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ABSTRACT

GREEN’S FUNCTION AND DENSITY OF STATES OF BOUNDED P-WAVE
SUPERCONDUCTORS

Elit Açılan

Master Thesis, October 2021

Thesis Supervisor: Prof. Dr. İnanç Adagideli

Keywords: Green’s functions, multiple reflection expansion, p-wave
superconductors, chiral Majorana edge modes, density of states correction

In this thesis, we consider the density of states of bounded chiral p-wave supercon-
ductors, particularly focusing on the available Majorana edge modes. Majorana edge
modes are among the candidates for developing structures for braiding operations
and hence realizing topological quantum computers. The main aim of this thesis is
to develop a novel analytical machinery to describe these Majorana edge modes in
p-wave superconductors. To this end, we adopt the Multiple Reflection Expansion
method developed by Balian and Bloch for the Green’s function of the Helmholtz
wave equation and extend this method to the Green’s function of a chiral p-wave su-
perconductor. We thus obtain an analytical expression of the Green’s function near
the edge of a chiral p-wave superconductor, analytically calculate the quasiparticle
density of states and find signatures of the Majorana edge modes.
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ÖZET

SINIRLI KİRAL P-DALGA SÜPERİLETKENLERİ İÇİN GREEN
FONKSİYONU VE ENERJİ ÖZDEĞER YOĞUNLUĞU

ELIT AÇILAN

PROGRAM ADI YÜKSEK LİSANS TEZİ, EKİM 2021

Tez Danışmanı: Prof. Dr. İNANÇ ADAGİDELİ

Anahtar Kelimeler: Green fonksiyonları, çoklu yansıma açılımı, p-dalga
süperiletkenler, kiral Majorana sınır modları, enerji özdeğer yoğunluğu düzeltmeleri

Bu tezde, özellikle mevcut Majorana kenar modlarına odaklanarak, sınırlı kiral p-
dalgası süperiletkenlerin durumlarının yoğunluğunu ele alıyoruz. Majorana kenar
modları, örgü işlemleri için yapılar geliştirmek ve dolayısıyla topolojik kuantum
bilgisayarlarını gerçekleştirmek için adaylar arasındadır. Bu tezin temel amacı, p-
dalgası süperiletkenlerde bu Majorana kenar modlarını tanımlamak için yeni bir
analitik çerçeve geliştirmektir. Bu amaçla, Helmholtz dalga denkleminin Green
fonksiyonu için Balian ve Bloch tarafından geliştirilen Çoklu Yansıma Açılımı yön-
temini benimsiyoruz ve bu yöntemi iki boyutlu kiral p-dalgası süperiletkenlerin
Green fonksiyonu için genişletiyoruz. Böylece, kiral p-dalgası süperiletkeninin ke-
narına yakın Green fonksiyonunun analitik bir ifadesini elde ediyoruz, ve yarı
parçacık durum yoğunluğunu analitik olarak hesaplıyoruz ve Majorana kenar mod-
larının imzalarını buluyoruz.
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1 INTRODUCTION

In this thesis, we study the density of states of bounded chiral p-wave superconduc-
tors. To this end, we develop an expansion for the Green’s function of chiral p-wave
superconductors in two dimensions for arbitrarily shaped boundary and calculate
for the case of a flat boundary. We thus extend the work of Balian and Bloch for the
Helmholtz equation to the chiral p-wave superconductors. Moreover, we calculate
the edge corrections to the density of states (DOS) for the flat boundary prob-
lem then analytically show the presence of chiral edge modes through the obtained
spectral function.

This thesis is organized as follows. In Chapter 2, we begin by introducing the mul-
tiple reflection expansion method; here we follow the work of Balian and Bloch, the
recipe of multiple reflection expansion for the Helmholtz equation. In Chapter 3,
we extend the multiple reflection expansion scheme to the chiral p-wave supercon-
ductors. We first briefly introduce the topological properties of the material, the
chiral p-wave superconductor, and discuss the Majorana edge modes present in the
system. Then, we move on to derive the Green’s function of chiral p-wave super-
conductor in momentum space and follow with the derivation of multiple reflection
expansion for chiral p-wave superconductors. Finally, we conclude the chapter by
calculating the edge corrections to the DOS and discussing the results in which we
see the signatures of the previously mentioned chiral edge modes. In Chapter 4, we
summarize our work and give a conclusion.
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2 MULTIPLE REFLECTION EXPANSION OF THE GREEN’S

FUNCTION OF THE HELMHOLTZ EQUATION

In this thesis, we adopt a powerful computation technique called multiple reflection
expansion to calculate the full Green’s function of a chiral p-wave superconductor,
then calculate the boundary corrections to DOS by using the expansion. Therefore
in this chapter, we review the method first derived for the Helmholtz equation.

Geometrical shape of the system has a considerable effect on distribution of eigenen-
ergies in the short wavelength limit [1]. Numerical methods for calculation of
eigenenergies cannot properly address to the relation between the geometric shape
of the system and density of states (DOS) as much as analytical methods. Multiple
reflection expansion is an analytical technique for calculating the asymptotic distri-
bution of eigenvalues including boundary effects. This machinery can be employed
in other systems as well. Therefore, we use this technique to investigate the spec-
tral properties in an analytical fashion. Some applications of this method include
graphene flakes for which Adagideli, Richter, and Würm treat various boundary
cases and calculate the density of states corrections [2]. In another paper, Adagideli
and Goldbart treat Andreev Billiards by using the same method [3].

Multiple reflection expansion is a series representation of the Green’s Function where
each term in the series represents quantum processes with a fixed number of reflec-
tions from the system boundaries. The MRE of Green’s function stores the informa-
tion addressing boundaries by including every possible reflection from the boundary.
Using the well-known relation between Green’s function and DOS, it is possible to
calculate how the boundaries affect the DOS by obtaining a Green’s function that
includes edge corrections. To this end, in this chapter, we present a review of this
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method by following Ref. [1].

In Section 2.1, we review Green’s functions and their relation to DOS. In section 2.2,
we introduce the multiple reflection expansion method for the Helmholtz equation.

2.1 Green’s function and its relation to DOS

Multiple reflection expansion is a method that involves calculating Green’s functions;
therefore, we give a quick summary of Green’s functions as we use Green’s functions
extensively in this work. In addition, we touch briefly on the relation between
Green’s functions and the density of states since our ultimate aim is to calculate
boundary corrections to the density of states.

2.1.1 Green’s functions

Green’s functions correspond to the "impulse response" of a linear differential opera-
tor. Many problems in quantum mechanics can be treated analytically by finding the
appropriate Green’s function and imposing initial or boundary conditions according
to the system [4]. Green’s function as an operator is the resolvent of an eigenvalue
equation such that spectral features of a system can be obtained. Therefore, the
physical characteristics of a system such as DOS can be obtained by using Green’s
functions techniques. For a linear differential operator L, Green’s function is the
solution of the equation:

LG(x,s) = δ(x− s), (2.1)

where δ(x−s) is the Dirac delta function. L could be any linear differential operator
such as the Laplace operator to D’alembert operator. Moreover, we can use Green’s
function methods to study quantum mechanical systems as Hamiltonian is a linear
Hermitian operator. We define the linear differential operator L=E−Ĥ. Then the
Green’s function for this operator satisfies the equation:
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(
E− Ĥ

)
G(r,r′;E) = δ(r− r′). (2.2)

Where Ĥ is the Hamiltonian of the system. In bra-ket notation, G(r,r′;E) =
〈r|Ĝ(E) |r′〉, where Ĝ(E) is the Green’s function operator, a resolvent operator
of an eigenvalue equation. Free space Green’s function is determined by the formal
inverse of (E− Ĥ) as:

G(r,r′;E) =
〈
r
∣∣∣(E− Ĥ)−1∣∣∣r′〉 , (2.3)

We consider Green’s function of an operator as a propagator for particles in quantum
mechanics. They contain the information of probability amplitudes for a particle
moving from point r to point r′.

We must incorporate the boundary corrections for a bounded system to find the
exact Green’s function of a particular system. We can either solve the inhomo-
geneous by directly applying the boundary conditions or using corrections to the
total Green’s function by using methods such as the method of images or multiple
reflection expansion. Either way, the full Green’s function of a particular can then
be employed for calculating the physical properties of a system such as conductance
or DOS.

In the following subsection, we relate Green’s functions and DOS that captures the
system’s physical properties.

2.1.2 Density of states

As we mentioned above the Green’s function is related to the DOS [4], for complete-
ness we provide a derivation in this section. Eigenfunctions of Ĥ form a complete
set and denoted as φn(r). Both the eigenfunctions and the Green’s function satisfy
the same boundary conditions. In real space representation, we expand G(r,r′;z) in
terms of eigenfunctions as,

G(r,r′;z) =
∑
n

φn(r)φ∗n(r′)
z−λn

, (2.4)

where n represents a set of indices that may correspond to either discrete and/or
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continous values. Since the Hamiltonian is a Hermitian operator, its eigenvalues
denoted by λn are real. Moreover, λn 6= z if Im{z} 6= 0, which means the existing
imaginary part in z implies G(z) is a mesomorphic function in complex plane with
simple poles on the real axis [4]. If z = λ, where λ is part of the continuous spectrum
of a linear differential operator, Green’s function is not well defined due to the pole
in the integrand. To remedy that, we define G+ and G−, retarded and advanced
Green’s functions respectively, with z = E ± iε where ε is now the infinitesimal
imaginary part:

G±(r,r′;E) = lim
ε→0+

G(r,r′;E± iε). (2.5)

The difference between G± retarded and advanced Green’s functions are a set of
Dirac delta functions that peak at the eigenvalues of the operator Ĥ. They can also
be considered as outgoing and ingoing impulses.

We integrate the Green’s functions over the real-space:

lim
ε→0+

∫
drG(r,r;E± iε) = lim

ε→0+

∫
dr
∑
n

φn(r)φ∗n(r)
E−λn± iε

. (2.6)

Because φn(r)’s constitute a set of orthonormal function, the integral over the real-
space

∫
drφn(r)φ∗n(r) = 1. Then the equation above reduce to

lim
ε→0+

∫
drG(r,r;E± iε) = lim

ε→0+

∑
n

1
E−λn± iε

(2.7)

=±iπ
∑
n
δ(E−λn).

Thus we see that imaginary part of the retarded and advanced Green’s functions
are proportional to the density of states. We express the density of states in terms
of retarded or advanced Green’s functions:

ρ(E) =
∑
n
δ(E−λn) =∓ 1

π
lim
ε→0+

Im
{∫

drG(r,r;E± iε)
}
. (2.8)

We can compute the DOS of a system by using the equation 2.8, after finding
the correct Green’s function. More often than not, the critical task is to figure
out the entire Green’s function, including boundary corrections for a given system.
One can either directly solve the inhomogeneous equation by directly imposing the
boundary conditions or addressing the boundary conditions by using hypothetical
sources generated by the homogenous function, the free space Green’s function. For
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a system with a single source, the method of images would suffice. However, we
must employ multiple reflection expansion to capture numerous sources - multiple
reflections. The following section reviews the multiple reflection expansion method
for the Helmholtz equation.

2.2 Multiple reflection expansion of the Green’s function of the

Helmholtz equation

The study of the distribution of eigenvalues is a helpful tool to understand the
physics properties of a system in many areas of physics. Balian and Bloch treated
the problem of distribution of eigenfrequencies for the Helmholtz equation in their
remarkable papers beginning from 1970 [1]. They used a time-independent Green’s
function method amd developed a technique called multiple reflection expansion,
which is the main tool of this thesis. In the small wavelength limit compared to the
typical dimension of the system, distribution of eigenergies or density of states can
be calculated with this method.

The treatment of the Helmholtz equation begins by determining the Green’s function
of the system. The equation we consider is,

(∇2 +k2)Ψ = 0, (2.9)

where Ψ is the wave function, and k is the wavenumber.

First, we consider the free space Green’s function, sometimes called homogenous
solution of this equation. We identify ∇2 +k2 to be the linear differential operator,
and we refer it as L in this section. Thus the Green’s function of this operator solves
the equation (2.1). Green’s functions can be represented in terms of eigenfunctions
of the relevant operator as shown in equation (2.4). The eigenfunctions of this linear
differential operator, φn, are known to be plane waves. Using the aforementioned
orthonormal plane wave functions, we obtain the free space Green’s function by
changing sum to an integral in momentum space as

G0(r,r′;E+ iε) =
∫ d3k

(2π)3
e−ik·(r

′−r)

k2−E− iε
. (2.10)
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The integral can be carried out in the complex plane by the residue theorem, where
we evaluate the simple pole in the integrand. We thus find the homogenous Green’s
function of the Helmholtz equation in three dimensions:

G0(r,r′) = eik|r−r′|

4π|r− r′|
(2.11)

Note that square root of E+ iε with the positive imaginary part is denoted by k.
Now that we determine the free space Green’s function of the Helmholtz equation,
we move on to investigate the edge effects in the next section.

2.2.1 Parametrizing Green’s function

The free space Green’s function G0(r,r′;E), governs the particle dynamics in the
bulk of a system. However we must parametrize it to address the boundary effects.
The Green’s function satisfies the relation for the entire space.

(E− L̂)G0(r,r′;E) = δ(r− r′). (2.12)

However, in order to find the full Green’s function of a bounded region, we must
impose the boundary conditions for the system under question. We can approxi-
mately construct the full Green’s function from the free space Green’s function of
the system by method of images [5].

For a system with a flat boundary, we place an imaginary "charge" outside of the
physical boundary so that the "field" of both charges satisfies the correct boundary
conditions. Then the overall problem with boundaries is now expressed in terms
of as a sum of Green’s function with the initial and image charges. Essentially,
the added image charge enocdes the effect of the boundary conditions. To clarify,
let r′ be a point inside the boundary and its mirror image with respect to the
flat boundary r′image. Then the full Green’s function of the system satisfying the
boundary conditions given by:

G(r,r′) =G0(r,r′)±G1(r,r′image) (2.13)

We introduced the auxiliary Green’s function G1(r,r′image) as the correction term
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that imposes the boundary conditions to express full Green’s function G(r,r′).

However, the method of images fails to address possible multiple sources; it only
works for a singular source. Thus, we need to use a method to embody more than
one source. The next section introduces an idea borrowed from the potential theory
to capture the multiple sources as multiple reflections.

2.2.2 Correction to Green’s function due to multiple sources

As mentioned above, we must employ a different method to address multiple sources
for an inhomogeneous equation. To this end, we use a technique from potential
theory to incorporate the various sources to determine the full Green’s function of
a system. We express the multiple sources as a potential function in terms of an
unknown charge (or dipole) layer on the boundary [6]. In general, the correction
term G1 can be expressed as a double layer potential, as a result of a double layer
potential on the boundary:

G1 =
∫
∂V

dσα
∂G0(r,α)
∂nα

µ(α,r′), (2.14)

where µ is yet an unknown surface dipole density function, and the derivative of G0

is taken normal to the surface, and the integral is over the boundary points α. The
boundary integral expression with the unknown density function is the correction
due to "multiple sources". Together with the correction term, we express the full
Green’s function in terms of G0 as:

G(r,r′) =G0(r,r′)−
∫
∂V

dσα
∂G0(r,α)
∂nα

µ(α,r′). (2.15)

In this thesis, we reserve the Greek letters such as α for the points on the boundary.
The correction term is an integral only defined on the boundary. G0 is the Green’s
function given by the equation (2.11). We must first determine the unknown dipole
density function, and then we can obtain the expression for the total Green’s function
of the system.

The equation (2.15) is the starting point of derivation of multiple reflection expan-
sion. By applying the boundary conditions, we can find a self-consistent relation for
the dipole density function, generating the full Green’s function by iteratively re-
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placing the dipole density function µ with the obtained relation. In turn, we obtain
an integral series. In the next subsection, we show how we incorporate the boundary
conditions and find the relation for µ, thereby obtaining the expansion for the full
Green’s function.

2.2.3 Parameterization of the Green’s function in the presence of a

boundary

Until now, we managed to express the total Green’s function in terms of the free
space Green’s function and a double layer potential (a boundary integral with func-
tions including G0 and the unknown surface dipole density function µ given by the
equation (2.15)). We consider the Dirichlet boundary conditions for this problem,
that if r is a point on the boundary, that is r = β, the the Green’s function must
vanish.

We start by considering the case of a smooth boundary in three-dimensional space.
We take two points on the boundary surface; one is a fixed point that r approaches
to, which we call β. Moreover, another point on the surface α denote the integral
variable in the integral. The boundary conditions dictate that

lim
r→β

G(r,r′) =G0(β,r′) + lim
r→β

∫
dσα

∂G0(r,α)
∂nα

µ(α,r′) = 0. (2.16)

While the limit of the first term is easy to determine, the limit of the next term - the
boundary integral is cumbersome as the integrand is singular where the two points
on the boundary coincide, that is β = α, due to the short range singular nature of
G0. Therefore, we divide the integration region into two parts, one containing the
singularity, and the other being free of singularity.

The domain of Dδ consists of points α∈ ∂V , such that |β−α|< δ encompassing the
singular point β = α. The domain of D̄δ is the rest of the points on the boundary
where the integramd is not singular. After performing the integration, we can take
the limit δ→ 0.

The boundary integral in separated domains is

lim
r→β

∫
Dδ

dσα
∂G0(r,α)
∂nα

µ(α,r′) + lim
r→β

∫
D̄δ
dσα

∂G0(r,α)
∂nα

µ(α,r′). (2.17)

9



Assuming µ is a slow-changing function over the domain Dδ, we can take out of
the integral. The remaining part of the integrand produces the result 1

2 , then the
integral over the singular part is

lim
r→β

∫
Dδ

dσα
∂G0(r,α)
∂nα

µ(α,r′) = 1
2µ(β,r′). (2.18)

We evaluate the limit of non-singular part given in the equation (2.17), and then we
obtain the self-consistency relation for the unknown surface dipole density function:

1
2µ(β,r′) =−G0(β,r′)−

∫
∂V

dσα
∂G0(β,α)

∂nα
µ(α,r′). (2.19)

This equation for µ is nonsingular and uniquely define µ. This equation can be
solved by iteration if the surface is smooth enough.

2.2.4 Reflections from boundaries

We expressed the full Green’s function in terms of G0 and a boundary integral con-
sisting of ∂G0

∂nα and an unknown dipole density function µ. In addition, we obtained
the self-consistency relation for the unknown density function µ. We acquire an
integral series for the entire Green’s function G by combining two expressions. We
first obtain a solution for the self-consistency relation by iteration. This produces
an integral series for µ.

µ(α,r′) =−2G0(α,r′) + 22
∫
∂V

dσβ
∂G0(α,β)

∂nβ
G0(β,r′)

−23
∫
∂V

dσβ dσγ
∂G0(α,β)

∂nβ
∂G0(β,γ)

∂nγ
G0(γ,r′) + . . . . (2.20)

Each iteration produces a new term and extends the integral series, generating a
new reflection term. We stress that all the terms now only depend on the function
G0. Now, we substitute this expansion into the equation (2.15), to replace the term
µ in the boundary integral. As a result, we achieve an expansion where each term
represents the corrections as reflections from boundaries and obtain the full Green’s
function:
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G(r,r′) =G0(r,r′)−2
∫
∂V

dσα
∂G0(r,α)
∂nα

G0(α,r′)

+ 22
∫
∂V

dσα
∫
∂V

dσβ
∂G0(r,α)
∂nα

∂G0(α,β)
∂nβ

G0(β,r′)− . . . (2.21)

Each term in the expansion represents a fixed number of reflections from the edges.
Hence the sum is named as multiple reflection expansion. For example, the first
term, the free space Green’s function corresponds to the path between r and r′.
The second term signifies the path connecting r and r′ with α inbetween, the path
in total corresponds to one reflection off the boundary. The next term includes two
reflections from boundary and so on. Thus, we interpret the sum as all the quantum
paths from r to r′ with reflection points on α, β, γ and more.

We thus derive the full Green’s function G as an expansion including all possible
reflections from the edges. We stress that the expansion (2.21) for the full Green’s
function is convergent for ε > 0 and finite system. We can unearth the information it
contains, such as conductance using the Fisher-Lee relation or the density of states
using the relation is given in equation (2.8).

Balian and Bloch calculated the surface contributions to the density of states for the
Helmholtz equation in three dimensions by using the plane approximation, taking
two dimensional Fourier transform along the plane, assuming approximate transla-
tional invariance along the boundary. They also calculated the curvature contribu-
tion by other approximations [1].

In this chapter, we introduced the method of multiple reflection expansion by fol-
lowing Ref [1]. We reviewed the derivation of total Green’s function of Helmholtz
equation for smooth boundaries. We arrived at the expansion, which we identified
as a sum of quantum paths connecting two arbitrary points inside of the region r
and r′, with a fixed number of reflections off the boundary points α, β, γ.

In the next chapter, we will adopt the scheme to treat the chiral p-wave supercon-
ductor in two dimensions with a flat boundary to derive the expansion. We will also
use the expansion to calculate the edge corrections to the density of states.
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3 MULTIPLE REFLECTION EXPANSION FOR BOUNDED CHIRAL

P-WAVE SUPERCONDUCTORS

In the present chapter, we will extend the multiple reflection expansion method we
reviewed in the previous chapter to investigate gapless chiral Majorana modes of a
bounded p-wave superconductor in two dimensions. In particular, we calculatethe
edge corrections to the Green’s function, which in turn we use to calculate the edge
corrections to the density of states. The spectral function we obtain exhibits the sig-
natures of a Majorana mode, and thereby we demonstrate the presence of Majorana
modes in chiral p-wave superconductors analytically. Although it is well known that
this system hosts Majorana modes along the boundary, we derive analytic expression
for the exact Green’s function, which to our knowledge was not known.

In this chapter, we first focus on the chiral p-wave superconductors, a topologically
non-trivial phase that can host the aforementioned Majorana modes. We derive a
Green’s function method to examine its properties analytically. In other words, we
extend the multiple reflection expansion method for the chiral p-wave superconduc-
tors to determine the edge corrections to the DOS, thereby presenting the Majorana
edge modes stemming from the non-trivial topology of chiral p-wave superconduc-
tors.

We organize the present chapter in this order: In section 3.1, we first introduce the
chiral p-wave superconductors and emphasize the existence of one-dimensional edge
modes known as Majorana modes that arise due to the symmetries and dimension-
ality of the system. In section 3.2, we derive the multiple reflection expansion for
the Green’s function of a two-dimensional bounded chiral p-wave superconductor.
In section 3.3, for a flat boundary, we calculate the full edge contributions to the
Green’s function, thus obtaining the exact Green’s function. Additionally, we dis-
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cuss the result in the context of edge modes present in the two-dimensional p-wave
superconductors.

3.1 Chiral p-wave Superconductors

Topological p-wave superconductor is one of the topologically non-trivial phases of
matter, which are bulk quasiparticle insulators that are characterized by a bulk non-
zero topological number and host gapless edge states [7]. It is an unconventional type
of superconductor in which the Cooper pairs are in triplet pairing state [8]. As part
of the topological family, the bulk spectrum of a p-wave topological superconductor
also feature an energy gap and gapless Majorana edge states [9].

These edge modes are unique because they are unaffected by defects or disorders,
consequently are topologically protected and robust. Topological p-wave supercon-
ductor edge modes are chiral. This means that the edge modes allow motion in only
one direction hence there are no available states for backscattering. The direction
of the motion is opposite for opposite edges.

Chiral p-wave superconductors are part of symmetry class D [10]. From a theo-
retical standpoint, symmetry class D, that is, particle-hole symmetry present and
time-reversal symmetry broken, there exists Z classification for a one-dimensional
boundary in two dimensions that host gapless edge states [11]. Their Chern num-
ber, a topological invariant related to the presence of edge states in a system in a
way that the Chern invariant is equal to the difference between the number of right
moving and left moving modes, classifying Z suggests the existence of edge modes.
While the Chern number is a bulk property, due to bulk-boundary correspondence,
the nontrivial bulk topology leads to the topologically protected edge states at the
boundaries of the system [12].

Topological superconductors may host Majorana zero modes at the cores of vortices
in two dimensions [13, 14] and at the ends of superconducting quantum wires [15].
The Majorana zero modes have non-Abelian exchange statistics allowing them to
be a candidate for realizing topological quantum computation [16]. However, these
bound states are immobile, and their exchange cannot be demonstrated in real
space. There exist proposals addressing the immobility of bound states by utilizing
the chiral Majorana edge modes together with the aforementioned Majorana zero
modes that can work in real-space [17]. Thus the chiral Majorana edge modes are
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equally crucial for realizing topological quantum computers.

There are several material proposals for chiral p-wave superconductors. For example,
due to the spin-degenerate Fermi surface due to Ru, Sr2RuO4 is a candidate mate-
rial for realizing the p-wave superconductivity at low temperatures [18, 19], one of
the other proposals that resemble a chiral p-wave superconductor without breaking
time-reversal symmetry include a hybrid system where conventional superconduc-
tors with s-wave pairing are used to induce superconductivity on the surface of a
topological insulator by proximity effect [20]. In addition, there are many proposed
experiments for spotting the Majorana signatures in p-wave superconductors, such
as Josephson effects experiments [21], tunneling measurements [22], and interferom-
etry measurements [23]. Main focus in this work is analytical, we refer the reader
to Refs. [24, 7, 25, 26, 11] for further discussion in materials and experiments and
an extended review.

The quasiparticle dynamics in a chiral p-wave superconductor is governed by the
Hamiltonian:

Ĥ = ( p
2

2m −µ)σ3 + ∆p ·σ, (3.1)

where p = (px,py) is momentum, ∆ stands for the superconducting pairing potential,
µ stands for chemical potential, σ = (σx,σy,σz) are Pauli matrices acting in the
particle-hole space. The second term in equation (3.1) describes a p-wave type
pairing: the superconducting pairing ∆ is proportional to p. We can consider this
Hamiltonian to be a two-dimensional generalization of the Kitaev chain that has
a similar linear term in one dimension [15]. Moreover, this linear component of
the Hamiltonian breaks the time-reversal symmetry and leads to a non-zero Chern
number, thus leading to topologically non-trivial behavior [7].

The bulk energy spectrum of chiral superconductors is given by,

E =±
√

(k
2

2 −µ)2 + ∆2k2 (3.2)

note that we take h̄ = m = 1. The excitation spectrum is plotted in Fig. 3.1 for
µ = −1.5t, µ = 0, µ = 1.5t respectively, with ∆ = 0.5t, where t = h̄2

2ma2 , and we set
the typical unit length a to unity. We note that the bulk spectrum is gapped as
expected.

As the energy gap closes, we see that topological phase transition occurs at µ = 0.
We deduce from the plots that topological phase transition occurs when µ = 0 as
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(a) µ=−1.5t (b) µ= 0 (c) µ= 1.5t

Figure 3.1 Dispersion relation for different µ values, displaying the distinct topolog-
ical phases for ∆ = 0.5t

we see that the gap is closed. The band structures of µ > 0 and µ < 0 are gapped.
However, µ> 0 is a topologically non-trivial phase with gapless edge modes, whereas
there is no gapless edge mode when µ < 0 as we shall see in the next section.

In the next section, we derive the multiple reflection expansion for p-wave super-
conductors and calculate the edge corrections for a flat boundary that captures
non-trivial behavior and the Majorana edge mode and distinguishes between the
two distinct phases.

3.2 Multiple reflection expansion of the Green’s function of bounded

p-wave chiral superconductors

As demonstrated in Chapter 2, the multiple reflection expansion method is an effec-
tive tool to derive a full Green’s function of a system. The total Green’s function can
be viewed as a sum of all quantum processes involving reflections from the bound-
aries such that it captures the boundary information. It is an integral series whose
terms are related to the density of states. Thus the expansion provides a framework
to calculate the edge corrections to the DOS, a spectral function encompassing the
signatures of Majorana modes.

In this section, we calculate the full Green’s function by the multiple reflection
expansion method for a flat boundary in two dimensions. We follow the same recipe
reviewed in Chapter 2 in Ref [1]; however, the Hamiltonian is now that of a chiral
p-wave superconductor, and we focus on a smooth one-dimensional boundary of
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a two-dimensional system rather than the two-dimensional planar boundary of a
three-dimensional system.

In this section, we first begin with deriving the Green’s function given in momentum
space. Then, we parametrize the Green’s function near the boundary by using the
potential theory. Next, we obtain a self-consistent expression for the dipole density
function and obtain the expansion. We briefly discuss Weyl’s expansion and relate
its terms to Green’s functions. Finally, we work out a spectral function amounting
to the edge corrections to the density of states of chiral p-wave superconductors for
a smooth boundary in two dimensions. We present the plots of spectral functions
and discuss the features present in this system.

3.2.1 Green’s function of a chiral p-wave superconductor

We obtain the full Green’s function of a chiral p-wave superconductor by multiple
reflection expansion method. We first obtain the free space Green’s function. We
do this by first finding the Green’s function in momentum representation for the
Hamiltonian given by the equation (3.1). The Green’s function satisfies the relation:

(
Ĥ−Eσ0

)
G0(r,r′;E) = h̄2

2mδ(r− r′), (3.3)

where r and r′ are points in space, h̄ is the Planck’s constant and δ(r− r′) is the
Dirac delta function. Here we note that

(
Ĥ−Eσ0

)
is a 2×2 matrix valued operator,

consequently the free space Green’s function G0(r,r′;E) here is a 2×2 matrix valued
function where σ0 is the identity matrix. We first define k = p

h̄ , kα = m∆
h̄ , µ̄= 2mµ

h̄2 ,
Ē = 2mE

h̄2 and in line with the previous chapter, we express the Green’s function as
a formal inverse of the operator

(
Ĥ− Ēσ0

)
in momentum space:

G0(k; Ē) =
(
(k2− µ̄)σ3 +kαk ·σ− Ēσ0

)−1
. (3.4)

We now multiply both the denominator and the numerator by
(
Ēσ0 + Ĥ(k)

)
. Using

the method of partial fractions, we write the denominator in ters of familiar Green’s
functions of the scalar wave equation,
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G0(k; Ē) = Ēσ0 + 2kαk ·σ−2k2
ασ3

k2
+−k2

−
( 1
k2−k2

+
− 1
k2−k2

−
) + 1

2σ3( 1
k2−k2

+
+ 1
k2−k2

−
)

(3.5)

Where k2
± = µ− 2k2

α±
√

4k4
α−4µk2

α+ Ē2. We note that due to presence of Ē, k±
has opposite imaginary parts which leads to retarded and advanced scalar Green’s
functions respectively.

The Green’s function given by the equation (3.5) is represented in momentum space.
We evaluate the Fourier transformation in order to obtain the real-space Green’s
function. The real-space Green’s function can then be utilized to determine the
bulk density of states of a system. In this section, we focus on a bounded region.
In order to enforce the boundary conditions satisfied by the Green’s function, we
extend the multiple reflection expansion method and obtain an analytic expression
for the full Green’s function.

3.2.2 Parameterization of the p-wave superconductor Green’s function

We are interested in a system with a boundary, however the free space Green’s
function only reveals bulk information. We derive an analytic expression for Green’s
function of a chiral p-wave superconductor by multiple reflection expansion that
incorporates the edge effects as well.

We start by parametrizing the Green’s function near a boundary. We eco the same
steps in Chapter 2, and begin by defining an auxiliary Green’s function as a double
potential - a boundary integral by potential theory [6] with yet unknown dipole layer
density function µ(α,r′). Then we express the full Green’s function as a sum of free
space and auxiliary Green’s functions:

G(r,r′) =G0(r,r′)−
∫
∂S

dσα
∂G0(r,α)
∂nα

µ(α,r′) (3.6)

where the integral is over the boundary denoted by ∂S and α ∈ ∂S signifies a point
residing on the boundary. Note that, G, G0 and µ are all 2× 2 matrix-valued
functions. We parametrized G0 by the matrix function µ including the boundary
corrections with the same technique that was used by Balian and Bloch as well as
Adagideli and Goldbart [1, 3].
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Now, to parametrize we investigate the asymptotic behavior near the boundary. For
that, we first start by applying Dirichlet boundary conditions where the function
vanishing on the boundary. Thus, the full Green’s function is vanishing in the
asymptotic limit r goes to β,

lim
r→β

G(r,r′) =G0(β,r′) + lim
r→β

∫
dσα

∂G0(r,α)
∂nα

µ(α,r′) = 0. (3.7)

Again, the integral in the boundary integral is singular in this limit. Therefore, we
must evaluate the integral by separating the singular and non-singular parts in the
same fashion in Chapter 2, following Ref. [3].

We separate the domain of integration into two segments Dδ and D̄δ. The domain
of Dδ consists of points on the boundary of surface S α ∈ ∂S, such that |β−α|< δ

encompassing the singular point β = α. The domain of D̄δ is the rest of the points
on the boundary where the integral is not singular, D̄δ = ∂S/Dδ. After separating
the domain of integration, we can take the limit δ→ 0. Now, in this limit boundary
integral is equal to

lim
r→β

∫
Dδ

dσα
∂G0(r,α)
∂nα

µ(α,r′) + lim
r→β

∫
D̄δ
dσα

∂G0(r,α)
∂nα

µ(α,r′). (3.8)

Near the boundary where the distance |r− r′| tends to zero, we can use the limiting
expression for the Green’s function. We take the inverse Fourier transformation of
G0(k) and obtain the Green’s function in real-space representation. We find that
Fourier transformation of 1

k2−k2
±
is zeroth order Hankel function of the first kind with

spatial variables in two dimensions, that is ± i
4H
±
0 (k±|r− r′|) where Re{k±}> 0 [27].

Furthermore, in the limit where |r− r′| tends to 0, the asymptotic form of H±0 is
±2i
π ln(|r− r′|). In this limit, only the term proportional to σ3 contributes as

the other components cancel out. Finally, asymptotically G0(|r− r′|) become
1

2πσ3 ln(|r− r′|). Now we calculate the singular part while assuming that the un-
known density function is slowly changing over the range of δ as |δ| → 0 where α is
in very close proximity to β. We evaluate the singular part of the integral:

lim
r→β

∫
Dδ

dσα
∂G0(r,α)
∂nα

µ(α,r′) = 1
2σ3µ(β,r′). (3.9)

Finally, we determine the expression for the dipole density function after evaluating
the limit of the non-singular integral and arranging the terms in equation (3.7).
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1
2σ3µ(β,r′) =−G0(β,r′)−

∫
dσα

∂G0(β,α)
∂nα

µ(α,r′). (3.10)

This is an inhomogenous integral equation, we obtain the solution by iteration:

σ3µ(β,r′) =−2G0(β,r′) + (−2)2
∫

dσα
∂G0(β,α)

∂nα
σ3G0(α,r′) + . . . (3.11)

Then, we substitute the infinite series of integrals into (3.6). As a result, we generate
an integral series that consists of solely free-space Green’s function and its normal
derivative:

G(r,r′) =G0(r,r′)−2
∫
∂S

dσα
∂G0(r,α)
∂nα

σ3G0(α,r′)

+ 22
∫
∂S

dσαdσβ
∂G0(r,α)
∂nα

σ3
∂G0(α,β)

∂nβ
σ3G0(β,r′)− . . . (3.12)

As was the case in the previous Chapter, the full Green’s function derived by mul-
tiple reflection expansion method encapsulates the reflections from the edges. The
total Green’s function is interpreted as a sum of quantum paths from r to r′ with
reflections off of points on the boundary α, β, γ and so on. While the recipe and
the ideas behind both multiple reflection expansion are the same, the main differ-
ences between (2.21) and (3.12) is that latter has the Pauli matrix σ3 for every
reflection and the present free-space Green’s function is of that of a chiral p-wave
superconductor, which is a 2×2 matrix.

3.2.3 The edge corrections to the DOS

The Weyl expansion [28] is an expansion for the density of states in powers of λ
L

where λ is the de Broglie wavelength of the particle, and L is the linear size of the
system. The terms in Weyl expansion corresponds to different geometrical sizes. The
relation between the density of states and Green’s functions implies that the multiple
reflection expansion is closely related to the Weyl Expansion. The expansion is given
by:
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ρ(E) =
∑
n
ρn(E) (3.13)

The expression for the multiple reflection expansion consists of zero-reflection and
one reflection from the edge and more. The first term in the expansion G0(r,r′)
is the zero-reflection propagation of the quasiparticles. The first term ρ0(E) in the
Weyl expansion is the bulk term that depends on the system’s bulk volume, and it
is determined by the free space (or zero-reflection) Green’s function. There is a one-
to-one correspondence with Weyl expansion terms and multiple reflection expansion
terms for scalar wave equation. The density of states terms can be derived from the
multiple reflection expansion terms by the relation given in the (2.8).

Denoting the total contribution to the density of states byρ(E), we can single out
the boundary contributions to the density of states as:

δρ= ρ(E)−ρ0(E). (3.14)

Using the relation (2.8), the free-space Green’s function and the bulk density of
states ρ0(E) are related as well as the total density of states ρ(E) and the total
Green’s function are similarly related. Therefore, that leaves the edge contribution
to DOS information to the boundary integral, the correction term G1 described by
a double layer potential. If we substitute the full Green’s function given by the
equation (3.6) into the relation (2.8), we would get the total density of states given
in (3.13). If we substract the free space Green’s function part corresponding to the
bulk DOS, we acquire the boundary corrections to the DOS given in the equation
(3.14):

δρ(E) =− 1
π

Im
{

Tr
∫
∂S

dσα
∂G0(r,α;E+ iε)

∂nα
µ(α,r′;E+ iε)

}
. (3.15)

We note that we assume that energy has an infinitesimal imaginary part E→E+ iε

and trace now includes a sum over Pauli matrices as G0 and µ are 2× 2 matrices,
unlike the case in Chapter 2.

The equation (3.15) represents the boundary corrections to the density of states and
is central to this thesis. In the next section, we calculate this spectral function for
a chiral p-wave superconductor in two dimensions with a flat boundary.
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3.3 Calculation of edge corrections to the DOS of chiral p-wave

superconductors

In the previous section, we obtained the boundary contributions to the density of
states in equation (3.15). We now assume a flat boundary for the system in this
section. This assumption allows us to define partial Fourier transform along the flat
boundary. That is analogous to the plane approximation in Refs. [1, 2].

Partial Fourier transform is defined along the boundary assuming the boundary is
flat. For an arbitrary function f(k) the partial Fourier transform is defined as

f(kx,y−y′) =
∫ dky

2π e
iky(y−y′)f(k) (3.16)

We refer the reader to the appendix for details of partial Fourier transformation of
each expression.

For a flat boundary, we obtain the expression for the edge correction to the DOS:

δρkx(E) =− 1
π

Im

Tr
∫ ∞

0
dy ∂G0(kx,y′−y)

∂y′

∣∣∣∣∣
y′=yα

µ(kx,y−yα)

. (3.17)

Now, we will obtain the terms in the integrand given above. As opposed to obtain-
ing an integral series for the unknown density function µ by iteration, we determine
the exact expression for the dipole density function by taking the partial Fourier
transform of self-consistent relation given by the equation (3.10) and of the Green’s
function in momentum space provided by the equation (3.5), thus solving the equa-
tion exactly. We refer the readers to the Appendix for the details. We find the exact
expression of the dipole density function

µ(kx,y′) =−
1

2σ3 + ∂G0(kx,y)
∂y

∣∣∣∣∣
y=0

−1

G0(kx,y′). (3.18)

where we evaluate the derivative term on the boundary yα = yβ = 0.

We substitute this expression into the equation (3.17) to obtain:
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δρ(kx, Ē) = 1
π Im

{
Trσ

∫∞
0 dy ∂G0(kx,y)

∂y

(
1
2σ3 + ∂G0(kx,y)

∂yα

∣∣∣
y=0

)−1
G0(kx,y)

}
.

(3.19)

We refer the readers to the Appendix for the entire integrand.

This is the spectral function than contains the information about the boundary
effects on the density of states for a smooth (nearly flat) boundary.

The recipe for carrying out the calculation is straightforward. First, we determine
the free-space Green’s function G0 given in the equation (3.5) in mixed represen-
tation by the relation (3.16). Next, we determine the derivative of G0 in mixed
representation and we calculate ∂yG0(kx,y)|y=0. Finally, we substitute all the ex-
pressions into the equation (3.19). Then we carry out the trace over matrix Trσ and
evaluate y-integral. Imaginary part of the resulting expression multiplied by − 1

π is
the spectral function.

We find the exact formula for the edge corrections to the quasiparticle density of
states for a chiral p-wave superconductor by following the recipe above.

We take partial Fourier transform of equation (3.5). In mixed representation, the
free-space Green’s function is

G0(kx,y−y′) = Ēσ0 + 2kαkxσ1−2k2
ασ3

k2
+−k2

−
(g+−g−)

+ 1
2σ3 (g+ +g−)− 2ikασ2

k2
+−k2

−
(∂yg+−∂yg−) . (3.20)

where g± are

g± = e−a±|y−y
′|

2a±
and Re{a±}> 0. (3.21)

where a2
± = k2

x−k2
± and k2

± = µ−2k2
α±

√
4k4
α+ Ē2−4µk2

α. We refer the readers to
the Appendix for the details of the calculation. We now substitute the expression
for G0 into the equation (3.19), and we carry out the rest of the operations on
Mathematica © software [29]. We thus obtain the edge corrections to the density of
states δρ(kx,E) as a function of E and kx. We present the resulting density plot of
δρ(kx,E) in Fig 3.2.
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The system we work on exhibit particle-hole symmetry with broken time-reversal
symmetry, that amount to Z classification in two dimensions with Chern number
being 1. Considering the Chern number signals the number of gapless edge states
in a system, the expectation was to have precisely one chiral edge state, a Majorana
mode for µ > 0 and no edge state (Chern number zero) for µ < 0.

(a) µ=−0.5t (b) µ= 0.5t

Figure 3.2 Density plot of the spectral function displaying the chiral Majorana mode
in topologically non trivial phase µ > 0, and no modes in topologically trivial phase
µ < 0

The density plot of δρ(kx, Ē) exhibits the signatures of the topological nature of the
system with a chiral edge state when µ > 0. We observe the edge state crossing the
Fermi energy with a negative group velocity ( dE

dkx < 0), therefore we identify it as a
mode moving leftwards. Considering only allowed propagating direction along the
boundary is left, the edge mode is chiral. Consequently, the quasiparticles cannot
backscatter even in the presence of defects, as right propagation is not allowed.

Notice that the edge state is present only if µ > 0. That is because the system is in
the topologically non-trivial phase only if µ > 0. Moreover, as discussed in Chapter
2, due to the superconducting nature of this system, the edge state we present here
is, in fact, a Majorana mode.

To summarize, we demonstrated the existence of chiral Majorana modes for a
bounded chiral p-wave superconductor in two dimensions in an analytical fashion
by using multiple reflection expansion.
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4 CONCLUSION

In this thesis, we calculated the flat boundary corrections of the density of states for
a two-dimensional chiral p-wave superconductor. To this end, we used semiclassical
methods to derive a spectral function that displays the existence of chiral Majorana
edge modes. We used the method of multiple reflection expansion to calculate
the boundary corrections to the DOS of this system and showed the signatures
of Majorana modes with a novel technique. In the end, the analytical result we
obtained displayed the properties of the system, especially the edge states present
in the system due to its non-trivial topological nature.
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Appendix A

DERIVATION OF G0(kx,y)

The Green’s function satisfies the equation

(
Ĥ−E

)
G0(r,r;E) = h̄2

2mδ(r− r′), (A.1)

where the Hamiltonian descibes the quasiparticle dynamics for p-wave superconduc-
tors. It is given by

Ĥ = ( p
2

2m −µ)σ3 + ∆p ·σ. (A.2)

We insert the expression for the hamiltonian into the equation and multiply both
sides by 2m

h̄2 . Now the equation becomes:

[
2m
h̄2 ( p

2

2m −µ)σ3 + 2m∆
h̄2 p ·σ− 2mE

h̄2

]
G0(r,r′;E) = δ(r− r′). (A.3)

To make it concise, we make new algebraic definitions as follows k = p
h̄ , kα = m∆

h̄ ,
µ= 2mµ

h̄2 , Ē = 2mE
h̄2 .

The free space Green’s function in momentum space is the formal inverse of the
2×2 matrix (Ĥ(k)−E):

G0(k) =
(
(k2−µ)σ3 + 2kαk ·σ− Ē

)−1
. (A.4)

We multiply both the numerator and the denominator by
(
Ēσ0 + Ĥ(k)

)
, and ad-

ditionally we define the constants k2
± = µ− 2k2

α±
√

4k4
α+ Ē2−4µk2

α. Finally free
space Green’s function in k space becomes:

G0(k) = Ē+ 2kαkxσ1−2k2
ασ3

k2
+−k2

−

(
1

k2−k2
+
− 1
k2−k2

−

)

+ 1
2σ3

(
1

k2−k2
+

+ 1
k2−k2

−

)
+ 2kασ2
k2

+−k2
−

(
ky

k2−k2
+
− ky
k2−k2

−

)
. (A.5)

29



We now evaluate the partial Fourier transformation of G0(k):

G0(kx,y−y′) =
∫ dky

2π e
iky(y−y′)G0(k) (A.6)

We first define the functions a2
± = k2

x−k2
± and g±(k) = 1

k2+a2
±

which are present in
G0. We first take the partial Fourier transformations of g±:

g±(kx,y−y′) =
∞∫
−∞

dky
2π

eiky(y−y′)

k2
y +a2

±
= e−a±|y−y

′|

2a±
. (A.7)

Here note that we pick the branch cuts such that Re{a±}> 0. Keeping this in mind,
the whole expression becomes:

G0(kx,y−y′) = Ē+ 2kαkxσ1−2k2
ασ3

k2
+−k2

−
(g+−g−)

+ 1
2σ3 (g+ +g−)− 2ikασ2

k2
+−k2

−
(∂yg+−∂yg−) (A.8)

The normal derivative ∂yG0(kx,y) is determined by taking the y-derivative of the
above expression.

DERIVATION OF δρ(kx,E)

The main equation for the edge contributions in terms of kx are written as :

δρ=− 1
π
ImTr

[
G1(kx,Y ;E+ i0+)

]
(A.9)

Here G1 represents the boundary integral corresponding to edge corrections.

δρ=− 1
π Im

{
Trσ

[∫
dy
∫

dy′ δ(y−y′)
∫

dx
∫

dx′ δ(x−x′)
∫

dxα ∂G0(r,α)
∂yα

µ(α,r′)
]}

(A.10)

We write the δ(x−x′) explicitly as an integral in momentum space, and split its
representation eikx(x−x′) to express the functions in mixed form:
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δρ=− 1
π Im

{
Trσ

[∫
dy
∫

dy′ δ(y−y′)
∫

dx
∫

dx′
∫

dkx e−ikx(xα−x)e−ikx(x′−xα) ∫ dxα ∂G0(xα−x,yα−y)
∂yα

µ(x′−xα,y′−yα)
]}
(A.11)

These integrals can be interpreted as a partial Fourier transform convolution of two
functions. Thus, in mixed representation the equation becomes

δρ=− 1
π

Im

Trσ
[∫

length
dx
∫

dkx
∫

dy ∂G0(kx,yα−y)
∂yα

µ(kx,y−yα)
]
yα=0

 (A.12)

We take the length integral, and express ρ in terms of kx and E.

δρ(kx,E) =−|`|
π

Im

Trσ
[∫

dy ∂G0(kx,yα−y)
∂yα

µ(kx,y−yα)
]
yα=0

 (A.13)

Here we note that, we set the system length term to unity.

DERIVATION OF µ(kx,y)

We are required to find the expression for the unknown density function in mixed
representation. As mentioned, the boundary is smooth enough that we can take the
partial Fourier transform along the boundary. We start from the self consistency
relation that is defined on the boundary.

1
2σ3µ(β,r′) =−G0(β,r′)−

∫
∂S

dσα
∂G0(r,α)
∂nα

µ(α,r′). (A.14)

We take the partial Fourier transformation of both sides,

1
2σ3µ(kx,y′−yβ) =−G0(kx,y′−yβ)

−
∫

d(x′−xβ)e−ikx(x′−xβ)
∫

dxα
∂G0(xα−xβ,yα−yβ)

∂yα

∣∣∣∣∣
yα=yβ=0

µ(xα−x′,y′−yα)

(A.15)
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As mentioned α and β are points on boundary, therefore yα = yβ = 0. Note that,
this leads to the normal derivative of G0 getting evaluated at the boundary, we
simplify the variables to show clear presentation.

We separate e−ikx(x′−xβ) = e−ikx(x′−xα)e−ikx(xα−xβ), then we group the integrals as,

1
2σ3µ(kx,y′) =−G0(kx,y′)

−
∫

d(x′−xβ)e−ikx(xα−xβ) ∂G0(xα−xβ,y)
∂y

∣∣∣∣∣
y=0

∫
dxα e−ikx(x′−xα)µ(xα−x′,y′).

(A.16)

We identify the integral as a partial Fourier convolution of two functions. Finally,
in mixed representation we write the self consistency relation for µ exactly for a flat
boundary:

µ(kx,y′) =−
1

2σ3−
∂G0(kx,y)

∂y

∣∣∣∣∣
y=0

−1

G0(kx,y′). (A.17)

Finally this exact expression can replace the one in the relation for δρ.

THE CORRECTION GREEN’S FUNCTION

G1 =
(
Ē+ 2kαkxσ1−2k2

ασ3
k2

+−k2
−

(a+g+−a−g−) + 1
2σ3(a+g+ +a−g−)− 2ikασ2

k2
+−k2

−
(a2

+g+−a2
−g−)

)
(

1
2σ3 + ikα

k2
+−k2

−
(a+−a−)σ2

)−1

(
Ē+ 2kαkxσ1−2k2

ασ3
k2

+−k2
−

(g+−g−) + 1
2σ3(g+ +g−)− sgn(y) 2ikασ2

k2
+−k2

−
(g+−g−)

)
(A.18)

where g± is given by (A.7), a2
± = k2

x−k2
± and k2

± = µ−2k2
α±

√
4k4
α+ Ē2−4µk2

α.
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