
Sequential Circuit Design for
Embedded Cryptographic Applications

Resilient to Adversarial Faults
Gunnar Gaubatz, Member, IEEE, Erkay Savaş, Member, IEEE, and Berk Sunar, Member, IEEE

Abstract—In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection

of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of

these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault

analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path

protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential

control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the

effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in

implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when

compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical

path delay.

Index Terms—Data encryption, sequential circuits, fault tolerance, error control codes, error checking, adversarial faults.

Ç

1 INTRODUCTION

THE ubiquitous nature of emerging cryptographic devices
brings with it new threats and attack scenarios. The

leakage of secret information through implementation
specific side channels can be used by attackers to defeat
otherwise impenetrable systems. Over the last decade, a
large body of industrial, as well as academic, research has
been devoted to the study of side channel attacks. In terms
of high-level classification, one has to distinguish between
active and passive attacks. Most of the R&D effort to date
has been focused on the development of countermeasures
against passive attacks, although, early on, Boneh et al. [1]
and also Joye et al. [2] effectively demonstrated the strong
need for the protection of various public-key systems
against active attacks. Biham and Shamir [3] and, later,
Piret and Quisquater [4] demonstrated successful fault
attacks against the data paths of various block ciphers,
whereas only recently have attacks on the control logic of
block ciphers been reported by Choukri and Tunstall [5].
Current research on fault attack countermeasures is
targeted primarily at techniques to reduce side-channel
leakage, for example, in [6], and, secondarily, at increasing
the fault tolerance of cryptographic devices—two goals that
complement each other.

Most of the latter work is based on applying concurrent
error detection (CED) techniques to the data path [7], [8].
Other techniques make use of architectural features such as
the presence of both encryption and decryption units to
compute the inverse operation for comparison of the result.
Although this strategy works well with symmetric key
algorithms such as the Advanced Encryption Standard
(AES) [9], it may not work in a public-key setting, for
example, if the private key is not available to check the
result of an encryption [10].

We are currently unaware of any strategies to also
protect the control logic (state machine, sequencer, execu-
tion pipeline, and so forth) of cryptographic systems against
interference from the outside. A literature search revealed
that there are several decades worth of research on the
design of fault-tolerant state machines in classic application
domains like automation control, avionics, and space-borne
systems [11], [12], [13]. Although it is true that many of
those findings could also apply to cryptographic systems,
our main concern is that the fault model is fundamentally
different. Fault-tolerant digital systems are typically de-
signed around the premise that faults only occur one at a
time and that there is sufficient time to recover between
faults. Thus, all that is needed to build a fault-secure system
is the ability to recover from the set of single faults [14].
Such an assumption seems reasonable as long as the faults
are caused by stochastic events like “mother nature’s”
background radiation or the failure of components over
time. In a cryptographic setting, we deal with faults of an
adversarial nature, caused by an intelligent attacker who
can be assumed to know about the structure and, thus,
certain weaknesses of the system.

In this paper, we want to protect a system in a worst-case
scenario, rather than maximizing average-case reliability.
As such, it is paramount to not leave the proverbial

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008 1

. G. Gaubatz and B. Sunar are with the Electrical and Computer
Engineering Department, Worcester Polytechnic Institute, ECE Atwater
Kent Labs, Worcester, MA 01609. E-mail: {gaubatz, sunar}@wpi.edu.

. E. Savaş is with the Faculty of Engineering, Sabanci University, Orhanli,
Tuzla, Istanbul, Turkey, TR-34956. E-mail: erkays@sabanciuniv.edu.

Manuscript received 7 Dec. 2005; revised 15 Aug. 2006; accepted 8 Jan. 2007;
published online 23 July 2007.
Recommended for acceptance by Ç. Koç.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0435-1205.
Digital Object Identifier no. 10.1109/TC.2007.70784.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Achilles’ heel uncovered but to provide each and every
component of the system with a uniform level of resilience
against attacks. A secondary goal is to quantify this
resilience and provide some practical design considerations.
We would like to briefly remark on the issue of complexity
and cost of implementation: Compared to the data path, the
control logic tends to be fairly small in size. The overhead is
therefore secondary to the improvement in fault resilience
and, in most cases, even irrelevant. That said, we will show
in Section 5 that our solution exhibits much better
performance when compared to traditional fault-tolerant
techniques of the same resilience level. Specifically, the
contributions in this paper may be summarized as follows:

. We define a fault model that applies in an
adversarial setting and provide a lengthy discussion
on how realistic attacks targeting the control unit can
be mounted.

. We define a useful metric for measuring the
effectiveness of the error detection technique in
terms of the effort the attacker has to make to mount
a successful attack with respect to the area overhead
spent in building the Error-Detecting Code (EDC).

. We provide a detailed analysis of the complexity of
the proposed EDC and show that it provides
superior error detection capabilities when compared
against traditional redundancy-based techniques,
while not affecting the critical path delay.

. We provide evidence that our technique provides
better scalability compared to traditional redun-
dancy-based techniques.

The remainder of this paper is structured as follows:
Section 2 contains an example of a fault attack on the control
circuit of a hypothetical modular exponentiation-based
public-key accelerator. Section 3 will introduce the notation
and definitions of sequential circuits, as well as classes of
faults. State encoding schemes based on EDCs are intro-
duced in Section 4 and used in Section 5 to design and
analyze fault-resilient sequential circuits, complete with an
example. Section 6 quantifies the error detection capabilities
of various linear codes and explains the importance of
design diversity to counter certain classes of faults.

2 MOTIVATION

We will motivate our research with an example attack
scenario. We will demonstrate the theoretical feasibility of
an attack on a slightly simplified public-key cryptographic
accelerator as it might be found in a ubiquitous security
device such as a smart card. For the sake of simplicity, let us
assume a basic modular exponentiation algorithm without
CRT, using the secret private key, for example, an RSA
decryption or signature generation. It should, however, be
straightforward to adapt the attack to a CRT-based
implementation. We consider a regular standard-cell ASIC
implementation with sufficient protection of the data path
but not the control logic, along with countermeasures to
prevent timing and power analysis (balanced power
consumption, constant runtime). We furthermore assume
that the attacker has the ability to unpack the chip and
induce bit flips on the state registers with some temporal
precision [15], even though it is our understanding that

tamper-proof coating and/or packaging has become some-
thing of a standard practice among smart card manufac-
turers. The work of Anderson and Kuhn [16] gives reason to
question the effectiveness of such measures against deter-
mined attackers.

A particular algorithm that meets the requirements set
above is Joye and Yen’s [6] variant of the Montgomery
ladder (Algorithm 1), computing y ¼ xe modN . The state
machine in Fig. 1 implements the algorithm on a data path
with a single multiplier and three registers, R0, R1, and R2.
Each register is n bits wide, the size of the modulus N . This
highly simplified state machine consists of seven states: the
six active states, which are listed in Algorithm 1 right beside
their respective instruction, and the idle state in which the
circuit is inactive. The initial state after activation of the
circuit sets up constants and counters. The two load states
read the variables x and e via the input bus, whereas the
result state returns the computed value y on the output bus.
The multiply and square states are self-explanatory from
the algorithm description. The control signals a and b for
selecting between registers R0 and R1 are determined by
scanning the exponent in R2 bitwise, as indicated by the
superscript bit index in parentheses.

Algorithm 1. Joye and Yen’s Montgomery Ladder Expo-

nentiation [6]

Input: x, e

Output: y ¼ xe modN

R0 1 INIT

R1 x LOAD1

R2 e LOAD2

for i ¼ n� 1 downto 0 do

a R
ðiÞ
2 ; b :a

Rb Rb � Ra modN MULTIPLY

Ra R2
a modN SQUARE

end for

y R0 RESULT

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 1. State diagram representation of the Montgomery ladder algorithm

with point of attack.

The complete public-key accelerator circuit consists of a
modular multiplication unit, a memory block for the storage
of operands and temporary results, and the exponentiation
state machine, which coordinates the movement of data
between the multiplier and memory. The multiplier can
also be used for squaring operations. Although we will
mainly focus on the state machine itself, we want to give a
brief overview of the multiplier component for a more
complete picture. It is a pipelined scalable Montgomery
multiplier, as described in [17], which can perform
arithmetic on both integer and binary polynomial operands.
Scalable here refers to the ability to perform arithmetic with
operands of nearly arbitrary precision only limited by the
amount of memory, as well as the design time configur-
ability of parameters like the number of pipeline stages and
data path width. The multiplier computes the Montgomery
product C ¼ A �B � R�1 using the word-level “finely inte-
grated operand scanning” (FIOS) algorithm, which consists
of two nested loops. To reflect a typical application scenario
in an embedded system, we chose to implement a rather
small variant of the multiplier with an 8-bit data path and
three pipeline stages. Each stage consists of two 8� 8 bit
parallel multipliers and two adders and can process one
complete inner loop of the algorithm. Intermediate results
are computed LSW first and can be passed from stage to
stage. Delay registers with bypass logic maintain proper
scheduling of data words between the pipeline stages. Each
pipeline stage has its own inner loop state machine and the
scheduling of each stage is controlled by a single outer loop
state machine. Since, typically, there are fewer pipeline
stages than outer loop iterations, a FIFO stores the result of
the last stage and passes it back to the first stage when it
becomes available again. Table 5 in Section 5 gives the exact
area breakdown of the multiplier components.

We would like to point out that the multiplier currently has
no fault detection or other side-channel attack counter-
measures. We use it mainly to demonstrate the rather small
percentage of control logic in relation to the overall area of the
design. Therefore, the total increase in area will stay relatively
small, even if the error detection mechanism in the control
logic adds significant overhead. This will become visible later
on in the synthesis results of our example.

Our main argument, however, is the following: Even if
the data path of the circuit were protected by attack
countermeasures, the system would still be vulnerable to
fault attacks unless the state machine is protected by an
error detection mechanism. The following is a brief outline
of such a hypothetical attack, which reveals the n-bit secret
exponent e in a short time:

1. Measure the total time of an (arbitrary) exponentia-
tion and determine the computation time required
per exponent bit: tbit � ttotal=n.

2. Set the round index k ¼ 1, select a known ciphertext x
and set the result of the previous round as
ðR0;R1Þ ¼ ð1; xÞ.

3. Compute the triple ðA;B;CÞ ¼ ðR2
0;R0 � R1;R

2
1Þmod

N and make a hypothesis H0 about the exponent bit
eðn�kÞ 2 f0; 1g.

4. Start exponentiating x.

5. After k� tbit time steps, force the state machine into
the state 111:RESULT by inducing a fault either on
the least significant bit of the state or on the input
signal count < O. This will cause the circuit to reveal
its intermediate result in R0.

6. Verify the hypothesis by comparing the actual value of
R0 toA. If it matches ðeðn�kÞ ¼ 0Þ, set ðR1;R0Þ ¼ ðA;BÞ;
else, if it matches ðeðn�kÞ ¼ 1Þ, set ðR0;R1Þ ¼ ðB;CÞ.

7. Repeat Steps 3 through 6 for all other bits of the
exponent ðk ¼ 2 . . .nÞ.

This attack works because there is no way to distinguish
between a valid or a faulty transition (cf., Fig. 1: solid versus
dashed arc) from the 110:SQUARE state to the final state
111:RESULT. Without a doubt, an actual attack on real
hardware will probably be much more involved and not as
simple as described here in our naive scheme. Our basic
point is, however, that the control logic of any crypto-
graphic circuit should be identified as a potential point of
attack. This is especially true if other countermeasures
against fault attacks on the data path are put into place since
the control logic becomes the weakest element in the system
and, as such, an obvious target. To this end, we propose an
all-encompassing strategy to protect all of the components
of embedded cryptographic devices with a certain mini-
mum level of guaranteed resilience to fault attacks.

3 PRELIMINARIES AND DEFINITIONS

A finite-state machine (FSM) can be formally defined by a
six-tuple ðS; I; O;�;�; s0Þ. S is the set of valid states (the
state space), which has dimension k ¼ dlog2 jSje, and s 2 S
denotes the current state. In a similar manner, I and O

define the input and output sets and i 2 I and o 2 O, the
current inputs and outputs. The number of input and
output signals are � ¼ dlog2 jIje and ! ¼ dlog2 jOje bits. The
sets � and � represent the next-state and output logic
functions, which take s and i as their arguments. They
consist of a collection of Boolean functions �jðs; iÞ and
�lðs; iÞ, each of which compute a single bit in the next state
or output vector. Finally, s0 indicates the initial state. For
simplicity and without loss of generality, we will assume
that all 2k states are valid throughout the remainder of this
paper. In the following, we will refer to state machines that
encode the state in a vector with n > k bits as redundant
state machines.

A regular (read: non-fault-resilient) state machine (Fig. 2)
encodes the current state as a k-bit binary vector
s ¼ ðs0; s1; . . . ; sk�1Þ. In linear algebra terminology, the state
spaceS is a vector space over the field GF(2), spanned by a set
of k linearly independent basis vectors �0 . . . �k�1. The current
state is a linear combination s ¼ s0�0 þ s1�1 þ . . .þ sk�1�k�1,
with the addition in GF(2) being equivalent to an exclusive
OR operation. In the simplest case, the basis vectors form a
standard basis with orthogonal unit vectors:

�0 ¼ ð1 0 . . . 0Þ
�1 ¼ ð0 1 . . . 0Þ
..
. ..

. ..
. . .

. ..
.

�k�1 ¼ ð0 0 . . . 1Þ:

GAUBATZ ET AL.: SEQUENTIAL CIRCUIT DESIGN FOR EMBEDDED CRYPTOGRAPHIC APPLICATIONS RESILIENT TO ADVERSARIAL... 3

The next state s0 is determined by evaluating the set of next
state functions:

s0 ¼�kðs; iÞ ¼ ð�0ðs; iÞ; �1ðs; iÞ; . . . ; �k�1ðs; iÞÞ:

Similarly, the !-bit output vector o is computed
by evaluating the set of output logic functions
�!ðsÞ ¼ ð�0ðsÞ; �1ðsÞ; . . . ; �!�1ðsÞÞ. At each clock edge, the
current state vector takes on the value of the next state
vector s ¼ s0. Mealy type state machines are different only
in that their output functions also depend on the input
vector. In the following, we will focus on Moore-type
machines, but the same principles also apply to Mealy
machines.

3.1 Classes of Faults

We would like to distinguish between different classes of
faults. A common-mode failure (CMF) [18] is a set of multiple
simultaneously occurring faults resulting from a single
cause, for example, due to a glitch in the power supply or a
large area ionization of an unpackaged integrated circuit
with a radiation source. Highly regular circuits made from
replicated components are the most prone to CMF if the
cause of the fault is not one of limited locality. In contrast, a
single-mode failure (SMF) is a single fault that occurs due to a
single cause. Oftentimes, the effect of the fault is locally
limited. Examples of this type of fault are single stuck-at
faults caused early on by manufacturing flaws or later
through a breakdown resulting from electromigration. In an
adversarial setting, a transient SMF may also be induced by
means of a “light attack”. This refers to the introduction of
single bit errors into an unpackaged integrated circuit by
means of a highly focused laser beam or other ionization
source [15]. It requires a high degree of spatial and,
potentially, also temporal precision.

3.2 Adversarial Fault Model

An active side channel attack such as differential fault
analysis (DFA) relies on the manifestation of injected faults
as erroneous results, which can then be observed at the
output of the device. The error is therefore the difference
between the expected output x and the observed output
~x ¼ xþ e. In the following, we do not assume that the
adversary is limited to any specific method of fault
injection. The only assumption is that direct invasive access
to the chip itself is prevented by some tamperproof coating,
a reasonable assumption since this is a common practice, for
example, in the smart card industry.

When talking about errors as the manifestations of faults,
there are two principal ways of characterization. A logical
error is a bitwise distortion of the data, usually modeled as
the XOR of data and error, that is, ~x ¼ x� e, whereas
arithmetical errors admit the propagation of carries up to
the range limit: ~x ¼ xþ emod 2k, where k is the width of the
data path. The former is appropriate for storage-dominated
devices (register files, RAM, flip-flops, and so forth); the
arithmetic error model is more useful for arithmetic circuits
such as adders and multipliers. Naturally, we will use the
logical error model throughout the remainder of this paper
since it is the most appropriate.

In the following, we will assume that an attacker is
somehow able to induce a fault into the device that results
in the flipping of a bit. The attacker has control over the
location of the bit flip, but there is a cost (or effort) attached
which increases with the number of bit flips. For example, if
the attacker tries to change the state of a circuit by attacking
the state register such that ~s ¼ s� e, the cost of the attack
depends on the hamming weight of the induced error
pattern e.

3.3 A Novel Effectiveness Metric:
Attack Effort per Area

We need a metric by which to compare the effectiveness of
various error detection mechanisms. An intuitive approach
is to compare the cost or effort of a successful fault attack to
the cost of preventing it. Before we can define this metric,
we need to introduce a couple of further definitions:

. Resilience is a measure of how many errors the circuit
can withstand. More concretely, this is the number
of errors that can be accurately detected by the error
detection network. Throughout this paper, we will
refer to resilience as the parameter t and to a fault-
tolerant sequential circuit as t-resilient.

. Effort is a measure for the difficulty in inducing a
fault into the system that manifests itself as one or
more errors. It cannot be given in absolute terms
since an attacker’s effort depends on a large variety
of factors. We will therefore only give the effort in
relative terms, compared to the cost for induction of
a single bit error. There exist multiple types of faults,
all of which warrant their own effort values. For
simplicity, we only model single bit faults, which
also manifest themselves as single bit errors at the
gate level.

We now define the total attack cost as the sum of the total
effort required for a successful attack. In this paper, we
arbitrarily assign a nominal effort of 100 percent for a single
bit error as the basis of comparison for various counter-
measures. If the circuit is more resilient, then the effort for a
successful attack also increases.

Definition 1. Let Ebf denote the effort required for inducing a
change of value for a single bit in the circuit (bit fault). Let t
denote the degree of the worst-case fault resilience of the
circuit, that is, the maximum number of errors that can be
tolerated when induced simultaneously. The total cost for the
attack is therefore C ¼ ðtþ 1Þ � Ebf .

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 2. Nonredundant Moore-style state machine with � inputs, 2k states,

and ! outputs.

In Definition 1, we implicitly assume that the fault
insertion effort increases at least linearly with resilience t.
Inducing change of values for more than 1 bit in the circuit
may not be much harder than changing 1 bit, especially
when those bits are stored in places close to each other (for
example, several consecutive bits in a register). However,
our proposed scheme necessitates changing a number of
certain bits, which are not particularly close to each other, if
the fault induction attack is to be successful. Many
successful fault induction attacks do not necessarily need
a high spatial precision and inadvertently changing several
other bits than the target bits is acceptable in these attack
scenarios. The proposed technique, on the other hand,
forces the attacker to be very precise when changing certain
bits lest the attack be detected. Therefore, changing several
bits, not necessarily next to each other in the circuit, without
changing other bits is indeed a daunting task for the
attacker. The exact relation of fault insertion effort to the
resilience t largely depends on the specific implementation
and, therefore, is difficult to formulate. Nevertheless, our
assumption of a linearly increasing effort for fault insertion
with respect to t may be justifiable, at least as a first-order
approximation, since it is our intuition that the relation is
even more complex and the effort should increase faster
than just linearly.

Based on Definition 1 and the area overhead that is
required to implement a specific countermeasure, we can
define an effectiveness metric � that allows us to compare
the different approaches. The figure of merit is the ratio
between the cost and area. Additionally, we define a
normalized effectiveness H that can be useful for compar-
ing countermeasures on circuits with completely different
functionality.

Definition 2. Let A denote the circuit area and C the cost for
successfully implementing a fault attack. The effectiveness
ratio � ¼ C=A weighs the cost of the attack against the cost of
the countermeasure (circuit area). Let �0 ¼ C0=A0 be the
effectiveness of the unprotected circuit. Then, H ¼ �=�0

denotes the normalized effectiveness of a countermeasure with
respect to a particular basis circuit.

In Section 5, we will use the effectiveness metric to
compare traditional fault-tolerant approaches with our
method.

4 REDUNDANT STATE ENCODING BASED ON EDCS

Looking at typical FSM implementations of cryptographic
algorithms, one may notice that, oftentimes, only relatively
few different states are necessary or, if a more complex
algorithm is required, the control logic can be broken down
hierarchically. Typically, only a few bits are necessary to
store the state, depending on the encoding scheme used.
Compared to the size of the data path in a typical
embedded cryptographic system, the size of the control
logic is often relatively small, even when a highly
redundant encoding scheme is being used. As an example,
we refer to the Montgomery multiplier introduced above,
which has a total area of 10,410 equivalent gates, excluding
the area for data storage. The control logic occupies an

absolute area of 2,015 equivalent gates, around 20 percent;
the remaining 80 percent belongs to the data path.

Electronic design automation tools often allow specifica-
tion of a preferred state encoding scheme for the automatic
synthesis of FSMs. The typical styles to choose from are
“one-hot,” “gray,” or “binary” encoding, but they only
allow a trade-off between the speed and the area of the
resulting circuit. We propose investigating a third trade-off
alternative, that is, the degree of fault tolerance or, put
differently, the resilience against fault attacks. Although
fault-tolerant sequential circuits have been the subject of
research in the context of reliable system design, there are a
couple of important aspects that require further investiga-
tion in the context of cryptographic circuits due to the
fundamentally different adversarial fault model.

We place a special emphasis on the detection, rather than
correction, of faults. Our argument is quantitative in that
the number of detectable faults ðd� 1Þ is larger than the
number of correctable faults ðbðd� 1Þ=2cÞ, based on the
minimum Hamming distance d of the coding scheme. Since
there is no way to tell whether the multiplicity of the fault is
strictly less than d=2 or not, there is a chance that the error
correction will produce a valid but ultimately incorrect next
state. On the other hand, we also argue qualitatively: Due to
the adversarial nature of faults in the cryptographic context
and their potentially devastating effects on the security of
the system, the detection of errors is far more important
than producing a result under all circumstances. Detected
faults should, rather, be dealt with under a suitable
exception handling mechanism that prevents side-channel
leakage, for example, by erasing a sensitive key material. As
a side benefit, the area overhead for detection is typically
much less than that of correction and the circuit does not
have to sit on the critical path.

One-hot encoding is preferred by digital logic designers
whenever speed and a simple next-state logic are desired.
Despite its large amount of redundancy, its minimum-
distance properties are weak since valid code words only
differ by two bits. In the case of a double error that resets
the active bit and sets another one, there is not enough
information in the encoding to detect the error and, thus,
one-hot encoding is not suitable for our purposes. Since
performance is less of a priority in security-critical applica-
tions, we can trade off the speed of one-hot encoding for the
capability to detect errors. One way of doing so is by
choosing a state encoding based on EDCs with large
minimum distance. For example, if we had a state machine
with m ¼ 15 states, one-hot encoding would require a 15-bit
state vector. Encoding the states with a (15, 4)-Simplex code,
which is the dual of a (15, 11)-Hamming code, would
require a state vector of exactly the same size. One-hot
encoding only has a minimum distance of 2, whereas the
Simplex code has a distance of 8, which allows detection of
all errors with a Hamming weight of up to 7.

5 FAULT-RESILIENT SEQUENTIAL CIRCUITS

A fault-resilient state machine (Fig. 3) must necessarily
incorporate redundancy—not only in the state encoding,
but also in the combinational logic of next-state and output
functions. In a state machine protected by a linear ðn; kÞ code,

GAUBATZ ET AL.: SEQUENTIAL CIRCUIT DESIGN FOR EMBEDDED CRYPTOGRAPHIC APPLICATIONS RESILIENT TO ADVERSARIAL... 5

the redundant state vector sðnÞ ¼ ðs0; s1; . . . ; sn�1Þ now
consists of n bits. For the remainder of this paper, we will
also implicitly assume that the input signal i is given in
redundant form as well. Its next-state logic is a set �nðs; iÞ
of n functions, �j, that each determine one bit of s. In
general, since there are only 2k states (but encoded in
redundant form), each �j is a Boolean function over kþ �k
variables (�k denotes the number of nonredundant bits in
the input vector i).

Formally speaking, the state space SðnÞ is a k-dimensional
subspace of an n-dimensional vector space f0; 1gn. The basis
vectors of this subspace are the n-bit row vectors of the
generator matrix G of the code. Any value of the state
vector s that is not a linear combination of these basis
vectors is therefore treated as an error. Although this
interpretation nicely illustrates the mapping of k-bit states
into a redundant n-bit form, it is not useful for the
definition of next-state functions because we want to keep
the state in redundant form only. If we were to decode the
current state, compute the next state in only k bits, and
reencode it to n bits, this would leave the system with a
single point of failure in the next-state function, rendering it
vulnerable to attacks. Rather, we keep the system state in
redundant form at all times to enhance its resilience against
attackers probing for the weakest spot of the system.

An alternative interpretation that is more suitable for our
definition of a redundant state machine is to view the
columns of G as n redundant basis vectors of the
nonredundant k-dimensional state space S, which is iso-
morphic to SðnÞ. Any k linearly independent basis vectors
form a complete basis for S and span the entire state space.
Thus, those k (out of n) state variables that are associated
with the respective vectors of such a basis can be used for
specification of a next state or output function. In the
following, we will let �j and �j denote such sets of k state
variables associated with linearly independent basis vectors
(columns of G) for the next state functions �j and output
functions �j, respectively. Additionally, we introduce
nonredundant subsets 	j of input variables (one per next
state function). Each 	j selects �k input variables from the
redundant input vector i. If the columns of G were not

linearly independent, then this would introduce an ambi-

guity about the current state and certain functions could not

be implemented. It usually depends on the exact construc-

tion of the code to determine which of all n
k

� �
possible sets of

k state variables are suitable.
If enough many sets �j; 	j; �j are available, then the next

state and output logic functions can be defined over a variety

of such sets. It is prudent to make use of such alternative

definitions so as to minimize the hazardous effect that a single

faulty state variable has on the overall system.

Example. An example will help to illustrate the last point:

Let G be the generator matrix of a systematic (7, 3)-

Simplex code (dual of the (7, 4)-Hamming):

G ¼
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

2
4

3
5:

The rows of G form the k-dimensional basis for the state

space S as a subspace of f0; 1gn. Let sðnÞ ¼ sðkÞG be the

redundant state vector. Using the modular exponentia-

tion example in Section 2, the states of a redundant state

machine would be encoded as in Table 1. Alternatively,

we can interpret the columns of G as redundant basis

vectors �0; �1; . . . ; �6 spanning S and associated with

s0; s1; . . . ; s6, respectively.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 3. Fault-resilient Moore-style state machine.

TABLE 1
Simplex State Encoding

for the Modular Exponentiation Example

In a nonredundant state machine, the next state logic

functions would be specified as �jðsðkÞ; iÞ. In the redundant

case, we still have the same number of states, but, now, we

have n ¼ 7 state variables ðs0; s1; . . . ; s6Þ that we can use to

specify the next state functions. Due to systematic encoding,

we have the following relationships between redundant

ðs0; s1; s2; s3; s4; s5; s6ÞðnÞ and nonredundant state variables

ðs0; s1; s2ÞðkÞ:

s
ðnÞ
0 ¼ s

ðkÞ
0 ;

s
ðnÞ
1 ¼ s

ðkÞ
1 ;

s
ðnÞ
2 ¼ s

ðkÞ
2 ;

s
ðnÞ
3 ¼ s

ðkÞ
0 � s

ðkÞ
1 ;

s
ðnÞ
4 ¼ s

ðkÞ
0 � s

ðkÞ
2 ;

s
ðnÞ
5 ¼ s

ðkÞ
1 � s

ðkÞ
2 ;

s
ðnÞ
6 ¼ s

ðkÞ
0 � s

ðkÞ
1 � s

ðkÞ
2 :

For example, let �j ¼ ðs1; s3; s6Þ. Since columns 1, 3, and 6 of

G are linearly independent, it is generally possible to

specify an arbitrary next-state or output function over this

set of state variables, for example, �jð�; iÞ ¼ �jðs1; s3; s6; i0Þ.
This is always possible and does not depend on what the

actual application of the state machine is.1 The Boolean

function definition of �j, however, does depend on the

application.

Conversely, it should immediately become clear that

we should not specify a next-state function over the

sets ðs0; s1; s3Þ or ðs0; s2; s4Þ. The bases associated with

the selection of state variables are f�0; �1; �3g ¼
fð1; 0; 0Þ; ð0; 1; 0Þ; ð1; 1; 0Þg and

f�0; �2; �4g ¼ fð1; 0; 0Þ; ð0; 0; 1Þ; ð1; 0; 1Þg;

both of which are not linearly independent: �0 þ �1 þ �3 ¼ 0

and �0 þ �2 þ �4 ¼ 0 in GF(2). In both examples, one

coordinate is always zero in all basis vectors. If a

hypothetical next state function depends on that coordinate

to distinguish between two different states, the function

cannot be implemented.

We will now give a concrete example of a fault-resilient

state machine implementation using the error detecting

(7, 3)-Simplex code. We will further compare our approach

to N-modular redundancy, a concept from traditional fault-

tolerant computation, with respect to area overhead and

fault resilience. In N-modular redundancy, functional

modules are replicated N times, ideally employing design

diversity techniques. Their outputs are either voted on by a

majority logic (that is, for error correction) or simply

compared for consistency to detect any error that may

occur in a module. The most common configuration is triple

modular redundancy (TMR), sometimes also referred to as

triads [19], which allows either the detection of two errors

or the correction of a single error. Since a fault-resilient

system requires redundancy not only in the state machine

but also overall, redundant versions of the input and output

signals need to be present as well. In a system with

nonredundant inputs, for example, the attack described in

Section 2 could be carried out by forcing the condition

count < 0, which may be indicated to the state machine by

a single status bit. Such an attack is harder to accomplish if

input signals are available as multiple redundant and

independent variables. The amount of redundancy should

be chosen to protect against the same number of errors t as

the state encoding scheme to ensure a uniform level of

resilience for the entire system. The level of resilience is

measured by the minimum number t of signals an attacker

needs to change (bit flips) for a successful attack. For state

encoding with linear codes over GF(2), we have t ¼ d� 1,

where d is the minimum distance (or nonzero Hamming

weight) of all code words. In a modular redundant scheme,

the overall resilience level can be found by concatenating

the state vectors of the individual modules and computing

its total minimum distance, D, and resilience, t ¼ D� 1.

They are determined by the degree of modular redundancy,

N , and the distances, dj, of each module’s individual state

encoding:

D ¼
XN
j¼1

dj:

In the following, we will therefore require a D-fold

redundant set of input signals to be available to the circuit,

which in turn must provide a D-fold redundant set of

output functions. This provides coverage for the corner case

where all t faults occur on the inputs. For example, in the

case of a TMR system with simple binary encoded states,

the minimum distance between words of the concatenated

state vectors is 3 ðD ¼ NÞ with a worst-case resilience of

t ¼ 2. Our EDC-based state machine implementation is a

special case, with N ¼ 1, d ¼ 4, and therefore requires an

input set of distance 4 to maintain the same amount of

resilience against D� 1 ¼ 3 faults.
We will now provide an example using the Montgom-

ery ladder algorithm introduced earlier in Section 2. A

very simple state machine implementation requires two

input signals, start and count! ¼ 0, and the D-fold

redundant input vector thus consists of the signals

i ¼ ði0;0; . . . ; i0;D�1; i1;1; . . . ; i1;D�1Þ, with the mapping i0;j ¼
start and i1;j ¼ count! ¼ 0. It computes three output signals

for controlling the data path (multiplier): mul_op_a,

mul_op_b, and mul_res. Again, these signals will be

generated with D-fold redundancy and mapped to the

output vector o ¼ ðo0;0; o0;1; o0;2; . . . ; o2;D�1Þ.
As with the redundant state vector, we will not use all

elements of i for definition of the next state functions, but

only subsets 	j, each containing two input variables.

Finally, we need ! sets �j of k state variables each as inputs

to the output functions �j, again with minimal overlap. For

our example, we chose:

GAUBATZ ET AL.: SEQUENTIAL CIRCUIT DESIGN FOR EMBEDDED CRYPTOGRAPHIC APPLICATIONS RESILIENT TO ADVERSARIAL... 7

1. Once a specific function is defined, it might not need the complete
state information in k variables and the logic implementation may be
minimized.

�0 ¼ ðs0; s2; s3Þ 	0 ¼ ði0;0; i1;0Þ
�1 ¼ ðs1; s3; s4Þ 	1 ¼ ði0;1; i1;1Þ
�2 ¼ ðs2; s4; s5Þ 	2 ¼ ði0;3; i1;2Þ
�3 ¼ ðs3; s5; s6Þ 	3 ¼ ði0;0; i1;3Þ
�4 ¼ ðs0; s4; s6Þ 	4 ¼ ði0;1; i1;0Þ
�5 ¼ ðs0; s1; s5Þ 	5 ¼ ði0;2; i1;2Þ
�6 ¼ ðs1; s2; s6Þ 	6 ¼ ði0;3; i1;3Þ

�0 ¼ ðs0; s1; s2Þ �6 ¼ ðs0; s4; s5Þ
�1 ¼ ðs0; s3; s5Þ �7 ¼ ðs2; s5; s6Þ
�2 ¼ ðs3; s4; s6Þ �8 ¼ ðs1; s2; s6Þ
�3 ¼ ðs2; s3; s4Þ �9 ¼ ðs0; s3; s4Þ
�4 ¼ ðs1; s2; s4Þ �10 ¼ ðs1; s5; s6Þ
�5 ¼ ðs3; s5; s6Þ �11 ¼ ðs0; s1; s6Þ:

From the state transition table (Table 2), we can now derive

the concrete next state functions based on the state and

input variable sets �j and 	j:

�0ð�0; 	0Þ ¼ s0s
0
2 þ s2s3;

�1ð�1; 	1Þ ¼ i0;1s
0
3s4ðs1 þ i1;1Þ þ s01s03s4i1;1 þ s3s

0
4;

�2ð�2; 	2Þ ¼ s2s
0
4s
0
5 þ s02s4 þ s02s5 þ s4s5i

0
1;2;

�3ð�3; 	3Þ ¼ s03s5s
0
6i
0
0;0 þ s3s

0
5 þ s3s6 þ s5s6i1;3;

�4ð�4; 	4Þ ¼ s0s
0
4 þ s00s4s

0
6 þ s00s4i

0
1;0 þ s04s6;

�5ð�5; 	5Þ ¼ i00;2s0 þ s0s
0
5 þ s01s5;

�6ð�6; 	6Þ ¼ i0;3s1s
0
6 þ s1s2 þ s2s6:

We can derive the output logic equations in a similar

fashion (omitted here due to space considerations).

5.1 Synthesis Results and Overhead Analysis

Due to the principal difference in error detection capability

between an N-modular redundant and an EDC-based state

machine, we decided to compare the nonredundant

implementation to four different redundant implementa-

tions with slightly varying parameters:

1. a two-fault resilient triple modular redundant (TMR,
N ¼ 3) version,

2. a three-fault resilient quadruple modular redundant
(QMR, N ¼ 4) version,

3. an internally three-fault resilient EDC version with a
threefold redundant I/O set (3-EDC),2 and

4. a three-fault resilient EDC version with a fourfold
redundant I/O set (4-EDC).

Our initial analysis consisted of using the University of
California, Berkeley, SIS logic synthesis tool and the MCNC
synthesis script for mapping the five different circuit
descriptions to the MCNC standard libraries mcnc.genlib
and mcnc_latch.genlib and comparing the results
(Table 3).

5.1.1 Area Overhead

Despite the higher literal count of 3-EDC and 4-EDC
compared to the TMR implementation, the actual circuit
area is almost exactly the same. The lower resilience of TMR
against faults, however, makes a compelling argument for
building fault-resilient state machines based on EDCs,
especially since the degree of resilience will be even better
for a larger state space dimension k. A QMR design requires
more than 100 percent more overhead for achieving the
same level of resilience. In addition, while N-modular
redundancy schemes have a constant overhead of approxi-
mately ðN � 1Þ � 100% independent of the state space
dimension k, the (storage) overhead of EDC-based fault-
resilient state machines actually decreases with a larger
state space (cf., Fig. 4). It appears reasonable to expect a
similar trend for the complexity of the next-state logic.

These initial results encouraged us to proceed with the
analysis of a more detailed state machine model synthe-
sized using Synopsys DesignCompiler and a 0.13
m ASIC
standard cell library. Special care was taken to direct the
synthesis not to share logic between the next state
functions �n. This is to avoid the manifestation of a single
stuck-at fault as an error on multiple outputs of the next
state function �nðs; iÞ. The results3 are given in Table 4. It
shows some clear differences in area requirements between
the codes-based and the TMR implementation which are
not visible from the initial analysis. To some extent, this is
due to the more accurate modeling (we only used a
simplified state machine design for the SIS flow), but the

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

TABLE 2
State Transition Table of the Fault-Resilient Modular Exponentiation FSM

2. This effectively reduces the worst-case fault resilience to two faults on
the input set.

3. The area is given in terms of equivalent gate size, that is, the size
relative to a two-input NAND gate.

main reason is the fact that we used an industrial strength
standard cell library with advanced complex gates of
varying drive strength. The size of these gates is often
more compact than a realization from simple gates and is
given in precise decimal fraction area numbers. The size of
gates in the MCNC library, on the other hand, was only
given in integers.

5.1.2 Effectiveness and Scalability

Table 4 also gives the performance of our examples in terms of
the effectiveness metric for fault resilience measures that we
defined in Definition 2 in Section 3. The value � describes the
relative effort per gate, whereas H is the normalized
effectiveness value relative to the effectiveness of the
unprotected circuit. The results are quite interesting: As
expected, the EDC-based fault-resilient circuits show the best
effectiveness in preventing fault attacks; however, the NMR
approach fares much worse than having no countermeasure
at all. We also experimented with a slightly different
implementation with 10 states and a much larger resilience,
t ¼ 7. Here, we used a (15, 4)-Simplex code for state encoding.
Our results indicate that, at slightly more than 400 percent
area overhead, the EDC-based scheme scales much better
than NMR, for which we expect an overhead of well beyond
800 percent at the same resilience level.

5.1.3 Critical Path Overhead

We could not determine any substantial critical path over-
head with any of our examples. All designs synthesized at 1
GHz clock frequency without problems and we would expect
the critical path to be on the data path much rather than the
control logic. In the case of 3-EDC and 4-EDC, the redundant
state variables are computed in parallel, completely
independent of each other, and therefore do not add to
the critical path. Furthermore, the error detection network is

not in the critical path either since it operates in parallel
with the next-state and output logic. We conclude that there
is no performance overhead associated with these fault
resilience measures.

5.2 Influence of Control Logic Overhead on Total
Circuit Area

Following the overhead analysis of the exponentiation state
machine, we want to extrapolate the total overhead of
implementing fault-resilient control logic throughout the
entire modular exponentiation circuit. We start from the
breakdown of area requirements for the Montgomery
multiplier described in Section 2. Table 5 shows the
components of the multiplier sorted by type and their size
in equivalent gates. For extrapolation, we factored the
overhead estimates in Table 4 into the area requirement for
control logic but not for the data path. Due to the fact that
control logic occupies less than 20 percent of the total area
in a nonredundant implementation, the overhead due to
fault resilience techniques is limited to around 40 percent
for our method, whereas, for quadruple modular redun-
dancy, it exceeds 80 percent (Table 6).

GAUBATZ ET AL.: SEQUENTIAL CIRCUIT DESIGN FOR EMBEDDED CRYPTOGRAPHIC APPLICATIONS RESILIENT TO ADVERSARIAL... 9

TABLE 3
Initial Analysis of Various EDC and NMR Schemes

Fig. 4. Lengths of various t-resilient EDCs.

TABLE 4
Analysis of Detailed FSM Models (�10-State FSM with k ¼ 4)

6 SELECTION OF CODES FOR t-FAULT-RESILIENT

STATE MACHINES

We have seen in the previous example how we can design a
fault-resilient state machine with up to eight states using an
ordinary (7, 3)-Simplex code. Since this code has a minimum
distance of four, it is able to detect up to three faults in the state
vector s. In general, the number of errors that can be detected
by means of a linear block code with minimum distance d is
t ¼ d� 1. The selection of a particular code for a fault-resilient
state machine implementation therefore depends on the
desired level of resilience, that is, the number of detectable
errors t, as well as the dimension of the state space k. These
two parameters determine the length n of the block code, as
shown in Table 7. We obtained our numbers from the
reference table of minimum-distance bounds for binary linear
codes [20]. We restructured the table in order to display the
minimum length n for a given dimension k and desired fault
resilience t.

The first column of the table consists entirely of trivial
repetition codes because of k ¼ 1. The first row, on the other
hand, consists of all parity codes with no repetitions of
column vectors, but with only a minimum distance of 2. These
two are the extremes between which we can trade off the fault
resilience versus the code length (or, rather, compactness).
This is visualized in Fig. 4, where EDCs with different levels
of fault resilience are juxtaposed with one-hot and binary
encoding in a double log-scale graph. For a very small
number of states, adding resilience against multiple faults
incurs some overhead penalty, even when compared to one-
hot encoding. However, as the state space grows, the
complexity of one-hot encoding grows much more rapid
with each additional state and eventually becomes infeasible.
On the other hand, the relative overhead of EDCs over simple
binary encoding decreases monotonically.

Duplication of columns in G is an easy and efficient way
to increase the minimum distance—and, therefore, the

resilience—of an EDC. This is helpful against adversarial
SMFs such as light attacks. In fact, whenever the code
length n exceeds 2k, G inevitably contains some duplicated
column vectors. Take, for example, the (10, 3) code of
resilience four: With k ¼ 3, there can only be seven unique
nonzero column vectors in G; hence, there must be three
duplicates. It turns out that Simplex codes achieve the
maximum fault resilience possible without duplication of
columns. Their generator matrix consists of all nonzero
column vectors of dimension k. They are marked in Table 7
with the small letter s. If G contains duplicate columns, this
means that two or more state variables associated with
those columns will have the same value (under fault-free
conditions) and could thus be computed by identical next
state functions. The inherent problem of identical functions
is their susceptibility to CMF, as defined earlier in
Section 3.1. If the cause of a fault is not locally limited, it
is likely to have the same effect on identical circuit
implementations of a Boolean function and, therefore, will
increase the fault multiplicity.

6.1 Using Design Diversity to Counter CMF

We can counter the effects of CMF using a technique called
design diversity [18]. By implementing the next-state function
in several different but ultimately equivalent ways, the
likelihood of combined failure under the same circum-
stances is reduced. Design diversity is naturally promoted
by defining functions over alternative sets of k state
variables, as described in Section 5. It is, however,
important to not choose the �j naively. For example, if we
were to define the next state functions �j over only those
sets �j that all include the state variable s0, then we would
have biased the circuit. A fault in s0 might spread out to
cause subsequent errors in all other state variables. An
active adversary could systematically test for such a bias
and exploit it. We must therefore balance the use of each
state variable across all �j. In order to reduce the influence
of a single bit error in any of the state variables, the subsets
�j should uniformly cover all state variables, with mini-
mum overlap. In a k-dimensional state space, the minimum
cover implies that each state variable will be used a
maximum of k times. The goal is therefore to find n sets
�j chosen uniformly from sðnÞ such that each state variable
occurs only k times. Oftentimes, a minimum cover can be
found relatively easily, simply by inspection. Automating
the process should be fairly straightforward but lies outside
of the scope of this paper. Returning to our previous
example with the (7, 3)-Simplex code, we could choose the
subsets as follows:

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

TABLE 5
Data Path/Control Logic Area Breakdown

of the Montgomery Multiplier

TABLE 6
Total Overhead for Modular Exponentiation Circuit

with FT Control

�0

�1

�2

�3

�4

�5

�6

2
666666664

3
777777775
¼

ðs0; s2; s3Þ
ðs1; s3; s4Þ
ðs2; s4; s5Þ
ðs3; s5; s6Þ
ðs0; s4; s6Þ
ðs0; s1; s5Þ
ðs1; s2; s6Þ

2
666666664

3
777777775
:

One can readily verify that the basis vectors associated with

the sets �j are all linearly independent and no state variable

gets used more than k times. In other words, there is no

single state variable that stands out over others as a

potential target for an attack.

6.2 Attack Resilience

Finally, we would like to show intuitively how the fault-

resilient circuit holds up in different attack scenarios. We

start with the most likely point of attack for an adversary

with single-mode fault insertion capability, the state

register, and continue from there toward the boundaries

of the sequential circuit.

. State register. A transient fault can completely change
the register contents past the duration of the fault since
the flip-flops are made up from bistable devices. Here,
the structural design of the fault-resilient state
machine comes into play: Since the error detection
network is connected directly to the output of the state
register, all faults up to multiplicity twill be detected.
Note that this would not be the case if the detector
were to directly follow the next-state function. From
our choices of �j, one can see that each state variable
has an influence on up to k variables of the next state
and the attacker would only require a fraction dt=ke of
faults to influence more than t state variables. With
error detection right after the state register, this threat
is eliminated. Furthermore, the detection network
does not add to the critical path, thereby avoiding a
performance penalty.

. Feedback path. Any fault on the feedback path from
the state register to the inputs of the next state
function would be detected by the error detection
circuit as well.

. Next state logic. Fault multiplicity stemming from
shared logic between individual next state functions
is not likely due to the minimum cover policy of
selecting the sets �j, that is, there should not be any

pairs of state variables that are a member of more
than one �j. However, even if that could happen, it
would be easy to simply disallow the sharing of
logic gates between individual functions during
synthesis.

. I/O set. The input and output vectors must also be
considered as a potential point of failure, as
mentioned earlier. It is not clear at this point if the
error detection mechanism of the sequential circuit
alone can guarantee t-fault resilience. It might be
necessary to have additional error detection outside
of the state machine, checking for faults on the I/O
set, but this is outside the scope of this paper. The
minimum requirement is that the I/O set should
contain a sufficiently high amount of redundancy to
enable t-fault resilience, as described in the example
in the previous section. One potential solution is to
use weight-based codes as described in [21].

As we can see from this intuitive analysis, the architecture
of our sequential circuit can withstand fault insertion of
degree t, which was our design goal.

7 CONCLUSION

In this paper, we addressed the importance of not only
protecting the data path of cryptographic circuits against
fault attacks but also the control logic itself. Despite the
abundance of fault tolerance techniques for sequential
circuits in other application domains, those are based on a
fundamentally different fault model and, therefore, not
suitable for the task. We strongly believe that these
techniques have to be reevaluated and adapted to the new
threat scenario that presents itself in the form of crypto-
graphic fault analysis. A determined attacker can probe a
system for its weaknesses and enforce a worst-case
scenario. For protection against an adversary with the
capability of inducing t faults simultaneously, the circuit
must be resilient up to that degree. Most of the ideas
proposed in the literature, however, are concerned with
efficiency and the ability to detect two and correct at most a
single error. This work is a first step toward fault-resilient
sequential circuits under an adversarial fault model. We
gave a motivating example of a hypothetical attack on a
modular exponentiation-based cryptosystem that would
succumb to this kind of attack in spite of a protected data
path and other algorithmic countermeasures. Although it is
impossible to ever completely protect against a determined
adversary, we presented some general principles of how to
improve the resilience against an attack to make it infeasible
beyond a certain level of effort.

In this paper, we showed that the overhead incurred
through the use of EDCs is less than that of N-modular
redundant implementations while providing better fault
resilience properties. In addition to this, we demonstrated
that the percentage of control logic in a typical crypto-
graphic application is only a small fraction of the data path.
Thus, even a high amount of overhead due to fault
resilience measures does not significantly influence the
complexity of the overall system. It is, however, important
to understand the mechanisms of fault propagation to

GAUBATZ ET AL.: SEQUENTIAL CIRCUIT DESIGN FOR EMBEDDED CRYPTOGRAPHIC APPLICATIONS RESILIENT TO ADVERSARIAL... 11

TABLE 7
Minimum Code Length n for State Space

of Dimension k and Fault Resilience t

properly implement fault resilience. The rule for minimal
overlap between state variables in the sets �n is such an
example. Furthermore, we defined a new metric that
captures the effectiveness of a fault detection method in
terms of the minimum effort the attacker has to make to
mount a successful attack with respect to the area overhead
spent in implementing the error detection scheme. Our
analysis and implementation results have shown that the
proposed coding-based techniques provide far superior
performance when compared against N-modular redun-
dant error detection techniques. For proof of concept, we
implemented a Montgomery multiplier whose control logic
was realized using various error detection techniques. Our
implementation results show that the control logic occupies
less than 20 percent of the total area in a nonredundant
implementation and the overhead due to fault resilience
techniques is limited to around 40 percent for our method,
whereas, for a comparable quadruple modular redundancy,
it exceeds 80 percent. Furthermore, the effectiveness metric
gives a high value of 2.8 for the proposed technique,
whereas, for QMR, it is a mere 1.6. At around 75 percent
effectiveness after normalization, it is clear that NMR
performs even less effectively than the unprotected circuit.
For the same implementation, we found that the critical
path delay was not affected by the EDC. We provided a
rationale to claim that this result would hold for even
higher degrees of resilience.

Further research is certainly required in this area. It is
our hope that this first step will encourage others to further
contribute to this important aspect of embedded crypto-
graphy. One open question, for example, is whether other
types of codes, for example, Reed-Solomon and so forth,
would provide for higher effectiveness. For the time being,
we only investigated linear block codes due to the simpler
error detection mechanism.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their helpful comments. Gunnar Gaubatz and Berk Sunar
were funded in part by the US National Science Foundation
Faculty Early Career Development (CAREER) Award NSF-
ANI-0133297 and by Intel Corp. Erkay Savaş is supported
by the Scientific and Technological Research Council of
Turkey Project 105E089.

REFERENCES

[1] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults,” Advances in
Cryptology—Proc. EuroCrypt ’97, W. Fumy, ed., pp. 37-51, 1997.

[2] M. Joye, A. Lenstra, and J. Quisquater, “Chinese Remaindering
Based Cryptosystem in the Presence of Faults,” J. Cryptology,
vol. 4, no. 12, pp. 241-245, 1999.

[3] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” Advances in Cryptology—Proc. 17th Ann. Int’l
Cryptology Conf. (CRYPTO ’97), B. Kaliski Jr., ed., pp. 513-525,
1997.

[4] G. Piret and J. Quisquater, “A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and
Khazad,” Proc. Fifth Int’l Workshop Cryptographic Hardware and
Embedded Systems (CHES ’03), C. Walter, Ç.K. Koç, and C. Paar,
eds., pp. 77-88, 2003.

[5] H. Choukri and M. Tunstall, “Round Reduction Using Faults,”
Proc. Second Int’l Workshop Fault Diagnosis and Tolerance in
Cryptography (FDTC ’05), Sept. 2005.

[6] M. Joye and S.-M. Yen, “The Montgomery Powering Ladder,”
Proc. Fourth Int’l Workshop Cryptographic Hardware and Embedded
Systems (CHES ’02), B. Kaliski Jr., Ç.K.. Koç, and C. Paar, eds.,
pp. 291-302, 2002.

[7] A. Reyhani-Masoleh and M. Hasan, “Towards Fault-Tolerant
Cryptographic Computations over Finite Fields,” ACM Trans.
Embedded Computing Systems, vol. 3, pp. 593-613, Aug. 2004.

[8] G. Gaubatz and B. Sunar, “Robust Finite Field Arithmetic for
Fault-Tolerant Public-Key Cryptography,” Proc. Second Workshop
Fault Diagnosis and Tolerance in Cryptography (FDTC ’05),
L. Breveglieri and I. Koren, eds., Sept. 2005.

[9] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “On
the Propagation of Faults and Their Detection in a Hardware
Implementation of the Advanced Encryption Standard,” Proc.
IEEE Int’l Conf. Application-Specific Systems, Architectures, and
Processors (ASAP ’02), M. Schulte, S. Bhattacharyya, N. Burgess,
and R. Schreiber, eds., pp. 303-314, July 2002.

[10] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert,
“Fault Attacks on RSA with CRT: Concrete Results and Practical
Countermeasures,” Proc. Fourth Int’l Workshop Cryptographic Hard-
ware and Embedded Systems (CHES ’02), B. Kaliski Jr., Ç. Koç, and
C. Paar, eds., pp. 260-275, 2002.

[11] D. Rennels, “Architectures for Fault-Tolerant Spacecraft Compu-
ters,” Proc. IEEE, vol. 66, pp. 1255-1268, Oct. 1978.

[12] M. Chen and E.A. Trachtenberg, “Permutation Codes for the State
Assignment of Fault Tolerant Sequential Machines,” Proc. 10th
Digital Avionics Systems Conf. (DASC ’91), pp. 85-89, Oct. 1991.

[13] M. Berg, “Fault Tolerant Design Techniques for Asynchronous
Single Event Upsets within Synchronous Finite State Machine
Architectures,” Proc. Seventh Int’l Military and Aerospace Program-
mable Logic Devices Conf. (MAPLD ’04), Sept. 2004.

[14] Fault Tolerant Computing—Theory and Techniques, D. Pradhan, ed.,
first ed., vol. 1. Prentice Hall, 1986.

[15] S. Skorobogatov and R. Anderson, “Optical Fault Induction
Attacks,” Proc. Fourth Int’l Workshop Cryptographic Hardware and
Embedded Systems (CHES ’02), B. Kaliski Jr., Ç. K. Koç, and C. Paar,
eds., pp. 2-12, Aug. 2002.

[16] R. Anderson and M. Kuhn, “Tamper Resistance—A Cautionary
Note,” Proc. Second Usenix Workshop Electronic Commerce, pp. 1-11,
Nov. 1996.

[17] G. Gaubatz, “Versatile Montgomery Multiplier Architectures,”
master’s thesis, Worcester Polytechnic Inst., Worcester, Mass.,
May 2002.

[18] S. Mitra and E. McCluskey, “Which Concurrent Error Detection
Scheme to Choose,” Proc. Int’l Test Conf. (ITC ’00), pp. 985-994,
2000.

[19] A. Hopkins Jr. and T. Smith III, “The Architectural Elements of a
Symmetric Fault-Tolerant Multiprocessor,” IEEE Trans. Computers,
vol. 24, no. 5, pp. 498-505, May 1975.

[20] H. Helgert and R. Stinaff, “Minimum-Distance Bounds for Binary
Linear Codes,” IEEE Trans. Information Theory, vol. 19, pp. 344-356,
May 1973.

[21] N. Das and N. Touba, “Weight-Based Codes and Their Applica-
tion to Concurrent Error Detection of Multilevel Circuits,” Proc.
17th VLSI Test Symp. (VTS ’99), 1999.

Gunnar Gaubatz received the BS degree in
electrical engineering from the Munich Univer-
sity of Applied Sciences in 2000 and the MS and
PhD degrees in electrical and computer engi-
neering from the Worcester Polytechnic Institute
in 2002 and 2007, where he was a member of
the Cryptography and Information Security
Laboratory. He recently joined Intel Corp., Santa
Clara, California, as an algorithm development
architect. His research interests include fault-

tolerant cryptography, computer arithmetic, and low-power digital
circuits. He is a member of the IEEE, the IEEE Computer Society,
and the International Association for Cryptologic Research (IACR).

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Erkay Savaş received the BS and MS degrees
in electrical engineering from the Electronics and
Communications Engineering Department, Is-
tanbul Technical University, in 1990 and 1994,
respectively, and the PhD degree from the
Department of Electrical and Computer Engi-
neering (ECE) at Oregon State University in
June 2000. He worked for various companies
and research institutions before he joined the
Faculty of Engineering and Natural Sciences of

Sabanci University as a faculty member in 2002. He is the director of the
Cryptography and Information Security Group (CISEC) of Sabanci
University. His research interests include cryptography, data and
communication security, high-performance computing, computer arith-
metic, privacy-preserving data mining, and distributed systems. He is a
member of the IEEE, the ACM, the IEEE Computer Society, and the
International Association of Cryptologic Research (IACR).

Berk Sunar received the BSc degree in elec-
trical and electronics engineering from Middle
East Technical University in 1995 and the PhD
degree in electrical and computer engineering
(ECE) from Oregon State University in Decem-
ber 1998. After briefly working as a member of
the research faculty at Oregon State University,
he joined Worcester Polytechnic Institute as an
assistant professor. Since July 2006, he has
been as an associate professor. He currently

heads the Cryptography and Information Security Laboratory (CRIS).
He received the US National Science Foundation Faculty Early Career
Development (CAREER) Award in 2002. He organized the Crypto-
graphic Hardware and Embedded Systems Conference (CHES) in 2004
and is the coeditor of CHES 2005. His research interests include finite
fields, elliptic curve cryptography, low-power cryptography, and com-
puter arithmetic. He is a member of the IEEE, the IEEE Computer
Society, the ACM, and the International Association of Cryptologic
Research (IACR).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GAUBATZ ET AL.: SEQUENTIAL CIRCUIT DESIGN FOR EMBEDDED CRYPTOGRAPHIC APPLICATIONS RESILIENT TO ADVERSARIAL... 13

