
ON MAXIMUM LIKELIHOOD AND SAMPLE MOMENT
ESTIMATORS FOR THE MTH (CENTRAL) MOMENT IN A
NORMAL AND GENERALIZED GAMMA POPULATION

by
HADI ABBASZADEHPEIVASTI

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
December 2020



ON MAXIMUM LIKELIHOOD AND SAMPLE MOMENT
ESTIMATORS FOR THE MTH (CENTRAL) MOMENT IN A
NORMAL AND GENERALIZED GAMMA POPULATION

Approved by:

Date of Approval: 11/12/2020.



Hadi Abbaszadehpeivasti 2020 ©

All Rights Reserved



ABSTRACT

ON MAXIMUM LIKELIHOOD AND SAMPLE MOMENT ESTIMATORS FOR
THE MTH (CENTRAL) MOMENT IN A NORMAL AND GENERALIZED

GAMMA POPULATION

HADI ABBASZADEHPEIVASTI

Industrial Engineering M.Sc. THESIS, December 2020

Thesis Supervisor: Prof. Dr. J.B.G Frenk

Keywords: maximum likelihood, moment, central moment, normal distribution,
generalized gamma distribution, Pearson method

In this thesis, we consider the maximum likelihood and sample moment estimator of
the mth (central) moment for a normal and generalized gamma population. We also
propose using the method of moments approach new estimators for the parameters
of a generalized gamma population.
To introduce these maximum likelihood estimators for the mth (central) moments
in a generalized gamma population we first discuss the properties of the maximum
likelihood optimization problem formulated for this class and propose an efficient
algorithm to solve this optimization problem. As an application of this algorithm,
we show how it can be used for a given sample to estimate the maximum likelihood
estimator of the mth moment of a generalized gamma distributed random variable.
By means of simulation experiments, we compare in the computational section its
mean squared error with the mean squared error of the mth sample moment esti-
mator.
An alternative estimator of these parameters is also proposed by applying the
method of moment approach applied to the logarithmic transformation of a gen-
eralized gamma distributed random variable. Although the associated system of
nonlinear equations is for small sample sizes inconsistent with a high probability,
the system of nonlinear equations has a unique solution (if there is a solution) and
this unique solution is easy to determine. For larger sample sizes this probability
goes to zero and this is related to the accuracy of the sample moment estimator
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of the skewness of a generalized gamma population. Hence it is easy to determine
evaluating only the sample whether the system is inconsistent. These properties are
not proved for other proposals of moment estimators of the parameters of this class
which appeared in the literature.
Finally, we propose for any positive integer m a maximum likelihood-based estima-
tor of the mth (central) moment in a normal population and compare the behavior
of this estimator with the (classical) sample mth (central) moment estimator. In
particular, we give for every computable expression for the mean and the variance of
these different estimators for both the moment and the central moment estimation
problem. For the mth central moment estimation problem it is shown that in a
normal population one can compute a threshold value (independent of the unknown
parameters) of the sample size such that beyond this sample size the mean squared
error of the maximum likelihood-based estimator is smaller than the mean squared
error of the sample mth central moment estimator. At the same time, this shows
using the mean squared error objective that for sample sizes below a certain value
the nonparametric sample moment estimator outperforms the parametric maximum
likelihood-based estimator. Finally, in the computational section, we perform for
these two estimation problems some simulation experiments and give some rule of
thumbs for which sample sizes it is better to use the nonparametric moment esti-
mator.
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ÖZET

NORMAL VE GENELLEŞTIRILMIŞ BIR GAMMA POPÜLASYONUNDAKI
M’INCI (MERKEZI) MOMENT IÇIN MAKSIMUM OLABILIRLIK VE ÖRNEK

MOMENTI TAHMIN EDICISI ÜZERINE

HADI ABBASZADEHPEIVASTI

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, December 2020

Tez Danışmanı: Prof. Dr. J.B.G Frenk

Anahtar Kelimeler: maksimum olabilirlik, moment, merkezi moment, normal
dağılım, genelleştirilmiş gamma dağılımı, Pearson yöntemi

Bu tezde, normal ve genelleştirilmiş bir gamma popülasyonu için m’inci (merkezi)
momentin maksimum olasılığını ve örnek moment tahmin edicisini ele alıyoruz.
Ayrıca, genelleştirilmiş bir gamma popülasyonunun parametreleri için yeni tahmin
ediciler yaklaşımı yöntemini kullanmayı da öneriyoruz.
Genelleştirilmiş bir gamma popülasyonundaki mth (merkezi) anlar için bu maksi-
mum olasılık tahmin edicilerini tanıtmak için, ilk olarak bu sınıf için formüle edilen
maksimum olasılık optimizasyon probleminin özelliklerini tartışıyoruz ve bu opti-
mizasyon problemini çözmek için verimli bir algoritma öneriyoruz. Bu algoritmanın
bir uygulaması olarak, genelleştirilmiş bir gamma dağıtılmış rasgele değişkenin
m’inci momentinin maksimum olasılık tahmin edicisini tahmin etmek için belirli bir
örnek için nasıl kullanılabileceğini gösteriyoruz. Simülasyon deneyleri aracılığıyla,
hesaplama bölümünde ortalama kare hatası ile m’inci örnek moment tahmin edi-
cisinin ortalama kare hatası ile karşılaştırıyoruz.
Bu parametrelerin alternatif bir tahmincisi, genelleştirilmiş bir gamma dağıtılmış
rasgele değişkenin logaritmik dönüşümüne uygulanan moment yaklaşımı yöntemi-
nin uygulanmasıyla da önerilmektedir. İlişkili doğrusal olmayan denklem sistemi,
yüksek olasılıkla tutarsız küçük örnek boyutları için olmasına rağmen, doğrusal ol-
mayan denklem sisteminin benzersiz bir çözümü vardır (bir çözüm varsa) ve bu
benzersiz çözümün belirlenmesi kolaydır. Daha büyük örneklem boyutları için bu
olasılık sıfıra gider ve bu, genelleştirilmiş bir gamma popülasyonunun çarpıklığının
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örnek moment tahmin edicisinin doğruluğu ile ilgilidir. Bu nedenle, sistemin tutarsız
olup olmadığını yalnızca numuneyi değerlendirerek belirlemek kolaydır. Bu özellik-
ler, literatürde ortaya çıkan bu sınıfa ait parametrelerin moment tahmin edicilerinin
diğer önerileri için ispatlanmamıştır.
Son olarak, herhangi bir pozitif tam sayı için, normal bir popülasyonda m’inci
(merkezi) momentin maksimum olasılığa dayalı bir tahmin edicisini öneriyoruz ve
bu tahmin edicinin davranışını (klasik) örnek mth (merkezi) moment tahmin edi-
cisi ile karşılaştırıyoruz. Özellikle, hem moment hem de merkezi moment tahmin
problemi için bu farklı tahmin edicilerin ortalaması ve varyansı için her hesaplan-
abilir ifade veriyoruz. Mnci merkezi moment tahmin problemi için, normal bir
popülasyonda, örnek büyüklüğünün bir eşik değeri (bilinmeyen parametrelerden
bağımsız olarak) hesaplanabileceği ve bu örnek büyüklüğünün ötesinde, maksimum
olasılığa dayalı tahmin edicinin ortalama kare hatasının şu şekilde hesaplanabile-
ceği gösterilmiştir. orta moment tahmin edicisinin ortalama kare hatasından daha
küçük. Aynı zamanda, bu, belirli bir değerin altındaki örnek büyüklükleri için or-
talama kare hata hedefini kullanarak, parametrik olmayan örnek moment tahmin
edicisinin parametrik maksimum olasılığa dayalı tahmin ediciden daha iyi perfor-
mans gösterdiğini gösterir. Son olarak, hesaplama bölümünde, bu iki tahmin prob-
lemi için bazı simülasyon deneyleri gerçekleştiriyoruz ve hangi örnek boyutları için
parametrik olmayan moment tahmin ediciyi kullanmanın daha iyi olduğu bazı temel
kurallar veriyoruz.
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1. Introduction

In this thesis, we consider the properties of (central) moment estimators. We analyze
two different estimators for the (central) moment. The first one is the well-known
sample (central) moment estimator and the second one is the maximum likelihood
estimator (MLE). In the sample (central) moment estimator, we have no prior infor-
mation about parameters or the distribution of the sample and intend to calculate
the mth (central) moment without any knowledge about the data. However, In the
maximum likelihood estimator, we have some knowledge about the data including
the distribution which the sample comes from. Then, we use this data to estimate
the parameters of the distribution. Knowing the parameters of a distribution pro-
vides us with the opportunity to calculate the mth (central) moment analytically.
Since in most cases the exact values of the parameters are not known in advance,
we need to estimate them. One of the most important methods to estimate the
parameters is using the maximum likelihood estimator. In this thesis, we consider
this method to estimate the unknown parameters and substitute them in the ana-
lytical formula for mth (central) moment estimator, which we call this method as
maximum likelihood estimator. We will analyse these methods for two widely used
distributions including generalized gamma and normal distributions. Moreover, in
the generalized gamma case we benefit the properties of methods of moment to
estimate the parameters rather than using the maximum likelihood estimator.

In Chapter 2, we focus on the generalized gamma distribution. First, we provide a
specific algorithm to calculate the unknown parameters of the gamma distribution.
Next, we analyse the generalized gamma distribution when the parameter (α) is
known. We carefully utilize the properties of generalized gamma distribution and
develop an algorithm based on the MLE method to find an estimation for the un-
known parameters. For the generalized gamma distribution, we also consider the
case in which all of the parameters are unknown. Moreover, for this distribution,
we propose an algorithm to find the unknown parameters. For all of these cases, we
draw a comparison between the results of the sample (central) moment estimator
and the MLE by means of simulations.
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Since the maximum likelihood estimator does not always provide a decent estimation
for the parameters in generalized gamma case, in chapter 3, we use the methods of
moment and Pearson coefficient to calculate the parameters.

In Chapter 4, we consider normal distribution and develop an analytical formula to
calculate the mean, variance, and mean squared error (MSE) for sample (central)
moment estimator and MLE. Finally, we carry out a number of simulations and
compute the analytical formula for specific examples with the aim of comparing the
two previously mentioned estimators.
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2. On the maximum likelihood approach applied to a (generalized)

gamma population

2.1 Introduction.

The gamma function is introduced by the Swiss mathematician Leonhard Euler in
1738 in a paper on transcendental progression (cf.[1]). The related gamma distri-
bution became much later a popular distribution in statistics, probability theory
and stochastic processes. Next to the normal distribution it is probably the most
used distribution within statistics. To start our discussion of the literature on the
maximum likelihood approach applied to the (generalized) gamma distribution we
observe that in probability theory most likely the first author discussing the gamma
distribution (as a posterior distribution arising in a certain problem) is Laplace in
1812 (cf.[2]). In statistics Pearson (cf.[3]) was one of the first authors mentioning it
as an continuous approximation of the chi-square statistic used for tests in contin-
gency tables. For a more extensive survey on the gamma distribution in the history
of statistics one should consult [4]. Due to its flexibility and mathematical simplicity
it gained a lot of popularity over the years as a mathematical model to fit a sample of
continuous non-negative data. In fitting data to a parametric class of distributions
by means of the maximum likelihood principle one needs to solve for the parametric
class of gamma distributions a two parameter (scale and shape parameter) con-
tinuous maximization problem over the positive two-dimensional orthant. In most
textbooks on statistics (for example see [5]) one discusses the theoretical properties
of the maximum likelihood approach. As an example one mostly considers the max-
imum likelihood estimation problem for a normal population by setting the gradient
of the log likelihood function equal to zero. Due to its special form in the normal
case this set of equations has a unique closed form solution. In more computational
oriented books on statistics (see for example ([6] one refers to a numerical method

3



like a Newton or gradient type method to find a solution of this set of equations.
However, for a gamma population it is possible eliminate the scale parameter and
write it as a function of the shape parameter. This shows that the two parameter
system of two nonlinear equations can be written as a simple nonlinear function
of the shape parameter. Using this approach one reduces the two parameter opti-
mization problem to a one (shape) parameter optimization problem. Solving the
associated first order conditions satisfied by any optimal solution one then applies
a zero-root finding algorithm from numerical mathematics. Also tables are used to
determine a solution of this one dimensional nonlinear system (cf.[4]). In this paper
we analyze this optimization problem in more depth using global properties of the
digamma and related gamma-type functions. Next to verifying the uniqueness of
the optimal solution under certain general conditions we propose a very stable and
fast special purpose algorithm to solve this problem. In a recent paper (cf.[7]) one
also discusses the problem of fınding the parameters of a gamma distribution by
proposing a related set of nonlinear equations which have a closed form solution.
These equations are given by the set of stationary equations of the three parame-
ter generalized gamma distribution with the third parameter τ set equal to 1 (see
Definition 2.2.1). By setting τ = 1 a generalized gamma distribution reduces to a
gamma distribution.

To extend the flexibility of the gamma distribution (motivated by applications in
reliability theory) a more general three parameter class of distributions called the
generalized gamma distribution was proposed by Stacy (cf.[8]). Again applying the
principle of maximum likelihood to this class of distributions one need to solve a
three parameter optimization problem over the non-negative orthant.

Stacy and Mihram (cf.[9]) were among the first to discuss parameter estimation by
means of maximum likelihood of the parameters of a generalized gamma distribu-
tion. In this paper it is mentioned that a corresponding set of stationary equations
need to be considered without supplying any detailed analysis of these equations.
However, instead of focusing on the maximum likelihood approach the main focus of
this paper was on applying the method of moments principle based on the expecta-
tion of the logarithm of a generalized gamma distributed random variable to obtain
estimates of these parameters. Other examples of studies considering the maximum
likelihood estimation problem for a generalized gamma distribution (among related
topics) are [10] and [11]. In both papers the first order conditions of the associ-
ated loglikelihood function are worked out in more detail than done by Stacey and
Mihran and a general iterative procedure is applied to solve these equations. A
similar less detailed approach is followed by Harter (cf.[12]) covering both complete
and sensored samples for a generalized gamma distribution with an unknown shift.
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Considering the log-generalized gamma distribution and applying the log transfor-
mation to the given sample Prentice (cf.([13]) and Lawless (cf.[14]) analysed the
maximum likelihood estimation problem for a generalised gamma distribution by
means of the maximum likelihood estimation problem for a log generalized gamma
distribution. For the last distribution the first order conditions are written down
and in both papers different iterative procedures are used to solve the corresponding
system of nonlinear equations. Since for some setting of the parameters the previous
mentioned papers reported numerical difficulties Gomes et al [15] proposed in 2008 a
heuristic approach to solve approximately the maximum likelihood estimation prob-
lem for a generalized gamma distribution. Recently Ling (cf.[16]) discussed in a
specific application (one shot device testing under accelerated life test) the different
methods (Maximum likelihood estimation, least squares method) to estimate the
parameters of a generalized gamma distribution.

To conclude our introduction of the maximum likelihood approach for a general-
ized gamma population we mention that in most of the above papers also method
of moments estimators are proposed for the generalized gamma distribution. An
example of a paper only discussing these type of estimators is [17]. In general
method of moments estimators are much easier to implement but lack certain de-
sirable asymptotic statistical properties satisfied by estimators based on Maximum
likelihood estimation (cf.[18]). These estimators mostly serve as an alternative if
the Maximum likelihood estimation approach cannot be applied.

In this paper the main focus is on analyzing the properties of the maximum like-
lihood optimization problem for a (generalized gamma) population. The analysis
of of this optimization problem and its subcases is much more detailed as seen in
the literature and seems to be new making use of some properties of the so-called
digamma function. A byproduct of this analysis are the special purpose algorithms
to solve this problem for different subcases. Also we discuss an application in the
computational section comparing the mean squared errors of the mth sample mo-
ment estimator with the maximum likelihood type moment estimator of the mth
moment in such a population. An important reason to compare these mean squared
errors of both estimators is the following. As observed in the computational section
the optimal solution of the maximum likelihood optimization problem is not very
close to the value of the real parameters in a generalized gamma population. Due
to this relative big error the maximum likelihood estimator for the mth moment is
much more inaccurate as the estimates given by the mth sample moment estimator.
Due to the relative big error for small sample sizes of the maximum likelihood ap-
proach estimating the real parameters and the relative good performance of sample
moment estimators this suggests that for small sample sizes it might be advisable
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to use the method of moment approach of Pearson to estimate the unknown pa-
rameters instead oıf the maximum likelihood approach. This is also observed in
[17]. In Section 2 we will introduce the different estimators and analyse in detail the
maximum likelihood optimization problem associated with a (generalized) gamma
population starting with the gamma distribution and extending it to the generalized
gamma distribution.We also show how to use these algorithms to derive alternative
maximum likelihood estimators for the mth moment. Finally in Section 3 we will
report some simulation experiments comparing the efficiency of both estimators.

2.2 On the maximum likelihood and sample moment estimator for the

mth moment.

We first list the following well-known definition (cf.[18], [8]). Observe the nota-
tion X d= Y means that the random variables X and Y have the same cumulative
distribution function.

Definition 2.2.1. Let (Ω,F ,P) be a given probability space.

1.1 The nonnegative random variable X defined on this probability space has a
gamma distribution with scale parameter 1 and shape parameter α > 0 if the
density f of the random variable X is given by

f(x) = xα−1e−x

Γ(α) 1(0,∞)(x)

with
Γ(α) =

∫ ∞
0

xαe−xdx

the so-called gamma function. This is denoted by X ∼ G(α,1). The random
variable X has a gamma distribution with scale parameter β > 0 and shape
parameter α > 0 if X d= βY with Y ∼G(α,1).

1.2 A nonnegative random variable X has an inverse gamma distribution with
parameters α,β > 0 if X d= 1

Y with Y ∼G(α,β).

1.3 A nonnegative random variable X has a generalized gamma distribution with
parameters β > 0,α > 0, τ > 0 if

X d= βY
τ−1
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with Y ∼G(α,1). This is denoted by X∼GG(α,β,τ)

Clearly the family of generalized gamma distributions is closed under power trans-
formations and scaling and applying standard calculus its density function is given
by

(2.1) fX(x) = τxτα−1e−( xβ )τ

βταΓ(α) 1(0,∞)(x).

This class of density functions is studied in [8].The main reason to introduce this
generalization of the gamma distribution is to have more flexibility in modelling
life time data. Observe the Weibull distribution and lognormal distribution (being
a limiting case) are subfamilies of this class. Using Definition 2.2.1 it follows for
X∼GG(α,β,τ) that its mth moment µ′m(X) := E(Xm),m ∈ N is given by

(2.2) µ′m(X) = βmµ′m(Yτ−1
) = βmΓ(mτ−1 +α)

Γ(α) ,m ∈ N.

Applying the invariance principle of maximum likelihood estimators (cf [18], [5]) and
relation (2.2) a maximum likelihood estimator µ̂′m,M of the mth moment µ′m(X) of
a gamma distribution is given by

(2.3) µ̂′m,ML(X1, ...,Xn) = θ̂m1 Γ(m+ θ̂2)
Γ(θ̂2)

with θ̂1, θ̂2 the maximum likelihood estimators of the scale parameter θ1 = β > 0 and
shape parameter θ2 = α > 0. For the generalized gamma distribution this maximum
likelihood estimator µ̂′m,M is given by

(2.4) µ̂′m,ML(X1, ...,Xn) = θ̂m1 Γ(mθ̂−1
3 + θ̂2)

Γ(θ̂2)
,

with θ̂1, θ̂2 and θ̂3 the MLE estimators of the parameters θ1 = β,θ2 =α and θ3 = τ . To
apply these estimators we need a fast algorithm to compute the maximum likelihood
estimates of the parameters and so in the next subsection we will analyse in detail the
maximum likelihood optimization problem for a (generalised) gamma population.
Clearly an alternative estimator is to use the sample mth moment estimator µ̂′m
given by

(2.5) µ̂′m(X1, ...,Xn) = 1
n

∑n

i=1 Xm
i .

We will compare the efficiency of both estimators in the computational section.
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2.2.1 On the maximum likelihood optimization problem for a (general-

ized) gamma population.

In this subsection we will study the properties of the maximum likelihood optimiza-
tion problem for a (generalized) gamma population and start with the special case
of a a gamma population. Introducing for any function p : (0,∞)→ R the notation
p(x) := 1

n

∑n
i=1 p(xi) the loglikelihood function of a gamma population with unknown

parameters α,β > 0 and sample x = (x1, ...,xn)> 0 is given by

(2.6) LL(α,β;x) = n
(
(α−1)ln(x)−β−1x− ln(Γ(α))−α ln(β)

)
and applying the maximum likelihood principle we need to solve the maximum
likelihood optimization problem

(P1) υ(P1) = supα,β>0{LL(α,β;x)}.

Before discussing this optimization problem we introduce for any random sample
x > 0 the so-called Lτ -norm, 0< τ <∞ given by

(2.7) ‖ x ‖τ := (
∑n

i=1x
τ
i )

1
τ

and the maxnorm given by

‖ x ‖∞ = max{x1, ...,xn}.

Also we introduce the function G : (0,∞)→ R given by

(2.8) G(τ) := ln(xτ )− ln(xτ )

and the function K : (0,∞)→ R given by

(2.9) K(τ) := ln
(
‖‖ x ‖−1

∞ x ‖ττ
)
.

It is easy to check for every τ > 0

(2.10) G(τ) = τ(ln(‖ x ‖∞)− ln(x)) +K(τ)− ln(n).

The function G plays an important role in the maximum likelihood optimization
problems to be discussed and so we first derive its main properties.

Lemma 2.2.1. If the sample x = (x1, ...,xn) > 0 contains at least two different
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realisations, then

2.1 The function G : (0,∞)→R given by relation (2.8) is strictly convex, positive
and strictly increasing satisfying

(2.11) limτ↓0
G(τ)
τ2 = ln2(x)− ln(x)2

2 > 0

and

(2.12) limτ↑∞G(τ)− τ
(
ln(‖ x ‖∞)− ln(x)

)
= ln

(
| S |
n

)
< 0.

with S = {1≤ i≤ n : xi =‖ x ‖∞} and | S | denoting the the cardinality of the
set S. Its derivative G(1) satisfies

(2.13) G(1)(0+) = 0,G(1)(∞) = ln(‖ x ‖∞)− ln(x)> 0.

2.2 The function τ →G(τ)− τ
(
ln(‖ x ‖∞− ln(x)

)
is negative, strictly decreasing

and strictly convex.

Proof. Since the random sample x = (x1, ...,xn) > 0 contains at least two different
realisations it follows by the strict concavity of the logarithm that G(τ)> 0 for every
τ > 0. It is easy to check that the function G is twice continuously differentiable on
(0,∞) having first derivative

(2.14) G(1)(τ) =
∑n

i=1
xτi
‖ x ‖ττ

ln(xi)− ln(x)

and second derivative

(2.15) G(2)(τ) =
∑n

i=1
xτi
‖ x ‖ττ

(ln(xi))2−
(∑n

i=1
xτi
‖ x ‖ττ

ln(xi)
)2

= V ar(Xτ ).

Observe the random variable Xτ defined on some probability space (Ω,F ,P) has the
probability distribution function

(2.16) P(Xτ = ln(xi)) = xτi
‖ x ‖ττ

, i= 1, ...,n.

Since the sample x > 0 has at least two different realizations it follows using rela-
tion (2.14) and limτ↓0x

τ
i ‖ x ‖−ττ = 1

n that G(1)(0+) = 0. Also this condition implies
P(Xτ = E(Xτ )) < 1 and so by relation (2.15) G(2)(τ) > 0 for every τ. Hence by
Theorem A and Theorem C in Section 12 of [19] the function G is strictly convex
and strictly increasing. It is easy to verify that G(0+) = 0 and this implies G is
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also positive showing the first statement of this lemma. To verify relation (2.11) we
conclude from relation (2.15) that

(2.17) limτ↓0G
(2)(0+) = ln2(x)− ln(x)2

and relation (2.11) follows applying Taylors theorem and G(0+) =G(1)(0+) = 0. To
show relation (2.12) we observe with Sc the complement of the set S that

limτ↑∞ ‖‖ x ‖−1
∞ x ‖ττ = limτ↑∞

∑n
i=1(‖ x ‖−1

∞ xi)τ

= limτ↑∞
∑
i∈Sc(‖ x ‖−1

∞ xi)τ+ | S |

= | S |

and applying relations (2.9) and (2.10) we obtain relation (2.12). To check the
second part of relation (2.13) we observe for i ∈ S and using limτ↑∞ ‖ x ‖τ ↓‖ x ‖∞
(cf.[19]) that

(2.18) 0≤ limτ↑∞ ‖ x ‖−ττ xτi ≤ limτ↑∞ (‖ x ‖∞ xi)τ = 0.

Since ∑n
i=1 ‖ x ‖−ττ xτi = 1 this implies by (2.18) that limτ↑∞

∑
i∈S ‖ x ‖−ττ xτi = 1

and by relation (2.14)

(2.19) G(1)(∞) = limτ↑∞G
(1)(τ) = ln(‖ x ‖∞)− ln(x).

The proof of part 2 is obvious applying part 1 and relation (2.10) and we have
verified the lemma.

Since with probability 1 any sample of a gamma population has a unique maximum
we obtain from relation (2.12) with probability 1 over the space of all samples that

(2.20) limτ↑∞G(τ)− τG(1)(∞) =− ln(n)< 0.

One can now show the following result for the loglikelihood optimization problem
(P1) of a gamma population.

Lemma 2.2.2. If x = (x1, ...,xn)> 0 is a random sample from a gamma population
with unknown parameters α,β, then the maximum likelihood optimization problem
(P1) reduces to

(2.21) υ(P1) =−nln(x) +nsupα>0{H0(α)−αG(1)}

with the function H0 defined in relation (A.10) and the function G in relation (2.8)
10



.

Proof. By relation (2.6) we obtain for every α > 0
(2.22)
supβ>0{LL(α,β;x}=−nln(x) +n

(
αln(x)− ln(Γ(α) + supβ>0{−β−1x−α ln(β)}

)
.

Since for every α > 0 and x > 0

limβ↓0−β−1x−α ln(β) = limβ↑∞−β−1x−α ln(β) =−∞

it follows by standard arguments taking the derivative that the optimal solution of
the optimization problem supβ>0{−β−1x−α ln(β)} is given by βopt(α) = x

α and

supβ>0{−β−1x−α ln(β)}=−α ln(x) +α(ln(α)−1).

This shows by relations (2.8) and (2.22) that

supα,β>0{LL(α,β;x)}=−nln(x) +nsupα>0{H0(α)−αG(1)}

and we have verified the result.

To show that the optimization problem supα>0{H0(α)−αG(1)} has a unique opti-
mal solution and to determine this optimal solution we need the following result.

Lemma 2.2.3. If the sample x > 0 from a gamma population contains at least two
different realisations then supα>0{H0(α)−αG(1)} has an unique optimal solution
αopt(1) with αopt(τ) = h←0 (G(τ)) and h←0 the inverse function of the function h0

listed in relation (A.9).

Proof. We observe by Lemma A.0.6 in the Appendix A that H0 is a strictly decreas-
ing, continuous strictly concave function satisfying

(2.23) limα↓0H0(α)− ln(α) = 0

and

(2.24) limα↑∞H0(α)− 1
2 ln(α) + 1

2 ln(2π) = 0

Since the random sample x > 0 contains at least two different realisations this im-
plies by the first part of Lemma 2.2.1 that

limα↑∞H0(α)−αG(1) = limα↓0H0(α)−αG(1) =−∞.
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Hence the optimization problem supα>0{H0(α)−αG(1)} has a unique optimal so-
lution 0<αopt(1)<∞ and taking the derivative of the objective function we obtain
the desired result.

To solve the strictly concave maximization problem supα>0{H0(α)−αG(1)} in an
efficient way we observe for k ∈ N using relation (A.10) and Γ(k) = (k−1)! hat

H0(k) = k(ln(k)−1))− ln((k−1)!).

Introducing the first order difference operator given by

∆p(k) := p(k+ 1)−p(k),k ∈ N

we obtain for p(α) :=H0(α)−αG(1) that

(2.25) ∆p(k) = (k+ 1)ln
(

1 + 1
k

)
−1 + ln(x)− ln(x).

Since the function p is strictly concave this shows by a similar proof as in
Lemma 2.2.3 that an optimal solution of the related optimization problem
supk∈N,β>0LL(k,β;x) with the objective function listed in relation (2.6) is given
by (kopt,βopt(kopt) with

βopt(k) = x
k

and using relation (2.25)

kopt = min{k ∈ N : ∆p(k)≤ 0}

= min
{
k ∈ N : (1 + 1

k )k+1 ≤ e1+ln(x)−ln(x)
}

One can now show the following result for the optimization problem supα>0{H0(α)−
αG(1)}.

Lemma 2.2.4. The optimal solution of optimization problem supα>0{H0(α)−
αG(1)} is located in the interval (kopt−1,kopt+ 1].

Proof. Since by Lemma A.0.6 the function p(α) = H0(α)−αG(1) is differentiable
and strictly concave with a strictly decreasing derivative it follows by the supergra-
dient inequality for every k ∈ N that p(1)(k) ≥∆p(k) = p(k+ 1)−p(k). This shows
by the definition of kopt that

p(1)(kopt−1)≥∆p(kopt−1)> 0
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Also by the mean value theorem (cf.[20]) there exists some ζ ∈ (kopt,kopt+ 1) satis-
fying

0≥∆p(kopt) = p(kopt+ 1)−p(kopt) = p′(ζ)

and this shows using p is concave and hence p(1) decreasing that p(1)(kopt + 1) ≤
p(1)(ζ)≤ 0. Since p(1) is continuous and strictly decreasing and p(1)(αopt(1)) = 0 the
result follows.

By the above result we start our search for the unique optimal solution αopt(1) of
optimization problem supα>0{H0(α)−αG(1)} generated by a a sample consisting
of at least two different realisations (observe this event happens with probability 1)
at kopt. Recall from Lemma 2.2.3 we need to solve the nonlinear system

(S0) h0(α) =G(1)

with h0 defined in relation (A.9). Since by Lemma A.0.5 the function h0 is strictly
completely monotone and hence strictly decreasing and convex it follows that the
unique optimal solution h←0 (G(1)) of the system in (S0) can be found by the Newton
Raphson method (cf.[21],[22]) starting at kopt(x). Observe we may also solve the
nonlinear system

(S1) h1(α)−αG(1) = α(h0(α)−G(1)) = 0

and by Lemma A.0.4 the function α→ h1(α)−αG(1) is strictly convex. Since by
Lemma A.0.4 we know that 1

2 < h1(α) < 1 and h0(0+) =∞ we apply the New-
ton Raphson method for numerical stability to system (S1) in case kopt = 1 and
to system (S0) in case kopt > 1. Also it is possible to apply the bisection method
restricted to the interval (kopt− 1,kopt + 1] if we do not have a procedure to com-
pute the derivative of the function h0. In our computational experiments using
the Newton Raphson method we encountered for α close to zero some numerical
instabilities solving system (S0) due to h0(α) large. Since 1

2 < αh0(α) < 1 we did
not encounter these numerical instabilities solving the equivalent system (S1). To
identify beforehand a region containing the solution αopt(1) we observe by Lemma
A.0.4 that 1

2 < h1(α)< 1 for every α > 0 and this shows

(2αopt(1))−1 < h0(αopt(1))< αopt(1)−1.

Since h0(αopt(1)) =G(1) we conclude (2αopt(1))−1 <G(1)< αopt(1)−1 and this im-
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plies

(2.26) 1
2G(1) < αopt(1)< 1

G(1) .

By Lemmas 2.2.2, 2.2.3 and 2.2.4 the maximum likelihood optimization problem
for a gamma population with unknown parameters α,β is given by the following
algorithm.

Algorithm 2.2.1. Algorithm maximum likelihood for gamma population with un-
known α and β.

3.1 Compute kopt = min
{
k ∈ N : (1 + 1

k )k+1 ≤ e1+ln(x)−ln(x)
}

3.2 Start Newton Raphson method in kopt and for kopt = 1 find optimal solution
αopt(1) ∈ (0,2] of system

h1(α)−αG(1) = 0

Otherwise find optimal solution αopt(1) ∈ (kopt−1,kopt+ 1] of the system

h0(α)−G(1) = 0

3.3 Set θ̂2 = αopt(1)> 0, θ̂1 = xθ̂−1
2

To estimate the mth moment in a gamma population we apply the above algorithm
and use relation (2.3). In case we need to estimate the parameters α,β of an inverse
gamma distribution using maximum likelihood it is obvious from the definition of an
inverse gamma distribution that we replace the sample x by the sample ( 1

x1
, ...., 1

xn
)

in the definition of the function G and apply the above procedure.

We will now discuss in detail the maximum likelihood estimation problem for a
generalized gamma population. It follows by relation (2.1) that the loglikelihood
function of a sample of size n from a generalized gamma population is given by

(2.27) LL(α,β,τ ;x) = n
(
ln(τ) + (τα−1)ln(x)− ln(Γ(α)

)
−β−τ ‖ x ‖ττ −nτα ln(β)

The first optimization problem we discuss is for a generalized gamma population
with unknown β > 0, τ > 0 but known α > 0 and so we need to analyse the opti-
mization problem

(P2) υ(P2) = supβ>0,τ>0{LL(α,β,τ ;x)},

while the second is for a generalized gamma population with unknown β > 0, τ > 0
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and α > 0 given by

(P3) υ(P3) = supα>0,β>0,τ>0{LL(α,β,τ ;x)}.

Optimization problem (P2) can be used if we estimate the two unknown parameters
of a Weibull distribution. This corresponds to the case α = 1. In a similar way as
for optimization problem (P1) for a gamma population one can show the following
result for optimization problem (P2).

Lemma 2.2.5. If x = (x1, ...,xn) > 0 is a sample from a generalized gamma popu-
lation with α known, then

(2.28) υ(P2) = −nln(x) +nH0(α) +nsupτ>0{ln(τ)−αG(τ)}

with the functions G and H0 defined in relations (2.8), respectively (A.10).

Proof. It follows by relation (2.27) that

(2.29)
υ(P2) = supτ>0{supβ>0LL(α,β,τ ;x)}

= −nln(x) + supτ>0{n ln(τ) +nταln(x)−n ln(Γ(α)) +ϑ(α,τ)}

with

(P (α,τ)) ϑ(α,τ) := supβ>0{−β−τ ‖ x ‖ττ −nτα ln(β)}.

By standard techniques observing for any α,τ > 0 that

limβ↓0−β−τ ‖ x ‖ττ −nτα ln(β) =−∞, limβ↑∞−β−τ ‖ x ‖ττ −nτα ln(β) =−∞

and taking the derivative of the function β→ β−τ ‖ x ‖ττ −nτα ln(β) it follows that
the optimal solution βopt(α,τ) of optimization problem (P (α,τ)) is given by

βopt(α,τ)τ = ‖ x ‖ττ
nα

.

Substituting this optimal solution in optimization problem (P (α,τ)) we obtain

ϑ(α,τ) = nα(ln(nα)−1)−nτα ln(‖ x ‖τ ).

This shows using relation (2.29) that

(2.30) υ(P2) =−nln(x) +nsupτ>0{H0(α) + ln(τ)−αG(τ)}
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Applying relation (2.10) yields the desired result.

By Lemma 2.2.5 we need to solve the optimization problem supτ>0{ln(τ)−αG(τ)}.

Lemma 2.2.6. If the sample x > 0 from a (generalized) gamma population contains
at least two different realisations, then the optimization problem

supτ>0{ln(τ)−αG(τ)}

has an unique optimal solution τopt(α) given by τopt(α) = g←1 ( 1
α) with g←1 the inverse

function of the strictly increasing function g1 : (0,∞)→ (0,∞) given by

(2.31) g1(τ) = τG(1)(τ).

Proof. By Lemma 2.2.1 we may conclude for every α > 0 that the function τ →
ln(τ)−αG(τ) is strictly concave and

limτ↓0 ln(τ)−αG(τ) = limτ↑∞ ln(τ)−αG(τ) =−∞

for every α > 0. This shows the result using first order conditions and Lemma 2.2.1.

To solve the optimization problem supτ>0{ln(τ)−αG(τ)} in a computational fast
and efficient way we apply the same approach as used in the maximum likelihood
optimization problem for the gamma population. First we observe for k ∈ N that

G(k) = ln
(
xk
)
− ln(xk) = ln

( 1
n
‖x ‖kk

)
−kln(x)

and so

∆G(k) = ln
‖x ‖k+1

k+1
‖ x ‖kk

− ln(x).

This shows introducing p(τ) := ln(τ)−αG(τ) that

∆p(k) = ln
(
k+ 1
k

)
−α

ln
‖x ‖k+1

k+1
‖ x ‖kk

− ln(x)
 .

Since the function p is strictly concave an optimal solution kopt of the related opti-
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mization problem supk∈N{ln(k)−αg(k)} is given by

kopt = min{k ∈ N : ∆p(k)≤ 0}

= min
{
k ∈ N : ln

(
k+1
k

)
−α

(
ln
(
‖x‖k+1

k+1
‖x‖kk

)
− ln(x)

)
≤ 0

}

As in Lemma 2.2.4 one can show that the unique optimal solution of optimization
problem

supτ>0{ln(τ)−αG(τ)}

is contained in the interval (kopt(x)−1,kopt(x) + 1] and by the previous results the
algorithm to compute the MLE estimate for a generalized gamma population with
unknown β,τ > 0 and α known is given by the following special procedure.

Algorithm 2.2.2. Algorithm maximum likelihood for generalized gamma population
with α known.

4.1 Determine

kopt(x) = min

k ∈ N : ln
(
k+ 1
k

)
−α

ln
‖x ‖k+1

k+1
‖ x ‖kk

− ln(x)
≤ 0


4.2 Start bisection method in kopt restricted to the interval (kopt−1,kopt+1] to find

the unique solution τopt(α) of the equation

(2.32) g1(τ) = τG(1)(τ) = 1
α
.

4.3 set θ̂3 = τopt(α)> 0, θ̂1 =
‖x‖

θ̂3

(nα)θ̂
−1
3

To estimate the mth moment in a generalised gamma population with α known we
apply the above algorithm and use relation (2.4) with θ̂2 = α.

Before considering the maximum likelihood estimation problem for a generalised
gamma distribution with unknown parameters α,β and τ we need to analyse the
behaviour of the function α→ τopt(α) in the neighborhood of zero and infinity.

Lemma 2.2.7. The function α→ τopt(α) is strictly decreasing and differentiable
satisfying

(2.33) limα↑∞0ατ
2
opt(α) = 1

ln2(x)− ln(x)2
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and

(2.34) limα↓0ατopt(α) = 1
ln(‖ x ‖∞)− ln(x)

.

Proof. By Lemma 2.2.1 it follows that the derivative G(1) of the function G is strictly
increasing, nonnegative and differentiable and so the function g1(t) = tG(1)(t) is
strictly increasing, differentiable and nonnegative.This shows g←1 is strictly increas-
ing and differentiable and so τopt(α) = g←1 (α−1) is strictly decreasing and differen-
tiable. It is easy to check that

limt↑∞
g1(t)
t

=G(1)(∞) = ln(‖ x ‖∞)− ln(x)> 0

and
limt↓0

g1(t)
t

=G(2)(0+) = ln2(x)− ln(x)2
> 0.

This implies

(2.35) limu↑∞
g←1 (u)
u

= 1
ln(‖ x ‖∞)− ln(x)

, limu↓0
g←1 (u)

2√u
= 1

ln2(x)− ln(x)2 .

and this shows the results in relations (2.33) and (2.34).

We now analyse the maximum likelihood optimization problem for a generalized
gamma population with unknown parameters α,β and τ. For an overview on the
different sometimes heuristic procedures the reader is referred to [15]. We follow an
exact approach analyzing in detail the properties of this optimization problem. By
a similar proof as in Lemma 2.2.5 one can verify the following result.

Lemma 2.2.8. If x = (x1, ...,xn)> 0 is a random sample from a generalized gamma
population with α,β,τ unknown then

(2.36) υ(P3) = −nln(x) +nsupα>0,τ>0{H0(α) + ln(τ)−αG(τ)}

with the function H0 listed in relation (A.10) and the function G and K in relation
(2.8), respectively (2.9).

By Lemma 2.2.8 we obtain that the maximum likelihood optimization problem for
the generalized gamma distribution reduces to

(P4) υ(P4) = supα,τ>0 {H0(α) + ln(τ)−αG(τ)}
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and its optimal objective value satisfies

υ(P3) =−nln(x) +nυ(P4).

Before analysing this optimization problem in detail we will indicate that this prob-
lem might lack desirable concavity properties. It ıs shown in the computational
section by means of an example that this is indeed the case. Clearly by substituting
b= τ

α we obtain

supα>0,τ>0{H0(α) + ln(τ)−αG(τ)} = supb>0,α>0{H0(α) + ln( bα)−αG( bα)}

= supb>0,α>0{H0(α)− ln(α) + ln(b)−αG( bα)}

By the perspective property of convex functions (cf.[23]) and G convex it follows
that the function (α,b)→ αG( bα) is convex on R2

+. Also by relation (A.14) it follows
that

H0(α)− 1
2 ln(α) =−1

2 ln( 2√2π)− θ(α)

and by Lemma A.0.2 the function α→H0(α)− 1
2 ln(α) is concave. This shows that

(2.37) supb>0,α>0{H0(α)− ln(α)+ln(b)−αG( b
α

)}= supα>0{H0(α)− ln(α)+ψ(α)}

with

(2.38) ψ(α) = supb>0{ln(b)−αG( b
α

)}.

Since (α,β)→ ln(b)−αG( bα) is concave on R2
+ we obtain that ψ is concave and so

the above optimization problem

supα>0{H0(α)− ln(α) +ψ(α)}

consists of an objective function being the sum of the concave function α→H0(α)−
1
2 ln(α) +ψ(α) and the convex function α→−1

2 ln(α). Again by a bilevel approach
first optimizing over τ for fixed α it follows by Lemma 2.2.6 that

(2.39)

υ(P4) = supα>0 {H0(α) + supτ>0{ln(τ)−αG(τ)}}

= supα>0{H0(α) + ln(τopt(α))−αG(τopt(α))}

= supα>0 p(α)
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with the continuous objective function p : (0,∞)→ R given by

(2.40) p(α) :=H0(α) + ln(τopt(α))−αG(τopt(α))

Observe it is easy to show that the function α→ supτ>0{ln(τ)−αG(τ)} is decreasing
convex while H0 is increasing concave. In the next lemma we compute the value of
the objective function p at zero and infinity.

Lemma 2.2.9. The objective function p in relation (2.40) satisfies

(2.41) p(0+) =−1− ln
(
ln(‖ x ‖∞)− ln(x)

)
and

(2.42) p(∞) =−1
2 −

1
2 ln(2π)− 1

2 ln
(

ln2(x)− ln(x)2
)
.

Proof. By relation (A.11) and (A.12) we obtain

(2.43) p(0+) = limα↓0 p(α) = limα↓0 ln(ατopt(α))−αG(τopt(α))

and

(2.44)

p(∞) = limα↑∞ p(α)

= limα↑∞
1
2 ln(α)− 1

2 ln(2π) + ln(τopt(α))−αG(τopt(α))

= −1
2 ln(2π) + limα↑∞ ln( 2√ατopt(α))−αG(τopt(α))

Applying Lemma 10 we obtain

limα↓0 ln(ατopt(α)) =− ln
(
ln(‖ x ‖∞)− ln(x)

)
and

limα↓0αG(τopt(α) = limα↓0ατopt(α)G(τopt(α))
τopt(α) = 1

This shows by relation (2.43) that

p(0+) =− ln
(
ln(‖ x ‖∞)− ln(x)

)
−1.

Again by Lemma 10 we know that

limα↑∞ ln( 2√ατopt(α)) =−1
2 ln

(
ln2(x)− ln(x)2

)
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and
limα↑∞αG(τopt(α)) = lim

α↑∞
ατ2

opt(α)G(τopt(α))
τ2
opt(α) = 1

2 .

Hence by relation (2.43)

p(∞) =−1
2 ln(2π)− 1

2 −
1
2 ln

(
ln2(x)− ln(x)2

)

and we have verified the result.

We may also use an alternative approach by first optimizing over α for τ fixed and
then vary τ. This shows

υ(P4) = supτ>0{ln(τ) + supα>0 {H0(α)−αG(τ)}}

It is easy to verify that for every τ > 0 the unique optimal solution of supα>0{H0(α)−
αG(τ)} is given by

(2.45) αopt(τ) = h←0 (G(τ))

and this shows

supα>0,τ>0{H0(α) + ln(τ)−αG(τ))}= supτ>0{k(τ)}

with

(2.46) k(τ) = ln(τ) +H0(h←0 (G(τ)))−h←0 (G(τ))G(τ).

In the next lemma we will compute the value k(0+) and k(∞).

Lemma 2.2.10. The objective function k in relation (2.46) satisfies

(2.47) k(0+) =−1
2 −

1
2 ln(2π)− 1

2 ln
(

ln2(x)− ln(x)2
)

and

(2.48) k(∞) =−1− ln
(
ln(‖ x ‖∞)− ln(x)

)
.

Proof. We know by Lemma A.0.4 that limα↓0αh0(α) = 1 and limα↑∞αh0(α) = 1
2 .

This shows substituting α by h←0 (u) that

(2.49) limu↑∞h
←
0 (u)u= 1, limu↓0h

←
0 (u)u= 1

2 .
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By this observation we obtain using G(∞) =∞ and G(0+) = 0 that

(2.50) limτ↑∞h
←
0 (G(τ))G(τ) = 1, limτ↓0h

←
0 (G(τ))G(τ) = 1

2 .

By relation (2.46) to compute k(0+) and k(∞) we need to evaluate the behaviour
of the function

τ → ln(τ) +H0(h←0 (G(τ)))

at zero and infinity. By Lemma A.0.6 it follows using h←0 (G(∞)) = 0 that

limτ↑∞H0(h←0 (G(τ))− ln(h←0 (G(τ))G(τ)) + ln(G(τ)) = 0

and this implies by relation (2.50) that

limτ↑∞H0(h←0 (G(τ)) + ln(G(τ)) = 0

By this observation

k(∞) = −1 + limτ↑∞ ln(τ) +H0(h←0 (G(τ)))

= −1 + limτ↑∞ ln(τ)− ln(G(τ))

= −1− limτ↑∞ ln
(
G(τ)
τ

)
= −1− ln

(
ln(‖ x ‖∞)− ln(x)

)
and we have verified relation (2.48). Also by Lemma A.0.6

limτ↓0H0(h←0 (G(τ)))− 1
2 ln(h←0 (G(τ))G(τ)) + 1

2 ln(G(τ)) =−1
2 ln(2π)

and this shows applying relation (2.50)

limτ↓0H0(h←0 (G(τ))) + 1
2 ln(G(τ)) =−1

2 ln(2π)− 1
2 ln(2) =−1

2 ln(4π).

Hence we obtain using Lemma 2.2.1 and relation (2.46)
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k(0+) = −1
2 + limτ↓0 ln(τ) +H0(h←0 (G(τ))

= −1
2 −

1
2 ln(4π) + limτ↓0 ln(τ)− 1

2 ln(G(τ))

= −1
2 −

1
2 ln(4π)− 1

2 ln
(
G(τ)
τ2

)

= −1
2 −

1
2 ln(4π)− 1

2 ln
(

ln2(x)−ln(x)
2

2

)

= −1
2 −

1
2 ln(2π)− 1

2 ln
(

ln2(x)− ln(x)2
)

This verifies relation (2.47) and concludes the proof.

Observe by Lemma 2.2.9 and 2.2.10 that k(0+) = p(∞). Also with probability one
on the space of all samples k(0+) 6= k(∞). Since both functions k and p do lack
the concavity property as seen in Figure 2.3 (seems to be quasiconcave but this
conjecture could not be verified) we compute first the function values of the selected
function p or k on the finite lattice D = {h,2h,3h, ....,Mh} with mesh size h and
M <∞ to be determined by the algorithm. Thereafter we select that point on this
lattice D having the largest objective value. Based on Lemma 2.2.8 up to 2.2.10
the following (approximation) algorithm can be executed. Due to the first step
the generated outputs are approximations of the optimal solution. By selecting the
mesh size smaller these approximations become more and more accurate. In the
computational section h was given the value 0.05.

Algorithm 2.2.3. Approximation algorithm maximum likelihood for generalized
gamma population with all parameters unknown.

5.1 If p(0+)> p(+∞) go to step 2, otherwise go to step 3.

5.2 Select a step size h and compute on the grid mh, m ∈ N

p(mh) =H0(mh) + supτ>0{ln(τ)−mhG(τ)}

for m = 1, ...,M until p(Mh) is close to the finite value p(∞). Choose the
point m̂h having the maximum value of the function p on mh, m = 1, ...,M
and select (see Lemma 2.2.6)

τopt(m̂h) = argmaxτ>0{ln(τ)− m̂hG(τ)}
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and compute

(2.51) β̂ =
‖ x ‖τopt(m̂h)

(nm̂h)
1

τopt(m̂h)

.

Go to step 4.

5.3 Select a step size h and compute on the grid mh, m ∈ N the value

k(mh) = ln(mh) + supα>0{H0(α)−αG(mh)}

for m = 1, ...,M until k(Mh) is close to the finite value k(∞). Choose the
point m̂h having the maximum value of the function p on mh, m = 1, ...,M
and select

αopt(m̂h) = argmaxα>0{H0(α)−αG(m̂h)}

and compute

(2.52) β̂ = ‖ x ‖m̂h
(nαopt(m̂h))

1
m̂h

Go to step 5.

5.4 Output α̂ = k̂h, τ̂ = τopt(α̂), β̂

5.5 Output τ̂ = k̂h, α̂ = αopt(τ̂), β̂.

In the next section we will perform some numerical experiments.

2.3 Comparison of the maximum likelihood and sample moment

estimator for the mth moment of a (generalized) gamma
distribution.

In this computational section we present the computational results of the maximum
likelihood and sample moment estimator for the mth moment, m = 2,4,6,8 of a
gamma or generalized gamma population with α known and unknown. Knowing
the parameters for each of these distributions, we generate samples of size 10000,
1000, 100, and 10 and compute both the maximum likelihood estimator and sample
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moment estimator of these moments. To evaluate the maximum likelihood estima-
tor of the mth moment of a gamma distribution we apply algorithm 2.2.1 for the
computation of the maximum likelihood estimators of the unknown parameters α
and β and use relation (2.3). A similar approach is used for the generalised gamma
distribution applying Algorithm 2.2.2 or Algorithm 2.2.3 and relation (2.4) for a
generalized gamma distribution with either α known or unknown. The true mo-
ments for the (generalized) gamma distribution are obtained from relation (2.2). To
calculate the average estimated mean and the variance of these estimators 10000
simulation runs are executed and these values are shown in the tables under sample
mean and sample variance. To compare their relative efficiency the estimated mean
squared error (MSE) is also computed for both estimators and the ratio of these
estimates is reported in the same table under estimated MSE ratio. Notice that the
MSE-ratio is defined as the ratio of estimated MSE of the maximum likelihood and
sample moment estimator. It is well known that the MSE of any estimator θ̂ of θ is
given by (cf.[5]):

(2.53) MSE = Eθ(θ̂− θ)2 = V arθ(θ̂) + (Biasθθ̂)2,

and the bias of an estimator equals

(2.54) Biasθθ̂ = |Eθ(θ̂)− θ|.

Moreover, the code is written in Python 3 [24] and executed on a laptop having a
8.00 GB RAM, Intel(R) Core(TM) i5-8250U CPU and a 64-bit operating system.

2.3.1 Computational results for gamma distribution

In this subsection paper, we report the mth moment estimation with m ∈ {2,4,6,8}
for a gamma population having β = 1 and α ∈ {0.02,0.1,1,10}. Since β is a scale
parameter we set β in all four different scenarios equal to 1. Due to limited space
we only report the results in Table 2.1 for α = 0.1,β = 1. For these parameters the
true 8th, 6th, 4th, and 2nd moments are given by 648.50882, 14.97365, 0.71609, and
0.11000, respectively. As observed from Table 2.1 the MSE ratio of both estimators
shows that the maximum likelihood estimator is more efficient than the sample
moment estimator when the sample size exceeds 100. For small sample sizes, the
sample estimator should be preferred over the maximum likelihood estimator due
to its unbiasedness. The bias of the maximum likelihood estimator for a given
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sample size increases as m increases. However, for larger sample sizes, the bias
of the maximum likelihood estimator decreases (see Figure 2.1) and this improves
its performance compared to the sample moment estimator. This result is not
surprising since the maximum likelihood estimator is asymptotically a consistent
minimum variance estimator (cf.[18]). Although the mth sample moment estimator
is always unbiased, we also observe from Figure 2.1 as the value of m increases that
the histogram of this sample moment estimator becomes left skewed and its variance
with increasing m increases.

Maximum likelihood estimator Sample moment estimator MSE ratio biasMLEn sample mean sample var sample mean sample var
m=8 10000 667.9724 31898.993 631.8879 8238460.7361 0.0039 19.46359

1000 878.4645 682882.2006 867.3921 269831587.51 0.0027 229.9556
100 7418.0093 3117399725 491.4093 129160373.8 24.486 6769.50
10 32155360 8.226647e+17 427.4697 616300271.8 1336415772 32154712.39

m=6 10000 15.2084 9.1422 14.8258 441.2843 0.0208 0.23475
1000 17.6441 137.1051 16.1922 10940.0076 0.0132 2.67044
100 58.1131 39374.1718 13.1314 19424.8563 2.1224 43.13949
10 12452.2309 49969710691 11.3953 141608.3952 353932.8 12437.25

m=4 10000 0.7204 0.0089 0.7143 0.0619 0.1447 0.00430
1000 0.7655 0.1044 0.7217 0.8605 0.1242 0.04941
100 1.2579 3.9395 0.6863 4.8963 0.8644 0.54178
10 16.9307 18107.6158 0.6325 42.5427 431.7428 16.21456

m=2 10000 0.1101 0.0001 0.11 0.0001 0.7236 9.93212e-05
1000 0.1114 0.0005 0.1103 0.0007 0.7251 0.00135
100 0.1212 0.0063 0.11 0.0067 0.9549 0.01120
10 0.2069 0.2149 0.1096 0.0621 3.6121 0.09688

Table 2.1 Estimatedmth moment of the gamma distribution with parameters α= 0.1
and β = 1

We also observe for α= 0.02 in our more extensive experiments not reported in this
paper that increasing the value of m will deteriorate the efficiency of the maximum
likelihood estimator over the sample moment estimator if its efficiency is above 1
for m = 2. However, its efficiency will improve for m increasing if its efficiency is
already below 1 for the same value of m. The first event almost always occurs for
very small sample sizes (n= 10) and is less likely to happen for intermediate sample
sizes between 10 and 100. Also this behaviour is not shown as prominent for α much
larger. Increasing the sample size leads in general to a more accurate estimation by
the maximum likelihood estimator than the sample moment estimator. This means
for small sample sizes, our computational results suggest that the sample moment
estimator is more accurate than the maximum likelihood estimator especially for α
close to zero. The reason for this behavior is that the maximum likelihood estimates
of the parameters α and β are not accurate for small sample sizes (although the
algorithm gives the exact minimum of the log likelihood function). Due to these
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errors high errors occur in the used formula for the mth moment. For α > 1 and
small m, again this behaviour is less prominent. Sometimes even for small sample
sizes the maximum likelihood estimator is at least as accurate as the sample moment
estimator. This suggests that one should apply the following rule of thumb. The
maximum likelihood estimator is always to be preferred above the sample moment
estimator unless α is small and the sample size is not large enough (n= 10). If the
sample size is much larger in all cases the maximum likelihood estimator due to a
better estimate of the parameters should be used. This behaviour is not surprising
due to the asymptotic theoretical properties of the MLE approach.

Figure 2.1 Histogram of the maximum likelihood andmth sample moment estimator
of the gamma distribution with parameters α = 0.1 and β = 1.

2.3.2 Computational results for generalized gamma distribution with

known parameter α.

In this subsection we report the simulation results for a (generalized) gamma popu-
lation with α known and β and τ to be estimated. We list in Table 2.2 the different
executed scenarios. Again due to the limited space we only list extensively for α= 1,
β = 1, and τ = 0.5 the results in Table 2.3 and Figure 2.2. For this scenario the true
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8th, 6th, 4th and 2nd moment equal 20922789888000.0, 479001600.0, 40320.0, and
24.0, respectively. Also the average time for calculating the parameters is equal to
1.6685 seconds when the sample size is equal to 10000.

(α, τ) (0.1, 10) (1, 0.5) (1, 1) (1, 10) (10, 0.5) (10, 10)

Table 2.2 Different setting of the parameters α and τ for generalized gamma distri-
bution with known parameter α used in experiments when β equals to 1

As for the gamma population discussed extensively in the previous subsection we
observe for all scenarios a similar behavior.

maximum likelihood estimator Sample moment estimator MSE ratio biasMLEn sample mean sample var sample mean sample var
m=8 10000 22030491658671 6.0090e+25 20106226954895 2.5978e+29 0.0002 1107701770671

1000 36061034635909 2.4887e+27 77517931006121 2.3795e+31 0.0001 15138244747909
100 3024289070593550 3.0861e+33 438545230024213 1.8913e+33 1.6363 3003366280704969
10 1.1362e+29 9.2181e+610 3247979131631 5.6891e+28 1.6116e+33 1.1362e+29

m=6 10000 490011352.0 1.3386e+16 490016661.4 1.6554e+19 0.0008 11009752.09
1000 614072657 2.5940e+17 912514522 1.2579e+21 0.0002 135071057.34
100 4980302454 1.2167e+21 3263866801 9.0706e+22 0.0136 4501300854.32
10 1.2454e+18 9.6436e+39 237098447 1.2156e+20 7.9305e+19 1.2454e+18

m=4 10000 40589.0787 30224526.4241 40324.8978 2017630473.8430 0.015 269.0787
1000 43602.2389 375064734.7530 43542.1869 77580539806.7348 0.005 3282.2389
100 83618.1503 29949625135.4838 55619.1795 4386939099014.7607 0.0073 43298.15
10 324454530 2.1430e+20 33742.8817 323869172827 661930276 324414210

m=2 10000 24.0124 1.5969 23.9761 4.0955 0.3899 0.0124
1000 24.2101 16.4689 24.0103 43.4332 0.3802 0.2101
100 25.9637 205.6182 23.6245 551.2352 0.3799 1.9637
10 63.6485 81460.3836 22.9583 3278.3600 25.319 39.6485

Table 2.3 Estimated mth moment of a Weibull or generalized gamma distribution
(with known α = 1) and parameters β = 1, τ = 0.5.

Due to the same theoretical considerations as for the gamma distribution we may
conclude as a rule of thumb it is preferable to use the maximum likelihood estimator
instead of the sample estimator in case the sample size is reasonable large and the
known α is not very close to zero. In case α is close to zero then we should only use
the maximum likelihood estimator for a reasonable large sample size.
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Figure 2.2 Histogram of the maximum likelihood andmth sample moment estimator
of a Weibull or generalized gamma (with known α= 1) distribution with parameters
τ = 0.5 and β = 1.

2.3.3 Computational resuls for generalized gamma distribution with all

parameters unknown.

In this subsection we report the simulation results for a (generalized) gamma pop-
ulation with all parameters unknown. We list in Table 2.4 the different considered
scenarios.

(α, τ) (0.1, 5) (0.5, 0.5) (1, 1) (1, 10) (10, 1) (10, 10)

Table 2.4 Different setting of the parameters, α and τ , for generalized gamma dis-
tribution with all parameters unknown used in experiments when β equals to 1

Again due to limited space we only discuss extensively for α = 1, β = 1, and τ = 1
the results in Table 2.5 and Figure 2.4. For this scenario the true 8th, 6th, 4th and
2nd moment equal 40320.0, 720.0, 24.0, and 2.0, respectively. Also the average time
for calculating the parameters is equal to 2.3261 seconds for a sample size of 10000

29



and the mesh size of the lattice in Algorithm 2.2.3 is h= 0.05.

MLE sample mean estimator MSE ratio biasMLEn sample mean sample var sample mean sample var
m=8 10000 41253.4287 89647435.8654 40324.8978 2017630473.8430 0.0449 933.4287

1000 51019.207 1743247911.32 43542.1869 77580539806 0.0239 10699.20
100 253609419.5095 3.3624e+20 55653.9109 4390449749970 76596405 253569099

m=6 10000 725.58185 10048.1709 718.5998 49798.4325 0.2024 5.5818
1000 783.4919 121615.6538 727.9244 917862.1643 0.1369 63.4919
100 5800.6937 34811103063 733.1264 32757859 1063.46 5080.69

m=4 10000 24.0328 2.6556 23.9761 4.0955 0.6486 0.0328
1000 24.4489 26.5143 24.0103 43.4332 0.6151 0.4489
100 29.8940 1356.9375 23.6294 551.5836 2.5224 5.8940

m=2 10000 1.9999 0.0020 1.9997 0.002 1.006 4.6025e-05
1000 2.0012 0.0199 1.9994 0.0200 0.9944 0.0012
100 2.0140 0.2064 1.9916 0.1955 1.056 0.0140

Table 2.5 Estimated mth moment of a generalised gamma distribution with param-
eters α = 1, β = 1, and τ = 1.

Our algorithm 2.2.3 terminated in all instances and returned a solution of the two
dimensional optimization problem (P4). To compare the performance of our algo-
rithm we also used a general optimization package. The often used Python package
scipy.com implementing the Cobyla method (cf.[25]) in some scenario did not ter-
minate and if this package returned a solution the solution proposed by Algorithm
2.2.3 was much more accurate. However, if the sample size equals 10, Algorithm
2.2.3 returned solutions far away from the real parameter values and so big differ-
ences occur between the true mth moment and the estimated mth moment. This is
most likely due to the poor quality of the maximum likelihood estimator for small
samples and so we decided to report only in Table 2.5 the results for sample sizes
of at least 100. For the chosen m values even for sample of size 100 the sample
moment estimator is to be preferred above the maximum likelihood estimator of
the mth moment. As for the previous considered subcases we also observe that for
larger sample sizes much more accurate estimates of the unknown parameters occur
and hence we obtain much more accurate estimates of the mth moment. As can
be seen from Figure 2.3 the functions p and k are not concave. However, since the
asymptotic behaviour of the function p and k are known one can still find an optimal
solution and not a local optimal solution.
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Figure 2.3 Behaviour of function p and k for τ = 1, α = 1, and β = 1 and sample
size is 100.

Increasing the parameter m and the sample size we observe that the maximum
likelihood estimator performs better than the sample moment estimator (see Table
2.5). Also, similar like in the previous discussed cases, the histogram of the sample
moment estimator tends to be left skewed and this effect becomes bigger as m
increases (see Figure 2.4). On the other hand, for a small sample size and larger
values of m the sample moment estimator has a better performance rather than the
maximum likelihood estimator (see Table 2.5).

Figure 2.4 Histogram of the maximum likelihood andmth sample moment estimator
of a generalised gamma distribution with parameters τ = 1, α = 1, and β = 1.
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Due to similar theoretical considerations as for the previous subcases we may con-
clude as a rule of thumb it is preferable to use the maximum likelihood estimator
instead of the sample moment estimator if the sample size is reasonable large and
both α and τ are not very close to zero or τ is close to zero and α is not large at
the same time.

2.4 Conclusion

In this paper we discuss in detail the properties of the maximum likelihood opti-
mization problem for a (generalized) gamma population. We started analyzing this
optimization problem for a gamma population. Based on some global properties of
the digamma function we reduced it to a one dimensional strictly concave maximiza-
tion problem and proposed a special purpose algorithm. After that we considered
this problem for a generalized gamma population with parameter α known. Based
again on global properties of the digamma function this optimization problem is
reduced to a one dimensional strictly concave maximization problem and we pro-
posed an easy special purpose algorithm. A special case of this problem is given
by the maximum likelihood estimation problem for a Weibull population. Finally
the maximum likelihood optimization problem for a generalized gamma population
with all three parameters unknown is analyzed and we propose a special purpose
algorithm to solve this case. Unfortunately this optimization problem is not a con-
cave maximization problem. To test the performance of this algorithm we compared
the behaviour of a standard maximum likelihood estimator of the mth moment in a
(generalized) gamma population against the behaviour of the mth sample moment
estimator. From our simulation experiments we identified under which conditions
the maximum likelihood estimator is to be preferred above the mth sample mo-
ment estimator. As to be expected for a sample size relatively large the maximum
likelihood estimator has a lower mean square error then the mth sample moment
estimator. Only for relatively small sample sizes the mth sample moment estimator
should be used. We also plotted the histogram of these different estimators for dif-
ferent scenarios. We may also conclude from our simulation results that for small
sample sizes the maximum likelihood approach is not that accurate in estimating the
unknown parameters of the distribution. Since the mth sample moment estimator
is to be preferred for small sample sizes to estimate the mth moment this suggest
for small sample sizes it might be a good strategy to use the method of moment
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approach of Pearson in stead of the maximum likelihood approach to estimate the
unknown parameters of a (generalized) gamma population.
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3. On the method of moments approach for a generalized gamma

population

3.1 Introduction.

One of the oldest point estimating methods dating back to Pearson (cf.[26]) is to
estimate unknown parameters of a cumulative distribution function by the so-called
method of moments approach replacing the unknown moments by sample moments
arising from a population sample. The original method of moments approach in
probability theory used to determine the underlying cdf (in this case the normal
distribution) is to identify all integer moments of a random variable and use this
information to determine the cdf of this random variable. This approach was used
in the proof of the central limit theorem by Pafnuty Chebyshev in 1887 (cf.[27]).
Before discussing the related method of moments approach in parametric statistics
we introduce the following notation. For any random variable X1 on some given
probability space (Ω,F ,P) we denote by µ′m(X1), m ∈ N the mth moment of the
random variable X1 given by

(3.1) µ′m(X1) = E(Xm
1 ),

and by µm(X1) the mth central moment given by

(3.2) µm(X1) := µ′m(X1−E(X1))

If m = 2 the 2nd central moment (mostly denoted by σ2(X1)) is also called the
variance of the random variable X1. Its positive root σ(X1) := 2

√
σ2(X1) is known

as the standard deviation of X1. In parametric statistics the main problem is to
identify using a so-called realisation of a random sample X = (X1, ...,Xn), consisting
of independent and identically distributed random variables, from which cumulative
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distribution function Fθ0 belonging to a set of cumulative distributions functions
(Fθ)θ∈Θ with θ = (θ1, ..., θm) ∈Θ, m ∈N and Θ a given set (the so-called parameter
space) this sample is generated. The kth moment µ′k(X1),k ∈ N,k ≤m is clearly a
function of this unknown cdf Fθ0 , θ0 = (θ01, ..., θ0m) ∈Θ and so we know

(3.3) µ′k(X1) = fk(θ01, ..., θ0m),k = 1, ...,m.

Since in statistics the value µ′k(X1),k = 1, ...,m is not known (the problem is to
select a candidate cdf from this parametric family) the information contained in the
sample is used to identify the unknown cdf Fθ0 . As proposed by Pearson we replace
the true unknown kth moments by their sample kth moment estimators. Remember
the sample kth moment estimator µ̂′k(X),k ∈ N is given by

µ̂′k(X) := 1
n

∑n

i=1 Xk
i

Related is the sample kth central moment estimator µ̂k(X),k ∈ N given by

µ̂k(X) = 1
n

∑n

i=1(Xi− µ̂′1(X))k

A realisation of the sample moment estimator is denoted by µ̂′k(X), respectively
µ̂k(X) with X = (x1, ...,xn) a realized sample. Justified by the asymptotic consis-
tency of these sample moment estimators one should (if possible) identify now a
hopefully unique solution of the system of nonlinear equations

(3.4) µ̂′k(X) = fk(θ01, ..., θ0m),k = 1, ...,m,θ0 = (θ01, ..., θ0m) ∈Θ

and use this (unique) solution as an estimate of the unknown vector θ0. In general
it can happen that this system is inconsistent or has multiple solutions. In the next
section we will apply this procedure to the parametric family of generalized gamma
distributions and give a detailed analysis of how to solve the above system. Contrary
to other proposals of method of moment estimators ([17] for a generalized gamma
population we will propose a method of moment estimator of the generalized gamma
distribution for which we can easily identify for which values of the estimator the
system in relation (3.4) has a solution and in this holds the solution is unique. This
estimator is not as accurate as the maximum likelihood estimator and might serve
as a quick approximation of the unknown parameters. Analysing the corresponding
system of equations we also propose for this estimator an approximate analytical
solution of the system.
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3.2 The method of moments approach for a (generalized) gamma

population.

In this section we start with the following general observation about the method of
moments approach. The next result shows that one can replace the original set of
nonlinear equations by a sometimes simpler set of of nonlinear equations. To this
simpler set of equations one can then apply an easier algorithm to find its solution
(if it exists).

Lemma 3.2.1. For any sample X = (x1, ...,xn) the set of solutions of the system

µ̂′k(X) = µ′k(X1),k = 1, ..,m

equals the set of solutions of the system

µ̂′1(X) =µ′1(X1), µ̂k(X) = µk(X1),k = 2, ...,m

Proof. In the method of moments approach one need to find for a given sample
X = (x1, ...,xn) a solution of the following system of equations (nonlinear in its
parameters)

(3.5) µ̂′k(X) = µ′k(X1) = fk(θ01, ..., θ0m),k = 1, ...,m

Clearly for for any solution of this system it follows for any j ≤m that

(3.6)

µ̂j(X) = 1
n

∑n
i=1(xi− µ̂′1(X))j

= 1
n

∑n
i=1

∑j
k=0

(
j
k

)
(−1)j−kxji µ̂′1(X)j−k

= ∑j
k=0

(
j
k

)
(−1)j−kµ̂′j(X)µ̂′1(X)j−k

= ∑j
k=0

(
j
k

)
(−1)j−kµ′j(X1)µ′1(X1)j−k

= E
(∑j

k=0
(
j
k

)
(−1)j−kXj

1µ
′
1(X)j−k

)
= E((X1−µ′1(X))j)

= µj(X1)

Since central moments determine uniquely moments and vice versa this shows for
j = 2 that the set of solutions of the system µ̂′k(X) = µ′k(X1),k = 1, ...,m equals the
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set of solutions of the system

µ̂2(X) = µ2(X1), µ̂′k(X) = µ′k(X1),k = 1, ...,m,k 6= 2

By iterating over the index set j we obtain the desired result.

If a sample is generated from a population having a cdf Fθ, θ = (a,b) ∈R×R+ given
by

Fθ(x) = F
(
x−a
b

)
and the cumulative distribution F is known it is easy to see that this is the same as

(3.7) X1
d= a+ bZ1

with a ∈ R and b > 0 and the cdf of the random variable Z1 is known. By the
definition of the mth (central) moment it is obvious that

(3.8) µ′m(bZ1) = bmµ′m(Z1)

for any random variable Z1 and b > 0 and

(3.9) µm(a+ bZ1) = bmµm(Z1)

for any a ∈ R and b > 0. Applying now the method of moments approach to such a
class of parametric cdfs it is easy to verify the following result.

Lemma 3.2.2. If X1
d= a+ bZ1 with unknown location parameter a ∈ R and un-

known scale parameter b > 0 and σ2(Z1) > 0 then the methods of moment estimators
b̂MM (X), âMM (X) of b,respectively a are given by

(3.10) b̂MM (X) = 2
√
µ̂2(X)σ(Z1)−1, âMM (X) = µ̂′1(X)− 2

√
µ̂2(X)E(Z1)

σ(Z1)

Proof. By Lemma 3.2.1 and relations (3.8) and (3.9) it is equivalent to solve the
system

µ̂′1(X) = a+ bE(Z1), µ̂2(X) = b2σ2(Z1)

and this shows the desired result.

It follows immediately from Lemma 3.2.2 that b̂2MM (X) is an unbiased estimator
of b2 and in case E(Z1) = 0 that âMM (X) is an unbiased estimator of a. Another
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consequence of Lemma 3.2.2 is given by the following result. Observe we denote by
ln(X) the random vector (ln(X1), ..., ln(Xn)).

Lemma 3.2.3. If X1
d= aZb1 with Z1 a nonnegative random variable having a known

cdf satisfying σ2( ln(Z1)) > 0 and a,b > 0 unknown parameters then the method of
moments estimators b̂MM (X),âMM (X) of b, respectively a are given by

(3.11) b̂MM (X) = 2
√
µ̂2(ln(X))σ(ln(Z1))−1, âMM (X) = e

µ̂1(ln(X))− 2√µ̂2(ln(X))E( ln(Z1))
σ(ln(Z1))

Proof. Clearly ln(X1) d= ln(a) + b ln(Z1) and this shows applying Lemma 3.2.2 the
desired result.

The methods of moment approach can result in different estimators. For X1
d=

aZb1,a,b > 0 one could also try to solve the set of nonlinear equations

(3.12) µ̂′1(X) = aE(Zb1), µ̂2(X) = a2σ2(Zb1)

for X = (x1, ...,xn) a realized sample of the random vector X = (X1, ...,Xn). This
leads to a different set of estimators as the one proposed in Lemma 3.2.3. One
can use the method of moments estimators listed in relation (3.11) if it is easy to
compute either by simulation or analysis the expectations E( ln(Z1)) and E( ln(Z1)2).
To choose the moment estimators in relation (3.12) one needs to be able to calculate
E(Zα1 ) as a function of α.In general it might also be more difficult algorithmically
to find a solution (if it exists) of the system in relation (3.12).

We will now focus on the method of moments approach applied to a (generalized)
gamma population. The next definition is well known (cf.[8]). Observe the class of
gamma distributions was extended to the class of generalized gamma distributions
to gain more flexibility in fitting distributions occurring in reliability theory.

Definition 3.2.1. Let (Ω,F ,P) be a given probability space.

6.1 The nonnegative random variable Y1 has a gamma distribution with parameter
α > 0 and scale parameter β = 1 if its density is given by

f(y) = e−yyα−1

Γ(α) 1(0,∞)(y)

with Γ(α) =
∫∞
0 xα−1e−xdx the well known gamma function. This is denoted

by Y ∼G(α,1).

6.2 The random variable X1 has a gamma distribution with parameters α > 0 and
scale parameter β > 0 if X1

d= βY1 with Y1 ∼G(α,1).
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6.3 The random variable X1 has a generalised gamma distribution with scale pa-
rameter β > 0 and positive parameters α and τ if

X1
d= βYτ−1

1

with Y1 ∼G(α,1). This is denoted by X1 ∼G(α,β,τ).

6.4 The random variable X1 has a Weibull distribution with scale parameters β
and positive τ > 0 if X1 ∼G(1,β,τ).

If Y1 has a gamma distribution with parameters α > 0 and β = 1 it is easy to check
that for every m ∈ N

(3.13) µ′m(Y1) = Γ(α+m)
Γ(α) = Πm

j=1(α+m− j)

To give an interpretation of the unknown parameters α,τ > 0 occurring within the
class of (generalized) gamma distributions we list the following well known definition
(cf. [4]).

Definition 3.2.2. Let X1 be a nonnegative random variable on a probability space
(Ω,F ,P).

7.1 If E(X1)> 0 the squared coefficient c2(X1) of variation is defined by

c2(X1) = E

(X1−E(X1)
E(X1)

)2= σ2(X1)
(µ′1(X1))2 > 0.

7.2 If σ2(X1)> 0 the Pearson coefficient skewness(X1) of skewness is defined by

skewness(X1) = E

(X1−E(X1)
σ(X1)

)3= µ3(X1)
σ3(X1) .

Clearly by the definition of squared coefficient of variation it is easy to check for any
b > 0 that

(3.14) c2(bZ1) = c2(Z1)

for any nonnegative random variable Z1 satisfying E(Z1)> 0. This means that the
squared coefficient of variation is invariant under a linear mapping. Also it easily
follows for any random variable Z1 having a positive variance that for any a ∈ R
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and b > 0

(3.15) Skewness(a+ bZ1) = Skewness(Z1)

and so the skewness measure is invariant under affine mappings. Also it is well
known (see page 112 of [28]) that for any random variable Z1 it follows that

(3.16) µ′1(Z1) = κ1(Z1),µm(Z1) = κm(Z1)

for m = 2,3 with κm(Z1) the mth cumulant of the random variable Z1 given by
κm(Z1) =K(m)(0) with K(s) := ln(E(esZ1)) the so-called cumulant generating func-
tion of the random variable Z1. This shows that an alternative representation of
skewness and squared coefficient of variation is given by

(3.17) c2(Z1) = κ2(Z1)
κ1(Z1)2 ,skewness(Z1) = κ3(Z1)

κ2(Z1) 3
2

It is easy to verify using κ1(Z1) = E(Z1) that for Y1 ∼G(α,1) and hence

(3.18) K(s) = E(es ln(Y1)) = E(Ys
1) = Γ(α+ s)

Γ(α)

that

(3.19) E( ln(Y1)) =K(1)(0) = ψ0(α)

with ψ0 the so-called polygamma function of order zero or bigamma function intro-
duced in the Appendix A. The next result gives an interpretation of the parameters
α,τ > 0 for X1 having a (generalized) gamma distribution.

Lemma 3.2.4. Let X1 be a nonnegative random variable on a probability space
(Ω,F ,P)

8.1 If X1∼G(α,β) then c2(X1) = α−1

8.2 If X1∼G(α,β,τ) then skewness(ln(X1)) = ψ2(α)ψ1(α)− 3
2 .

Proof. Applying relation (3.14) and the definition of a gamma distributed random
variable we obtain

c2(X1) = c2(βY1) = c2(Y1)

with Y1 ∼G(α,1). Applying relation (3.13) shows the desired result. To verify part
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2 we observe for X1∼G(α,β,τ) that

ln(X1) d= ln(β) + τ−1 ln(Y1)

with Y ∼G(α,1).Applying relation (3.15) yields

skewness(ln(X1)) = skewness(ln(Y1)).

To compute skewness(ln(Y1)) we observe by relation 3.17 that

skewness(ln(Y1)) = κ3(ln(Y1))
κ2(ln(Y1)) 3

2

Clearly the cumulant generating function of the random variable ln(Y1)) with Y1 ∼
G(α,1) is given by

K(s) = E(es ln(Y1)) = E(Ys
1) = Γ(α+ s))

Γ(α)

and so

(3.20) κ2(ln(Y1)) =K(2)(0) = ψ1(α),κ3(ln(Y1)) = ψ2(α)

with ψm the polygamma function of order m defined in the Appendix A. This shows
the desired result.

By Lemma A.0.8 it follows that skewness(X1) for any X1 ∼ G(α,β,τ) is a strictly
increasing function of α with limit at α = 0 given by −2 and at α =∞ equal to
zero. We will now apply the method of moments approach to a (generalized) gamma
population and start with the well known case of a gamma population.

Lemma 3.2.5. If X1 ∼ G(α,β) then µ̂2(X) > 0 and µ̂′1(X) > 0 with probability 1
and the methods of moment estimator β̂MM (X) of β, respectively α̂MM (X) of α are
given by

β̂MM (X) a.s= µ̂2(X)
µ̂′1(X) , α̂MM (X) a.s= µ̂′1(X)2

µ̂2(X) .

Proof. Since the gamma distribution is continuous the first part of the lemma is
obvious. By relation (3.13) it follows that µ′1(X1) = αβ and µ′2(X1) = β2(α+ 1)α
and so µ2(X1) = β2α. By the method of moments approach and Lemma 3.2.1 we
need to solve the system

µ̂′1(X) = αβ, µ̂2(X) =β2α
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Since 0< µ̂2(X) with probability 1 we obtain

µ̂′1(X)2

µ̂2(X) = α, µ̂′1(X) = αβ

and this shows the desired result.

Clearly the estimator µ̂′1(X)2µ̂2(X)−1 is the sample estimator of the inverse squared
coefficient of variation of a gamma distribution and this result is clear due to Lemma
3.2.4. In the remainder of this section we will derive method of moment estimators
for a generalized gamma population by applying the method of moments approach
to the random variable ln(X1). In [17] another set of method of moments estimators
are proposed by applying the methods of moment approach to the random variable
X1. However, the corresponding set of equations derived in [17] are much more
complicated and it is unclear, contrary to our proposal, under which conditions this
system has solution and if so, how one can easily find such a solution. Also, if the
system in [17] has a solution, it is not obvious whether this solution is unique. We
first list the following auxiliary result.

Lemma 3.2.6. If X1 ∼ G(α,β,τ) then applying the method of moments approach
to the random variable ln(X1) one needs to find for every realized sample X =
(X1, ...,Xn) a solution of the system

(3.21) µ̂3(ln(X))
µ̂2(ln(X))

3
2

= ψ2(α)ψ1(α)−
3
2 .

Proof. Clearly we obtain by Definition 3.2.1 that

ln(X1) d= ln(β) + τ−1 ln(Y1)

with Y1 ∼G(α,1). Also by relations (3.9),(3.19), (3.20) and (3.16) we obtain
(3.22)
E( ln(X1)) = ln(β) + τ−1ψ0(α),µ2(ln(X1)) = τ−2ψ1(α),µ3(ln(X1)) = τ−3ψ2(α).

To determine for each realized sample X = (x1, ...,xn) an estimate of the unknown
parameters using the method of moment approach applied to the random variable
ln(X1) it follows by Lemma 3.2.1 and relation (3.22) that one therefore needs to
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find a solution of the nonlinear system of equations

(3.23)

µ̂′1(ln(X)) = E( ln(X1)) = ln(β) + τ−1ψ0(α)

µ̂2(ln(X)) = µ2(ln(X1)) = τ−2ψ1(α)

µ̂3(ln(X)) = µ3(ln(X1)) = τ−3ψ2(α)

This shows by Lemma 3.2.4 that

µ̂3(ln(X))
µ̂2(ln(X))

3
2

= µ3(ln(X1))
µ2(ln(X1))

3
2

= skewness(X1) = ψ2(α)ψ1(α)−
3
2

and we have shown the desired result.

Using Lemma 3.2.6 it is easy to show the following result.

Lemma 3.2.7. The method of moments system for the estimation of α,β,τ in a
generalized gamma population is consistent if and only if the sample X = (x1, ...,xn)
satisfies

−2< µ̂3(ln(X))
µ̂2(ln(X))

3
2
< 0.

If the system is consistent then α̂MM (X) is the unique solution of the system

(3.24) µ̂3(ln(X))
µ̂2(ln(X))

3
2

= ψ2(α)ψ1(α)−
3
2

and the method of moments estimator β̂MM (X), τ̂MM (X) of β, respectively τ are
given by

(3.25) β̂MM (X) = exp
µ̂′1(ln(X))− 2

√√√√ µ̂2(ln(X))
ψ1(α̂MM (X))ψ0(α̂MM (X))


and

(3.26) τ̂MM (X) = 2

√√√√ψ1(α̂MM (X))
µ̂2(ln(X))

Proof. By Lemma A.0.8 and relation (A.0.8) the first part immediately follows. To
prove the second part we need to solve by relation 3.23 the system of equations

µ̂′1(ln(X)) = ln(β) + τ−1ψ0(α̂MM (ln(X))

µ̂2(ln(X)) = τ−2ψ1(α̂MM (ln(X))
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This shows the result.

In the next algorithm we list the procedure to calculate the proposed method on
moments estimates in a a generalized gamma population.

Algorithm 3.2.1. Algorithm to compute method of moment estimates of unknown
parameters β,α,τ

9.1 Check for the given sample X = (x1, ...,xn) whether

−2< µ̂3(ln(X))
µ̂2(ln(X))

3
2
< 0.

If not stop, otherwise continue

9.2 Determine by bisection the unique solution α̂MM (X) of the system

µ̂3(ln(X))
µ̂2(ln(X))

3
2

= ψ2(α)ψ1(α)−
3
2 .

9.3 Evaluate

β̂MM (X) = exp
µ̂′1(ln(X))− 2

√√√√ µ̂2(ln(X))
ψ1(α̂MM (X))ψ0(α̂MM (X))


and

τ̂MM (X) = 2

√√√√ψ1(α̂MM (X))
µ̂2(ln(X)) .

To start the bisection one could use the following approach. By relation (A.17) it
follows that

(3.27) limα↑∞ p(α)α
1
2 =−1

Using this asymptotic result start the bisection in the initial point α0 =
µ̂2(ln(X))6µ̂3(ln(X))−2. For α is large this value approximates clearly the solution
of the system in relation (3.24).

To compute the method of moment estimators of a Weibull distribution we can
apply the same procedure as above replacing α̂MM (X) by 1. This shows that the
method of moments estimators of the parameters β and τ in a Weibull population
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are given by

(3.28) β̂MM (X) = exp
µ̂′1(ln(X))− 2

√√√√ µ̂2(ln(X))
ψ1(1) ψ0(1)

 , τ̂MM (X) = 2

√√√√ ψ1(1)
µ̂2(ln(X))

Introducing the event

C =

−2< µ̂3(ln(X))
µ̂2(ln(X))

3
2
< 0


conditionally on this event the proposed method of moments approach gives a unique
solution. In the next section we will by means of simulation give an estimate of the
probability of occurrence of this event. Clearly the probability of this event might
depend on all the unknown parameters and so we estimate in the next computational
section this probability for different values of the unknown parameters.
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3.3 Computational results

In this section we will perform some simulation experiments comparing the be-
haviour of the classical maximum likelihood estimators and the method of moments
estimator. In the first subsection we report the results for a gamma population and
a Weibull population using the method of moments estimators derived in Lemma
3.2.5 for the gamma distribution and Lemma 3.2.3 for the Weibull distribution.
In this particular case the random variable Z1 has a exponential distribution with
parameter 1. In the last subsection we report the performance of the method of
moment estimator proposed in this paper for a generalized gamma population and
compare this performance with the classical maximum likelihood estimators. We
also give an estimation of the probability for different sizes of the sample that the
set of equations related to the method of moments estimators has a unique solution.
To calculate the maximum likelihood estimators for both distributions, we use the
efficient special purpose algorithms proposed in Chapter 2.

3.3.1 Computational results for a gamma and Weibull population.

In this section, we report the results for a gamma and Weibull population. In gen-
eral, comparing the absolute estimated bias and mean square error the maximum
likelihood estimators yields a better performance than the method of moment es-
timators for both the gamma and Weibull distributions. For both estimators the
estimated parameters are not that accurate for small sample sizes. This can be seen
from Tables 3.1 for the gamma distribution and from Tables 3.2 for the Weibull
distribution. Moreover, our experiments show that changing the value of the scale
parameter β does not affect the relative efficiency of the estimators in both cases.
From our set of experiments we may conclude that both estimators have a good per-
formance unless α is large and the sample size is small for the gamma distribution
and τ is small and the sample size is small for the Weibull distribution.
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Sample Size (n) α |α̂ML−α| |α̂MM −α| |β̂ML−β| |β̂MM −β|

10

Bias
0.1 0.0216 0.1765 0.0650 0.5490
1 0.3554 0.5887 0.0980 0.1906
10 4.1581 4.3913 0.1031 0.1122

MSE
0.1 0.0028 0.0524 1.0641 0.5748
1 0.7217 1.1780 0.2454 0.3003
10 90.4770 94.5732 0.1893 0.2018

100

Bias
0.1 0.0016 0.0241 0.0026 0.1024
1 0.0259 0.0613 0.0106 0.0253
10 0.3003 0.3301 0.0097 0.0104

MSE
0.1 0.0001 0.0020 0.1122 0.2057
1 0.0179 0.0424 0.0253 0.0455
10 2.2881 2.5469 0.0207 0.0230

Table 3.1 Mean absolute bias and mean square error for the estimated parameter
α and β of the gamma distribution using 10000 simulation with different samples
sizes for β = 1 and different values of α

.

Sample Size (n) τ |τ̂ML− τ | |τ̂MM − τ | |β̂ML−β| |β̂MM −β|

10

Bias
0.1 0.0171 0.0223 50.6055 46.2939
1 0.1710 0.2234 0.0107 0.0041
10 1.7108 2.2341 0.0038 0.0054

MSE
0.1 0.0015 0.0021 400854 343294
1 0.1538 0.2184 0.1113 0.1109
10 15.3849 21.8437 0.0011 0.0011

100

Bias
0.1 0.0014 0.0020 0.6429 0.6507
1 0.0147 0.0209 0.0012 0.0005
10 0.1475 0.2098 0.0003 0.0005

MSE
0.1 6.6697e-5 0.0001 5.0306 5.4106
1 0.0066 0.0115 0.0110 0.0115
10 0.6669 1.1535 0.0001 0.0001

Table 3.2 Mean absolute bias and mean square error for the estimated parameters
τ and β for the Weibull distribution using 10000 simulation with different samples
sizes for β = 1 and different values of τ .

3.3.2 Computational results for a generalized gamma population.

To calculate for the proposed method of moments estimator a unique solution of
the corresponding system of nonlinear equations it must hold by Lemma 3.2.7 that
the sample estimator of skewness(X1) has a realisation strictly between 0 and −2 .
In Figure 3.1 we draw the graph of skewness (X1) as a function of α. In the same
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Figure 3.1 the graph of the function p and the estimation of this function for given
values of α using sample moments with different sample sizes for parameters β = 1
and τ = 1

figure we show for different sample sizes for the scenarios β = 1, τ = 1 and different
values of α realisations of the sample moment estimator of skewness (X1). For large
sample sizes this behaviour is robust and with probability close to 1 one can find
the method of moments estimators for α and the other parameters using Algorithm
3.2.1. If the sample size is small the probability that the sample moment estimator
of the skewness(X1) is between 0 and −2 and hence the proposed method of moment
estimator cannot be evaluated is smaller. Observe in Figure (Figure 3.3) we have
drawn the graph of the estimated probability that the sample moment estimator of
the skewness is between the values 0 and −2 for different values of α.
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Figure 3.2 the histogram of 10000 simulation of estimated function p with different
sample sizes for parameters α = 1, β = 1, and τ = 1 (the real p(α) =−1.1395)

Figure 3.3 the graph of the estimated probability that the sample moment estimator
of the skewness is between -2 and 0 using 10000 simulation for each values of α for
the scenario β = 1 and τ = 1
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3.4 Conclusion.

In general, for a gamma or Weibull population one should apply, if possible, the
maximum likelihood estimators for estimating the unknown parameters However, if
one cannot do this due to the nonavailability of an efficient algorithm, the proposed
analytical solution of the method of moment estimator gives a reasonable estima-
tion especially for larger sample values. Within a generalized gamma population,
especially for larger sample sizes. the newly proposed easy to compute method of
moment estimator also yields reasonable estimates (again not as accurate as the
maximum likelihood estimators but these estimates can only be found by applying
a much more complicated algorithm). In general one could also use the easy to
obtain estimates of the proposed method of moment estimators as an initial guess
in the maximum likelihood algorithm to speed up the computation.
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4. On the sample mth moment and the maximum likelihood

estimator of the mth (central) moment in a normal population.

4.1 Introduction.

In this paper we will compare for a sample arising from a normal population the
sample mth (central) moment estimator for the mth (central) moment with a max-
imum likelihood based estimator. The sample mth moment estimator does not use
information about the underlying parametric class of distributions and their appli-
cation is justified by the strong law of large numbers. However, if we estimate a
(central) moment we might also use (if available) the information from which para-
metric class of distributions the sample arises. We could apply that information in
our estimation problem and use more complicated estimators based on for example
the maximum likelihood principle. The easiest example to which one can apply this
idea is to assume that the sample arises from a normal population.

In statistics courses one introduces the sample variance and the sample mean as es-
timators for the (unknown) variance and first moment. In only a few books (cf.[29],
[30]) related to large sample theory the problem of estimating higher moments and
the use of higher sample moment estimators are discussed. The authors did not
encounter a recent paper in the literature showing more properties of these higher
sample moment estimators. This in particular applies to estimating higher (cen-
tral) moments in a normal population and the alternative use of different estimators
based on the maximum likelihood principle. Observe these higher (central) moment
estimators can be used in estimating the skewness or kurtosis of a certain distri-
bution. Within a normal population these two different type of estimators are the
same in estimating the mean and the variance. Since they differ for higher (central)
moments the question arises which estimator (maximum likelihood based or sample
moment) is more efficient in estimating these higher (central) moments. Since sam-
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ple higher moments averages are easier to compute than the proposed maximum
likelihood estimators one would select due to computational efficiency the first class
of estimators. However the question remains whether this leads to a loss of statis-
tical efficiency by ignoring from which parametric class of distributions the sample
did arise. To answer this question for the normal family is the research question in
this paper. In particular we derive a closed form expression for the mean square
error of both estimators of the mth (central) moment for arbitrary integer m. An
outcome of this analysis is that for the estimation of the mth central moment in
any normal distribution it is possible to determine the threshold value of the sample
for which the mean square error of the maximum likelihood estimator is below the
mean square error of the sample mth central moment estimator.

The outline of this paper is as follows. In the next section we will discuss some
well known results for the normal distribution and introduce the proposed max-
imum likelihood based estimators and sample moment estimators for the higher
(central) moments. At the same time we derive for all considered estimators an ex-
act computable expression for the variance and the mean of these estimators thereby
enabling us to compute the mean square error of these estimators. In the last section
some computational experiments are performed and the outcomes of both estima-
tors are compared. Also by means of repeated simulations we draw the histogram of
both estimators and visually compare the statistical efficiency of these estimators.

4.2 On the mth sample moment and the maximum likelihood estimators

for the mth (central) moment

Let (Ω,P,F) be a given probability space. It is assumed in this section that all
random variables are defined on this probability space. Before starting our analysis
we introduce some notation. If the random variables Z1 and Z2 have the same
cumulative distribution function this is denoted by Z1

d= Z2. Also for any random
variable Z its mth moment is given by

(4.1) µ′m(Z) := E(Zm)

and its mth central moment by

µm(Z) := µ′m(Z−E(Z)) = E((Z−E(Z))m),m ∈ N.
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Clearly for m= 2 the 2nd central moment is also known as the variance V ar(Z).

Definition 4.2.1. Let (Ω,P,F) be a probability space. A random variable Z has a
normal distribution with parameters µ ∈ R and σ > 0 denoted by Z∼N(µ,σ) if its
density f is given by

f(z) = 1
σ 2√2π

e−
1
2 ( z−µσ )2

, z ∈ R

In case µ = 0 and σ = 1 the normal distribution is called a standard normal distri-
bution.

In case we observe a sample X = (X1, ...,Xn) of size n from a normal population
and we need to estimate the mth moment for m ∈N or the mth central moment for
m even (for m odd we know that the mth central moment is zero and we do not
need to estimate it!) we mostly use the sample mth moment estimator

(4.2) µ̂′m,n(X) := 1
n

∑n

i=1 Xm
i

for estimating the mth moment or the sample mth central moment estimator

(4.3) µ̂m,n(X) := 1
n

∑n

i=1(Xi−Xn)m,Xn := 1
n

∑n

i=1 Xi

for estimating the mth central moment. An important measure to estimate the effi-
ciency of a estimator T (X) with X some sample of size n estimating some unknown
parameter θ is the mean squared deviation MSE(T (X)) given by (cf.[5])

(4.4) MSE(T (X)) = E((T (X)− θ)2) = Var(T (X)) +bias(T (X))2.

with

(4.5) bias(T (X) := E(T (X))− θ

A useful property of the sample mth central moment estimator is given by the
following. Since the random variables Xi, i = 1, ...,n are independent and normally
distributed with parameter µ ∈ R and σ > 0 it follows that (cf.[5])

Xi
d= µ+σYi

with Y = (Y1,Y2, ...,Yn) a random vector consisting of independent standard nor-
mal distributed random variables. This implies

(4.6) µ̂m,n(X) d= σm

n

∑n

i=1(Yi−Yn)m = σmµ̂m,n(Y)
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and so

(4.7) E(µ̂m,n(X)) = σmE(µ̂m,n(Y)),Var(µ̂m,n(X)) = σ2mVar(µ̂m,n(Y))

and

(4.8) MSE(µ̂m,n(X)) = σ2mMSE(µ̂m,n(Y)).

In most textbooks on statistics (see for example [5]) only estimating the mean and
or the variance of a normal population is considered. In this case we mostly use for
the variance the unbiased sample variance S2

n(X) given by

Sn(X) = n

n−1 µ̂2,n(X)

and for the mean the sample mean Xn. Before introducing an alternative maximum
likelihood estimator for the mth central moment we discuss some properties of the
sample mth moment estimator. The next result is listed in [30] and its proof is
standard.

Lemma 4.2.1. It follows for every m ∈ N and n ∈ N that

(4.9) E(µ̂′m,n(X)) = µ′m(X1),MSE(µ̂′m,n(X)) = 1
n
Var(Xm

1 ) = µ′2m(X1)−µ′m(X1)2

n
.

with µ′2m(X1) and µ′m(X1) given in relation (A.18).

We will now discuss some properties of the sample mth central moment estimator.
In the next result we show for a normal population that the estimator ( n

n−1)m2 µ̂m(X)
is an unbiased estimator of the mth central moment.

Lemma 4.2.2. It follows for every m ∈ N and n ∈ N that

(4.10) E(µ̂m,n(X)) = (1−n−1)
m
2 σmµm(Z) = (1−n−1)

m
2 µm(X1).

with Z a standard normal distributed random variable.

Proof. By relation (4.7) we only need to compute E(µ̂m,n(Y)). By the definition of
the mth sample central moment estimator and the random variables Yi, i = 1, ...,n
are independent and identically distributed we obtain

E(µ̂m,n(Y)) = E((Y1−Yn)m) = n−mE(((n−1)Y1−
∑n

i=2 Yi)m)

Since the random variables Yi, i = 1, ...,n are independent and standard normal
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distributed it follows by the addition property of the sum of independent normally
distributed random variables that

(n−1)Y1−
∑n

i=2 Yi
d= 2
√

(n−1)2 +n−1Z = 2
√

(n2−n)Z

with Z having a standard normal distribution. This shows

E(µ̂m,n(Y)) = n−m(n2−n)
m
2 µ′m(Z)

and using σmµ′m(Z) = σmµm(Z) = µm(X1) we obtain relation (4.10).

In the next result we list a formula for the variance of the samplemth central moment
estimator. To show this result we need a result about the cdf of a quadratic form
proved in the Appendix A.

Lemma 4.2.3. It follows that

Var(µ̂m,n(X)) = σ2m(1−n−1)
[
E(Vm

n )−
(
1−n−1

)m−1(
µm(Z1)2− 1

n
µ2m(Z1)

)]

with Vn
d= (2−1 − n−1)Z1 − 2−1Z2 and Z1,Z2 independent standard normal dis-

tributed random variables.

Proof. It is obvious by relation (4.7) that

(4.11) Var(µ̂m,n(X)) = σ2m

n2 Var
(∑n

i=1(Yi−Yn)m
)

and
(4.12)

Var
(∑n

i=1(Yi−Yn)m
)

= ∑n
i=1Var

(
(Yi−Yn)m

)
+∑n

i=1
∑n
j=1,j 6=iCov((Yi−Yn)m,(Yj−Yn)m).

Since the random variables Yi, i= 1, ..,n are independent and identically distributed
we obtain for every 1≤ i≤ n

(4.13) Var
(
(Yi−Yn)m

)
= Var

(
(Y1−Yn)m

)
= E((a>n Y)2m)−E((a>n Y)m)2

and an := e1,n− 1
n in,bn := e2,n− 1

n in with in denoting the nth dimensional vector
consisting only of ones and ei,n, i = 1,2 the ith unit vector in Rn. By the same
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argument it follows for every 1≤ i, j ≤ n
(4.14)
Cov((Yi−Yn)m,(Yj−Yn)m) = Cov((Y1−Yn)m,(Y2−Yn)m)

= E(((Y1−Yn)(Y2−Yn)m))−E((Y1−Yn)mE((Y2−Yn)m)

= E(((Y1−Yn)(Y2−Yn)m))−E((Y1−Yn)m)2

= E(
(
Y>anb>nY

)m
)−E((a>n Y)m)2.

This shows substituting relation (4.13) and 4.14 into relation (4.12) that

Var
(∑n

i=1(Yi−Yn)m
)

=n(n−1)E
((

Y>anb>nY
)m)

+nE((a>n Y)2m)−n2E((a>n Y)m)2

and we obtain by relation (4.11)

(4.15) Var(µ̂m,n(X)) = σ2m
[
(1−n−1)αm+n−1E((a>n Y)2m)−E((a>n Y)m)2

]
with αm := E

((
Y>anb>nY

)m)
. Since ‖ an ‖22 = ‖ bn ‖22 = 1− n−1 it follows by

the addition property of independent standard normal distributed random variables
that

(4.16) a>n Y d= 2
√

1−n−1Z1,b>nY d= 2
√

1−n−1Z2

with Zi, i= 1,2 having a standard normal distribution. This shows

(4.17) E((a>n Y)m) = E((b>nY)m) = (1−n−1)
m
2 µm(Z1)

and so by relation (4.15)

(4.18) Var(µ̂m,n(X)) = σ2m
[
(1−n−1)αm+ (1−n−1)m(n−1µ2m(Z)−µm(Z)2)

]
Since in Lemma A.0.11 we have shown

Y>anb>nY d=
(1

2 −
1
n

)
Z2

1−
1
2Z2

2

with Z1,Z2 independent standard normal distributed random variables the desired
result follows using relation (4.15).

To compute Var(µ̂m,n(X)) it follows by Lemma 4.2.3 that we need to compute the
mth moment of the random variable Vn. Clearly by Newtons binomial formula and
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the random variables Zi,i= 1,2 are independent we obtain

E(Vm
n ) = E(((2−1−n−1)Z2

1−2−1Z2
2)m)

= ∑m
k=0

(
m
k

)
(−1)m−k(2−1−n−1)k2−(m−k)µ2k(Z1)µ2(k−m)(Z2).

By relation A.20 we know that

µ2k(Z1) = µ2k(Z2) = (2k)!
2mk!

To investigate the asymptotic behaviour of the mean squared error of the maximum
likelihood estimator of the mth central moment as the sample size goes to infinity
we observe using a different technique that for all populations having a finite 2mth
central moment (cf.[30],[29])

(4.19) limn↑∞nVar(µ̂m,n) = αm

with
(4.20)

αm := µ2m(X1)−2mµm−1(X1)µm+1(X1)−µm(X1)2 +m2µ2(X1)µm−1(X1)2.

Using the asymptotic result in relation (4.19) and Lemma 4.2.2 the next asymptotic
result for the mean squared error of the sample mth central moment estimator can
now be easily verified.

Lemma 4.2.4. It follows for any normal population that

(4.21) limn↑∞nMSE(µ̂m,n(X)) = αm.

with αm defined in relation (4.20).

Proof. We know

(4.22) MSE(µ̂m,n(X)) = V ar(µ̂m,n(X)) + (E(µ̂m,n(X))−µm(X1))2.

By Lemma 4.2.2 we obtain

n(E(µ̂m,n(X))−µm(X1)) = n
[
(1−n−1)

m
2 −1

]
µm(X1)

and this shows
limn↑∞n(E(µ̂m,n(X))−µm(X1)) =−m2 .
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Applying now relation (4.22) and (4.19) yields the desired result.

An alternative maximum likelihood based estimator for the mth moment is given by
the following. Clearly we assume for this estimator that µ 6= 0. For µ = 0 the mth
moment estimation problem reduces to the mth central moment estimation problem
to be discussed in the last part of this section. It is well known (cf.[5]) for a normal
population that the maximum likelihood estimator of µ is given by the sample mean
Xn and the maximum likelihood estimator of σ2 is given by µ̂2,n(X). This implies
by the invariance property of maximum likelihood estimators (cf.[31]) and Lemma
A.0.9 that we may also use the (maximum likelihood) estimator

(4.23) µ̂′m,ML,n(X) =m!
∑bm2 c

k=0
µ̂k2,n(X)Xn

m−2k

(m−2k)!2kk!

for estimating the mth moment of the normal distribution. For the maximum like-
lihood estimator of the mth moment the following result holds.

Lemma 4.2.5. It follows for every m ∈ N and n ∈ N,n≥ 2 that

(4.24) E(µ̂′m,ML,n(X)) =m!
∑bm2 c

k=0
Ck,nσ

2kE(Xm−2k
n )

(m−2k)!2kk!

with

(4.25) Ck,n :=


1 if k = 0

Πk−1
j=0(1 + 2j−1

n ) if k ∈ N

and E(Xm−2k
n ) given in relation (A.21).

Proof. It is shown in [32] that a sample arises from a normal population if and only
if µ̂2,n(X) and the sample mean Xn are independent. This implies by relation (4.23)
and the well known properties of expectations for products of independent random
variables that

(4.26) E(µ̂′m,ML,n(X)) =m!
∑bm2 c

k=0
E(µ̂k2,n(X))E(Xn

m−2k)
(m−2k)!2kk! .

To evaluate E(µ̂k2,n(X)) in relation (4.26) we observe (cf.[5]) that

nµ̂2,n(X) d= σ2Wn

with Wn having a Gamma distribution with parameter α = n−1
2 and β = 2. This
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shows

(4.27) E(µ̂k2,n(X)) = σ2k

nk
E(Wk

n).

Since for any k ∈N it follows for Wn having a Gamma distribution with parameter
α = n−1

2 and β = 2 that

E(Wk
n) = 2k

Γ(k+ n−1
2 )

Γ(n−1
2 )

= Πk−1
j=0(2j−1 +n)

we obtain by relation (4.27) that

(4.28) E(µ̂k2,n(X)) = Ck,nσ
2k.

Hence we have verified relation (4.24).

In the next result we discuss the asymptotic behavior of the expectation of the
maximum likelihood estimator of themth moment as the sample size goes to infinity.

Lemma 4.2.6. It follows for any normal population satisfying µ 6= 0 that for every
m ∈ N,m≥ 2

(4.29) limn↑∞n(E(µ̂′m,ML,n(X))−µ′m(X1)) =m!βm

with

(4.30) βm :=
∑bm2 c

k=1
σ2kµm−2k

2k(k−1)!
k

(m−2k)!

Proof. Applying Lemma 4.2.5 and A.0.10 we obtain

(4.31) n(E(µ̂′m,ML,n(X))−µ′m(X1)) = I1(m,n) + I2(m,n)

with

(4.32) I1(m,n) :=m!
∑bm2 c

k=0
n(Ck,n−1)σ2kE(Xm−2k

n )
(m−2k)!2kk!

and

(4.33) I2(m,n) :=m!
∑bm2 c

k=0 σ
2kn(E(Xm−2k

n )−µm−2k)
(m−2k)!2kk!

To analyse the asymptotic behavior of I1(m,n) we introduce for every k ∈ N the
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function fk : [0,1]→ R given by

(4.34) fk(x) = Πk−1
j=0(1 +x(2j−1))

Introducing the related function gk(x) = lnfk(x) it follows that

g′k(x) =
∑k−1

j=0
2j−1

1 +x(2j−1)

and this shows for every 0< x < 1

(4.35) f ′k(x) = g′k(x)fk(x).

Clearly by relation (4.25) and (4.35) we now obtain

(4.36) limn↑∞n(Ck,n−1) = f ′k(0) =
∑k−1

j=0(2j−1) = k2−2k

and this implies using relation (4.32) and limn↑∞E(Xm−2k
n ) = µm−2k that

limn↑∞ I1(m,n) =m!
∑bm2 c

k=1
(k−1)σ2kµm−2k

(k−1)!2k(m−2k)!

(Observe empty summation is by definition 0). To verify the asymptotic behaviour
of I2(m,n) it follows by relation (A.23) that

limn↑∞ I2(m,n) = m!∑bm2 ck=0 σ
2k (m−2k)(m−2k−1)µm−2k−2σ2

(m−2k)!2k+1k!

= m!∑bm2 c−1
k=0

µm−2k−2σ2k+2

(m−2k−2)!2k+1k!

= m!∑bm2 ck=1
µm−2kσ2k

(m−2k)!2k(k−1)!

and this shows by relation (4.31) the desired result.

In the next result we will compute the variance of the maximum likelihood estimator
for the 2mth moment. We will only consider this case. A similar formula can be
shown for the (2m+ 1)th moment. Before mentioning this result we introduce the
matrices

An = (a(n)
ij ),Bn = (b(n)

ij )

given by

(4.37) a
(n)
ij := σ2(i+j)Ci+j,nE

(
X4m−2(i+j)
n

)
, i, j = 0, ...,m
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and

(4.38) b
(n)
ij := σ2(i+j)Ci,nCj,nE

(
X2m−2j
n

)
E
(
X2m−2i
n

)
, i, j = 0, ...,m

By a standard application of the variance formula for a sum of random variables
one can show the following result.

Lemma 4.2.7. If the vector x is given by x> = (x0, ...,xm),xk = (2m)!
(2m−2k)!k!2k ,k =

0, ...,m, then

(4.39) Var(µ̂′2m,ML,n(X)) = x>Anx−x>Bnx

Proof. By relation (4.23) we conclude

Var(µ̂′2m,ML,n(X)) = Var
(∑m

k=0xkµ̂
k
2,n(X)X2(m−k)

n

)
= xᵀΛnx

with Λn = (λ(n)
ij )mi,j=0 and

λ
(n)
ij := Cov

(
µ̂i2,n(X)X2(m−i)

n , µ̂j2,n(X)X2(m−j)
n

)

To evaluate these covariances we observe by the independence of the random vari-
ables µ̂2,n(X) and Xn (cf.[32]) that

σ
(n)
ij = E

(
µ̂i+j2,n (X)X4m−2(i+j)

n

)
−E

(
µ̂i2,n(X)X2(m−i)

n

)
E
(
µ̂j2,n(X)X2(m−j)

n

)
= E

(
µ̂i+j2,n (X)

)
E
(

X4m−2(i+j)
n

)
−Πk∈{i,j}E

(
µ̂k2,n(X)

)
Πk∈{i,j}E

(
X2(m−k)
n

)
.

This shows by relation (4.28) the desired result.

Since by Lemma 4.2.5 and lemma 4.2.7 one can evaluate the mean and the variance
of the maximum likelihood estimator µ̂′2m,ML,n(X) of the mth moment one can also
compute the mean squared error of the estimator µ̂′m,ML,n(X) given by

(4.40) MSE(µ̂′m,ML,n(X)) = Var(µ̂′m,ML,n(X)) +
(
E(µ̂′m,ML,n(X))−µ′m(X)

)2
.

In the next result we derive an asymptotic formula for the mean squared error of
the maximum likelihood estimator of the mth moment. Before proving this result
we need the following auxiliary limit result.
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Lemma 4.2.8. It follows for µ 6= 0 and k1,k2 ∈ Z+ and p1,p2 ∈ Z+ that

(4.41) limn↑∞n
(
Π2
i=1Cki,nE(Xpi

n )−µp1+p2
)

= γ

with

(4.42) γ := µp1+p2
∑2

i=1(k2
i −2ki) +µp1+p2−2σ2∑2

i=1

(
p2
i −2pi

)
2

Proof. We observe

(4.43)
n(Π2

i=1Cki,nE(Xpi
n )−µp1+p2)

= n(Π2
i=1Cki,n−1)Π2

i=1E(Xpi
n ) +n(Π2

i=1E(Xpi
n )−µp1+p2).

Since limn↑∞n(Π2
i=1Cki,n− 1) = (fk1fk2)′(0) with fk defined in relation (4.34) we

obtain

(4.44) limn↑∞n(Π2
i=1Cki,n−1)Π2

i=1E(Xpi
n ) = µp1+p2

∑2
i=1(k2

i −2ki)

Also it follows using

n(Π2
i=1E(Xpi

n )−µp1+p2) = E(Xp1
n )n(E(Xp2

n )−µp2) +nµp2(E(Xp1
n )−µp1)

and applying relation (A.23) that

limn↑∞n(Π2
i=1E(Xpi

n )−µp1+p2) = µp1+p2−2σ2∑2
i=1

(
p2
i −2pi

)
2

This shows using relation (A.13) the limit result in relation (4.41).

Since C0,n = 1 and E(X0
n) = 1 we obtain by Lemma 4.2.8 that

(4.45) limn↑∞n(Ck,nE(Xp
n)−µp) = (k2−2k)µp+ (p2−p)

2 µp−2σ2.

Also by Lemma 4.2.8 we obtain for every k1,k2 ∈ N and p1,p2 ∈ N and µ 6= 0 that
(4.46)

limn↑∞(Ck1+k2,nE(Xp1+p2
n )−Π2

i=1CkiE(Xpi
n )) = 2µp1+p2k1k2 +µp1+p2−2σ2p1p2

An implication of relation 4.46 and Lemma 4.2.7 is given by the following asymptotic
result for the mean squared error of the maximum likelihood estimator of the mth
moment for µ 6= 0.

Lemma 4.2.9. It follows for any normal population satisfying µ 6= 0 and m∈N,m≥
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2 that
limn↑∞nMSE(µ̂′2m,ML,n(X)) = x>∆∞x

with ∆∞ = (δ(∞)
ij )mi,j=0 given by

δ
(∞)
ij := 2σ2(i+j)µ4m−2(i+j)ij+ 4σ2(i+j)+2µ4m−2(i+j)−2(m− i)(m− j)

and the vector x defined in Lemma 4.2.7.

Proof. Easy application of Lemma 4.2.8 and 4.2.7 replacing ki by i and pi by 2(m−i)
in relation (4.46).

In the computational section we show for the scenario µ = 3,σ = 4 in Figure 4.2 in
a graph the functions f : N→ R and g : N→ R given by

f(n) = nMSE
(
µ̂′m,ML,n(X)

)
,g(n) = nMSE

(
µ̂′m,n(X)

)
Clearly this graph shows for which values of n the maximum likelihood estimator of
the mth moment is more efficient than the sample mth moment estimator.

By a similar argument using relation (A.20) we may use the maximum likelihood
estimator

(4.47) µ̂2m,ML,n(X) =
(2m)!µ̂m2,n(X)

m!2m

for estimating the (2m)th central moment of the normal distribution. Observe the
odd central moments are all zero and so we do not need to estimate them. Also for
this estimator we obtain applying relation (4.6)

µ̂m,ML,n(X) d= σmµ̂m,ML,n(Y)

with Y =(Y1, ...Yn) and Yi, i = 1, ...,n independent and standard normal dis-
tributed. This shows
(4.48)
E(µ̂m,ML,n(X)) = σmE(µ̂m,ML,n(Y)),Var(µ̂m,ML,n(X)) = σ2mVar(µ̂m,ML,n(Y))

and

(4.49) MSE(µ̂m,ML,n(X)) = σ2mMSE(µ̂m,ML,n(Y))

We now show the following result for the maximum likelihood estimator µ̂2m,ML(X)
for m any positive integer. Next to the value of the variance of this estimator it
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shows that the estimator C−1
m,nµ̂2m,ML,n(X) with Cm,n given in relation (4.25) is an

unbiased estimator of the (2m)th central moment of the normal distribution.

Lemma 4.2.10. It follows for every m ∈ N and n ∈ N that
(4.50)
E(µ̂2m,ML,n(X)) = µ2m(X1)Cm,n,Var(µ̂2m,ML,n(X)) = µ2m(X1)2(C2m,n−C2

m,n)

and

(4.51)
MSE(µ̂2m,ML,n(X)) = µ2m(X1)2(1−2Cm,n+C2m,n)

= σ4mµ2m(Z)2(1−2Cm,n+C2m,n)

with Z having a standard normal distribution and Ck,n given in relation (4.25).

Proof. Clearly by relation (4.47) we obtain

E(µ̂2m,ML,n(X)) = (2m)!
2mm!E(µ̂m2,n(X)),Var(µ̂2m,ML,n) =

(
2m!

2mm!

)2
Var

(
µ̂m2,n

)
.

This shows by Lemma A.0.9 and relation (4.28) the first formula. Since Var(µ̂m2 ) =
E(µ̂2m

2 )−E(µ̂m2 )2 the second part can be verified in a similar way. The relation for
the mean squared error follows easily from relation (4.50 ).

An immediate consequence of the above lemma and relation (4.36) is given by the
following asymptotic result for the mean squared error of the maximum likelihood
estimator of the mth central moment.

Lemma 4.2.11. It follows for any normal population

(4.52) limn↑∞nMSE(µ̂2m,ML,n(X)) = 2m2µ2m(X1)2.

Proof. Easy application of relation (4.36) and (4.51).

By relation (4.49) and (4.8) it follows that the ratio of the mean squared error of the
maximum likelihood estimator and the mean squared error of the sample moment
estimator is independent of σ. Hence for all normal populations with unknown µ and
σ it is possible to determine analytically a threshold value n∗(m) for the sample size.
If the sample size is above this threshold value the maximum likelihood estimator
of the mth central moment has a lower mean squared error than the mean squared
error of the sample mth central moment estimator and if it is below the inequality
is reversed. Clearly this threshold value of the sample size depends on m. In
Figure 4.1 we have plotted the graph of the function n 7→ nMSE

(
µ̂m,ML,n(X)

)
and
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Figure 4.1 graph of the function n 7→ n∗(m) and n 7→ nMSE
(
µ̂m,ML,n(X)

)
and

n 7→ nMSE(µ̂m,n(X)) for m= 6,8 and σ = 1.

n 7→ nMSE(µ̂m,n(X)) for the base scenario σ = 1. Clearly the dotted line represent
this threshold value for m= 6 and m= 8. At the same time we have plotted in the
same figure the function m 7→ n∗(m). As observed from this figure the threshold
value seems to be increasing in m. This means that for higher values of m and
a given sample size the use of the sample mth central moment estimator becomes
more attractive. Observe for any normal population it is shown in this figure for
m= 6 and m= 8 that the threshold value equals 18 while for m= 50 it is given by
54. Also the intersection point of the blue line with the Y-axis equals the asymptotic
value αm given in Lemma 4.2.4, while the intersection point of the red line with the
Y-axis represent the asymptotic first order term of the mean squared error of the
maximum likelihood estimator computed in Lemma 4.2.11. .

Since computing the maximum likelihood or the sample mth (central) moment esti-
mator for a given sample is in general very fast it is good to know applying the MSE
objective for which sample sizes one estimator is preferred above the other. Clearly
for m = 2 both estimators coincide. As we have shown the sample mth moment
estimator is always unbiased, while the maximum likelihood estimator µ̂′m,ML(X) is
biased. For the mth central moment both estimators are biased but asymptotically
unbiased. On the other hand, the celebrated maximum likelihood principle yields
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in theory (cf.[31]) for large sample sizes high quality estimations with the small-
est asymptotic variance. As already observed for the mth central moment (m≥ 3)
there is a threshold value sample size separating both estimators if one uses the
mean squared error objective. In the next section we will by means of simulation
experiments compare the efficiency of both estimators with respect to this objec-
tive. Since for estimating moments a possible threshold value also depends on the
unknown σ (and so this threshold problem for estimating moments is less clear than
for estimating central moments) we will focus more attention in the next section
on the estimation of moments. However, we still report our simulation results for
central moments. At the same time we will show in the next section the histograms
of the maximum likelihood and sample moment estimator for both the moment and
central moment estimation problem.

4.3 Computational results.

In this section we compare the behaviour of the sample moment and the maximum
likelihood estimator of the mth moment and the mth central moment, m = 4,6,8,
using simulation. Since for m = 2 both estimators are the same we do not report
the results for this case. For each n we performed 10.000 simulation runs. We only
show in detail the results for a normal distribution having parameters µ = 3 and
σ = 4. Similar experiments for the 9 different scenarios (µ,σ),µ ∈ {0,10,100} and
σ ∈{1,10,100} were also conducted, but since the conclusions about the performance
of both estimators are similar we do not report these results. In the first subsection
we report the simulation results for the moment estimation problem, while in the
second subsection we report the results for the central moment estimation problem.

4.3.1 Computational results for moments

To evaluate for a given sample the realisation of the sample moment estimator of the
mth moment we apply relation (4.2) and relation (4.23) for the maximum likelihood
estimator. For a normally distributed random variable X1 with µ = 3 and σ = 4 it
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follows by Lemma A.0.9 that

(4.53) µ′8(X1) = 27051873,µ′6(X1) = 185289,µ′4(X1) = 1713

The average over 10.000 runs of the realisations of the sample moment and maximum
likelihood estimator of themth moment (rounded down to integers) in a normal pop-
ulation with µ= 3 and σ= 4 are provided in the second and fifth row of Table 4.1. In
the first row the size of the sample is reported. The mean squared error ratio shown
in the seventh row of Table 4.1 denotes the ratio of the mean squared error of the
maximum likelihood estimator over the mean squared error of the sample moment
estimator. Both mean squared errors were calculated using the formulas in relation
(4.9) and (4.40). If in this row the ratio is smaller than one the maximum likelihood
estimator has a lower mean squared error then the sample moment estimator for
the given sample size n. In the eight row we list for the biased maximum likelihood
estimator the bias divided by the mth moment again for the given sample size n.
These are also calculated using relations (4.9) and (4.40). Finally in the fourth and
sixth row of Table 4.1 we calculate (rounded down to integers) the sample standard
deviations of both estimators.

As expected the variance of both estimators become smaller as the sample size
increases. However, the variance of the maximum likelihood estimator is highly
nonlinear in the reciprocal of the sample size and this shows for small sample sizes
(n = 10) that its variance is higher or comparable with the variance of the sample
moment estimator. Adding the unbiasedness of the maximum likelihood estimator
for small sample sizes listed in the eighth row of Table 4.1 this implies that for
n= 10 the maximum likelihood estimator has a higher or comparable mean squared
error than the mean squared error of the unbiased sample moment estimator. The
ratio increases in favour of the sample moment estimator as m increases and so for
m= 6,8 and n= 10 one should use the sample moment estimator. Due to the same
nonlinear behaviour in the reciprocal of the sample size the variance of the maximum
likelihood estimator yields for larger sample sizes a much lower variance than the
variance of the sample moment estimator (linear in the reciprocal of the sample
size). Combining this with the improving behaviour of the bias of the maximum
likelihood estimator as the sample size increases (see eighth row of Table 4.1) the
mean squared error of the maximum likelihood estimator becomes much smaller
than the mean squared error of the sample moment estimator. Since the density
of the maximum likelihood estimator has a smaller kurtosis than the density of
the sample moment estimator for n = 10.000 this improvement of the maximum
likelihood estimator can also be observed from the histograms in Figure 4.3. At the
same time the almost identical mean square error of both the maximum likelihood
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MLE sample moment estimator MSE ratio biasMLE
µ′m(X1)n sample mean sample std. dev. sample mean sample std. dev.

m=8 10000 27074669 1341236 27066457 2846382 0.2313 0.0006
1000 27182461 4348205 26944263 8855927 0.2360 0.0068
100 29031519 15308445 27281404 28474737 0.2865 0.0689
10 48059570 102244804 27074969 89459298 1.3065 0.7629

m=6 10000 185368 6919 185325 10188 0.4649 0.0003
1000 185565 22281 184791 32173 0.4690 0.0031
100 191428 74401 186200 103919 0.5113 0.0310
10 241452 333596 184009 331398 1.0412 0.3036

m=4 10000 1713 43 1713 48 0.7882 0
1000 1712 138 1710 154 0.7900 0.0008
100 1729 447 1715 499 0.8075 0.0088
10 1843 1552 1700 1579 0.9771 0.0807

Table 4.1 Estimation of mth moment in a normal population with parameters µ= 3
and σ = 4 for different values of the sample size and m.

estimator and the sample moment estimator for n= 10 and m= 4 can be observed
from Figure 4.4.

If the value of m increases we observe from Table 4.1 that the estimates of both
estimators become less accurate. This can also be observed from Figure 4.3 con-
sidering the histograms of the different estimators for sample size n = 10000 and
different values of m. From Table 4.1 we notice that for larger values of m the mean
squared error ratio decreases. This means for larger values of m that the maximum
likelihood estimator is more efficient than the sample moment estimator for a given
sample size. All these observations imply that one should use for all considered
values of m the maximum likelihood estimator if the sample size exceeds a certain
threshold value. In our particular chosen scenario of µ= 3 and σ = 4 we show these
threshold values in Figure 4.2 for m= 4,6,8.

However, contrary to estimating the mth central moment (the threshold value only
depends on m!), the threshold value of the sample size for estimating moments also
depends on the unknown σ and µ. In this case a rule of thumb to choose between
the two different estimators could be the following: Estimate beforehand for a given
sample the unknown µ and σ and for these estimated parameters compute the
mean squared error of both estimators. If the estimated mean squared error of the
maximum likelihood estimator is smaller than the mean squared error of the sample
moment estimator use the maximum likelihood estimator and otherwise the sample
moment estimator.
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Figure 4.2 graph of the function n 7→ nMSE
(
µ̂′m,ML,n(X)

)
and n 7→ nMSE(µ̂′m,n(X))

in a normal population having parameters µ= 3 and σ = 4.
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Figure 4.3 Histogram of the density of the maximum likelihood estimator and the
sample mth moment estimator, m= 2,4,6, for a normal population with parameters
µ= 3 and σ = 4 and sample size n= 10.000.

Figure 4.4 Histogram of the density of the sample moment estimator and the max-
imum likelihood estimator of the 4th moment for a normal population with param-
eters µ= 3 and σ = 4 and sample size n= 10
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MLE sample central moment estimator MSE ratio biasMLE
µm(X1)n sample mean sample std. dev. sample mean sample std. dev.

m=8 10000 6888682 385577 6882680 942069 0.1756 0.0008
1000 6929961 1258024 6835907 3093529 0.1813 0.0080
100 7489963 4511146 6657733 8713352 0.2470 0.0813
10 13601159 42395693 4514047 19616118 3.0639 0.9305

m=6 10000 61471 2580 61443 4104 0.3989 0.0002
1000 61578 8347 61118 13163 0.4050 0.0029
100 63533 28036 59920 40303 0.4704 0.0298
10 79598 141189 44419 99696 1.7980 0.2870

m=4 10000 768 21 768 24 0.7503 0
1000 767 69 765 79 0.7539 0
100 769 223 754 250 0.7903 -0.0001
10 760 766 618 675 1.2531 -0.0099

Table 4.2 Estimation ofmth central moment in a normal population with parameters
µ= 3 and σ = 4 for different values of the sample size and m.

4.3.2 Computational results for central moments

To calculate the mth central moment we use relation (4.3) for the sample central
moment estimator and relation (4.47) for the maximum likelihood estimator. For a
normally distributed random variable X1 with µ= 3 and σ = 4 it follows by relation
(A.20) that

(4.54) µ8(X1) = 6881280,µ6(X1) = 61440,µ4(X1) = 768.

In Table 4.2 it is shown that the bias of the maximum likelihood estimator of the
central moment decreases as the sample size increases. Looking in detail at this table
one can draw similar conclusions as done for the case of estimating moments. In the
two extreme cases n= 10 and n= 10.000 this is also shown in Figure 4.5 and Figure
4.6. In this particular case we have also shown at the end of the previous section
that one can compute easily a threshold value n∗(m) of the sample size satisfying
n ≥ n∗(m) if and only if the maximum likelihood estimator should be applied. A
graph of these values up to m= 50 is given in Figure 4.1.
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Figure 4.5 Histogram of the density of the maximum likelihood and sample central
moment estimator of the 4th central moment in a normal population with parameters
µ= 3 and σ = 4 and sample size n= 10

Figure 4.6 Histogram of the density of the the maximum likelihood and sample
mth moment estimator of the mth central moment in a normal population with
parameters µ= 3 and σ = 4 and sample size 10.000.
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4.4 Conclusion

In this paper we compared maximum likelihood and sample moment estimators for
the mth (central) moments in a normal population. Our analytical results as well
as simulation results show that the maximum likelihood estimator performs better
with respect to the mean square error objective than the sample estimator beyond
a certain sample size. In particular this threshold value can be easily computed for
estimating central moments. In estimating moments we propose a heuristic approach
to compute this threshold value.
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APPENDIX

Appendix of on the maximum likelihood approach applied to a
(generalized)gamma population

In this appendix we provide for completeness a property of the digamma function
useful in the analysis of the maximum likelihood optimization problem for a gener-
alized gamma population. We first mention its definition (cf.[33]).

Definition A.0.1. The function ψ : (0,∞)→ R given by

(A.1) ψ(α) := Γ′(α)
Γ(α)

with Γ(α) :=
∫∞
0 tα−1e−αtdt,α > 0 the well known gamma function is called the

digamma function.

To start our analysis we introduce Binets formula of the gamma function (for an
elementary proof see [34]) given by

(A.2) Γ(α+ 1) = (α
e

)α 2√2παeθ(α),α > 0

with

(A.3) θ(α) :=
∫ ∞

0

( 1
et−1 −

1
t

+ 1
2

)
e−αt

t
dt.

In the next lemma we analyse in more detail the function θ listed in relation (A.3).
Before discussing this result we introduce the following well known class of functions
(cf.[35]).

Definition A.0.2. A function f : I → R with I some open interval is said to
be completely monotone if all derivatives of the function f exists in I and satisfy
(−1)mf (m)(α) ≥ 0 for every α ∈ I and m ∈ Z+. The function f : I → R is called
strictly completely monotone if (−1)mf (m)(α)> 0 for every α ∈ I and m ∈ Z+

Lemma A.0.1. The function F : [0,∞)→ R given by

(A.4) F (t) := 2
1− e−t −

2
t
−1

is a cumulative distribution function satisfying F (∞) = 1 and F (0+) := limt↓0F (t) =
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0.

Proof. Clearly F (∞) = 1. Introducing now the function ω : [0,∞)→ R given by

(A.5) ω(t) = 1
1− e−t −

1
t

we obtain F (t) = 2ω(t)−1 and the result is proved showing ω is strictly increasing
and ω(0+) = 1

2 . To verify this we observe computing the derivative that the function
x→ ex+e−x is a strictly increasing function on (0,∞). This shows 2< ex+e−x for
every x > 0 and hence for every t > 0

(A.6) t2 =
∫ t

0
2vdv =

∫ t

0

∫ v

0
2dxdv <

∫ t

0
ev− e−vdv = et+ e−t−2.

It is easy to check for every t > 0 that the derivative of the function ω is given by

ω(1)(t) = 1
t2
− e−t

(1− e−t)2 = 1
t2
− 1
et+ e−t−2 .

and so by relation (A.6) the function ω is strictly increasing. To show ω(0+) = 1
2 we

observe
ω(t) = t− (1− e−t)

t(1− e−t) = t−1 ∫ t
0 1− e−vdv
1− e−t =

∫ 1
0 1− e−utdu

1− e−t .

This implies

limt↓0ω(t) = limt↓0

∫ 1
0 1− e−utdu

1− e−t = limt↓0

∫ 1
0

1−e−ut
tu udu

1−e−t
t

=
∫ 1

0
udu= 1

2

and we have verified the desired properties for ω.

Applying Lemma A.0.1 the next result follows immediately.

Lemma A.0.2. The function θ listed in relation (A.3) is strictly completely mono-
tone and has the alternative representation

θ(α) = 1
2

∫ ∞
0

F (t)e
−αt

t
dt,α > 0

with F the cdf listed in relation (A.4).

Proof. Since (1−e−t)−1 = 1+(et−1)−1 we obtain by relation (A.3) and the defini-
tion of the cdf F in relation (A.4) implying ω(t) = 1

2F (t) + 1
2 that

θ(α) =
∫ ∞

0

(
ω(t)− 1

2

)
e−αt

t
dt= 1

2

∫ ∞
0

F (t)e
−αt

t
dt.
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Applying the monotone convergence theorem we obtain by induction for every m ∈
Z+ that

(−1)mθ(m)(α) = (−1)2m

2

∫ ∞
0

F (t)tm−1e−αtdt

and this shows the result.

Following the same approach as in [36] it is easy to derive the following represen-
tation for the digamma function ψ. This representation is useful in determining the
asymptotic behaviour of the function ψ for α ↑∞ and for α ↓ 0.

Lemma A.0.3. Let (Ω,F ,P) be a given probability space and X a random variable
having cdf F listed in relation (A.4). Then it follows for every α > 0 that

2α(ln(α)−ψ(α))−1 = E(e−αX)

Proof. Since Γ(α+ 1) = αΓ(α) for every α > 0 we obtain by relation (A.2) that

(A.7) ln(Γ(α)) = ln(Γ(α+ 1))− ln(α) = (α− 1
2) ln(α)−α+ 1

2 ln(2π) + θ(α)

Taking the derivative in (A.7) and applying the representation of θ in Lemma A.0.2
shows

2α(ψ(α)− ln(α))−1 = α
∫ ∞

0
F (t)e−αtdt= E(e−αX)

and we have verifed the result.

Using Lemma A.0.3 the following result follows immediately. This result is also
shown in [36] by means of a more lengthy but related proof.

Lemma A.0.4. It follows that the function h1 : (0,∞)→ R given by

(A.8) h1(α) = α(ln(α)−ψ(α))

is strictly completely monotone satisfying h1(0+) = 1 and h1(∞) = 1
2 .

Proof. Apply Lemma A.0.3.

The next result is an easy consequence of Lemma A.0.4. Actually in [36] it is verified
that hυ is strictly completely monotone if and only if υ ≤ 1.

Lemma A.0.5. The function hυ : (0,∞)→ R given by

(A.9) hυ(α) = αυ(ln(α)−ψ(α))
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is strictly completely monotone for every υ ≤ 1.

Proof. Clearly by Lemma A.0.4 the result holds for υ= 1. Since it is easy to check by
Leibniz formula for the differentiation of the product of two differentiable functions
that the product of strictly completely monotonic functions is strictly completely
monotone (cf.[35]) we obtain using α→ αυ−1 is strictly completely monotone for
every υ < 1 that by Lemma A.0.4 the result follows for υ < 1.

Using the above lemmas it is easy to show the following result needed for our analysis
of the maximum likelihood problem for a generalized gamma distributed random
variable.

Lemma A.0.6. If the function H0 : (0,∞)→ R is given by

(A.10) H0(α) = α(ln(α)−1)− ln(Γ(α))

then (−1)nH(n+1)
0 (α)> 0 for every n ∈ Z+ and

(A.11) limα↓0H0(α)− ln(α) = 0

and

(A.12) limα↑∞H0(α)− 1
2 ln(α) + 1

2 ln(2π) = 0.

Proof. Since it is easy to check that H(1)
0 (α) = h0(α) for every α > 0 the first part

follows by Lemma A.0.5. To verify relation (A.11) observe using Γ(α+ 1) = αΓ(α)
that

(A.13) H0(α) = α(ln(α)−1)− ln(Γ(α+ 1) + ln(α)

and using Γ(1) = 1 this shows relation (A.11). To show relation (A.12) we observe
by relation (A.2) and (A.13) that

(A.14) H0(α) = (α+ 1)ln(α)−α− lnΓ(α+ 1) = 1
2 ln(α)− 1

2 ln(2π)− θ(α)

Applying now the monotone convergence theorem and Lemma A.0.2 we obtain
limα↑∞ θ(α) = 0 and this shows the result.
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Appendix of on the method of moments approach for a generalized
gamma population

In this Appendix we list some results for the polygamma functions. The next defi-
nition is well known (cf.[37],[38]).

Definition A.0.3. For any m ∈ Z+ the function

ψm(α) = ψ(m)(α) = dm+1 lnΓ
dαm+1 (α)

is called the polygamma function of order m

It is well know (cf.[37]) that for every α > 0 and n ∈ N

(A.15) (−1)n−1ψn(x) =
∫ ∞

0

tn

1− e−t e
−αtdt= n!

∑∞
k=0

1
(α+k)n+1

The next result is shown in [39]

Lemma A.0.7. It follows for every α > 0 and n ∈ N,n≥ 2 that

n−1
n

<
ψn(α)2

ψn−1(α)ψn+1(α) <
n

n+ 1

Introducing the function p : (0,∞)→ R given by

(A.16) p(α) = ψ2(α)
ψ1(α) 3

2

we will shown the following result.

Lemma A.0.8. The function p defined in relation (A.16) is a negative strictly
increasing function on (0,∞) satisfying p(∞) = 0 and p(0+) = limα↓0 p(α) =−2.

Proof. By relation (A.15) it follows that the function p is negative on (0,∞). Clearly
its derivative is given by

p(1)(α) =
−3

2ψ2(α)2

ψ1(α) 5
2

+ ψ3(α)
ψ1(α) 3

2
= ψ3(α)
ψ1(α) 3

2

(
1−

3
2ψ2(α)2

ψ3(α)ψ1(α)

)

Since by relation A.15 it follows that ψ3(α)ψ1(α)
ψ1(α)

5
2

> 0 we obtain by Lemma A.0.7 that

p(1)(α)> ψ3(α)ψ1(α)
ψ1(α) 5

2
(1−1) = 0
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and we have shown the result. To show the asymptotic limits we observe by relation
(A.15) that

ψ1(α) =
∑∞

k=0(α+k)−2

and
ψ2(α) =−2

∑∞
k=0(α+k)−3

for every α> 0. This shows that the function p is negative on (0,∞). Since it is easy
to check for every α > 1 that

α−1 ≤
∑∞

k=0(α+k)−2 ≤ (α−1)−1

and
1
2α
−2 ≤

∑∞
k=0(α+k)−3 ≤ 1

2(α−1)−2

we obtain

(A.17) −(α−1)−2α
3
2 ≤ p(α)≤−(α−1)

3
2α−2.

This shows p(∞) = 0. To verify that p(0+) = −2 we observe for every α > 0 that
Γ(α+1) = αΓ(α). This implies by differentiation that ψ1(α+1) =−α−2 +ψ1(α) and
ψ2(α+ 1) = 2α−3 +ψ2(α) for every α > 0. Hence it follows that

p(0+) = limα↓0
ψ2(α+1)−2α−3

(ψ1(α+1)+α−2)
3
2

= limα↓0
ψ2(1)−2α−3

(ψ1(1)+α−2)
3
2

= −2limα↓0
1

α3(ψ1(1)+α−2)
3
2

= −2limα↓0
1

(α2ψ1(1)+1)
3
2

= −2

and this shows the desired result.
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Appendix of on the sample mth moment and the maximum likelihood
estimator of the mth (central) moment in a normal population.

In this appendix we list in the first two lemmas some known results (cf.[40] for
the normal distribution. For completeness a short proof of these results is given.
Observe the lower entire function b.c : R→ N is defined by

byc= max{n ∈ Z+ : n≤ y}.

Lemma A.0.9. If X has a normal distribution with parameter µ ∈ R and σ > 0
then its moments are given

(A.18) µ′m(X) =m!
∑bm2 c

k=0
σ2kµm−2k

(m−2k)!2kk! .

Proof. It is well known that X d= µ+ σY with Y having a standard normal dis-
tribution. Applying Newton’s binomial formula this shows for every m ∈ Z+ that

(A.19) µ′m(X) = E((µ+σY)m) =
∑m

k=0

(
m

k

)
σkµ′k(Y)µm−k.

Also it is known (cf.[5]) for every s ∈R that the moment generating function ϕ(s) =
E(esY) = e

s2
2 . Applying now Taylor’s formula for the exponential function we obtain

∑∞
k=0

µ′k(Y)
k! sk = E(esY) = e

s2
2 =

∑∞
k=0

s2k

2kk! .

and this shows µ′2k(Y) = (2k)!
2kk! and µ′2k+1(Y) = 0 for every k ∈Z+. Hence by relation

(A.19) replacing m by 2m, respectively 2m+ 1 it follows that

µ′2m(X) =
∑m

k=0

(
2m
2k

)
(2k)!σ2kµ2m−2k

2kk!

and
µ′2m+1(X) =

∑m

k=0

(
2m+ 1

2k

)
(2k)!σ2kµ2m+1−2k

2kk!

showing the desired result.

From Lemma A.0.9 it is easy to derive the centralized moments of a normal distri-
bution observing X−E(X) has a normal distribution with parameter µ = 0 and
σ > 0 if X has a normal distribution with parameter µ ∈ R and σ > 0. Since
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µm(X) = µ′m(X−EX) for every m ∈ Z+ we obtain by Lemma A.0.9 that

(A.20) µ2m(X) = (2m)!σ2m

2mm! ,µ2m+1(X) = 0

Another result needed in our analysis is the following.

Lemma A.0.10. If the random variables Xi, i= 1, ..,n are independent and normal
distributed with parameter µ ∈ R and σ > 0 then for every m ∈ Z+

(A.21) E(Xm
n ) =m!

∑bm2 c
k=0

1
2k(m−2k)!k!µ

m−2kσ
2k

nk

with Xn := 1
n

∑n
i=1 Xi denoting the sample mean estimator of the random variables

X1, ....,Xn.

Proof. Since Xn
d= µ+ σn−

1
2 Z with Z having a standard normal distribution we

obtain

(A.22) E(X2m
n ) = E((µ+σn−

1
2 Z)2m) =

∑2m
k=0

(
2m
k

)
σkn−

k
2E(Zk)µ2m−k

This shows by relation (A.22) and Lemma A.0.9 the desired result. A similar proof
applies to E(X2m+1

n ) and so we omit it.

It is easy to see applying relation (A.21) that for µ 6= 0

(A.23) limn↑∞n(E(Xm
n )−µm) = m(m−1)

2 µm−2σ2.

Also for µ= 0 we obtain

(A.24) nE(Xm
n ) = σmn1−m2 µm(Z)

with Z a standard normal distributed random variable.

In the next result we evaluate the cdf of the quadratic form

(A.25) Wn = Y>anb>nY

with Y> = (Y1,Y2, ...,Yn) a random vector consisting of independent and standard
normal distributed random variables and the vectors an and bn given by

(A.26) an = e1,n−
in
n
,bn = e2,n−

in
n
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for every n ∈ N,n≥ 3. (for the definition see after formula (4.13)).

Lemma A.0.11. If Wn = Y>anb>nY with Y> = (Y1,Y2, ...,Yn) a random vector
consisting of independent and standard normal distributed random variables then for
every n ∈ N, n≥ 3

Wn
d=
(1

2 −
1
n

)
Z2

1−
1
2Z2

2

with Z1,Z2 independent standard normal distributed random variables.

Proof. Since by relation (A.26) it is obvious that a1nb2n = (1−n−1)2 6= n−2 = b1na2n

the n×n matrix An = anb>n is not symmetric. Introducing the symmetric matrix
An given

An := 1
2(An+A>n )

we obtain Wn = Y>AnY. Since the n×n matrix An is symmetric it is well known
(cf.[41]) that An has n real eigenvalues (counting multiciplicity) λ1n, ...,λnn and
there exists a orthogonal n×n matrix Pn (P>n = P−1

n ) satisfying

(A.27) P>n AnPn = Λn

with Λn the diagonal matrix consisting of the real eigenvalues λ1n, ....λnn of the
matrix An. By the independence of the vectors an and bn it also follows that the
rank r(An) of the matrix An equals 2. Applying now the rule r(AnB) = r(B) for
any n×n invertible matrix B (cf.[41]) we obtain by relation (A.27) that r(Λn) = 2.
This shows that only two eigenvalues say λ1n,λ2n are nonzero. By relation (A.27)
we obtain An = PnΛnP>n and this yields

(A.28) Wn= Z>nΛnZn,Zn=P>n Y

Since the random vector P>n Y has a multivariate normal distribution with mean
µ= 0 and

Var(P>n Y) = P>n Cov(Y,Y)Pn = σ2P>n InPn = σ2In

it follows that P>n Y d=(Z1, ...,Zn) with Zi, i = 1, ...,n independent standard normal
distributed random variables. Substituting this into relation (A.28) we obtain by
the above observations that

Wn
d=
∑n

i=1λiZ
2
i = λ1nZ2

1 +λ2nZ2
2

In the remainder of this proof we determine the nonzero eigenvalues of the matrix
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An. We first observe with ei denoting the ith unit vector of Rn that

e>nAnen = annbnn = n−2 > 0,e>1 Ane1 = a1nb1n =− 1
n

(1− 1
n

)< 0

and so one of nonzero eigenvalues λ1n,λ2n should be positive and one negative.
Select λ2n, as the negative one and λ1n as the positive one. We will now determine
a set of nonlinear equations satisfied by the eigenvalues λ1n,λ2n. Introducing the
trace tr(C) of a n×n matrix C given by

tr(C) =
∑n

i=1 cii

it is well known (cf.[41]) for a symmetric matrix C that

tr(C) =
∑n

i=1µi

with µi the real eigenvalues of the matrix C. By this observation we obtain for the
symmetric matrix An that

(A.29) λ1n+λ2n = tr
(

anb>n + bna>n
2

)
= a>n bn = −2(1−n−1)

n
+ n−2

n2 = −1
n

Also it follows that the matrix A2
n satisfies

A2
n =

(
anb>n+bna>n

2

)(
anb>n+bna>n

2

)

= 1
4 [anb>n anb>n + anb>nbna>n + bna>n anb>n + bna>n bna>n ]

= 1
4

[
b>n ananb>n +‖bn ‖22 ana>n +‖an ‖22 bnb>n + a>n bnbna>n

]
= 1

2b>n anAn+ 1
4‖bn ‖

2
2 ana>n +‖an ‖22 bnb>n

Hence its trace tr(A2
n) is given by

(A.30)

tr(A2
n) = − 1

2n(b>n an)2 + 1
2‖bn ‖

2
2‖ an ‖22

= 1
2n2 + 1

2(1− 1
n)2

= 1
2 −n

−1 +n−2

Since A2
n is again symmetric and λ2

i,n, i = 1, ...,n are its eigenvalues we obtain by
relation (A.30) that

λ2
1,n+λ2

2n = n−2−n−1 + 1
2
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Hence the two nonzero eigenvalues λ1n,λ2n must satisfy the system

λ1n+λ2n = −1
n
,λ2

1,n+λ2
2n = n−2−n−1 + 1

2 ,λ1,n > 0,λ2,n < 0

This is equivalent to the system

λ1n =− 1
n
−λ2n,(−

1
n
−λ2n)2 +λ2

2n = n−2−n−1 + 1
2 ,λ2,n < 0

and this implies

2λ2
2n+ 2

n
λ2n+ 1

n2 = n−2−n−1 + 1
2 ,λ2,n < 0

or equivalently

(
λ2n+ 1

2n

)2
= 1

4 −
1

2n + 1
4n2 = 1

4(1− 2
n

+ 1
n2 ) = 1

4(1−n−1)2

Since 1
4−

1
2n + 1

4n2 ≥ 1
4n2 for n≥ 2 it must follow that λ2n =−1

2(1−n−1)− 1
2n =−1

2
and λ1:n = 1

2 −
1
n showing the desired result.
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