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ABSTRACT

ALTERNATIVE FORMULATIONS AND SOLUTION APPROACHES FOR
DISTRIBUTION NETWORK DESIGN WITH SEASONALITY

Yasaman Karimian Hadi Ardebili

Industrial Engineering, Master’s Thesis, December 2020

Thesis Supervisor: Prof. Dr. Güvenç Şahin
Thesis Co-Supervisor: Asst. Prof. Dr. Tevhide Altekin

Keywords: Distribution network design problem, Seasonal variations, Facility
location, Routing decisions, Linear-programming-based Constructive Heuristic,

Local branching algorithm

In this study, we consider a single-commodity distribution network design prob-
lem, which takes seasonal variations in the demand into account. We consider a
three-echelon supply chain network design over a planning horizon, consisting of
four seasons; products are delivered to outlets from a distribution center through
regional depots. We develop alternative mathematical models that have different
levels of flexibility while responding to seasonal demand. The problem formulations
incorporate decisions related to locations of regional depots, amount of transporta-
tion from distribution center to regional depots, and routes used for delivery from
regional depots to outlets while the objective function minimizes the total cost due
to opening and operating regional depots as well as transportation-related costs. To
solve the resulting problems, we first propose a linear-programming-based construc-
tive heuristic approach. Alternatively, we adapt the local branching algorithm to
all three models with variations on branching of different binary decision variables.
In order to evaluate the efficiency and effectiveness of the proposed heuristics, we
solve instances of four sets of problems varying in terms of the problem size. We
also evaluate the effect of the truck size used in delivery to outlets on the problem
difficulty and also its impact on the solution quality. The results show that the
local branching algorithm has mostly demonstrated a better performance in terms
of solution quality and computational efficiency compared to other approach.
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ÖZET

MEVSİMSEL TALEP VARLIĞINDA DAĞITIM ŞEBEKESİ TASARIMI İÇİN
ALTERNATİF FORMÜLASYONLAR VE ÇÖZÜM YAKLAŞIMLARI

Yasaman Karimian Hadi Ardebili

Endüstri Mühendisliği, Yüksek Lisans Tezi, Aralık 2020

Tez Danışmanı:: Doç. Dr. Güvenç Şahin
Tez İkinci Danışmanı: Dr. Öğr. Üyesi Tevhide Altekin

Anahtar Kelimeler: Dağıtım ağı tasarım problemi, Mevsimsel değişimler, Tesis
konumu, Yönlendirme kararları, Yerel dallanma algoritması

Talepteki mevsimselliği göz önünde bulunduran tek ürünlü bir dağıtım ağı tasarımı
problemi ele alınmaktadır. Dört mevsimden oluşan bir planlama ufku içerisinde,
ürünlerin bölgesel depolar aracılığıyla satış noktalarına teslim edildiği, üç seviyeli
bir tedarik zinciri ağı tasarımı çalışılmaktadır. Bu problem için, mevsimsel taleplere
cevap verirken sahip oldukları esneklikleriyle birbirinden ayrışan alternatif matema-
tiksel modeller geliştiriyoruz. Problem formülasyonları bölgesel depoların yeri, dağı-
tım merkezinden bölgesel depolara yapılan taşıma miktarları, ve ürünlerin bölgesel
depolardan satış noktalarına dağıtımında kullanılan rotalarla ilgili kararları içerir-
ken, amaç fonksiyonu bölgesel depoların kurulması ve işletilmesi ile ilgili maliyetlerin
yanında nakliye ile ilgili masrafları da enazlamaktadır. Ortaya çıkan problemin çö-
zümü için, ilk olarak doğrusal-programlama tabanlı sezgisel bir yaklaşım öneriyoruz.
Ayrıca, yerel dallanma algoritmasını her üç modele de farklı ikili karar değişkenleri
üzerindeki varyasyonlarıyla uyarlıyoruz. Önerilen sezgisellerin etkinlik ve verimli-
liğini değerlendirmek için, problem büyüklüğü açısından birbirlerinden farklı dört
problem kümesindeki örnekleri çözüyoruz. Satış noktalarına teslimatta kullanılan
araç büyüklüğünün problemin zorluğundaki ve çözüm kalitesindeki etkisini de de-
ğerlendiriyoruz. Sonuçlar tüm çözüm yaklaşımlarının çözüm kalitesi ve bilgisayısal
verimlilik açısından iyi çalıştığını gösteriyor.
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1. INTRODUCTION

Developing a cost-effective distribution network to improve service level provides
a strategic privilege for companies to increase competitiveness and enables their
system to satisfy the business needs in the long run. One of the main issues in
such systems is to determine the network structure and the transportation scheme.
The former considers the number of echelons, types of facilities at each echelon,
the number of facilities, and their locations. While the latter considers the number
and size of vehicles as well as constructing the flow routes. Thus, the design of a
distribution network consists of strategic location decisions as well as operational
transportation decisions. Strategic decisions affect both the operation costs of the
system and its ability to serve customers, directly (Bari (2019); Crainic & Laporte
(1997)).

In real-world businesses, many products and appliances face seasonality in demand.
According to the National Appliance Repair Report conducted by Puls company,
home appliances such as air conditioners and refrigerators have a greater likelihood
of breaking down during the Summer months. Therefore, according to this report,
demand for repairing or replacing these products increases in Summer. Considering
demand as static in such systems with notable seasonal fluctuations can be regarded
as a disadvantage since it may result in costly solutions and failing to meet demand
during high demand season (Dayarian, Crainic, Gendreau & Rei (2016)). On the
other hand, in many systems, the delivery plan may be based on the maximum
demand level over horizon. As a result, vehicle utilization can be much less in lower
demand seasons and the company may endure a high cost regarding the transporta-
tion decisions. Figures 1.1 and 1.2 we present two examples of Google Trends search
volumes to demonstrate seasonality.

In this thesis, we address a three-echelon distribution network design problem, which
by considering seasonal fluctuation in demand, provides more applicability to the
business requirements. We consider a supply chain consisting of a distribution cen-
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Figure 1.1 The air conditioners Google Trend search volumes over five years

Figure 1.2 The refrigerator Google Trend search volumes over five year

ter (DC), regional depots, and outlets. The inbound transportation of products,
from the DC to regional depots, and outbound transportation, from regional de-
pots to outlets, are considered. The decisions include the number and locations of
intermediate regional depots, amount of inbound transportation to each depot and
selection of routes for outbound transportation. While minimizing the total cost
of the distribution network including costs associated with the opening and operat-
ing of regional depots, and both inbound and outbound transportation costs, both
strategic and tactical decisions are involved.

To formulate this problem, we develop mathematical models. We generate problem
instances in four sets, varying in terms of size while each model is solved via a
commercial solver, we propose a linear programming based construction heuristic
and a local branching algorithm. Our contributions can be summarized as follows:

3



• Considering seasonal fluctuations in demand, we describe a three-echelon dis-
tribution network design problem, which incorporates facility location, trans-
portation quantity, and route selection decisions.

• We develop three mathematical models for the distribution network design
problem.

• We propose heuristic algorithms: a linear programming based construction
heuristic and variations of the local branching approach.

The rest of this thesis is organized as follows: Chapter 2 includes the literature
review. Problem definition and mathematical models are presented in Chapter 3.
In Chapter 4, we explain our solution methods. The computational results are given
in Chapter 5. Finally, we conclude the main findings in Chapter 6.
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2. LITERATURE REVIEW

In this chapter, we present a review on distribution network design problems (DDPs).
The distribution network design problem generalizes two combinatorial optimization
problems: facility location problems (FLPs) and transportation problems. In the
FLPs, customers receive the service by direct shipments from selected warehouses
at minimum cost (Daskin (1996); Hakimi (1964)). Transportation problems aim to
select a set of minimum cost routes to satisfy customer demands using a fleet of
vehicles (Dantzig & Ramser (1959); Toth & Vigo (2014)).

Webb (1968) and Salhi & Rand (1989) evaluated the effect of ignoring the interde-
pendency between routing and location decisions and recognized that it may often
lead to sub-optimal solutions. Since then, some studies have focused on this inter-
dependence, in particular location routing problems (LRPs), in the context of DDP.
Generally, in these problems, the aim is to decide at minimum cost, which and how
many facilities to open while building routes to visit the customers, simultaneously
(Casco, Golden & Wasil (1988)). The core of DDP is single-echelon LRPs (Ben
Mohamed, Klibi & Vanderbeck (2020)). Maranzana (1964) came up with the first
work on this issue.

Due to the high growth of population, especially when the customers are located
in a large geographical area, more attention is turned to two-echelon distribution
systems. Therefore, LRPs are extended to the two-echelon LRP (2E-LRP) by adding
an intermediate echelon standing between warehouses and customers (Ambrosino &
Scutella (2005)). First studies, in this area, are conducted by Jacobsen & Madsen
(1980) and Madsen (1983) to design a newspaper distribution system.

Given the strategic nature of decisions in two-echelon DDP (2E-DDP), the network
must be considered as long term planning problems to fulfill future requirements of
business environments efficiently over time (Ben Mohamed et al. (2020)). Albareda-
Sambola, Fernández & Nickel (2012) studied a multi-period discrete facility location
problem in which location and routing decisions are taken in different time scales.
They assumed a discrete facility location problem over a finite time horizon and
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developed an approximation to solve the problem without missing the privilege to
find well-located facilities along with the sets of customers in the time horizon. Tu-
nalıoğlu, Koç & Bektaş (2016) considered a particular case of the mentioned work
of Albareda-Sambola et al. (2012) in which all facility decisions are made at the be-
ginning of the planning horizon. They assumed that no location decisions are taken
at any point in the time horizon. Besides, capacity constraints for each facility are
included in their study. To solve the problem, they proposed an adaptive large
neighborhood search metaheuristic. Klibi, Lasalle, Martel & Ichoua (2010) mod-
eled a stochastic location-transportation problem (LTP) over a planning horizon to
maximize profit. The decisions about the location of depots, from given potential
uncapacitated depots, are made at the beginning of the planning horizon. While
to satisfy the uncertain customers’ demand, transportation decisions on vehicle size
and routes, from a given set of routes, are made daily. They considered outbound
transportation costs independent of the load shipped in the vehicle and excluded
inbound transportation decisions. They proposed a hierarchical heuristic solution
approach based on the sample average approximation (SAA) method to solve the
problem. Darvish, Archetti, Coelho & Speranza (2019) addressed an integrated
routing problem where a commodity is delivered to customers through a two-echelon
supply network. They analyzed two kinds of flexibility in their work. Flexibility in
network design and in due dates, which concerns renting a distribution center in
any period and serving a customer between the period an order is set and the due
date, respectively. They consider outbound and inbound transportation costs and
proposed an enhanced parallel exact algorithm based on the interplay between two
branch-and-bound algorithms. Ben Mohamed et al. (2020) studied a multi-period,
two-echelon supply chain network under stochastic demand. They considered ware-
house location, platform allocation, and capacity configurations in their alternative
modeling approaches and solve their problem by Benders decomposition approach.

In many systems, the routing plan is implemented repeatedly over a long planning
horizon and parameters, such as demand are assumed fixed and known a priori
(Dayarian, Crainic, Gendreau & Rei (2015)). However, this assumption is not valid
for various real life applications and may result in inferior solutions. Specially, this
issue exists in systems with notable seasonal fluctuations in supply/demand over
the considered planning horizon (Dayarian et al. (2016)). It should be stated that,
since different periods may have different average demand with distinct distributions,
seasonal patterns must be recognized and separated from randomness (Gendreau,
Jabali & Rei (2016)). The importance of this issue is notable in designing routes
over a time horizon which, contains several seasons. In this respect, Dayarian et al.
(2015) studied a multi-period vehicle routing problem (VRP) to optimize collecting
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products from different production locations over a given planning horizon. They
considered seasonal fluctuation of the supply in their model and developed a branch
and price algorithm to reach the solution. Using this approach, they could solve
instances with no more than 60 producers and five periods. However, to have an
efficient approach to solve larger problems with several hundred customers, the same
authors (Dayarian et al. (2016)) presented an adaptive large-neighborhood search
(ALNS) for a multi-period VRP with seasonal fluctuations.

To the best of our knowledge, no work considers three-echelon location transporta-
tion problem under seasonality. Considering the importance of this issue, our aim
is to provide a realistic definition of a distribution network design problem, present
alternative formulations as mixed-integer programming models, solve them using
a commercial solver as well as a linear programming based constructive heuristic
and variations of the local branching approach, and examine the solution time and
quality.
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3. PROBLEM DEFINITION

We consider a distribution network design problem over a planning horizon consist-
ing of four seasons. The network consists of a distribution center (DC), regional
depots, and outlets. Without loss of generality, the products are assumed to be
aggregated as a single product family since they share the same handling and stor-
age technology (Klibi, Martel & Guitouni (2016)). Through regional depots, the
products are sent from DC to outlets. The transportation of products from DC
to regional depots are direct (inbound transportation), but from depots to outlets
(outbound transportation) selected routes are used. Among the strategic decisions
involved in operating and managing such systems, we focus on determining the loca-
tion and the number of regional depots to open during the whole planning horizon.
In addition, we also consider tactical and operational decisions such as the flow
of products in different seasons and outbound route selections. Each route origi-
nates from a depot and includes a number of outlets. A solution to the distribution
network design problem should satisfy the demands of the outlets in the planning
horizon in each season. We make the following assumptions:

• There is only one distribution center.

• The number of opened depots faces no limitation; but each depot is associated
with an opening and operating cost.

• Open depots are used in the complete planning horizon.

• The locations of DC, regional depots, and outlets are given.

• The inbound transportation cost from the DC to a regional depot is a function
of the Euclidean distance between these facilities, the transportation cost per
unit volume per unit distance, and the volume of products shipped.

• The demand for each outlet in each season is known.

• Homogeneous vehicle fleet is used.

• More than one route can be used for delivery to an outlet in each season.
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• More than one regional depot can cover an outlet.

The main decisions are involved with

• number and location of regional depots to be opened and operated during the
planning horizon,

• amount of products transported from DC to the regional depots in each season,
and

• selected routes as well as the amount of products transported from regional
depots to outlets in each season.

The objective of the distribution network design problem is to minimize the total
cost of opening and operating depots, and transportation related costs. We use
alternative mathematical modeling approaches in order to solve this problem. Each
approach is used to satisfy different purposes. The mathematical models are differ-
ent from each other with respect to handling of seasonality through transportation
decisions. These differences impact the decision variables along with the associated
cost structures.

3.1 Mathematical Models

In order to develop the mathematical models, we first present the common notation
for sets and parameters in Table 3.1.
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Table 3.1 Common notation for all three models

Notations Descriptions
I set of candidate locations for regional depots
J set of outlets
S set of seasons
R set of routes for outbound transportation considering candidate

regional depot locations to outlets
Ri set of routes that are originating from regional depot i
Rj set of routes that contain outlet j
Jr outlets covered in route r
Djs demand of outlet j in season s (in terms of volumetric weight)
Q capacity of the outbound transportation vehicles
fi fixed cost of opening and operating a regional depot at location i
ci inbound transportation cost (per unit volume) from the

distribution center to regional depot i

In our three models, yi, wis, and xjrs are the common decision variables. The binary
decision variable yi is equal to 1, if a regional depot is opened at location i; and
0 otherwise. wis represents the amount of product delivered to regional depot i in
season s, and xjrs is the amount of product delivered to outlet j through route r

in season s. In the upcoming subsections, we will define additional parameters and
decision variables as needed for each model.

3.1.1 Model 1: Fixed Route Selection (zr)

In the first mathematical model, we consider the routing decisions for outbound
transportation as fixed throughout the planning horizon. This model would yield
a robust solution under seasonal demand and would be appealing for companies
that aim operational stability even under seasonality. However, higher outbound
transportation costs would be expected due to not using less routes and vehicles in
lower demand seasons. In this respect, we define the corresponding decision variable
as a set of binary variables zr, which is equal to 1, if route r is used; 0, otherwise.
Parameter cr is used to denote the outbound transportation cost; it is a function of
distance between regional depots and outlets and the capacity of each vehicle. The
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resulting problem formulation for Model 1 becomes

minimize
∑
i∈I

fiyi +
∑
i∈I

∑
s∈S

ciwis +
∑
r∈R

crzr(3.1)

subject to
∑

r∈Rj

xjrs = Djs ∀(j,s) ∈ (J,S)(3.2)

∑
r∈Ri

∑
j∈Jr

xjrs ≤ wis (i,s) ∈ (I,S)(3.3)

wis ≤
∑
j∈J

Djsyi ∀(i,s) ∈ (I,S)(3.4)

∑
j∈Jr

xjrs ≤Qzr ∀(r,s) ∈ (R,S)(3.5)

xjrs ≥ 0 ∀(j,r,s) ∈ (J,Rj ,S)(3.6)

wis ≥ 0 ∀(i,s) ∈ (I,S)(3.7)

yi ∈ {0,1} ∀i ∈ I(3.8)

zr ∈ {0,1} ∀r ∈R(3.9)

The objective function (3.1) minimizes the total cost due to opening and operat-
ing regional depots, inbound transportation over all seasons (from DC to regional
depots) and outbound transportation (from regional depots to outlets). Demand
satisfaction constraint for each outlet in each season is given in (3.2). Constraint
(3.3) ensures that in each season, the amount of product, which is transported from
DC to regional depots is greater than or equal to the amount of product that is
delivered to outlets from regional depots. Constraint (3.4) depicts that the flow of
products in each season, should be received from an opened and operated depot.
Constraint (3.5) ensures that the number of products delivered to outlets from re-
gional depots should not exceed the capacity of selected route. Finally, (3.6), (3.7),
(3.8), and (3.9) are the domain constraints for decision variables.

Solving this problem yields a set of regional depots to open, a set of selected routes,
amount of products transported from DC to regional depots in each season, and
amount of products transshipped from regional depots to outlets in each season
through each route. Both depots and selected routes are used in the whole planning
horizon according to this model; they are not season specific.
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3.1.2 Model 2: Seasonal Route Selection (zrs)

In the second mathematical model, we consider seasonal routing decisions for out-
bound transportation. This model represents an "ideal approach" as the outbound
transportation decisions are changed in response to seasonal changes in demand.
While being responsive to seasonal changes, this model would yield the lowest out-
bound transportation costs and total costs. However, this model is the most com-
putationally challenging one.

We define the corresponding decision binary variable zrs, which is equal to 1, if route
r is used in season s. c′

rs represents the outbound transportation cost in season s

and is a function of distance between regional depots and outlets and the capacity
of each vehicle. The relation between the outbound transportation cost terms of
Model 1 and Model 2 can be shown as

(3.10) cr = 4(c′
rs)

When the number of seasons is 4, the resulting problem formulation for Model 2 is
a generalization of (3.1)-(3.9) as

minimize
∑
i∈I

fiyi +
∑
i∈I

∑
s∈S

ciwis +
∑
r∈R

∑
s∈S

c′
rszrs(3.11)

subject to (3.2)− (3.4)∑
j∈Jr

xjrs ≤Qzrs ∀(r,s) ∈ (R,S)(3.12)

(3.6)− (3.8)

zrs ∈ {0,1} ∀(r,s) ∈ (R,S)(3.13)

The objective function (3.11) of this model minimizes the total cost of opening and
operating regional depots, inbound transportation costs in each season (from DC to
regional depots), and outbound transportation costs in each season (from regional
depots to outlets). Constraint (3.12) ensures that the number of products delivered
to outlets from regional depots do not exceed the capacity of selected route in each
season. Finally, (3.13) is the domain constraints for decision variables.

Solving this problem yields a set of regional depots to open, a set of selected routes
in each season and amount of products transported in each season. The selected
routes are chosen for each season specifically.
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3.1.3 Model 3: Amount of Delivered Products (xjrs)

In this mathematical model, we do not consider a binary routing decision variable
for outbound transportation. As the ideal approach presented in Model 2 is com-
putationally challenging, the objective of this model is to find a lower bound on the
total cost by reducing the binary variables associated with route selection in each
season. Compared to Model 1, this model is also responsive to seasonal changes.
Compared to Model 2, it is less computationally challenging. However, it is expected
to underestimate the total cost because outbound transportation cost is a function
of the amount of transportation rather than capacity of the vehicle.

The unit transportation cost, c′′
rs is calculated as

(3.14) c′′
rs = c′

rs

Q

where c′
rs is the seasonal route cost in Model 2. The resulting problem formulation

for Model 3 becomes

minimize
∑
i∈I

fiyi +
∑
i∈I

∑
s∈S

ciwis +
∑

j∈Jr

∑
s∈S

c′′
rsxjrs(3.15)

subject to (3.2)− (3.4)∑
j∈Jr

xjrs ≤Q ∀(r,s) ∈ (R,S)(3.16)

(3.6)− (3.8)

Again, the objective (3.15) of this model is to minimize the total cost of the network,
which consists of the fixed cost of opening and operating regional depots, inbound
transportation costs in each season (from DC to regional depots), and outbound
transportation costs in each season with respect to amount of delivered products
(from regional depots to outlets). Constraint (3.16) ensures that the number of
products delivered to outlets from regional depots should not exceed the capacity
of each vehicle.

Solving this problem leads to a set of opened regional depots, quantities of the
transported products from DC to regional depots in each season, and from regional
depots to outlets in each season through each route.
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These three models are different from each other in formulating the outbound trans-
portation decisions. In Model 1, zr is independent from seasonality, and the trans-
portation cost is calculated by summing up the fixed cost of using each route. Model
2 is a generalization of Model 1 since it considers seasonality and the routing decision
variables are season-dependent and denoted by zrs. In Model 3, xjrs represents the
amount of product j delivered to each outlet through each route r in each season s.
This model charges the outbound transportation cost for the load on the vehicle, not
the vehicle capacity. Although, the real-life businesses mostly consider the number
of vehicles and the capacity in their total costs upon a contractual agreement, Model
3 can be also of great use.

To provide an insight on the performance of these models regarding their outbound
transportation decisions, we observed the number of vehicles and the percentage
of their used capacity in each season. We calculated these values for one problem
instance for Model 2 and Model 3 and compered the results. For each season, to
calculate the average vehicle utilization we used the formula

(3.17)
∑

j∈Jr
xjrs

nQ
∗100,

where n is the number of used vehicles.

Table 3.2 summarizes the vehicle utilizations in each season for Model 2 and Model
3. According to this Table, Model 2 yields at least 67% of the vehicle utilization in
each season. While Model 3 allows partial flow and uses around 40% of the vehicle
capacities in seasons 1, 2, and 4, which are low demand seasons. Moreover, Model
2 selected one route (i.e., vehicle) less than Model 3, overall. In Model 2, eight out
of 16 vehicles, and in Model 3, fourteen out of 17 vehicles are used in low demand
seasons.

Table 3.2 Vehicle utilizations of Model 2 and Model 3

Season 1 Season 2 Season 3 Season 4
Model 2 75.7% 81.2% 87.0% 66.6%
Model 3 43.3% 46.4% 80.8% 38.0%

In order to observe how the difference between the outbound transportation decisions
affect the overall solutions, we examine the optimal solutions of a problem instance
closely when all three models find the same optimal locations for regional depots.
For this purpose, let us look at how the values of objective function terms differ from
each other. Out of 10 candidate locations, all three models have selected the same
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4 regional depots and naturally, their total cost of opening and operating regional
depots (first term of the objective function) is the same. However, not only the
outbound transportation total cost is different significantly, which is expected due
to the nature of decision variables but also the inbound transportation decisions are
apparently not identical. In Table 3.3, specific cost of each term in the objective
function is presented; Obj Value stands for the objective function value of the optimal
solution.

Table 3.3 Comparision of the values of objective function terms

Model 1 Model 2 Model 3
Obj Value 171860.8 160645 143793.6
First term 47525.0 47525.0 47525.0
Second term 66577.1 66084.8 65604.9
Third term 57758.7 47035.1 30663.7

Table 3.4 Selected route by each model

Model 1 5 6 7 8 21 22 24 25 26 30 32 41 47 50 51
Model 2 6 7 8 21 22 25 26 30 41 44 47 50 51
Model 3 6 7 8 21 22 25 27 28 30 41 42 47 50 51

To examine the efficiency of our generated routes, we performed an experiment on
Model 1 and Model 2. We took one instance randomly and omit one of the routes
from optimal solution and observed the result. The objective function value of Model
1 and Model 2 increased by 0.28% and 0.21%, respectively.
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4. SOLUTION METHOD

Three-echelon transportation location problem is known as NP-hard (Atamtürk &
Zhang (2007)). Hence, the proposed problem in this thesis, which considers season-
ality is NP-hard as the seasonality imposes additional complexity to the problem.
Regarding this issue, it is not efficient to solve this problem with commercial solvers
since they are not able to find good quality solutions in a reasonable time, espe-
cially in larger-scale problems. Therefore, in this chapter, we discuss the solution
methods applied to solve the problem. First, we explain a linear programming (LP)
based construction heuristic. Then, we explain the local branching approach and
its implementation on our presented problems.

4.1 A Linear Programming Based Heuristic Approach

We develop an LP-based heuristic solution approach, which iteratively uses the
solution of the LP relaxation to build a feasible integer solution.

Initially, the algorithm solves the LP relaxation of the problem and obtain decision
variable’ values. Then, it finds the candidate regional depot location for which the
decision variable yi has the maximum fractional value in the solution and forces the
depot with that location to be opened, in the next iteration the same approach con-
tinues iteratively. In each iteration, the algorithm finds the new maximum fractional
value of yi among the remaining candidate locations and adds a constraint to fix
its value to 1. The algorithm continues to solve the problem with these additional
constraints until all facility location variables are either 0 or 1. Once the facility
location variables are fixed accordingly, the algorithm removes the relaxation on the
remaining binary variables and solves the mixed-integer programming problem to
find a feasible solution.
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The steps of this algorithm are illustrated with a flowchart in Figure 4.2. In this
flowchart LIST1 is the list of indices, i ∈ I, with 0 < yi ≤ 1 and LIST0 stands for
the list of indices with yi = 0, i ∈ I. Besides, ym shows yi with the largest value.

4.2 Local Branching Algorithm

The local branching algorithm, proposed by Fischetti & Lodi (2003), is a technique
to solve mixed-integer programming problems. The method is exact by nature;
however, by redefining some control parameters, it becomes a heuristic. In fact,
it has been developed to improve the heuristic behavior of a MIP solver as a black
box. Many researchers used this approach in their relevant studies such as Fischetti,
Polo & Scantamburlo (2004); Hajiyan & Yaghini (2020); Rei, Gendreau & Soriano
(2010); Rodríguez-Martín & Salazar-González (2010); Yaghini, Momeni & Sarmadi
(2013). We first discuss the main features of the general local branching algorithm.

The following problem and explanations are first presented in Fischetti & Lodi
(2003) and are provided here for the sake of completeness. Problem P is a generic
MIP with 0-1 variables as:

MinCT x(4.1)

Ax≥ b(4.2)
xj ∈ {0,1} ∀j ∈B 6= ∅(4.3)
xj ≥ 0 , integer ∀j ∈ I(4.4)
xj ≥ 0 ∀j ∈ C(4.5)

The variable index set is partitioned into (B,I,C), where the set for binary variables
is defined by B. Sets I and C are the index set for general integers and continuous
variables, respectively, which may be empty sets.

For a feasible solution x̄ of (P ), consider S̄ := {j ∈B : x̄j = 1} as the binary support
of x̄. For a given positive integer parameter k, the k-OPT neighborhood N(x̄,k)
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Figure 4.1 The flowchart for the LP-based heuristic solution approach
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of x̄ is the set of feasible solutions of (P ) satisfying the additional local branching
constraint

(4.6) ∆(x, x̄) :
∑
j∈S̄

(1−xj) +
∑

j∈B\S̄

xj ≤ k

In equation (4.6), the two terms on the left-hand side count the number of binary
variables. Given the incumbent solution x̄, the solution space can be partitioned by
means of the disjunction

(4.7) ∆(x, x̄)≤ k (left branch) or ∆(x, x̄)≥ k + 1 (right branch)

The idea is that the neighborhood N(x̄,k) of the left-branch sub-problem should be
sufficiently large to contain better solutions and yet small enough to be optimized
within a short computing time. The neighborhood-size parameter k should be opted
as the largest value so that the left-branch sub-problem is much easier to solve
than the associated parent problem. According to the computational experiments
conducted by Fischetti & Lodi (2003), choosing the value of k is not a problem by
itself. In most cases, a value in the range of [10,20] proved to be effective. The
method mainly alternates between two phases. The strategic phase in which the
local branching cuts define promising solution regions, and the tactical phase in
which these regions are explored by a classical branching scheme on the variables
using a MIP solver.

In order to put a time limit on each left branch node and the total computation time,
two parameters node time limit and total time limit are used. Since the algorithm
starts with a feasible solution, we assume to have a starting incumbent solution x̄1

of (P ). The constraint ∆(x, x̄1)≤ k is added to create the left branch sub-problem,
which is solved with an MIP solver. If x̄2, the solution of this step found within
the time limit, is better, it becomes the new incumbent. The process backtracks to
the parent node by replacing constraint ∆(x, x̄1)≤ k by constraint ∆(x, x̄1)≥ k +1.
Moreover, by adding the cut ∆(x, x̄2) ≤ k to the model a new left branch node is
created. The algorithm solves the model by adding these two constraints to the
model at the same time.

On the other hand, it is possible that the solution x̄1 is not improved within the node
time limit. In that case, we will go through the intensification step, which means
reducing the size of neighborhood N(x̄,k), reducing the right-hand side of constraint
(4.6). When the MIP solver reports proven infeasibility or when it is not able to
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reach a feasible solution in the defined node time limit, the diversification method is
applied to the local branching scheme. By enlarging the size of neighborhood N(x̄,k),
increasing the right-hand side of constraint (4.6), a soft diversification mechanism
is incorporated into the algorithm. We consider upper bound for the number of
diversifications. Therefore, the algorithm must not exceed the maximum number
of diversifications. The main procedure of local branching is an iterative while
loop, which continues until either the total time limit or the maximum number of
diversifications is met. In what follows we will explain the implementation of the
local branching algorithm on proposed models.

4.3 Implementation of Local Branching Algorithm

We now discuss the implementation of local branching algorithm. According to
the description in Section 4.2, the local branching algorithm exploits the values of
binary decision variables. All three models in Section 3 share the common facility
location variable yi. We discuss the implementation details with local branching on
this variable, which is easily generalized for all three models. In our computational
experiments, we also adapt the implementation for the other variables zr and zrs,
respectively for Model 1 and Model 2. Indeed, the exact same process is mimicked
for these variables.

Given a feasible solution ȳ, let S̄ = {i ∈ I : ȳi = 1} denote the binary support of ȳ.
For a given value of integer parameter k, the algorithm first solves the left branch
sub-problem with added constraint

(4.8) ∆(yi, ȳi) :
∑
i∈S̄

(1−yi) +
∑

i∈I\S̄

yi ≤ k,

and finds ŷ as a solution within the preset node time limit. The algorithm compares
the objective function value of the left branch solution, i.e. obj(ŷ) with that of the
parent node, i.e. obj(ȳ). If there is no improvement, the value of k is reduced by
half, and the procedure is repeated. But if the result is improved, i.e. obj(ŷ) is less
than or equal to obj(ȳ), the left branch constraint is replaced by the right branch
and a new left branch constraint is added to the problem, simultaneously. As a
result, the algorithm continues with constraints ∆(yi, ȳi) ≥ k + 1 and ∆(yi, ŷi) ≤ k.
Given the new solution (y′), in the next step, the objective function value of (y′)
is compared with that of the previous step (ŷ). If the result is improved, the left
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branch constraint ∆(yi, ŷi)≤ k is replaced by the right branch ∆(yi, ȳi)≥ k +1, and
a new left branch node is created by adding the cut ∆(yi,y

′
i) ≤ k to the model.

When the MIP solver is not able to reach a feasible solution in the defined node
time limit, the diversification method is applied. We also put a limitation on the
number of diversification mechanism that the algorithm can perform. This process
continues iteratively until either the MIP gap is zero or the total time limit or the
maximum number of diversifications is exceeded.

The steps of the algorithm are presented with a flowchart in Figure 4.2.
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Figure 4.2 Local branching algorithm flowchart
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5. COMPUTATIONAL RESULTS

In this chapter, we describe the experimental design carried out and the related
computational results. First, we present the data and parameters of each problem
sizes. Then, we discuss the results of each problem size for all models and solution
approaches. The aim is to evaluate the efficiency and effectiveness of the presented
solution approaches.

5.1 Experimental Design

Since the validity of an experiment is intertwined with its construction and execu-
tion, its structure is of great importance. To examine the impact of problem size on
our formulations, four different sets of problems in terms of the number of outlets,
regional depots, and routes are generated:

• 30 outlets, 10 regional depots and 58-91 routes

• 50 outlets, 15 regional depots and 150-213 routes

• 100 outlets, 30 regional depots and 610-786 routes

• 250 outlets, 75 regional depots and 4414-5056 routes

The route sets are generated using the expanded nearest neighbor search algorithm
in Ercan (2019). While the locations of the outlets are determined randomly in a
100× 100 grid coordinate system, in each problem, the single distribution center
is placed at the center of the system. The candidate location of regional depots
are determined by the use of a k-means approximation algorithm. The distances
between the facilities are calculated as Euclidean distances. In this respect, for
each problem size, ten different instances that differ in terms of demands, location
of regional depots, and location of outlets are created and solved for each model.
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As an illustration, the first instance with 30 outlets and 10 regional depots on the
100×100 grid coordinate system is demonstrated in Figure 5.1.

Figure 5.1 Instance 1 with 30 outlets and 10 regional depots

The demand of each outlet in each season is a function of the seasonal demand ratio.
In this study, it is assumed that the third season has the highest demand ratio.

The regional depot opening and operating costs are randomly generated between
3000 and 6000.

Both inbound and outbound vehicles traverse the Euclidean distance between two
points. The inbound transportation cost is calculated by multiplying the distance
between DC and regional depots by the cost of transporting products per unit
distance. The outbound transportation cost is calculated by multiplying the length
of a route by the cost of transporting products per unit distance. The length of a
route is the distance, which starts from a regional depot visiting outlets and returns
to the same regional depot. In Model 1 and Model 2, the outbound transportation
cost is also multiplied by the capacity of vehicles. However, in Model 3, this cost is
multiplied by the number of transferred products.

To evaluate the impact of outbound vehicle capacities on performance of each model,
each instance is solved twice with two different outbound vehicle sizes: large capacity
(1000) and small capacity (500).
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5.2 Computational Experiments

We solve each instance with the commercial solver. Since the commercial solver is
not efficient in larger problems, we used the solution methods presented in Chapter 4.
Each instance is solved with the LP-based heuristic and local branching algorithm.
The local branching algorithm is implemented on each set of the binary variables
separately. The value of the integer parameter k is determined according to the
size of each problem and the number of binary variables. For most of the instances,
especially in larger problems, in most cases we carry out the procedure with two
different values for k and compare the results. The computation time limit is defined
based on the size of the problem sets as well. Note that, in all the instances the
total time limit dedicated to the local branching approach is half of the other two
approaches. Our aim is to compare the performance of each modeling approach in
terms of objective function value and solution time.

Throughout the experiments, we used GUROBI 7.5.2 on PYTHON 3.7 using an
Intel Xeon CPU E5-2640 processor with 2.60 GHz speed, 16 GB RAM, and 64-bit
Windows 7 operating system. All the coding for data reading, model preparation,
and output generation have been implemented with Python 3.7 with Anaconda
Spyder.

The summary of the experiments are presented in Tables A.1-D.6 in Appendices.
The results are organized and reported with respect to the modeling approach and
the vehicle size. Each table shows the results for 10 instances obtained by one of the
models (Model 1, Model 2 and Model 3) with a given vehicle size (small and large).
The term Obj Func shows the objective function value and Run Time depicts the
solution run time for each instance. While Gap shows the percentage gap between
the upper bound and lower bound as reported by the solver, ∆(obj) is the percentage
deviation of the objective function value of each solution approach with respect to
that of the commercial solver.

We provide the average percentage deviations of each solution approach for each
combination of a model and vehicle capacity in all problems in Tables 5.6-5.8. In
these tables CS and LP-H stands for the commercial solver and the LP-based heuris-
tic, respectively and the rest belongs to local branching approach. In order to avoid
mentioning different values of the integer parameter k, we used (1) for smaller value
and (2) for larger value.
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5.2.1 Small-Scale Problems with 30 Outlets

We solve ten different instances in the set of small scale problems with 30 outlets
and 10 regional depots. The total time limit for the commercial solver and the LP-
based heuristic is 14400 seconds; it is 7200 seconds for local branching. For all three
models and both vehicle capacities, each instance is solved by the commercial solver,
LP-based heuristic, and local branching approach. The local branching algorithm
is implemented on yi variables with k = 5 for all three models. Moreover, it is
implemented on zr and zrs variables with k = 5 and k = 10 for Model 1 and Model
2, respectively. The node time limit in the local branching algorithm for all these
models is 100 seconds. The results are presented in detail in Tables A.5-A.4 in
Appendix A. Note that, in the case of small vehicle capacity, instances 6 and 7 are
infeasible to solve.

These instances are our smallest set of instances. As seen in the corresponding Tables
in Appendix A, all instances are efficiently solved to optimality with the commer-
cial solver with all three models and both vehicle capacities. The local branching
algorithm was successful to reach the optimal solution in all cases. Different values
for k hardly make difference in this set of instances. However, in some instances,
the LP-based heuristic results show small deviations (less than 2% on average).

Although we put a four-hour time limit for the commercial solver and the LP-
based heuristic (LP-H) approach, and a two-hour time limit for the local branching
approach, the run time for solving these instances is very small. We provide the
average solution run time (in seconds) in Table 5.1, which is the arithmetic mean
of solution time for each approach. In this Table, yi, zr, zrs represent the local
branching implemented on these variable and k(1) and k(2) show the small and
large values for k, respectively. According to this table, all instances are solved in
less than 4 seconds on average, except Model 2 with small vehicle capacity. This
model is the most time consuming among others; however, the LP-based heuristic
showed a great improvement in reducing the solution time from 237.77 seconds to
7.40 on average.

5.2.2 Medium-Scale with 50 Outlets

We solve ten different instances in the set of medium scale problems with 50 outlets
and 15 regional depots. The total time limit for the commercial solver and the
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Table 5.1 Average run time for all three models with large and small vehicle sizes

CS LP-H yi; k(1) zr; k(1) zr; k(2) zrs; k(1) zrs; k(2)
Model 1 - Large 0.75 0.86 1.00 1.30 1.11 - -
Model 1 - Small 1.28 1.86 2.50 1.55 1.54 - -
Model 2 - Large 2.16 1.19 3.37 - - 2.47 3.48
Model 2 - Small 237.77 7.40 81.82 - - 31.55 57.44
Model 3 - Large 0.08 0.46 0.13 - - - -
Model 3 - Small 0.13 0.41 0.20 - - - -

LP-based heuristic is 14400 seconds; it is 7200 seconds for local branching.

The local branching is implemented on:

• Model 1 on yi and zr variables with k = 5 and k = 10

• Model 2 on yi variables with k = 5 and k = 10 and zrs variables with k = 10
and k = 20

• Model 3 on yi variables with k = 5 and k = 10

The node time limit in the local branching algorithm for Model 1 and Model 2 is
500 seconds and for Model 3 is 100 seconds. The results are presented in detail
in Tables B.1-B.6 in Appendix B. Note that, in all three models with both vehicle
sizes, instance 3 is infeasible to solve.

As we can see in the Tables, all instances of Model 1 are solved to optimality with
the commercial solver. Although the LP-based heuristic solutions have deviations
in some instances (less than 0.9% on average), local branching is successful to reach
the exact same solution as the commercial solver. We can see the same pattern for
Model 2 with large vehicle capacity and all instances of Model 3.

However, for Model 2 with small vehicle capacity, 8 out of 10 instances reach the
4-hour time limit without finding the optimal solution. Moreover, the LP-based
heuristic reach the time limit in some instances and there are deviations in terms of
the objective function value (0.73% on average). Even though the local branching
has also reached the time limit in some cases it found the exact same solution as the
commercial solver. The best performance belongs to the local branching on zrs with
k = 10 where all instances yield the optimal solution in 432.5 seconds on average.

The average solution times (in seconds) for each model are shown in Tables 5.2, 5.3
and 5.4. As we can see in the corresponding Tables, all of our algorithms outperform
the commercial solver in terms of the average run times.
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In Model 1 with small vehicle capacity, the average run time for local branching on
zr with k = 5 is 22.84 seconds, which is the lowest amongst all other approaches.

Having one set of binary variables (yi) in its formulation, Model 3 is our quickest
to solve. In general, Model 2 has a greater solution time. In all three models, small
capacity versions take more time to solve. Model 2 with small vehicle capacity is
our most time-consuming model.

Table 5.2 Average run time for Model 1 in medium scale (50 outlets)

CS LP-H yi, k(1) yi, k(2) zr, k(1) zr, k(2)
Model 1 - Large 10.0 4.4 9.2 9.4 13.6 14.2
Model 1 - Small 129.4 32.3 133.0 113.4 22.8 42.6

Table 5.3 Average run time for Model 2 in medium scale (50 outlets)

CS LP-H yi, k(1) yi, k(2) zrs, k(1) zrs, k(2)
Model 2 - Large 67.5 11.6 162.8 75.1 93.2 136.5
Model 2 - Small 11293.0 5116.4 9714.4 11307.6 432.5 7069.9

Table 5.4 Average run time for Model 3 in medium scale (50 outlets)

CS LP-H yi, k = 5 yi, k = 10
Model 3 - Large 0.3 1.0 0.3 0.3
Model 3 - Small 0.4 1.2 0.4 0.4

5.2.3 Large Scale with 100 Outlets

We solve ten different instances in the set of large scale problems with 100 outlets
and 30 regional depots. The results are shown in Tables C.1-C.6 in Appendix C.
The total time limit for the commercial solver and the LP-based heuristic approach
is 28800 seconds, and for local branching is 14400 seconds.

The local branching algorithm is implemented on all three models on yi variables
with k = 10 and k = 20. Moreover, it is implemented on zr and zrs variables with
k = 10 and k = 20 for Model 1 and Model 2, respectively. The node time limit for
Model 1 and Model 2 is 1500 seconds, and for Model 3 is 100 seconds.

The average solution time for Model 1 and Model 3 are presented in Table 5.5.
Since, Model 2 reaches the time limit in most cases it is excluded from this table.
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5.2.3.1 Model 1

Except for the last two, all instances of the large vehicle capacity are solved to
optimality with the commercial solver. Although the LP-based heuristic solutions
have deviations in some instances (0.88% for large vehicle capacity and 1.11% for
small vehicle capacity on average), in the last instance we witness negative deviation,
which means this approach finds a better solution compared to the commercial
solver. Local branching has yielded the exact same solution as the commercial solver
even though it has reached the time limit in some cases. For example, instances 9
and 10 reach the four-hour time limit in local branching on yi but they yield the
same result as the commercial solver. The best performance of this approach is in
the case of zr with k = 10, where there is no percentage deviation in the results and
the average time limit is 750.09 seconds.

In the case of small vehicle capacity, 6 out of 10 instances reach the 8-hour time limit
without reaching the optimal solution. Moreover, the LP-based heuristic reaches
the time limit in some instances and there are deviations in terms of the objective
function value (0.11% on average). Even though the local branching has reached the
time limit in some cases it finds the exact same solution as the commercial solver.
The best performance belongs to the local branching on zr with k = 20 where all
instances reached the optimal solution in 1169.82 seconds, which is much less than
their dedicated time limit.

5.2.3.2 Model 2

Most of the instances in large vehicle capacity and all instances in small vehicle
capacity have reached their time limit in all approaches. As it is presented in
Figures 5.2 and 5.3, the percentage deviations of local branching is very small (less
than 0.71% on average), given that it has half the time to solve instances. Even, in
some cases we have negative deviations.

Although most of the cases reach the time limit, for both vehicle sizes local branching
on zrs with k = 40 has the best performance in terms of percentage deviations (see
Table 5.7).
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Figure 5.2 Percentage deviation of the result of each solution approach (Model 2
with large vehicle capacity in large scale)

Figure 5.3 Percentage deviation of the result of each solution approach (Model 2
with large vehicle capacity in large scale)

5.2.3.3 Model 3

For both large and small vehicle capacities all instances are solved to optimality
with the commercial solver. The local branching approach found the optimal solu-
tion with no deviation; however, the LP-based heuristic approach has shown some
deviations in results (0.93% for large and 1.79% for small vehicle capacity on aver-
age).

30



Table 5.5 The average run time for Models 1 and 3 in large scale (100 outlets)

CS LP-H yi, k(1) yi, k(2) zr, k(1) zr, k(2)
Model 1 - Large 10363.48 584.78 6387.89 4983.50 750.09 1517.30
Model 1 - Small 18128.80 16106.03 8101.07 7880.13 3240.38 1169.82
Model 3 - Large 3.85 9.73 9.16 9.29 - -
Model 3 - Small 7.44 10.81 12.39 11.88 - -

5.2.4 Large Scale with 250 Outlets

We solve five instances in the set of large scale problems with 250 outlets and 75
regional depots. The results are shown in Tables D.1-D.6 in Appendix D. The
term LB in these Tables refers to local branching. The total time limit for the
commercial solver and the LP-based heuristic is 57600 seconds; it is 28800 seconds
for local branching. Each instance is solved by the commercial solver and the LP-
based heuristic for both vehicle capacities.

The local branching algorithm is implemented on Model 1 and Model 2 on yi vari-
ables with k = 20. Moreover, it is applied on zr and zrs variables with k = 100 and
k = 200 for Model 1 and Model 2, respectively. The node time limit for these models
is 2000 seconds. For Model 3, the implementation is done on yi variables with k = 10
and with node time limit of 300 seconds.

All the instances for both vehicle capacities in Model 1 and Model 2 reach their time
limit in all approaches. As we can see in Figures 5.4-5.7, the LP-based heuristic
approach have negative deviations in some cases, which means it found a better
solution. Except for instance 2, the deviations of local branching is small, given
that it has half of the time to solve. For Model 1 with large vehicle capacity, local
branching on yi has the lowest deviations (3.99%). For Model 2 with both vehicle
capacities, local branching on zrs with k = 100 has shown the best performance
with percentage deviations of 2.71% and 1.67% for large and small vehicle sizes,
respectively.

On the other hand, all instances of Model 3 are solved to optimality with the com-
mercial solver. Moreover, the local branching approach found the optimal solution
with no deviation; however, the LP-based heuristic has shown some deviations in
results (0.93% on average).
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Figure 5.4 Percentage deviation of the result of each solution approach with that of
the commercial solver for Model 1 with large vehicle capacity

Figure 5.5 Percentage deviation of the result of each solution approach with that of
the commercial solver for Model 1 with small vehicle capacity

5.2.5 General Analysis

As we can see from Tables 5.6-5.8 in all problem sizes, Model 3 has the least de-
viations compared to others. The local branching approach results have shown no
deviations for this model and the LP-based heuristic has at most 2.38% deviations.
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Figure 5.6 Percentage deviation of the result of each solution approach with that of
the commercial solver for Model 2 large vehicle capacity

Figure 5.7 Percentage deviation of the result of each solution approach with that of
the commercial solver for Model 2 small vehicle capacity

Moreover, the LP-based heuristic performance improves as the problem size in-
creases. In the largest scale of our problem sets, this approach shows the least
amount of deviations compared to other approaches. Even we have negative aver-
age deviation in Model 1.

In general, in the sets of small and medium scale problems, local branching does
not show deviations in results. The highest deviation of this approach can be seen
in the large scale with 250 outlets with 11.25% on average. Note that this approach
always has half the time of the commercial solver and LP-based heuristic.
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Table 5.6 The average percentage deviations for Model 1

Model 1 - Large vehicle Capacity Model 1 - Small vehicle Capacity
Problem sizes LP-H yi,k(1) yi,k(2) zr,k(1) zr,k(2) LP-H yi,k(1) yi,k(2) zr,k(1) zr,k(2)
30 outlets 1.68% 0.00% - 0.00% 0.00% 0.87% 0.00% - 0.00% 0.00%
50 outlets 0.50% 0.00% 0.00% 0.00% 0.00% 0.71% 0.00% 0.00% 0.00% 0.00%
100 outlets 0.88% 0.00% 0.00% 0.00% 0.00% 0.11% 1.24% 0.00% 0.00% 0.00%
250 outlets -0.21% 3.99% - 8.17% 11.25% 0.34% 4.41% - 3.91% 4.92%

Table 5.7 The average percentage deviations for Model 2

Model 2 - Large vehicle Capacity Model 2 - Small vehicle Capacity
Problem sizes LP-H yi,k(1) yi,k(2) zrs,k(1) zrs,k(2) LP-H yi,k(1) yi,k(2) zrs,k(1) zrs,k(2)
30 outlets 1.78% 0.00% - 0.00% 0.00% 2.31% 0.00% - 0.00% 0.00%
50 outlets 0.89% 0.00% 0.00% 0.00% 0.00% 0.73% 0.00% 0.00% 0.00% 0.02%
100 outlets 1.11% 0.71% 0.63% 0.42% 0.28% 1.73% 0.52% 0.59% 0.16% 0.15%
250 outlets 0.19% 5.38% - 2.72% 3.99% 1.12% 4.30% - 1.67% 3.55%
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Table 5.8 The average percentage deviations for Model 3

Model 3 - Large vehicle Capacity Model 3 - Small vehicle Capacity
Problem sizes LP-H LB on y(1) LB on y(2) LP-H LB on y(1) LB on y(2)
30 outlets 1.69% 0.00% - 2.38% 0.00% -
50 outlets 0.54% 0.00% 0.00% 0.39% 0.00% 0.00%
100 outlets 0.93% 0.00% 0.00% 1.79% 0.00% 0.00%
250 outlets 0.93% 0.01% 0.00% 0.00% 0.00% -

In Table 5.9, we present the number of instances solved to optimality with the
commercial solver for all three models and both vehicle capacities. All instances
of small scale with all three models are solved to optimality. We see this pattern
in medium scale except for Model 2 with small vehicle capacity. As the problem
size grows, the number of instances solve to optimality decreases. In general, small
vehicle capacity instances are harder to solve.

In all problem sizes with both vehicle capacities all instances in Model 3 yield the
optimal solution.

Table 5.9 Number of problems solved to optimality with commercial solver

Large Capacity Small Capacity
Problem sizes Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
30 outlets 10 10 10 8 8 8
50 outlets 9 9 9 9 2 9
100 outlets 8 3 10 4 0 10
250 outlets 0 0 5 0 0 5

In order to observe the performance of each solution approach we compare the
number of instances solved to optimality for each model by each approach. The
results are presented in Tables 5.10, 5.11, and 5.12 for Model 1, 2, and 3, respectively.

For Model 1 and Model 3, the local branching approach has a similar performance
as the commercial solver in all problem sizes. The same pattern exists for Model 2
except in large scale (100 outlets) with large vehicle capacity.

In most cases, even in small scales, the LP-based heuristic found less optimal solu-
tions.
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Table 5.10 Number of problems in Model 1 solved to optimality with other approaches

Model 1-Large capacity Model 1-Small capacity
Problem sizes LP-H yi,k(1) yi,k(2) zr,k(1) zr,k(2) LP-H yi,k(1) yi,k(2) zr,k(1) zr,k(2)
30 outlets 5 10 - 10 10 4 8 - 8 8
50 outlets 1 9 9 9 9 5 9 9 9 9
100 outlets 3 8 8 8 8 1 4 4 4 4
250 outlets 0 0 - 0 0 0 0 - 0 0

Table 5.11 Number of problems in Model 2 solved to optimality with other approaches

Model 2-Large Capacity Model-Small Capacity
Problem sizes LP-H yi,k(1) yi,k(2) zrs,k(1) zrs,k(2) LP-H yi,k(1) yi,k(2) zrs,k(1) zrs,k(2)
30 outlets 5 10 - 10 10 2 8 - 8 8
50 outlets 4 9 9 0 9 2 2 2 2 2
100 outlets 3 1 0 0 0 0 0 0 0 0
250 outlets 0 0 - 0 0 0 0 - 0 0
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Table 5.12 Number of problems in Model 3 solved to optimality with other
approaches

Model 3-Large Capacity Model 3-Large Capacity
Problem sizes LP-H yi,k(1) yi,k(2) LP-H yi,k(1) yi,k(2)
30 outlets 5 10 - 2 8 -
50 outlets 5 9 9 7 9 9
100 outlets 4 10 10 2 10 10
250 outlets 1 4 - 5 5 -

The small scale problems are the only problem sets where all instances for all three
models reach the optimal solution. We calculated the average objective function
values for both large and small capacity vehicles and compared them.

The results show that the objective function value of Model 2 is 5.6% and 9.3% less
than Model 1 for large and small vehicle capacity, respectively. As we expected,
since Model 1 does not use fewer routes (i.e., vehicles) in low demand seasons, it
has a more costly objective function. Therefore, using the so-called "ideal approach"
yields economic advantages.

The objective function value of Model 3 for the large and small vehicle capacity is
9.9% and 3.0% less than that of the Model 2. As we anticipated, since in Model 3 the
outbound transportation cost is a function of the amount of transported products,
this model underestimates the total cost. This underestimation is larger when it
comes to the large vehicle capacity instances.
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6. CONCLUSION

In this thesis, we study a single commodity three-echelon distribution network design
problem, which takes real-life aspects, such as seasonal fluctuations in demands into
account. We develop three alternative mixed-integer linear programming models
that have different levels of flexibility while responding to seasonal demand. Prod-
ucts are delivered to outlets from a distribution center through regional depots. Each
model includes transshipment amounts, facility location, and routing decisions. The
objective is to minimize the total cost, which consists of opening and operating costs
of regional depots, inbound and outbound transportation costs. We also evaluate
the effect of the vehicle size used in delivery to outlets on the problem difficulty and
also its impact on the solution quality.

Our models are different in terms of formulating the outbound transportation deci-
sions. In Model 1, the routing decisions for outbound transportation are considered
as fixed throughout the planning horizon. This model would yield a robust solution
under seasonal demand and well suits the company that prefers operational stability
even under seasonality. However, higher outbound cost would be a consequence of
using this model. Model 2 mainly uses the same approach considering seasonal rout-
ing decisions for outbound transportation throughout the planning horizon. This
model reflects the "ideal approach" as the outbound transportation decisions are
changed in response to seasonal fluctuations in demand. Using this model would
yield the lowest outbound transportation costs and total costs. Model 3 finds a
lower bound on the total cost by reducing the outbound binary variables in each
season. This model is also responsive to seasonal changes and less computationally
challenging. However, since this model charges the outbound transportation cost
for the load on the vehicle not the vehicle capacity it is expected to underestimate
the total cost. Since this model does not consider vehicle selection cost it also allows
partial flow through each selected route. Although, the real-life businesses mostly
consider the number of vehicles and their capacity in their total costs, upon a con-
tractual agreement model 3 can be also of great use, especially due to its short
solution time even in large-scale problems. In general, all instances of model 3 are
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solved to optimality, even in the largest set of problems (250 outlets).

To solve the resulting problems, we propose a LP-based constructive heuristic ap-
proach. Alternatively, we adapt the local branching algorithm to all three different
models with variations branching on different binary decision variables. In order
to evaluate the efficiency and effectiveness of the proposed heuristics, we solve in-
stances of four sets of problems varying in terms of the problem size. The total
time limit granted to the local branching approach is half of the other approaches.
For each instance, we observed the solution run time, objective function value, and
percentage deviations of the results of each solution approach with respect to that
of the commercial solver.

The results show that using large vehicles leads the solution approaches to perform
well in terms of solution quality and computational efficiency. According to our
experiments, all instances of small and medium-size problems for all three models
have yielded the optimal solution with commercial solver, except for model 2 with
small vehicle capacity in the medium scale. As the problem size increases, the
number of instances solve to optimality decrease. The local branching approach
has mostly shown the same performance as the commercial solver in terms of the
number of optimal solutions but in less computational time.

In most cases, even in small scales, the LP-based heuristic found less optimal so-
lutions. However, the performance of this approach improves as the problem size
increases. In the largest set of problems, this approach shows the least amount of
deviations compared to other approaches.

In future studies, instead of dedicating half the time to the local branching approach,
dynamic stopping criteria can be applied. Besides, additional assumptions such as
multiple DCs and multiple products can be considered. Opening regional depots
can depend on the season. Other solution approaches can be performed to solve the
model.
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APPENDIX A: Results of Small Scale Instances (30 Outlets)

Table A.1 Model 1 with large vehicle capacity

Commercial Solver LP-Based Heuristic Local Branching on yi; k = 5 Local Branching on zr; k = 5 Local Branching on zr; k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 171860.8 0.79 0% 171860.8 1.05 0.0% 171860.8 0.88 0% 171860.8 1.75 0% 171860.8 0.89 0%
2 202295.6 0.33 0% 202295.6 0.71 0.0% 202295.6 0.34 0% 202295.6 0.38 0% 202295.6 0.43 0%
3 239504.6 0.34 0% 240877.4 0.65 0.6% 239504.6 0.33 0% 239504.6 0.55 0% 239504.6 0.39 0%
4 156778.1 2.42 0% 158981.8 1.10 1.4% 156778.1 2.83 0% 156778.1 3.05 0% 156778.1 2.89 0%
5 185870.7 1.07 0% 185870.7 1.00 0.0% 185870.7 2.33 0% 185870.7 2.12 0% 185870.7 2.61 0%
6 177013.5 0.60 0% 179212.0 0.80 1.2% 177013.5 0.92 0% 177013.5 0.94 0% 177013.5 0.83 0%
7 181395.3 0.38 0% 181395.3 0.88 0.0% 181395.3 0.40 0% 181395.3 0.58 0% 181395.3 0.54 0%
8 158537.9 0.70 0% 162975.5 0.88 2.8% 158537.9 0.80 0% 158537.9 2.16 0% 158537.9 0.99 0%
9 195411.9 0.42 0% 195411.9 0.58 0.0% 195411.9 0.56 0% 195411.9 0.67 0% 195411.9 0.79 0%
10 187470.3 0.49 0% 207630.8 0.94 10.8% 187470.3 0.58 0% 187470.3 0.83 0% 187470.3 0.76 0%
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Table A.2 Model 1 with small vehicle capacity

Commercial Solver LP-Based Haeuristic Local Branching on yi; k = 5 Local Branching on zr; k = 5 Local Branching on zr; k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 181139.2 0.91 0% 183684.0 1.37 1.4% 181139.2 2.02 0% 181139.2 1.04 0% 181139.2 1.00 0%
2 217459.5 0.87 0% 217459.5 0.93 0.0% 217459.5 0.92 0% 217459.5 0.81 0% 217459.5 0.81 0%
3 251579.0 0.39 0% 251579.0 1.15 0.0% 251579.0 0.47 0% 251579.0 0.45 0% 251579.0 0.43 0%
4 169748.7 1.99 0% 169748.7 1.86 0.0% 169748.7 4.40 0% 169748.7 2.27 0% 169748.7 2.69 0%
5 196617.7 1.32 0% 202143.0 2.65 2.8% 196617.7 2.62 0% 196617.7 1.82 0% 196617.7 1.44 0%
8 159830.2 3.74 0% 164248.2 4.78 2.8% 159830.2 7.55 0% 159830.2 4.57 0% 159830.2 4.52 0%
9 194745.6 0.72 0% 194745.6 1.13 0.0% 194745.6 1.65 0% 194745.6 1.02 0% 194745.6 1.00 0%
10 191054.9 0.29 0% 191074.7 0.98 0.0% 191054.9 0.33 0% 191054.9 0.41 0% 191054.9 0.47 0%
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Table A.3 Model 2 with large vehicle capacity

Commercial Solver LP-Based Haeuristic Local Branching on yi; k = 5 Local Branching on zrs; k = 5 Local Branching on zrs; k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 160645.0 2.76 0% 160645.0 1.59 0.0% 160645.0 3.59 0% 160645.0 2.67 0% 160645.0 4.81 0%
2 187702.7 0.25 0% 187702.7 0.87 0.0% 187702.7 0.32 0% 187702.7 0.52 0% 187702.7 0.33 0%
3 228077.3 0.51 0% 228077.3 1.05 0.0% 228077.3 0.61 0% 228077.3 0.94 0% 228077.3 0.77 0%
4 144680.4 1.96 0% 148618.8 0.86 2.7% 144680.4 3.88 0% 144680.4 4.54 0% 144680.4 3.88 0%
5 173489.6 6.90 0% 176818.3 1.77 1.9% 173489.6 10.77 0% 173489.6 3.80 0% 173489.1 8.77 0%
6 170044.8 1.19 0% 170726.7 1.24 0.4% 170044.8 2.34 0% 170044.8 2.58 0% 170044.8 3.16 0%
7 170455.2 1.59 0% 170455.2 1.41 0.0% 170455.2 2.37 0% 170455.2 3.21 0% 170455.2 2.94 0%
8 155569.7 2.32 0% 160208.9 0.78 3.0% 155569.7 3.24 0% 155569.7 2.14 0% 155569.7 3.66 0%
9 187843.9 1.91 0% 187843.9 1.28 0.0% 187843.9 3.27 0% 187852.5 2.19 0% 187843.9 3.60 0%
10 178463.6 2.17 0% 195914.2 1.06 9.8% 178463.6 3.32 0% 178463.6 2.08 0% 178463.6 2.87 0%
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Table A.4 Model 2 with small vehicle capacity

Commercial Solver LP-Based Haeuristic Local Branching on yi; k = 5 Local Branching on zrs; k = 5 Local Branching on zrs; k = 10
1 164226.5 344.14 0% 165479.3 8.80 0.8% 164226.5 189.26 0% 164226.5 61.44 0% 164226.5 88.11 0%
2 199050.3 4.73 0% 200667.2 1.38 0.8% 199050.3 6.96 0% 199050.3 6.64 0% 199050.3 6.80 0%
3 233252.8 6.26 0% 233252.8 6.95 0.0% 233252.8 9.28 0% 233252.8 9.44 0% 233252.8 9.57 0%
4 153134.2 1337.93 0% 155464.9 2.93 1.5% 153134.2 242.29 0% 153134.2 62.57 0% 153134.2 115.36 0%
5 179959.0 171.16 0% 186475.2 33.43 3.6% 179959.0 160.04 0% 179959.0 64.18 0% 179959.0 191.03 0%
8 144622.5 11.39 0% 148983.1 1.63 3.0% 144622.5 15.42 0% 144622.5 16.47 0% 144622.5 15.99 0%
9 178900.9 2.38 0% 178900.9 2.32 0.0% 178900.9 3.15 0% 178900.9 3.47 0% 178900.9 3.51 0%
10 174948.0 24.14 0% 190230.6 1.74 8.7% 174948.0 28.15 0% 174948.0 28.22 0% 174948.0 29.14 0%

45



Table A.5 Model 3 with large vehicle capacity

Commercial Solver LP-Based Haeuristic Local Branching on yi; k = 5
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 143793.6 0.10 0% 143793.6 0.32 0.0% 143793.6 0.13 0%
2 173626.6 0.04 0% 173626.6 0.33 0.0% 173626.6 0.08 0%
3 211656.8 0.08 0% 211656.8 0.58 0.0% 211656.8 0.13 0%
4 132065.5 0.11 0% 133353.9 0.49 1.0% 132065.5 0.13 0%
5 158188.1 0.08 0% 163183.2 0.56 3.2% 158188.1 0.19 0%
6 154407.5 0.16 0% 155094.1 0.43 0.4% 154407.5 0.13 0%
7 153995.0 0.05 0% 153995.0 0.57 0.0% 153995.0 0.17 0%
8 136182.9 0.05 0% 140057.5 0.45 2.8% 136182.9 0.10 0%
9 168334.7 0.09 0% 168334.7 0.40 0.0% 168334.7 0.12 0%
10 165699.4 0.07 0% 181440.9 0.50 9.5% 165699.4 0.16 0%
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Table A.6 Model 3 with small vehicle capacity

Commercial Solver LP-Based Haeuristic Local Branching on yi; k = 5
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 158064.1 0.20 0% 159883.8 0.42 1.2% 158064.1 0.34 0%
2 193055.9 0.06 0% 194366.5 0.39 0.7% 193055.9 0.17 0%
3 226388.1 0.17 0% 226388.1 0.36 0.0% 226388.1 0.24 0%
4 149452.0 0.10 0% 151616.3 0.42 1.4% 149452.0 0.09 0%
5 174867.1 0.19 0% 181581.0 0.65 3.8% 174867.1 0.26 0%
8 139782.5 0.08 0% 143762.5 0.29 2.8% 139782.5 0.11 0%
9 173720.7 0.14 0% 173720.7 0.41 0.0% 173720.7 0.22 0%
10 170304.0 0.09 0% 185803.0 0.36 9.1% 170304.0 0.24 0%47



APPENDIX B: Results of Medium Scale Instances (50 Outlets)

Table B.1 Model 1 with large vehicle capacity

Commercial Solver Heuristic Local branching on yi, k = 5 Local branching on yi, k = 10 Local branching on zr, k = 5 Local branching on zr, k = 10
1 275660.0 15.84 0% 276204.5 7.25 0.2% 275660.0 20.54 0% 275660.0 20.99 0% 275660.0 17.51 0% 275660.0 18.40 0%
2 304323.9 5.97 0% 304625.7 2.85 0.1% 304323.9 5.88 0% 304323.9 5.93 0% 304323.9 7.37 0% 304323.9 7.02 0%
4 255738.5 7.18 0% 255738.5 3.40 0.0% 255738.5 3.55 0% 255738.5 3.79 0% 255738.5 10.44 0% 255738.5 10.30 0%
5 295414.9 4.42 0% 301988.0 4.79 2.2% 295414.9 6.58 0% 295414.9 6.66 0% 295414.9 6.83 0% 295414.9 6.72 0%
6 242223.6 5.06 0% 242754.6 2.50 0.2% 242223.6 3.87 0% 242223.6 4.04 0% 242223.6 6.64 0% 242223.6 6.02 0%
7 275810.9 15.72 0% 277038.4 2.44 0.4% 275810.9 21.26 0% 275810.9 21.47 0% 275810.9 19.22 0% 275810.9 20.11 0%
8 329291.1 2.17 0% 329577.8 1.67 0.1% 329291.1 1.98 0% 329291.1 1.93 0% 329291.1 3.03 0% 329291.1 3.45 0%
9 284550.2 12.86 0% 286469.4 2.69 0.7% 284550.2 10.43 0% 284550.2 10.86 0% 284550.2 18.65 0% 284550.2 17.61 0%
10 300810.4 21.07 0% 302492.7 11.59 0.6% 300810.4 8.93 0% 300810.4 9.05 0% 300810.4 32.62 0% 300810.4 37.78 0%
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Table B.2 Model 1 with small vehicle capacity

Commercial Solver Heuristic Local branching on yi, k = 5 Local branching on yi, k = 10 Local branching on zr, k = 5 Local branching on zr, k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 292763.4 959.10 0% 292763.4 207.98 0.0% 292763.4 1103.68 0% 292763.4 929.53 0% 292763.4 34.21 0% 292763.4 131.40 0%
2 333536.0 49.34 0% 333536.0 29.23 0.0% 333536.0 2.03 0% 333536.0 1.68 0% 333536.0 32.87 0% 333536.0 38.08 0%
4 262615.3 2.38 0% 265880.6 3.73 1.2% 262615.3 2.53 0% 262615.3 2.22 0% 262615.3 3.06 0% 262615.3 3.25 0%
5 314524.6 52.76 0% 314986.7 9.84 0.1% 314524.6 18.18 0% 314524.6 17.15 0% 314524.6 32.95 0% 314524.6 50.26 0%
6 260126.8 34.19 0% 264882.5 4.48 1.8% 260126.8 16.00 0% 260126.8 15.37 0% 260126.8 32.01 0% 260126.8 47.02 0%
7 300933.7 22.03 0% 300933.7 6.47 0.0% 300933.7 17.60 0% 300933.7 16.92 0% 300933.7 29.90 0% 300933.7 27.03 0%
8 351693.0 2.19 0% 362932.5 3.56 3.2% 351693.0 2.28 0% 351693.0 2.16 0% 351693.0 2.47 0% 351693.0 2.20 0%
9 287951.3 41.08 0% 287951.3 22.17 0.0% 287951.3 33.12 0% 287951.3 34.06 0% 287951.3 36.36 0% 287951.3 82.94 0%
10 317159.0 1.19 0% 317159.0 2.82 0.0% 317159.0 1.23 0% 317159.0 1.08 0% 317159.0 1.73 0% 317159.0 1.50 0%
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Table B.3 Model 2 with large vehicle capacity
Commercial Solver Heuristic Local branching on yi, k = 5 Local branching on yi, k = 10 Local branching on zrs, k = 10 Local branching on zrs, k = 20

No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 253241.3 170.68 0% 253241.3 9.57 0.0% 253241.3 318.54 0% 253241.3 114.22 0% 253241.3 114.51 0% 253241.3 185.86 0%
2 280243.0 218.73 0% 280770.9 4.82 0.2% 280243.0 335.01 0% 280243.0 112.42 0% 280243.0 236.54 0% 280243.0 418.25 0%
4 235932.4 17.56 0% 245289.5 10.38 4.0% 235932.4 41.48 0% 235932.4 13.12 0% 235932.4 23.40 0% 235932.4 25.43 0%
5 272520.8 25.24 0% 279437.0 16.24 2.5% 272520.8 133.80 0% 272520.8 115.48 0% 272520.8 89.88 0% 272520.8 151.97 0%
6 222331.8 40.92 0% 222648.7 17.54 0.1% 222331.8 231.42 0% 222331.8 122.63 0% 222331.8 119.05 0% 222331.8 95.53 0%
7 255250.3 13.40 0% 258139.0 15.75 1.1% 255250.3 38.73 0% 255250.3 14.23 0% 255250.3 22.86 0% 255250.3 22.12 0%
8 310778.2 32.56 0% 310778.2 7.02 0.0% 310778.2 117.46 0% 310778.2 82.03 0% 310778.2 72.30 0% 310778.2 122.47 0%
9 268891.0 41.72 0% 268891.0 6.61 0.0% 268891.0 50.88 0% 268891.0 27.61 0% 268891.0 36.17 0% 268891.0 35.42 0%
10 280119.3 46.27 0% 280119.3 16.89 0.0% 280119.3 197.59 0% 280119.3 74.40 0% 280119.3 124.09 0% 280119.3 171.11 0%
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Table B.4 Model 2 with small vehicle capacity
Commercial Solver Heuristic Local branching on yi, k = 5 Local branching on yi, k = 10 Local branching on zrs, k = 10 Local branching on zrs, k = 20

No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 264347.4 14400.0 0.8% 266406.1 14400.0 0.8% 264347.4 7200.0 0% 264347.4 7200.0 0% 264348.5 1019.1 0% 264595.0 7200.0 0%
2 303371.8 33.0 0.0% 303371.8 5.4 0.0% 303371.8 77.0 0% 303371.8 78.0 0% 303371.8 42.6 0% 303371.8 77.5 0%
4 231532.2 14400.0 0.2% 237748.3 30.1 2.7% 231532.2 261.9 0% 231532.2 7200.0 0% 231532.2 160.4 0% 231532.2 1086.6 0%
5 285991.3 14400.0 0.5% 287196.5 14400.0 0.4% 285991.3 7200.0 0% 286006.4 7200.0 0% 285991.3 372.3 0% 286017.2 5774.2 0%
6 231299.4 14400.0 0.5% 236705.9 2732.5 2.3% 231299.4 7200.0 0% 231325 7200.0 0% 231299.4 318.1 0% 231361.9 7200.0 0%
7 271382.4 14400.0 0.2% 272318.8 14400.0 0.3% 271382.4 7200.0 0% 271382.4 7200.0 0% 271382.4 1056.8 0% 271382.4 8916.3 0%
8 320235.2 14400.0 0.4% 320235.2 15.2 0.0% 320235.2 7200.0 0% 320235.2 7200.0 0% 320235.2 323.5 0% 320336.9 3528.0 0%
9 260207.2 14400.0 0.1% 260207.2 35.6 0.0% 260207.2 13811.9 0% 260207.2 7200.0 0% 260207.2 408.2 0% 260307.9 7200.0 0%
10 285823.3 803.8 0.0% 285823.3 28.7 0.0% 285823.3 1279.0 0% 285823.3 890.2 0% 285823.3 191.1 0% 285823.3 1046.2 0%
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Table B.5 Model 3 with large vehicle capacity

Commercial Solver Heuristic Local branching on yi, k = 5 Local branching on yi, k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 238308.5 0.31 0% 238308.5 0.93 0.0% 238308.5 0.29 0% 238308.5 0.36 0%
2 261375.6 0.17 0% 261545.4 0.76 0.1% 261375.6 0.21 0% 261375.6 0.18 0%
4 214232.9 0.22 0% 219497.7 1.37 2.5% 214232.9 0.27 0% 214232.9 0.25 0%
5 250435.7 0.26 0% 255965.1 0.97 2.2% 250435.7 0.32 0% 250435.7 0.24 0%
6 194242.4 0.21 0% 194245.9 0.99 0.0% 194242.4 0.24 0% 194242.4 0.20 0%
7 233151.9 0.53 0% 233151.9 1.17 0.0% 233151.9 0.57 0% 233151.9 0.50 0%
8 288583.7 0.22 0% 288828.1 0.80 0.1% 288583.7 0.27 0% 288583.7 0.21 0%
9 247306.1 0.27 0% 247306.1 0.94 0.0% 247306.1 0.42 0% 247306.1 0.46 0%
10 260908.3 0.16 0% 260908.3 0.80 0.0% 260908.3 0.20 0% 260908.3 0.28 0%52



Table B.6 Model 3 with small vehicle capacity

Commercial Solver Heuristic Local branching on yi, k = 5 Local branching on yi, k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 259011.5 0.52 0% 259011.5 1.16 0.0% 259011.5 0.42 0% 259011.5 0.52 0%
2 296299.7 0.20 0% 296299.7 1.52 0.0% 296299.7 0.14 0% 296299.7 0.14 0%
4 223874.0 0.48 0% 223874.0 1.46 0.0% 223874.0 0.41 0% 223874.0 0.36 0%
5 275886.8 0.56 0% 276389.7 1.14 0.2% 275886.8 0.51 0% 275886.8 0.48 0%
6 221326.5 0.62 0% 228711.3 1.37 3.3% 221326.5 0.51 0% 221326.5 0.52 0%
7 262595.7 0.42 0% 262595.7 1.58 0.0% 262595.7 0.30 0% 262595.7 0.28 0%
8 313233.1 0.62 0% 313233.1 0.85 0.0% 313233.1 0.54 0% 313233.1 0.67 0%
9 254172.9 0.31 0% 254172.9 0.96 0.0% 254172.9 0.32 0% 254172.9 0.35 0%
10 280370.1 0.11 0% 280370.1 0.96 0.0% 280370.1 0.12 0% 280370.1 0.12 0%53



APPENDIX C: Results of Large Scale Instances (100 Outlets)

Table C.1 Model 1 with large vehicle capacity

Commercial Solver LP-Based Haeuristic Local branching on yi, k = 10 Local branching on yi, k = 20 Local branching on zr, k = 10 Local branching on zr, k = 20
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 437535.0 7627.6 0.0% 447111.7 392.8 2.2% 437535.0 1529.6 0% 437535.0 1617.4 0% 437535.0 276.7 0% 437535.0 1416.9 0%
2 384177.0 621.7 0.0% 384177.0 179.9 0.0% 384177.0 918.5 0% 384177.0 571.3 0% 384177.0 646.4 0% 384177.0 545.3 0%
3 395787.9 2554.1 0.0% 398340.8 798.6 0.6% 395787.9 14400.0 0% 395787.9 1041.3 0% 395845.0 2159.6 0% 395787.9 1137.6 0%
4 386566.2 1749.2 0.0% 398920.4 92.8 3.2% 386566.2 207.2 0% 386566.2 157.0 0% 386566.2 262.2 0% 386566.2 188.8 0%
5 393123.1 1305.5 0.0% 393123.1 881.8 0.0% 393123.1 1031.3 0% 393123.1 933.7 0% 393123.1 216.8 0% 393123.1 634.0 0%
6 414773.0 3094.2 0.0% 421607.7 479.2 1.6% 414773.0 1288.2 0% 414773.0 1073.6 0% 414773.0 940.1 0% 414773.0 1178.4 0%
7 437532.4 27206.3 0.0% 443592.2 481.3 1.4% 437532.4 14401.5 0% 437532.4 14400.0 0% 437532.4 515.4 0% 437532.4 2191.3 0%
8 403820.5 1876.3 0.0% 403820.5 578.5 0.0% 403820.5 1302.6 0% 403820.5 1240.7 0% 403820.5 770.8 0% 403820.5 1029.3 0%
9 423425.8 28800.0 0.2% 423425.8 746.8 0.0% 423425.8 14400.0 0% 423425.8 14400.0 0% 423425.8 731.5 0% 423482.4 4239.4 0%
10 432093.1 28800.0 0.6% 431141.7 1216.1 -0.2% 432093.1 14400.0 0% 432093.1 14400.0 0% 432093.1 981.4 0% 432093.1 2612.1 0%
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Table C.2 Model 1 with small vehicle capacity
Commercial Solver LP-Based Haeuristic Local branching on yi, k = 10 Local branching on yi, k = 20 Local branching on zr, k = 10 Local branching on zr, k = 20

No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 466148.5 28800.0 0.3% 466391.3 28800.0 0.1% 466148.5 14400.0 0% 466148.5 14400.0 0% 466148.5 4871.7 0% 466148.5 3421.2 0%
2 398818.0 28800.0 0.2% 398818.0 28800.0 0.0% 398818.0 13024.8 0% 398818.0 14400.0 0% 398818.0 3586.5 0% 398818.0 1898.1 0%
3 412246.0 28800.0 0.1% 412513.8 28800.0 0.1% 412246.0 14400.0 0% 412246.0 14400.0 0% 412246.0 3370.9 0% 412246.0 1821.3 0%
4 415400.0 3861.2 0.0% 427995.2 636.1 3.0% 415400.0 1199.9 0% 415400.0 837.2 0% 415400.0 1002.3 0% 415400.0 440.9 0%
5 420291.6 28800.0 0.1% 429622.7 28800.0 2.2% 420291.6 14400.0 0% 420291.6 4810.0 0% 420291.6 2531.8 0% 420291.6 1086.7 0%
6 444243.2 589.6 0.0% 454282.3 284.7 2.3% 444243.2 225.5 0% 444243.2 153.1 0% 444243.2 136.1 0% 444243.2 146.8 0%
7 453502.7 738.3 0.0% 475205.1 442.4 4.8% 453502.7 99.3 0% 453502.7 69.3 0% 453502.7 68.5 0% 453502.7 76.4 0%
8 438437.8 28800.0 0.3% 438503.3 14420.7 0.0% 438437.8 14401.3 0% 438437.8 14400.0 0% 438437.8 14400.0 0% 438437.8 2050.1 0%
9 440268.9 28800.0 0.2% 440268.9 28800.0 0.0% 440268.9 7819.5 0% 440268.9 14400.0 0% 440268.9 1914.2 0% 440268.9 408.9 0%
10 448737.4 3298.8 0.0% 448737.4 1276.4 0.0% 448737.4 1040.3 0% 448737.4 931.7 0% 448737.4 521.8 0% 448737.4 347.7 0%
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Table C.3 Model 2 with large vehicle capacity

Commercial Solver LP-Based Haeuristic Local branching on yi, k = 10 Local branching on yi, k = 20 Local branching on zrs, k = 10 Local branching on zrs, k = 20
1 400596.3 28800 0.9% 412365.8 28800 2.9% 409659.0 14400 2.3% 408315.8 14400 1.9% 408196.9 14400 1.9% 401311.4 14400 0.2%
2 346097.8 15332 0.0% 346097.8 4245 0.0% 346201.5 14400 0.0% 346201.5 14400 0.0% 346226.7 14400 0.0% 346300.0 14400 0.1%
3 356329.6 28800 0.3% 361589.1 28800 1.5% 356938.1 14400 0.2% 356504.0 14400 0.0% 356578.1 14400 0.1% 356678.3 14400 0.1%
4 353106.8 28800 0.4% 366278.2 1612 3.7% 355848.9 14400 0.8% 354254.0 14400 0.3% 353469.7 14400 0.1% 353816.5 14400 0.2%
5 357325.2 16413 0.0% 357325.2 5034 0.0% 361974.1 14400 1.3% 363347.9 14400 1.7% 357756.9 14400 0.1% 358000.2 14400 0.2%
6 379365.2 28800 0.6% 385344.0 28800 1.6% 382351.7 14400 0.8% 383029.8 14400 1.0% 382215.1 14400 0.8% 382483.3 14400 0.8%
7 392484.5 28800 0.7% 398062.3 28800 1.4% 392783.2 14400 0.1% 393917.7 14400 0.4% 392689.7 14400 0.1% 392856.0 14400 0.1%
8 361487.6 17527 0.0% 361487.6 3481 0.0% 361487.6 14400 0.0% 361645.7 14400 0.0% 361538.4 14400 0.0% 361533.2 14400 0.0%
9 384214.0 28800 0.7% 384214.0 28800 0.0% 386382.5 14400 0.6% 387085.0 14400 0.7% 384653.9 14400 0.1% 384517.1 14400 0.1%
10 383761.3 28800 0.8% 383761.3 28800 0.0% 387994.8 14400 1.1% 384359.7 14400 0.2% 387846.5 14400 1.1% 388015.8 14400 1.1%
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Table C.4 Model 2 with small vehicle capacity
Commercial Solver LP-Based Haeuristic Local branching on yi, k = 10 Local branching on yi, k = 20 Local branching on zrs, k = 10 Local branching on zrs, k = 20

No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 406219.6 28800 1.0% 413073.1 28800 1.7% 414278.7 14400 2.0% 407226.0 14400 0.2% 405860.2 14400 -0.1% 406217.4 14400 0.0%
2 341698.4 28800 0.4% 344361.7 28800 0.8% 341926.2 14400 0.1% 342035.1 14400 0.1% 341715.7 14400 0.0% 341897.6 14400 0.1%
3 355166.4 28800 0.4% 359476.1 28800 1.2% 356380.5 14400 0.3% 356741.5 14400 0.4% 355203.7 14400 0.0% 355705.7 14400 0.2%
4 362351.7 28800 0.2% 362351.7 28800 0.0% 362451.3 14400 0.0% 362992.8 14400 0.2% 362509.0 14400 0.0% 362489.4 14400 0.0%
5 365683.7 28800 1.3% 374021.4 28800 2.3% 365069.0 14400 -0.2% 368224.4 14400 0.7% 368058.3 14400 0.6% 365974.2 14400 0.1%
6 388277.9 28800 0.6% 398320.4 28800 2.6% 389124.7 14400 0.2% 388819.8 14400 0.1% 391305.8 14400 0.8% 391510.2 14400 0.8%
7 394566 28800 0.3% 416295.1 28800 5.5% 394668.9 14400 0.0% 394594.9 14400 0.0% 394716.8 14400 0.0% 394664.8 14400 0.0%
8 379705.8 28800 0.5% 380241.0 28800 0.1% 380052.7 14400 0.1% 383202.9 14400 0.9% 380105.4 14400 0.1% 380011.8 14400 0.1%
9 383619.3 28800 1.0% 382925.8 28800 -0.2% 384289.3 14400 0.2% 383795.8 14400 0.0% 383672.0 14400 0.0% 383841.5 14400 0.1%
10 388624.5 28800 1.1% 401426.6 28800 3.3% 398216.6 14400 2.5% 400688.9 14400 3.1% 388766.7 14400 0.0% 389182.1 14400 0.1%
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Table C.5 Model 3 with large vehicle capacity

Commercial Solver LP-Based Haeuristic Local branching on yi, k = 10 Local branching on yi, k = 20
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 369870.2 6.92 0% 377372.0 8.39 2.0% 369870.2 10.59 0% 369870.2 11.22 0%
2 310263.6 2.50 0% 310969.1 11.90 0.2% 310263.6 7.78 0% 310263.6 7.88 0%
3 332314.4 5.87 0% 335963.6 7.87 1.1% 332314.4 13.08 0% 332314.4 12.93 0%
4 314866.7 2.63 0% 325413.4 9.96 3.3% 314866.7 7.24 0% 314866.7 7.57 0%
5 324660.0 2.77 0% 324660.0 8.17 0.0% 324660.0 7.90 0% 324660.0 7.40 0%
6 350583.8 5.56 0% 355284 10.79 1.3% 350583.8 11.32 0% 350583.8 11.83 0%
7 368497.3 1.84 0% 373095.3 9.71 1.2% 368497.3 6.65 0% 368497.3 6.66 0%
8 329504.1 1.42 0% 329504.1 9.86 0.0% 329504.1 5.70 0% 329504.1 5.56 0%
9 357193.6 6.47 0% 357193.6 12.01 0.0% 357193.6 12.60 0% 357193.6 13.41 0%
10 358210.8 2.54 0% 358210.8 8.65 0.0% 358210.8 8.79 0% 358210.8 8.41 0%
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Table C.6 Model 3 with small vehicle capacity

Commercial Solver LP-Based Haeuristic Local branching on yi, k = 10 Local branching on yi, k = 20
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 395690.2 12.84 0% 402967.1 10.95 1.8% 395690.2 18.60 0% 395690.2 18.20 0%
2 329381.4 5.77 0% 331843.9 12.78 0.7% 329381.4 10.34 0% 329381.4 10.09 0%
3 345613.8 9.39 0% 349373.4 7.17 1.1% 345613.8 12.63 0% 345613.8 11.45 0%
4 347840.5 9.59 0% 347840.5 11.98 0.0% 347840.5 14.45 0% 347840.5 14.14 0%
5 351808.6 8.59 0% 362072.8 11.03 2.9% 351808.6 16.83 0% 351808.6 16.50 0%
6 379499.7 6.24 0% 387682.3 12.94 2.2% 379499.7 10.17 0% 379499.7 10.52 0%
7 384066.2 3.51 0% 405681.7 8.17 5.6% 384066.2 7.84 0% 384066.2 6.89 0%
8 367976.8 4.24 0% 368714.4 10.52 0.2% 367976.8 9.65 0% 367976.8 10.32 0%
9 373389.9 8.63 0% 373389.9 13.70 0.0% 373389.9 11.29 0% 373389.9 9.81 0%
10 379208.0 5.58 0% 391703.7 8.90 3.3% 379208.0 12.08 0% 379208.0 10.88 0%
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APPENDIX D: Results of Large Scale Instances (250 Outlets)

Table D.1 Model 1 with large vehicle capacity

CS Heuristic LB on yi; k = 20 LB on zr; k = 100 LB on zr; k = 200
No. Obj Func Gap Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj)
1 763805.0 2.6% 763707.7 0.0% 776472.5 1.7% 788122.7 3.2% 854675.8 11.9%
2 745886.6 1.4% 742716.2 -0.4% 815435.9 9.3% 1011879.5 35.7% 1017398 36.4%
3 909292.5 3.3% 903541.2 -0.6% 916083.0 0.7% 910547.7 0.1% 912940.8 0.4%
4 823094.9 0.9% 823607.2 0.1% 868167.6 5.5% 829089.9 0.7% 859803.8 4.5%
5 822409.2 0.6% 822220.6 0.0% 844981.3 2.7% 831918.1 1.2% 848016.4 3.1%

Table D.2 Model 1 with small vehicle capacity

CS Heuristic LB on yi; k = 20 LB on zr; k = 100 LB on zr; k = 200
No. Obj Func Gap Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj)
1 813093.2 1.8% 815224.2 0.3% 840800.2 3.4% 822779.8 1.2% 846351.1 4.1%
2 791942.0 0.3% 798898.6 0.9% 812253.9 2.6% 857026.2 8.2% 835643.3 5.5%
3 949749.2 2.0% 956187.8 0.7% 1002449.7 5.5% 1006046.1 5.9% 992710.7 4.5%
4 881256.4 0.5% 880044.2 -0.1% 941963.0 6.9% 906524.9 2.9% 933175.3 5.9%
5 877016.5 0.3% 876975.2 0.0% 908823.0 3.6% 888885.8 1.4% 917356 4.6%
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Table D.3 Model 2 with large vehicle capacity

CS Heuristic LB on yi; k = 20 LB on zrs; k = 100 LB on zrs; k = 200
No. Obj Func Gap Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj)
1 659928.4 3.3% 676084.7 2.4% 715045.16 8.4% 672188.6 1.9% 694742.2 5.3%
2 640182.5 5.6% 635969 -0.7% 657596.38 2.7% 692691.6 8.2% 665268.7 3.9%
3 790660.2 4.2% 788192.1 -0.3% 811343.85 2.6% 793132.5 0.3% 812608.4 2.8%
4 714396.2 2.8% 710631.4 -0.5% 761399.49 6.6% 720128.1 0.8% 737367.4 3.2%
5 709159.9 1.7% 709313 0.0% 756272.25 6.6% 726197.6 2.4% 743030 4.8%

Table D.4 Model 2 with small vehicle capacity

CS Heuristic LB on yi; k = 20 LB on zrs; k = 100 LB on zrs; k = 200
No. Obj Func Gap Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj) Obj Func ∆(obj)
1 674386.9 3.2% 694252.1 2.9% 694653.35 3.0% 676366.2 0.3% 686515.3 1.8%
2 645194.9 1.2% 654018.8 1.4% 679475.92 5.3% 670106.7 3.9% 700340.6 8.5%
3 806513.9 1.0% 819619.9 1.6% 843574.93 4.6% 813077.9 0.8% 815799 1.2%
4 737729.6 3.0% 738289.1 0.1% 786203.66 6.6% 746097.1 1.1% 782509.9 6.1%
5 732954.9 1.6% 729930.8 -0.4% 747588.92 2.0% 749514.7 2.3% 734321.8 0.2%
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Table D.5 Model 3 with large vehicle capacity

Commercial Solver Heuristic Local branching on yi; k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 608125.4 502.99 0% 624961.1 353.18 2.8% 608125.4 315.85 0.0%
2 583129.0 256.27 0% 586063.0 268.46 0.5% 583129.0 236.45 0.0%
3 745327.6 1121.80 0% 755092.3 259.63 1.3% 745862.9 321.77 0.1%
4 671399.2 533.78 0% 671399.2 261.52 0.0% 671399.2 195.09 0.0%
5 665844.6 225.41 0% 666138.8 259.90 0.0% 665844.6 152.88 0.0%

Table D.6 Model 3 with small vehicle capacity

Commercial Solver Heuristic Local branching on yi; k = 10
No. Obj Func Run Time Gap Obj Func Run Time ∆(obj) Obj Func Run Time ∆(obj)
1 656141.7 888.49 0% 675735.6 266.51 0% 656141.7 303.88 0%
2 624376.3 389.77 0% 635284.7 293.49 0% 624376.3 148.39 0%
3 790197.4 511.89 0% 803659.7 273.45 0% 790197.4 269.32 0%
4 722003.3 286.28 0% 725716.0 288.41 0% 722003.3 218.72 0%
5 711612.5 161.38 0% 711981.4 293.27 0% 711612.5 155.09 0%
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