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ABSTRACT
In this paper, electrohydrodynamics (EHD) deformation of a droplet in a highly confined domain is studied by using the incompressible
smoothed particle hydrodynamics method. Simulations are performed for six different systems of a droplet and ambient fluid corre-
sponding to different electrical properties. The effects of confinement ratios, from 0 to 0.95, on the droplet deformation are discussed
thoroughly. It is shown that the deformation is highly dependent on the ratios of electrical permittivity, electrical conductivity, and con-
finement ratio. To demonstrate the droplet behavior, electric force components on the droplet interface are calculated and discussed in
detail. It is shown that the interaction of these forces plays a major role in the droplet deformation. Furthermore, it is illustrated that the
pressure force becomes significant at high confinement ratios and affects the droplet behavior in addition to the electric forces. Different
values of unbounded deformation are selected for the EHD simulation. The effect of unbounded deformation on the droplet behav-
ior is also discussed, and it is found that the unbounded deformation influence is important in some of the systems and confinement
ratios.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0028818., s

I. INTRODUCTION

Electrohydrodynamics (EHD) of a suspended droplet is widely
used in various engineering applications including droplet print-
ing,1 electrocoalescence experiments in the petroleum industry,2 3D
printing,3 biosensors, and bioengineering,4 among others.

Early theoretical studies were based on an extensive simplifica-
tion where both fluid phases were treated either as perfect dielectrics
(insulators) or perfect conductors. Such an assumption causes the
droplet to deform only in the direction of the applied electric
field (prolate deformation).5 However, Allan et al. experimentally
observed in their pioneering study that the droplet could also elon-
gate in the direction perpendicular to the electric field.6 Based on
the observation of Allan and Mason, Taylor introduced the leaky

dielectric model considering the fluids to be slightly conductive that
allows for the accumulation of free electric charges on the inter-
face.7 Employing this model to simulate the EHD related problems,
several numerical studies have been conducted including Finite Vol-
ume Method (FVM),8 Finite Element Method (FEM),9 and Lattice
Boltzmann Method (LBM).10,11

Although there have been many studies on the EHD of a
droplet in an unbounded domain,12–16 the number of studies on
confined domains is relatively low. The confined domain refers to
the condition where the dimensions of both the droplet and the
domain are comparable. The EHD deformation and manipulation
of a confined droplet are widely observed in microfluidics and lab-
on-a-chip devices,17 such as droplet microreactors,18 microfluidic
mixing,19 electrocapillary,20 microfluidic droplet detection,21 and
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micro-segmented flow systems.22 For example, Esmaeeli and
Behjatian analytically studied the steady-state deformation of a leaky
dielectric droplet in confined 2D and 3D domains under an elec-
tric field.23,24 They investigated the effect of the confinement ratio
on the droplet deformation and indicated that the confinement
ratio leads to scaling the electric field and the free electric surface
charge depending on the conductivity ratio. Nevertheless, these two
analytical studies were based on the assumption of small droplet
deformation, and bereft of investigating large deformations. Fur-
thermore, the confinement ratios they studied were not as high as
those typically observed in microfluidic systems. Santra et al. con-
ducted a numerical study using commercial software (COMSOL
Multiphysics) to simulate the EHD deformation of a confined sin-
gle droplet and double droplets between two parallel electrodes.9 In
their study, the confinement ratio was relatively high only in the
direction of the applied electric field.

These studies claim that the magnitude of droplet deforma-
tion is affected by two main factors, namely, (a) the magnitude of
the normal component of both electric and hydrodynamic stress
and (b) the sign of the normal component of hydrodynamic stress,
both of which are dependent on the confinement ratio.9,23 In these
studies, however, no investigation of the electric force and its com-
ponents has been reported. In general, the effect of the electric
force on the droplet deformation is very complex and requires a
detailed investigation of the force itself and its components as well
to have a complete comprehension of the droplet behavior. Another
major deficiency in those studies is the inaccurate definition of
normal hydrodynamic stress. For example, in the study of Santra
et al., velocity magnitude is employed to obtain the normal hydro-
dynamic stress9 disregarding the pressure effect. However, as will be
shown in this study, pressure makes a significant contribution to the
normal hydrodynamic stress and it has an indispensable influence
on the droplet deformation, specifically at high confinement ratios.
Although recent studies regarding the EHD of a confined droplet
discuss novel physics, such as compound droplet dynamics25 and
the transient behavior of droplets,26 the authors are not aware of
any similar studies in the literature, which compare the competing
electrohydrodynamic forces acting on the droplet interface in a con-
fined system. We believe that analyzing the force fields acting on
such complex systems will provide a deeper and more reliable under-
standing of the problem, which distinguishes our study from other
similar studies.

Motivated by these considerations, in the present study, the
deformation of a highly confined 2D leaky dielectric droplet under
the applied electric field will be simulated using incompressible
smoothed particle hydrodynamics (ISPH) methods. To see the
impacts of electrical property ratios, six different systems of fluids
will be employed. All the two main components of the electrical force
will be calculated on the droplet interface, and their influence on the
droplet deformation will be discussed thoroughly considering both
the magnitude and sign of them. Furthermore, the pressure field will
be calculated inside the domain, and its effect on the droplet defor-
mation, particularly at high confinement ratios, will be discussed. In
order to facilitate the analysis, a new parameter, namely, the force
ratio (FR), will be introduced and applied on the droplet interface to
evaluate the influences of all related forces on the droplet deforma-
tion. Additionally, it will be shown that the analytical results are not
reasonable at high confinement ratios, while our numerical method

is able to calculate the physical and justifiable deformation values at
high confinement ratios.

The organization of this paper is as follows. In Sec. II, the gov-
erning equation of the problem and its non-dimensional parameters
are mentioned. In Sec. III, our numerical method, ISPH, is intro-
duced and the governing equations are discretized into the ISPH
framework. In Sec. IV, problem is defined and the accuracy of our
numerical method is investigated by comparing it with the available
data from other studies. In Sec. V, numerical results are presented
for droplet behavior in the confined domain. Finally, concluding
remarks are provided in Sec. VI.

II. GOVERNING EQUATIONS
Governing equations of an incompressible flow in the absence

of gravity may be written as

∇ ⋅ u = 0, (1)

ρ
Du
Dt
= −∇p +

1
Re
∇ ⋅ τ +

1
We

f(s) +
1

Ew
f(e), (2)

where u, p, ρ, and t are the velocity vector, pressure, density, and
time, respectively. ∇⋅ and ∇ are the divergence and the gradient
operators, respectively. The material time derivative is represented
with D/Dt = ∂/∂t + u ⋅∇. Here, τ is the viscous stress tensor, which
is defined as follows:

τ = μ[∇u + (∇u)†], (3)

in which μ is the dynamic viscosity and superscript † is the transpose
operation. Re, We, and Ew denote the Reynolds, Weber, and electro-
Weber numbers, respectively, which will be defined later.

To calculate the surface tension on the droplet interface, the
continuum surface force (CSF) method is used,27

f(s) = γκn̂δ, (4)

where constant γ is the surface tension coefficient, κ = −∇ ⋅ n̂ rep-
resents the interface curvature, where n̂ is the unit surface normal
vector, and δ is the Dirac delta function.

The electrical force vector f(e) is defined as28

f(e) = −
1
2
E ⋅ E∇ε + qvE, (5)

in which E is the electric field vector, ε is the electric permittiv-
ity, and qv denotes the volume charge density near the interface. It
should be noted that this equation is written in the electrostatic units
(CGS-ESU). The electrical force vector contains two distinct parts,
the first and second terms on the RHS of (5), which are known as
polarization and Coulomb force, respectively. Neglecting magnetic
induction and assuming a small amount of dynamic current, the
electric field is irrotational29 and can be calculated as

E = −∇ϕ, (6)

where ϕ is the electric potential.
For the two-fluid systems with finite electric conductivities, one

can assume that the electric relaxation time is fast compared to the
viscous relaxation time, resulting in the following relations:
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∇ ⋅ (σ∇ϕ) = 0, (7)

qv = ∇ ⋅ (ε∇ϕ), (8)

in which σ denotes the electric conductivity. The interface jump
condition for Eq. (7) is the continuity of the current,14

∥σE∥ ⋅ n̂ = 0, (9)

where it is assumed that the surface current is negligible.28 The sym-
bol ∥ξ∥ stands for the jump of an arbitrary quantity ξ across the
interface. The current continuity condition also requires that the
electric potential should not experience any jump at the interface,
namely, ∥ϕ∥ = 0.14,30 Finally, these interface conditions are automat-
ically satisfied in the solution of relevant governing equations.

Dimensionless values are formed using the following scales:

x = x+/r, ρ = ρ+/ρd, μ = μ+/μf u = u+/(d/t+),
t = t+/(d/∣uc∣), p = p+/ρd(∣uc∣)2,

D = ρd/ρf , V = μd/μf , P = εd/εf , C = σd/σf ,

(10)

leading to Reynolds, Weber, Electro-Weber, and electrical capillary
numbers defined as

Re = ρd∣uc∣d
μd

, We = ρd∣uc∣2d
γ

, Ew = ρd∣uc∣2

εdE2
∞

,

Ec = We
Ew
= εdE2

∞d
γ

.
(11)

Here, uc = εdE2
∞d/μd is the characteristic velocity, in which

d and E∞ are the droplet diameter and electric field intensity,
respectively. Superscript + denotes dimensional variables, whereas
subscripts f and d refer to background fluid and droplet phases,
respectively.

III. NUMERICAL METHOD
Equations (1) and (2) are solved using the smoothed parti-

cle hydrodynamics (SPH) method. SPH is a mesh-free Lagrangian
particle-based method, which was initially developed by Gingold
and Monaghan31 for astrophysical problems. However, it had been
used for simulating a broad range of physical problems including
free surface,32–34 turbulent,35,36 multi-phase,15,37,38 heat transfer,39,40

and biological problems.41,42 In this section, the SPH method is
described in more detail, which is used in our simulation.

To track the surface between the different phases, a color func-
tion ĉ is defined. For each phase, a value of zero is assigned to one
phase and unity for the other. To ensure a smooth transition between
the phases and improve the accuracy of properties on the bound-
aries, at each time step, the initial color function is smoothed out
across the phase boundaries using the following equation:

ci =
Jn

∑
j=1

ĉjWij

ψi
, (12)

where ψi = ∑Jn
j=1 Wij is the particle number density, calculated as the

sum of the interpolation kernel of neighboring particles i and j over
all neighbors of particle i, Jn. W ij is a brief form of W(rij, h), the
interpolation kernel, which is a function of h, the smoothing length,
and the magnitude of distance vector, rij = ri − rj, between the parti-
cle of interest i and its neighboring particles j.43,44 In this study, the
two-dimensional quintic spline kernel has been used.14

The smoothed color function is used to calculate the parame-
ters in Eq. (4): δ ≃ ∣∇c∣, κ = −∇ ⋅ n̂, and n̂ = ∇c/∣∇c∣. To avoid the
possible erroneous normals in this formulation, a constraint must
be used.45 In this study, only gradient values exceeding a certain
threshold, ∣∇ci∣ ≥ α/h, are used in surface tension force calcula-
tions, in which α is a constant value. In this study, α = 0.08 has
been found to provide accurate results without removing too much
detail.46

Weighted Arithmetic Mean (WAM) is used to interpolate the
phase properties, which is defined as

χi = ciχd + (1 − ci)χf , (13)

in which χ denotes the hydrodynamic or electrical fluid properties,
such as density, viscosity, permittivity, and conductivity.

To advance the governing equations of flow in time, the
predictor–corrector scheme is used. The first-order Euler approach
is carried out for the time discretization. To ensure the numerical
convergence, the Courant–Friedrichs–Lewy (CFL) condition is used
during the simulation to determine the variable time step size, Δt
= ζh/umax, where umax is the largest particle velocity magnitude and
ζ is taken to be equal to 0.25.46 All the variables are advanced in time
to the temporary or intermediate form using

r∗i = r(n)i + u(n)i Δt + δr(n)i , (14)

u∗i = u(n)i +
1

ρ(n)i

( 1
Re
∇ ⋅ τi +

1
We

f(s)i +
1

Ew
f(e)i)

(n)
Δt, (15)

ψ∗i =
Jn

∑
j=1

W∗

ij . (16)

Here, the starred variable represents an intermediate value and
superscript (n) denotes values at the nth time step. To prevent
the particle clustering, the Artificial Particle Displacement (APD)
method is used. In this method, the artificial particle displacement
vector is implemented through δr(n)i as

δr(n)i = β
⎡⎢⎢⎢⎢⎣

umax

Jn

∑
j=1

⎛
⎝
rij

r3
ij

r2
avg,i
⎞
⎠

⎤⎥⎥⎥⎥⎦

(n)

Δt. (17)

Average particle spacing is found via ravg,i = ∑Jn
j=1 rij/Jn while a value

of β = 0.06 is employed as suggested in Ref. 37 to ensure a satisfactory
particle distribution.

Using intermediate values, pressure at the next time step is
found by solving the Poisson equation. To complete the tem-
poral transition, the position and velocity of the particles are
corrected,
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∇ ⋅ ( 1
ρ∗i
∇p(n+1)

i ) = ∇ ⋅ u
∗

i

Δt
, (18)

u(n+1)
i = u∗i −

1
ρ∗i
∇p(n+1)

i Δt, (19)

r(n+1)
i = r(n)i +

1
2
(u(n)i + u(n+1)

i )Δt + δr(n)i . (20)

Boundary conditions are enforced through the multiple bound-
ary tangent (MBT) method described in Ref. 47, while the first
derivative and Laplace operator of vector functions are approxi-
mated through the following expressions:

∂f m
i

∂xk
i

akl
i =∑

j

1
ψj
(f m

j − f m
i )

∂Wij

∂xl
i

, (21)

∂

∂xk
i
(φi

∂f m
i

∂xk
i
)aml

i = 8
Jn

∑
j=1

2φiφj

φi + φj

1
ψj
(f m

i − f m
j )

rm
ij

r2
ij

∂Wij

∂xl
i

. (22)

Here, akl
i = ∑j

rk
ji

ψj

∂Wij

∂xl
i

is a corrective second rank tensor that

eliminates particle inconsistencies,48 while φ may denote density-
inversed, viscosity, permittivity, or conductivity, where appropriate.
The left-hand sides of (18) and (7) as well as the right-hand side of
(8) are discretized as

∂

∂xk
i
(φi

∂fi

∂xk
i
)(2 + akk

i ) = 8
Jn

∑
j=1

2φiφj

φi + φj

1
ψj
( fi − fj)

rk
ij

r2
ij

∂Wij

∂xk
i

. (23)

IV. PROBLEM SETUP AND NUMERICAL CODE
ACCURACY

The computational domain is shown in Fig. 1, which consists of
a 2D droplet with diameter d suspended in an ambient fluid inside a
confined square domain assuming W = H. The confinement ratio is
defined as the ratio of the droplet diameter to the domain length,
Wc = d/H. A uniform electric field E∞ is applied in the down-
ward direction. It is assumed that no gravitational force is applied
and there is no relative motion between the droplet and ambient
fluid initially. The no-slip boundary condition is applied on all side
boundaries to imitate the confined domain. Considering the elec-
tric field, Dirichlet and Neumann boundary conditions are applied
for horizontal and vertical walls, respectively. All particles inside and
outside the droplet are arranged using a uniformly spaced Cartesian
grid.

Considering the leaky dielectric model, the droplet may deform
into two distinct configurations forming prolate or oblate shapes.
The prolate shape is achieved when the droplet elongates in the
direction of the applied electric field, while the transverse elongation
of the droplet is known as oblate deformation. To check the depen-
dency of numerical results with respect to the particle resolution, the
deformation of the droplet in an unbounded domain, i.e., Wc = 0, is
simulated for both prolate and oblate cases at Ec = 0.02. Fluid prop-
erties of the respective cases are tabulated in Table I. The simulations
are performed for different values of particle resolution x/d = 20, 40,
60, and 80, where x/d is the number of particles per unit of droplet’s

FIG. 1. Schematic representation of the physical setup including a suspended
droplet with the initial diameter d in an ambient fluid under the constant electric
field applied in the downward direction.

initial diameter. The deformation of the droplet can be characterized
as

D = l1 − l2
l1 + l2

, (24)

where l1 and l2 are the two main axes of the deformed droplet in
the directions parallel and perpendicular to the applied electric field,
respectively. So, positive and negative values calculated by (24) rep-
resent prolate and oblate deformations, respectively. It should be
noted that for the unbounded domain, Wc is considered to be small
enough such that the effect of boundaries is negligible as shown in
our previous studies (see, for example, Ref. 14).

The steady-state deformation of the droplet is represented in
Fig. 2 for different resolutions. Qualitative and quantitative compar-
ison of the results in Fig. 2 indicates that increasing the resolution
from x/d = 20 to 40 and from x/d = 40 to 60 shows improvement
in the accuracy of the results. However, no significant improvement
has been observed from x/d = 60 to 80, so x/d = 60 is considered as
the reference particle resolution.

Our current in-house code has been validated in various
cases including EHD simulation of a droplet,14 bubble rising,15

droplet coalescence and electro-coalescence,50 and other multiphase
flow problems.37 However, further validation has been performed
through simulating the droplet deformation under the effect of
the electric field in an unbounded domain. It should be noted
that the droplet in the absence of an electric field has also been

TABLE I. The ratio of the material properties, which is used in Sec. IV to prove the
code accuracy and also resolution dependency test.

System P C D V

Prolate 0.5 2.0 1 1
Oblate 5.0 0.2 1 1

Phys. Fluids 32, 123305 (2020); doi: 10.1063/5.0028818 32, 123305-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 2. Effect of the particle resolution on the droplet deformation in Wc = 0 and Ec = 0.02: (a) quantitative result and (b) qualitative result.

FIG. 3. The comparison of the droplet deformation between
our numerical simulation and analytical data of Feng and
Scott49 for Wc = 0 and different amounts of Ec.

simulated in our previous study in which the pressure jump across
the interface is validated with the Young–Laplace equation. To mit-
igate redundancy, we did not include those validations in this paper,
but interested readers are referred to Ref. 14. In this section, only the
deformation of a droplet in the presence of the electric field is being
considered. To achieve this, two prolate and oblate systems based on
the properties of Table I are modeled under various electrical capil-
lary numbers Ec. The effect of the electrical capillary number on the
droplet deformation is shown in Fig. 3 and is compared with the ana-
lytical results of Feng and Scott.49 Feng and Scott used the following
equation for calculating the deformation of the droplet as

D = fdE2
∞εd(d/2)

3(1 + C)2Pγ
, (25)

where f d is the discriminating function defined as

fd = C2 + C + 1 − 3P. (26)

As shown in Fig. 3, our results perfectly match with the ana-
lytical data for small deformations (|D∞| < 0.05). For larger defor-
mations, however, it is observed that the numerical data deviate
from the analytical data. This is due to the assumptions made in
the theory, which considers the droplet to remain almost circular.
Thus, the analytical predictions are only valid for small deforma-
tions. Such observations have been frequently reported by other
numerical studies (see, for example, Refs. 8, 14, 51, and 52).

V. NUMERICAL RESULTS
In this section, the EHD deformation of a single droplet in a

confined domain is presented by considering six different systems
of fluids, as tabulated in Table II. The properties of the first four
systems are selected from experiments in micro- and bio-fluidic
applications. The properties of the other two systems are chosen
hypothetically to illustrate all possible forms of droplet deformation,
which will be thoroughly discussed. These fluid systems are selected
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TABLE II. Dielectric properties that are used in this study.

System Ambient fluid σf ( S
m) εf ( F

m) Droplet fluid σd( S
m) εd( F

m) C P References

I Silicon oil 1 2.67 × 10−12 2.66 Corn oil 1.06 × 10−11 3.24 3.9700 1.2180 53
II Oxidized castor oil 1.0 × 10−9 6.3 Silicone oil 5000 3.33 × 10−11 2.77 0.0333 0.4397 6
III Corn oil 1.06 × 10−11 3.24 Silicon oil 1 2.67 × 10−12 2.66 0.2519 0.8210 53
IV Medium 1.8 × 10−2 80 Cytoplasm 0.5 75 27.7778 0.9375 54
V Hypothetical . . . . . . Hypothetical . . . . . . 1.0 0.2 . . .
VI Hypothetical . . . . . . Hypothetical . . . . . . 0.02 0.1 . . .

such that they represent the electric conductivity of the droplet to be
smaller (systems II and VI), in the same other (systems I, III, and V),
and larger (system IV) than the ambient fluid. Since the deformation
of droplets is limited to the confined characteristics of the domain,
the electric capillary number is chosen such that the unbounded
deformation of the respective systems is relatively small and equal
to |D∞| = 0.05, unless stated otherwise.

Figure 4 represents the deformation of the droplet normal-
ized with respect to the unbounded deformation for the systems
in Table II. In this figure, the present numerical data are further
compared with the theoretical results of Behjatian and Esmaeeli.23

They have introduced an analytical solution for a confined droplet
in circular domains by

D = Ec
3

Γ2Φ
(C + 1)2 , (27)

where
Γ = C + 1
(C + 1) −Wc2(C − 1)

(28)

FIG. 4. Variation of deformation, which is normalized with the deformation at Wc
= 0 with respect to the confinement ratio. Solid lines demonstrate the analytical
solution of Behjatian and Esmaeeli,23 and points represent the SPH results.

and
Φ = C2 + 1 − 2P + F(C −P), (29)

in which F is a characteristic function. Interested readers may refer
to Ref. 23 for further information.

Equation (27) shows that for small confinement ratios (Wc
< 0.4), the normalized deformation does not represent significant
variations. At larger confinement ratios, however, the deformation
changes significantly in most cases. It is observed that for some of
the systems, the droplet elongation shifts from oblate to prolate or
vice versa. This behavior can be justified considering the variation in
the magnitude and direction of electrical and hydrodynamic forces
on the interface.

It is revealed that for small to moderate values of confinement
ratio, i.e., Wc < 0.6, the present numerical method and the analyti-
cal solution produce similar results. However, our numerical results
deviate from the theory at large confinement ratios. Considering the
asymptotic behavior of the theoretical results for some of the pre-
sented systems, one can easily conclude that this cannot be valid due
to the small and limited characteristic of a confined droplet defor-
mation. Additionally, in some systems, the droplet might reach the
boundaries and the corresponding deformation becomes undefined.
The deformation of system IV, for instance, cannot be obtained
beyond Wc = 0.6 since the droplet reaches the top and bottom
boundaries. Thus, the analytical solution is only limited to small
ranges of confinement ratio, while our SPH method can predict
reasonable values for large confinement ratios, and corresponding
values of deformation are limited and physically justifiable as shown
in Fig. 4.

It can be shown that the hydrodynamics of the systems depends
on the sign of P − C such that the droplet and ambient fluids may
circulate accordingly.14 So, systems V and II are chosen, which cor-
respond to P < C and P > C, respectively, to scrutinize the con-
finement effect on the characteristics of the flow. Figures 5(a) and
5(c) demonstrate the streamlines for these systems at four different
confinement ratios of Wc = 0.6, 0.7, 0.8, and 0.9. Due to the sym-
metric nature of the problem in x and y directions, only a quarter
of the domain is shown. In each quarter, the flow consists of a pair
of vortices inside and outside of the droplet, circulating in oppo-
site directions since they match with their counterpart. For system
II, outside velocities run from the left and the right (θ = 0 and π)
toward the top and the bottom (θ = π/2 and 3π/2), which leads to the
droplet elongation in the x direction (oblate shape) in an unbounded
domain. For system V, ambient velocities run from the top and the
bottom (θ = π/2 and 3π/2) toward the left and the right (θ = 0
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FIG. 5. Streamlines and magnitude of velocity contours for (a) system II and (b) system V at various values of Wc. Due to symmetry in x and y directions, only a quarter of
the domain is shown.

and π) as shown in Fig. 5, resulting in elongation of the droplet in
the y direction (prolate shape) at small confinement ratios. At large
confinement ratios, however, the deformation of these two systems
shifts from prolate to oblate and vice versa. Nevertheless, by increas-
ing the confinement ratio, the circulation direction of the vortices in
the interior and exterior regions is not changed. Thus, the change
in the deformation due to the confinement ratio variation cannot
be justified by considering the vortex structure only. Therefore, it
is needed to analyze the electrical and hydrodynamic forces on the
interface of the droplet to investigate the reason for the deformation
variation, precisely.

As mentioned in Sec. I, Santra et al. investigated the effect of
the confinement ratio on the magnitude of velocity on a line passing
through the center of the droplet.9 To see the effect of the confine-
ment ratio on the velocity magnitude of the entire domain, contours
of this parameter are calculated and plotted in Figs. 5(a) and 5(b) for
systems II and V, respectively, at various amounts of confinement
ratios. As shown in this figure, by increasing the confinement ratio
for system II, the velocity magnitude reacts inversely and its value
decreases inside the domain, which is consistent with the results
of Santra et al.9 In contrast to system II, the velocity magnitude
increases by increasing the confinement ratio for system V as shown
in Fig. 5(b). As demonstrated in this figure, the velocity magnitude is
relatively high at the top and bottom sides of the droplet at Wc = 0.9,
which can prove the reason for the oblate deformation of system V
at high confinement ratios. However, a detailed investigation of the
competing interfacial forces is needed, which will be provided in the
following.

Figure 6 represents the polarization (a), Coulomb (b), and total
(c) electric forces by showing their direction and magnitude on the
droplet interface for systems I, III, and V at Wc = 0.9. These three
systems are selected since they represent different behavior due to
different electric force configurations. It can be easily concluded
from Eq. (5) that the polarization force acts normal to the interface
in the opposite direction of the electrical permittivity gradient, while

the direction of the Coulomb force depends on the interplay between
the electric field and the electrical surface charges. Considering
Fig. 6(a), the polarization force stretches the droplet into a prolate
shape by acting at the top and bottom poles of the droplet in system I.
In system III, the effect of the polarization force is more pronounced
at the side of the droplet direction inward, while system V shows
an almost constant distribution of the polarization force across the
interface toward the center of the droplet. Figure 6(b) shows that
the Coulomb force acts mainly parallel to the applied electric field
vertically, representing an outward direction for systems I and V, in
contrast to system III. By comparing the magnitude of the polariza-
tion and Coulomb force terms, Fig. 6(c) shows the effect of the total
electric force for these three systems. For system I, the Coulomb and
polarization forces are in the same direction acting at the top and
bottom poles, magnifying their effect. For system III, the Coulomb
force is much stronger than the polarization force, and thus, it domi-
nates the total electric force influence. For system V, the polarization
and Coulomb forces act in opposite directions especially at the top
and bottom parts of the droplet. The interplay between these two
terms results in an inward contribution from the polarization force
at the side of the droplet and an outward effect at the top and bot-
tom due to the stronger Coulomb force. It should be noted that the
electric force configurations of systems II and VI are the same as III,
so they are not represented here for the sake of brevity. Addition-
ally, the polarization and Coulomb forces act on the top and bottom
poles toward and outward the center, respectively, for system IV,
while the magnitude of the Coulomb force is greater than the polar-
ization force. Hence, the total electric force stretches the droplet
in a vertical direction similar to system I, as shown in Figs. 7(a)
and 7(c).

Recalling from Fig. 4, |D∞| is set to 0.05 for all systems and the
D/|D∞| is evaluated up to Wc = 0.95. On the other hand, it can be
observed from the analytical results shown in Fig. 4 that systems II
and IV tend to reach very large deformations at high confinement
ratios (i.e., Wc > 0.7). However, we observe that systems II and IV
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FIG. 6. Comparison of (a) polarization force, (b) Coulomb force, and (c) total electric force on the interface of the droplet at Wc = 0.9 for systems I, III, and V.

FIG. 7. Total electric force on the interface of the droplet for (a) system IV at Wc = 0.6 and |D∞| = 0.05, (b) system II at Wc = 0.8 and |D∞| = 0.05, and (c) system IV at Wc
= 0.8 and |D∞| = 0.01.
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behave differently under the EHD effects. The discrepancy is due to
different electric force field configurations on the droplet interface.
Figure 7 represents the deformation of systems II and IV and illus-
trates the electric force vectors and their magnitude on the interface.
It can be clearly seen in Fig. 7(a) that the electric forces act at the top
and bottom poles of the droplet in system IV and elongate it into
a prolate shape, while the cause for the deformation of system II is
the inward electric forces at the side poles of the droplet as shown in
Fig. 7(b). Additionally, the magnitude of the electric forces is much
larger in system IV. This results in large droplet deformations at rel-
atively smaller confinement ratios where the droplet reaches the top
and bottom boundaries at Wc > 0.6. In order to represent the defor-
mation of system IV at larger confinement ratios, the unbounded
deformation has been changed from |D∞| = 0.05 to |D∞| = 0.01,
which corresponds to the smaller electrical capillary number. Hence,
this indicates that the applied electric force is weaker on the droplet
interface leading to smaller unbounded deformations. Under this
condition, the droplet deformation of system IV can be tracked
up to large confinement ratios i.e., Wc = 0.8 reaching D/|D∞|
= 6.96 as represented in Fig. 7(c). This shows that the analytical solu-
tion predicts the deformation of system IV correctly only at very
small unbounded deformations. For system II, however, the analyti-
cal solution does not represent accurate results at large confinement
ratios.

In Fig. 7, it is shown that the value of the unbounded defor-
mation (e.g., in system IV) affects the predictions at large confine-
ment ratios and results in different D/|D∞|. In order to analyze this
effect, Fig. 8 represents D/|D∞| at two confinement ratios (a) Wc
= 0.6 and (b) Wc = 0.8 for all six systems in Table II as a func-
tion of |D∞|, which can be interpreted as an effect of the applied
electric field strength. At Wc = 0.6, it is observed that the analyti-
cal solution provides relatively accurate results for all systems. For
systems II and V, the variation of the unbounded deformation does

not show a considerable effect on D/|D∞|, while it is observed that
for systems III and VI, the analytical solution predicts more accu-
rate results at large unbounded deformations. On the other hand,
the variations of systems I and IV do not indicate a meaningful
relationship. At Wc = 0.8, systems I and VI represent an approach-
ing trend as the unbounded deformation increases, in contrast to
system II, while systems III and V do not show remarkable sensi-
tivity to the variations of unbounded deformation. For system IV,
there are no available data at this confinement due to the extreme
action of the electric forces by which the droplet reaches the top
and bottom boundaries at very small unbounded deformations (i.e.,
D∞ < 0.02). By analyzing the data, one may notice that the analyt-
ical solution is accurate at small and moderate confinement ratios
(Wc ≤ 0.6), which confirms our previous conclusion. For high con-
finement ratios, on the other hand, high unbounded deformation
should be selected for making analytical solutions applicable. Oth-
erwise, there will be a difference between analytical and numerical
results. The reason behind such a difference is due to the existence of
complex interactions and the interplay between electrical and hydro-
dynamic forces that we aim to elaborate for some of the systems in
the following.

Recalling from Fig. 4, one can notice that the general trend of
systems I and V is similar except the difference in numerical results
at large confinement ratios. It should be noted that for both systems
I and V, the comparison of the electrical conductivity and permit-
tivity ratios yields P < C. So, the inner and outer vortices around
the droplet are as described in Fig. 5(b). Additionally, the electric
forces on the interface tend to deform the droplet into a prolate
shape as shown in Figs. 6(a)–6(c), as observed for both cases at small
confinement ratios. In contrast, the electrical conductivity and per-
mittivity ratios of systems II and III result in P > C, so it is expected
that they deform into an oblate shape as seen in small confinement
ratios. However, the deformations of these two systems represent a

FIG. 8. Effect of unbounded deformation on the variation of normalized droplet deformation at (a) Wc = 0.6 and (b) Wc = 0.8. Solid lines demonstrate the results of Behjatian
and Esmaeeli,23 and points represent the SPH results.
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shift from oblate to prolate deformation at large confinement ratios.
In order to explain the above-mentioned cases, other dominating
terms, such as pressure, should also be considered, which can highly
influence the hydrodynamics of microfluidic systems. We believe
that the reason for such discrepancies is inherited in inappropriate

utilization of the pressure term in the analytical solution. In the fol-
lowing, it will be shown how the pressure dominates the flow and
changes the hydrodynamics of the system. This will be represented
in Fig. 9 by comparing the dynamics of systems I and V, as well as in
Fig. 10 for systems II and III.

FIG. 9. Comparison between forces on the interface of systems I and V. (a) Effect of the confinement ratio on the force ratio of points on the vertical and horizontal axes of the
droplet, which act in the prolate elongation. Pressure contour and vectors of the total electric force for (b) system I and (c) system V. Unit arrows are shown at the top-right
corner of the sub-figures.
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FIG. 10. Comparison between forces on the interface of systems II and III. (a) Effect of the confinement ratio on the force ratio of points on the vertical and horizontal axes of
the droplet, which act in the prolate elongation. Pressure contour and vectors of the total electric force for (b) system II and (c) system III.

Figure 9 compares the electrical and pressure forces for sys-
tems I and V. In Fig. 9(a), a new parameter is introduced here,
namely, the Force Ratio (FR), which is the ratio of forces normal
to the interface at the sides and top/bottom poles of the droplet.
The FR is defined such that if FR > 1, interfacial forces deform
the droplet into a prolate shape, while FR < 1 leads to an oblate

elongation. Figures 9(b) and 9(c) represent the contours of the pres-
sure and the electric force vectors of systems I and V at Wc = 0.6, 0.8,
and 0.95, respectively. It is observed that system I remains prolate at
all confinement ratios, while system V shifts in an oblate deforma-
tion at large confinement ratios. Considering FR of system I, both
polarization and Coulomb forces increase at large confinement
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ratios, while this increment is significant for the Coulomb force,
resulting in the growth of the total electric force on the interface.
Accordingly, one can expect the monotonical increase of the pro-
late deformation with respect to the confinement ratio. As shown
in Fig. 4, however, the deformation value starts to decrease at Wc
= 0.8. On the other hand, FR of the pressure indicates that at small
confinement ratios, this value is around unity, meaning that the
pressure is distributed equally around the interface. However, by fur-
ther increasing the confinement ratio above Wc > 0.7, FR decreases
such that the pressure force pushes the droplet from top/bottom
poles of the droplet, so it acts in the opposite direction of the electric
forces. At very large confinement ratios, i.e., Wc > 0.8, the pressure
dominates the electric forces leading to a reduction in the prolate
deformation of the droplet in system I. This explains the maxi-
mum prolate deformation at Wc = 0.8. For system V, the FR of the
polarization force remains almost constant across all confinement
ratios, while the Coulomb force slightly increases at large confine-
ment ratios. On the other hand, the pressure FR decreases such
that it dominates the Coulomb force. As can be seen in Figs. 9(b)
and 9(c), the magnitude of the electric forces in system I is much
larger than those in system V as represented by the unit arrows
shown at the top-right corner of the sub-figures. So, the decrease
of the pressure FR is magnified enough at very large confinement
ratios so that the droplet exhibits an oblate deformation as shown
in Fig. 4.

A similar analysis has been conducted here for systems II and
III as demonstrated in Fig. 10. In contrast to systems I and V, sys-
tems II and III have oblate deformations at small confinement ratios,
but increasing the confinement ratio will change their deformation
into prolate shapes. By analyzing the force ratio FR of both sys-
tems in Fig. 10(a), it is revealed that the Coulomb force ratio is
very small at small confinement ratios, showing an extreme ten-
dency to deform the droplet into an oblate shape. It should be
noted that the Coulomb force ratio of system III is extremely small,
i.e., O(10−4), and thus, it is not shown in Fig. 10(a). The polariza-
tion force ratio, on the other hand, is in the order of O(100) for
both cases. This results in a total electric force ratio in the range
of O(10−1), which induces oblate deformation for both systems,
despite the presence of the opposing pressure force ratio. Subse-
quently, the interplay between the resultant electric force and the
pressure enforces the droplet to deform into an oblate shape. By
increasing the confinement ratio, the Coulomb FR remains in the
same order of magnitude, while the polarization force ratio mono-
tonically increases for both systems. So, the resultant electric force
has an increasing trend that changes the deformation of both sys-
tems from oblate to prolate elongation. It is observed for system II
that the pressure force ratio decreases considerably such that it bal-
ances the effect of the total electric force in the opposite way. This
reduces the prolate deformation of the droplet in system II at very
large confinement ratios Wc > 0.8. This condition is not observed in
system III.

VI. CONCLUSION
In this paper, the EHD behavior of a droplet is studied in a

highly confined domain by using the multi-phase ISPH method. Six
different fluid systems are selected corresponding to the different
electrical properties. It was shown that in the unbounded domain,

ratios of the electrical properties are the main factors in determin-
ing the droplet deformation shape and values. By increasing the
confinement ratios, the droplet deformation value was changed and
in some cases, switched from oblate/prolate shape to prolate/oblate
elongation. The dependency of the droplet deformation on the elec-
tric force components, including polarization and Coulomb forces,
is discussed thoroughly. It was shown that these forces are the main
reason for the droplet deformation and their strengths are highly
dependent on the confinement ratio. The effect of the pressure force
is also considered, and it was shown that its contribution becomes
significant at high confinement ratios where it acts in the opposite
direction with the electric force, decreasing the deformation value at
high confinement ratios. To simplify the analysis, the force ratio was
defined and used to show the contribution of each effective force on
the droplet deformation. These force ratios are then sketched as a
function of confinement ratio for some systems to better understand
their effect and simplify their comparison.
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