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Ayça Özdog̃an† Mehmet Barlo‡

March 8, 2021

Abstract

This paper asks whether or not it is possible to induce agents to good behavior per-
manently via regulators’ reputations and attain perpetual social efficiency. We propose
and analyze a repeated incomplete information game with a suitable payoff and mon-
itoring structure between a regulator possessing a behavioral type and an agent. We
provide an affirmative answer when a patient regulator faces myopic agents: Reputation
empowers the regulator to prevent agents’ bad behavior in the long-run with no cost and,
hence, attain the social optimum in any Nash equilibrium. These findings are robust to
requiring short-lived agents to choose any one of their actions with an arbitrarily small
but positive probability. On the other hand, we show that when both parties are long-
lived and sufficiently patient, the limiting robust equilibrium cannot be close to perpetual
good behavior. The contrast we attain demonstrates the significance of the interaction’s
longevity and exhibits a novel application of the theory of learning and experimentation
in repeated games.
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1 Introduction

Many unfortunate events involve the misbehavior of agents facing a regulator tasked to
audit/investigate if needed. Examples include an investor engaged in fraud by misrepresenting
his books to a certified auditor, a construction or mining company neglecting work safety
precautions and misreporting its practices, an employee not exerting the promised effort in
a business owned by a principal, etc. Such instances are frequently related to the regulator’s
reputation for being diligent or the lack of it, and regulators’ reputation concerns may prevent
or lessen the extent and severity of such undesirable outcomes.1,2

This paper aims to unravel whether or not regulators’ reputation can induce agents to
“good” behavior permanently when their repeated interaction is neither observable nor con-
tractable. We analyze a dynamic environment where the regulator (he) is responsible for
detecting “bad” behavior via costly auditing yet may not be diligent because of the associated
costs. To do this, we propose a repeated incomplete information setup under imperfect public
monitoring with a stage game possessing a suitable payoff structure that is played between a
regulator (who could be committed to being diligent or is strategic) and an agent (she).

First, we show that when the patient long-lived regulator faces a sequence of myopic
agents who play only once and observe the public history of the past play, reputation em-
powers the regulator to prevent agents’ bad behavior with no cost in any Nash equilibrium
(NE). In fact, by inducing the agents to behave (well) in the long-run, the patient strategic
regulator attains his maximum payoff, which coincides with the social optimum. To address

1For instance, Bernard Madoff was found guilty of several offenses, including fraud and false statements
to the Securities and Exchange Commission (SEC). He began the Ponzi scheme in the early 1990s, yet he
was arrested in late 2008 even though the SEC had previously conducted several investigations since 1992.
SEC has been criticized for failing to act on Madoff fraud. The SEC inspector confessed: “Despite several
examinations and investigations being conducted, a thorough and competent investigation or examination was
never performed” (see “SEC criticized for failing to act on Madoff” at http://business.timesonline.co.uk by Seib
and “Madoff Explains How He Concealed the Fraud” at www.cbsnews.com). Yet in another investment fraud
charge, against Robert Allen Stanford in 2009, a report of the investigation by the SEC Office of the Inspector
General shows that the agency has been following Stanford’s companies for much longer and reveals a lack of
diligence in the SEC enforcement (see http://www.sec.gov/news/studies/2010/oig-526.pdf ).

2The negligence of regulation may be associated with serious casualties. A mining accident took place in
Soma, Turkey, which caused a loss of 301 lives in 2014. In response to a parliamentary question, The General
Directorate of Mining Affairs of Turkey (GDMA) said that they could only afford to audit less than one-fourth of
all the minefields annually. Meanwhile, many established NGOs (e.g., The Union of Turkish Bar Associations
and The Union of Turkish Engineering and Architecture Associations) announced doubts and concerns about
GDMA’s governance practices in conjunction with this accident. In fact, during the criminal case associated
with this accident, it became public information that an auditor of GDMA responsible for that particular mine
was also employed by the company owning that mine as a technical supervisor (see Turkish newspaper page at
https://www.hurriyet.com.tr/ekonomi/somada-denetci-skandali-29868799).

1



situations with large populations of many long-lived agents who are not able to coordinate on
future behavior, rewards, and punishments, we consider the Markovian setting with a myopic
(representative) agent.3 We show that there exists a unique Markov equilibrium (ME) with a
value function that is continuous and nondecreasing in the reputation for being diligent. The
regulator’s value function attains the maximum payoff at the absorbing reputation levels at
which the agents exhibit good behavior while the regulator incurs no cost. All these find-
ings are robust in the sense that requiring each agent to choose any of her actions with an
arbitrarily small but positive probability does not alter these results qualitatively.

On the other hand, a contrasting conclusion emerges when the strategic regulator faces
the same long-lived agent. The permanency of good behavior cannot be a robust equilibrium
outcome with sufficiently patient players: We prove that, regardless of the initial beliefs, there
is no NE in which the agent behaves (well) on average in the long-run on a positive probability
set of histories while experimenting with the bad behavior every once in a while.4

Our findings display a disparity of robust limiting equilibrium behavior between the short-
lived and the long-lived cases. Indeed, social efficiency is approximately sustained as a robust
NE payoff when the patient strategic regulator faces myopic agents but not when he encoun-
ters a long-lived agent. Therefore, the current paper contributes to the theory of reputation by
portraying the significance of the longevity of the interaction among the participants and pro-
viding a novel application of the theory of learning and experimentation in repeated games:
In our setting, agent’s good behavior corresponds to the absorbing case (because then no
additional information could emerge and require updating of beliefs), while the strategic reg-
ulator would exploit this by refraining from costly auditing (thereby, sustaining efficiency);
thus, the problem boils down to discouraging experimentation with the bad behavior in the
case of perpetual interaction among the participants.

The repeated game between the regulator and the agent(s) involves unobservable actions
on both sides and incomplete information about the regulator’s type being strategic or tough.

3There are many such cases where the dismissal of intertemporal coordination among agents is plausible
(e.g., a population of taxpayers facing a tax authority). Under some additional restrictions known in the litera-
ture, the resulting situation parallels the Markovian case involving a myopic representative agent.

4To ensure that the agent chooses each of her actions with a small but positive probability in every period, we
discuss a setting where she suffers from one-period amnesia with some small but positive probability at the be-
ginning of every period (in which case she hangs on to her low initial beliefs that the regulator is of commitment
type). Perfection of Selten (1975) implies our notion of robustness. Sadly it is too powerful: the regulator (the
informed player) would be forced to choose each of his actions with some arbitrarily small but positive prob-
ability as well. Besides, it creates non-trivial complications. Meanwhile, the ant colony optimization (ACO)
techniques of computer science pioneered by Dorigo (1992) parallel with our robustness notion.
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In the stage game, the agent’s actions consist of good (truthful) and bad (untruthful) behavior
while the regulator’s of diligent and lazy actions. The regulator can detect agent’s untruthful
behavior with some probability determined by the audit quality only if he chooses the costly
diligent action. If the regulator detects the agent’s untruthfulness, the public signal associated
with detection occurs. Otherwise, the absence of the public signal indicates that there is
no detection. The stage game payoffs are so that the agent’s best response to the regulator
choosing to be diligent is to be truthful. Whereas it is to be untruthful if the agent believes
the regulator chooses to be lazy. Meanwhile, the strategic regulator’s best response is to be
lazy when the agent is truthful and to be diligent if the agent is untruthful. The strategic
regulator prefers the agent being truthful, and the agent prefers the regulator being lazy. The
tough regulator (Stackelberg type) always chooses the diligent (Stackelberg) action. Hence,
the Bayesian Nash equilibrium (BNE) of the stage game is in mixed actions for low values of
the regulator’s probability to be tough, and otherwise, the agent chooses the truthful action,
and the strategic regulator is lazy. In the repeated game, all players observe past signals of
detections, the public history. We refer to agents’ updated beliefs about the regulator’s type
as the regulator’s reputation.

Our objective is to analyze whether the strategic regulator can build up a reputation that
induces the agent(s) to good behavior permanently. There is no correct model in terms of
the longevity of the strategic interaction among the players. Some instances fit situations
where the regulator faces different myopic agents each period, while others suit the regulator
facing the same agent in every period. To provide an answer and novel insight, we analyze
two extremes: (1) a long-lived regulator faces short-lived agents, each observing the public
history; (2) a long-lived regulator faces a long-lived agent.

In the first, we establish that when the regulator is sufficiently patient, in every NE and
for all interior initial common beliefs the agents may have about the regulator’s type, in the
long-run at almost every history, agents’ behavior converges to choosing the truthful action
in perpetuity. This finding follows from the result saying that any NE payoff of the patient
strategic regulator tends to its maximum level in these cases. Hence, he enjoys a permanent
reputation inducing agents’ good behavior indefinitely, refrains from costly auditing, and at-
tains perpetual social efficiency. In furtherance, we prove that there is a unique ME with a
continuous and nondecreasing value function such that the reputation for being diligent be-
comes permanent whenever it exceeds a threshold. The reputation above this level implies all
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the future agents behave while the regulator is lazy permanently, and otherwise, players use
mixed actions. As every ME is an NE of the dynamic game, we conclude that the perpetual
social optimum is secured in ME as well.

The intuition behind these stems from the short-lived agents only caring about their short-
run payoffs and giving myopic best responses to their updated public beliefs. They do not con-
sider the information externality that they could initiate and be helpful to future generations.
When an agent is truthful, Bayesian updating does not happen. Thus, the patient strategic
regulator finds it optimal to ensure that his reputation eventually reaches a level above which
it persists as all subsequent agents would find it optimal to be truthful thereafter. Therefore,
good behavior is attained in perpetuity thanks to the patient regulator’s reputation and the
myopic agents’ short-term incentives. Meanwhile, the patient strategic regulator guarantees
his maximum payoff, strictly exceeding his Stackelberg returns, in any NE.

Additional complications arise when the regulator (he) faces a patient long-lived agent
(she). Both make their choices and update their beliefs according to their private histories.
The regulator cannot anticipate the long-lived patient agent’s actions since her beliefs are
private and she is not giving myopic best responses. In this setting, due to the lack of iden-
tifiability conditions, we do not know whether or not under NE, there is a sufficiently high
reputation that blocks the avenue leading to aforementioned information externalities. How-
ever, even if there were such an NE, we prove it would not be robust. The patient agent would
expose the patient strategic regulator’s false reputation in the long-run if she were bound
to experiment with the untruthful action every period with an arbitrarily small but positive
probability. We formalize this notion of robustness via the concept of an α-NE: for any given
α > 0 but arbitrarily small, an α-NE is an NE in which the agent is restricted to choose each
of her actions with at least α probability in every period. Then, we prove the following for all
interior initial common beliefs: If α > 0 is arbitrarily small and players are sufficiently pa-
tient, there is no strictly positive probability set of histories induced by an α-NE such that the
agent’s limiting equilibrium play converges to choosing the truthful action with a probability
of 1−α. So, when players are patient, no robust NE induces a strictly positive probability set
of events (histories) in which the regulator enjoys the efficient payoff approximately.

The intuition is as follows: Suppose, on the contrary, that there is a set of events with
a positive measure on which the agent finds it optimal to be truthful on average after some
private history with a very high probability. Thus, in every continuation game following this
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private history, the agent must be expecting to see diligence with a high probability on average
for sufficiently long periods. Thanks to Cripps et al. (2007) and using “conditional identi-
fication of the agent” (saying that perpetual diligence identifies the agent’s fixed behavior
from the frequencies of the public signals), we establish the following: “if the agent’s private
history implies that she is almost convinced of facing a diligent regulator and behaves ac-
cordingly, then this eventually becomes known to the regulator” on a particular set of private
histories of the regulator (coinciding with the agent’s private beliefs about the regulator’s fu-
ture behavior obtained from the agent’s private history as given above).5 But then, the agent,
knowing that her beliefs will eventually become known to the strategic regulator on these
particular histories where the regulator is believed to be diligent on average, can infer that the
strategic regulator (who can identify the long-run behavior of the agent on those particular
private histories of his) would be convinced that the agent believes that the regulator will be
diligent thereafter and he would act on it by choosing lazy. However, this may not be enough
to convince the agent to switch to bad behavior when the regulator’s reputation is high. But,
in the long run, the agent draws the irrefutable inference that the regulator is of the strategic
type and chooses lazy since she is bound to experiment with the bad behavior every once
in a while. Indeed, every time the agent is untruthful in such situations, her private beliefs
would be updated accordingly, which the regulator cannot (observe and hence) respond to.
Thus, there is a period in which the agent’s private beliefs are not compatible with expecting
diligence with a high probability on average for long periods; a contradiction.

Reexamining our results with myopic agents using α-NE, α > 0 but arbitrarily small, doc-
uments that there are no significant qualitative changes to equilibrium behavior and payoffs.
This is because the BNE of the stage game does not change significantly. Agents observe only
the public history, which the regulator also sees. So, the beliefs are public, and the regulator
can predict short-lived agents’ choices. Hence, if the regulator’s reputation strictly surpasses
the threshold obtained from the stage game, then the corresponding agent chooses the truthful
action with probability 1 − α and the strategic regulator is lazy—the identifiability of Cripps
et al. (2004) fails. Thus, if the current reputation is high, the probability that tomorrow’s
reputation is high is high. The rest of the argument follows from continuity.

5The conditional identification of the agent enables us to use the techniques of Cripps et al. (2007) on a
particular set of regulator’s private histories and bypass the complications due to private beliefs. When proving
disappearing private reputations, Cripps et al. (2007, pp.289) shows that “when the uninformed player’s private
history induces her to act as if she is convinced of some characteristic about the informed player, the informed
player must eventually be convinced that such a private history did indeed occur.”
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Early literature on reputation focuses on settings where a long-lived player faces a se-
quence of myopic players observing past play. These studies provide the Stackelberg payoff
as the lower bound on the patient long-lived player’s average limiting payoff given that there
is a commitment type always choosing the Stackelberg action.6 Cripps et al. (2004), on the
other hand, shows that a long-lived informed player, both against myopic and long-lived unin-
formed opponents, can maintain a permanent reputation for playing a commitment action in
a game with imperfect public monitoring only if that action appears in an NE of the complete
information stage game.7 Cripps et al. (2007) extends their disappearance of noncredible
reputations result by allowing for private beliefs.

Our findings concerning the asymptotic equilibrium behavior and the permanency of rep-
utation with myopic uninformed players diverge from those of Cripps et al. (2004) as our
setting violates both their full-support and full-rank conditions.8

Another important work related to our analysis with short-lived agents involves bad rep-
utations. Building on Ely and Välimäki (2003)’s motorist-mechanic example and bad repu-
tation result, Ely et al. (2008) characterizes a class of games with the following details: The
short-run uninformed players decide whether or not to participate in a game with the long-
run player (he), while each of his actions inducing the short-run players to participate “has a
chance of being interpreted as a signal that the long-run player is bad.” Thus, the equilibrium
payoffs of the patient long-run player are close to his utility from the short-run players’ exit
decision. Our result with myopic agents parallels that of Ely et al. (2008) in terms of equilib-
rium payoffs when their participation games are such that the exit action provides the long-run
player his maximum payoff: Both studies establish persistent reputations. Their public sig-
nals satisfy our conditional identification of the long-lived informed player, and the myopic

6See Fudenberg and Levine (1989) (perfect monitoring), Fudenberg and Levine (1992) (imperfect public
monitoring), and Gossner (2011) (imperfect private monitoring). Moreover, such results arise also with two
long-lived players: Schmidt (1993a) (conflicting interests with asymmetric discount factors); Celentani et al.
(1996) and Aoyagi (1996) (imperfect monitoring and asymmetric discount factors); Cripps et al. (2005) (strictly
conflicting interests with equal discount factors); Atakan and Ekmekci (2012) and Atakan and Ekmekci (2015)
(locally nonconflicting or strictly conflicting interests with equal discount factors); Chan (2000) (equal discount-
ing and commitment being dominant).

7Benabou and Laroque (1992) also provides a model of repeated strategic communication with a long-lived
insider trader who has noisy private information about the value of an asset and aims to manipulate asset prices.
They focus on the stationary ME and show that insider traders reveal their true type asymptotically in any ME.
Moreover, Özdog̃an (2014) extends the disappearing reputations result to games with two long-lived players
with incomplete information on both sides.

8In particular, detection happens and is informative about the regulator’s behavior only when the agent is
untruthful (conditional identification of the regulator) and a bad signal following the agent’s untruthfulness is
probable only when the regulator is diligent (conditional identification of the agent).
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agents do not find it optimal to experiment and unravel the type of the long-lived player.
On the other hand, the two signaling structures differ in significant ways. In their setup,

there are exit signals that occur with probability one if the myopic players choose an exit
action, which cannot be observed if the short-run players decide to participate and are not
affected by the action of the long-lived player. However, in our model, the no detection signal
that occurs with probability one if the short-lived agents choose to be truthful (“exit”) can
also be generated when the agent chooses to be untruthful (“participate”), the probability of
which then depends on the regulator’s action. This structure gives rise to “the conditional
identification of the agent” that is the key condition in analyzing the two long-lived player
case, which is left as an open question in Ely et al. (2008).9, 10

The organization is as follows: Section 2 presents the model. The descriptions of the
repeated games and the results with the short-lived and long-lived agent cases are provided in
Section 3 and 4, respectively. Section 5 concludes. The proofs are presented in the Appendix.

2 Model

We model the agent and regulator’s strategic interaction through a simultaneous-move
stage game. The agent (she) can be either truthful or untruthful in her interaction with the
regulator (he). Thus, her action set is A = {T,U} where a ∈ A. The mixed action of the agent
is given by σA ∈ ∆(A) where ∆(A) is the probability simplex on A; with abuse of notation,
we denote the probability that she chooses T also by σA. The regulator can detect deviations
from the truthful behavior via costly auditing. He chooses to be diligent or lazy in auditing
the agent. His choice generates different detection probabilities of the agent’s untruthfulness,
provided that she is indeed untruthful. The regulator’s action set is R = {D, L} while his
mixed action is σR ∈ ∆(R). As before, σR also denotes the probability of him choosing D.11

9Ely and Välimäki (2003) constructs a sequential equilibrium that shows their bad reputation result may not
hold with two long-lived players in the motorist-mechanic example.

10Another strand of related reputation literature involves recent studies featuring continuous-time models
that analyze monitoring in employment contracts (e.g., Halac and Prat (2016)) and certification of quality in
product-quality choice settings (e.g., Marinovic et al. (2018) and Dilmé (2019) following Board and Meyer-ter
Vehn (2013)). While only Halac and Prat (2016) and Marinovic et al. (2018) endogenize the costly learning,
the former focuses on dynamics, and the latter analyzes costly voluntary certification as a means to build a
reputation in Markov Perfect Equilibrium (MPE). Indeed, that study sustains permanency of reputation in MPE
with a stage game based on Board and Meyer-ter Vehn (2013) when “the industry manages to coordinate on a
good certification standard.”

11Our stage game parallels the one in Özdog̃an (2016) while the following version is in line with those in
some papers on monitoring in employment contracts, e.g., Halac and Prat (2016): There is a business owned
by a principal (he) who has to employ an agent (she) to operate. The principal cannot observe the agent’s
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The set of public signals is Id = {0, 1} where 1 stands for detection and 0 for no detection.
The audit quality is given by the following probability distribution on Id conditional on A×R,
which is denoted by ρ where ρ(id | a, r) is the probability of id given (a, r) ∈ A × R:

ρ(1 | U,D) = 1 − ρ(0 | U,D) = β ρ(1 | T,D) = 1 − ρ(0 | T,D) = 0

ρ(1 | U, L) = 1 − ρ(0 | U, L) = 0 ρ(1 | T, L) = 1 − ρ(0 | T, L) = 0

where β ∈ (0, 1) is the probability of detecting an agent who has chosen U if the regulator
chooses D. Notice that no detection must occur whenever the agent has chosen T .

A player’s action is not observable to the other. Yet, the public signals, informative about
agents’ choices, become commonly observable at the end of the corresponding period. Public
signals are statistically informative about a player’s behavior conditional on the other one
choosing a particular action: the regulator can infer the fixed action chosen by the agent from
the signals’ frequencies only when he has been diligent; the agent can identify the regulator’s
fixed action from the frequency of the detections only when she has been untruthful. These
are summarized in Remarks 1 and 2 also establishing that in our model, the full support
assumption, typically presumed in many studies in the literature, does not hold.

Remark 1. The conditional identification of the agent’s actions holds as |A| columns in the

matrix [ρ(id | a,D)]a=U,T ; id=0,1 are linearly independent. And ρ(0|U, L) = ρ(0|T, L) = 1.

Remark 2. The conditional identification of the regulator’s actions holds as |R| columns in

the matrix [ρ(id | U, r)]r=D,L; id=0,1 are linearly independent. And ρ(0|T,D) = ρ(0|T, L) = 1.

We normalize the agent’s payoff to zero when she chooses T . If she chooses U, she pays
a fine of l if detected and otherwise receives a gain of g. So, uA(T,D) = uA(T, L) = 0,
uA(U, L) = g, and uA(U,D) = ` = g − β(g + l). The following ensures that her unique best
response to D is T :

Assumption 1. The parameter values satisfy g
g+l < β.

The regulator’s payoff is also normalized to zero if he chooses L and the agent T . This is
the maximum payoff the regulator can attain. Given that the agent chooses U, the regulator’s
gain is d if U is detected, and otherwise, his expected loss is f . The regulator incurs a cost

performance. His options are to monitor the agent intensively (I) or not (N). If the agent chooses high effort (H)
the outcome has to be good, g, regardless of whether or not the principal monitors intensively. If she chooses low
effort (L), there is a probability that the bad outcome, b, occurs, which can be detected only when the principal
monitors the agent intensively. Otherwise, he observes g even though the agent has chosen L.
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of c if he chooses D. Thus, regulator’s expected payoffs are: uR(T, L) = 0, uR(T,D) = −c,
uR(U,D) = −e = βd − (1 − β) f − c, and uR(U, L) = − f .12

The resulting ex-ante (expected) stage game payoffs are presented in Table 1.

D L
T 0,−c 0, 0
U −`,−e g,− f

Table 1: Ex ante stage game payoffs under complete information

We employ the following restriction on the regulator’s payoffs.

Assumption 2. The parameter values satisfy c
d+ f < β <

f
d+ f .

The first inequality implies uR(U,D) > uR(U, L) and the second uR(T,D) > uR(U,D).
Thus, the regulator’s expected payoffs are ordered as follows: 0 = uR(T, L) > uR(T,D) >

uR(U,D) > uR(U, L) = − f . Under this construction, no matter what the regulator chooses,
he prefers the agent to be truthful as the implied expected loss in case of untruthfulness, f , is
higher than the cost of being diligent, c. Thus, the regulator would like to convince the agent
to be diligent to induce truthfulness, which is the regulator-preferred action. However, the
regulator wants to be lazy if he thinks that the agent is truthful, while he has an incentive to
be diligent if he believes that the agent is going to be untruthful.

Additionally, we assume that g < f so that the regulator’s payoff maximizing action
profile, (T, L), also maximizes total welfare.

Consequently, the unique NE is in mixed actions:

σ∗A = 1 −
c

β(d + f )
and σ∗R =

g
β(g + l)

. (1)

Next, we discuss some properties of the ex-ante stage game payoff structure. First, the
minmax payoffs (both in pure and mixed actions) are as follows: 0 for the agent with (T,D)

being the pure action profile that minmaxes the agent; −e for the regulator with (U,D) being
the pure action profile that minmaxes the regulator. Second, the regulator’s pure Stackelberg
action is D and D mixed-action minmaxes the agent. Thus, following Schmidt (1993b), the
stage game described in the current paper has conflicting interests. The regulator’s preferred

12Our payoff specifications differ from some those used in the literature, in which players’ ex post payoffs
depend on their own actions and the public signals, and ex ante payoffs equal the expectation of ex post payoffs
taken over opponents’ actions. This type of specification would imply uR(U, L) = uR(T, L) as the regulator
chooses the same action and receives the same signal of no detection with probability one. However, then, the
forgone societal loss due to the agent being untruthful would not be captured.
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opponent action is T , which is also the unique best response to the Stackelberg action D,
whereas the agent’s preferred opponent action is L.

To introduce reputation as in Harsanyi (1967-68), Kreps and Wilson (1982) and Milgrom
and Roberts (1982), we consider two types of regulators: tough or strategic. The tough
regulator is committed to being diligent (the pure Stackelberg action of the strategic type),
whereas the strategic regulator’s preferences are as above. The regulator knows his true type
while the belief of the agent that the regulator is tough (i.e., the reputation of the regulator)
is given by γ ∈ (0, 1). The agent’s equilibrium behavior depends on her belief about the
regulator’s type. Let π(γ, σR) be the expected probability of detection, i.e., π ≡ π(γ, σR) =

γβ + (1 − γ)σRβ. Then, the agent’s problem is

max
σA∈[0,1]

(1 − σA) [(1 − π)g − πl] (2)

There is a cutoff value of detection, π∗ =
g

g+l , determining the optimal behavior of the agent:
her best response equals {U} if π(γ, σR) < π∗ and {T } if π(γ, σR) > π∗. The Bayesian Nash
equilibrium (BNE) of the incomplete information stage game is presented in Lemma 1.

Lemma 1. The following action profile (σA, σR) constitutes an BNE,

(i) σA = 1 and σR = 0 if γ ≥ γ∗,

(ii) σA = 1 − c
β(d+ f ) and σR =

g−γβ(g+l)
(1−γ)β(g+l) =

π∗−γβ

(1−γ)β if γ < γ∗,

where the cutoff value of the belief is γ∗ =
g

β(g+l) ∈ (0, 1).

This lemma establishes that there is no equilibrium in which the regulator chooses to be
diligent with probability one. If the belief that the regulator is tough is above a threshold, then
the agent is truthful with probability one; anticipating this, the regulator chooses to be lazy
with probability one. Otherwise, players go for the mixed actions specified in the lemma.
Moreover, the equilibrium actions are monotone in the prior belief.

3 Dynamic game with short-lived agents

The game is infinitely repeated where the periods are t = 0, 1, . . .. The regulator is the
long-lived player with a discount factor δ ∈ (0, 1), and the agents are short-lived (myopic)
players. The agent of a period t, agent t, plays only in that period and cares only about her
own payoff. In each period, the players simultaneously choose actions from their action sets.
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The reputation affects behavior only when the short-lived agents have information about
past detections. Hence, we suppose that in every t, agent t observes the public history of
signals ht (while h0 stands for the unique null history) which consists of whether or not each
of the preceding agents have been detected, i.e., ht = (id0, id1, ..., idt−1) ∈ Ht. We let ht

R be
the private history of the regulator which is composed of ht and his past actions up to time t

and hence ht
R = ((r0, id0), (r1, id1), ..., (rt−1, idt−1)) ∈ Ht

R ≡ (R × Id)t. The filtration on (R × Id)∞

induced by the regulator’s private histories are given by {HRt}
∞
t=0, while {Ht}

∞
t=0 is the filtration

on (Id)∞. We let K = {tough, strategic} be the type space for the regulator. The regulator’s
type is determined once and for all before the beginning of the game, and the common prior
belief about the regulator being tough is γ0 ∈ (0, 1).

Then, the strategy of the regulator, σR, is a sequence of maps σRt : Ht
R × K → ∆(R).

We let σR ≡ (σ̂R, σ̃R) where σ̂R is the strategy of the tough type, who always plays diligent
(action D) with probability one regardless of his private history, and σ̃R is the strategy of the
strategic type. Agent t’s strategy, σAt, is a function σAt : Ht → ∆(A), while ‖σAt − σ

′
At‖ =

supht∈Ht |σAt(ht) − σ′At(h
t)|. The prior belief γ0, σR ≡ (σ̂R, σ̃R), and σA ≡ (σAt)t=0,1,... induce

a probability measure Q on Ω ≡ K × (R × A × Id)∞, illustrating how the game evolves for
an uninformed outsider. The profiles σ̂ ≡ (σA, σ̂R) and σ̃ ≡ (σA, σ̃R) induce probability
measures Q̂ and Q̃ on Ω, describing the evolution of the game when the regulator is following
the strategy of the tough type, σ̂R, and strategic type, σ̃R, respectively. The expectation taken
with respect to Q is E and the expectations associated with Q̂ and Q̃ are Ê and Ẽ, respectively.
Ê[ · | Ht] and Ẽ[ · | Ht] identifies agent t’s expectation based on public history up to time t

when the regulator uses the strategy σ̂R and σ̃R, respectively.
The posterior belief of agent t at the beginning of period t is γt(ht) with γ0(h0) = γ0. When

the meaning is clear, we shorten γt(ht) to γt. If agent t choses U, then Bayesian updating is
needed at the end of period t (see Remark 2). Otherwise, γt+1 = γt. Then, given agent t’s
choice U, the reputation after the signal id ∈ {0, 1} is calculated as follows:

γt+1 =


γ+

t+1 =
γtβ

π(γt ,σ̃Rt)
=

γtβ

γtβ+(1−γt)σ̃Rtβ
if id = 1,

γ−t+1 =
γt(1−β)

1−π(γt ,σ̃Rt)
=

γt(1−β)
γt(1−β)+(1−γt)[σ̃Rt(1−β)+(1−σ̃Rt)]

if id = 0.
(3)

where π(γt, σ̃Rt) is agent t’s assessment of the probability of detection at t given σ̃Rt ∈ [0, 1]:
π(γt, σ̃Rt) ≡ γt β + (1 − γt) σ̃Rt β. (4)

Bayesian updating implies {γt}t is a martingale: E[γs(hs) | Ht] = γt(ht) for all hs following
ht. Then, E[ · | Ht] = γtÊ[ · | Ht] + (1 − γt)Ẽ[ · | Ht].
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Given a strategy profile σ, the prior belief γ0, and a public history ht that has positive
probability underσ, we can find the conditional probability of the long-lived strategic player’s
action that depends on the public history. Thereby, we restrict attention to public strategies.

A Nash equilibrium is a strategy profile σ = (σA, σ̂R, σ̃R) such that
(i) for all t and all positive probability public histories (PPPH) ht, σAt(ht) is a best response

of agent t against (σ̂R, σ̃R); i.e., for all t and all PPPH ht, E[uA(σAt(ht), σRt(ht)) | Ht] ≥

E[uA(σ′At(h
t), σRt(ht)) | Ht] for all σ′At(h

t) ∈ ∆(A), and
(ii) Ẽ[(1− δ)

∑∞
t=0 δ

tuR(σAt(ht), σ̃Rt(ht))] ≥ Ẽ[(1− δ)
∑∞

t=0 δ
tuR(σAt(ht), σ̃′Rt(h

t))], for all σ̃′R;
i.e., σ̃R is a best response of the strategic regulator against σA.

As each agent is short-lived, her decision depends only on the updated reputation of the
regulator and the strategic regulator’s expected behavior at that period. Indeed, if γt ≥ γ∗

(which is as given in Lemma 1), agent t chooses T and the strategic regulator L delivering
each a payoff of zero and sustaining efficiency. If γt < γ

∗, then agent t chooses U with some
probability only if the strategic regulator is diligent with no more probability than π∗−γt−1β

(1−γt−1)β .

3.1 Nash equilibrium

Below, we show that if the regulator is sufficiently patient, in every strictly positive prob-
ability set of histories induced by an NE, agents’ limiting behavior converges to choosing the
truthful action in perpetuity given any interior initial common beliefs the agents may have
about the regulator’s type. As a result, the strategic regulator shies away from being diligent
in the long-run, and hence social efficiency is obtained. We let the commitment strategy, σ̂A,
be defined by σ̂At(ht) = 1 for all ht.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, for all γ0 ∈ (0, 1), there is

δ∗ ∈ (0, 1) such that for all δ > δ∗ and for all A ⊂ Ω with Q(A) > 0 induced by an NE

(σ∗A, σ
∗
R), limt→∞ ‖σ̂At − σ

∗
At‖ = 0, for all ω ∈ A.

At the heart of the proof of Theorem 1 lies Özdog̃an (2016, Theorem 1) which establishes
that when agents are short-lived, reputation helps the patient strategic regulator to achieve
the maximum attainable payoff for any prior belief agents may have about regulator’s types.
Specifically, for any prior belief γ0 > 0, the minimum payoff of the strategic regulator across
all NE converges to zero, his maximum utility, as δ approaches one. This outcome provides
the strategic regulator strictly more than his Stackelberg payoff of −c.13

13Applying the payoff bound of Gossner (2011) in the current context, we see that the lower bound of the
regulator’s NE payoffs approach his Stackelberg utility, −c, as he gets more patient (since the unique 0-entropy
confirming best response of the agent to the Stackelberg action D is T ).
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The techniques used in the proof of Theorem 1 parallel those in Ely and Välimäki (2003).
The short-lived agents only care about their own payoffs and give myopic best responses to
their updated beliefs about the regulator’s type. So, the agent plays truthfully if and only if
her belief about the regulator being diligent is above a threshold. If so, there is no learning,
and the regulator attains his maximum payoff as there is no need to engage in costly auditing
(Lemma 2). In histories where the agent is not yet convinced of the regulator being diligent,
she has an incentive to be untruthful. This incentivizes the strategic regulator to be diligent
with some probability in order to induce an increase in consequent agents’ beliefs.14 After
probable subsequent detections, the reputation would eventually reach a level above which
all the consequent agents find it optimal to be truthful. Hence, the regulator receives a payoff
lower than his maximum for a finite number of periods, while, in the long-run, the sufficiently
patient strategic regulator captures all the surplus, thereby sustaining social efficiency.

3.2 Markov equilibrium

Now, we consider short-lived agents who are restricted to use Markov strategies. This
situation also corresponds to cases in which agent t is one of a continuum of long-lived agents,
coordination among agents is not possible, and all agents observe the same public history.15

We characterize the ME with the reputation of the regulator being the Markov state vari-
able and strategies, σA(γ) and σR(γ), are functions of only the current reputation level (and
neither the public history nor the time index). We let Ṽ(γ) denote the expected life-time pay-
off to the strategic regulator from (σA, σ̃R) ≡ (σAt, σ̃Rt)t where (σAt, σ̃Rt) = (σA(γ), σ̃R(γ)) for
all t. Then, this equilibrium is defined via the following value function Ṽ(γ):

Ṽ(γ) =
(1 − δ)

{
σ̃R[(1 − σA) (βd − (1 − β) f ) − c] − (1 − σ̃R)(1 − σA) f

}
+ δσAṼ(γ)

+ δ(1 − σA)σ̃RβṼ
(

γβ

π(γ,σ̃R)

)
+ δ(1 − σA)(1 − σ̃Rβ)Ṽ

(
γ(1−β)

1−π(γ,σ̃R)

)
.

(5)

14Lemma 3 displays that every NE continuation path starting from ht with γt < γ∗ includes the play of
diligence with some probability, and hence involves positive probability of detection.

15Coordination among agents and the regulator for future punishments/rewards may be hard to sustain if
agents do not receive the same signal and or individual signals are not public (see, Mailath and Samuelson
(2006, Remark 18.1.3) and Mailath and Samuelson (2015) for an equilibrium with coordinated punishments
using idiosyncratic and public signals in the context of Mailath and Samuelson (2001)). In such cases, it is
innocuous to assume that agents receive independently drawn private signals. This eliminates the coordination
among agents and the regulator. However, the idiosyncrasy of signals causes technical complications (e.g., Al-
Najjar (1995)) and diverts attention away from reputation. To abstract away from these complications and to
capture agents’ myopic incentives due to lack of coordination in a large population environment, we consider a
continuum of agents who cannot coordinate among each other but receive the same public signal.
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Definition 1. A Markov equilibrium consists of σ∗ ≡ (σ∗A(γ), σ̂∗R(γ), σ̃∗R(γ)) and the corre-

sponding beliefs such that for all γ ∈ [0, 1]:

1. Given the expected probability of detection π(γ, σ̃∗R) induced by σ̃∗R(γ),σ∗A(γ) maximizes

the agent’s problem given in (2); and

2. Given σ∗A(γ), σ̃∗R(γ) maximizes the associated value function Ṽ(γ) given in (5), while

σ̂∗R(γ′) = 1 for all γ′; and

3. Posterior beliefs are determined via Bayes’ rule whenever possible (i.e., when σ∗A < 1)

according to (3).

The following is our result for the Markov case:

Theorem 2. Suppose Assumptions 1 and 2 hold. Then, there is a unique ME, σ∗, possessing

a continuous and nondecreasing value function Ṽ such that γ ≤ γ∗ implies

σ∗A(γ) = 1 −
(1 − δ)c

β
(
(1 − δ)( f + d) + δ[Ṽ(γ+) − Ṽ(γ−)]

) and σ̃∗R(γ) =
π∗ − γβ

(1 − γ)β

and γ ≥ γ∗ implies σ∗A(γ) = 1 and σ̃∗R(γ) = 0, where γ∗ =
g

β(g+l) and π∗ =
g

g+l . Moreover, if

γ ≥ γ∗, then Ṽ(γ) attains its maximum level of 0.

The ME induces an NE of the dynamic game.16 When γ crosses the threshold level γ∗, the
absorbing state is attained, and both equilibria specify the same pure action profile thereafter.
But, if γ < γ∗, the ME specifies a totally mixed action profile so that every public history,
apart from some in the absorbing states, is reached with a strictly positive probability. So,
the ME defined on the resulting histories constitutes an NE in the dynamic game. Thus, by
Theorem 1, in the long run, agents’ ME strategies converge to the commitment strategy, σ̂A,
at every induced set of histories with strictly positive probability when the strategic regulator
is sufficiently patient. Consequently, the efficient payoff is sustained in ME.17

Theorem 2 establishes that in transient states, i.e., when γ < γ∗, the regulator and each
short-lived agent play totally mixed actions that result in probable consecutive detections.
Corollary 1 identifies an upper bound on the number of consecutive detections that can be

16In the complete-information case, i.e., when γ = 0, the only ME consists of the repetition of the stage-game
equilibrium as given in (1).

17{γt}t is a bounded martingale which can be verified in the Markovian context by Theorem 2 and Lemma
7. Therefore, the evolution of beliefs is such that, no matter what has happened in the past (and regardless of
whether or not the agent is short-lived), the expectation of future beliefs about the regulator being the tough
type conditional on the current information must equal today’s value. By employing Lemma 7, we also observe
that γt+1 cannot equal γt, as it must either be γ+(γt) or γ−(γt) with some probabilities specified by Theorem 2
and equation (3), provided that the agent has chosen U in t.
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observed at each reputation level, provided that the agent chooses U whenever she is indiffer-
ent between her actions. This bound is also the minimum number of periods that the regulator
has to invest to build up absorbing reputation at that state.18

Corollary 1. Suppose that Assumptions 1 and 2 hold and consider the ME given in Theorem

2. Let hτ be a PPPH, ht be a PPPH following hτ and involving k consecutive detections

starting date τ, t ≥ τ + k, and γτ < γ∗. Then, k can be at most the smallest integer that

exceeds k∗γτ where k∗γτ =
log(γ∗)−log(γτ)
log(β)−log(π∗) .

To see why note that the posterior probability when the regulator chooses σ∗R(γτ) =
π∗−γτβ

(1−γτ)β

is derived from (3) and equals to γτ+1 =
γτβ

π∗
> γτ upon observing a detection. After k

consecutive detections starting at τ, we obtain γτ+k = γτ(
β

π∗
)k. Since detection is possible

only when agent chooses U, which requires the posterior beliefs to be less than γ∗, we obtain:
γτ+k ≤ γ

∗ implies γτ( β

π∗
)k ≤ γ∗ and hence our conclusion.

A special case emerges when β = 1 − π∗: an observation of detection followed by no
detection or vice versa does not change the posterior belief. Hence, the posterior probability
depends only on the number of different public signals in history and not on their order. Thus,
the continuation of any history that involves at least k∗γ0

more detections results in a persistent
reputation exceeding γ∗.19

3.2.1 Possible extensions

Given the seminal result of Cripps et al. (2004) establishing the impermanency of reputa-
tion effects (obtained when the long-lived player’s action is imperfectly observed but all the
signals are statistically informative about the long-lived informed player’s behavior), in the
literature, the survival of the reputation effects is mainly generated by two means: (1) unob-
served replacements of the long-lived player with a new copy, and this introduces persistent

18Suppose that the parameters are given as γ0 = 1/2, β = 3/4 and π∗ = g/(g + l) = 2/3. The threshold
reputation level at these values becomes γ∗ = 8/9. The ME specifies σ∗R(γ) = (8 − 9γ)/(9 − 9γ) for γ ≤ γ∗.
Under Markov strategy σ∗R, γ+(γ) = 9/8γ after a detection and γ−(γ) = 3/4γ after no detection. The smallest
k, at which the reputation exceeds γ∗ = 8/9 � 0.89 is 5.

19It would be interesting to compute the expected time until the agent stops being untruthful, i.e., the expected
hitting time until the Markov chain starting from γ0 reaches the absorbing state γ∗. Suppose that β = 1 − π∗,
which implies π∗ < 1

2 as β > π∗. Then, we get a Markov chain with infinitely countable states where γk∗γ0
, that is

the reputation level after k∗γ0
many detections, is the only absorbing state and all other states are transient. One

can construct an example in which, starting from γ0, it is sufficient to observe only one detection to reach the
absorbing state. But, when this is the case, the ME requires that the regulator choose to be diligent with a small
probability. The expected hitting (absorption) time becomes unboundedly large as the transition probability
puts higher weight on the lower levels of reputation.
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changes in the type of long-lived player (e.g., Benabou and Laroque (1992), Gale and Rosen-
thal (1994), Holmström (1999), Mailath and Samuelson (2001), Phelan (2006), Wiseman
(2008) and Ekmekci, Gossner, and Wilson (2012)); (2) limited observability of histories, i.e.,
the bounded memory of short-lived uninformed players (e.g., Liu (2011), Ekmekci (2011)
and Liu and Skrzypacz (2014)). Below, we discuss how our permanency of reputation result
changes if we extend our Markov model to these directions.

First, we consider a setting with unobserved replacements and changing types: Suppose
that in each period, the regulator survives to the next period with probability λ and otherwise is
replaced with a new regulator who could be a behavioral type with probability γ̂. To simplify
exposition, we let γ0 = (1 − λ)γ̂. Then, when the agent chooses U, the posterior belief that
the regulator is of behavioral type in period t conditional the signal id ∈ {0, 1} is

γt+1 =


γ+

t+1 = λ γtβ

γtβ+(1−γt)σ̃Rtβ
+ (1 − λ)γ̂ if id = 1

γ−t+1 = λ γt(1−β)
γt(1−β)+(1−γt)[σ̃Rt(1−β)+(1−σ̃Rt)]

+ (1 − λ)γ̂ if id = 0,
(6)

while γt+1 = λγt + (1 − λ)γ̂ (***) when the agent is truthful.
Then, we get the following observation saying that frequent replacements prevent the

planner from investing in building and attaining an absorbing reputation. Therefore, social
efficiency cannot be obtained in the Markov case with frequent replacements.

Proposition 1. There is a unique ME with the replacement of the regulator that possesses
a continuous and nondecreasing value function Vrep. Moreover, if the survival rate of the
regulator is low so that λ < γ∗−γ0, then the posterior beliefs are always below γ∗, there is no
absorbing state, and the agent is never truthful with probability one. And for any γ ∈ (0, γ∗),

σ∗A(γ) = 1 −
(1 − δλ)c

β{(1 − δλ)( f + d) + δλ[Vrep(γ+) − Vrep(γ−)]}
and σ̃∗R(γ) =

π∗ − γβ

(1 − γ)β
.

The proof of Proposition 1 is omitted as it parallels that of Theorem 2.20 The arguments
in that proof also show that with a sufficiently patient regulator and λ sufficiently close to one
(the case of infrequent replacements), continuity properties enable us to see that investing
into absorbing reputation (and hence social efficiency) reemerges in ME.21

20In this case, the resulting dynamic programming problem is very similar to the one in Appendix C. The
posterior probabilities stated in (6) and (***) should be substituted into (11) and (12); δmust be replaced by λδ.
Also, λ < γ∗ − γ0 implies that the posterior beliefs cannot exceed the threshold γ∗. Moreover, if λ = 0, we get
the repetition of the stage game Bayesian Nash equilibrium.

21Our observations parallel Ekmekci et al. (2012) showing that the long-lived player’s replacement can gen-
erate permanent reputation effects if the replacements are arbitrarily infrequent and the long-lived player is
arbitrarily patient. They provide lower bounds on equilibrium payoffs in every continuation game, which co-
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Second, we consider a setting in which the agents have access only to the recent piece of
the history (rather than the entire history) of play:22 Suppose that each agent t is born with
the same prior belief γ0 and observes only the last k entries of the public history. Hence
agents’ behavior depends on the k-tail of the public history. To eliminate the possibility of
deriving complicated inferences with bounded memory (see Barlo et al. (2016, Section 5)),
we suppose that agents’ behavior does not depend on calendar time.

When k is strictly less than k∗γ0
(see Corollary 1), there is no hope of the regulator to attain

absorbing reputation by inducing agents’ posterior beliefs to exceed γ∗. Thus, the possibility
of absorbing reputation, desired by the regulator, disappears. To counteract, he would want
to announce the relevant part of the public history.23 On the other hand, when k is sufficiently
high, we conjecture that in our Markov model with bounded but long memory, one could
establish that reputation effects would prevail.24

4 Regulator faces a long-lived agent

Now, we assume that the agent is long-lived and uses the same discount factor δ ∈ (0, 1).
Each long-lived player observes the realization of the public signals and his or her own pre-
vious actions. Then, ht

A = ((a0, id0), (a1, id1), ..., (at−1, idt−1)) ∈ Ht
A ≡ (A × Id)t identifies

the long-lived agent’s private histories up to period t. The set of full histories up to t is
Ht

f ≡ (A × R × Id)t while the filtration on (A × R × Id)∞ induced by private and public his-
tories are denoted by {Hit}

∞
t=0 for i = {A,R} and {Ht}

∞
t=0, respectively. The long-lived agent’s

strategy, σA, is a sequence of maps σAt : Ht
A → ∆(A).

incides with those of Fudenberg and Levine (1989), Fudenberg and Levine (1992) and Gossner (2011), as the
discount rate goes to one at faster than the replacement rate goes to zero. This payoff bound corresponds to the
regulator’s Stackelberg payoff, which is −c in our setting. Indeed, in our model, the patient regulator could do
better when λ, his replacement rate, is sufficiently close to one.

22It may be that the short-lived players do not observe any of the previous outcomes without exerting time,
effort, or cost. Liu (2011) constructs a class of equilibria that exhibits reputation cycles in a perfect-monitoring
product-choice game incorporating costly discovery of past actions.

23For instance, if β = 1− π∗, the regulator would like to announce any part of the history that has involved at
least k∗γ0

more detections than no detections to each agent.
24With bounded but long memory, the analysis becomes more complicated. Liu and Skrzypacz (2014) ana-

lyzes a variation of perfect-monitoring product-choice games with limited but long records of the history. Their
equilibria feature recurrent reputation bubbles sustained by limited memory. Ekmekci (2011), on the other hand,
examines a version of the product-choice game with imperfect public monitoring where the public signals are
observed by a rating agency announcing one of the finite numbers of ratings to the short-lived players. Ekmekci
(2011) shows that there exists a finite rating system that induces a perfect Bayesian equilibrium, in which the
sufficiently patient long-lived player’s payoff is close to the Stackelberg levels after every history that implies
permanent reputation effects.
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A Nash equilibrium is σ = (σA, σR) with σR = (σ̂R, σ̃R) satisfying both of the following:
(i) E[(1−δ)

∑∞
t=0 δ

tuA(σA(ht
A), σR(ht

R))] ≥ E[(1−δ)
∑∞

t=0 δ
tuA(σ̄At(ht

A), σRt(ht
R))], for all σ̄A,

(ii) Ẽ[(1−δ)
∑∞

t=0 δ
tuR(σA(ht

A), σ̃R(ht
R))] ≥ Ẽ[(1−δ)

∑∞
t=0 δ

tuR(σAt(ht
A), σ̃′Rt(h

t
R))], for all σ̃′R.

The analysis of NE with a long-lived agent demands some identification conditions our
current setting lacks. To recover these identification conditions intuitively, in what follows,
we concentrate on NE, in which the agent has to choose each of her actions with a small but
positive probability. This, in turn, delivers a robustness notion that we refer to as α-NE with
α > 0 and arbitrarily small: An α-Nash equilibrium is an NE in which the agent is restricted
to choose any one of her actions with at least α probability.25

Ours is a direct approach. Instead, we could adopt the following formulation involving
one-period amnesia:26 Suppose that the initial belief, γ0 ∈ (0, γ∗) where γ∗ is as in Lemma
1. In every period t, the agent may experience one-period amnesia with a probability of
ϑ > 0 arbitrarily small. While it is common knowledge that she will recover at the end of the
period, whether or not she suffers from one-period amnesia in a given period is her private
information. If there is no amnesia, it is business as usual: The agent observes her private
history ht

A (hence, γt) and chooses accordingly. However, in case of amnesia when choosing
her period t action, she observes neither her private nor the public history, ht

A, and hence
cannot infer γt. Thus, from her perspective, it is indistinguishable from the start of the game
apart from the calendar time t. To avoid serious complications (see Barlo et al. (2016)), we
consider strategies that do not use the calendar time in these cases: her action, hence, cannot
depend on t. In this contingency, we require her to behave according to the ME of Theorem
2 hanging on to her initial belief γ0 < γ∗. This provides a consistent formulation because
players’ behavior depends only on the level of reputation (and no other aspect related to the
past play) in that equilibrium. Hence, her choice would be U with a probability of (1−σ∗A(γ0))

as γ0 < γ∗ where σ∗A(γ0) is as described in Theorem 2. At the end of t, she recovers from
amnesia, observes ht

A along with her period t choice at, whether or not there has been a
detection in t, performs the Bayesian updating if there was detection in t, records these as

25The existence of an α-NE with α > 0 and sufficiently small follows from the compactness of the action
space of the stage game Aα × R ≡ [α, 1 − α] × [0, 1] and standard continuity properties.

26One may think of the following detailed scenario: The agent uses reading glasses to keep a notebook that
contains her records. In the morning (the beginning) of the period t, there is an ϑ chance that she cannot find
her glasses. If they are not misplaced, she uses them to check her notebook, observe her private history, and
choose her action by noontime accordingly. But if her glasses cannot be found, she cannot check her notebook
by noon and hence has to choose an action without knowing the past and caring about the calendar time. The
glasses do not get lost. At the end of the day, she finds them and uses them to record today’s observations, also
performing the Bayesian updating if needed.
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ht+1
A and hence identifies γt+1, and gets ready for tomorrow. If ϑ > 0 is arbitrarily small, the

incentives of the strategic regulator and the agent do not get affected. Thus, an NE of this
formulation with ϑ > 0 is an α-NE with α = ϑ(1 − σ∗A(γ0)) > 0.

When α > 0 is arbitrarily small, and players are sufficiently patient, the following holds
for all interior initial beliefs of the agent: there is no strictly positive probability set of events
(histories) induced by an α-NE with the agent’s limiting equilibrium behavior converging to
playing T with probability 1−α. Then, robust NE cannot induce strictly positive probability
sets of events in which the regulator attains the efficient payoff approximately. In this context,
the agent’s commitment strategy, σ̂A, is σ̂At(ht

A) = 1 for all ht
A.

Theorem 3. Suppose Assumptions 1 and 2 and let α > 0 and arbitrarily small. Then for all

γ0 ∈ (0, 1), there is δα ∈ (0, 1) such that for all δ > δα there is no A ⊂ Ω with Q̃(A) > 0

induced by an α-NE (σ̃A, σ̂R, σ̃R) with limt→∞ ‖σ̂At − Ẽ[σ̃At | HAt]‖ = α, for all ω ∈ A.

We adapt the identification technique of Cripps et al. (2007) to our setting as follows:
Thanks to Remark 1, the regulator can identify private histories of the agent in which she
plays the truthful action T with a constant probability in the long run if the regulator were to
concentrate on histories in which he is diligent (Lemma 11). On the other hand, Remark 2
empowers the agent to identify private histories of the regulator who plays diligently with a
constant probability when the agent restricts attention to histories in which she plays U and
such histories are sustained in an α-NE (Lemma 10).

The intuition behind Theorem 3 is as follows: Suppose on the contrary that there is a set
of events with strictly positive measure, A, on which the agent finds it optimal to play the
truthful action T with a probability close to 1 − α in all continuation histories after some
period t̄. The agent finds it optimal to play T with a high probability indefinitely implies
that she expects to see the diligent action D with a sufficiently high probability on average
for a long enough period after every s ≥ t̄ observing her private history. The key step in
our proof is Lemma 11 which says that “if the agent’s private history ensured that she is
almost convinced that she faces a diligent regulator and behaves according to that belief, then
this eventually becomes inferred by the regulator” on a particular private history where the
regulator is choosing D. Therefore, the strategic regulator would find it optimal to deviate
and play the lazy action L on those histories. At first, the agent may act as the regulator
wishes if his reputation is at a high level. However, in every period, there is α > 0 chance
that the agent tests the regulator’s reputation. Every time this happens, the reputation level of
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the strategic regulator gets updated. Indeed, thanks to Remark 2 (saying that the fixed action
of the regulator can be inferred by the agent when she chooses U), there is a period when
the agent (restricting attention to her private histories with her choosing U) deduces that her
opponent is not choosing D but L. Hence, we get a contradiction on such a set of events,A,
with a positive probability measure.

This notion of robustness does not imply major qualitative changes to our results with
myopic agents in terms of equilibrium behavior and payoffs. If short-lived players are re-
stricted to choose any one of their actions with a probability α > 0 and sufficiently small,
the only change to the BNE of the stage game described in Lemma 1 involves revising (i) of
this lemma by σA = 1 − α. As a result, when α > 0 and sufficiently small, the regulator’s
best response does not change and calls for D with some positive probability for histories
with γt ≤ γ

∗ and L (with probability 1) otherwise. Hence, our findings presented in Section
3.1 continue to hold with some small modifications to their statements and proofs: Due to
short-lived agents conditioning only on the public histories, arbitrarily infrequent and manda-
tory experimentation does not suffice to dismiss agent’s conditional identification property.
Particularly, thanks to the continuity properties of players’ utilities, compactness of feasible
payoffs, and the short-lived agents conditioning only on the public histories, letting Ṽα(γ0, δ)

be the minimum α-NE payoff of the strategic regulator for given γ0 and δ when facing short-
lived agents while Assumptions 1 and 2 hold, we conclude that for any α > 0 and arbitrarily
small, and any prior belief γ0 > 0, limδ→1 Ṽα(γ0, δ) = −α f .27 Thus, the restatement of Theo-
rem 1 with α-NE becomes: Suppose that Assumptions 1 and 2 hold. Then, for all γ0 ∈ (0, 1),
there is δ∗ ∈ (0, 1) such that for all δ > δ∗ and for all A ⊂ Ω with Q(A) > 0 induced by an
α-NE (σ∗A, σ

∗
R) with α > 0 and arbitrarily small, limt→∞ ‖σ̂At −σ

∗
At‖ = α, for all ω ∈ A.28 We

remark that even if α > 0 is arbitrarily small, the use of α-NE results in the dismissal of the
absorbing reputation with myopic agents. Still, social efficiency is approximately sustained.

27We note that agent t, t ∈ N, only observes public history ht and naturally we consider ht being a PPPH. So,
if γt > γ∗, Lemmas 1 and 2 hold due to continuity and hence at PPPH ht, σAt = 1 − α implies σRt = 0. Thus,
in all PPPH hτ preceding ht with γτ > γ∗, agent t is aware that he would not have observed a detection as the
regulator would have been choosing L in those periods no matter what the realized choice of agent τ in {U,T }
has been. As a result, the identifiability of Cripps et al. (2004) does not hold. Then, agent t infers that, as his
predecessors have been restricted to choose U with α > 0 but arbitrarily small probability, γτ has been updated
(and gradually decreased) to γτ+1 accounting for the probability that agent τ had to choose U with α probability.
So, as α > 0 is arbitrary small, γt+1 > γ

∗ with a high probability.
28A similar conclusion also holds in the Markov case: the modification implied in Theorem 2 involves chang-

ing its statement so that σ∗A(γ) = 1 − α for any γ ≥ γ∗ while the values of γ∗, π∗, and σ̃∗R(γ) do not change and
the upperbound of Ṽ(γ) needs a slight alteration.
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Combining these observations with Theorem 3 delivers a gap between the cases with short
and long-lived agents in terms of limiting equilibrium behavior of agents who are required
to experiment with the bad behavior every once in a while. This also implies a gap in terms
of limiting equilibrium payoffs of the strategic regulator. Therefore, we conclude that with
mandatory but infrequent experimentation, social efficiency is approximately sustained as a
limiting equilibrium payoff with short-lived agents but not with a long-lived agent.

5 Conclusion

This paper analyzes the long-run equilibrium behavior of uninformed players (agents) in a
repeated regulatory environment with incomplete information and imperfect public monitor-
ing. It asks whether or not agents can be induced to good behavior permanently by the regula-
tor’s (informed player’s) reputation. We provide a positive answer when a patient long-lived
regulator faces a sequence of short-lived agents for any one of their interior initial common
beliefs: Using his reputation, the regulator prevents agents’ bad behavior in the long-run with
no cost in every set of histories that is induced by an NE and has a strictly positive probability
measure. As a result, reputation secures perpetual social efficiency. These conclusions are
robust to requiring short-lived agents to choose any one of their actions with a small but pos-
itive probability. On the other hand, when both parties are long-lived and sufficiently patient,
for all interior initial beliefs of the agent, no robust equilibrium induces a strictly positive set
of histories in which the agent’s limiting behavior is close to perpetual truthful play. That is
why robust NE fails to induce strictly positive probability sets of events in which the regulator
obtains the efficient payoff approximately. This contrast demonstrates the significance of the
strategic interaction’s longevity and provides a novel insight into the importance of learning
and experimentation in repeated games.
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Appendix

A The proof of Lemma 1

As uA(T, σR) = 0, uA(U, σR) = γ[(1−β)g−βl]+ (1−γ)σR[(1−β)g−βl]+ (1−γ)(1−σR)g,
uR(σA,D) = (1 − σA)[βd − (1 − β) f ] − c, and uR(σA, L) = −(1 − σA) f , agent’s and strategic
regulator’s best responses are as follows:

BRA(σR) =


1 if σR >

g−γβ(g+l)
(1−γ)β(g+l)

[0, 1] if σR =
g−γβ(g+l)

(1−γ)β(g+l)

0 if σR <
g−γβ(g+l)

(1−γ)β(g+l)

, BRR(σA) =


1 if σA < 1 − c

β(d+ f )

[0, 1] if σA = 1 − c
β(d+ f )

0 if σA > 1 − c
β(d+ f ) .

From this, we deduce the cutoff prior beliefs. The mixed action of the regulator that makes
the agent indifferent between T and U, σR =

g−γβ(g+l)
(1−γ)β(g+l) , is greater than 0 if γ < γ∗ =

g
β(g+l) and

equals 0 if γ = γ∗. If γ > γ∗, then BRA(σR) = 1 for all σR. Agent’s mixed action making the
regulator indifferent, σA = 1 − c

β(d+ f ) > 0 if β > c
f +d . Thus, we conclude the following:

Case 1. γ > γ∗: In this case, BRA(σR) = 1 for any σR. The unique fixed point of the best
response correspondences is σA = 1 and σR = 0.

Case 2. γ = γ∗: The action that makes the agent indifferent is σR = 0. For σR > 0, BRA(σR) =

1. But, σR > 0 cannot be a best response against σA = 1. Thus, the BNE are σA ∈

[1− c
β(d+ f ) , 1] and σR(D) = 0. As we assume that the agent is truthful for sure when she

is indifferent σA = 1 and σR = 0.

Case 3. γ < γ∗: The unique intersection of the best response correspondences in this case is
when σA = 1 − c

β(d+ f ) and σR =
g−γβ(g+l)

(1−γ)β(g+l) .

B The proof of Theorem 1

The proof employs a result that appeared in a conference proceeding Özdog̃an (2016, The-
orem 1) the restatement and proof of which are presented below for completeness purposes.
Let Ṽ(γ0, δ) be the strategic regulator’s minimum NE payoff given a prior belief γ0 ∈ (0, 1).

Theorem 4 (Theorem 1 of Özdog̃an (2016)). Suppose Assumptions 1 and 2 hold. Then, for

any prior belief γ0 ∈ (0, 1), limδ→1 Ṽ(γ0, δ) = 0.

Proof of Theorem 4. Fix an arbitrary NE in public strategies, σ = (σA, σ̂R, σR) with
σR denoting the strategic regulator’s strategy; each PPPH and posterior belief that are con-
sidered are going to be with respect to this NE. For each PPPH ht, we let v(ht) denote the
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expected continuation value to the strategic regulator starting from ht. If T has a positive
probability under σAt(ht) and D has a positive probability under σRt(ht), then v(ht; T,D) ≡

(1 − δ)uR(T,D) + δ
∑

id ρ(id | T,D)v(ht, id). The definition of v(ht;σAt(ht), σRt(ht)) is done in
the natural way.

Our proof uses the following results: The first tells that if the agent is truthful in this NE
at a PPPH, then the regulator must be lazy on that history.

Lemma 2. If ht is a PPPH with σAt(ht) = 1, then σRt(ht) = 0.

Proof. If the agent chooses σAt(ht) = 1 at ht, then the regulator choosing D or L generates
the same distribution of public signals and hence the same continuation payoffs v(ht, id = 0).
As uR(T, L) = 0 > uR(T,D) = −c, σRt(ht) = 0 due to the one-shot deviation principle.

The next lemma establishes that every NE continuation path starting from a PPPH ht must
include the play of D with some positive probability if γt(ht) < γ∗.

Lemma 3. If ht is a PPPH with γt(ht) < γ∗, then ht has a positive probability continuation

history hτ such that σRτ(hτ) > 0.

Proof. Let ht be a PPPH and suppose, for a contradiction, for every PPPH hτ following ht,
σRτ(hτ) = 0. Therefore, there are no detections in any continuation PPPH following ht since
γt(ht) < γ∗. Then, by Lemma 1, all the myopic agents in such continuation histories choose
U. Thus, the regulator’s expected continuation payoff at such histories equals − f , which is
strictly less than the minmax payoff −e, delivering the desired contradiction.

The following result identifies the agents’ smallest posterior belief that the regulator is
though after a detection is observed.

Lemma 4. If detection occurs at a PPPH ht, then 0 < σRt(ht) ≤ π∗−βγt(ht)
β(1−γt(ht)) .

Proof. A detection at a PPPH ht implies the myopic agent being untruthful at ht. For that to
happen in an NE, by Lemma 1, it must be that γt(ht) < γ∗ and σRt(ht) ≤ π∗−βγt(ht)

β(1−γt(ht)) . Moreover,
σRt(ht) > 0, or else there cannot be any detections.

We note that if γ0 ≥ γ∗, then the NE must such that σAt(ht) = 1 and σRt(ht) = 0 for
all positive probability ht. Moreover, if γ0 < γ∗, then at a PPPH ht with γt(ht) ≥ γ∗, due
to Lemmas 1 and 2, the NE has to be such that all the consequent myopic agents choose
σAτ(hτ) = 1 and the regulator σRτ(hτ) = 0 at any continuation history hτ following ht. Thus,
in all these cases, limδ→1 Ṽ(γ0, δ) = 0.
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When γ0 < γ∗ and ht being a PPPH with γt(ht) < γ∗ and the myopic agent t choosing
σAt(ht) = 1 implies (thanks to Lemma 2) the NE is such thatσRt(ht) = 0 at ht. Thus, consider a
PPPH ht with γt ≡ γt(ht) < γ∗ and σAt(ht) < 1. This time, the reputation is updated according
to (3). Note that σAt(ht) < 1 implies the expected probability of detection π(γt, σRt(ht)) ≤ π∗,
and this requires σRt(ht) ≤ π∗−γtβ

(1−γt)β
(recall that π∗ ≡ g

g+l ). Then, by Lemma 4, we define the
smallest posterior probability of the regulator being tough conditional on the identification
of a detection by Γ(γt) ≡

γtβ

π∗
. By Assumption 1, Γ(γ) > γ for all γ ∈ (0, γ∗), i.e., Γ is strictly

increasing and continuous. As in Ely and Välimäki (2003), let {pn}n be a decreasing sequence
of beliefs by p1 ≡ γ

∗ and pn ≡ Γ−1(pn−1) for n > 1, and note that pn ↘ 0. Then, there exists a
sequence of lower bounds on payoffs of the strategic regulator {Ṽn(δ)}n with limδ→1 Ṽn(δ) = 0

and Ṽ(γ′, δ) ≥ Ṽn(δ) for all γ′ > pn for all n ∈ N. This is due to the following: Note that
the assertion in the previous sentence holds for n = 1, as γ > p1 = γ∗. Thus, we assume
this relation holds for n and want to show that it holds for n + 1. By hypothesis, we have
σAt(ht) < 1 and this implies that σRt(ht) ≤ π∗−γtβ

(1−γt)β
< 1 (due to Assumption 1). As γt < γ∗,

Lemma 3 implies that there exists a PPPH hτ following ht such that σRτ(hτ) > 0 and hence
σAτ(hτ) < 1 thanks to Lemma 2. Without loss of generality, assume that hτ is the “first” of
such continuation histories and γτ(hτ) ≡ γτ > pn+1 for some n ∈ N. σRτ(hτ) ∈ (0, 1) implies
that the strategic regulator must be indifferent (in the long-run) between D or L at hτ. So,
(1 − δ)(− f ) + δZL(γτ) = (1 − δ)[σAτ(hτ)(− f − c) + (1 − σAτ(hτ))(−e)] + δZD(γτ) implies

Ṽn+1(δ) ≡ (1 − δ)(− f ) + δZL(γτ) ≥ (1 − δ)(− f − c) + δZD(γτ) (7)

where ZD(γτ) and ZL(γτ) are the lower bounds on the regulator’s expected continuation pay-
offs from D and L at hτ, respectively. When the regulator chooses L, the posterior decreases
to γ−τ =

γτ(1−β)
γτ(1−β)+(1−γτ)

with probability 1. Thus, ZL(γτ) = Ṽ(γ−τ , δ). When, the strategic regu-
lator chooses D at hτ, detection occurs with probability β and the posterior probability that
regulator is though conditional on detection at hτ (i.e., the threshold for agent τ’s decision) is
no less than Γ(γτ), which is at least pn as γτ > pn+1. Hence,

βṼn(δ) + (1 − β)Ṽ(γ−τ , δ) ≤ ZD(γτ). (8)

Combining (7) and (8) implies (1 − δ)(− f − c) + δβṼn(δ) + δ(1 − β)Ṽ(γ−τ , δ) ≤ (1 − δ)(− f ) +

δṼ(γ−τ , δ); so, (1 − δ)(−c) + δβṼn(δ) ≤ δβṼ(γ−τ , δ); so, Ṽn(δ) ≤ Ṽ(γ−τ , δ) since c, β, δ > 0. As
Ṽn+1(δ) = (1 − δ)(− f ) + δZL(γτ) = (1 − δ)(− f ) + δṼ(γ−τ , δ) and Ṽn(δ) ≤ Ṽ(γ−τ , δ),

(1 − δ)(− f ) + δṼn(δ) ≤ Ṽn+1(δ). (9)
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By hypothesis, limδ→1 Ṽn(δ) = 0; ergo, the limit of the left-hand side of (9) is zero as δ tends
to one. Thus, limδ→1 Ṽn+1(δ) = 0 as the regulator’s payoffs are bounded above by 0. This
implies that the PPPH hτ is such that limδ→1 Ṽ(γτ, δ) = 0 with γτ ≤ γt < γ

∗.
Having established the existence of {Ṽn(δ)}n with limδ→1 Ṽn(δ) = 0 and Ṽ(γ′, δ) ≥ Ṽn(δ)

for all γ′ > pn for all n ∈ N, we observe that for any γ0 ∈ (0, γ∗), there exists N ∈ N such
that Ṽ(γ0, δ) ≥ Ṽn(δ) and limδ→1 Ṽn(δ) = 0 for all n ≥ N. Thus, as the regulator’s payoffs are
bounded above by 0, limδ→1 Ṽ(γ0, δ) = 0. This completes the proof of Theorem 4.

Proof of Theorem 1. First, to establish the existence of the limit, we note that agent t uses
the information contained in public history ht and hence her posterior beliefs at ht are given
by Ht - measurable random variable γt ≡ Q(tough | Ht) : Ω → [0, 1]. γt is a bounded
martingale with respect to {Ht}t and measure Q, and E[γt | Ht] = γt. Therefore, in any
equilibrium, γt converges Q-almost surely to a random variable γ∞. Agents are myopic and
E[uA(·) | Ht] is continuous, so by Lemma 1, their best responses are in the form of threshold
strategies such that σ∗At equals 1 if γt > γ∗ and some mixed action if γt ≤ γ

∗. And hence, for
any NE (σ∗A, σ̂

∗
R, σ̃

∗
R), {σ∗At}t Q-converges in [0, 1].

As we already have established the existence of the limit and σ̂A is a constant sequence, we
suppose, for a contradiction, that there is δ∗ ∈ (0, 1) such that for all δ > δ∗ we let (σ∗A, σ̂

∗
R, σ̃

∗
R)

be an NE inducingA∗ ⊂ Ω with Q̃(A∗) > 0 and limt→∞ σ
∗
At , σ̂At. Therefore, there exists τ

such that (without a loss of generality) for all s ≥ τ, σ∗As < 1, for a.e. ω ∈ A∗. But, this is at
odds with Theorem 4. This concludes the proof of Theorem 1.

C The proof of Theorem 2
Let C+ denote the space of continuous and nondecreasing value functions endowed with

the sup norm. An equilibrium value function Ṽ : [0, 1] →
[
− f , 0

]
should satisfy the Bell-

man equation given by (5). So, it should be a fixed point of the operator T which maps any
continuation value function W into W̄ as follows: W̄(γ) = TW(γ) and

W̄(γ) =
(1 − δ)

{
σ̃R[(1 − σA) (βd − (1 − β) f ) − c] − (1 − σ̃R)(1 − σA) f

}
+ δσAW(γ)

+ δ(1 − σA)σ̃RβW
(

γβ

π(γ,σ̃R)

)
+ δ(1 − σA)(1 − σ̃Rβ)W

(
γ(1−β)

1−π(γ,σ̃R)

) (10)

where σ̃R(γ) maximizes the right-hand side of the equation (10) given σA(γ) while σA(γ)

maximizes (2) given the expected probability of detection π(γ, σ̃R) implied by σ̃R(γ).
Our proof is built upon results that parallel Benabou and Laroque (1992). We start by

taking a continuous and nondecreasing value function W ∈ C+ as given, call the associated
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problem involving this continuation payoff a short-term game, and show that there exists a
unique profile σA(γ; W) and σR(γ; W) such that the following holds: σR(γ; W) maximizes
the right-hand side of (10) given σA(γ; W), and σA(γ; W) maximizes (2) given the expected
probability of detection π(γ, σR) induced by σR(γ; W). We call this unique equilibrium for
any given W ∈ C+ as the temporary equilibrium of the short-term game. Then, we consider
the operator that maps the continuation valuation W into current valuation resulting from the
outcomes of the optimization of the short-term game T (W) : γ ∈ [0, 1]→ W̄(γ,W) and show
that the resulting W̄(γ) is also a continuous and nondecreasing function, i.e., W̄ ∈ C+. We
also show T : C+ → C+ is a contraction and hence has a unique fixed point in C+, Ṽ .

Let W ∈ C+ be given. The value function in the short-term game when the regulator
choose D and L are:

WD(γ) = (1 − δ){(1 − σA)[βd − (1 − β) f ] − c} + δσAW(γ) (11)

+δ(1 − σA)βW
(
γ+) + δ(1 − σA)(1 − β)W

(
γ−

)
,

WL(γ) = −(1 − δ)(1 − σA) f + δσAW(γ) + δ(1 − σA)W
(
γ−

)
. (12)

The regulator is indifferent when WD(γ) − WL(γ) = 0, so (1 − σA)β{(1 − δ)( f + d) +

δ[W (γ+) −W (γ−)]} = (1 − δ)c. If WD(γ) > WL(γ), the regulator chooses D, so π(γ) = β. If
WD(γ) < WL(γ), the regulator chooses L, thus π(γ) = γβ. These prove the following:

Lemma 5. Given W ∈ C+, an equilibrium of the short-term game induces a detection prob-

ability for the regulator as a function of his reputation, π : [0, 1] → [0, β] (his strategy then

can be deduced from (4)), and an implied strategy for the agent σA(π) that maximizes the

agent’s problem (2) at π, with an associated value function W̄ : [0, 1]→
[
− f , 0

]
such that for

any γ ∈ [0, 1], W̄(γ) = max{WD(γ),WL(γ)} where WD(γ),WL(γ) are as in (11) and (12) and

WD(γ) > WL(γ) implies that π(γ) = β,

WD(γ) = WL(γ) implies that γβ ≤ π(γ) ≤ β,

WD(γ) < WL(γ) implies that π(γ) = γβ.

Combining these, we see F(σA(π); γ,W) ≡ WD(σA(π); γ,W) −WL(σA(π); γ,W) equals

(1 − σA(π))β
{

(1 − δ)( f + d) + δ

[
W

(
γβ

π

)
−W

(
γ(1 − β)

1 − π

)]}
− (1 − δ)c. (13)

Lemma 6. For any γ ∈ [γ∗, 1] and W ∈ C+, π(σR, γ) ≥ π∗ for any value of σR. Then, at the

unique temporary equilibrium of the short-term game (σ̄A(π), σ̄R(γ)), σ̄A(π) = 1 solves the
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agent’s problem in (2), F(σ̄A(π); γ,W) = −(1 − δ)c < 0 and W̄(γ) = max{WD(γ),WL(γ)} =

WL(γ) with σ̄R(γ) = 0, and γ+(γ) = γ−(γ) = γ and W̄(γ) = 0.

The proof follows from using γ∗ =
g

β(g+l) and π∗ =
g

g+l in Lemma 5.

Lemma 7. For any γ ∈ [0, γ∗) and W ∈ C+, F(σA(π); γ,W) is nonincreasing in π ∈ [0, β]

and strictly decreasing in σA(π). Moreover, there exists a unique temporary equilibrium of

the short-term game (σ̄A(π), σ̄R(γ)), given by mixed actions σ̄A(π∗) : (γ,W) → (0, 1) that

is continuous in (γ,W) and σ̄R(γ) =
π∗−γβ

(1−γ)β that induces the perceived detection probability

π = π∗, which together satisfy F(σ̄A(π∗); γ,W) = 0 and solve the agent’s problem in (2). The

associated posterior probabilities are γ+(γ, σ̄R) =
γβ

π∗
and γ−(γ, σ̄R) =

γ(1−β)
1−π∗ .

Proof. Take any γ ∈ [0, γ∗) and W ∈ C+. For π = 0, the strategy that solves the agent’s
problem in (2) dictates that σA(π) = 0 and thus F(σA(π); γ,W) > 0 by Assumption 2 and
by W being nondecreasing. And, for π = β, σA(π) = 1 solves the agent’s problem and the
corresponding F(σA(π); γ,W) = −(1 − δ)c < 0. As F > 0 for σA = 0 and F < 0 for σA = 1

and F is continuous and strictly decreasing in σA, there exists unique σ̄A(π; γ,W) ∈ (0, 1)

that ensures F(σ̄A(π); γ,W) = 0. As for all (γ,W), σ̄A(π; γ,W) is unique, we let σ̄A(π) =

σ̄A(π; γ,W). Also, since F is continuous in (γ,W), σ̄A(π; γ,W) is also continuous in (γ,W).
Next, we argue that σ̄A(π∗) ∈ (0, 1) and σ̄R(γ) constitute a unique temporary equilib-

rium. Suppose for a contradiction that σ̄A(π) = 0 for some (γ,W). Then, WD(σ̄A(π); γ,W) >

WL(σ̄A(π); γ,W) and σ̄R(γ) = 1. But, this implies that the perceived probability of detection
is β and thus σ̄A(π) = 0 does not solve the agent’s problem in (2). Suppose on the contrary
that σ̄A(π) = 1 for some (γ,W). Then WL(σ̄A(π); γ,W) > WD(σ̄A(π); γ,W) and σ̄R(γ) = 0,
which suggests that π = γβ, and in turn would imply σ̄A(π; γ,W) = 0 as γ < γ∗. Hence, we
conclude that σ̄A(π∗; γ,W) ∈ (0, 1) and σ̄R(γ) =

π∗−γβ

(1−γ)β is the unique temporary equilibrium,
since for σ̄A(π) to be a totally mixed strategy, the detection probability must be set to π∗ by
the regulator employing the strategy σ̄R(γ) =

π∗−γβ

(1−γ)β . Lastly, the associated posterior beliefs
are calculated from (3) by using Bayes’ rule.

Hereafter, we refer to the temporary equilibrium of the agent for a given W by σ∗A(γ,W) ≡

σ̄A(π∗; γ,W) and that of the regulator by σ∗R(γ) ≡ σ̄R(γ) (as in Lemmas 6 and 7); define
W̄(γ,W) ≡ WD(σ∗A(γ,W); γ,W) = WL(σ∗A(γ,W); γ,W) as the value function evaluated at
the temporary equilibrium of the short-term game for γ < γ∗. We want to show that W̄ is
continuous and nondecreasing in γ, which depend on the behavior of σ∗A(γ,W) as well as
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W.29 As the value of W changes (in a nondecreasing way as γ increases), we should consider
both of the arguments of W̄ to investigate whether or not it is nondecreasing in γ.

Lemma 8. W̄(γ,W) is continuous and nondecreasing in γ for any W ∈ C+.

Proof. As at σ∗A(γ,W), F(σ∗A(γ,W); γ,W) = 0, both (i) W̄(γ,W) = WD(σ∗A(γ,W); γ,W) and
(ii) W̄(γ,W) = WL(σ∗A(γ,W); γ,W) hold. Note that, by (12), (ii) implies,

W̄(γ,W) = −(1 − δ)(1 − σ∗A(γ,W)) f + δW(γ−(γ)) + δσ∗A(γ,W)
[
W(γ) −W(γ−(γ))

]
. (14)

Multiplying (ii) by 1− β > 0 and then subtracting this from (i) result in the following expres-
sion for W̄(γ,W):

W̄(γ,W) = (1 − δ)
(
1 − σ∗A(γ,W)

)
d −

(1 − δ)c
β

+ δW(γ+(γ)) − δσ∗A(γ,W)
[
W(γ+(γ)) −W(γ)

]
. (15)

For any (γ1,W1) ≤ (γ2,W2); if σ∗A(γ2,W2) ≥ σ∗A(γ1,W1), expression (14) implies that W̄ is
nondecreasing in (γ,W). This is because, σ∗A(γ,W) ∈ (0, 1) is assumed to be nondecreasing
and W is nondecreasing in γ. As

[
W(γ) −W(γ−)

]
≥ 0 for any W1,W2 and γ1, γ2, the right-

hand side of (14) is nondecreasing. Hence, W̄(γ2,W2) ≥ W̄(γ1,W1) when (γ2,W2) ≥ (γ1,W1).
If, on the other hand, we suppose that σ∗A(γ2,W2) < σ∗A(γ1,W1), then expression (15) will
imply that W̄ is nondecreasing. To see that, suppose σ∗A(γ,W) is nonincreasing in γ and[
W(γ+) −W(γ)

]
≥ 0 for any W1,W2 and γ1, γ2 as before, the right-hand side of (15) is non-

decreasing which implies W̄(γ2,W2) ≥ W̄(γ1,W1) when (γ2,W2) ≥ (γ1,W1).
The continuity of W̄ in (γ,W) is a direct implication of the continuity of σ∗A (γ,W), which

is established by Lemma 7, and W ∈ C+.

Now, we can redefine the operator that maps the next period’s continuation value to to-
day’s with the equilibrium outcome of the short-term game as T (W) : [0, 1]×W → W̄(γ,W).
The last step is to argue that T is a contraction that maps continuous and nondecreasing func-
tions on [0, 1] into itself. Lemma 8 shows that the operator T defined above maps C+ into
C+ and hence monotonicity is satisfied. Moreover, T (W + k) = T (W) + δk for any constant
k. Then, by Blackwell’s theorem, T is a contraction mapping on a complete metric space
(C+ with the sup norm); and hence, it has a unique fixed point Ṽ . Finally, the equilibrium
strategies and the value function Ṽ of Theorem 2 follow from Lemmas 6 and 7.

29Recall that W̄ is constant at zero for γ ≥ γ∗ for any W ∈ C+, thus it is continuous and nondecreasing at
these values.
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D The proof of Theorem 3

D.1 The agent’s beliefs about her own future behavior

The following shows that if there is a strictly positive probability set of states on which
the agent plays T with a very high probability in the long-run in an α-NE, then, given any
one of her private histories, there must be a strictly positive probability subset of these states
such that there is a period after which the agent plays T on average almost all the time in any
continuation game.

Lemma 9. Suppose that there exists A ⊂ Ω with Q̃(A) > 0 such that for all ω ∈ A,

limt→∞ ‖σ̂A − Ẽ[σ̃At | HAt]‖ = α given an α-NE (σ̃A, σ̃R), for some arbitrarily small α > 0.

Then, there exists F ⊂ A with Q̃(F ) > 0 such that, for any ξ > α, there exists t̄α for which

Ẽ
[
sup
t′>t
‖σ̂A − Ẽ[σ̃At′ | HAt′]‖ | HAt

]
< ξ, ∀t ≥ t̄α (16)

for all ω ∈ F ; and for some ψ > α,

Q̃
(
α ≤ sup

t′>t
‖σ̂A − Ẽ[σ̃At′ | HAt′]‖ < ψ | HAt

)
→ 1, ∀t ≥ t̄α (17)

where the convergence is uniform on F .

Proof. By hypothesis, ‖σ̂A − Ẽ[σ̃At | HAt]‖ converges Q̃-almost surely to α on A. So, the
random variables Zt ≡ supt′>t ‖σ̂A − Ẽ[σ̃At′ | HAt′]‖ also converge Q̃-almost surely to α on
A. Thus, on A, Ẽ[Zt | HAt] → α, Q̃-almost surely (by Lemma 4.24 Hart (1985)). Egorov’s
Theorem (Chung (1974)) then suggests that there exists F ⊂ A with Q̃(F ) > 0 on which the
convergence of Ẽ[Zt | HAt] is uniform. This implies that, for any ξ > α, there exists t̄α such
that on F , α ≤ Ẽ[Zt | HAt] ≡ Ẽ

[
supt′>t ‖σ̂A − Ẽ[σ̃At′ | HAt′]‖ | HAt

]
< ξ for all t ≥ t̄.

Finally, the last expression in Lemma 9 follows from Chebyshev-Markov inequality. Fix
ψ > 0 so that ξ = εψ for some ε > 0. Since Zt has a finite mean and Zt ≥ α, Q̃(Zt ≥ ψ |

HAt) ≤ Ẽ[Zt |HAt]
ψ

< ξ

ψ
. As ψ > 0 and ξ = εψ, we obtain Q̃(Zt ≥ ψ) < ε, which indicates that

Q̃(α ≤ Zt < ψ | HAt) > 1 − ε for all t > t̄α on F . This implies (17).

D.2 The agent’s beliefs about the regulator’s future behavior

The next lemma states that if there is a set of states with a positive measure on which the
agent plays T with a very high probability on average in every continuation game after some
period, then she must be convinced to see D in every continuation game from then on with
a high probability. This follows from the uniqueness of the agent’s best response against the
regulator’s repeated strategy of playing D.
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Lemma 10. Suppose that there exists F ⊂ Ω with Q̃(F ) > 0 such that, for any ξ > 0 and

ψ > 0, there exists t̄α for which (16) and (17) stated in Lemma 9 hold for all ω ∈ F for a

given α-NE (σ̃A, σ̃R) with α > 0 arbitrarily small. Then, for some ζα > 0,

Q̃
(

sup
t′>t
‖σ̂R − E[σ̃Rt′ | HAt′]‖ < ζα | HAt

)
> 1 − ζα, ∀t ≥ t̄α,∀ω ∈ F . (18)

Proof. Let Zt ≡ supt′>t ‖σ̂A− Ẽ[σ̃At′ | HAt′]‖ and (16) and (17) hold by the hypothesis. For any
ε > 0 (so that ξ = εψ as given in Lemma 9), Q̃(Zt < ψ | HAt) > 1− ε for all t > t̄α on F . This
means that the agent chooses the strategy that is the unique best response to the commitment
strategy of the regulator with a very high probability not only in the current periods but in
every continuation game after t > t̄α on F on the given α-NE.

Fix some s > 0 and a private history hAt, where hAt̄α is the initial segment of hAt, in F .
Since the agent is discounting (one can identify δα ∈ (0, 1) such that for all discount factors
strictly exceeding δα), there exists s′ > s and ζ > 0 such that for all t′ = t, ..., t + s′ and
hAt′ for which ‖σ̂R − E[σ̃Rt′ | hAt′]‖ < ζ, the continuation strategy σ̃A of the agent (after
the initial history hAt̄) agrees with σ̂A ≡ BRA(σ̂R) for the next s periods. In other words, if
the agent expects to see D with a very high probability for s′ number of periods after some
private history, then he would be playing T with a very high probability for s periods. Since
by hypothesis, σ̃A agrees with σ̂A for every t′ > t and for all t ≥ t̄α, ‖σ̂R − E[σ̃Rt′ | hAt′]‖ < ζ

must hold for all t′ > t and for all t ≥ t̄α. Then, we obtain (18).

D.3 The regulator’s beliefs about the agent’s behavior

Next, we show that the regulator eventually becomes convinced that the agent plays a best
response to T in the continuation game on a class of private histories that involve successive
plays of D. To become convinced about the agent’s behavior and beliefs, he does not need to
know her private history when he has been diligent.

To prove this result, we follow the footsteps of Cripps et al. (2007, Lemma 3); let the
σ-algebra of the regulator who has played D up to (and not including) period s beHD

Rs. Then,
regulator’s information set at time s (given this particular filtration of private histories) if he
were to know the private history of the agent at time t can be described by ϕ(HD

Rs,HAt), the
smallest σ-algebra containing the σ-algebrasHD

Rs andHAt.

Lemma 11. For any given α-NE (σ̃A, σ̃R) with α > 0 arbitrarily small and for any t > 0 and

τ ≥ 0, lims→∞

∥∥∥Ẽ[σ̃A,s+τ | ϕ(HD
Rs,HAt)] − Ẽ[σ̃A,s+τ | H

D
Rs]

∥∥∥ = 0, Q̃ − a.s.

Proof. We prove for τ = 0. The case of τ ≥ 1 can be proven by induction and making
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the appropriate modifications in the proof of Lemma 3 of Cripps et al. (2007) provided in
Appendix A.3. Suppose that K ⊂ At is a set of t-period agent action profiles (a0, a1, ..., at−1),
which also denotes the corresponding event. By Bayes’ rule, we can derive the conditional
probability of the event K given that the regulator has played diligent D, i.e., after the private
history ĥR,s+1 ≡ (ĥRs,D, id) with id ∈ Id, as follows:

Q̃[K | ĥR,s+1] = Q̃[K | ĥRs,D, id] =
Q̃[K | ĥRs]Q̃[D, id | K, ĥRs]

Q̃[D, id | ĥRs]

=
Q̃[K | ĥRs]

∑
a∈A ρ(id | a,D)Ẽ[σ̃a

A(hAs) | K, ĥRs]∑
a∈A ρ(id | a,D)Ẽ[σ̃a

A(hAs) | ĥRs]
.

Subtracting Q̃[K | ĥRs] from both sides we get Q̃[K | ĥR,s+1] − Q̃[K | ĥRs] equals

Q̃[K | ĥRs]
∑

a∈A ρ(id | a,D)
(
Ẽ[σ̃a

A(hAs) | K, ĥRs] − Ẽ[σ̃a
A(hAs) | ĥRs]

)
∑

a∈A ρ(id | a,D)Ẽ[σ̃a
A(hAs) | ĥRs]

.

Note that the term
∑

a∈A ρ(id | a,D)Ẽ[σ̃a
A(hAs) | ĥRs] (equals βẼ[σ̃U

A (hAs) | ĥRs] when id = 0

and Ẽ[σ̃U
A (hAs) | ĥRs](1 − β) + Ẽ[σ̃T

A(hAs) | ĥRs] ∗ 1 when id = 1) is strictly positive and less
than or equal to one by assumption, for all id ∈ Id. Hence,

∣∣∣Q̃[K | ĥR,s+1] − Q̃[K | ĥRs]
∣∣∣ ≥

Q̃[K | ĥRs]
∣∣∣ ∑a∈A ρ(id | a,D)

(
Ẽ[σ̃a

A(hAs) | K, ĥRs] − Ẽ[σ̃a
A(hAs) | ĥRs]

)∣∣∣.
As each of the random variables {Q̃[K | HD

Rs]}s is a martingale with respect to ({HD
Rs}s, Q̃),

it converges to a non-negative limit as s → ∞. Thus, the LHS of the above inequality goes
to zero Q̃-a.s. Let

ΠA,Id =

 0 β

1 (1 − β)

 , and

Ẽ[σ̃A(hAs) | K, ĥRs] − Ẽ[σ̃A(hAs) | ĥRs] =

 Ẽ[σ̃T
A(hAs) | K, ĥRs] − Ẽ[σ̃T

A(hAs) | ĥRs]

Ẽ[σ̃U
A (hAs) | K, ĥRs] − Ẽ[σ̃U

A (hAs) | ĥRs]

 .
to rewrite the RHS as

Q̃[K | HD
Rs]

∥∥∥∥∥ΠA,Id ·
(
Ẽ[σ̃A(hAs) | K, ĥRs] − Ẽ[σ̃A(hAs) | ĥRs]

) ∥∥∥∥∥.
As there exists a strictly positive constant x such that∥∥∥∥∥ΠA,Id ·

(
Ẽ[σ̃A(hAs) | K, ĥRs] − Ẽ[σ̃A(hAs) | ĥRs]

) ∥∥∥∥∥ ≥ x
∥∥∥∥∥ (

Ẽ[σ̃A(hAs) | K, ĥRs] − Ẽ[σ̃A(hAs) | ĥRs]
) ∥∥∥∥∥

we get lims→∞ Q̃[K | HD
Rs]

∥∥∥Ẽ[σ̃A(hAs) | K, ĥRs] − Ẽ[σ̃A(hAs) | ĥRs]
∥∥∥ = 0, Q̃-a.s on K, where

ϕ(HD
Rs,K) is the smallest σ-algebra containing the σ-algebraHD

Rs and event K. Since, Q̃[K |

HD
R∞](ω) ≥ Q̃[K | HD

Rs](ω) > 0 for all s > t for Q̃-almost all ω ∈ K,

lim
s→∞

∥∥∥∥∥Ẽ[σ̃As | ϕ(HD
Rs,K)] − Ẽ[σ̃As | H

D
Rs]

∥∥∥∥∥ = 0, Q̃-a.s on K.
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As this holds for all K ∈ HAt, lims→∞

∥∥∥Ẽ[σ̃As | ϕ(HD
Rs,HAt)] − Ẽ[σ̃As | H

D
Rs]

∥∥∥ = 0, Q̃ − a.s.

D.4 The agent’s beliefs about her own future behavior – revisited

The following result establishes that for any given α-NE with α > 0, there exists a period
t̂α such that in any history following that period, the agent expects the strategic regulator to
choose D with a high probability.

In what follows, we restrict attention to histories in which the agent chooses U and denote
the resulting filtration byHU

At.
The regulator’s reputation does not change if the realization of the agent’s completely

mixed strategy is T in a given α-NE with α > 0. Moreover, the agent plays U with at least α
probability in any given private history of the agent. Thus, if there exists an event (denoted by
ω ∈ F as in Lemma 9) such that the strategic regulator plays lazy L with some strictly positive
probability in every continuation game after any period t, then considering histories in which
the agent plays U (on account of being constrained by α-NE) along with R’s identification
condition, Remark 2, empower us to employ the merging argument of Cripps et al. (2007).
In these histories, in which the strategic regulator’s behavior does not converge to playing D

with a high probability, his true type is going to be revealed to the agent in the long run.30

But, such histories would be in contradiction with (18) of Lemma 10. So, we obtain:

Lemma 12. Suppose that (18) given in Lemma 10 is satisfied for all ω ∈ F for a given α-NE

(σ̃A, σ̃R) with α > 0 arbitrarily small. Then, there exists t̂α such that the following holds for

some ν > 0,
Q̃
(

sup
t′>t
‖σ̂R − Ẽ[σ̃Rt′ | HAt′]‖ < ν | HU

At
)
> 1 − ν, ∀t ≥ t̂α. (19)

The proof, sketched above, employs the same identification arguments used in the proof of
Lemma 11 that parallel the merging argument of Cripps et al. (2007), and hence, is omitted.

D.5 The agent’s beliefs about the regulator’s future behavior – revisited

To prove Theorem 3 with a contradiction, we suppose that there existsA ∈ Ω with Q̃(A) >

0 such that for all ω ∈ A, limt→∞ ‖σ̂A − Ẽ[σ̃At | HAt]‖ = α given an α-NE (σ̃A, σ̃R) with
α > 0 but arbitrarily small. Then, by Lemma 9, there exists F ⊂ A with Q̃(F ) > 0 such
that, there exists t̄α for which the agent assigns very high probability to the event that all

30The agent uses her private history for updating her beliefs about the regulator’s type. Her posterior belief at
time t is given by theHAt - measurable random variable γt ≡ Q(tough | HAt) : Ω→ [0, 1]. At any equilibrium,
γt is a bounded martingale with respect to {HAt}t and measure Q. Therefore, γt converges Q-almost surely to
a random variable γ∞. Since Q̃ is absolutely continuous with respect to Q, any statement that holds Q-almost
surely also holds Q̃ - almost surely. Thus, γt also converges to Q̃ - almost surely to a random variable γ∞.
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her continuation strategies from then on are best replies to the commitment strategy of the
regulator. For this to be optimal for the agent, Lemmas 10 and 12 establish that the agent
believes that the strategic regulator is going to be diligent from t ≥ max{t̄α, t̂α} on in every
continuation game with a very high probability onF . Lemma 11 states that the agent’s beliefs
about her future behavior will eventually be known to the strategic regulator who is indeed
diligent with a high probability (as expected by the agent). But, if the strategic type of the
regulator eventually expects the agent to always give a best reply to the commitment strategy
of the regulator in every continuation game, then the regulator would like to deviate from the
commitment strategy D as it is noncredible, i.e., not a best response to the best response of
the agent to the commitment strategy. Now, there seems to be a contradiction with the agent’s
beliefs about the strategic regulator’s behavior (Lemma 12) onF and the regulator’s behavior
on a set G (to be explained below) where the regulator expects to see the agent give a best
response to the commitment strategy D and is expected to play D. But, one needs to establish
that G is a subset of F and measurable for the agent. Instead, following Cripps et al. (2007),
we show that G is close to aHU

As - measurable set, s sufficiently high and specified below, on
which the agent believes that all her future behavior is going to be a best response (restricted
by α) to the commitment strategy of the regulator.

Lemma 13. Let (σ̃A, σ̃R) be an α-NE with α > 0 and sufficiently small and suppose that F

is the positive probability set of events stated in Lemmas 9 and 10; and ν > 0 be the constant

in Lemma 12. For any ξ > α (as in Lemma 9 given α and F ) and any τ ∈ N, there is an event

G and a time T (ξ, τ) such that for all s > T (ξ, τ), there are Cs ∈ H
U
As and φ > 0 with

‖σ̂R − Ẽ[σ̃Rs | HAs]‖ < ν, Q̃ − a.s. on Cs (20)

G ∪ F ⊂ Cs and Q̃(G) > Q̃(Cs) − φQ̃(F ), and (21)

on G, Ẽ[σ̂As′ | H
D
Rs] > 1 − 2

√
ξ, ∀s′ = {s, s + 1, ..., s + τ}. (22)

Proof. We use Lemma 11 and a modified version of Cripps et al. (2007, Lemma 4).
Fix τ > 0. Take ξ > α let t̄α denote the threshold period stated in Lemma 9 for this ξ and

notice that the resulting set of events F is such that Q̃(F ) tends to one as t ≥ t̄α increases.
Thus, there exists x < 1/5 such that ξ ∈ (α, (x Q̃(F ))2). Regulator’s minimum estimate on
the probability of truthfulness over periods s, ..., s + τ when his private history inHD

Rs can be
expressed as fs ≡ mins≤s′≤s+τ Ẽ[σ̃As′(T ) | HD

Rs] where T denotes the truthful action. Note that
fs > 1 − 2

√
ξ is sufficient to show (22). The first step is to find a lower bound for fs. For
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any t ≤ s, the triangle inequality implies mins≤s′≤s+τ Ẽ[σ̃As′(T ) | ϕ(HD
Rs,HAt)] − kt

s ≤ fs ≤ 1

where kt
s ≡ maxs≤s′≤s+τ

∣∣∣Ẽ[σ̃As′(T ) | ϕ(HD
Rs,HAt)] − Ẽ[σ̃As′(T ) | HD

Rs]
∣∣∣ for t ≤ s. By Lemma

11, lims→∞ kt
s = 0, Q̃ - a.s. Let G0

t ≡ {ω : σ̃As(hAs) = 1 − α,∀s ≥ t}. Then, fs ≥ Q̃
(
G0

t |

ϕ(HD
Rs,HAt)

)
− kt

s. The sequence of random variables {Q̃(G0
t | ϕ(HD

Rs,HAt))}s is a martingale
with respect to the filtration {HD

Rs}, so it converges a.s. to gt ≡ Q̃(G0
t | ϕ(HD

R∞,HAt)). So,

1 ≥ fs ≥ gt − kt
s − lt

s (23)

where lt
s ≡ |g

t − Q̃(G0
t | ϕ(HD

Rs,HAt))| and lims→∞ lt
s = 0, Q̃ - a.s.

The second step involves finding the sets Cs and an intermediate set (to be denoted by F ∗)
that is used to determine the setG. First, for any t ≥ max{t̄α, t̂α} ≡ tα (the critical periods from
Lemmas 9 and 10 and Lemma 12), using condition (16) of Lemma 9 implying condition (19)
of Lemma 12, we define the associated events

Kt ≡ {ω : Q̃(G0
t | HAt) > 1 − ξ, ‖σ̂R − Ẽ[σ̃Rt | HAt]‖ < ν} ∈ HU

At.

Let F s
t ≡

⋂s
τ=tKτ and Ft ≡

⋂∞
τ=tKτ. Note that lim infKt ≡

⋃∞
t=tα

⋂∞
τ=tKτ =

⋃∞
t=tα Ft. By

Lemmas 9, 10, and 12, F ⊂ Kt for all t ≥ tα; thus, F ⊂ F s
t , F ⊂ Ft and F ⊂ lim infKt.

Also define Nt ≡ {ω : gt ≥ 1 −
√
ξ}, the measure of events that the strategic regulator

expects the agent to play T with probability 1 − α exceeds 1 −
√
ξ. Set Cs ≡ F s

tα ∈ H
U
At and

define an intermediate set F ∗ by F ∗ ≡ Ftα ∩Ntα . Since Cs ⊂ Ks, (20) holds (by Lemmas 9 -
12). And, as F ∗ ∪F ⊂ Cs, the first part of (21) holds with F ∗ in the role of G. By definition,
Q̃(Cs) − Q̃(F ∗) = Q̃(Cs ∩ (Ftα ∩ Ntα)

C) = Q̃
(
(Cs ∩ (Ftα)

C) ∪ (Cs ∩ (Ntα)
C)

)
where (X)C is the

complement of X. Since the event Cs ∩ (Ntα)
C is a subset of Ktα ∩ (Ntα)

C, we have

Q̃(Cs) − Q̃(F ∗) ≤ Q̃(Cs ∩ (Ftα)
C) + Q̃(Ktα ∩ (Ntα)

C). (24)

Next, we find the upper bounds for the two terms on the right-hand side of (24).
First, note that Q̃(Cs ∩ (Ftα)

C) = Q̃(F s
tα) − Q̃(Ftα) by definition. Since lims→∞ Q̃(F s

tα) =

Q̃(Ftα), there exists T ′ ≥ tα such that

Q̃(Cs ∩ (Ftα)
C) <

√
ξ ∀s ≥ T ′. (25)

Also, as Q̃(G0
t | Kt) > 1 − ξ and Kt ∈ H

U
At, iterated expectations imply that 1 − ξ < Q̃(G0

t |

Kt) = Ẽ[gt | Kt]. Since gt ≤ 1, one gets 1−ξ < Ẽ[gt | Kt] ≤ (1−
√
ξ) Q̃((Nt)C | Kt) + Q̃(Nt |

Kt) = 1 −
√
ξ Q̃((Nt)C | Kt). So, Q̃((Nt)C | Kt) <

√
ξ. By taking t = tα, we get

Q̃(Ktα ∩ (Ntα)
C) <

√
ξ. (26)

Using (25) and (26) in (24), Q̃(Cs)− Q̃(F ∗) < 2
√
ξ for all s ≥ T ′. Given that F ⊂ Cs and
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the bound on ξ, Q̃(F ∗) > Q̃(F ) − 2
√
ξ > (1 − 2x)Q̃(F ) > 0.

Now, we use the two steps to obtain G and the bound on fs. As Q̃(F ∗) > 0 and ktα
s +

ltα
s converges almost surely to zero; by Egorov’s Theorem, there exists G ⊂ F ∗ such that

Q̃(F ∗ \ G) <
√
ξ and T ′′ > tα such that ktα

s + ltα
s <

√
ξ on G for all s ≥ T ′′. Then, letting

T (ξ, τ) ≡ max{T ′,T ′′} and notingG∪F ⊂ F ∗∪F ⊂ Cs, we see that the first part of (21) holds.
Moreover, Q̃(G) > Q̃(F ∗)−

√
ξ and as Q̃(F ∗) > Q̃(F )−2

√
ξ we see that Q̃(G) > Q̃(F )−3

√
ξ

and as ξ < (xQ̃(F ))2 we obtain Q̃(G) > (1− 3x)Q̃(F ). Now, as there is φ such that φQ̃(F ) >

Q̃(F ∗) with φ > 1 − 2x we have that Q̃(Cs) − φQ̃(F ) < Q̃(Cs) − Q̃(F ∗) < 2
√
ξ < 2xQ̃(F )

and we wish to obtain that 2xQ̃(F ) < (1 − 3x)Q̃(F ). Thus, because that x ∈ (0, 1/5) we see
that Q̃(G) > (1 − 3x)Q̃(F ) and Q̃(Cs) − φQ̃(F ) < 2xQ̃(F ) is satisfied. Thus, the second part
of (21) holds for all s > T (ξ, τ). And, notice that gtα ≥ 1 −

√
ξ on G since G ⊂ Ntα . Thus, on

G, fs > 1 − 2
√
ξ for all s > T (ζ, τ) by (23). This with the bound on ξ gives (22).

D.6 The proof of Theorem 3

Next, we will establish that on the set G, the regulator’s strategic type will not find it opti-
mal to play the commitment strategy. This will make the agent’s expectation of the strategic
regulator’s action move away from the commitment strategy on F through the relations es-
tablished between the sets G, F and Cs in Lemma 13. And, this will contradict with the
expectations onHU

As - measurable set F stated in Lemma 12.
Let (ςR, ςA) be the stage game mixed action profile that puts probability one on the com-

mitment action D and the best response to the commitment action T . Note that when the
agent uses any strategy sufficiently close to ςA, say at most v̄ away from ςA, playing ςR is
suboptimal by at least some µ > 0. Then, for given δ, there exists a sufficiently large τ such
that the loss of µ for one period is larger than any potential gain held off on for τ periods.

Proof of Theorem 3. Suppose that there exists A ∈ Ω with Q̃(A) > 0 such that for all
ω ∈ A, limt→∞ ‖σ̂A − Ẽ[σ̃At | HAt]‖ = α for the given α-NE (σ̃A, σ̃R) with α > 0 and α
sufficiently small. Then, fix F from Lemma 9 with ξ > α and t∗α = max{t̄α, t̂α,T (ξ, τ)} (as
specified in Lemmas 9 – 13). For ξ < v̄ and τ, let G and Cs be the events described in Lemma
13 for s > T (ξ, τ). Consider the period s > T (ξ, τ) at some state in G. By (22), the regulator,
who would be playing D, expects to see a strategy within 2

√
ξ of ςA for the next τ periods

where ξ < v̄ (by choosing ξ sufficiently small which is feasible as α > 0 is sufficiently small,
one can ensure that 2

√
ξ < v̄). Playing ςR is suboptimal in period s since the most he can

gain from playing D is less than playing a best response to ςA for τ periods. Thus, on G, the
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strategic type of the regulator would like to play D with zero probability, which essentially is
a contradiction. And, to get a contradiction in agent’s beliefs, we calculate a lower bound on
the difference between ςR and the agent’s beliefs about the strategic type playing action D in
period s, Ẽ[σ̃Rs(D) | HU

As] on the events in Cs that contains F due to (21) of Lemma 13:

Ẽ
[∣∣∣ςR − Ẽ[σ̃Rs(D) | HAs]

∣∣∣1Cs

]
≥ Ẽ

[(
ςR − Ẽ[σ̃Rs(D) | HAs]

)
1Cs

]
≥ Q̃(Cs) − Ẽ[σ̃Rs(D)1Cs]

≥ Q̃(Cs) −
(
Q̃(Cs) − Q̃(G)

)
≥ Q̃(Cs) − φQ̃(F )

≥ (1 − φ)Q̃(F ).

Note that 1Cs is the indicator function on Cs and hence (Ẽ[σ̃Rs | HAs]1Cs) = Ẽ[σ̃Rs | H
U
As].

Then, the first inequality is just removing the absolute values. The second inequality applies
ςR(D) = 1 and uses the HU

As - measurability of Cs. The third is the result of σ̃Rs(D) = 0

on G and σ̃Rs(D) ≤ 1 in the rest of the set with G ⊂ Cs ∈ H
U
As due to (21) of Lemma 13,

which also implies the third and fourth inequalities. Finally, the last one is by F ⊂ Cs. Since
Ẽ
[∣∣∣ςR − Ẽ[σ̃Rs(D) | HAs]

∣∣∣1Cs

]
> (1− φ)Q̃(F ) for all s > t∗α and, by Lemmas 12 and 13, on Cs,

Ẽ[|ςR − Ẽ[σ̃Rs | HAs]|1Cs] < ν, we obtain the desired contradiction.
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