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ABSTRACT

OPTIMIZATION OF TRANSSHIPMENT, MARKDOWN, AND RETURN
DECISIONS AT FAST FASHION RETAILING

SIAMAK NADERI

INDUSTRIAL ENGINEERING PROGRAM Ph.D DISSERTATION, AUGUST
2020

Dissertation Supervisors: Assoc. Prof. Kemal Kılıç, Prof. Abdullah Daşcı

Keywords: Transshipment, Markdown Optimization, Return, Fast-Fashion

Due to its effect on profit, costs, and service levels, supply chain management has
played a critical role in the fashion industry. A high degree of demand uncertainty
makes it hard to respond to the customers’ needs. Customers require wider product
variety and higher levels of responsiveness at lower prices. These enforce the retail-
ers to utilize supply chain management strategies that enable them to satisfy their
customers’ needs. Still, it is inevitable to stock-out or to have excess inventory as a
result of mismanagement of available resources. While stock-outs affect the service
level and cause lost sales, excess inventory is sold with reduced prices at lower profit
margins at the end of the selling season. Thus, to overcome these challenges, supply
chain decisions have to be made effectively. Transshipment, markdown, and return
decisions are among the critical decisions of the fashion supply chain. The problem
of reallocating the available inventory of the stores among each other to decrease the
chances of stock-out and excess inventory is called the transshipment problem. After
allocating the initial inventory to the stores according to the predicted demand, the
forecast may be updated in the light of new market information. Transshipment
re-balances the inventories of the stores based on the updated demand forecast. Re-
turn, however, is the problem of deciding the products, which will be surplus at
the end of the products’ life cycle, to be sent to the retailer’s warehouse. Finally,
markdown is another tool adopted by retailers to accelerate the offloading of slow-
moving products. In this dissertation, we study these three problems motivated by
the logistics operations of a fast fashion retailer in Turkey. Similar to any other real-
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world originated fashion supply chain problem, business rules have to be considered.
First, we study the transshipment problem and consider specific operational restric-
tions. Second, we extend the transshipment problem by considering markdown and
return decisions respecting the business rules. Next, we consider the effect of price
on the sales of products. We proposed Simulated Annealing metaheuristic, a La-
grangian relaxation-based, and a Benders decomposition-based heuristics to solve
these problems efficiently.
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ÖZET

HAZIR GİYİM SEKTÖRÜNDE TRANSFER, İNDİRİM VE İADE
KARARLARININ OPTİMİZASYONU

SIAMAK NADERI

ENDÜSTRİ MÜHENDİSLİĞİ DOKTORA TEZİ, AĞUSTOS 2020

Tez Danışmanı: Doç. Dr. Kemal Kılıç, Prof. Dr. Abdullah Daşcı

Anahtar Kelimeler: Transfer, İndirim Optimizasyonu, İade, Hazır Giyim

Kar, maliyet, ve hizmet kalitesi üzerindeki etkisinden dolayi, tedarik zinciri kararları,
hazir giyim sektöründe önemli bir rol oynamaktadır. Talep tahminindeki yüksek be-
lirsizlik, müşterilere hızlı bir şekilde hizmet vermeyi zorlaştırmıştır. Müşteriler, daha
fazla ürün çeşitliliği ve daha hızlı hizmeti düşük maliyet ile alabilmeyi talep etmekte-
dir. Bu faktörler, perakendecileri, müşterilerin taleplerini tatmin etmek için, tedarik
zincirinde verimli stratejiler kullanmaya zorlamaktadır. Buna rağmen, mevcut en-
vanterin doğru yönetilmemesi sebebiyle, satış kaybı ve sezon sonunda satıilmayan
ürünler olması kaçınılmazdır. Elde olmayan ürünler satış kaybına yol açıp hizmet
kalitesini düşürürken, artan ürünler ise sezon sonunda daha az kar ile satışa sunula-
bilecektir. Bu problemleri aşmak icin tedarik zinciri kararları etkin bir biçimde
verilmelidir. Transfer, indirim, ve iade hazır giyim sektöründeki önemli kararlar
arasında yer alır. Literatürde, bütün mağazalarda olan mevcut envanterin mağazalar
arasında tekrar dağıtılması problemine, transfer adı verilir. Mağazalara ilk sevkiyat,
satış sezonu başlamadan önce yapılan tahmine göre gerçekleştirilir. Fakat satış se-
zonu başladıktan sonra bu tahmin, yeni bilgilere göre güncellenebilir. Dolayısıyla
transfer prosedürü, yeni tahmine göre mağazalar arasında ürünleri tekrar dağıtacak-
tır. İade ise, satış sezonunun sonuna kadar satılamayacak ürünleri belirleyip depo-
suna çekmektir. Bunların yanında indirim, sezon sonunda artan ürünlerin satışını
hızlandırmak için kullanılan başka bir araçtır. Bu tezde, bir hazır giyim perakende-
cisinin gerçek operasyonlarından esinlenilerek bu üç problem incelenmiştir. Gerçek
problemleri ele alan diğer çalışmalar gibi, bu tezde de sektöre özel operasyonel kural-
lar göz önünde bulundurulmuştur. İlk olarak sadece transfer problemi ele alınmıştır.
İkinci olarak, transfer, indirim ve iade problemleri birlikte incelenmiştir. Bu prob-
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lemde sektöre ait operasyon kuralları da göz önünde bulundurulmustur . Son olarak,
fiyatın talep üzerindeki etkisi incelenmiştir. Bu problemleri etkin bir biçimde çözmek
için benzetilmiş tavlama metasezgiseli, Lagrange gevşetmesi ve Benders ayrıştırması
yöntemleri üzerine kurulan sezgisel algoritmalar geliştirilmiştir.
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1. Introduction

The textile industry is one of the biggest industries in the world. It is worth USD
842 billion in 2020 and its market size is anticipated to reach USD 1,350 billion
by 20271. China is the biggest textile exporter in the world with more than USD
266 billion yearly export2. The textile industry plays a more critical role in the
economy of countries like Bangladesh. Textile accounts for more than 80% of the
total export in Bangladesh3. Turkey is ranked among the top 10 textile exporters
in the world with USD 27 billion4. In Turkey, the textile industry accounts for 20%
of employment and 10% of GDP.

The business of making clothes is called fashion. The main difference between
fashion and textile is that textile is a basic need of humanity while fashion is the
styles of clothes and accessories which are worn at a given time by particular groups
of people and incorporates customers’ taste, cultural and geographical obligations.
The fashion industry includes design, manufacturing, distribution, retailing, and
marketing of all types of textile products5.

The fashion industry is a result of the modern age. In the past, clothes were
usually handmade, but with the invention of the sewing machines and revolution
in the industry, the fashion industry became an important part of the economy.
Nowadays, a fashion product may be designed in a country, manufactured in
another country, and sold in a third one. This is a complex network and it is not
sufficient to only develop the design phase, but also, the other levels such as retail
sales and marketing need more attention.

1shenglufashion.com

2etextilemagazine.com

3en.wikipedia.org

4etextilemagazine.com

5www.britannica.com
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Consumers are now more fashion-sensitive and want to quickly access to the latest
trends. With the rapid changes in the consumers’ taste, fashion retailers are
struggling to keep up with their consumers. This causes fashion retailers to practice
strategies to shorten the processes from the design phase to delivery to the stores.
Various supply chain strategies are adopted by retailers to increase the efficiency of
their organizations, to better respond to the consumers’ demands.

This thesis aims to develop models and solution algorithms for three main problems
in the fashion supply chain namely, Transshipment, Markdown, and Return in the
largest fashion retailer in Turkey.

1.1 Overview of Transshipment and Return Problems

A two-echelon supply chain with a manufacturer in the first echelon and retailers
in the second echelon encompasses several product flows. Flows of products from
the manufacturer (or warehouses) to the retail locations, from retail locations
to warehouses, among the warehouses, or the retail locations are examples of
these flows. Transshipment is the flow of products among the retail stores and is
adopted to reallocate the available inventory among them. It is divided into two
types according to their timing: If transshipment is utilized after the stock-out
occurred, it is called reactive transshipment, while proactive transshipment is
used to reduce the possibility of stock-out in future (Lee et al., 2007; Paterson et
al., 2011; Seidscher and Minner, 2013; Ahmadi et al., 2016). Transshipment is
from a store with excess inventory, which we call origin store, to the one which
is facing stock-out, which is called as destination store. Transshipment helps
retailers to reduce stock-outs as well as excess inventories. The main benefit
of transshipment actions is better matching inventory and demand at differ-
ent locations. This practice uses up-to-date sales information and inventory data
and redistributes available inventory among the retail locations (Naderi et al., 2020).

Transshipment provides two advantages: first, it increases the sale of the product
which is transshipped in the destination store, and second, it expands the shelf
space in the origin store, therefore, other products may be sent to the origin store.
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Another important flow in the retail supply chain is the flow between retail stores
and warehouses. The life cycle of the products in the fashion industry is short,
generally, around six to eight weeks. When a product is approaching the end of its
life cycle or its sales performance is not as expected, and there is no other store that
needs it, it is returned to the warehouse. Return has been considered in various
research. Return has two main definitions: One from the customer (retailer) to the
retailer (manufacturer) due to different reasons according to the business contracts
(Kandel 1996 and Ülkü and Gürler, 2018), and one from retailer to the warehouses.
In this work, by return we mean the flow of the products from retail locations to the
warehouse, to be re-sent to the stores in the future (after re-assortment). Hence, a
return is indeed a transshipment from retail locations to a very big store with a huge
capacity, i.e., a warehouse. Unlike transshipment, a return is more costly. That is
to say, in transshipment, only transportation costs occur, while in return holding
cost for several months in the warehouse should be considered as well.

1.2 Overview of Markdown Optimization

Pricing problem is widely studied in the literature and used in various industries.
Pricing policies aim to decide the best price for a product. If the selected prices
are in non-increasing order, it is called markdown. Markdown optimization is the
application of optimization in decreasing the price of a product by deciding the
depth of markdowns. Like transshipment, markdown also intends to decrease the
excess inventory by stimulating the customers’ demands. In the fashion industry
to survive among competitors attracting customers is crucial because of the short
life cycle of products. Customers show an opposing tendency in terms of fashion
and price (Ghemawat and Nueno, 2003). Besides the question “How much the
price should be reduced?”, the question of “When is the best time to implement
markdown?” (Chen and Chen, 2020) should be answered as well. However, some
retailers prefer to have a certain timing for markdown and just decide on the depth
of markdowns (Aviv and Pazgal, 2008).

Markdown is utilized by the retailers either during the season or at the end of the
season. The former is to increase the sales of the products, while the products are

3



not close to the end of their life cycle whereas the latter is used to accelerate the
offloading of the leftover inventory.

1.3 Overview of Relation of Price and Demand

Markdown optimization is one of the critical problems in the fashion industry.
However, deciding the depth of the markdowns is highly affected by the forecast.
As the lead time from supplier to retailers is long, generally forecast is conducted
long before the start of the selling season in the fashion industry. It is known that
the forecast can be updated in presence of the latest market information. Therefore,
the sales forecast may be updated after the pilot sales are done to improve the
quality of the forecast and reduce the effect of demand uncertainty (Şen and Zhang,
2009).

Although price affects the demand, it is not the only effective factor. Indeed, the
same markdown depth (price level) may affect the demand differently in the presence
of other factors. Therefore, to develop an efficient algorithm to predict the demand,
in addition to the price level, other important variables should also be considered.
These factors are different for different retailers. Therefore, the factors may be found
by analyzing the sales data of the retailer.

1.4 Thesis Organization

Chapter 2 presents a novel transshipment problem for a large fashion retailer that
operates an extensive retail network. Our problem is inspired by the logistics
operations of a very large fast fashion retailer in Turkey, LC Waikiki, with over
480 retail branches and thousands of products. The purpose of transshipments is
to rebalance stocks across the retail network to better match the supply with the
corresponding demand. We formulate this problem as a large mixed-integer linear
program and develop a Lagrangian relaxation with a primal-dual approach to find
the upper bounds and a simulated annealing based metaheuristic to find promising
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solutions, both of which have proven to be quite effective. While our metaheuristic
does not always produce better solutions than a commercial optimizer, it has
consistently produced solutions with optimality gaps lower than 7% while the
commercial optimizer may produce very poor solutions with optimality gaps as
high as almost 300%. We have also conducted a set of numerical experiments
to uncover the implications of various operational practices of LC Waikiki on its
system’s performance and important managerial insights. This study is published
in the International Journal of Production Economics as A deterministic model for
the transshipment problem of a fast fashion retailer under capacity constraints by
Siamak Naderi, Kemal Kılıç, and Abdullah Daşcı.

Chapter 3 generalizes the model studied in the previous chapter and studies the
joint transshipment, markdown, and return decisions of a huge fast fashion retailer
in Turkey, LC Waikiki. Although joint transshipment and inventory decisions,
or markdown and inventory decisions are well studied in the literature, to the
best of our knowledge, this is the first research that considers transshipment,
markdown, and return problems, simultaneously. We formulate this problem as
a mixed-integer linear program. Also, operational restrictions that LC Waikiki
faces in its operations are considered. We consider a single period problem with
fixed timing, and discrete price sets, in a network of multiple stores. Moreover,
returns are assumed to be transshipments from stores to warehouse which impose
a large cost to the system compared to the cost that a regular transshipment does.
A Benders decomposition-based heuristic is developed to obtain upper bounds.
As Benders decomposition is slow in convergence, the cover cut bundle method
is adopted to accelerate the convergence of the algorithm. A simulated annealing
metaheuristic is developed to find promising incumbent solutions. We evaluated
the performance of the proposed algorithms by comparing the results with those
obtained from Gurobi. The results show that, for small-sized instances, Gurobi
provides an optimal solution or a solution with very small optimality gap within
the time limit. By increasing the size of the instances, Gurobi fails to obtain
promising solutions, while proposed algorithm obtains solutions with optimality
gaps of less than 5%. The proposed metaheuristic is tested with real data provided
by LC Waikiki and its results are compared to the results of the current algorithm
utilized by the company. It is observed that the proposed simulated annealing
metaheuristic can improve the current solution by around 15% in the test problems.

Chapter 4 studies the price elasticity. It is not only the price of the product
which affects its sales, thus, other important factors which potentially affect the
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demand should also be taken into consideration. After several meetings with
managers at LC Waikiki and analyzing their sales data, we concluded that in
addition to the price of the product, the age of the product, seasonality of the
week, broken assortment, and the demand forecast of the previous week should
also be considered. In other words, the price alone would not provide an accurate
demand forecast. For instance, a discount of 20% in the 8th week of the life cycle
of a product would not have the same effect if it was implemented in the 4th week,
or the same markdown depth applied in the week of a national holiday would
be more effective compared to a regular week. These factors are selected among
several other factors and none of these factors alone is sufficient to have an accurate
prediction algorithm, therefore, they should be considered together. In order to
connect these factors, an exponential regression function is used. Our collaborator
is preparing its infrastructure to be able to provide the necessary data to find the
regression coefficients.

Finally, the last chapter concludes the thesis and gives an outlook on future direc-
tions of research.
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2. A Deterministic Model for the Transshipment Problem of a Fast

Fashion Retailer under Capacity Constraints

2.1 Introduction

Due to its impact on revenues, costs, and more importantly, on service levels,
logistics management has become increasingly critical in the apparel industry
(Kiesmuller and Minner 2009). As consumers demand greater product variety and
higher levels of responsiveness at lower prices, effective management of logistics
activities arises as a key competitive advantage for the retailers in this industry. The
main challenges faced by these retailers are short selling seasons and unpredictable
demands. Since forecasts are mostly inaccurate, firms usually have either excess
inventories that are sold at markdown prices or stock-outs that lead to lost sales.
The problem is exacerbated with short selling seasons which prevent firms to
replenish their stocks. Therefore, an effective logistics strategy is key to avoid both
of these undesirable outcomes.

Logistics decisions of apparel retailers include initial ordering before the season
begins, allocation to the branches at the beginning of the season, and eventually
phasing-out of the products at the end of the selling season. Increasingly, however,
retailers are also practicing what is called “transshipment” or “transfer” policies,
which involve the reallocation of products among retail branches in mid-season (Li
et al., 2013). These policies help retailers to reduce stock-outs as well as excess
inventories. This is the issue that is addressed in this paper.

The problem that we consider here is inspired by the logistics operations at the
largest apparel retailer in Turkey, LC Waikiki, which has positioned itself as a
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“fast fashion” retailer. The term fast fashion used to refer to inexpensive designs
that appeared on catwalks and were quickly moved to store shelves. Fast fashion
items based on the most recent trends have shaped mass-merchandized clothing
collections. Therefore, mass-merchendize retailers compete to introduce latest
fashion trends in their collections. Although the term was first used in the US in
the 1980s, the expression did not receive worldwide adoption until popularized by
the Spanish-based apparel giant Zara. The crucial issue in fast fashion is providing
inexpensive collections that also respond to fast changing consumer tastes and
trends. Therefore, the entire fast fashion supply chain must be sufficiently agile to
operate with products for which life cycles are measured not in months but rather
in weeks.

On the plus side, the speed at which fast fashion moves tends to help retailers avoid
markdowns. Typically, these retailers do not place very large orders months before
the actual selling season, but rather work with smaller initial orders and renew col-
lections more frequently. On the negative side, however, the fast-paced environment
calls for higher turnover and more frequent introduction of new designs, a setting
that necessitates shorter design and production lead times. As a result, companies
need to rely on more expensive local sources and accommodate large design teams.
This fast-paced environment also creates new logistics challenges for retailers: When
will these products be replaced? Should they be completely removed from the
stores or kept at display at select stores? What will happen to the leftover items;
reintroduced elsewhere, sold at discount, or simply written-off? Fast fashion com-
panies need to deal with these issues much more frequently than traditional retailers.

Facing such challenges, leading fast fashion companies such as Zara and another
Spanish company, Mango, the Japanese World Co., and Swedish H&M have built
supply chains aiming at quickly responding to consumers’ changing demands while
decreasing the excess inventories at branches and hence, lowering costs (Caro and
Gallien 2007). For instance, Zara developed a decision support system featuring
demand updating and a dynamic optimization module for initial shipment decisions
to avoid stock-outs as well as excess inventories (Gallien et al., 2015). In addition
to correct initial shipment decisions, the transfer or transshipment decisions among
retail locations are also instrumental to reduce stock-outs and excess inventories.

The main benefit of transfer actions is better matching inventory and demand at
different locations. It uses up-to-date sales information and inventory data and
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redistribute available inventory among the retail locations. Due to socio-economic
and geographical differences among retailer locations, it is possible that a product
sells very well in some stores while less so in others. Transfer actions can be
adopted as a tool to increase the inventory levels at receiver stores while providing
extra shelf space at sender stores. This action can be adopted by bypassing the
central depot to facilitate the quick movement of merchandise. As a result, the
revenues are increased while costs are reduced as compared to a system where
no transshipment is utilized (Tagaras 1989). There are a number works in the
literature that describe how retailers take advantage of transfers to improve their
performances. For example, Archibald et al. (2009) and Archibald et al. (2010)
address transshipment issues at a tire retailer that has a network of 50 stores. In
another work, Hu and Yu (2014) present a proactive transshipment problem for a
famous fashion brand in China that has network for 43 retailers in Shanghai. The
problem that we introduce here is motivated by the largest apparel retailer in Turkey.

In the next section, we provide a detailed background of our problem that includes
the transfer practices at the company that motivated this work and a detailed
description of the problem setting. In Section 2.3 we give a brief literature review.
Section 2.4 presents the progressive development of the mathematical model.
Section 2.5 presents our solution methods that include a Lagrangian relaxation
based upper bounding method and simulated annealing based metaheuristic to find
good feasible solutions. Section 2.6 reports on our numerical experiments followed
by a few concluding remarks in Section 2.7.

2.2 Background

Textile is one of the key sectors in the Turkish economy in terms of GDP, domestic
employment, and exports. Textile accounts for 10% of the Turkish GDP and 20%
of employment in the manufacturing sector1. In 2016 Turkey exported around 15
Billion USD, mainly to the European Union countries and was ranked as the 6th
biggest textile exporting country (see Figure 2.1)2. LC Waikiki, which has provided

1blog.tcp.gov.tr

2www.wikipedia.com
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motivation to this work, is the largest textile retailer in Turkey with significant
international presence.

LC Waikiki was founded in 1988 in France by a French designer and his friend. The
LC Waikiki brand name is created by adding the word Waikiki, a famous beach
in Hawaii, to LC, the abbreviation of the French word “Les Copains” meaning
“friends”. TEMA, a Turkey based group which was then a major supplier of the
company, bought the LC Waikiki brand in 1997 undertook a major restructuring
that included focusing on domestic market. In the same year, the group entered
the Turkish fashion retail market with 21 stores. In 2009, it opened its first
international store in Romania since the TEMA group had purchased the brand.
Over the years, the group has followed an aggressive expansion strategy both
domestically and internationally. Today, LC Waikiki has more than 370 stores in
34 countries in Asia, Africa, and Europe, in addition to over 480 stores in Turkey.
In 2011, LC Waikiki became the leader of the “Ready-to-Wear” market in Turkey
and remains as the largest apparel retailer in terms of sales as well as the number
of stores. Figure 2.1 depicts LC Waikiki’s phenomenal growth in terms of the total
number of stores over the years.

LC Waikiki has a highly centralized order planning and logistics system in which all
initial orders and subsequent distribution decisions are made by the headquarters.
New merchandise is received at a single central warehouse located in Istanbul,
which then distributes essentially the entire amount to the retail branches (there are
varying practices for international stores which are excluded from the consideration
in this study). The retail practice at LC Waikiki can be considered as fast fashion

.

Figure 2.1 Left: Global export market share, Right: Growth in the total number of
stores
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in that it aims to keep items in stores only for about six to eight weeks. During this
period, if the sales realize below expectations, they may reduce prices or if the sales
display disparities across the stores, they may utilize transfers among the stores.
Finally, at the end of their shelf-life, products are returned to the central warehouse
and later sent to outlet stores (about 40 of the 480 stores are designated as outlet
stores) or simply given away to charities. Stock-outs and excess inventories are
critical issues at LC Waikiki as in any fast fashion company due to forecast errors.
Since LC Waikiki initially distributes all of the items to stores, transfer remains
essentially as the only tool to deal with these issues by rebalancing inventories
across the retail network. It is these transfer decisions that is the subject of this
paper.

Currently, a group at the headquarters manages transfer decisions. This group
utilizes a mathematical model accompanied with some pre- and post-processing
activities. However, we cannot disclose the precise nature of the model and the
activities due to proprietary nature of these information. After transfer solutions
are obtained, orders are automatically generated and transmitted to the stores.
Store employees collect the products that have been chosen for transfer from the
shelves and move them to a storage room. In the storage room, products are put
in the boxes, each destined to a specific store without any re-assortments. Since
the storage room capacities are limited, stores cannot to transfer more than what
they can hold at their storage room. Once boxing is finished, the logistics company
picks up the boxes and delivers them to their destinations. The boxes are ideally
delivered before the weekend so that the transferred items can be put on shelves
for the weekend sales.

Although our work is motivated by LC Waikiki’s logistics operations, we believe
many of the features of our model would resonate with issues fast fashion retailers
need to consider. In our model, we maximize a measure of the total profit which is
the total revenue less the total logistics cost that includes transportation, handling,
and inventory holding costs. We also include a number of operational constraints
that represent the real practice of the company. For example, we consider a
centrally managed system where stores have no control over the decisions, i.e.,
they may not refuse the transfer decisions. This is valid particularly for firms that
own their stores and manage them centrally. We also restrict the total number
of items and the total number of stores to which each store can make shipments.
Both of these constraints are justified by the limited number of employees in the
stores and sizes of the storage rooms. Furthermore, in our model once a product
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is decided to be transferred from one store to the other, the entire stock (all the
available sizes) is sent to the same store. LC Waikiki justifies this practice by the
simplicity of the picking operations, which otherwise would be too labor intensive.
Here, we will also investigate the effects of these restrictions on system performance.

There are a number of issues relevant to the fashion logistics decisions that we
leave out of the scope of this work: i) Initial allocation decisions, ii) Uncertainty in
demand, and iii) Dynamic nature of the decision making process. At LC Waikiki
the initial shipment decisions are made after a pilot sales experiment in which they
obtain sales information from about 30 stores. They then make initial allocations
in which they essentially distribute the entire stock to the stores. Certainly, the
option of transfers might impact the initial allocation. However, we believe that the
impact is small due to two aspects in this logistics system. First, the company has a
policy to allocate almost all of the available inventory to the stores keeping none at
the central depot. Therefore, the firm cannot use central depot for reallocation of
products. Second, since the company has flat transportation cost rate independent
of origin-destination pair, regional risk pooling effect becomes irrelevant. Therefore,
the impact of subsequent transfer practice on initial allocation decisions has
lessened. Demand uncertainty is always a concern particularly in the fashion
industry, and in fact, it is the demand uncertainty that makes the transfer problem
relevant. However, at the time a product is considered for transfer, there is demand
information for at least for a couple of weekends. Therefore, the company is able to
make much more accurate demand forecasts after this initial sales information, as
compared to the time the initial allocation decisions are made. Finally, the transfer
problem ideally should consider the fact that transfer decisions are made every
week and hence, there are subsequent recourse opportunities. However, considering
a multi-stage decision environment under demand uncertainty is simply beyond
analysis for the sizes that we envision, particularly with complicating operational
constraints. Instead, we envision a setting where the firm makes demand forecast
until a product is planned to stay on shelves and the transfer problem is solved on
a rolling-horizon basis. This setting, we believe, is a reasonable compromise given
the other complexities of the system. Similarly, initial replenishment decisions
are also important and they would be impacted by subsequent transfer options.
However, considering transshipment and replenishment decisions jointly would
also be extremely difficult considering the scale of our problem and particular
operational constraints.

We have also assumed that each product’s shelf life is known. This assumption is
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justified by the practice of the company where they keep merchandize for about six
to eight weeks. Decision to continue displaying products on the shelves or removing
them involves a number of other factors to consider. It requires information on new
product designs as well as space considerations at the stores for different merchandize
groups. These issues are also rather involved and therefore, kept out of the current
study, but certainly worthwhile to consider in the future.

2.3 Related literature

There is a vast literature as far back as the 1950’s on lateral transshipment or,
as we call here, transfer issues. Although both terms commonly describe the
decisions considered here and we use them interchangeably, the term transshipment
has a wider meaning and usage. Time and again, various studies have shown
that transfer option between retailers improves supply chain performance in
terms of costs, revenues, and service levels. For example, Tagaras (1989) shows
that utilizing transfer in a system with two retail locations leads to significant
cost reductions. Although transfers considerably increase transportation cost,
systems with these options are superior to systems without them (Banerjee et
al., 2003). Furthermore, transfers enhance customer service levels without the
burden of carrying extra safety stock at retail locations (Burton and Banerjee 2005).

There are essentially two types of transfers: emergency or reactive transfers and
preventive or proactive transfers, which are differentiated mainly with respect to
their timing (Lee et al., 2007, Paterson et al., 2011, Seidscher and Minner 2013, and
Ahmadi et al., 2016). Reactive transfer refers to responding to realized stock-outs at
a retail location by using available inventory at another location whereas proactive
transfer refers to redistribution of inventories among locations before the actual
demand is realized. The literature can be classified primarily along this dimension,
although there are also works that consider them jointly.

Perhaps the earliest work that considers reactive transfers is by Krishnan and Rao
(1965) who study a centralized one-echelon inventory system with the objective
of minimizing the total cost through transfers. One of the main motivations for
reactive transfer models comes from spare parts distribution systems for repairable
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items, as exemplified by one of the more notable earlier works by Lee (1987) who
studies a single-echelon model, which is then extended by Axsäter (1990) to a two-
echelon system. More recent works on spare parts systems can be attributed to van
Wijk et al. (2019) who consider a two-location system with lateral transshipment
as well as an outside emergency option and Boucherie et al. (2018) who consider a
complex two-echelon inventory system with multiple local warehouses.

Models with reactive transfer policies have also been studied for non-repairable
items. A notable contribution is due to Robinson (1990), who provides structural
results for a two-retailer system and develops a heuristic for the initial ordering
decisions considering the subsequent transshipments. Herer et al. (2006) extend
this work by considering more general cost structures and Özdemir et al. (2013)
extend it considering capacity constraints on the transportation network. More
recently, transshipment policies in systems with perishable items have also attracted
research (see for example, Nakandala et al., 2017 and Dehghani and Abbasi, 2018
for such recent works).

Proactive transfer is based on the concept of inventory rebalancing and is mostly
utilized in periodic review inventory control framework. Allen (1958) provides
perhaps the earliest model that considers proactive transfers in a single-period
setting, which is then generalized by Das (1975) who also considers the ini-
tial replenishment decision. There are also models that include the timing
of the transshipment as decision in a dynamic setting (Agrawal et al., 2004 and
Tiacci and Saetta, 2011) as well as in a static setting (Kiesmuller and Minner, 2009).

Although the type of transfers may be dictated by operational conditions of the
setting, proactive transfer policies are found to be superior to purely reactive
policies both in terms of costs and stock-out levels (see for example, Banerjee et al.,
2003 and Burton and Banerjee, 2005). In some settings, however, companies may
also have opportunities to implement these policies jointly (see for example, Lee
et al., 2007 for such a model). Finally, although all of the works mentioned above
and majority of research on the transshipment issues, assume that the systems are
centrally operated decentralized systems where retailers might refuse transshipment
requests have also attracted research recently (see for example, Çömez et al., 2012
and Li et al., 2013).

As we have noted earlier, the literature on transshipment issues is vast with
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considerable growth in the last two decades. Since reviewing this voluminous
literature is not possible here, we have only offered a very selective review. Aside
from the types of the transfer (i.e., reactive vs. proactive), the literature on
transshipment is also divided along two other important dimensions: Whether the
models consider only transshipment decisions or jointly with replenishment deci-
sions and whether they consider multiple locations or just two locations. We have
classified aforementioned works and few others with respect to these characteristics
as shown in Table 2.1. We choose to put some classic and some more recent ones,
but it is still far from portraying a complete picture. We refer the reader to a
somewhat older, but an excellent review by Paterson et al. (2011) who also provide
a more thorough classification and a comprehensive review up to its publication date.
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Table 2.1 Main characteristics of reviewed transfer-related papers

Single Period Multiple Period
Replenishment 2 Retailers Multiple Retailers 2 Retailers Multiple Retailers

Proactive Yes Das (1975)
Tagaras and Vlachos (2002)

Karmarkar and Patel (1977)
Hoadley and Heyman (1977)

Tiacci and Saetta (2011)
Abouee-Mehrizi et al. (2015)

Diks and Kok (1996)
Ahmadi et al. (2016)
Feng et al. (2017)

No Kiesmuller and Minner (2009)
Li et al. (2013)

Allen (1958)
Agrawal et al. (2004) Dan et al. (2016)

Bertrand and Bookbinder (1998)
Banerjee et al. (2003)
Burton and Banerjee (2005)
Acimovic and Graves (2014)
Peres et al. (2017)

Reactive Yes

Herer and Rashit (1999)
Minner and Silver (2005)
Liao et al. (2014)
Olsson (2015)
Dehghani and Abbasi (2018)

Lee (1987)
Axsäter (1990)
Herer et al. (2006)
Johansson and Olsson (2018)
Boucherie et al. (2018)

Archibald et al. (1997)
Herer and Tzur (2001)
van Wijk et al. (2019)

Archibald et al. (2009)
van Wijk et al. (2012)
Özdemir et al. (2013)

No
Herer and Rashit (1995)
Shao et al. (2011)
Liao et al. (2014)

Nonås and Jörnsten (2007)
Hu and Yu (2014)
Patriarca et al. (2016)
Bhatnagar and Lin (2019)

Tagaras (1989)
Comez et al. (2012)
Shao (2018)

Robinson (1990)
Banerjee et al. (2003)
Burton and Banerjee (2005)
Dijkstra et al. (2017)
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Despite many simplification attempts, solving transfer problem to optimality re-
mains a challenge. Even in the presence of many simplifying assumptions such as
single product, single-period, limited number of retail locations, static transfer tim-
ing and so on, past works can only provide approximate solutions. The problem that
we present here considers proactive transfers, but since it is motivated by the actual
logistics operations at a large fashion retailer, it has many complexities that would
be quite challenging to resolve under demand uncertainty or in a dynamic fashion.
Therefore, we need to make restrictive assumptions along these dimensions. Cer-
tainly we are not alone in this respect; there are numerous other works that consider
deterministic demand for transshipment models. Not surprisingly, these works also
contain other complicating factors. For example, Herer and Tzur (2001 and 2003)
in their multi-period model consider fixed ordering costs in transshipments; Lim et
al. (2005) and Ma et al. (2011) study transshipment decisions via cross-docking
locations under time windows; Qi (2006) considers transshipment and production
scheduling decisions jointly; Lee (2015) considers concave production and trans-
portation costs; Coelho et al. (2012), Mirzapour Al-e-hashem and Rekik (2014),
and Peres et al. (2017) consider routing issues alongside transshipments; Rahmouni
et al. (2015) and Feng et al. (2017) develop EOQ-based delivery scheduling models
with transshipment while considering multiple products and resource constraints.
Our setting too has a few operational practices that force us to model a static and
deterministic problem.

2.4 Problem description and model formulation

We consider a retail logistics system that consists of a number of retail stores, each
carrying a set of products of different sizes (SKUs). The firm has the precise stock
information; that is, how many of each SKU the stores have and the projected
demands of each SKU at each location during the remainder of the sales period.
The problem is how to reallocate (some of) the products to maximize a profit
measure that is total revenue less transfer, handling, and inventory holding costs.

The firm has a single price policy in that the same price is applied to a product
at all locations, which is indeed the practice of many retail chains and particularly
of LC Waikiki. Each product also has a fixed transfer cost regardless of the
origin-destination pair. This assumption is also motivated by the practice at LC
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Waikiki which has outsourced the transportation operations to a logistics company.
The transfers are made by standard sized boxes for which LC Waikiki pays a fixed
amount regardless of its contents and the locations of the sender and receiver
stores. Since the number of products that fit in a box depends on the volume of the
product, transportation cost differs for each product, but not on origin-destination
pairs. The transfer cost can be estimated by adding the handling cost to the
transportation cost for each product. However, none of these assumptions are
really essential either for modeling or for our solution method and they can easily
be relaxed.

We also assume that transfer time has no effect on the sales. The main purpose is
to finalize the delivery of transfer items before the weekend where the bulk of the
sales materialize. Hence, delivering a day earlier or later presumably does not make
much difference, as long as the products arrive for the weekend. Furthermore, the
geography of Turkey does not allow wide variations in transfer times, but we also
recognize that considering transfer time effects would be valuable in some settings.
Finally, we assume that there are no replenishment opportunities from the central
warehouse at the time of the transfer decisions. Since the company has a policy
to allocate the entire inventory of a product to the stores at the beginning rather
than keeping some at the warehouse, this assumption is well justified. As another
operational practice, they do not consider a second replenishment option. This is a
common practice among the fast-fashion retailers whose business practices involve
speedy turnover of designs as exemplified by Zara’s practice (see for example,
Gallien et al., 2015).

In addition to these requirements, we assume a single-period setting and determin-
istic demand. At LC Waikiki, most of the sales occur at weekends and therefore,
the inventory levels of each product are updated at the beginning of each week.
Likewise demand forecasts are also revised after observing weekend sales. As a
result, LC Waikiki solves the transshipment problem once a week which allows us
to consider single-period assumption to decrease the complexity of the problem.
Deterministic demand is assumed since the forecast from the company is fairly
accurate. After two or three weekend sales, the company can have a fairly good
idea about the demand in the rest of the products’ shelf lives. It is stated that their
forecast error is below 15%. Many papers related to fast-fashion also state that
forecast errors are considerably smaller towards the end of shelf lives of products
(see for example, Caro and Gallien, 2010). Finally, as mentioned earlier, the
company has a few operational practices that we include in our model: If a product
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is transferred from a store, its entire available inventory (all SKUs) is shipped to
a single store. Also, there are limits on the total number of SKUs that can be
transferred from a store and the number of different destinations to which a store
can make transfers. All these assumptions could be relaxed or generalized, but we
choose to stay with the company practices as much as possible.

As we will see shortly, without the aforementioned operational constraints, the
problem can simply be formulated as a profit-maximizing transportation problem,
which can easily be solved as a linear program. We are also ensured integer solutions
if the demand and inventory values are integers. When we add the restriction on
the total number of SKUs that can be transferred from a store, the problem can
still be solved as a linear program. When we further add the restriction on the
number of stores that a store can ship to, however, we need to introduce binary
variables to keep track of whether a shipment is made from one store to another.
Finally, when we include the single-destination constraint (i.e., when a product is
shipped from one store to another, all the SKUs of the product must be shipped)
the problem becomes much more difficult because we now also need to define a
much larger set of binary decision variables to keep track of shipments between
stores.

We now give the preliminary definitions, followed by the formulation of the model.
We start with the base model without considering the operational requirements of
the company and progressively extend the model by adding each of these constraints.
We call two stores as “connected” if at least one product is transferred from one store
to the other.

Sets and indices:

i, j ∈ I : Set of stores,

p ∈ P : Set of products,

k ∈Kp : Set of sizes for each product p ∈ P .
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Parameters:

sipk : Stock level of size k of product p at store i,

dipk : Demand of size k of product p at store i,

rp: Unit net revenue of product p,

cp: Unit transfer cost of product p,

hp : Holding cost of product p.

Decision variables:

xijpk : Amount of size k of product p transfered from store i to store j,

zipk : Sales of size k of product p at store i,

wipk : Amount of size k of product p store i has after the transfers.

Relaxed model:

maxΠ =
∑
i∈I

∑
k∈kp

∑
p∈P

rpzipk−
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

cpxijpk

−
∑
i∈I

∑
p∈P

∑
k∈Kp

hp(wipk− zipk) (2.1a)

s.t. wipk =
∑
j∈I

xjipk, for all i ∈ I,p ∈ P and k ∈Kp, (2.1b)

zipk ≤ wipk, for all i ∈ I,p ∈ P and k ∈Kp, (2.1c)

zipk ≤ dipk, for all i ∈ I,p ∈ P and k ∈Kp, (2.1d)∑
j∈I

xijpk ≤ sipk, for all i ∈ I,p ∈ P and k ∈Kp, (2.1e)

xijpk ≥ 0, for all i, j ∈ I,p ∈ P and k ∈Kp, (2.1f)

zipk ≥ 0, for all i ∈ I,p ∈ P and k ∈Kp. (2.1g)

The objective function (2.1a) maximizes the total profit where the first term
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represents the total revenue obtained from sales, the second term is the total
transfer cost, and the last term is the total holding cost. Constraints (2.1b) define
the stock level of each SKU after the transfers are completed. Constraints (2.1c)
and (2.1d) ensure that sales are less than or equal to demand or the available stock
of SKUs after the transfers are made. Constraints (2.1e) guarantee that a store
may not transfer more than its inventory. Constraints (2.1f) and (2.1g) define the
decision variables.

As mentioned earlier, above problem is simply a profit maximizing transportation
problem and can be easily solved by commercial optimizers. Now we extend the
problem (2.1a)-(2.1g) by adding one of the transfer capacity constraints:

max (2.1a) (2.2a)

s.t.
∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

xijpk ≤ Ai, for all i ∈ I, (2.2b)

(2.1b)− (2.1g). (2.2c)

where Constraints (2.2b) ensure that a store does not transfer more SKUs than it
is allowed (Ai). This constraint does not pose a challenge as the problem is still a
linear program.

Next, we add the second capacity constraint to the current model. To do so, however,
we need to introduce a binary decision variable yij that represents if stores i and j
are connected. The extended model is formulated as follows:

max (2.1a) (2.3a)

s.t.
∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

xijpk ≤ Ai, for all i ∈ I, (2.3b)

∑
j∈I
j 6=i

yij ≤Bi, for all i ∈ I, (2.3c)

∑
j∈I

xijpk ≤ sipkyij , for all i ∈ I,p ∈ P and k ∈Kp, (2.3d)

(2.1b)− (2.1d), (2.1f), and (2.1g). (2.3e)

where Constraints (2.3c) do not allow a particular store to transfer to more than a
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given number of stores, Bi. Constraints (2.3d) allow transfer between two stores
only if they are connected; these constraints essentially replace Constraints (2.1e).

Finally, single-destination constraint is added to the model. This constraint requires
a change in one decision variable set that represents the SKU flow. We now define
a binary decision variable xijp that represents if product p is transfered from store
i to store j, or not. Then, xijpk = sipkxijp, which allows us to drop the original flow
variables from the formulation. The final model is given below.

The final model:

maxΠ =
∑
i∈I

∑
k∈kp

∑
p∈P

rpzipk−
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

cpsipkxijp

−
∑
i∈I

∑
p∈P

∑
k∈Kp

hp(wipk−zipk) (2.4a)

s.t. zipk ≤
∑
j∈I

sjpkxjip, for all i ∈ I,p ∈ P and k ∈Kp, (2.4b)

zipk ≤ dipk, for all i ∈ I,p ∈ P and k ∈Kp, (2.4c)

wipk =
∑
j∈I

xjipsjpk, for all i ∈ I,p ∈ P and k ∈Kp, (2.4d)

∑
j∈J

xijp = 1, for all i ∈ I,p ∈ P, (2.4e)

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

sipkxijp ≤Ai, for all i ∈ I, (2.4f)

∑
j∈I
j 6=i

yij ≤Bi, for all i ∈ I, (2.4g)

xijp ≤ yij , for all i, j ∈ I,j 6= i and p ∈ P, (2.4h)

xijp ∈ {0,1}, for all i, j ∈ I and p ∈ P, (2.4i)

yij ∈ {0,1}, for all i, j ∈ I, (2.4j)

zipk ≥ 0, for all i ∈ I,p ∈ P and k ∈Kp. (2.4k)

where Constraints (2.4e) ensure that if a product is transferred from a store, its
entire inventory is moved to exactly one store. As a result, assignment to multiple
stores is not allowed and similarly, a store may not also keep a portion of the
inventory. As we have elaborated before, this “single-destination” practice is rather
peculiar, but nonetheless it is the case at LC Waikiki. The company justify this
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practice on the grounds that without this they would have to devote too much
of their sales personnels’ times for collection, which they are not willing to do.
Clearly, this assumption may have a substantial impact on the profit, as it may
severely restrict options to better match demand with the supply. Indeed, in our
numerical experiments we try to give a sense of the implications of this assumption.
As we have also noted, this assumption also complicates the problem substantially,
without which the problem can be solved much more effectively.

Before we move to the analysis of the problem, we like to point out that the final
model is indeed quite difficult. The following proposition shows that the problem
is NP-hard.

Proposition 1. Problem (2.4a)-(2.4k) is NP-hard.

Proof: We will prove the proposition by reduction. Assume that there is only one
product (P = {1}), no holding cost, (h = 0) and the product has only one size
(K1 = {1}). Furthermore, assume that the unit net revenue of the product is zero,
(r = 0), and there is no limitation on the number of stores to which each store can
be connected (unlimited Bi). Since r = 0, Constraints (2.4b) and (2.4c) become
redundant. Moreover, if Bi is unlimited, Constraints (2.4g) become redundant.
Consequently, since any yij can be one, Constraints (2.4h) are also redundant. Now
the problem reduces to:

minΦ =
∑
i,j∈I
j 6=i

cxij (2.5a)

s.t.
∑
j∈I

xij = 1, for all i ∈ I, (2.5b)
∑
j∈I
j 6=i

sixij ≤ Ai, for all i ∈ I, (2.5c)

xij ∈ {0,1}, for all i, j ∈ I. (2.5d)

Problem (2.5a)-(2.5d) is the well-known generalized assignment problem which be-
longs to class of NP-hard problems (Savelsberg 1997).

As the proposition shows, our problem (2.4a)-(2.4k) is a very difficult mixed integer
linear problem. As we will present later, our experiments with a commercial
optimizer demonstrated that this problem could not be solved effectively. At LC
Waikiki, the number of products that are considered for transfer is about 2,000, on
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average. On the other hand, the number of stores is approximately 480 nationwide.
Therefore, the proposed mixed integer linear program can be huge and a heuristic
approach seems to be a reasonable way to proceed. The next section describes such
a heuristic method.

2.5 Solution approach

We have developed a Lagrangian Relaxation (LR) based approach to obtain good
upper bounds in reasonable time. LR has shown exceptional success in solving
large scale combinatorial optimization problems (Fisher 1981). LR is also used
in the context of transshipment and it is shown that it can provide acceptable
bounds to the optimal solution (Wong et al., 2005 and Wong et al., 2006). A
solution of the Lagrangian dual provides an upper bound on the optimal solution
of the problem (2.4a)-(2.4k). To obtain a lower bound (i.e., a feasible solution),
we have developed a two-stage heuristic that consists of a construction heuristic
and simulated annealing based metaheuristic to improve the solution. Different
heuristic and metaheuristic methods are applied to transshipment problems. For
example, Patriarca et al. (2016) and Peres et al. (2017) develop metaheuristics to
solve transshipment in inventory-routing problems. The latter applied a variable
neighborhood search based algorithm, while the former developed a genetic
algorithm. Moreover, local search based methods are utilized in transshipment
problems. For instance, Wong et al. (2005) and Wong et al. (2006) developed
a simulated annealing-based metaheuristic to find promising feasible solutions.
Therefore, we have also opted for such metaheuristic. In the rest of this section, we
describe these methods in detail.

2.5.1 Obtaining upper bounds

Note that in the formulation, Constraints (2.4c), (2.4g), and (2.4f) are similar to
knapsack constraints and Constraints (2.4e) are basic assignment constraints, all of
which are well-known in the literature. On the other hand, Constraints (2.4b) and
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(2.4h) complicate the problem because they connect “z” variables to “x” variables
and “x” variables to “y” variables, respectively. Thus, problem (2.4a)-(2.4k) can
be decomposed into well-known problems by relaxing these complicating constraints.

Let α = {αipk ∈ R+ : i ∈ I,p ∈ P,k ∈ Kp} and β = {βijp ∈ R+ : i, j ∈ I,p ∈ P}
represent vectors of Lagrangian multipliers associated with Constraints (2.4b) and
(2.4h), respectively. Then the relaxed problem can be written as

maxΠLR(α,β) =
∑
i∈I

∑
p∈P

∑
k∈Kp

rpzipk−
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

cpsipkxijp

−
∑
i∈I

∑
p∈P

∑
k∈Kp

hp(wipk−zipk)

−
∑
i∈I

∑
p∈P

∑
k∈Kp

αipk(zipk−
∑
j∈I

sjpkxjip)

−
∑
i∈I

∑
j∈I
j 6=I

∑
p∈P

βijp(xijp−yij) (2.6a)

s.t. (2.4c)− (2.4g) and (3.3m)− (2.4k). (2.6b)

This problem can be decomposed into three subproblems, which are given as follows:

Subproblem 1 : maxΠz
LR(α) =

∑
i∈I

∑
p∈P

∑
k∈Kp

zipk(rp−αipk +hp) (2.7a)

s.t. zipk ≤ dipk, for all i ∈ I,p ∈ P and k ∈Kp, (2.7b)

zipk ≥ 0, for all i ∈ I,p ∈ P and k ∈Kp. (2.7c)

25



Subproblem 2 : maxΠx
LR(α,β) =

∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

xijp(
∑
k∈Kp

((−cp+αjpk−hp)sipk)−βijp)

+
∑
i∈I

∑
p∈P

∑
k∈Kp

(αiok−hp)siokxiip

+
∑
i∈I

∑
j∈I

∑
p∈P

hpwipk (2.8a)

s.t.
∑
j∈J

xijp = 1, for all i ∈ I,p ∈ P, (2.8b)
∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

sipkxijp ≤ Ai, for all i ∈ I, (2.8c)

wipk =
∑
j∈I

xjipsjpk,

for all i ∈ I,p ∈ P and k ∈Kp, (2.8d)

xijp ∈ {0,1}, for all i, j ∈ I and p ∈ P. (2.8e)

Subproblem 3 : maxΠy
LR(β) =

∑
i∈I

∑
j∈I
j 6=I

∑
p∈P

βijpyij (2.9a)

s.t.
∑
j∈I
j 6=i

yij ≤Bi, for all i ∈ I, (2.9b)

yij ∈ {0,1} for all i, j ∈ I. (2.9c)

Among these problems, Problem (2.7a)-(2.7c) is solvable by inspection. Problem
(2.9a)-(2.9c) can be decomposed into knapsack problems for each store. Problem
(2.8a)-(2.8e) seems to be computationally the most challenging of the three since
this problem is similar to the generalized assignment problem. However, it is also
separable for each store, which allows us to efficiently solve it. The subproblems for
each i ∈ I can be written as
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maxΠxi

LR(α,β) =
∑
j∈I
j 6=i

∑
p∈P

xijp((
∑
k∈Kp

(−cp+αjpk−hp)sipk)−βijp)

+
∑
p∈P

∑
k∈Kp

(αipk−hp)sipkxiip+
∑
j∈I

∑
p∈P

hpwipk (2.10a)

s.t.
∑
j∈J

xijp = 1, for all p ∈ P, (2.10b)
∑
j∈I
j 6=i

∑
p∈P

sipkxijp ≤ Ai, (2.10c)

wipk =
∑
j∈I

xjipsjpk, for all p ∈ P and k ∈Kp, (2.10d)

xijp ∈ {0,1}, for all j ∈ I and p ∈ P. (2.10e)

Suppose that Lagrangian multipliers αipk and βijp are set to some values. Then,
let us define ẑ = {ẑipk : i ∈ I,p ∈ P,k ∈ Kp}, x̂ = {x̂ijp : i, j ∈ I,p ∈ P}, and
ŷ = {ŷij : i, j ∈ I} as the corresponding optimal solutions to the subproblems
(2.7a)-(2.7c), (2.8a)-(2.8e) and (2.9a)-(2.9c), respectively. We can then improve the
Lagrangian bounds for a given solution by revising these Lagrangian multipliers.
We achieve this by solving the Lagrangian dual while retaining the primal solutions.
Interested reader can refer to Litvinchev (2007) for a detailed account of this
approach. The Lagrangian dual can be formulated as follows:
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min
α,β

max∆(ẑ, x̂, ŷ) =
∑
i∈I

∑
p∈P

∑
k∈Kp

ẑipk(rp−αipk +hp) +
∑
i∈I

∑
j∈I
j 6=I

∑
p∈P

βijpŷij

+
∑
i∈I

∑
p∈P

∑
k∈Kp

(αipk−hp)sipkx̂iip

+
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

x̂ijp((
∑
k∈Kp

(−cp+αjpk−hp)sipk)−βijp) (2.11a)

s.t.
∑
k∈Kp

(αjpk− cp−hp)sipk−βijp ≤
∑
k∈Kp

(αipk−hp)sipk,

for all i 6= j ∈ I,p ∈ P,k ∈Kp if x̂ijp = 1, i= j, (2.11b)∑
k∈Kp

(αjpk− cp−hp)sipk−βijp ≤
∑
k∈Kp

(αj∗pk− co−hp)sipk−βij∗p,

for all i, j ∈ I,p ∈ P,k ∈Kp if x̂ijp = 1, i 6= j,j∗, (2.11c)∑
k∈Kp

(αipk−hp)sipk ≤
∑
k∈Kp

(αj∗pk− cp−hp)sipk−βij∗p,

for all i, j ∈ I,p ∈ P,k ∈Kp if x̂ijp = 1, i 6= j 6= j∗, (2.11d)

αipk ≤ rp+hp, for all i ∈ I,p ∈ P and k ∈Kp, (2.11e)

βijp ≤
∑
k∈Kp

((−cp+ rp−hp)sipk), for all i, j ∈ I and p ∈ P, (2.11f)

αipk ≥ 0, for all i ∈ I,p ∈ P and k ∈Kp, (2.11g)

βijp ≥ 0, for all i ∈ I,j ∈ I, and p ∈ P. (2.11h)

The objective function (2.11a) is the objective function of the dual problem. Since
the solutions x̂, ŷ, and ẑ are known, Constraints (2.11b)-(2.11h) are added to
modify the Lagrangian multipliers while retaining the primal solutions. Constraints
(2.11b) ensure that if a product p is sent from store i to any other store j, then
the coefficient of x̂ijp in the objective function must be less than the coefficient of
x̂iip. Similarly, the coefficient of x̂ijp must be less than the coefficient of any other
x̂ij∗p, which is guaranteed by Constraints (2.11c). On the other hand, if x̂iip = 1,
that is, product p remains at its original location, then x̂ijp = 0, which is ensured
by Constraints (2.11d). Constraints (2.11e) guarantee that multipliers αipk are not
greater than corresponding unit revenues plus holding cost to prevent ẑipk to be
zero. Likewise, Constraints (2.11f) set upper bounds on βijp. Finally, multipliers
αipk and βijp must be non-negative which are ensured by Constraints (2.11g) and
(2.11h), respectively.

The optimal solution to this problem is a tighter upper bound as compared to the
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solution obtained from the relaxed problem. Naturally, this solution provides an
upper bound to the optimal solution of the original problem as well.

2.5.2 Obtaining lower bounds

As mentioned earlier, we obtain lower bounds, i.e., feasible solutions, via a
construction heuristic followed by an improvement metaheuristic. The construction
heuristic consists of two steps, in the first of which we iteratively connect stores
until there is no improvement. We start by dividing all store-product combinations
into two groups as sender and receiver based on their stock and demand levels
without considering the sizes. For each product, if the stock level in a store is
more than its demand, the store is classified as sender; otherwise, it is classified as
a receiver. Note that, a store can be either in the sender group or in the receiver
group for a product (or, in none of the groups in case the stock and demand levels
are equal). We then sequentially connect senders to receivers by selecting products
randomly. For each store in the sender group, we find a candidate store from the
receiver group that creates the highest profit, i.e., revenue less implied costs. A
transfer decision is made if Constraints (2.4f) and (2.4g) remain feasible. After all
products are selected, we update the sender and receiver groups considering the
current transfers. That is, a store that was initially in the sender group and sends
its entire inventory to another store may be included in the receiver group in the
next iteration. Moreover, a store in the receiver group can continue to stay in the
same group, if it still has needs. Otherwise, it will not be considered as a sender or
a receiver. This procedure is repeated until there is no improvement in the solution.
In the second step, we further investigate profitable transfers that were not made in
the previous step due to Constraints (2.4g). Now, we search for beneficial transfers
by choosing among the destinations that a store is already connected, so that the
constraint remains feasible while the solution is improved.

At the improvement stage, we have developed a simulated annealing based
metaheuristic. The proposed metaheuristic essentially destroys the current feasible
solution by removing a transfer and then repairing it by inserting another transfer.
It removes transfers according to three rules that are applied randomly. In the first
rule, the transfer to be removed is also selected randomly. The other two rules use
the “residual demand” information for each store-product pair, i.e., the difference
between the demand and the transfer it receives in the current solution. That is,
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those stores with the negative residual demand are the ones that receive more than
their demand. The second rule randomly chooses a store-product pair among those
that have negative residual demands. And finally, for the third rule we first list
all store-product pairs that have negative residual demand. Then we select the
product that appears the most in the list and then choose from the stores that
also appears the most in the list and paired with this product. After selecting a
store-product pair, that transfer is removed and another transfer is inserted while
maintaining the feasibility of Constraints (2.4e). The destination store is chosen
randomly among the ones that have positive residual demand. The purpose of these
rules is to enable moving to worse as well as better solutions than the current one.

The algorithm allows non-improving moves to include diversity as in the simulated
annealing (SA) approach. It is adopted as follows: If the profit of the new trans-
fer is greater than or equal to the profit of the removed one, the transfer is ac-
cepted. Otherwise, we accept it with probability e

−(currentP rofit−newP rofit)
temperature , where

currentProfit and newProfit denote the profits of the removed transfer and the
newly added one, respectively and temperature is the current temperature, which
is a parameter of SA. Initially, temperature is equal to the total profit of current
solution so that the probability becomes high and the chance of accepting a worse
solution is high. The temperature is decreased at each iteration using the formula
temperature = temperature× τ , where 0 < τ < 1 is the cooling rate. A counter

keeps the number of worse solutions accepted. The cooling rate is calculated by
cooling rate= 1/counter. The best solution is kept and updated whenever a better
solution is found. To avoid being trapped in local optima, the algorithm continues
to search from either the best solution or second best solution if there is no improve-
ment in a predefined number of iterations. The algorithm stops if either the total
number of iterations reaches to its upper bound or the time limit hast been reached.

2.6 Computational results

In this section, we report on our computational experiments that consist of two
main parts. In the first part, our purpose is to compare the effectiveness of
our solution method to that of a commercial solver. Towards this purpose, the
generated instances that are first solved by Gurobi 8.1 and then by our algorithm,
which is implemented in Python 3.6 and the subproblems are also solved with
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Gurobi. All experiments are conducted on a High-Performance Computing (HPC)
cluster with Linux system, 44 GB RAM, and 2.40 Ghz processors with two cores. In
the second part, our purpose is to develop insights into the effects of the operational
constraints on the system performance and the impact of initial replenishment
levels on the benefits of transshipment opportunities. Towards this end, we develop
another set of instances, all of which are solved by Gurobi.

LC Waikiki has about 480 stores (excluding the outlet ones) and about 2,000
items considered for transfer at any week. Unfortunately, problems of this scale
cannot be directly handled by Gurobi. Therefore, we have targeted 50 and 100
as the number of stores and 100, 200, 500, and 1000 as the number of products.
The number of sizes varies according to the product. However, most of the
products have five to 10 different sizes (e.g., S, M, L, XL, and XXL or 28, 30,
32, 34, 36, 38, 40, 42, 44, and 46 for two different products). Thus, in the test
problems, the number of sizes is set to either five or 10. Detailed information on
the combination of sizes of the instances are given in the first columns of Tables
2.2, 2.3, and 2.4. In total, we have solved instances of 14 different size combinations.

We randomly generated demands (dipk) and initial stock levels (sipk) from a
discrete uniform distribution that is defined between 0 and 10. The prices of the
products are set between 20 and 50 Turkish Lira (TL) while the transfer costs
for these products are set between 0.4 to 1.5 TL. We generated the selling prices
and transfer costs randomly from uniform distributions with the bounds given
above. To set the holding cost rate we should have also drawn unit costs but in
the interest of simplicity we used the unit revenues. The holding cost per week is
taken as the 0.5% of the unit revenue, which corresponds to about 30% or less,
annually. Although we have not used any real data from LC Waikiki to develop
these instances, we have decided on these values upon our conversations with the
group that deals with the transfers; hence, we believe our instances are quite realistic.

In order to find the parameters of two of the operational constraints, first we solved
each instance by ignoring all three restrictions. We then found the number of items
each store sends and the number of stores it is connected. These are essentially,
the maximum values when there are no operational constraints. Based on these
numbers, we then set three levels of Ai (the number of SKUs a store can transfer)
and Bi (the number of stores a store can transfer to) for each store as low (1/3 of
the maximum), medium (1/2 of the maximum), and high (2/3 of the maximum).
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For each size and (Ai, Bi) combinations, we have randomly generated 10 instances.
We have reached at this number through a small numerical experiment. We took
three instance sizes, generated 100 random instances of each, solved them with our
algorithm, and computed the average gaps progressively. It turned out that after
10th replication the progressive average of gaps becomes nearly constant for all
three sets of instances as illustrated in Figure 2.2. Therefore, we concluded that 10
instances would be enough to have a reliable performance metric in terms of average
gaps. As a result, we have generated and tested a total of 14x3x10 = 420 instances.

The results are illustrated in Tables 2.2, 2.3, and 2.4. The first column depicts
the size of each instance with respect to the number of stores, products, and sizes.
The Gurobi column reports the average of best feasible solutions, the minimum,
maximum, and average optimality gaps of 10 replications that Gurobi achieved
and the time limit that we set. We have given a one-hour time limit for smaller
sized problems, two-hour time limit for medium sized ones, and six-hour time limit
to the larger sized instances, in addition to the problem loading times to Gurobi.
Note that Gurobi stops when optimal solution is found. The metaheuristic column
also reports the average of best feasible solutions, the minimum, maximum, and
average optimality gaps of 10 replications and the time our algorithms spent to find
the upper and lower bounds. We calculated the optimality gaps as UB−LB

LB where
UB and LB represent the upper and lower bounds found by Gurobi and our method.

Figure 2.2 Sensitivity of progressive optimality gap to the number of replications
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Table 2.2 Results for Low level of Ai and Bi

Gurobi Metaheuristic
Instance Average Gap Average Average Gap Average
I-P -K Lower Bound Min Average Max Runtime Lower Bound Min Average Max Runtime

50-100-5 848,013 0.71 0.79 0.89 3600 841,322 1.04 2.07 3.67 1285
50-100-10 307,259 0.00 0.00 0.01 7.04 302,956 0.50 2.41 5.33 1017
50-200-5 1,519,767 0.78 0.87 1.01 3600 1,500,891 1.06 3.00 5.38 1424
50-200-10 935,098 0.79 1.09 1.37 3600 924,970 1.77 3.39 8.32 1318
50-500-5 2,317,320 282.10 288.27 296.74 3600 6,244,111 4.22 4.48 4.76 2001
50-500-10 2,417,042 0.34 0.40 0.45 3600 2,398,677 0.98 2.40 3.65 1960
50-1000-5 4,663,613 262.45 284.38 302.65 3600 11,074,571 2.50 3.76 4.29 1966
50-1000-10 3,507,723 0.09 0.14 0.22 3600 3,487,356 0.76 1.04 1.44 2082
100-100-5 950,596 283.04 287.71 293.21 7200 2,695,145 3.47 5.30 6.20 1492
100-100-10 1,890,957 0.22 0.31 0.41 7200 1,882,898 0.57 1.58 3.29 3707
100-500-5 4,666,991 284.15 287.76 294.74 7200 12,141,278 6.10 6.57 6.96 4313
100-500-10 7,809,377 0.71 0.91 1.11 7200 7,714,316 0.85 3.52 5.16 4414
100-1000-5 9,303,094 284.71 288.34 291.90 21600 18,948,867 0.49 0.94 1.24 9245
100-1000-10 12,997,254 0.39 0.99 1.28 21600 12,906,313 1.33 2.45 3.22 6475

33



Table 2.3 Results for Medium level of Ai and Bi

Gurobi Metaheuristic
Instance Average Gap Average Average Gap Average
I-P -K Lower Bound Min Average Max Runtime Lower Bound Min Average Max Runtime

50-100-5 1,023,543 0.42 0.49 0.56 3600 1,015,396 0.82 2.57 4.95 1274
50-100-10 547,922 0.01 0.01 0.01 169 542,032 0.63 1.74 3.05 1181
50-200-5 1,794,245 0.72 0.83 0.95 3600 1,760,781 1.60 3.58 5.37 1404
50-200-10 1,249,620 0.47 0.56 0.66 3600 1,224,849 1.09 3.36 6.11 1366
50-500-5 5,085,082 6.65 90.41 287.53 3600 6,501,742 3.70 3.96 4.23 2000
50-500-10 3,192,027 0.08 0.10 0.13 3600 3,149,863 0.73 3.53 4.67 1982
50-1000-5 4,663,613 283.04 287.71 293.21 3600 12,553,494 1.12 1.80 2.93 1974
50-1000-10 6,070,388 0.10 0.14 0.19 3600 5,984,386 1.08 1.75 2.56 2075
100-100-5 3,008,779 0.52 0.82 1.18 7200 2,997,312 2.57 4.49 5.21 1475
100-100-10 1,890,938 0.07 0.08 0.10 7200 1,879,030 0.34 2.79 4.13 3774
100-500-5 4,636,738 284.96 289.79 294.74 7200 12,713,377 4.81 5.30 5.76 4754
100-500-10 9,447,082 0.94 1.06 1.17 7200 9,363,384 2.09 2.74 3.43 4514
100-1000-5 9,325,113 284.71 287.41 289.97 21600 20,854,343 1.83 2.50 2.92 9028
100-1000-10 15,871,661 0.01 0.42 1.22 21600 15,780,238 1.11 1.55 2.52 6109

34



Table 2.4 Results for High level of Ai and Bi

Gurobi Metaheuristic
Instance Average Gap Average Average Gap Average
I-P -K Lower Bound Min Average Max Runtime Lower Bound Min Average Max Runtime

50-100-5 1,171,178 0.33 0.39 0.48 15 1,154,752 1.79 2.96 5.17 1290
50-100-10 819,047 0.01 0.02 0.06 2845 805,510 0.37 2.13 3.10 1333
50-200-5 2,042,125 0.58 0.79 1.37 3600 2,017,624 1.52 3.36 5.10 1448
50-200-10 1,507,772 0.31 0.37 0.46 3600 1,496,739 1.31 2.63 3.88 1423
50-500-5 7,151,269 0.12 0.28 0.41 3600 7,120,120 0.72 1.06 1.97 1778
50-500-10 4,456,310 0.01 0.01 0.01 154 4,296,653 3.37 4.28 4.77 2131
50-1000-5 12,891,943 0.07 0.12 0.16 3600 12,839,782 0.46 0.75 1.13 1971
50-1000-10 8,840,304 0.01 0.01 0.02 1963 8,462,620 1.46 2.12 2.98 2064
100-100-5 3,021,758 0.20 0.30 0.46 7200 3,010,490 3.76 4.55 5.64 1464
100-100-10 1,891,297 0.53 0.56 0.63 7200 1,872,998 4.41 5.23 5.96 3647
100-500-5 14,830,650 0.49 1.27 2.16 7200 14,685,243 2.66 3.87 5.58 4201
100-500-10 9,492,130 0.02 0.14 0.29 7200 9,373,087 1.10 2.19 3.02 4512
100-1000-5 29,909,041 0.56 0.82 1.56 21600 29,313,762 1.55 3.39 5.72 9014
100-1000-10 19,301,509 0.00 0.01 0.01 11479 19,217,184 0.65 1.09 1.43 6004
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The results show that our algorithm is comparable to, and in some cases much
more effective than, Gurobi. First of all, our algorithm spends about one-third
to one-half of the time that we give to Gurobi excluding the time it takes to load
the problem to Gurobi, which could be rather substantial in larger instances. In
terms of the optimality gaps, the results are somewhat mixed. There are many
instance sets, for which Gurobi found better solutions (lower bounds) than our
method did. However, Gurobi’s solutions deteriorate faster than our method with
increasing problem size. Although our approach also suffers, it can solve most
medium-sized problems with around 1% optimality gaps and large-sized problems
with a maximum gap of about 7%.

The most important problem with Gurobi, however, is that it is rather unreliable.
In some cases the solutions it found were just terrible, with optimality gaps hovering
around 300%. Upon close inspection, we noticed that these poor results belong
to the instances where there are five different sizes, whereas the instances with
the same number of stores and products but 10 different sizes for each products,
the behavior was quite the opposite. This was rather puzzling; after all, the latter
instances are of larger size, but with closer inspection we were able to conclude that
it was the combination of several factors that led to this unexpected results. First
of all, since the transportation costs are quite low as compared to the revenues, as
long as it is revenue-improving the optimal solution tends to have large number
of transfers. Secondly, when there are 10 sizes for each product, there are fewer
profitable opportunities for transfers as compared to the same number of stores
and products with five sizes for each product. This might seem unclear at first, but
single-destination constraint is mainly responsible for these results. For example,
if there is only one size, then there would be many profitable opportunities for
transfer. When there are two sizes, the opportunities would diminish because
there would be more sales opportunities at the original sources and there would
be fewer alternative stores that would have demand for both sizes. This would be
even more prominent with increasing the number of sizes. This is indeed what we
have observed in a simple experiment that we have conducted with 20 stores, 100
products and no operational constraints. We then set the number of sizes as 2, 5, 8,
10, and 15 and have randomly drawn 10 instances for each size. Table 2.5 reports
the results, which confirm our intuition.
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Table 2.5 Effect of the number of sizes on the number of transfers

K Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6 Instance 7 Instance 8 Instance 9 Instance 10
2 1,038 1,074 1,009 1,013 1,031 1,030 1,069 1,011 998 1,038
5 616 626 624 650 630 625 634 653 612 621
8 327 371 334 366 352 353 315 335 315 354
10 208 226 220 220 206 231 204 244 207 237
15 42 55 65 57 48 53 59 57 78 50
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Hence, since there are far fewer transfers in the optimal solution as the number of
sizes increases most stores do not perform any transfers but keep at the source. As
a result, Gurobi can eliminate a substantial number of potential transfers across the
stores and finds solutions easier in instances where there are 10 sizes as compared
to five. To conclude, while our approach does not produce better solutions than
Gurobi all the time, due to its robustness to problem characteristics, it is a much
better alternative of the two.

In the second part of our experiments, our purpose is to shed some light into the
effects of particular operational restrictions used by LC Waikiki. The restrictions
include the two capacity constraints and the single-destination policy. Towards
this end, we considered six problem sizes as illustrated in Figure 2.3 and Figure
2.4. We randomly generated 10 instances for each of these problem sizes. As we
have done in the first part, we have created further instances based on how tight
the capacity constraints are. Similarly, we first solved each instance by ignoring all
three restrictions, found the maximum values Ai and Bi can take for each store,
and then created four combinations of (Ai, Bi) by setting them to either “low” (1/3
of the maximum) or “high” (2/3 of the maximum). Therefore, altogether we have
solved a total of 240 instances.

The unconstrained version of the problem, i.e., (2.1a)-(2.1g), is solved first, and
then the problem with the transfer capacity constraint, i.e., (2.2a)-(2.2c), which
is followed by the problem with both capacity constraints, i.e., (2.3a)-(2.3e), and
finally, the full problem (2.4a)-(2.4k) is solved. All these problems are solved with
Gurobi. Although not all problems are solved to optimality, the gaps are rather
small, so the results are quite reliable.

Figure 2.3 and Figure 2.4 depict the summary results. Each graph in the figure
contains results based on the combinations of (Ai, Bi) pairs. In the figure, optimum
solution of each unconstrained instance is normalized to 100 and the objective
functions of each instance’s constrained versions are found as percentage of the
optimal value of the unconstrained version. The graphs report the averages of these
percentages over 10 instances. The effect of the constraint on the number of SKUs
that can be transferred is quite clear. The optimal values for low Ai instances
reduce to roughly 50-70% of the maximum possible under unconstrained values
(Figure 2.3). On the other hand, in most of the instances with high Ai’s the optimal
values do not decrease significantly. Although in some instances they may drop to
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less than 85% of the maximum possible, in most instances they drop to around
mid-90% of the maximum possible. The addition of the second capacity constraint
that restricts the number of stores deteriorates optimal values particularly when
Ai’s are high, but not when they are low. When Ai’s are already low, further drop
on the optimal value is around 5% and most drop happens in the instances with 10
sizes for each product. This result is intuitive because when there are 10 sizes, there
are simply more opportunities to match the demand and supply as there are more
sizes (because there is no single-destination constraint yet). Therefore, restricting
the number of stores eliminates more of those opportunities. When the Ai’s are
high, however, the impact of the addition of the second capacity constraint has a
much more detrimental effect across all instances, but particularly more so again in
the 10-size instances due to the same reason. In the end, however, the constraint
that restricts the number of items is more “constraining” than the constraint that
restricts the number of stores. As one can see from the graphs, while in low Ai and
high Bi cases (Figure 2.3, right graph) the optimal value drops to 40-65% of the
maximum, in high Ai and low Bi cases (Figure 2.4, left graph) the optimal value
drops to around 65-85% of the maximum possible.

We can observe that the single-destination constraint, after the capacity constraints,
has a modest deteriorating impact on the optimal value. Depending on the cases,
it has roughly an additional 5-15% negative impact on the maximum possible
values. This impact gets somewhat stronger when there are fewer opportunities
for transfers, that is when there are fewer stores and products. For example, the
largest impact of this constraint can be seen for the instances of 20 stores, 100

Figure 2.3 Effect of adding capacity and single-destination constraints on the ob-
jective function value (OFV). Left: low Ai and low Bi, Right: low Ai and high
Bi.
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products, and 10 sizes (i.e., 20-100-10). This result is also quite intuitive because
when there are more stores and/or more products, there are potentially larger
number of attractive single-destination transfer options and therefore, the impact of
this constraint is lessened. However, when the alternatives are already scarce, the
single-destination constraint leads to yet fewer transshipment moves, deteriorating
the objective function further.

In the last part of our experiments, we investigate the effect of initial replenishment
levels on transshipment benefits under the particular operational constraints and
practices. We must remark that we do not attempt to solve a joint replenishment-
transshipment problem; such would be a daunting undertaking for the environment
we are considering. Not only the problem sizes are enormous with hundreds of
stores and thousands of SKUs, but also the particular operational characteristics
and practices and the need to include demand uncertainty make the task almost
impossible. Therefore, what we try to demonstrate here is how our model can
be used to quantify the transshipment benefits under a few replenishment levels.
Towards this end we conducted a limited set of experiments with 10 instances of
the problem with 20 stores, 100 products, and five sizes. Although other instances
show a similar pattern, since these results ultimately depend on the particular way
the problem parameters are generated, our results should be considered illustrative
rather than suggestive.

To find the transshipment benefits, we first calculated the objective function value
for each instance without any transshipment; that is, each store can only sell what

Figure 2.4 Effect of adding capacity and single-destination constraints on the objec-
tive function value (OFV). Left: high Ai and low Bi, and Rright: high Ai and high
Bi.
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it has and incur inventory holding cost for the remaining SKUs. We then solved six
transshipment problems for each instance. The first one is the problem (2.1a)-(2.1g)
where there is no constraint on transshipments, which gives the maximum possible
benefit of the transshipment option. We then solved the main problem (2.4a)-(2.4k)
with five capacity settings; four of which are the high-low capacity combinations as
in the previous experiment and the fifth one is the unlimited capacity case, which
is included to investigate the impact of the single-destination constraint alone. We
then found the ratio of the objective function values under each transshipment
scenario to that of the no transshipment case and then took the average of the
ratios over 10 instances, which we use as a measure of the transshipment benefits
under different conditions. In other words, we measure the “relative” benefit of the
transshipment cases with respect to the no transshipment option.

The way we include different replenishment levels into the analysis is through
modification of the current SKU inventories by some amount. For example, for a
product where the current inventories of the five sizes are (2,3,1,0,2), a reduced
replenishment level can be approximated with the modified inventories of (1,2,0,0,1),
i.e., each SKU inventory is reduced by one. Similarly, an increased replenishment
level can be approximated with (3,4,2,1,3), i.e., each is increased by one. This type
of modification is a rough approximation of a decision to decrease or increase the
initial replenishment order by one for each SKU and for each store. Such a setting
is admittedly rough; firstly, because it involves some assumptions on what happens
to the SKUs with zero inventories and secondly, it assumes that the company
treats all SKUs and stores the same. However, dealing with such complexities
require many other assumptions and instances with different settings. Therefore,
we set aside those complexities and focus only on these rough approximations of
replenishment level decisions.

Figure 2.5 depicts our results, where “supply” case refers to the instances with
the original inventory values, while the others are the instances in which the
inventories are reduced or increased by one or two. Firstly, we can observe that as
the constraints on transshipments are more relaxed, relative transshipment benefits
increase, which is expected. For example, in the original instances, while the
average ratio could be higher than 3.00 for the unconstrained transshipment case,
the same could be as low as 1.8 for the instances with low Ai’s, and somewhere
in between for the other cases. Secondly, as the inventories decrease, relative
transshipment benefits increase slightly or stay roughly the same. This observation
suggests that even if the company tends to reduce the initial replenishment
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Figure 2.5 Effect of initial replenishment level on transshipment benefit.

quantities, the transshipment benefits continue to be substantial. On the other
hand, when the inventories are increased there is a sharp decrease in the relative
transshipment benefits in most cases. This result is also expected because as the
inventories at the branches are increased, there are much fewer stores and SKUs
that would need extra items. The only exception to this result is the cases with low
Ai’s when there is only modest increase in the inventories. In these cases a slight
increase in the inventories may actually improve the relative transshipment benefits
or deteriorate them less. The reason for this result is that when the inventories
get slightly larger, the model may find more attractive cases under tight capacity
constraints. However, as the inventories increase further (e.g., the “supply+2”
case), relative benefits of transshipment decrease for these cases as well. Eventually,
the differences between all the cases tend to reduce as the inventories increase. This
result is also intuitive because when inventories are increased substantially, fewer
stores and SKUs would have additional needs, which in turn reduces the needs
for transshipments in the system and therefore, the negative effects of operational
constraints on transshipment lessen as well.

To summarize the managerial implications of the first part of the experiments, we
can conclude that in general, i) it is the restriction on the total number of SKUs that
can be transferred rather than the restrictions on the number of destinations that
has a more negative effect, ii) single-destination constraint has a more detrimental
effect when the capacities are less restrictive, and finally, iii) all the negative effects
are usually more pronounced when there are larger number of sizes per product.
Therefore, if a firm wishes to relax the single-destination constraint, it should start
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from products with larger number of sizes and accompany it relaxing restrictions on
the transfer capacities. From the second part of the experiments, we can conclude
that while reduced replenishment levels almost never lessen the relative benefits of
transshipments, increased replenishment levels do lessen the relative benefits partic-
ularly when the constraints on transshipments are more relaxed. As a side result,
we can also conclude that if the company considers relaxing some of the constraints
on transshipments (for example, single-destination) at least for some products, it
should consider lower inventory items first.

2.7 Concluding remarks

In this paper we introduce a novel proactive transshipment problem motivated
by the practice at the largest fast fashion retailer in Turkey, LC Waikiki. The
company, after allocating the initial inventory to over 480 stores and observing
sales for a few weeks, engages in lateral transshipments among the stores. When a
product has different sales performances across the stores, lateral transshipments
can improve the overall system performance. Not only such a practice helps the
company better match supply with demand but also eliminates additional handling
and transportation operations at its central depot.

Its large scale and particular operational restrictions necessitate the development
of a novel model. We formulate the transfer problem of LC Waikiki as a mixed
integer linear programming problem. With around 480 stores, 2,000 products,
and a variety of operational constraints, this problem becomes a very large mixed
integer program and solving it optimally becomes a challenge. Therefore, we have
developed a simulated annealing based metaheuristic to solve the problem. We also
applied Lagrangian relaxation with a primal-dual approach to obtain sharp upper
bounds on the optimal solution of the original problem. We generated 420 problem
instances of varying sizes to evaluate the performance of the proposed algorithm
against the commercial optimizer Gurobi. Each instance is solved by the proposed
algorithm and Gurobi. The results show that although the solutions prescribed by
Gurobi are better than ours in small-size instances and those with loose capacities,
the proposed algorithm outperforms Gurobi in instances that are characterized
by having a large number of potentially beneficial transfers and tighter capacity
constraints. These instances are the ones where the combinatorial nature of
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the problem becomes the most challenging. Gurobi fails spectacularly in these
instances, while our algorithm performs without a significant loss in its performance.
Hence, our algorithm is quite robust to changing program characteristics. Finally,
our algorithm is also quicker in finding solutions, spending only about one-third to
one-half of the time spent by Gurobi. This feature makes our approach particularly
attractive when companies need speedy solutions to these problems.

We have also conducted a carefully designed numerical experiment to uncover the
effect of the particular operational constraints of the company. First, we have
solved the instances without any of those constraints and found the maximum
potential gross revenue (i.e., the base gross revenue) that can be obtained with
transshipments. We have then added those constraints one by one to observe
their effects. We observe that constraints on the total number of products a
store can send may have a significant impact and depending on how tight those
restrictions are, it may reduce the gross revenue to as low as 50% of its base
level. The second capacity restriction, i.e., the number stores that a store can
make shipments, usually has very little negative impact if the first constraint is
already tight, but its impacts increase otherwise. Depending on the cases, it can
result in an additional 5-20% decrease of the base revenue We have also measured
the effect of the single-destination practice and have found that it may reduce
the revenues by another 5-15% of the base revenue depending on how tight the
capacity constraints are. When the capacity constraints are already tight, the
negative impact of this practice is quite small, but where the capacities are loose
the negative impact of this practice is quite significant. We have also observed that
the number of sizes also plays a significant role in these results. In our sample
instances we have used five and 10 as the number of sizes. Naturally, when there
are 10 sizes of products, single-destination practice renders much fewer number
of transfers as potentially beneficial and therefore, this practice becomes more
detrimental to the base revenue when the number of sizes increases. Finally, we
have investigated the effect of initial replenishment level on relative transshipment
benefits. The results show that, while the reduced replenishment levels usually does
not reduce the relative benefits of transshipments, increased replenishment lev-
els may do so, particularly if the constraints in the transshipments are more relaxed.

We had to make a number of simplifying assumptions to effectively deal with this
very large problem that has complicating operational constraints. Therefore, there
are a number of avenues for future research. While one may have accurate demand
forecasts as in this case, there are always forecast errors, and therefore, considering
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demand uncertainty is naturally an important extension to this study. In a similar
vein, initial shipment decisions under demand uncertainty may also be considered
jointly with the transfer decisions. Another potentially important avenue is to
develop integrated models that include transfer decisions as well as markdown
decisions, an avenue that we are currently pursuing. Finally, the frequency at which
the collections are renewed can also be made jointly with transfer as well as other
logistical decisions.
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3. Joint Transshipment, Return, and Markdown Decisions of a Fast

Fashion Retailer under Particular Business Rules

3.1 Introduction

Fashion includes several industries, such as apparel, footwear, leather, jewelry,
perfumes, and cosmetics (Macchion et al., 2015). Fashion producers develop
business strategies for their supply chains, specifically in logistics, to better respond
to the changing market demand. By improving the efficiency of logistics, fashion
products can be well distributed to retailers (Hu 2016). The supply chain of fashion
products is very complex. This complexity arises because of several factors, such
as high level of market uncertainty, the need to consider several capacity levels,
consumer behavior, and fast changing trends. Unlike products with steady demand
over time, attractiveness to consumers is a key factor in the fashion industry (Chen
et al., 2012). When a new item is introduced to the market, the appeal for older
items is diminished and sales of these items drop. Hence, the perishability of
fashionable products leads to relatively short life cycles during which inventory
and pricing decisions are critical to success. Inventory management is divided into
different problems, such as initial inventory, replenishment, and transshipment, all
of which aim at providing inventory to satisfy customers’ demands. The initial
inventory problem is important in that because in the fashion industry items are
ordered to suppliers before the start of the season, and generally, there is no chance
for a second order since delivery lead times are often longer than the length of the
selling season (Soysal and Krishnamurthi, 2012). Replenishment to retail stores is
a tool to avoid stock-out, but since in practice, in some retailers, replenishment
during the selling season is not allowed, transshipments are utilized to decrease the
possibility of stock-outs (Naderi et al., 2020).
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Transshipment is to transfer fashion apparel goods from one retailer to another
instead of from a distribution center to a retailer. Unlike the traditional inventory
systems in which products flow only from an echelon to another, flexible systems
allow horizontal collaboration among retail locations at the same level. In tradi-
tional systems, generally excessive stock is collected by distribution centers, to be
redistributed to retailers or to keep at distribution centers. The main benefit of
transshipment is to better match demand and inventory among the retail locations
which leads to a more balanced inventory system (Naderi et al., 2020).

Return has been considered in various research. Return has two main definitions:
One from the customer to the retailer due to different reasons according to the
business contracts (Kandel 1996 and Ülkü and Gürler, 2018), and one from retailer
to the warehouse. In this work, by return we mean the flow of the products from
retail locations to the warehouse, to be re-sent to the stores in future periods (after
re-assortment). Hence, a return is indeed a transshipment from retail locations to a
very big store with a huge capacity, i.e., central warehouse. Unlike transshipment,
a return is more costly. That is to say, in transshipment, only transportation costs
occur, while in return a holding cost for several months in the warehouse should be
considered as well.

Dynamic pricing policies are widely applied in many industries. Product pricing
is challenging as Monroe (1990) mentions “Today’s pricing environment demands
better, faster, and more frequent pricing decisions than ever before”. In the fashion
industry to survive among competitors attracting customers is crucial because of
the short life cycle of products. Customers show an opposing tendency in terms
of fashion and price (Ghemawat and Nueno, 2003). That is, fashion-sensitive
customers are willing to pay more for stylish items whereas price-inclined costumers
are attracted to an item when its price is decreased. Therefore, retailers can benefit
from the ability to change the prices later in the sale season to stimulate costumers
(Aviv et al., 2019 and Chen and Zhao, 2020). The National Retail Federation
(2009)1 indicates that more than 30% of sales occurred at markdown prices in 2009.
In addition, markdown decisions directly affect the revenue of the system. Heching
et al. (2012) state that model-based markdown schemes can potentially increase
revenue by four percent.

In the next section, we provide the characteristics of the company that motivated

1nrf.com
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this work and a detailed description of the problem setting. In Section 3.3 we give a
brief literature review on transshipment, markdown, and return problems. Section
3.4 presents details of the problem and the mathematical model. Section 3.5 presents
our solution methodology which consists of a Benders decomposition-based heuristic
and a simulated annealing metaheuristic. Section 3.6 discusses the performance of
proposed algorithms followed by results obtained from pilot tests in Section 3.7. A
few concluding remarks are presented in Section 3.8.

3.2 Characteristics of the company

This study is motivated by the practice at the largest textile retailer in Turkey, LC
Waikiki. LC Waikiki was founded in 1988 in France and then purchased by TEMA
group and became a Turkish brand in 1997. Today LC Waikiki has more than 1000
retail stores in 50 different countries and is the leader of the apparel sector in terms
of sales (more than 600,000 items per day) and the number of stores in Turkey and
17 more countries.

LC Waikiki has a centralized supply chain system in which all decisions are made
by the headquarter. Orders are placed to suppliers before the selling season
starts. Products are then received by a warehouse in Istanbul and distributed to
retail stores based on the predicted demands. The practice at LC Waikiki can be
considered as fast fashion since the products are kept in the stores for a period of six
to eight weeks. Sales are observed and if a particular product’s sales performance
is not as the expectation, its price may be reduced, it may be transshipped to
another store, or it can be returned to the warehouse to be later sent to outlet
centers/stores. Dealing with stock-outs and excess inventories in the fast fashion
sector is important because lost sales impose a huge cost on the system. These two
can be handled through pricing and transshipment which are the subject of this
work. Currently, LC Waikiki utilizes optimization tools accompanied by intuitive
heuristic methods to make transshipment decisions (see Naderi et al., 2020 for more
details).

The pricing decisions are made by the rule of thumb. A top manager and a specialist
meet once a week and based on the previous periods’ discounts’ results decide on the
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products which are discounted and the depth of discounts. As a matter of policy,
each discount cannot be less than a certain amount (e.g., 10%) nor more than a
predefined amount (e.g., 30%). However, discounted prices are rounded to numbers
like 24.99 or 29.99 Turkish Lira as these numbers psychologically affect customers
(Anderson and Simester, 2003). Once the price of a product is reduced, it cannot
be increased in the future. Moreover, if a product is discounted in a given week,
it cannot be more discounted in a consecutive week; a product must at least be
observed for two weeks after a markdown.

3.3 Literature review

There are several streams of literature related to this work, but the main charac-
teristic which distinguishes the problem we work on here from most transshipment
problems in the literature is incorporating pricing (specially markdown optimiza-
tion) and business rules. Although there are papers which are motivated by
real-world problems, most existing research in transshipment literature simplifies
practical issues and does not consider the business rules retailers face in practice.
We first review the most relevant research papers on transshipment and then look
into the related pricing literature.

Transshipment is utilized as a tool to improve supply chain performance concerning
revenue, cost and service level (Tagaras 1989, Banerjee et al., 2003, and Burton
and Banerjee, 2005). Transshipment is essentially divided into two types based on
the time it happens: Proactive and reactive (Lee et al., 2007, Paterson et al., 2011,
Seidscher and Minner, 2013, and Ahmadi et al., 2016). Reactive transshipment is
applied upon realized stock-out at a retail location and uses available inventory
in another location to satisfy unmet demand (see Axsäter 1990, Nakandala et al.,
2017, Boucherie et al., 2018, and van Wijk et al., 2019 for more details).

Proactive transshipment, which is the concern of this work, is based on the rebal-
ancing of inventory among retail locations and aims at decreasing the possibility
of stock-out in some retail locations, while in others the shelf space is expanded
so that new products can be displayed. The timing of the transshipment is an
important issue. Although it can be dictated by the business rules, there are
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models that consider the time of transshipment as a decision (Agrawal et al.,
2004 and Tiacci and Saetta, 2011) whereas models that consider static timing
(Kiesmuller and Minner, 2009). Replenishment decisions are another critical issue
to be considered in the transshipment models. Although some works consider
the joint replenishment and transshipment decisions (Abouee-Mehrizi et al., 2015
and Feng et al., 2017), transshipment is left out in some other models as it can
significantly increase the complexity of the model (Acimovic and Graves, 2014 and
Peres et al., 2017).

The literature on transshipment ignores pricing decisions and only focuses on
rebalancing inventory of the whole network among retail locations (Caro et al.,
2019 and Paterson et al., 2011 and references therein). However, in this research,
we consider the joint decisions on pricing and transshipment problems. We will
briefly review the most relevant works on pricing problems first and then relate it
to the transshipment problem.

Markdown optimization is a special case of dynamic pricing. A dynamic pricing
problem with a constraint which implies that future period prices cannot be
greater than the current price is a markdown optimization problem. Lazear (1986)
considers the first pricing problem in retail where he focuses on understanding
how pricing strategies can be affected by specific conditions. Hence, no oper-
ational tool was provided to determine markdowns. Rajan and Rakesh (1992)
provide the first tool for the determination of markdowns for a single product.
Gallego and van Ryzin (1997) extend the basic model by considering multiple
products. Elmaghraby and Keskinocak (2003) and Chen and Chen (2015) provide
well-cited reviews on the pricing problems where inventory control is also considered.

Almost all research on markdown optimization consider only one store (e.g., Feng
and Gallego, 1995, and Bitran and Mondschein, 1997). Bitran et al. (1998),
Heching et al. (2012), Chen et al. (2015), and Cosgun et al. (2017) consider
multiple stores. This important feature, which is the nature of the real-world
problem, is not considered in the literature since it increases the complexity of the
problem.

The timing of markdown is another critical issue discussed in the literature. Aviv
and Pazgal (2008) study the optimal pricing policy of fashion like seasonal products
and assume that there is a fixed time for only one price reduction. Unlike this
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research, Cachon and Swinney (2009) and Chen and Chen (2020) decide on the
time of markdown analytically. Continuous and discrete prices are both discussed
in the literature. Bitran et al. (1998), Smith and Achabal (1998), and Anjos et al.
(2005) assume continuous prices and allow any prices to be selected in markdowns
whereas Caro and Gallien (2012), Chen et al. (2015), and Caro et al. (2019) who
consider only discrete prices from a pre-defined, finite, and discrete set.

Substitution is another feature in pricing literature. Substitution allows a customer
to purchase a product that is discounted instead of an expensive one in the same
group, hence, the markdown policy of a product affects the sales of other products
(Cosgun et al., 2017). On the other hand, independent products are assumed
in Caro and Gallien (2012), Erdelyi and Topaloglu (2011), and Wang and Ye (2013).

Although pricing problem is not considered with transshipment jointly, joint pricing
and inventory problems are well studied. For example, the effect of inventory de-
pendence of demand on optimal pricing is analyzed in Smaith and Agrawal (2017).
Deng et al. (2018) study pricing and inventory problems with promotion constraints
for a single fast-moving product. Caro et al. (2019) consider joint decisions under
business rules for a fashion apparel retailer.

3.4 Problem description and mathematical formulation

The problem we consider in this paper is motivated by retail practices at LC
Waikiki, the largest fashion retailer in Turkey with multiple retail locations. The
company has a precise stock inventory of each size of the products (stock keeping
units, SKUs) at each retail location. In addition, the demands of SKUs at retail
locations for the remainder of the selling season is available.

The firm outsources logistics and based on contracts each product has a fixed
transshipment cost regardless of the origin and destination of the transshipment (see
Naderi et al., 2020 for more details). We also assume that transshipment lead times
are static. As the bulk of sales occur at weekends, delivering the products before the
weekend is satisfactory for the firm. Hence, it is assumed that transshipment has
no effect on sales. Moreover, replenishment to stores is not allowed, as LC Waikiki
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allocates the entire inventory at the beginning of the selling season because it
is desirable to keep inventories in the retail locations rather than distribution centers.

At LC Waikiki markdown prices are determined by top management. The set
of prices for a particular product is in a non-increasing order as markdowns are
permanent, i.e., once a price is decreased it cannot be increased again. Moreover,
a product may have different prices in different stores, thus, it may be discounted
in a particular store while in other stores it has its regular price. It is stated in the
pricing literature that markdown policies directly affect the adoption rate (sales)
(e.g., Namin et al., 2017). Unlike transshipment, markdowns directly affect sales.
We will elaborate on this in the next subsection.

According to the business rules at LC Waikiki, we consider a single-period,
multiple-products, multiple-locations problem. The timing of transshipment,
markdowns, and return are static and these decisions are made once a week which
allows us to consider a single-period assumption. The set of markdowns is also
determined beforehand. The price set is decided by the top management according
to previous periods’ markdowns and their effects on the sales. Demand is assumed
to be deterministic as the forecast at LC Waikiki is fairly accurate. After two or
three weeks of sales, the firm has a better idea of the forecast for the rest of the
selling season. It is also shown in the fashion literature that forecasts error toward
the end of the products’ life cycles is significantly smaller (e.g., Caro and Gallien,
2010).

There are operational constraints that are dictated by the actual process at LC
Waikiki. There exist several capacity constraints that should be considered. For
instance, each store has a transshipment capacity on the number of SKUs. Likewise,
a particular store cannot transship to more than a predefined number of stores
and it cannot receive from more than a specific number of stores. Moreover, a
merch-sub-group (MSG) capacity should be included in the model. Each MSG
contains several products with similar features/target audience. For instance, shirts
for young men form an MSG. Each store has a determined space for each MSG.
Without this constraint, a particular store may receive more SKUs than the space
it assigns to an MSG. There is also a single-destination constraint (i.e., when a
product is shipped from one store to another, all available SKUs of the product
must be shipped) that should be included in the model.
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It is assumed that there is no holding cost associated with any unsold item be-
cause unlike online shopping where disclosing limited inventory availability stimu-
lates consumer demand (Peinkofer et al., 2016), in classical brick-and-mortar stores,
displaying more inventory causes more sales. Hence, the cost of keeping an SKU is
insignificant compared to its profit.

3.4.1 Demand equation

In this part, we look at the changes in product demand regarding the price
markdown to observe consumers’ responses. Consumers are not only sensitive to
product’s price, but other marketing factors potentially affect consumers’ behavior
(Caro and Gallien, 2012). To find these factors, after several meetings with
managers at LC Waikiki, based on their experiences, we concluded that in addition
to price of the product, age, demand level of previous week, broken assortment, and
seasonality of current week also affect the product’s demand. Age is the number
of days passed since the product was first introduced to market. Generally the
peak of sales occurs shortly after the product is introduced. As the time goes
by, its sales gradually decreases. Hence, the same level of markdown in the first
week increases sales more than future weeks. Demand level of current week is
a function of demand in the previous week, since it is not expected to observe
severe changes in demand from a week to another. Products are allocated to stores
as packages with different levels for each sizes (based on the projected demand).
In retail industry, it is shown that demand rate diminishes when inventory level
at store goes under a certain level. Specially in fashion apparel, generally those
products with less attraction remain at shelves (Smith and Achabal, 1998 and Caro
and Gallien, 2012). Seasonality is another factor which is considered. Holidays or
normal weather pattern which can be driven from historical data are two important
components of seasonality.

In this paper, we assume that it is only the price which affects the demand. There-
fore, other aforementioned factors are left out of scope here. In addition, we consider
a Coob-Douglas demand function as:

d= αr−β (3.1a)

where d is demand of the product, r is its price, and α and β are parameters.
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Suppose that after markdown, reduced price and demand are p′ and d′ , respectively.
Intuitively, we can write the new demand as a function of its regular price, discounted
price, and its initial demand (which is predicted according to the regular price).
Therefore,

d
′
= d

p′
p

 (3.2a)

We assume that the effect of markdown on all sizes of a particular product is the
same. In addition, it is assumed that markdown affects sales in different stores at
the same level.

3.4.2 Price lowering rules

When a product is displayed on shelves at a store, its price does not change for three
weeks. The main reason is that LC Waikiki wants to adjust its forecast by observing
the product’s sales performance in the first three weeks. After three weeks, its price
may be reduced if its sales performance is less than expectation. After lowering the
price of a product, it is not possible to increase it again. In addition, when a product
is decided to be discounted, there will not be another price reduction for the next
two weeks. This is again to measure the sales performance of the product at its new
price level. Price levels are selected from a defined set. The price sets are decided
based on the products’ historical sales data, and for product groups. Products are
divided into groups according to their similarities. Hence, if a product is new, i.e.,
no historical information is available, its price set is considered to be the same as
other products within the group. Products within a group have similar features; for
instance, v-collar t-shirts made of silk for men aged between 18 and 25 is a group.

3.4.3 Mathematical formulation

We now give indices, parameters, and decisions variables, followed by the formulation
of the model.

Sets and indices:

i, j ∈ I : Set of stores,
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p ∈ P : Set of products,

k ∈Kp : Set of sizes for each product p ∈ P ,

f ∈ Fp : Set of prices for each product p ∈ P ,

g ∈G : Set of Merch-Sub-Group,

Parameters:

sipk : Stock level of size k of product p at store i,

cp: Unit transshipment cost of product p,

dipkf : Demand of size k of product p at store i with price f ,

ripf : Unit net revenue of product p in store i with price f ,

Capig: Capacity of MSG g at store i ,

Mpg =

 1, if product p belongs to MSG g,

0, otherwise,
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The model:

maxΠ =
∑
i∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

ripfzipkf −
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

∑
f∈Fp

cpsipkxijpf (3.3a)

s.t. zipkf ≤ dipkf , for all i ∈ I,p ∈ P,f ∈ Fp and k ∈Kp, (3.3b)

zipkf ≤
∑
j∈I

sjpkxjipf , for all i ∈ I,p ∈ P,f ∈ Fp and k ∈Kp, (3.3c)

∑
f∈Fp

wjpf = 1, for all j ∈ I and p ∈ P, (3.3d)

xijpf ≤ wjpf , for all i, j ∈ I,f ∈ Fp and p ∈ P, (3.3e)∑
j∈J

∑
f∈Fp

xijpf = 1, for all i ∈ I and p ∈ P, (3.3f)

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

∑
f∈Fp

sipk ∗xijpf ≤Ai, for all j ∈ I,f ∈ Fp and p ∈ P, (3.3g)

∑
j∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

xjipfsjpkMpg−
∑
j∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

xijpfsiokMpg ≤ Capig

for all i ∈ I,g ∈G (3.3h)

xijpf +xjipf ≤ 1, for all i, j ∈ I,p ∈ P and f ∈ Fp, (3.3i)∑
j∈I
j 6=i

yij ≤Bi, for all i ∈ I, (3.3j)

∑
j∈I
j 6=i

yji ≤ Ci, for all i ∈ I, (3.3k)

xijpf ≤ yij , for all i, j ∈ I,j 6= i and p ∈ P, (3.3l)

xijpf ∈ {0,1}, for all i, j ∈ I,p ∈ P and f ∈ Fp, (3.3m)

yij ∈ {0,1} for all i, j ∈ I, (3.3n)

wipf ∈ {0,1}, for all i ∈ I,p ∈ P and f ∈ Fp, (3.3o)

zipkf ∈ Z+ for all i ∈ I,p ∈ P,k ∈Kp and f ∈ Fp. (3.3p)

where objective (3.3a) is the total revenue less the total transportation cost. Con-
straints (3.3b) and (3.3c) ensure that sales are less than or equal to demand or
the available stock of SKUs after the transshipments are made. Constraints (3.3d)
guarantee that a product has a single price in a store. Moreover, a store receives a
product with a markdown price if the product is decided to be discounted in that
store and this is ensured by Constraints (3.3e). Constraints (3.3f) imply the single
destination constraint. Constraints (3.3g) ensure that a store does not transship
more SKUs than it is allowed. In addition, each store has an MSG capacity, and the
inflow less the outflow of MSG in a store is not allowed to be more than the store’s
MSG capacity which is implied by Constraints (3.3h). Constraints (3.3i) ensure that
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if a product is transshipped from a store to another one, the receiver store should
not send back its available stock to the sender. Stores are not allowed to transfer
to more than a given number of stores and receive from a defined number of stores
which is guaranteed by Constraints (3.3j) and (3.3k), respectively. Constraints (3.3l)
allow a transship with or without markdown to a particular store if two stores are
connected. Constraints (3.3m), (3.3n), (3.3o), and (3.3p) define decision variables.

3.5 Solution methodology

In this section, we present a solution approach to obtain transshipment, markdown,
and return decisions. This approach compromises a metaheuristic to obtain promis-
ing incumbent solutions, and a Benders Decomposition (BD) based heuristic to find
good upper bounds.

3.5.1 Simulated annealing metaheuristic

We adopted the same method that Naderi et al. (2020) apply. We obtain incumbent
solutions, i.e., lower bounds, in two steps; we first, construct a feasible solution via
a simple heuristic, and then improve it through a metaheuristic. The construction
heuristic first divides store-product combinations to groups of senders and receivers
based on their inventory level and projected demand. Then, we connect stores until
no improvement is observed. A connection is selected if it provides the best profit
among all candidates. As we know the effect of markdowns on the demand level,
the price which provides the largest profit is selected at this level. In addition, if a
store-product pair is decided to remain at its origin (as its inventory and demand
levels are already balanced), still it may be discounted if markdown increases the
profit considerably. The senders and receivers groups are then updated. Next, for
each store in the senders group, we find products that can be sent to an existing
connection. In this way, feasibility of (3.3j) and (3.3k) are ensured.

To improve the initial feasible solution, we adopt simulated annealing and local
search. We start by removing some transshipments. We select a store-product pair
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which received more SKUs than its need and remove this transshipment. For this
store-product, we find the sender. We then, find another receiver for this sender
and insert a new transshipment. If the receiver receives the product from another
store, the new transshipment should be added at the same price, otherwise, the
price which provides the most profit is chosen. To avoid trapping in local optima,
we accept non-improving moves with a probability. The probability is high (close
to one) at the first iterations, therefore, non-improving moves are accepted with a
high probability. This gives us the chance to search a bigger part of the feasible
region. The probability is updated in each iteration, so that possibility of accepting
non-improving moves decreases by increasing the number of iterations. Note that,
in any move, the feasibility of the solution is guaranteed. Whenever an improved
solution is found, we apply a greedy local search to improve the current solution
(For more information please see Naderi et al., 2020).

3.5.2 BD based heuristic

Benders decomposition (BD) (Benders 1962) based approaches are utilized in the
problems which have decomposable structures with an objective of tackling prob-
lems with variables which, when are fixed, become significantly easier. BD was first
proposed to deal with a class mixed-integer problem (MIP) and uses the advantage
of decomposing the current formulation into Benders Sub-Problems (BSP), which is
generally a linear program, obtained by fixing some decision variables of the original
problem to a feasible value, and a second problem called Restricted Master Problem
(RMP), which is generally an integer program. BD is an iterative process in which
in each iteration a cut is added to the RMP. The cuts are deducted by solving
the BSP. RMP is solved to optimality in each iteration and is expected to provide
the optimal solution to the original problem after a certain number of iterations.
However, in each iteration, RMP provides an upper bound (for maximization prob-
lem) and BSP provides an incumbent solution to the original problem if it is feasible.

BD is applied to a variety of applications such as stochastic programming, global
optimization, etc. BD based heuristics are applied to difficult combinatorial opti-
mization problems such as multi-commodity flow problem (Raild 2015), capacitated
plant location (Lai and Sohn, 2012), and vehicle routing problem (Lai et al., 2012)
where metaheuristics are adopted to solve either the RMP or BSP if it is not an
LP. Furthermore, BD is used in combination with metaheuristics as well. For
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example, Boland et al. (2016) utilize BD to solve a two-stage MIP. The basic idea
is to start by feeding RMP a feasible solution. This approach is called Proximity
Benders (PB). We also adopt the same procedure to solve the proposed model.
We first, use the proposed simulated annealing to obtain a feasible solution. As
RMP is a relaxation of the original problem, a feasible solution to the original
problem is feasible with respect to RMP as well. Using the solution obtained from
the proposed simulated annealing as an initial feasible solution to solve the RMP,
helps to find a tighter upper bound compared to when it is solved by a commercial
optimizer. In the next step, we solve the BSP and generate a feasibility/optimality
cut to be added to the RMP. If the solution of RMP is not feasible with respect to
BSP, then a feasibility cut is added to RMP. Otherwise, if the solution is feasible,
hence, BSP has an optimal solution, an optimality cut is deducted and added to
RMP.

Problem (3.3a)-(3.3p) is decomposed to a master problem where only binary decision
variables (w and x) and their associated constraints are included. Optimal solution
of this problem provides an upper bound on the optimal solution of the original
problem.

Benders master problem

maxΠ = −
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

∑
f∈Fp

cpsipkxijpf (3.4a)

s.t.
∑

f∈Fp

wjpf = 1, for all j ∈ I and p ∈ P, (3.4b)

xijpf ≤ wjpf , for all i, j ∈ I,f ∈ Fp and p ∈ P, (3.4c)∑
j∈J

∑
f∈Fp

xijpf = 1, for all i ∈ I and p ∈ P, (3.4d)

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

∑
f∈Fp

sipk ∗xijpf ≤Ai, for all j ∈ I,f ∈ Fp and p ∈ P, (3.4e)

∑
j∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

xjipfsjpkMpg

−
∑
j∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

xijpfsiokMpg ≤ Capig for all i ∈ I and g ∈G, (3.4f)

xijpf +xjipf ≤ 1, for all i, j ∈ I,p ∈ P and f ∈ Fp, (3.4g)

. xijpf ≤ yij , for all i, j ∈ I,j 6= i and p ∈ P,

xijpf ∈ {0,1}, for all i, j ∈ I,p ∈ P and f ∈ Fp,

wipf ∈ {0,1}, for all i ∈ I,p ∈ P and f ∈ Fp.

On the other hand, the rest of the decision variables (y and z) and constraints are
considered in the sub-problem while x and w are known from the master problem.
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y and z are binary and integer decision variables, respectively. However, as the
nature of constraints if these decision variables are considered as continuous, still
the optimal solution to the sub-problem is obviously binary for y and integer for
z. As the sub-problem is a linear program, an optimal solution is obtained easily.
Solving the sub-problem provides the information on whether or not the optimal
solution of the master problem is feasible with respect to the other constraints in
the sub-problem.

Benders sub-problem

maxΠ(x̂) =
∑
i∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

ripfzipkf (3.5a)

s.t.
∑
j∈I
j 6=i

yij ≤Bi, for all i ∈ I, (3.5b)

∑
j∈I
j 6=i

yji ≤ Ci, for all i ∈ I, (3.5c)

zipkf ≤ dipkf , for all i ∈ I,p ∈ P,f ∈ Fp and k ∈Kp, (3.5d)

−yij ≤−x̂ijpf , for all i, j ∈ I,j 6= i and p ∈ P, (3.5e)

zipkf ≤
∑
j∈I

sjpkx̂jipf , for all i ∈ I,p ∈ P,f ∈ Fp and k ∈Kp, (3.5f)

yij ∈ Z+ for all i, j ∈ I, (3.5g)

zipkf ∈ Z+ for all i ∈ I,p ∈ P,k ∈Kp and f ∈ Fp. (3.5h)

A solution of the master problem makes the sub-problem either infeasible or it is
feasible (hence optimal with respect to the sub-problem). If the former happens, a
feasibility cut which is formed by the dual information of the sub-problem must be
added to the master problem. Likewise, if the sub-problem has an optimal solution
an optimality cut must be added. To be able to get the dual information, we form
the Benders dual sub-problem. Now assume that we introduce the following dual
variables associated with constraints in the problem (3.5a)-(3.5h):

• ν1 = {ν1
i ∈ R+ : i ∈ I} associated with Constraints (3.5b)

• ν2 = {ν2
i ∈ R+ : i ∈ I} associated with Constraints (3.5c)

• ν3 = {ν3
ipkf ∈ R+ : i ∈ I,p ∈ P,k ∈Kp,f ∈ Fp} associated with Constraints (3.5d)

• ν4 = {ν4
ijpf ∈ R+ : i, j ∈ I,p ∈ P,f ∈ Fp} associated with Constraints (3.5e)

• ν5 = {ν5
ipkf ∈ R+ : i ∈ I,p ∈ P,k ∈Kp,f ∈ Fp} associated with Constraints (3.5f)
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The Dual Benders Sub-Problem (DBSP) is written as bellow:

minΠ(x̂) =
∑
i∈I

(ν1
i Bi +ν2

i Ci)−
∑

i,j∈I
j 6=i

∑
p∈P

∑
f∈Fp

ν4
ijpf x̂ijpf

+
∑
i∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

(ν3
ipkfdipkf +ν5

ipkf (
∑
j∈I

x̂ijpfsjpk)) (3.6a)

s.t. ν1
i +ν2

i −
∑
p∈P

∑
f∈Fp

ν4
ijpf ≥ 0, for all i ∈ I, (3.6b)

ν3
ipkf +ν5

ipkf ≥ ripf , for all i ∈ I,p ∈ P,k ∈Kp and f ∈ Fp, (3.6c)

ν1
i ≥ 0, for all i ∈ I, (3.6d)

ν2
i ≥ 0, for all i ∈ I, (3.6e)

ν3
ipkf ≥ 0, for all i ∈ I,p ∈ P,k,∈Kp and f ∈ Fp, (3.6f)

ν4
ijpf ≥ 0, for all i, j ∈ I,p ∈ P, and f ∈ Fp, (3.6g)

ν5
ipkf ≥ 0, for all i ∈ I,p ∈ P,k,∈Kp and f ∈ Fp. (3.6h)

Now assume that the optimal objective value of problem (3.6a)-(3.6h) is q. We can
rewrite DBSP as:

minΠ(x̂) = q (3.7a)

s.t. q ≤
∑
i∈I

(ν1
i Bi +ν2

i Ci)−
∑

i,j∈I
j 6=i

∑
p∈P

∑
f∈Fp

ν4
ijpf x̂ijpf

+
∑
i∈I

∑
p∈P

∑
k∈K

∑
f∈Fp

(ν3
ipkfdipkf +ν5

ipkf (
∑
j∈I

x̂ijpfsjpk)) (3.7b)

(3.6b)− (3.6h) (3.7c)

The benders restricted master problem is rewritten as bellow:

maxΠ = q−
∑
i∈I

∑
j∈I
j 6=i

∑
p∈P

∑
k∈Kp

∑
f∈Fp

cpsipkxijpf (3.8a)

s.t.
∑
i∈I

(υ1
iBi +υ2

iCi)−
∑

i,j∈I
j 6=i

∑
p∈P

∑
f∈Fp

υ4
ijpfxijpf +

∑
i∈I

∑
p∈P

∑
k∈K

∑
f∈Fp

(υ3
ipkfdipkf

+υ5
ipkf (

∑
j∈I

xijpfsjpk))≥ 0 (3.8b)

∑
i∈I

(ν1
i Bi +ν2

i Ci)−
∑

i,j∈I
j 6=i

∑
p∈P

∑
f∈Fp

ν4
ijpfxijpf +

∑
i∈I

∑
p∈P

∑
k∈K

∑
f∈Fp

(ν3
ipkfdipkf

+ν5
ipkf (

∑
j∈I

xijpfsjpk))≥ q (3.8c)

(3.4b)− (3.4h) (3.8d)
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where Constraints (3.8b) and (3.8c) are feasibility and optimality cuts, respectively.
Note that, like νl, υl are the extreme rays when BSP is unbounded. As stated
before, BD is an iterative process. In each iteration, problem (3.8a)-(3.8d) is
solved first. Then problem (3.7a)-(3.7c) is solved by fixing the solution obtained
from restricted master problem. According to the solution of the sub-problem, a
feasibility or optimality cut is added to the restricted master problem. This process
continues until difference of the optimal solution of restricted master problem and
sub-problem is less than a predefined value or another stopping criteria is reached.

Accelerating BD using Covering Cut Bundle (CCB) generation

Although BD is an exact method and guarantees to find the optimal solution, it is
shown that this process may be quite slow (Saharidis et al., 2010) mainly because
of time-consuming iterations; poor feasibility and optimality cuts; and unchanged
upper bounds (Rahmaniani et al., 2017). To accelerate the convergence of BD, we
adopted the procedure utilized by Saharidis et al. (2010), and combined it with
PB.

Studying the form of cuts added to the RMP shows that these cuts are low-density
cuts. A low-density cut is a cut in which a small number of decision variables of
RMP have non-zero coefficients; hence, the contribution of such cuts to restrict
the solution space of RMP is limited. Consequently, this increases the number
of iterations needed to find the optimal solution. The main idea of CCB is to
strengthen the cuts by increasing the density of them. Therefore, in each iteration,
the cut produced by classical Benders is examined, and variables that are not
“covered” are found. Then, another cut, which “covers” at least one of those
variables is generated and added to RMP. This procedure is continued until all or
a predefined number of decision variables in RMP are covered.

Definition: A variable xijpf is α−covered in a feasibility/optimality cut if
|∑k∈K ν

5
jpkfsipk− ν4

ijpf | ≥ αmaxijpf{|
∑
k∈K ν

5
jpkfsipk− ν4

ijpf |} where α is a prede-
fined parameter in [0,1].

To generate α−CCB, we add a lower bound (LB) and an upper bound (UB) to the
coefficient of xijpf decision variables, ∑

k∈K ν
5
jpkfsipk−ν4

ijpf , which are α−covered.
Hence, following constraints are added to the DBSP.
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LBijpf ≤
∑
k∈K

ν5
jpkfsipk−ν4

ijpf ≤ UBijpf

Now we have the following Auxiliary Dual Problem (ADP):

minΠ = (3.6a) (3.10a)

s.t.
∑
k∈K

ν5
jpkfsipk−ν4

ijpf ≥ LBijpf , for all i, j ∈ I,p ∈ P and f ∈ F, (3.10b)

−
∑
k∈K

ν5
jpkfsipk +ν4

ijpf ≥−UBijpf , for all i, j ∈ I,p ∈ P and f ∈ F, (3.10c)

(3.6b)− (3.6h) (3.10d)

Assume that µ = {µijpf ∈ R+ : i, j ∈ I,p ∈ P,f ∈ Fp} associated with Constraints
(3.10b) and θ = {θijpf ∈ R+ : i, j ∈ I,p ∈ P,f ∈ Fp} associated with Constraints
(3.10c) are the dual variables. Therefore, Auxiliary Primal Problem (APP) becomes:

maxΠ(x̂) =
∑
i∈I

∑
p∈P

∑
k∈Kp

∑
f∈Fp

ripfzipkf

+
∑
i,j∈i

∑
p∈P

∑
f∈Fp

(LBijpfµijpf −UBijpfθijpf ) (3.11a)

s.t. −yij−µijpf +θijpf ≤−x̂ijpf , for all i, j ∈ I,j 6= i and p ∈ P,(3.11b)

zipkf +
∑
j∈I

µjipfsjpk−
∑
j∈I

θjipfsjpk ≤
∑
j∈I

sjpkx̂jipf ,

for all i ∈ I,p ∈ P,f ∈ Fp and k ∈Kp, (3.11c)

µijpf ,θijpf ≥ 0, for all i, j ∈ I,p ∈ P, and f ∈ Fp, (3.11d)

(3.5b)− (3.5d) and (3.5g)− (3.5h). (3.11e)

Note that, as the number of iterations and decision variables are the same in
APP and BSP, therefore, adding lower bounds and upper bounds does not have
any negative effect on CPU time. In order to generate a cut using CCB, we
first update APP using the current solution of RMP and fix the coefficient of
xi0j0p0f0 which is α-covered to LBi0j0p0f0 = UBi0j0p0f0 = η. Solving APP with this
modification, provides us a cut in the same form of Benders cut. Parameter η is
the average of coefficients of α-covered variables in the Benders cut. If coefficient
of an α-covered variable is non-negative, then LBi0j0p0f0 = UBi0j0p0f0 = +η,
otherwise LBi0j0p0f0 = UBi0j0p0f0 = −η. On the other hand, For other vari-
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ables, if coefficient is non-negative, LBi0j0p0f0 = 0,UBi0j0p0f0 = η/α, otherwise,
LBi0j0p0f0 =−η/α,UBi0j0p0f0 = 0.

We apply CCB in BD based heuristic through lazy constraints callback function.
Within the callback function, each time an incumbent solution is found, we check
whether or not this solution makes the BSP infeasible (optimal). Then a feasibility
(optimality) cut is added according to the procedure explained in CCB.

3.6 Performance evaluation of the algorithm

In this section, we evaluate performance of our bounds. We selected a group of
products with over 1000 products which have either five or 10 sizes and have been
discounted before. Hence, information on the effect of the price change on the
demand level is available. Generally, each product is discounted three times since
the selling season is not long enough to have more price changes (Recall that after
each discount its price does not change for two weeks). The price sets for these
products are also readily available. We assume that α and β parameters are equal
for products in the same group.

The initial demand level at regular price (dipk0) and inventory level (sipk) at stores
are randomly generated from a discrete uniform distribution that is defined between
0 and 10. Transshipment cost varies for each product based on its volume. But
roughly, it is between %1 to %5 of its price. Therefore, we randomly generate
transshipment costs from a uniform distribution with the aforementioned bounds.
As mentioned before, the return cost involves both transportation and holding costs
at the depot. LC Waikiki states that according to its system, the return cost is as
low as %3 of the product’s price and as high as %7 of its price. Again, we generate
return costs randomly from a uniform distribution between the given bounds.

To find parameters for the operational constraints (Ai, Bi, Ci, and Capig), we
first solved each instance by relaxing these constraints. We then calculate the
number of items a store sends, the number of connections (both as a sender
and receiver), and the number of items from a particular MSG which are sent.
These are essentially the maximum values for these parameters where there are
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no operational constraints. We then consider three levels for these parameters;
high (2/3 of maximum), medium (1/2 of maximum), and low (1/3 of maximum).
In addition, for each size and Ai, Bi, Ci, and Capig combinations, we generated
10 instances. We found this number based on the method used in Naderi et al.
(2020). All instances are solved by Gurobi 8.1 and then by proposed algorithm
which is implemented in Python 3.7 in High Performance Computing Clusters with
Linux system, 64-100 GB RAM depending on the sizes of instance, and 2.40 Ghz
processors with two cores. .

Results are illustrated in Table 3.1, Table 3.2, and Table 3.3. We have reported
results obtained by solving each instance using a commercial software, Gurobi, and
the developed Benders decomposition-based heuristic. The first column in each
table, depicts the size of the instance, i.e., the number of stores, number of products,
and the number of sizes these products have. Both Gurobi and metaheuristic
columns report the average lower bound of 10 replications, average optimality gap
along with the minimum and maximum optimality gaps that are achieved. The
time limits are user-defined. We set the time limit as one, three, six, and 12 hours
depends on the size of the problem.

The results reveal that the proposed algorithm is comparable to, and in some cases,
more efficient than commercial optimizer in terms of optimality gaps. Considering
the results, for the low level of capacities, in instances with less than 20 stores, and
less than 200 products Gurobi performs better than our algorithm by obtaining
a smaller optimality gap. In these instances, Gurobi found an optimal solution
within the time limit in most of the replications. In instances with 20 stores, 200,
and 500 products, although Gurobi could not find the optimal solution within the
time limit, it obtained solutions with very tight optimality gaps. In the rest of the
problems, proposed algorithm outperforms Gurobi by solving these instances with
a maximum optimality gap of about 5%.

It is observed that Gurobi fails to solve instances with five sizes and obtained
solutions with optimality gaps of even more than 1000%. On the other hand,
Gurobi found solutions with smaller optimality gaps for the problems of the same
number of stores and products, but 10 sizes. The main reason is when there are 10
sizes, the possibility of finding a profitable transshipment is smaller compared to
when there are five sizes. This is indeed due to the single-destination constraint,
which enforces a store to send all available sizes of products, if it is transshipped
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(for more details please see Naderi et al., 2020).
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Table 3.1 Results for Low levels of capacities

Gurobi BD based Metaheuristic
Gap Gap

Instance Average Average Average Average
I−O−K Lower bound Min Average Max Runtime Lower bound Min Average Max Runtime
10-100-5 13,6839 0.00 0.00 0.00 707 132,516 2.69 4.34 6.96 3600
10-100-10 57,425 0.00 0.00 0.01 32 56,069 2.69 5.12 6.07 3600
20-100-5 332,621 0.43 0.45 0.46 3600 328,644 3.63 4.93 5.60 3600
20-100-10 115,959 0.00 0.21 0.84 1143 112,838 3.67 5.16 6.93 3600
20-200-5 734,324 0.89 0.97 1.07 10800 730,304 1.83 2.29 2.61 7800
20-200-10 439,406 0.07 0.09 0.12 10800 434,308 1.44 2.49 3.48 10299
20-500-5 1,445,866 7.66 8.44 9.80 21600 1,450,031 2.59 3.25 3.91 21417
20-500-10 807,539 0.53 0.63 0.74 21600 803,210 0.92 1.91 2.38 21142
30-200-5 935,029 11.72 19.48 130.79 21600 1,055,128 2.94 3.47 4.31 21397
30-200-10 740,068 4.70 6.92 8.84 21600 762,959 3.13 3.50 3.72 20853
50-100-5 867,415 15.58 54.49 232.56 43200 1,187,752 1.63 2.09 2.47 43200
50-100-10 863,889 6.99 8.93 10.45 43200 909,672 2.15 2.78 3.57 43200
50-200-5 838,951 1222.59 1267.09 1306.73 43200 2,222,048 2.07 2.14 2.22 39895
50-200-10 1,436,054 25.61 38.50 166.48 43200 1,608,009 2.02 2.70 3.19 40868
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Table 3.2 Results for Medium levels of capacities

Gurobi BD based Metaheuristic
Gap Gap

Instance Average Average Average Average
I−O−K Lower bound Min Average Max Runtime Lower bound Min Average Max Runtime
10-100-5 154,687 0.00 0.01 0.10 648 151,239 3.65 5.45 6.10 3600
10-100-10 70,587 0.00 0.00 0.01 31 68,305 3.60 5.07 6.39 3600
20-100-5 393,348 0.62 0.69 0.81 3600 387,969 3.48 4.12 4.76 3600
20-100-10 232,353 0.00 0.16 0.63 3600 229,233 1.84 2.10 2.69 3600
20-200-5 838,964 1.91 2.16 2.64 10800 838,654 1.96 2.29 2.56 10800
20-200-10 536,977 0.50 0.65 1.44 10800 535,614 0.49 1.19 1.74 10800
20-500-5 1,580,275 8.05 8.49 10.18 21600 1,587,107 2.89 4.37 5.44 21600
20-500-10 926,808 0.62 0.69 0.76 21600 922,190 1.62 1.97 2.20 21600
30-200-5 1,139,535 13.47 15.42 17.22 21600 1,186,590 2.42 3.16 3.51 21600
30-200-10 908,700 14.41 15.74 19.64 21600 1,023,276 2.10 2.40 2.51 21600
50-100-5 410,348 260.33 925.81 1277.60 43200 1,511,039 2.70 3.65 3.94 43200
50-100-10 894,298 5.31 8.29 10.48 43200 908,950 1.62 1.89 2.86 43200
50-200-5 838,530 1230.59 1269.15 1303.53 43200 2,464,857 2.00 2.04 2.10 43200
50-200-10 1,630,195 19.86 20.60 20.66 43200 1,654,502 2.35 2.86 2.97 43200
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Table 3.3 Results for High levels of capacities

Gurobi BD based Metaheuristic
Gap Gap

Instance Average Average Average Average
I−O−K Lower bound Min Average Max Runtime Lower bound Min Average Max Runtime
10-100-5 198,300 0.01 0.01 0.03 2846 192,468 3.34 4.88 5.81 3600
10-100-10 104,186 0.00 0.00 0.01 44 101,042 3.43 5.15 6.16 3600
20-100-5 470,905 3.96 4.47 4.85 3600 469,122 4.18 5.23 6.15 3600
20-100-10 297,845 0.87 2.02 3.62 3600 298,035 2.04 2.67 3.01 3600
20-200-5 928,158 3.16 3.45 3.60 10800 931,609 1.66 2.43 2.88 9746
20-200-10 598,136 1.05 1.19 1.31 10800 597,904 0.73 1.24 1.57 10800
20-500-5 1,688,186 9.44 9.57 9.72 21600 1,707,349 3.50 4.56 4.93 20974
20-500-10 1,026,334 0.62 2.11 6.99 21600 1,031,422 1.75 1.99 2.41 19763
30-200-5 1,140,186 13.19 15.33 17.31 21600 1,192,258 2.48 3.23 4.96 21600
30-200-10 861,483 6.40 9.62 12.12 21600 906,187 2.31 2.86 4.06 21600
50-100-5 905,191 18.67 72.12 290.78 43200 1,329,576 1.53 1.59 1.70 41289
50-100-10 1,731,123 13.87 15.99 19.46 43200 1,893,706 2.44 2.53 2.69 43200
50-200-5 838,676 1228.69 1270.62 1307.86 43200 2,559,302 1.87 1.91 1.97 42987
50-200-10 1,715,067 13.87 15.82 19.46 43200 1,879,220 2.45 3.17 4.89 43200
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In the next part of our experiments, we elucidate the effect of operational con-
straints. LC Waikiki, has four capacity and a single-destination restrictions. One
can observe these effects from Table 3.1, Table 3.2, and Table 3.3. When capacities
are increased, Gurobi can solve less instances with an optimality gap of less than
10%. We devised our experiment in this way: we considered an instance with 10
stores, 100 products, and 10 sizes and for each capacities we considered five levels.
Three levels are the levels that we discussed earlier. In addition to these levels, we
added one which is smaller that the least one, 1/3, and one which is greater than
the biggest one, 2/3. We then solved 10 replications with 5*5*5*5 capacity settings.

Unlike transshipment problem (Naderi et al., 2020) in which increasing capacity
would make it easier to solve the problem, by increasing capacities, this problem
becomes more complex and Gurobi needs more time to solve the problem. Figure
3.1 and Figure 3.2 illustrate the effect of increasing capacities on the time it takes
Gurobi to find the optimal solution.

Figure 3.1 Effect of Ai and Bi on the execution time of Gurobi.

These results show that increasing the capacities on the total SKUs a store can
transfer, the restriction on the number of receivers, and MSG capacity, has negative
effect on execution time and the overall execution time is increased. For instance,
increasing Ai from low to high will increase the execution time by 70%, and
increasing Ci from medium to high will increase the time by roughly 10%. This
may be explained by the relation between transshipment and discount. Having
looser capacities causes to have more transshipment options, therefore selecting
among transshipment and discount (return is a transshipment) makes the problem
harder to solve. The only exception is related to the restriction on the number
of connections where, by increasing the capacity, the overall execution time is
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Figure 3.2 Effect of Ci and Capig on the execution time of Gurobi.

decreased even though from its low level to its medium and high level. This might
happen since Ai is already tight, therefore, Bi does not have negative effect.

3.7 Pilot test

As a part of this dissertation, in collaboration with LC Waikiki, we tested the
proposed simulated annealing metaheuristic and compared its results with the
results obtained from LC Waikiki’s current algorithm. As LC Waikiki does not
solve a joint problem, we also considered only the transshipment problem in our
pilot tests. LC Waikiki solves a sequential problem in which first transshipment,
then markdown, and finally return decisions are made. We consider the problem
(3.3a)-(3.3p), where the number of prices is set to one and the transshipment cost
to depots are huge numbers. This changes our model to a transshipment problem
where all operational restrictions are considered. Recall that problem (2.4a)-(2.4k)
is also a transshipment problem but all operational restrictions are not taken into
consideration.

The current algorithm at LC Waikiki is a heuristic based on the solution ob-
tained by solving a mathematical formulation. The mathematical formulation,
however, does not consider all operational restrictions that they face in their
operations. Therefore, an infeasible solution is obtained and its feasibility is
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recovered by the user. Here a rule of thumb is used to find a feasible solution. To
solve the mathematical model, which is a relaxation of the real problem, CPLEX
is used. To recover the feasibility, however, SQL is used by employees at LC Waikiki.

We considered several problems, with different numbers of stores, products, and
six sizes. For each problem demand and inventory levels of products in all stores,
the costs and profits are provided by LC Waikiki. Indeed, all required inputs and
also the output of their algorithm are provided by the company. Note that, we only
compare our proposed metaheuristic to obtain incumbent solutions, and we do not
attempt to find upper bounds using the proposed BD based algorithm. Although
our algorithm does not guarantee to find optimal solutions, it is shown that it finds
incumbent solutions that are less than 4% far from the optimal solution Gurobi
found. In addition, from the results, one can see that for large-sized problems,
where Gurobi fails to find optimal solutions, our metaheuristic finds feasible
solutions that are way better than Gurobi’s.

For the company, an acceptable solution is a solution that is better than their
current solution, it is obtained faster, and the algorithm is written using an open-
source programming language. Our algorithm is written in Python 3.6 which is an
open-source programming language. In addition, in the proposed algorithm, the
execution time is a user-defined parameter. The results are shown in Table 3.4.
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Table 3.4 Comparison of the current algorithm and proposed metaheuristic

Current Algorithm Simulated Annealing

Instance # of # of SKUs # of SKUs sold by # of # of SKUs # of SKUs sold by Time Profit
I−O−K Transshipment Transshipped Transshipment Transshipment Transshipped Transshipment (Sec) Improvement (%)

132-235-6 759 2,657 1,913 818 3,108 2,362 300 8
105-3291-6 5,317 19,097 14,254 5,380 23,027 18,383 5400 7
110-6000-6 7,356 24,589 18,196 8,429 27,816 21,974 10800 16
202-3468-6 6,895 23,443 18,286 8,019 28,067 22,453 10800 15
470-2000-6 9,564 34,430 27,889 11,379 42,102 31,998 10800 13
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In Table 3.4 the number of transshipments, the total number of SKUs which are
transshipped, and the number of SKUs transshipped and sold in the destination
are reported for the current and proposed algorithms as the performance indicator.
Recall that, only products that have extremely unbalanced inventory throughout
all stores are considered for transshipment. Hence, transshipment can be utilized
to balance the inventory. This is the reason we report number of transshipments as
a performance indicator. The time our algorithm spent to find a solution and the
increase in profit are also reported. We calculate the improvement as the ratio of
the net profit proposed algorithm and current algorithm found in terms of Turkish
Lira.

As the results show, as it was also expected, in all of the problems, the proposed
algorithm increases the profit by around 15% for large-sized instances. In terms of
profit, it is some times more than 1 million Turkish Lira per week as transshipment
is adopted weekly.

3.8 Conclusion

In this chapter, we introduce a joint transshipment, markdown, and return
optimization problem motivated by the logistics operations in a large fast fashion
retailer, LC Waikiki. After initial assignment to the stores, and observing the
stores’ performances, LC Waikiki may adopt transshipment among stores, or
reduce the products’ price, or return them to the depot. Transshipment is used
to balance the available inventory of the products among the stores when the
products have different sales performance in different stores. Markdown, however,
is mainly utilized to stimulate the consumers to reduce the leftover inventory at
the end of the season. On the other hand, a particular product may be returned
to the depot to be re-sent to the stores in the next selling season after re-assortment.

We formulate the joint transshipment, markdown, and return decisions as a
mixed-integer program. With around 500 stores, around 4000 products, and several
operational restrictions our model becomes a large scale problem, and solving
this problem with commercial optimizer is a challenge. We proposed a Benders
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decomposition-based heuristic algorithm to obtain upper bounds on the optimal
value of the problem. As Benders decomposition is slow in convergence, we adopted
the cover cut bundle method to accelerate the convergence of the algorithm. Also,
a simulated annealing metaheuristic is developed to find promising incumbent
solutions. To evaluate the performance of the proposed algorithms, we generated
420 problem instances with different numbers of stores, products, and sizes. Each
instance is solved by proposed algorithms and a commercial optimizer, Gurobi.
Although Gurobi performs better than the proposed algorithm in small-sized
instances, it fails to obtain solutions with acceptable optimality gaps when the size
of the problem, particularly, the number of stores, is increased.

As Naderi et al. (2020) also showed, in the presence of single destination constraints,
increasing the number of sizes makes the problem easier for Gurobi to solve. Unlike
the transshipment problem, by increasing the capacities the joint transshipment,
markdown, and return problem becomes harder to solve as Gurobi spent more time
to find the optimal solution if it can find any. Among the four capacities which
should be respected, it is the capacity on the number of SKUs which has the most
negative effect on the problem. By increasing the Ai from its lowest level to its
highest level, the time Gurobi spends to find the optimal solution is doubled.

The proposed algorithm to find an incumbent solution is implemented within a series
of pilot tests. We acquired input data from LC Waikiki, and solved the transship-
ment and return problem utilizing the metaheuristic presented and compared our
solutions to the solutions obtained from the current algorithm at LC Waikiki. Re-
sults show that profit can be improved by more than 15%. It is also observed that
more products are transshipped and the ratio of transferred products that are sold
can be enhanced.
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4. Price Elasticity Analysis for a Fast Fashion Retailer

4.1 Introduction

Recently the fashion industry has faced a big revolution since the era of big data
began. The development of technology, particularly on artificial intelligence and
data, changed the game for the fashion industry (Ren et al., 2019). In the past,
it was only the fashion retailers who had full information. However, nowadays,
customers have also access to most of this information. For instance, a customer
may go to a retailer and check the price of a product (or a similar one) in another
retailer’s store using an application on his/her phone promptly. Hence, in modern
fashion retailing, retailers must adjust themselves to these developments to be
able to survive among the competitors. In addition, customers are demanding
products with higher quality, broader assortments for products, higher availability
of products, and faster delivery (Martino et al., 2017). To satisfy customers,
supply chain decisions have to be made smartly. Initial order quantity, initial
replenishment quantity, assortment levels, transshipment, and discount levels are
such decisions.

The fashion industry is characterized by products with short life cycles, turbulent
and unpredictable demand, extremely wide product variety, impulsive purchasing
behavior, and complex supply chain (Şen 2008 and Martino et al., 2017). In such
a complex environment, efficient supply chain decisions spell success and failure.
Demand uncertainty is a major challenge for both practitioners and researchers.
Supply chain decisions are highly affected by demand uncertainty. Hence, better
forecast leads to better decisions, and consequently more profit for the retailer.
Therefore, it can assist the fashion retailers in preparing the right products at the
right time. Because the stock-out that is caused by demand forecasting leads to
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lost sales and customer loss. On the other hand, carrying excess inventory impose
holding costs to the system and leads to unsold products at the end of the selling
season which results in markdown with a decreased profit margin.

Fashion companies generally conduct demand forecast long before the start
of the selling season. This is mainly because the lead time from the supplier
side is long. The quality of demand forecasting may be improved by updating
the latest market information close to the coming season. Demand forecast
may also be updated at the beginning of the season by data gathered from
pilot sales. For pilot sales, particular retail stores are selected, then products
are sent to these stores. After sales observations, retailers can update their de-
mand forecast which eases the impact of demand uncertainty (Şen and Zhang 2009).

The demand for a product is affected by several factors. So, while developing an
algorithm to predict the demand, not only the historical sales information must be
considered, but also other factors with potential effects should be taken into con-
sideration. Such factors include product price, the age of the product, seasonality,
assortment level, and fashion trend. An ideal demand function considers all factors.
However, it is observed that price stimulates the demand the most and its effect
on demand is more than the other factors. This is the reason why markdown opti-
mization plays a critical role in supply chain management. Markdown is a special
case of pricing, in which prices are changed in a non-increasing manner. So, when
the price of a product is reduced, it cannot be increased in the future. Retailers
generally use markdown to stimulate customers, particularly, price-sensitive ones to
purchase products that are observed to be excess in the future. This is important
to decide the amount of price reduction because it directly affects demand. In this
chapter, we discuss the effect of price and other possible factors on demand and
develop a demand function for a fast fashion retailer. This problem is an important
part of a well-studied pricing problem in the literature.

Cournot (1897) is known to be the first researcher who provides demand-price
relations and solves a mathematical model to obtain the optimal prices. Estimating
demand as a function of price is practiced for many products. For instance, Lehfeldt
(1914) uses various fitting methods to study the relation of demand and price for
various goods such as coffee, tea, salt, and wheat. Demand estimation firstly was
not introduced aiming at maximizing profit but used to support macro-economic
theories on demand, supply, and price (den Boer 2015). However, later commercial
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firms use estimating demand for profit-maximizing purposes (Mazumdar et al.,
2005 and Heidhues and Kőszegi, 2014).

In the fashion industry, the demand-price relation is well studied. Price changes are
generally used for products that are overstocked, mainly, because of weak demand
forecasting (Choi 2007). Most fashion retailers change the prices of their products
before the end of the selling season usually by offering discounts. Pricing decisions
in the fashion industry are different compared to other industries, mostly because
the value of a fashion product deteriorates at an extremely fast speed. In addition,
uncertainty is involved in the taste of customers and the attractiveness of the
products (Şen 2008).

Pricing is utilized in both classical brick-and-mortar and online stores. Ferreira et
al. (2017) develop a demand prediction model for an online retailer to find the best
pricing strategy which maximizes the sales. Besbes and Zeevi (2015) study a linear
demand function for the price and update the function parameters dynamically
when new demand information is available. A joint dynamic pricing and inventory
problem is solved in Gao et al. (2010) where demand parameters are unknown with a
single retailer and two products. Forghani et al. (2013) study an inventory problem
with a price-dependent demand model.

4.2 Demand equation

In this part, we look at the changes in product demand with respect to the
markdowns to observe customers’ responses. In fact, customers are not only
sensitive to the product’s price, but there are also other marketing factors that
potentially affect customers’ behavior. To find these factors, after meetings with
managers at LC Waikiki and analyzing their sales data, based on their experiences,
we concluded that in addition to the price of the product, age (Atr), demand level
of the previous week (λt−1

r ), broken assortment (Itr), and seasonality of current
week (wt) also affect the product’s demand. Age is the number of days passed
since the product was first introduced to the market. Generally, the peak of sales
occurs shortly after the product is introduced. As time goes by, its sales gradually
decrease. Hence, the same level of markdown in the first week increases sales more
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than in future weeks. The demand level of the current week is a function of demand
in the previous week since it is not expected to observe severe changes in demand
from a week to another. Products are allocated to stores as packages with different
number of sizes (based on projected demand). In the retail industry, it is shown
that the demand rate diminishes when the inventory level at the store goes under
a certain level (f). Especially in fashion apparel, generally those products with
less attraction remain at shelves (Caro and Gallien, 2012 and Smith and Achabal,
1998). Therefore, the broken assortment also should be considered. Seasonality is
another factor that is considered. Special days or normal weather pattern which
can be driven from historical data are two important components of seasonality.

To specify a model to relate the aforementioned factors, one can select among expo-
nential or linear regression models. However, we select exponential functional form
as its positive results are shown in Smith et al. (1994):

F (m1, ...,mn) = eβ1m1 ∗ ...∗ eβnmn (4.1a)

where mi are marketing parameters and βi are parameters which are found through
regression analysis. We then adopt a similar demand equation as Caro and Gallien
2012:

λt
p = F (wt,A

t
p,λ

t−1
p , It

p, rp) = wt(exp(β0p +β1A
t
p +β2ln(λt−1

p ) +βw
3 ln(min{1,

Iw
p

f
}) +β4ln(

rp

r
))) (4.2a)

The parameters β0,β1, ...,β4 are regression coefficients. We take logarithms of
equation 4.2a to linearize it. While β0 and β1 may be estimated once in the season,
it is desirable to estimate β3 and β4 more frequently specially when markdown sales
data are available.

We first drop the seasonality effect since it is a fixed coefficient for each week. We
next ran the regression

ln(λtp) = β0p+β1A
t
p+β2ln(λt−1

p ) + ewp , for all p ∈ P. (4.3a)

which is a linear regression and ewp is an error term and provides β̃0, β̃1, and β̃2.
Now, we calculate residuals only for parameters which are more stable compared to
nonupdated regressors (i.e., price markdowns and broken assortment).

ψwp = ln(λtp)− β̃0p− β̃1A
t
p− β̃2ln(λt−1

p ), for all p ∈ P. (4.4a)
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We next, estimate β̃3 and β̃4 by regressing the residuals on the price markdowns
and broken assortment effect where εwp is an error term

ψwp = βw3 ln(min{1,
Iwp
f
}) +β4ln(rp

r
) + εwp , for all p ∈ P. (4.5a)

4.2.1 Price reduction

Retailers have their own rules regarding the pricing. Our collaborator also has
its particular rules most of which are set by top managers. When a product is
introduced to the market, its price is set according to production, transportation,
price of similar products, and the target audience. As mentioned before, the life
cycle of fashion products is not long. Generally, it is less than 10 weeks after it is
first introduced. After the product is displayed for the first time, its price is not
changed for a few weeks to measure the reaction of the customers. However, in
the first three weeks, independent from sales performance, the original price is not
changed. After the third week, a product may be considered to be discounted if its
sales performance is not as expected. The main reason for such discount decisions is
to stimulate customers to increase sales. This has two advantages; first, the product
is sold before it loses its fashionability, and second, new products can be displayed
so that the trend is followed as well. After a product is discounted, its price will
remain the same for the next two weeks, no matter how its sales performance is.
As a result, considering the life cycle of the products, each product is discounted
for at most three or four times.

The price levels are selected from a predefined set. For instance, if a product’s price
is originally 49.99 TL, the discounted prices can be among the set 40.99, 35.99, 29.99,
19.99, 15.99. The price sets are determined according to sales of the products in
previous selling seasons. If the product does not have historical sales data, a product
with similar features is considered. When a product is selected to be discounted, its
price will never increase again.
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5. Conclusion and Future Works

This dissertation investigates three main problems observed in the fast fashion
industry. In each problem particular operational restrictions that a large fashion
retailer in Turkey, LC Waikiki faces are considered.

Chapter 2 studies the basic transshipment problem with two main transfer
capacities. The objective function is to maximize the total profit less the total
transportation and holding costs. To solve this problem a simulated annealing
approach to find feasible solutions, and a Lagrangian relaxation with a primal-dual
approach is proposed. The proposed algorithm shows a robust performance as
it solves all problem instances with optimality gaps of less than 7%. Managerial
insights are also discussed to shed light on the effect of operational constraints.

Chapter 3 discusses joint transshipment, markdown, and return decisions for LC
Waikiki. The problem is formulated as a mixed-integer program. The objective is to
maximize the total profit less the total transshipment cost. Return is considered as
transshipment from stores to depot. The simulated annealing approach developed
in the previous chapter is utilized to find incumbent solutions. In order to obtain
upper bounds, a Benders decomposition-based heuristic is developed. The quality
of the solutions obtained from the proposed algorithm is tested and it is observed
that solutions with optimality gaps of less than 5% are obtained while Gurobi, in
some instances finds solutions with optimality gaps of more than 1200%. A special
case of this problem is tested in a controlled environment and compared with the
solutions obtained from the current algorithm at LC Waikiki. The weekly profit
can be improved by around 15%.

Chapter 4 investigates the price elasticity of demand. To decide the best markdown
depth this is very critical to know how much demand will be affected by each
price levels. It is also concluded the effect of price may not be pronounced if it is
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considered alone. Other variables with potential effects are detected and a demand
equation that fits LC Waikiki’s requirements is proposed.

Both models considered in this dissertation are deterministic models. Although it
is known that adding uncertainty increases the complexity of the problem with this
scale, future research may focus on the stochastic models, or at least the problem
may be solved under different demand scenarios. In addition, as it is shown in Chap-
ter 2, the initial inventory level affects the transshipment benefits, joint transship-
ment, markdown, and initial replenishment problem may be another future research
direction. The transshipment problem may be extended by considering the routing
problem as stores are replenished daily. A routing problem with pick-up and deliv-
ery may decrease the transportation cost. The price elasticity project was started
in March 2020. However, the Covid-19 pandemic hindered the project. Hopefully,
the project will be continued after the return of employees to office and the joint
problem will be tested with real data.
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