title   
  

In vitro and in vivo degradation of non-woven materials made of poly(e-caprolactone) nanofibers prepared by electrospinning at different conditions

Bölgen, Nimet and Menceloğlu, Yusuf Z. and Acatay, Kazım and Vargel, I. and Pişkin, Erhan (2005) In vitro and in vivo degradation of non-woven materials made of poly(e-caprolactone) nanofibers prepared by electrospinning at different conditions. Journal of Biomaterials Science -- Polymer Edition, 16 (12). pp. 1537-1555. ISSN 0920-5063

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1402Kb

Official URL: http://dx.doi.org/10.1163/156856205774576655

Abstract

The aim of this study was to prepare non-woven materials from a biodegradable polymer, poly(ε-caprolactone) (PCL) by electrospinning. PCL was synthesized by ring-opening polymerization of ε-caprolactone in bulk using stannous octoate as the catalyst under nitrogen atmosphere. PCL was then processed into non-woven matrices composed of nanofibers by electrospinning of the polymer from its solution using a high voltage power supply. The effects of PCL concentration, composition of the solvent (a mixture of chloroform and DMF with different DMF content), applied voltage and tip–collector distance on fiber diameter and morphology were investigated. The diameter of fibers increased with the increase in the polymer concentration and decrease in the DMF content significantly. Applied voltage and tip–collector distance were found critical to control 'bead' formation. Elongation-at-break, ultimate strength and Young's modulus were obtained from the mechanical tests, which were all increased by increasing fiber diameter. The fiber diameter significantly influenced both in vitro degradation (performed in Ringer solution) and in vivo biodegradation (conducted in rats) rates. In vivo degradation was found to be faster than in vitro. Electrospun membranes were more hydrophobic than PCL solvent-casted ones; therefore, their degradation was a much slower process.

Item Type:Article
Uncontrolled Keywords:POLY(EPSI-CAPROLACTONE), ELECTROSPINNING, NANOFIBERS, NON-WOVEN MATERIALS, DEGRADATION, POLY(ε-CAPROLACTONE)
Subjects:Q Science > QD Chemistry
ID Code:551
Deposited By:Yusuf Z. Menceloğlu
Deposited On:02 Dec 2005 02:00
Last Modified:25 May 2011 14:02

Repository Staff Only: item control page