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Abstract What is the luminosity needed for discovering
new physics if the electroweak scale is to remain stable? In
this work we study this question, with the pertinent example
of a real singlet scalar which couples to the Higgs field at the
renormalizable level. Observing that the electroweak scale
remains stable if the two scalars couple in a see-sawic fashion
through a mass-degeneracy-driven unification linkup among
quartic couplings at a given scale, we show by detailed sim-
ulation studies of the pp → (singlet scalar) → Z Z → 4�

channel that the HL-LHC, which is expected to deliver an
integrated luminosity of 3 ab−1, has no significant excess of
signal over the background in the 800–2000 GeV mass range.
The FCC-hh, on the other hand, can discover scalars up to
a mass of 870 GeV with an integrated luminosity 20 ab−1.
Observation at 3σ (discovery at 5σ ) of a new scalar with a
minimum mass 800 GeV requires at least 2 ab−1 (5.2 ab−1)
integrated luminosity, showing that the new physics that does
not destabilize the electroweak scale is accessible only at very
high luminosities, and can be tested already in the early stages
of the FCC-hh operation period.

1 Introduction

The standard model of elementary particles (SM), experi-
mentally completed by the discovery of the Higgs boson at
the ATLAS and CMS [1], has shown excellent agreement
with all the available data so far [2]. The TeV domain seems
to be devoid of any new particles beyond the SM spectrum
[3]. The SM seems thus to continue to hold good up to ener-
gies well above a TeV.

This experimental fact poses a big challenge. The rea-
son is that there are all sort of astrophysical (dark matter,
dark photon), cosmological (dark energy, inflation) and other
(neutrino masses, flavor, unification, etc.) indications that the
SM has to be extended by new fields beyond the TeV [4,5].
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These fields set the so-called physics-beyond-the-SM (BSM)
sector.

The problem with the BSM phenomena is that they gener-
ally drag the SM towards their scales. Indeed, if the SM+BSM
is valid up to a scale Λ and if the Higgs boson couples with
strength λh−BSM to BSM fields of masses MBSM then its
mass mh receives the correction

δm2
h = chΛ

2 + c̃hλh−BSMM2
BSM log

M2
BSM

Λ2 (1)

where ch and c̃h are O(10−2) loop factors, and the Higgs-
BSM coupling λh−BSM changes from portal to portal in view
of the SM-BSM coupling channel:

λh−BSM ∝

⎧
⎪⎨

⎪⎩

λHS for Higgs portal : λHSH†HS†S
λ2
Z ′B for hypercharge portal : λ2

Z ′B Z
′
μνB

μν

λ2
LN for neutrino portal : λLN LHN + h.c.

(2)

The lesson from the LHC experiments is that the UV com-
pletion that eliminates the Λ2 term in (1) must do it with
a sufficiently small λh−BSM in order to keep δm2

h/m
2
h suf-

ficiently small. It is in this sense that the known comple-
tions of the SM (supersymmetry, extra dimensions, compos-
iteness, and their hybrids) are sidelined because their BSM
sectors (superpartners in supersymmetry, Kaluza–Klein lev-
els in extra dimensions, and technifermions in composite-
ness) necessitate λh−BSM � λSM , where λSM is a typical
SM coupling. It turns out that heavier the BSM larger the
shift in the Higgs boson mass, and stronger the exclusion
limits on the known SM completions. In view of this LHC
lesson, we do in the present work three things:

1. In Sect. 2 below we discuss in detail how an LHC-favored
SM completionmust be, and give symmergence [6,7] as a
likely realization in which chΛ2 part is eliminated (actu-
ally transmuted to curvature) by keeping c̃h sufficiently
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small. Therein we analyze how c̃h can be structured, and
construct a linkup scheme in which the seesawic coupling
in [7] is reproduced.

2. In Sects. 3 and 4, without loss of generality, focus and
goal, we specialize to a BSM sector in which only a real
singlet scalar interacts with the SM Higgs boson, and
reveal there the implications of the see-sawic couplings
of Sect. 2 in view of the electroweak stability. (In gen-
eral, one should analyze all three portals in (2) but for
showing the stability of the electroweak scale against the
logarithmic corrections in (1) it proves beneficial to focus
on a singlet scalar S as the worst case because S itself is
a power-law UV sensitive field.)

3. Section 5 we study the collider phenomenology of the
real SM-singlet scalar in Sect. 3, with emphasis on elec-
troweak stability. There we attempt to answer this key
question:

What energy and luminosity does it take to discover

a singlet scalar if the electroweak scale is to remain

stable? (3)

To answer this question we perform a detailed analysis
of the decay and production channels associated with the
singlet scalar, and determine explicitly discovery lumi-
nosities at the HL-LHC and FCC-hh colliders via the
low-background 4-lepton signal. Our analysis in Sect. 5
shows how LHC-favored SM completions like symmer-
gence can reveal themselves at high luminosities.

In Sect. 6 we conclude.

2 LHC-favored SM completion

If the LHC results [1,3] have taught us anything it is that the
SM can be extended with a BSM sector (facilitating neutrino
masses, baryogenesis, dark matter, inflation, etc.) naturally
if SM-BSM couplings (like λh−BSM in δm2

h) are allowed
to be small (λh−BSM � λSM ) and if the power-law UV
sensitivities (like chΛ2 in δm2

h) are properly nullified. There
are thus two sides of the problem, and both sides need to be
properly addressed.

The nullification of the power-law UV sensitivities is
achieved ordinarily in all the known UV completions. They
are eradicated in supersymmetry, downsized to TeV in
extra dimensions, and turned into curvature in symmergence
(emergence of gravity in a way restoring gauge symmetries
broken explicitly by the UV cutoff Λ). These UV sensitiv-
ities (like chΛ2 in δm2

h in Eq. (1) above) are thus far from
destabilizing the electroweak scale.

The logarithmic UV sensitivities (like the λh−BSM term in
δm2

h in Eq. (1) above) are highly nontrivial in that the known
SM completions have λSM−BSM � λSM , and never get into
the hierarchic regime λSM−BSM � λSM . This is a serious
problem because heavier the BSM larger the logarithmic part
of δm2

h since it is proportional to λh−BSMM2
BSM and since all

known UV completions necessitate λSM−BSM � λSM . The
logarithmic part poses thus as a serious hierarchy problem
(causing the so-called little hierarchy problem [8–10]). It is
in this sense that the LHC results started sidelining known
UV completions like supersymmetry, extra dimensions and
compositeness. They point to new SM completions which
can work with λSM−BSM � λSM instead of λSM−BSM �
λSM (characteristic to supersymmetry, extra dimensions and
compositeness).

2.1 Symmergence as the LHC-favored UV completion

The focus in the present work is on the logarithmic quantum
corrections, that is, on the little hierarchy problem posed, for
instance, by the logarithmic part of δm2

h in (1). In other words,
one gives weight to logarithmic corrections with the assump-
tion that there exists some UV completion that does away
with the power-law UV sensitivities [11–13]. It is, neverthe-
less, necessary to have a concrete UV completion in mind
even if it may not phenomenologically be directly relevant
for the analysis of the effects of the logarithmic corrections.
There is currently one such UV completion: Symmergent
gravity [6,7,14]. To have an idea what symmergence is and
is not one notes first that, in the presence of the UV momen-
tum cutoff Λ, the photon and the gluon acquire masses (with
zero logarithmic parts)

δm2
γ,g = cγ,gΛ

2 (4)

which completely destruct the SM by breaking the color and
the electric charge (CCB) [14–17]. (In a broader sense, these
are gauge anomalies.) This quantum gauge invariance break-
ing can be prevented if the quadratic corrections cgΛ2 and
cγ Λ2 are somehow neutralized.

The gauge boson mass corrections (4) are physical. They
cannot be altered by any means simply because the cutoff Λ is
physical. It is physical because it refers to physical phenom-
ena beyond the SM (like gravity and possible BSM physics).
If gravity were absent, if there were no BSM physics, if it
were just the SM alone then all loop integrals would turn
into cutoff regularization integrals [18] with arbitrary cutoff
Λ, and one would then be able to eradicate all power-law
corrections (like (4) and (1)) simply by switching to dimen-
sional regularization [19]. The essence of the problem is that
gravity and BSM physics (needed for dark matter, strong
CP, baryogenesis, and various other phenomena) introduce
new physical scales like Λ, and neutralization of the gauge
symmetry-breaking corrections like (4) necessitates a new
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mechanism that complies with the SM as well as the BSM
and gravity.

In regard to neutralization of the loop-induced gauge
boson masses in (4), symmergence is a mechanism result-
ing from the observation that it should be possible to set
up a covariance relation (just like the usual general covari-
ance between the flat metric and the curved metric) between
Λ2 (which explicitly breaks Poincaré invariance of the flat
spacetime on which QFTs like the SM are based) and space-
time curvature (which explicitly breaks Poincaré invariance
as a built-in feature of the curved spacetime). This extended
covariance, which rests on the Poincaré affinity between Λ2

and curvature, is guided by gauge invariance (as discussed
in detail in [7]). In other words, the proposed covariance
between Λ2 and curvature must be able to restore gauge
invariance by transmuting the loop-induced gauge boson
masses in (4) appropriately. This transmutation mechanism
leads to symmergence [7,14], with the following salient fea-
tures:

1. It predicts existence of a BSM sector (of neutrinos, dark
matter, . . . , and maybe more),

2. It kills the gauge boson mass term (4) (restores gauge
invariance) by transmuting Λ2 into affine curvature,

3. It converts chΛ2 part of (1) into Higgs-curvature cou-
pling,

4. It converts cSΛ2 part of the corrections δm2
S to the BSM

scalar masses into S-curvature couplings,
5. It leads to Einstein gravity, and finally,
6. It results in dimensionally-regularized SM+BSM in the

curved spacetime.

What is left untouched by symmergence is the logarith-
mic part of (1). It is left untouched because log Λ2 does
not break Poincaré invariance (it always leads to multiplica-
tive corrections). It remains as a physical contribution to the
Higgs boson mass. This remnant contribution might give the
impression that symmergence makes no real progress con-
cerning the electroweak stability. No! Actually it makes a
pivotal progress. It does because it leaves couplings between
the SM and the BSM unconstrained, that is, free to take
any perturbative value, even the zero! (This feature rests on
the fact that the gravitational scale is set by the supertrace
of the SM+BSM mass-squareds, with no necessity of any
couplings between the SM and the BSM. In other words,
the SM and BSM do not have to interact.) This means that
the SM-BSM couplings can be small enough (compared to
the SM couplings) to suppress logarithmic corrections. This
SM-BSM coupling scheme is something specific to symmer-
gence. Indeed, contrastively,

λSM−BSM �λSM �⇒only light BSMs with mBSM �mh (5)

are allowed in supersymmetry, extra dimensions and com-
positeness [4,5] whereas

λSM−BSM �λSM �⇒heavy BSMs with mBSM 	 mh (6)

are allowed in symmergence [7,14]. It thus turns out that
the LHC can exclude sparticles (the BSM of supersymme-
try), Kaluza–Klein levels (the BSM of extra dimensions) and
technifermions (the BSM of compositeness) but not the BSM
of the symmergence! In fact, the Higgs mass correction in (1)
remains within the LHC bounds if the SM-BSM couplings
obey the bound

λh−BSM �
m2

H

m2
BSM

(7)

which is a seesawic relation between the mass parameters of
the Higgs field H (m2

h = −2m2
H in the SM) and the BSM

fields. This seesawic coupling scheme, ensuring that heavier
the BSM smaller its couplings to the SM, gives way to a
novel approach to collider and other searches for the BSM
physics.

It should be noted that stabilization of the SM against Λ2

corrections has been approached via various mechanisms.
They include classical conformal invariance [20–22], twin
Higgs [23,24], cosmological relaxation [25,26], Higgs frame
[27], gravitational relaxation [28], large copies of the SM
spectrum [29,30], and subtraction of Λ2 terms [31]. The
subtraction method [31] is particularly relevant in that it sub-
tracts (absorbs into critical surface) Λ2 terms, retains only
log Λ terms (dimensional regularization), predicts no BSM
sector, and leaves out gravity entirely. Symmergence [7], on
the other hand, identifies Λ2 terms with curvature by their
Poincaré affinity, retains only log Λ terms (dimensional reg-
ularization), predicts existence of a BSM sector, and makes
gravity emerge upon the SM+BSM. This clear distinction
between the two approaches shows that symmergence could
indeed be a factual UV completion of the SM.

2.2 Mass-degeneracy-driven unification linkup

The seesawic scheme in (7), an empirical relation based on
the freedom in (6) enabled by symmergence, is a just-so rela-
tion. The thing is that it works. The problem is that there is
no obvious symmetry principle that supports it. (This can be
seen from the symmetry structures of the two-Higgs doublet
models [32–35].) To this end, it proves convenient to special-
ize to a real BSM scalar S of mass mS . (The remaining BSM
fields do not have to couple to the SM; they can stay with
zero couplings to the SM fields. But if any of them couples to
the SM Higgs its effects must be taken into account in view
of the portals in (2).) The scalar S couples to the SM Higgs
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field via the potential

VHS=m2
HH

†H+λH(H†H)2+m2
S

2
S2+λS

4
S4+λHS

2
H†HS2 (8)

whose boundedness from below necessitates

λH > 0 , λS > 0 , 16λHλS − λ2
HS > 0 (9)

as primary constraints on dimensionless couplings.
It follows from the potential (8) that the log Λ sensitivi-

ties (translated into dimensional regularization via the formal
equivalence log Λ2 = 1/ε−γE +1+log 4πQ2) lead to non-
trivial MS corrections to the Higgs condensation parameter
m2

H (m2
h = −2m2

H in the SM)

δm2
H = cHλHSm

2
S log

m2
S

Q2 (10)

as follows from (1) (whose the quadratic part goes into cur-
vature terms via symmergence [7]). It is clear that larger the
mS larger the δm2

H and stronger the destabilization of the
electroweak scale. The question is clear: How to prevent this
destabilization of the electroweak scale? This is a profound
question. And its answer is both obvious and obscure. It is
obvious in that |λHS| must be just small (as in (7) above) to
start with since loop corrections to λHS are proportional to
λHS itself (it remains small if it is small). It is, on the other
hand, obscure in that there is no obvious selection rule or
symmetry that can ensure the requisite smallness [32–35]. Its
dimensionless nature disfavors also dynamical mechanisms
like Giudice–Masiero mechanism [36] because a change like
λHS → H†H/S2 would simply mean killing the coupling
between H and S. In the face of this impasse, a reasonable
way to follow would be imposition of a judicious relation-
ship among model parameters, with stabilization under the
renormalization group flow. Indeed, symmergence, which
sets λHS free (as opposed to the known completions which
require λHS to remain close to the Higgs quartic coupling λH

as in (5) above), opens room for a mechanism in which λHS

can be linked to other model parameters in a way that keeps
δm2

H under control. In this respect, the seesawic coupling in
(7), which takes the particular form

λHS ∝ λH
m2

H

m2
S

(11)

for a BSM scalar S, possesses the right structure to keep δm2
H

in (10) below m2
H . It is clear that, in view of the bound (7),

this coupling corresponds to the largest allowed values in
that perfectly allowed smaller values result in feebler signals
which are hard to detect.

The seesawic structure in (11) relates λHS to the field
masses. This means that for stabilizing the Higgs mass (sup-
pressing δm2

H in (10)) the parameters in the potential must
somehow enjoy a mass-dependent relationship beyond the
energy conditions in (9). To this end, taking into account

the perturbativity, we introduce a Mass-Degeneracy-Driven
Unification (MDDU) linkup of the form (at a given scale
Q = Q0)

lim
mH (Q0)→mS(Q0)

λH (Q0)=λS(Q0) = |λHS(Q0)| (12)

which proves useful as it possesses the particular solution

λS(Q0)=λH (Q0), λHS(Q0) = 2λH (Q0)

m2
H (Q0)

m2
S(Q0)

+ m2
S(Q0)

m2
H (Q0)

(13)

according to which λHS(Q0) reduces to the seesawic struc-
ture in (11) for mS(Q0) 	 mH (Q0), and smoothly covers
the opposite limit of mS(Q0) � mH (Q0). It is clear the
MDDU linkup (12) introduces a mass-dependent correlation
among the quartic couplings in (8). It is special point in the
parameter space (rather than a symmetry principle [32–35]).
The particular MDDU scheme in (13) can be generalized
to other portals in (2) by simply replacing m2

S with M2
BSM ,

where MBSM = MZ ′ or MBSM = MN . This replacement
rule can be useful for analyzing more general SM-BSM inter-
actions.

It is only with UV completions like symmergence that it
λh−BSM gets loosened from the SM couplings (in view of the
fixture in (5)), and it is with the MDDU in (12) that seesawic
couplings like (7) or (11) become possible.

The changes in the MDDU linkup in (12) and (13) due
to RGE flow of the parameters are analyzed in detail in the
recent paper [37]. It is shown there that within the pertur-
bative regime the MDDU relation is quite robust. Indeed,
λHS(Q) is small, it remains small as ensured by its RGE, and
the λS(Q) and λH (Q) in turn remain essentially unchanged.
Furthermore, mass of Higgs boson remains unaffected by
the heavy scalar S not at a specific scale Q0 but at all scales
from electroweak one to Planck one thanks to the smallness
of λHS(Q), as ensured the MDDU linkup. This shows that
the MDDU works to ensure stability of the electroweak scale.

3 The model

In this section we analyze effects of an SM-singlet real scalar
S on the electroweak stability. It certainly is possible to con-
sider a wider BSM sector and include all three types of the
portals in (2). Nevertheless, the Higgs portal suffices for
demonstrating the stability of the electroweak scale under
the seesawic coupling in (13).

In view of the question (3), the most general, renormaliz-
able, symmetric Lagrangian density extending the SM with
a real singlet scalar field S is given by [38,39]

LHS = (DμH)†DμH + 1

2
∂μS∂μS − VHS, (14)
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where V (H, S) is the potential energy density in (8), and H
is the usual SM Higgs doublet

H = 1√
2

(
φ1 + iφ2

υH + h + iφ0

)

. (15)

with the Higgs boson h remaining as a CP-even scalar after
the Goldstone bosons φi are swallowed as longitudinal com-
ponents of the W and Z bosons. Indeed, for λH > 0 and
λS > 0, the potential gets bounded from below and the
minimum of the potential breaks the electroweak symme-
try spontaneously via the Higgs vacuum expectation value
(VEV) υH �= 0. If the scalar S is not inert (see for instance
[40,41]), that is, if it gets a VEV υS �= 0 then the minimum
of the potential (8) occurs at

υ2
H = 4λSm2

H − 2λHSm2
S

λ2
HS − 4λHλS

, υ2
S = 4λHm2

S − 2λHSm2
H

λ2
HS − 4λHλS

(16)

with the singlet boson s defined as S = υS + s in parallel to
(15).

In the vicinity of the vacuum (16), the mass-squared matrix
of the h and s bosons

M2 =
(

2λHυ2
H

1
2λHSυHυS

1
2λHSυHυS 2λSυ

2
S

)

(17)

assume two eigenvalues

m2
h1

= λHυ2
H+λSυ

2
S−

√
(
λSυ

2
S−λHυ2

H

)2+ 1

4
λ2
HSυ

2
Sυ

2
H ,

m2
h2

= λHυ2
H+λSυ

2
S+

√
(
λSυ

2
S−λHυ2

H

)2+ 1

4
λ2
HSυ

2
Sυ

2
H .

(18)

corresponding to the two physical eigenstates h1 (which
should be identified with the scalar boson observed at the
LHC [1]) and h2 (the extra scalar boson under search at the
LHC and to be searched for at future colliders like the FCC).
The key parameter is their mixing angle

tan 2θ = λHS υS υH

λSυ
2
S − λHυ2

H

(19)

which is proportional to λHS – the strength of the SM-BSM
coupling.

4 One-loop corrections and model space

In this section, we give a detailed analysis of the logarithmic
corrections mentioned in (1). The Feynman diagrams which
contributes the logarithmic corrections are depicted in Fig. 1.
Leaving aside the quadratic corrections chΛ2 in view of the

Fig. 1 The one-loop diagrams leading to the m2
h1

corrections in (1)

symmergence mechanism mentioned in the Introduction, we
keep only the logarithmic corrections (Λ 	 mh2 	 mh1 )

(δm2
h1

)log = 1

8π2

[
(6λh1h1h1h1 + 3λh1h1φφ)m2

h1

+(9λ2
h1h1h1

+ 3λ2
h1φφ)

]
log

(
m2

h1

Λ2

)

+ 1

16π2

[
2λh1h1h2h2m

2
h2

+ 2λ2
h1h2h2

+λ2
h1h1h2

]
log

(
m2

h2

Λ2

)

(20)

where the various couplings (like the quartic couplings
λhi h j hkhl ) are listed explicitly in the Appendix as functions
of λH , λS , λHS and the mixing angle θ .

The h1 mass receives non-trivial corrections from the h2

loops. This feature, explicated in (20), requires λHS to be
bounded appropriately. The vacuum stability already gives a
bound (as follows from (9))

λ2
HS ≤ 16λHλS (21)

which means that |λHS| is typically at the 30% level depend-
ing on precise values of λH and λS . We will consider different
parameter ranges during the analysis.

The bound above is however not sufficient to ensure elec-
troweak stability. The reason is that h2 can be too heavy to
keep h1 mass within the LHC bound. To this end, one comes
back to the see-sawic bound in (7). In what follows thus we
require thus λHS to have the value

λHS = m2
H

m2
S

(22)

after expressing

m2
H = 1

4υ2
H

(
2λSυ

4
S − 4λHυ4

H − υ4
S
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Fig. 2 Variation of λHS with υS (TeV) and λS for 0.01 ≤ λS ≤ 0.1

+
√

8λHυ4
Hυ4

S + υ8
S − 4λSυ

8
S + 4λ2

Sυ
8
S

)

,

m2
S = 1

4

(
−(1 + 2λS)υ

2
S

+
√

8λHυ4
H + υ4

S − 4λSυ
4
S + 4λ2

Sυ
4
S

)

. (23)

as functions of the H and S VEVs. Trading two model param-
eters for the VEVs in this form leads us to the physical shell
set by the VEVs. In fact, we hereon specialize to the LHC
values

λH = 0.13, υH = 246.2 GeV (24)

and analyze the model in terms of the remaining two free
parameters: the S quartic coupling λS and the S VEV υS .

The allowed ranges of the model parameters can be deter-
mined numerically. In doing so we consider υS values as large
as 20 TeV in view of the sensitivity of the exotica searches at
the LHC [3]. To this end, we plot in Fig. 2 variation of λHS

with υS in the small λS regime of 0.01 ≤ λS ≤ 0.1. It is
seen that λHS , which decreases with m2

S due to its see-sawic
structure in (22), in magnitude, remains below λS at least by
two orders of magnitude.

Shown in Fig. 3 is the variation of λHS with υS in the
large λS regime of 0.1 ≤ λS ≤ 0.5. It is clear that λHS ,
in magnitude, remains below λS at least by two orders of
magnitude.

For larger λS , from 0.5 to 0.9, we find that λHS takes
unacceptably large values (a thousand), we do not consider
therefore λS values above 0.5. In fact, hereon we set λS = 0.1
as a nominal value revealing the physics implications of the
heavy scalar.

Fig. 3 Variation of λHS with υS (TeV) and λS for 0.1 ≤ λS ≤ 0.5

Fig. 4 Corrections to the Higgs mass as a function of υS for λHS =
−0.01 (red), λHS = 0.01 (blue) and λHS = m2

H /m2
S (green)

To see the difference between setting λHS to a fixed (albeit
small) value as in most phenomenological analyses [40] and
requiring λHS to obey the see-sawic bound in (22) we plot in
Fig. 4 δm2

h1
in TeV as a function of vS . It is clear that the see-

sawic structure provides us with a rather stable electroweak
scale.

To see further how λHS varies with υS we list in Table 1
λHS values as υS ranges from 2 to 20 TeV. In agreement
with Figs. 2 and 3, λHS remains negative throughout and
well satisfies the vacuum stability bound (21). It is clear that
larger the mS of scalar field, the weaker its interaction with
Higgs. This decrease could explain why we have not observed
any fingerprint of BSM physics (the scalar S here) at LHC
experiments.

Before closing this section, it is worth noting that any value
of λHS obeying the constraint (7) can satisfy the electroweak
stability. However, it is not difficult to see that smaller λHS
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Table 1 The changes in the parameter λHS as υS (mh2 ) increases

υS (GeV) mh2 (GeV) λHS

2000 894.428 −4.9 × 10−3

3000 1341.64 −2.2 × 10−3

4000 1788.85 −1.2 × 10−3

5000 2236.07 −8.0 × 10−4

6000 2683.28 −5.5 × 10−4

7000 3130.5 −4.0 × 10−4

8000 3577.71 −3.0 × 10−4

9000 4024.92 −2.4 × 10−4

10,000 4472.14 −2.0 × 10−4

15,000 6708.2 −8.7 × 10−5

20,000 8944.27 −4.9 × 10−5

(< m2
H/m2

S) leads to the requirement of larger luminosities
and energies for the discovery of new physics at colliders.
The maximal value of λHS (= m2

H/m2
S) provides one with

accessible and realistic luminosities and energies for discov-
ery. This is the reason why we have considered λHS in (22)
throughout our analyses.

5 Collider phenomenology

In this section we perform a detailed simulation study to
answer the question (3) in the Introduction. The analysis
involves production and decay rates as well as event selection
and background analysis. Below is a systematic discussion
of the analysis stages.

The production cross section of real singlet scalar depends
on its mass and its coupling to the SM Higgs field. In view
of the see-sawic coupling (22) the production cross section
is directly set by mh2 (or vS). It sets also branching fractions
of h2 decays. The branching fractions of h2 into various SM
particles are given in Fig. 5. The dominant decay channels
are seen to be h2 → WW (49%), h2 → h1h1 (25%) and
h2 → Z Z (24%), which are almost independent ofmh2 . This
constancy of the branching fractions, a property following
from the seesawic couplings in (11) and (13), proves useful
for putting discovery limits (as in the simplified models [42]).

In Fig. 6, h2 production cross sections times branching
ratios are given as a function of mh2 for the pp → h2 →
W+W− → lν j j , pp → h2 → W+W− → l+νl−ν,
pp → h2 → Z Z → l+l− j j and pp → h2 → Z Z → 4l
channels separately for

√
s = 14 TeV and

√
s = 100 TeV.

Although pp → h2 → W+W− → lν j j channel has the
highest cross section, reconstruction of this type of semi-
leptonic final states i.e. a charged lepton (electron or muon)
is challenging due to the large missing transverse momentum
coming from the presence of a neutrino in each event and at

Fig. 5 Branchings of the heavy scalar h2 into various SM particles.
The h1h1, WW and ZZ are the dominant decay modes. The decay rates
remain constant essentially or decrease with mh2 due to the see-sawic
coupling

least two jets. In addition, W+jets background is dominant
and gives a peak in the same region with diboson invariant
mass, making it extremely difficult to separate signal from
the background [43]. The pp → h2 → W+W− → l+νl−ν

channel, which has the second highest cross section, is
another challenging channel since the invariant mass of the
system is not completely reconstructable due to the missing
energy in the final states coming from the neutrinos [44].

In pp → h1h1 channel, it is possible to search for h2 via
4γ (suppressed by loops), γ γ bb̄ (suppressed by loops and
small bottom Yukawa), and the like. We will not take into
account these channels in our analysis.

The pp → h2 → Z Z → l+l− j j channel has a higher
cross section than pp → h2 → Z Z → 4l and therefore may
bring more statistics, but due to the jets in the final states, this
channel has larger background especially from Z+jets and t t̄
processes. The pp → h2 → Z Z → 4l has smaller cross
sections than the other channels presented in Fig. 6, but it has
completely reconstructable final state (four charged leptons)
and has lower background contamination [45,46]. Therefore,
we focus on the 4l channel and perform a detailed analysis
using various different mass scenarios.

In total, we consider seven different mass scenarios
between 800–2000 GeV in increments of 200 GeV, for the
search of h2 via the 4l decay channel. We present kine-
matic distributions and the event selection efficiencies for
the low mass and high mass scenarios, mh2 = 800 GeV and
mh2 = 2000 GeV. The final results are given for every mass
value considered in the analysis. All analyses are carried out
at two different center of mass energies; at

√
s = 14 TeV

and
√
s = 100 TeV, corresponding, respectively, to the cen-

ter of mass energy of the pp collisions at the high luminosity
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Fig. 6 Cross section (fb) times branching ratio as functions of mh2 for
the channels pp → h2 → W+W− → lν j j (red line), pp → h2 →
W+W− → l+νl−ν (blue line), pp → h2 → Z Z → l+l− j j (green
line) and pp → h2 → Z Z → 4l (black line) for

√
s = 14 TeV (up)

and
√
s = 100 TeV (down)

phase of the LHC (HL-LHC) and the future circular collider
FCC-hh [47–49].

In simulating the 4l signal and the SM background events
for pp → Z Z , whose Feynman diagrams are depicted
in Fig. 7, we have modified the SM package in LanHEP
v3.2.0 [50] by including the real singlet S, and exported the
extended model to CalcHEP v3.7.5 [51]. The events are sim-
ulated by CalcHEP using the LHAPDF v6.1.6 [52] library
and its CTEQ6L1 [53] parton distribution functions (PDFs)
as well as PYTHIA8 v2.3.0 [54] for parton showering and
hadronization. The detector response is simulated by Delphes
v3.4.2 fast-simulation package [55] using the HL-LHC and
FCC-hh detector card files implemented in it. Events are ana-
lyzed using the ExRootAnalysis package linked to ROOT
v6.12 [56].

To search for the heavy scalar h2 in pp → h2 → Z Z →
4l channel, we select events with four leptons in the final state,

Fig. 7 The leading order Feynman diagrams for the signal process (a)
and the main background process (b)

Table 2 Pre-selection cuts for identifying the leptons (l = e or μ)

Quantity Selection criteria

Transverse momentum plT > 10 GeV

Pseudo-rapidity |ηl | < 2.5

Radial distance ΔR(li , l j ) > 0.2

where each lepton is either an electron or a muon. The two Z
bosons in the events, each decaying to opposite-sign, same-
flavor (electrons or muons) lepton pair, lead to three possible
final states configurations; 4e, 4μ, and 2e2μ. In each selected
event, two Z boson candidates are reconstructed from lepton
pairs considering all possible pairing combinations and the
one with the mass closer to the mass of the Z boson is called
Z1 and the other reconstructed Z boson is Z2. Following a
similar analysis strategy and event selection as in [57,58], we
applied the pre-selection cuts listed in Table 2. In this table,
ΔR is the distance between two leptons in the η–φ plane and

defined as ΔR(li , l j ) =
√

(ηi − η j )2 − (φi − φ j)2 where i
and j refer to the lepton pairs used in reconstruction of the
Z bosons.

Depicted in Figs. 8, 9, 10, 11 and 12 are the various
kinematic distributions subjected to the pre-selection cuts
in Table 2. Depicted in Fig. 8, on the other hand, are the
transverse momentum (pT ) spectra of the leading, second-
leading, third-leading, and fourth-leading lepton in signal
events for mh2 = 800 GeV and mh2 = 2000 GeV at√
s = 14 TeV. The background contribution is also pre-

sented. As shown in figure, the leptons originating from Z
boson decays in signal events (note that Z is the decay prod-
uct of mh2 ) have harder pT spectrum while the leptons in
background events significantly dominate in lower transverse
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Fig. 8 Normalized differential cross sections as a function of leading
lepton pT (a), second-leading lepton pT (b), third-leading lepton pT
(c) and fourth-leading lepton pT (d) for mh2 = 2000 GeV (red line),
800 GeV (blue line) and background (blue solid) at

√
s = 14 TeV

momenta. The same distributions are given in Fig. 10 for the
events at 100 TeV and the conclusion is the same: leptons in
signal events have harder pT spectra than the leptons in the
background events. This feature makes lepton pT a decisive
discriminator for extracting the signal from the background.

Given in Fig. 9 are the transverse momenta of the Z1 and
Z2 bosons (pTZ1 and pTZ2 ) as well as the invariant mass (m4l )
and transverse momentum (pT4l ) of the four-lepton system.
The background is represented by the blue histograms. The
same distributions are shown in Fig. 11 for

√
s = 100 TeV.

In similarity to the lepton pT spectra, the pT distributions
of Z1 and Z2 bosons in the signal events, too, are seen to
have higher transverse momentum compared to those in the
background.

It is clear from Figs. 9 and 11 that a cut of pT > 120 GeV
on the transverse momenta of the both Z1 and Z2 bosons
suppresses significant portion of background events. Thus, it
is possible to use also these distributions to distinguish the
signal from the background. Moreover, the invariant mass of
the four lepton system (m4l ) turns out to be one of the most
sensitive observables in that it gives a narrow peak around
the actual mh2 value, and it can thus be used to extract the
signal especially whenmh2 is large (for example, much larger
than the 2mZ). (We do not use pT of the four-lepton system
in event selection but we give them in Figs. 9d and 11d, for
completeness.)

The Z-boson mass is a good measure of the success of the
signal extraction. Shown in Fig. 12 is the reconstruction of the
two Z boson candidates in the signal and background events

Fig. 9 Normalized differential cross sections as a function of the trans-
verse momentum of Z1 boson (a) Z2 boson (b), and the invariant
mass (c) and transverse momentum (d) of the four-lepton system for
mh2 = 2000 GeV (red line), 800 GeV (blue line) and background (blue
solid) at

√
s = 14 TeV

Fig. 10 Normalized differential cross sections as a function of leading
lepton pT (a), second-leading lepton pT (b), third-leading lepton pT
(c) and fourth-leading lepton pT (d) for mh2 = 2000 GeV (red line),
800 GeV (blue line) and background (blue solid) at

√
s = 100 TeV

at 14 and 100 TeV. This figure shows the invariant mass of
the reconstructed Z candidates and ΔR(Z1, Z2) distribution
between the Z pairs. The reconstructed Z boson mass is seen
to sharply peaked at the actual Z-mass MZ ∼ 91.19 GeV,
ensuring that Z pairs in the events are reconstructed accu-
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Fig. 11 Normalized differential cross sections as a function of the
transverse momentum of Z1 boson (a) Z2 boson (b), and the invari-
ant mass (c) and transverse momentum (d) of the four-lepton system
for mh2 = 2000 GeV (red line), 800 GeV (blue line) and background
(blue solid) at

√
s = 100 TeV

Fig. 12 Invariant mass of the reconstructed Z boson candidates in
the events (left) and angular separation (ΔR(Z1, Z2)) between the two
reconstructed Z bosons (right) at 14 TeV (up) and 100 TeV (down). The
peak at ∼ 3 in ΔR(Z1, Z2) distributions both for signal and background
show that the Z bosons are produced mostly back-to-back

rately enough. The peak at ΔR(Z1, Z2) � 3 reveals that the
two Z bosons are mostly produced back-to-back.

For discriminating the signal from the background we
apply a second set of selection criteria. Given in Table 3
are the event selection and cumulative percentage efficien-

cies after the sequential application of each cut, for the signal
and background events at 14 TeV. The same data for 100 TeV
samples is listed in Table 4. In addition to Fig. 12, it can be
seen also from these tables that the Z pairs in the events are
reconstructed accurately enough. Despite the rather tight cut
applied on the mass of the Z pairs (Z1 and Z2 ∈ Z±10 GeV),
only approximately 4−5% of the events are rejected, mean-
ing that the Z bosons produced in the events are already
within the MZ ± 10 GeV mass range. A large portion of
the background signal is eliminated by the cut applied over
the lepton momenta. Approximately 90% of the background
at 14 TeV and approximately 80% at 100 TeV are elimi-
nated by the cuts applied on the transverse momentum of
the leptons in the final states. The same cuts reject at most
15% of the signal events at 800 GeV and 5% at 2000 GeV.
The remaining background can be further suppressed with
the additional cuts applied over the mass of the four lepton
system (m4l ) and over the transverse momenta of the Z1 and
Z2 bosons. However, compared to the signal processes, high
production cross sections of the processes contributing to the
background cause significant number of background events
to arise at high luminosities. All these properties can be read
off from Table 3 (for 14 TeV) and Table 4 (for 100 TeV).

After performing all the event selections and taking into
account the expected total integrated luminosity values for
the HL-LHC and FCC-hh, we compute the signal and back-
ground event yields as well as the signal significancies. The
significancy is defined as

n = S√
S + B

(25)

where S (B) is the number of signal (background) events
which passed all the selection cuts.

The results obtained are plotted in Fig. 13 for FCC-hh
and HL-LHC as a function of the h2 mass. The dots on the
plot show the signal significance for the corresponding mass
value and the red and blue solid lines show the linear fits
applied to the FCC-hh and HL-LHC values, respectively.
The red-dashed and red-dotted lines show, respectively, the
upper limits on mh2 at 3σ (observation) and 5σ (discov-
ery).

It is clear that the resulting signal significances for the
HL-LHC are too low: 0.3σ at 800 GeV and gradually drops
to 0.0001σ at 2000 GeV. Therefore, it is clear that for the
expected luminosity values of HL-LHC, which is 3 ab−1, no
significant excess of signal over the background is observed
in the 800 GeV < mh2 < 2000 GeV mass range. The results
are more promising for FCC-hh. The higher center-of-mass
energy of the collisions as well as the larger expected total
integrated luminosity (100 TeV, Lint = 20 ab−1), enhance the
signal significances by a factor of about 100. At the FCC-
hh, h2 can be discovered with a significance of 5σ and a
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Table 3 Effects of various selection cuts for the analysis of signal and background events at 14 TeV. The values for the background are given for
mh2 = 800 GeV by default while the values in parenthesis indicate the remaining percentage of events for mh2 = 2000 GeV

Event selection Background (%) mh2 = 800 GeV (%) mh2 = 2000 GeV (%)

All 100 100 100

Triggered

Number of pre-selected leptons ≥ 4 16.3 32.6 36.8

Z reconstruction

Invariant mass of mZ1 and mZ2 ∈ mZ ± 10 GeV/c2 15.7 31.9 34.6

Signal selection

Leading lepton pT > 90 GeV/c 4.6 31.9 34.6

2nd leading lepton pT > 70 GeV/c 3.4 31.8 34.6

3rd leading lepton pT > 50 GeV/c 1.8 29.8 34.3

4th leading lepton pT > 20 GeV/c 1.5 27.2 33.1

Invariant mass of four lepton system

(m4l ) ∈ mh2 ± 30 GeV/c2 0.03 (0.0008) 24.9 14.6

pTZ1
> 120 GeV/c and pTZ2

> 120 GeV/c 0.03 (0.0008) 24.6 14.6

Table 4 Effects of various selection cuts for the analysis of signal and background events at 100 TeV. The values for the background are given for
mh2 = 800 GeV by default while the values in parenthesis indicate the remaining percentage of events for mh2 = 2000 GeV

Event selection Background (%) mh2 = 800 GeV (%) mh2 = 2000 GeV (%)

All 100 100 100

Triggered

Number of pre-selected leptons ≥ 4 7.8 34.9 44.3

Z reconstruction

Invariant mass of mZ1 and mZ2 ∈ mZ ± 10 GeV2 7.4 34.3 43.9

Signal selection

Leading lepton pT > 90 GeV/c 3.3 34.2 43.9

2nd leading lepton pT > 70 GeV/c 2.7 34.1 43.9

3rd leading lepton pT > 50 GeV/c 1.9 32.2 43.6

4th leading lepton pT > 20 GeV/c 1.7 29.5 43.1

Invariant mass of four lepton system

(m4l ) ∈ mh2 ± 30 GeV/c2 0.04 (0.01) 29.0 37.4

pTZ1
> 120 GeV/c and pTZ2

> 120 GeV/c 0.04 (0.01) 28.4 37.4

mass up to ∼ 870 GeV. The upper limit on the mass for
3σ evidence is ∼ 970 GeV. These limits can be pushed to
higher values by using more advanced analysis techniques
with full simulation of the detectors when the FCC-hh begins
to operate.

The signal significances are presented also in tabular form
in Table 5 for each mh2 value considered in the analysis. (For
FCC-hh, also event yields are shown.) As mh2 increases,
the signal significance gradually drops. This is true for both
colliders. Higher luminosities would be needed to explore
the multi-TeV mass region as the signal significance drops
below 1σ already at ∼ 1200 GeV for FCC-hh.

The signal significance as a function of integrated lumi-
nosity at 100 TeV FCC-hh for mh2 =800, 1000, and 1200

GeV is given in Fig. 14. The results for the higher mass val-
ues are not shown since the values are too small. This figure
ensures that if the mass of h2 is about 800 GeV, the integrated
luminosity required for a 5σ discovery is 5.2 ab−1. In addi-
tion, the results show that an evidence of h2 with significance
of 3σ at the FCC-hh requires 2 ab−1 integrated luminosity.
This means that FCC-hh offers immediate discovery poten-
tial and even at the early stages of its operating period, we can
start testing experimentally the BSM sector of symmergence.

These simulation studies show that BSM models that do
not destabilize the electroweak scale (such as symmergence)
can be probed at relatively high luminosities as their cou-
plings to the SM fields follow the seesawic scheme in (7)
and (13).
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Fig. 13 Significance of the signals calculated as defined in (25) as
a function of mh2 for FCC-hh with an integrated luminosity Lint =
20 ab−1 (a) and for HL-LHC with an integrated luminosity Lint =
3 ab−1. The red dashed and red dotted lines indicate upper limits on
mh2 for 3σ evidence and 5σ discovery, respectively, for FCC-hh at
Lint = 20 ab−1

Table 5 Signal significances for HL-LHC and FCC-hh. For FCC-hh,
also event yields are shown

mh2 (GeV) HL-LHC FCC-hh
n n S B

800 0.326 10.36 778 4857

1000 0.067 2.533 154 3541

1200 0.016 0.733 40 2935

1400 0.004 0.254 12 2212

1600 0.001 0.093 4 1993

1800 4e−4 0.040 2 1612

2000 1e−4 0.019 0.6 1296

Fig. 14 Signal significance as a function of integrated luminosity at
100 TeV FCC-hh for mh2 = 800, 1000 and 1200 GeV. The dashed
lines correspond 3σ and 5σ values

6 Conclusion

In the present work we have studied impact of the electroweak
stability on the collider discovery of the BSM physics, with
the example of a single SM-singlet scalar. The discussions
in Sect. 2 and the simulation studies in Sect. 5 have revealed
that fixing the SM-BSM coupling λHS as in (22) (as a result
of the MDDU structure in (13)) has important implications
for new particle searches. This coupling fix, admissible in
symmergence, tells us that there can exist heavy particles
like h2 and they can directly couple to the SM Higgs boson
but they do not destabilize the electroweak scale thanks to
see-sawic structure in (22). Though there is no apparent sym-
metry structure scalar field theories to support it, the empir-
ical seesawic coupling (22) finds a rationale in the MDDU
scheme in (13).

The discovery potentials of h2 in proton–proton collisions
at the center-of-mass energies of 14 and 100 TeV are studied
by analyzing pp → h2 → Z Z → 4l channel, with 3 ab−1

total integrated luminosity for the HL-LHC and 20 ab−1 for
the future circular collider FCC-hh. Seven different mass
scenarios for h2, between 800–2000 GeV with increments
of 200 GeV, are considered for the searches. The detector
effects are simulated via fast simulation package Delphes.
Events with two opposite-sign, same-flavor lepton pair in
the final state are selected and the two Z boson candidates
are reconstructed event by event from the lepton pairs. Var-
ious observables, transverse momenta of the leptons, mass
and transverse momenta of the reconstructed Z bosons, and
invariant mass of the four-lepton system, are used to separate
the signal from the background. The signal significances are
calculated for each mass value considered in the analysis.

For the HL-LHC with an expected integrated luminos-
ity 3 ab−1, no significant excess of signal over the back-
ground was observed in the 800 GeV < mh2 < 2000 GeV
mass range. The highest significance is 0.3σ at 800 GeV
and gradually drops to 0.0001σ at 2000 GeV. With higher
collision energies and increased luminosities at the FCC-hh
(at 100 TeV with Lint = 20 ab−1), h2 can be discovered
with significance of 5σ and a mass up to ∼ 870 GeV. If
the mass of h2 is about 800 GeV, the integrated luminos-
ity required for a 5σ discovery is 5.2 ab−1. In addition, the
results show that an evidence for h2 with significance of 3σ

at the FCC-hh requires 2 ab−1 of integrated luminosity. This
means that even at the early stages of the FCC-hh operating
period, we can start testing experimentally the BSM sector of
symmergence. Considering 20 ab−1, the mass of h2 can go
up to a maximum of ∼ 970 GeV for a 3σ evidence. Higher
integrated luminosities or searches for h2 in different decay
channels can push the limits forward, but this is beyond the
scope of the analysis presented in this study.

It would be complementary to mention why lower mass
values have not been analyzed. The main goal of the work is
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to stabilize the SM against heavy BSM fields and determine
under what energy and luminosity ranges that heavy BSM
can be discovered. With the example of an SM-singlet scalar,
we have found that a seesawic coupling (supported by the
MDDU linkup, as revealed in Sect. 2.2) does the job. By the
nature of the seesawic coupling (which behaves as λHS �
λSM when m2

S � m2
H ), however, light scalars, m2

S � m2
H ,

are expected to lead to SM-sized signal strengths. This low-
mS domain is the one where the known SM completions like
supersymmetry work, and the LHC data has already sidelined
them for certain parameter regions [59–63]. It is in this sense
that our analyses have concentrated on heavy BSM rather
than light BSM.

Our analyses and discussions are based on the luminosi-
ties and center-of-mass energies of the existing and planned
(namely, the FCC) colliders. We have shown that the BSM
(represented in this work by a single SM-single scalar S)
can be probed properly in certain channels. It is clear that
if these colliders had larger luminosities we would be able
to access higher-mass h2 bosons at similar levels of signif-
icance. Characteristically, electroweak stability necessitates
seesawic couplings between the SM and the BSM, and see-
sawic couplings necessitate high luminosities for discovering
the BSM. In domains where a BSM would be excluded with
O(1) couplings (as in supersymmetry, for instance) one can
finds room for seesawically-coupled BSM. It is with much
higher luminosities that colliders can access multi-TeV BSM,
as exemplified by only “TeV mass reach” of the planned
FCC-hh collider.

The discussions in the text have concentrated exclusively
on the SM-singlet scalar S. The reason for this choice, as
was mentioned in item (b) in Introduction, is that scalars
form the “worst case” when it comes to electroweak stabil-
ity since not only the Higgs mass but also the scalar mass
are quadratically sensitive to the UV cutoff Λ. Their concur-
rent stabilization is possible in symmergence, and this has
been utilized in the analyses in Sect. 2 and onward. But,
a singlet scalar, though not strongly constrained by preci-
sion measurements and flavor physics, is difficult to search
at colliders. To this end, the hypercharge and lepton portals
in (2) could be more promising. In fact, electroweak sta-
bility is expected to allow for much heavier Z ′ boson and
right-handed neutrinos N when |λHS| ∼ |λZ ′B | ∼ |λLN |
since Z ′ and N contributions to Higgs mass are quadratic
in the couplings, as given in (2). Nevertheless, these rough
estimates need be made precise by including all the avail-
able bounds. For instance, electroweak stability and known
masses of active neutrinos together require the right-handed
neutrinos to weigh below a 1000 TeV [7]. It thus follows that
the present work need be extended to the Z ′ and N sectors
by incorporating available bounds (neutral currents, neutrino
masses, flavor physics). Their collider analyses, left to future

work, can reveal important search strategies and distinctive
signatures at future colliders like the LHC and FCC.
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7 Appendix

The vertex factors in (20) have the following expressions:

λh1h1h1h1 = λH

4
cos4 θ + λS

4
sin4 θ + λHS

16
sin2 2θ

λh1h1φφ = λh1h1φ0φ0 = λh1h1φ1φ1 = λh1h1φ2φ2

= λH

2
cos2 θ + λHS

4
sin2 θ

λh1h1h2h2 = 3

8
(λH + λS) sin2 2θ

+λHS

4
(cos4 θ + sin4 θ − sin2 2θ)

λh1h1h1 = λHυH cos3 θ − λSυS sin3 θ

−λHS

4
(cos θυS − sin θυH ) sin 2θ

λh1φφ = λh1φ0φ0 = λh1φ1φ1 = λh1φ2φ2

= λHυH cos θ − λHS

2
υS sin θ

λh1h2h2 = 3

2
(λHυH sin θ − λSυS cos θ) sin 2θ

+λHS

2
((cos θ sin 2θ − sin3 θ)υS

+(cos3 θ − sin θ sin 2θ)υH )

λh1h1h2 = 3

2
(λHυH cos θ + λSυS sin θ) sin 2θ

+λHS

2
((cos3 θ − sin θ sin 2θ)υS

+(sin3 θ − cos θ sin 2θ)υH ).
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