémarie wavelet filters, symlets, coiflets, Haar, discrete Meyer, and biorthogonal wavelets are also tried. The best performance is provided by 16-tap Daubachies wavelet filters. 16 independent components are extracted, and the sub-window size is taken as 16×16. The performance rate increases by applying sub-band analysis prior to ICA. We also used the other sub-bands namely, AH, AV, and AD for sub-band analysis. With 16 independent components, it is observed that most of the components coresponding to AH, AV and AD sub-bands are composed of zeros which indicates overlearning. Thus only the independent components corresponding to AA sub-band are shown Figure 5.2. Since most of the energy is concentrated in the AA band and the energy in the other bands are not significant which is also consistent with findings of Amet et.al. [1], the number of significant components corresponding to these bands will be less. Less number of components will be sufficient to represent AH, AV and AD bands; this representation will prevent overlearning. Further dimension reduction by PCA, solves this problem as is shown in Figures 5.3 and 5.4.
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Figure 5.2: 16 independent components of the (a) AA sub-band images
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Figure 5.3: 8 independent components of the (a) AA; (b)AH; (c)AV; (d)AD sub-band images
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Figure 5.4: 5 independent components of the (a) AA; (b)AH; (c)AV; (d)AD sub-band images

Many reasonable combinations of sub-bands from the 2-level wavelet packet tree scheme are tried and the best results are obtained by taking the AA sub-band since most of the energy is concentrated in this band. This conclusion is consistent with the fact that textile images have low-pass characteristics [1]. 

  It is observed that when only the AA sub-band is used, better detection rates for intensity defects, where the gray level values of the defective parts are different than those of the overall image, are attained. On the other hand, satisfactory defect detection rates for geometrical defects, where the textural characteristics are different than those of the general fabric image, are obtained when the 4 sub-bands, namely AA, AH, AV and AD are used. This phenomenon can be observed in Figures 5.5 and 5.6 where defect detection is performed both for intensity defects and for geometrical defects, respectively. To increase the overall performance of the system, decision fusion (the logical OR operator) of the results of different sub-bands are used. 
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Figure 5.5: Intensity defects obtained with 16 independent components by using

(a) 1 sub-band - AA sub-band; and (b) 4 sub-bands –AA, AV, AH and AD sub-bands
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Figure 5.6: Geometrical defects obtained with 16 independent components by using  

(a) 1 sub-band - AA sub-band; and (b) 4 sub-bands –AA, AV, AH and AD sub-bands

Below is a summary of some of the scenarios that give thorough information about what sub-band analysis adds upon ICA. The following abbreviations are used in order to name the scenarios in short hand.
WS: Window Size.

SB: Number of Sub-bands. 

IC: Number of Independent Components.

ICA: Independent Component Analysis.

W: Wavelet Transform.

WICA: Wavelet applied prior to ICA.

DecFus: Decision Fusion of two methods where in one method only the AA sub-band is used, and in the other method all the AA, AH, AV, and AD sub-bands are used.

The scenarios are as follows:

Scenario 1: ICA_16IC_WS16

Scenario 2: WICA_1SB_16IC_WS16

Scenario 3: WICA_4SB_16IC_WS16

Scenario 4: W_1SB_WS16

Scenario 5: W_4SB_WS16

Scenario 6: WICA_1SB_8IC_WS16

Scenario 7: WICA_4SB_8IC_WS16

Scenario 8: WICA_1SB_5IC_WS16

Scenario 9: WICA_4SB_5IC_WS16

Scenario 10: DecFus_16IC_WS16

Scenario 11: DecFus_8IC_WS16

Scenario 12: WICA_1SB_8IC_WS32

Scenario 13: WICA_4SB_8IC_WS32

In scenarios 4 and 5 only wavelet transformation (without ICA) is used. In this case the feature vectors are directly calculated from the energies of the selected sub-bands. In the last two scenarios, the window size is chosen as 32×32. A comparison of the defect detection rates of all the methods is shown in Figure 5.7a. For practical purposes, the η value used in determining the decision threshold given by equation (4.1) is optimized for each method. The Receiver Operating Curves (ROCs) are plotted Figure 5.7b for the sake of comparison.  
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Figure 5.7: (a) Defect Detection Rates of applications; (b) Receiver Operating Curves

As seen from these experiments, when ICA is applied on the sub-band images extracted by wavelet transformation tools, the defect detection performance is increased. When the sub-window size is chosen as 16x16 and the number of independent components is chosen as 8, a better performance is obtained compared to the other choices. The best performances are obtained when decision fusion is applied as in scenarios 10 and 11. 

Another subspace analysis technique for feature extraction was the use of TICA and ISA. It is observed that these two methods, obtained by relaxing the independence assumption in ICA, lead exactly the same detection rates as ICA. However, it has been observed that they emphasize the directional characteristics of the textures better than ICA does. So, after detecting the defects by ICA, TICA or ISA can be used to classify the defects according to their orientations. For this purpose ISA is found to be a better tool when compared to TICA. The different experiments carried out are detailed below:

The first experiment was to extract 16 “independent” components by applying TICA with standard neighborhood scheme given in equation 2.6, to 16 clean images. The defect detection system described in Figure 4.1 is used, where the basis vectors are extracted using TICA. The “independent” components are shown in Figure 5.8:
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 Figure 5.8: 16 “independent” components of defect free textile fabric images extracted by TICA, with standard neighborhood scheme

When we compare the results with those in Figure 5.1, we notice that independent components obtained with ICA have some directional behavior. However, this is not the case for components obtained using TICA (See Figure 5.8). For example, there are no “independent” components with diagonal textures in Figure 5.8, whereas the orientations of independent components were very obvious in Figure 5.1. As mentioned before, the detection rate was the same of ICA. Other topographies are also tried, but it is observed that TICA does not add anything on top of ICA in terms of defect detection rate.

ISA is also tried for feature extraction, however the same observations were valid, i.e. ISA does not add anything on top of ICA. However, ISA can be used to cluster defect orientations into groups, such as horizontal, and vertical. We are inspired by the idea in Li, Lv, and Zhang [21] where they clustered face orientations by using ISA. For the purpose of orientation detection of defects, in the training set, both defective and non-defective samples must be included in order for the system to learn the directions of defects. Many experiments with different number of groupings and different number of independent components were carried out. Figure 5.9 shows the 4 groups and 8 independent components in each group. 
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Figure 5.9: 4 subspace groups, with 8 independent components in each, extracted by ISA from defective images

Once the feature vector s is obtained, it is partitioned into 4 vectors of size 8. Each of the resulting 4 feature vectors contains the coefficients of the “independent” components of the corresponding subspace group. The norms of these four feature vectors are compared while deciding on the direction of that sub-window which has been labeled as defective by one of the defect detection algorithms given above.

The four mean values of the norms of the subspaces are plotted next to that figure for all the defective sub-windows of the textile fabric image shown in Figure 5.10. 


[image: image60.png]  [image: image61.png]
        (a)



  (b)

Figure 5.10: (a) A defective textile fabric image; (b) The average norms of the 4 subspace feature vectors extracted from the defective sub-windows of the textile image.

As seen in Figure 5.10, the average norm corresponding to the first subspace group is much larger than those of the other groups. If we look at Figure 5.9, it can be seen that the first group has indeed vertical characteristics. From the experiments performed on different images with different defect orientations, it is observed that the subspace group representing the directional characteristics of the defects in a textile fabric image, always has the highest energy among other subspace groups. 

6. Conclusions

In this work, a new and efficient defect detection algorithm which combines concepts of sub-band domain and subspace analysis methods is developed. This method uses the wavelet transformation as a preprocessing step for the feature extraction problem, which is achieved by subspace analysis tools like ICA, TICA, and ISA. When textures with frequency content mostly concentrated on a single band are considered, focusing on that particular band and discarding the others improves the detection performance. In general, it can be stated that the method that is applied to the sub-band images is superior than the same method applied to the raw images. Since the textural characteristics of geometrical and intensity defects are different, different sub-bands lead to different detection rates for those classes of defects, thus decision fusion of the results of different sub-bands may be a solution to increase the detection performances.

The performances of TICA and ISA, where the independence assumption of the independent components are relaxed, were not superior of that of ICA. On the other hand, it is shown that ISA is a powerful tool for characterizing the orientations of the defects after they are detected by a certain powerful defect detection algorithm. This is a further step to defect detection, because not only the defects but their orientations can also be detected. It can be said that ISA is a method to classify the defects according to their directionalities.

Considering the results obtained, the new approach seems to be a feasible method for real-time factory implementations.
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