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ABSTRACT

ISKRA: BARE-METAL WINDOWS MALWARE DYNAMIC ANALYSIS
FRAMEWORK

YUSUF ARSLAN POLAT

CYBER SECURITY MSc THESIS, SEP 2020

Thesis Supervisor: Prof. Dr. ERKAY SAVAS

Keywords: malware, hypervisor, sandbox, dynamic analysis, evasion

With the proliferation of “cyber-crime as a service” economy, besides gaining new
victims, providing permanence on them has been one of the key points of profit for
attackers. Thus, hiding malicious presence while operating is now more important
for malware than being fully undetectable when it is first distributed. Due to the in-
creasing number of malware attacks1 and prohibitively long hours required for man-
ual inspection, analysts often use dynamic analysis platforms to investigate malware
samples. However, these platforms have been repeatedly shown to fail to combat
evasion methods that are constantly updated by attackers2 (Jadhav, Vidyarthi &
Hemavathy M., 2016). Even if malware is correctly classified by the existing dynamic
analysis platforms, which are widely deployed in the cyber security industry, it has
been frequently observed that the malware detects the analysis environment and
behaves differently to evade inspection; consequently the malicious code targeted
by the attacker does not execute. In this case, the inspection, which will make the
malicious code run and be examined, has to be done by the analyst manually. In this
study, we present the bare metal hypervisor-based framework for dynamic analysis,
ISKRA, which facilitates system calls to be collected and analyzed without being
detected by malware. ISKRA is a portable and easily modifiable framework and
not only allows any system to be easily transformed into an analysis environment,
regardless of the virtual machine or bare metal; but also allows for forensics to be

1See https://www.av-test.org/en/statistics/malware/

2See https://www.watchguard.com/wgrd-resource-center/security-report-q4-2019

iv



run without being detected in live systems. This way, incident response specialists
can quickly transform the system under inspection into an analysis environment
and can collect evidence, examine and remedy the system without being detected
by the attacker. We designed, implemented and experimented with the framework,
which employs machine learning algorithms to learn from new attack campaigns.
Our work shows that the framework leads to negligibly low overhead and provides
a high detection rate for the most current malware campaigns that evade dynamic
inspection by other frameworks.
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ÖZET

ISKRA : DİNAMIK ZARARLI YAZILIM ANALİZİ PLATFORMU

YUSUF ARSLAN POLAT

SİBER GÜVENLİK YÜKSEK LİSANS TEZİ, EYLÜL 2020

Tez Danışmanı: Prof. Dr. ERKAY SAVAŞ

Anahtar Kelimeler: zararlı yazılım, dinamik analiz, kum havuzu, hipervizör,
antivirüs atlatma

Siber saldırganların yer aldığı yeraltı ekonomisinde siber suç servisleri yaygın-
laşmıştır. Bu yeni ekonomik sistemde saldırganların yeni kurbanlar elde etmesinin
yanı sıra hali hazırda erişim elde ettikleri kurban sistemler üzerinde erişimlerini
korumaları da saldırganlar için son derece önem arz eden bir duruma gelmiştir.
Geçmiş dönemde zararlı yazılımların saldırının ilk anında güvenlik ürünleri tarafın-
dan tespit edilemez olmaları önemliyken, artık sistemi ele geçirdikten sonra da bu
tespit edilemezliklerini korumaları gerekmektedir. Sayıları gitgide artan ve elle (İng.
manual) incelenmeleri bir hayli vakit alan bu zararlı yazılımları incelemek için anal-
istler genellikle dinamik analiz platformlarını kullanmaktadırlar. Ancak bu plat-
formlar, saldırganlar tarafından sürekli yenilenen/güncellenen/iyileştirilen atlatma
yöntemleri nedeniyle yetersiz kalmaktadırlar. Zararlı yazılımlar, bu platformlar
içerisinde analiz edildiklerini tespit edebilmekte ve gerçek amaçlarını gizlemek üzere
davranışlarını değiştirebilmektedirler. Bu nedenle dinamik analiz platformları zararlı
yazılımları başarı ile sınıflandırabilseler dahi zararlı yazılımın gerçek davranışını göz-
lemleyemedikleri vakalar oluşmaktadır. Platformların bu yetersizlikleri nedeniyle
analistler gün sonunda yine elle analize mecbur kalmaktadırlar. Bu çalışmada sun-
duğumuz ISKRA isimli hipervizör tabanlı dinamik analiz platformu, fiziksel bil-
gisayar üzerinde zararlı yazılımlar tarafından tespit edilmeden sistem çağrılarının
toplanmasına ve zararlı yazılımların analiz edilmesine imkân sağlamaktadır. Kolay
kurulabilir ve değiştirilebilir olan bu platform fiziksel ve sanal sistemlerde çalışa-
bilmesinin yanı sıra hali hazırda çalışan bir sistemi analiz ortamına dönüştürebilmek-
tedir. Böylelikle çalışan bir sistem üzerinde canlı olay müdahalesi yapılmasına imkân
sağlamaktadır. Dolayısıyla olay müdahale ekipleri vaka yaşanan sistemi analiz or-
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tamına dönüştürüp zararlı yazılım tarafından tespit edilmeden delil toplama, in-
celeme ve tedavi yapabilmektedirler. Çalışmamız kapsamında öne sürdüğümüz plat-
formu geliştirdik ve makina öğrenmesi ile yeni zararlı yazılım saldırılarını tespit
etmek üzere deneyler gerçekleştirdik. Gerçekleştirdiğimiz deneyler platformumuzun
düşük sistem yükü ve yüksek doğruluk oranıyla diğer dinamik analiz platformlarının
tespit edemediği güncel zararlı yazılım saldırılarını tespit edebildiğini göstermiştir.

vii



ACKNOWLEDGEMENTS

This study was made possible by the support of a few people for whom I am grateful.
First of all, I would like to thank my supervisor, Professor Erkay Savas.

I thank my family for their support during the thesis process.

viii



to my mother, father and, brother

ix



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Malware on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. A Brief Study of Malware for Windows Operating System . . . . 6
2.1.2. Current Threat Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Current Malware Analysis and Detection Methodologies . . . . . . . . . . . . . . 7
2.2.1. Static Analysis Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2. Dynamic Analysis Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Machine Learning for Malware Analysis and Detection . . . . . . . . . . . . . . . 9
2.4. Evasion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1. Hardware Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2. Software Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5. Technologies Used To Create Analysis Environment . . . . . . . . . . . . . . . . . . 15
2.5.1. Virtualization Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1.1. Intel VT-x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. ISKRA FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1. Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Threat Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. BEHAVIOUR DATA MONITORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. MODEL CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1. Real World Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



6.1.1. Zloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.2. GuLoader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.3. MassLogger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.4. Cradle Ransomware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2. Samples from VirusTotal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.1. String Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3. Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9. CONCLUSION AND FURTHER WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



LIST OF TABLES

Table 5.1. An Example Subset Of The System Calls And Their Unique
Integer Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 5.2. Hooked system calls and their corresponding categories . . . . . . . . 28

Table 6.1. Case I: classification results for all system calls using mono-
grams (i.e., n = 1) and dictionary size is 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 6.2. Case II: classification results for system calls in the sample data
set using monograms (i.e., n = 1) and dictionary size is 21 . . . . . . . . . . . . 41

Table 6.3. Case I: results for n-gram range of [2, 4] and dictionary size is
3725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 6.4. Case II: results for n-gram range of [2, 4] and dictionary size is
3899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 6.5. Tested hyperparametes for the LSTM networks. . . . . . . . . . . . . . . . . 43
Table 6.6. LSTM experiments results for Case II . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 6.7. Classification scores of string system call parameters using var-

ious machine learning algorithms (Case II and n = 3) . . . . . . . . . . . . . . . . . 44
Table 6.8. String classification using decision tree algorithm (Case II and

n ∈ [2,10]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6.9. Test Environment System Specification . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 6.10. Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 7.1. Comparison of ISKRA and known and popular dynamic anal-
ysis platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xii



LIST OF FIGURES

Figure 2.1. Hardware Information Based Sandbox Detection Method Used
By Gozi Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.2. Registry Configuration Based Sandbox Detection Method
Used By Kutaki Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.3. Inline hooking overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1. Overview of ISKRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3.2. Captured System Call Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.1. Overview of kernel component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 5.1. Example API Sequence for Code Injection . . . . . . . . . . . . . . . . . . . . . 29

Figure 6.1. Zloader Network Traffic Captured by the ISKRA . . . . . . . . . . . . . . 33
Figure 6.2. GuLoader Network Traffic Captured by the ISKRA . . . . . . . . . . . 35
Figure 6.3. MassLogger Network Traffic Captured by ISKRA . . . . . . . . . . . . . 37
Figure 6.4. MassLogger Configuration Extracted from the ISKRA logs. . . . 38
Figure 6.5. Ransom Note Obtained with the ISKRA. . . . . . . . . . . . . . . . . . . . . . 39
Figure 6.6. System Calls Count Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



1. INTRODUCTION

Malware, a widely used abbreviation for malicious software that has become a part
of our lives since the late 1980s, is used to describe any piece of software developed
to damage computer systems, usually for some benefit to the attacker (Milošević,
2014). Malware, originally developed to demonstrate talent in the hacker sub-culture
when it is first introduced, is one of the most essential tools of cyberattacks. When
it was only a part of the sub-culture, it used to suffice to detect malware by using
traditional signature-based methods. Today, however, much more sophisticated and
evasive malware samples are used as a part of more extensive operations such as
APT (Advanced Persistent Threat)1 attacks. Therefore, much more detailed infor-
mation is needed about current malware, such as its functions, how it operates, how
it communicates with its command and control server, and the traces it leaves in
the system such as files and registry keys.

Static and dynamic analysis are the two main approaches used by analysts to in-
vestigate malware behaviour and/or structure (Sikorski & Honig, 2012). The static
analysis refers to the examination of suspicious software using reverse engineering
without running its harmful code. Nowadays, anti-analysis methods such as obfus-
cation, packing2, and encryption are widely and skilfully deployed in malware by
attackers to increase the time analysts spend on static reverse engineering; already
a very time-consuming process (Moser, Kruegel & Kirda, 2007). This situation con-
tradicts with the primary aim of analysts: to detect and prevent an attack campaign
in the shortest time possible as it is typically a race against time between analyst
and attacker. As a result, it has been observed that static analysis is generally used
not to perform the entire analysis, but to examine specific suspicious parts in an
executable file.

The dynamic analysis approach, on the other hand, is based on monitoring the
behavior of malware in a controlled environment. During the dynamic analysis, the

1See https://www.kaspersky.com/resource-center/definitions/advanced-persistent-threats

2See https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-
WP.pdf
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analyst can interfere with the behavior of the malware with tools such as debuggers
or observe the routine behavior in the controlled environment without interfering.
Due to the immense workload instigated by increased malware attacks nowadays,
analysts generally employ automatic dynamic analysis of malware in a controlled
environment and examining its runtime behavior therein. The collection of tools
that allow automatic dynamic analysis of harmful software are referred as sandbox.
These tools collect events such as file and registry events that may be related to
malware while it is running and submit them to analyst. Then, analyst decides
necessary actions in a short period of time based on these events. Thus, nowadays,
analysts heavily depend on sandbox tools for the inspection of suspicious software.

Attackers, on the other hand, have developed various anti-analysis methods against
sandbox solutions as well as against static analysis3,4 (Lundsgård & Nedström,
2016). Often, these methods are based on profiling the system, in which malware
executes, and distinguishing the sandbox environment. As analysts first use sandbox
to expeditiously examine numerous number of malware attacks, decision for further
actions is made based on the findings from the sandbox report. Therefore, malware’s
ability to hide itself at this stage ensures that the attack can continue for a much
longer time. This diminishes the reliability of the sandbox outputs and necessitates
manual inspection and verification of sandbox outputs and therefore removes the
advantages of sandbox to a large extent due to associated long delays in manual
analysis. For this reason, sandboxes should be impervious to evasive malware so
that the analysis can be done accurately and in a short time.

In this article, we present the ISKRA dynamic analysis platform that enables au-
tomatic analysis in bare-metal systems and evades detection by malware. Unlike
the methods used in many traditional sandboxes, the platform is developed em-
ploying inline hooking supported by Extended Page Tables (EPT) and Intel VT-x
virtualization technologies. It collects mainly operating system calls by processes
while minimizing traces of its presence and detects malicious software via machine
learning algorithms performed on system call sequences and their relevant string
parameter values.

Existing sandbox solutions usually depend on specific virtualization technologies.
In an incident response case, a specific virtual machine and/or guest operating
system should first be installed in the computer system to perform the sandbox
analysis. If the system, where the incident occurs, has specific software or hardware
requirements, then they have to be reproduced in these virtual environment as well.

3See https://2018.hack.lu/archive/2014/Bypasss_sandboxes_for_fun.pdf

4See https://bit.ly/32gzCZ1
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Only after that, it is possible to examine malicious software targeting that system.
Our proposed framework ISKRA can be installed on any computer system with
VT-x technology using only one installation file and allows the transformation of
an already running system to an analysis environment. Thus, it shortens the time
required to install a new system. In addition, this framework, which hides itself
from all software running on the operating system at the higher level of privilege by
using Intel VT-x technology, provides the opportunity to collect evidence without
being detected by malicious software.

We used our framework to collect information about process system calls and apply
various machine learning algoithms to detect malware samples in our experimental
setup. We used the Area Under Curve (AUC) score of Receiver Operating Char-
acteristic (ROC) to evaluate machine learning experiments. Our results show that
82% AUC is obtained for a data set consisting of 40 harmful and 32 benign soft-
ware samples. In addition, we selected some malware attacks, which are active in the
first half of 2020 and can detect and bypass existing dynamic analysis platforms. We
showed that malware samples used in those attacks execute their malicious payload
in ISKRA and thus give in to detailed investigation afterwards.

The contributions of our work can be summarized as follows:

• We designed and implemented a dynamic analysis framework ISKRA based
on the Intel VT-x with EPT technology and showed its advantages for the
inspection of evasive malware.

• We compared the efficiency of different machine learning and deep learning
algorithms for the use of system call sequences and their parameters in malware
analysis.

• We demonstrated the efficiency and effectiveness of our approach with current
malware samples.

• We emphasized the risks and complications associated with evasive malware in
incident response operations and showed that our approach can be an effective
solution.

The remainder of this thesis is structured as follows: Chapter II presents back-
ground knowledge relevant to the field of this study. Chapter III describes the
ISKRA dynamic analysis framework and outlines our its design principals and de-
tails. Chapter IV provides detailed information about our framework’s behaviour
data monitoring methodology. Chapter V describes the constructed machine learn-
ing model with the malware behaviour data, which is collected by the proposed

3



framework. Chapter VI shares the results of the experiments performed on the
most recent malware attacks with the proposed framework. Specifically, it provides
and evaluates the results of the various machine learning models and discusses the
overhead in system performance due to the framework, which is shown to be negli-
gible. Chapter VII refers to the studies in the literature related to the subject and
includes comparative analysis between those works and the proposed framework.
Chapter VIII discusses the immunity of the ISKRA to evasion techniques employed
by evasive malware. Chapter IX concludes the thesis and proposes ideas for future
work.

4



2. BACKGROUND

2.1 Malware on Windows

Malware, or malicious software, is a term used for referring any software that
intentionally harms a computer system. They may have been developed for different
purposes such as fame or profit for the attacker behind the malware. They are
divided into types such as adware, virus, worm, trojan, stealer, loader, rootkit, and
ransomware depending on their purpose and techniques employed. We provide the
definitions of various malware in the following.

Adware is used to refer to all unwanted software that hide themselves in
the system and show advertisements to users.

Virus is a type of malware that modifies other executable files and repli-
cates itself into them.

Worm is malicious software that spreads itself into other computer systems.

The main difference between worm and virus is that the former interacts with other
computer systems and replicates itself into them. Worm samples generally exploit
vulnerabilities in network services to copy their infected executable files into other
computers. So they need no user interaction for them to be spread and executed.
But, virus samples follow a much passive strategy of spreading themselves. They
need a third party user or program to copy and run an infected executable in a new
victim computer. So, infected executable in the new machine can infect other files
in that system. Also, worms tend to spread more quickly than viruses as they have
no dormant stage as in the case of viruses.

5



Trojan is a malware type that enables an attacker to control the victim
host.

Stealer is a type of malicious software that is used to steal user data from
the victim host. They generally target registered passwords in the system and
banking credentials of victim users.

Loader is a type of software used for deploying new malware in the victim
machine. Most of the cases, they have no other malicious intentions (such as
stealing credentials, self-replicating, etc.) other than downloading and executing
new malware that does the harm.

Rootkit is a type of malware that executes in the kernel-mode of an operat-
ing system. They are generally used for hiding artifacts, which are created by
themselves or by other malware of the same attacker, from users by altering data
structures of the operating system. For example, they can alter the linked list of
the running processes in the kernel to hide from any program that lists processes
such as task manager.

Ransomware is a type of malware that encrypts user files in victim ma-
chines using public key cryptography. The decryption key is only known by the
attacker. Later, attacker requests money from the victim in exchange of the
decryption key.

2.1.1 A Brief Study of Malware for Windows Operating System

Microsoft Windows, also referred to as Windows OS or shortly Windows, is a per-
sonal computer (PC) operating system (OS) developed by Microsoft Corporation.
Its first version was released in the mid-1980s and its many different versions have
been released since then. The current version is Windows 10 at the time of writing.
Windows is the most popular operating system for desktop PCs as it approximately
accounts for the share of 77.74% of all desktop operating systems1. Due to its popu-
larity, it is widely targeted by attackers that aim to obtain a great number of victims.
An independent cybersecurity organization states that 78% of new malware samples

1https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
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target Windows systems in 20192.

2.1.2 Current Threat Landscape

Modern malware campaigns are overly complicated to be developed and managed
by ordinary attacker groups. Therefore, similar to Software as a Service (SaaS) in
the legitimate business community, attackers started to use Cybercrime as a Service
(CaaS) solutions (Manky, 2013). Threat actors buy or rent malware executables,
command and control servers (C&C), and any other necessities for cyber attacks
from the services in the underground attacker community. Consequently, the same
malware from the same CaaS is used by many different threat actors. These trends
seem to make it easier to create signatures for malware campaigns from analysts’
points of view. Nevertheless, CaaS providers implement evasion methods in their
malware to hide new attack campaigns and preserve persistence on victims. Oth-
erwise, their malware would be unusable in a short amount of time. We observe a
rapid growth in evasive malware campaigns3 and therefore discern that one of the
most pressing concerns in cybersecurity is fast and robust detection and analysis of
evasive malware.

2.2 Current Malware Analysis and Detection Methodologies

In this section, we discuss the current methods, techniques and approaches com-
monly used for malware detection and/or analysis. We will inspect mainly static,
dynamic and machine learning-based detection and/or analysis approaches.

2https://www.av-test.org/en/news/facts-analyses-on-the-threat-scenario-the-av-test-security-report-2019-
2020/

3https://embed.widencdn.net/download/watchguard/gyjc30tyxq/Threat_Report_Q4_2019_Overview.pdf
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2.2.1 Static Analysis Based Detection

The static analysis pertains to techniques for analyzing malware samples without
executing them (Uppal, Mehra & Verma, 2014). The samples are analyzed by using
the static reverse-engineering methodology. Opcodes (operation code, also known as
instruction code) of the executables are extracted and examined. They are usually
converted to human-readable formats by using disassembling (translates opcodes
into assembly language) and decompilation (translates opcodes into high-level lan-
guages such as C) methods. Most of the malware analysis is usually performed
manually, which is a highly time-consuming process as it requires a detailed code
review carried out on low-level code samples. Also, anti-analysis methods such as
obfuscation, packing, encryption of executable resources are used by attackers, which
make static analysis even more time-consuming. Consequently, rather than being
used as a sole analysis method, static analysis is mostly used to gain more insight
about an observation captured during dynamic analysis. For instance, if analysts
observe an encrypted file in the dynamic analysis, they perform static analysis to
reveal the encryption algorithm, its keys, and plain data.

2.2.2 Dynamic Analysis Based Detection

The dynamic analysis refers to techniques for examining malware samples by exe-
cuting them in a controlled environment and monitoring their actions (Gadhiya &
Bhavsar, 2020). There are two different approaches in dynamic analysis: advanced
manual and automated. In the advanced manual analysis, analysts use assembly
level debuggers (e.g., OllyDbg, Windbg, x64Dbg, etc.) to perform dynamic code
analysis as the source code of executable is not available. This approach is useful
to examine only a small segment of code. However, it has similar limitations as in
the case static code analysis since it also requires code analysis on low-level codes.
In the second approach, analysts automatically execute and monitor activities in a
controlled environment. This approach requires no manual code analysis. Analysts
easily observe behaviors of executable to contemplate and take necessary actions
against malware attacks. The approach is easy to deploy as an analyst needs no
high-level reverse engineering skills. Also, because of its automated nature, it allows
analyzing more samples in short amount of time when compared to other analysis
approaches.
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2.3 Machine Learning for Malware Analysis and Detection

As discussed in the previous section, the number of malware attacks is growing
rapidly. Also, attack motivation and techniques are changing frequently. Therefore,
solutions that can quickly learn from attacks and thus adapt to rapidly changing
malware attack techniques and strategies are needed. Recently, employing machine
learning algorithms is a frequently used approach to meet these needs in the field
of cybersecurity due to their ability to automatically learn and improve through
experience. In this section, we will discuss machine learning algorithms that are
commonly used in the field of cybersecurity.

Logistic Regression is a predictive analysis method to model a dichotomous (bi-
nary) dependent variable. It is used for classification problems with two possible
values4. It is different from the linear regression in the sense that it is used for
classification whereas the latter solves regression problems.

Support Vector Machines(SVMs) are a set of supervised learning mod-
els used for solving classification, regression analysis, and outlier detection
problems. They are used to classify binary and multi-class datasets5. They
represent data points in a hyperspace and classify them by finding an optimal
hyperplane6 in the hyperspace that separates classes from each other.

k-nearest neighbors is a supervised learning algorithm that is used to solve
classification and regression problems7. It predicts the class of a new data point
by the selecting the most common class label among its k nearest neighbors in the
training data set8.

Decision Tree is a supervised learning method that uses a model resem-
bling a tree, in which each internal node represents a test on the value of an
attribute and the branch does the outcome of the test. Each leave in the tree is
in fact a class label and a path from the root of the tree to a particular leaf is a

4See https://christophm.github.io/interpretable-ml-book/logistic.html

5See https://scikit-learn.org/stable/modules/svm.html

6See https://mathworld.wolfram.com/Hyperplane.html

7See https://scikit-learn.org/stable/modules/neighbors.html

8See http://www.robots.ox.ac.uk/ dclaus/digits/neighbour.htm
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decision rule. The tree is first formed from the labeled data points in the training
data set. Then in the test phase, decision rules are applied on attributes of new
data points and their class labels are assigned accordingly. Decision trees are used
frequently for solving classification and regression analysis9.

Random Forest is a learning method used for regression analysis and clas-
sification employing more than one decision tree. The prediction for class label is
then obtained by combining results from a number of individual decision trees10.
The model mitigates overfitting problem that is common in decision trees and
thus improves the model accuracy by using the mean of the predictions from the
individual trees or their most common prediction.

Long Short-Term Memory(LSTM) is a deep learning algorithm and type of
artificial recurrent neural network (RNN) architecture11. The network is able to
learn long-term dependencies in time series data. The system calls by malware
can be considered as time-series data as they are invoked in a sequential manner.
LSTM networks are well-suited to keep track of long-term dependencies of system
calls that identifies malicious system calls, between which there are time lags of
unknown duration.

2.4 Evasion Techniques

Evasion techniques describe methods used by malicious software to hide themselves
and their activities from cybersecurity products such as dynamic analysis platforms.
In this section, we discuss common evasion methods. These techniques are essen-
tially based on identifying the characteristics of the current working environment
and comparing them with characteristics of common end-user systems. The basic
assumption is that dynamic analysis platforms deviate from common end-user plat-
forms in many aspects. The system characteristics that are examined by malware
can be classified as software and hardware characteristics.

9See https://scikit-learn.org/stable/modules/tree.html

10See https://www.shirin-glander.de/2018/10/ml_basics_rf/

11See https://missinglink.ai/guides/neural-network-concepts/deep-learning-long-short-term-memory-lstm-
networks-remember/
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2.4.1 Hardware Based

In this section, we will discuss the approaches used by malware to evade security
products by using the hardware features of the execution environment.

Hardware Information Common virtualization solutions such as Xen, QEMU,
and KVM that are used by existing dynamic analysis solutions have no intention
to hide their presence. They use their product signatures in simulated hardware.
For example, the VMware virtualization software use "00:50:56", "00:0C:29", and
"00:05:69" in the first three bytes of its MAC address12. These three bytes are OUI
(organizationally unique identifier), which uniquely distinguishes the vendor of the
network card. Consequently, malware can use that signature to identify a VMware
based dynamic analysis platform. Figure 2.1 shows a code snippet from the leaked
Gozi 13 malware source project that is used for detecting sandboxes by using device
names. It compares device names in the execution environment with the name of
common virtualization products.

Figure 2.1 Hardware Information Based Sandbox Detection Method Used By Gozi
Malware

Hardware Implementation Differences Virtualization software basically
simulates physical systems. In order to imitate new technologies developed in
hardware products, the virtualization software code needs to be updated. However,
there can be implementation differences between physical and virtual systems. For

12See https://nakedsecurity.sophos.com/2016/12/13/nymaim-using-mac-addresses-to-uncover-virtual-
environments-and-bypass-antivirus/

13See https://malpedia.caad.fkie.fraunhofer.de/details/win.isfb
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example, virtual systems use different locations for Interrupt Descriptor Table14. In
some cases, certain features are never added to virtualization software due to their
development costs. For example, the MMX instruction set, which is used for faster
graphical processing, is not implemented in VMware15. Consequently, malware
can use all these implementation differences for detecting a virtualized execution
environment.

2.4.2 Software Based

In this section, we will present the approaches used by malware to detect and evade
security solutions by using the software characteristics of the execution environment.

Analysis Tools Windows is an object-based operating system. The essen-
tial features of the operating system are accomplished through these objects. For
example, a file object (defined as FILE_OBJECT structure ) represents an instance
of a file, device, directory, or volume and it is essential to interact with a file in
the operating system16. There are more than 25 types of objects in the Windows
operating system such as file, process, registry, and devices17.

Evasive malware enumerates objects in the current running environment to find
any artifact related to malware analysis tools.

File System The installed programs, running applications, and processed
data in the operating system leave traces (such as installation archives, executable
files, page cache, etc.), which can be volatile or permanent, in the file system.
Malicious software checks the presence of the traces to detect analysis tools. For
instance, RTM banking malware check the following files and directories in the
victim system; and if any of those exists, malware accepts the system as a sandbox
and stops execution18:

• C:\cuckoo

14See https://www.lions.odu.edu/ c1wang/course/cs495/lecture/10_2_Anti-VM_Techniques.pdf

15See https://www.cyberbit.com/anti-vm-and-anti-sandbox-explained/

16See https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object

17See https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-object-
manager

18See https://unit42.paloaltonetworks.com/russian-language-malspam-pushing-redaman-banking-malware/
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• C:\fake\_drive

• C:\perl

• C:\strawberry

• C:\targets.xls

• C:\tsl

• C:\wget.exe

• C:\*python*

Process In short, a process is an executing program. The operating system loads an
executable file and its dependencies in a process memory space and executes its in-
structions. Malware analysts use various types of programs to interact with infected
systems and examine running malware; those include debuggers, system monitors,
network packet analyzers, etc. On the other hand, malware utilizes process prop-
erties of widely used analyst tools and sandboxes to detect analysis environments.
For instance, a ransomware campaign gets the list of running processes in the target
machine and checks the existence of the following process names in the list to detect
Joe Sandbox, Sandboxie, and other analyst tools19:

• sandboxierpcss.exe

• sandboxiedcomlaunch.exe

• procmon.exe

• joeboxserver.exe

• apimonitor.exe

• behaviordumper.exe

The full list can ben found at the analysis report.20

Registry The Windows Registry is a system-defined database that is used
by the Windows operating system and applications to manage their configurations.
Both user mode and kernel mode system components can use the registry to save
and retrieve settings. Malware analyst tools also use the Registry to transform the
operating system into an analyst environment and save their settings. Malware

19See https://securelist.com/to-crypt-or-to-mine-that-is-the-question/86307/

20See footnote 19
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seeking for commonly used analysis environment and tool settings to distinguish
sandboxes. Figure 2.2 shows a code snippet from the Kutaki malware that detects
Joe Sandbox, CWSandbox, and Anubis by checking the "ProductID" configuration
in the "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion" registry
key21

Figure 2.2 Registry Configuration Based Sandbox Detection Method Used By Ku-
taki Malware

Environment Differences Besides hardware specifications (as discussed in the
previous section), dynamic analysis solutions also need to simulate common us-
age patterns of operating systems and applications. Otherwise, they can be easily
distinguished by malware. For instance, malware obtains the list of MRU (Most
Recently Used) files in the current environment from Windows registry. Based on
the file count in the MRU list, malware validates that the current environment is
not a sandbox platform as there is real user interaction with the system that leaves
artifacts (such as registry values and files22) on the operating system similar to an
end-user system23.

21See https://cofense.com/kutaki-malware-bypasses-gateways-steal-users-credentials/

22See https://www.andreafortuna.org/2017/10/18/windows-registry-in-forensic-analysis/

23See https://www.mcafee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-evasion-
tactics-a-retrospective-study/
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2.5 Technologies Used To Create Analysis Environment

Malware analysts need environments to execute malware samples and monitor their
behaviors. These environments should satisfy some conditions for safe and effective
analysis. First of all, they should be similar to the target system of malware. Thus,
malware samples should run without any software incompatibility issue (one cannot
run a x64 compiled executable on x86 analysis environment) and therefore evasion
attack surface will be reduced (See Section 2.4). Secondly, various types of malware
can have different execution requirements such as specific hardware as observed in
Stuxnet attacks24. Therefore, it should be easy to adapt analysis environments to
meet the requirements of a malware sample. Finally, due to the potential risks
of the malware attacks, every second counts in the malware analysis and incident
response. Therefore, analysis environments should be easy to setup and fast to run.
Security researchers use virtualization technologies to create analysis environments
that answer all these requirements. In the rest of this section, we will discuss common
virtualization technologies and Intel VT-x used in this study.

2.5.1 Virtualization Technologies

Virtualization refers to creating a virtual representation of any system, such as
computer hardware, architecture and computer networks25.

Software-Based Virtualization is a method that executes the guest sys-
tem by emulating it in software26. Virtualization software examines instructions
that originate from the guest system before executing them and detect privileged
instructions. They are executed after the detected instructions are replaced with
safe equivalents. This procedure is called binary translation27. VMware workstation
(with 32-Bit guest OS) and VirtualBox (again with 32-bit guest OS) are examples

24See https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf

25See https://www.vmware.com/tr/solutions/virtualization.html

26See https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-
B14C8267-C2A4-4BF8-B680-70C2B350B325.html

27See https://blogs.oracle.com/ravello/nested-virtualization-with-binary-translation
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of the virtualization solutions that use software-based approach28.

Hardware-Assisted Virtualization method uses the support of the tech-
nologies that are already built-in the processors. Thus, it eliminates the necessity of
binary translation and improves virtualization performance29. Its implementation
by Intel is known as Intel VT-x.

Software or hardware that run virtual machines is also called a hypervisor. There
are two types of hypervisors based on their interaction with computer hardware:
type 1 and type 2. Type 1 hypervisors are directly executed on the hardware and
they are also called bare-metal hypervisors. Type 2 hypervisors are executed on
a host operating system instead of computer hardware30. Because of their direct
communication with computer hardware, bare-metal hypervisors have performance
advantage over type 2 hypervisors (Ganesan, Murarka, Sarkar & Frey, 2013).

2.5.1.1 Intel VT-x

In 2005 and 2006, two major semiconductor chip manufacturers (Intel and AMD)
independently proposed new instruction set extensions to their x86 architectures.
Intel named it as Intel VT-x (Virtualization Technology) and AMD used the term
AMD Virtualization (AMD-V) for its similar extensions. Both of the solutions
aim to create a hypervisor that runs operating systems without any modification
(e.g., binary translation) and performance losses31. In our study, we opt for Intel
processors due to their larger market share32. However, a similar solution can also
be developed for the systems using AMD processors. This calls for a different study,
which is outside the scope of this work.

The Virtual Machine Extensions (VMX) mode concept is one of the core components
of these improvements. The VMX mode allows the desired code to run in a virtual
environment while preserving the integrity of the host system. Also, it does not

28https://www.unixarena.com/2017/12/para-virtualization-full-virtualization-hardware-assisted-
virtualization.html/,

29See footnote 28

30See https://phoenixnap.com/kb/what-is-hypervisor-type-1-2

31See https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-
enabling-intel-virtualization-technology-features-and-benefits-paper.pdf

32See https://www.statista.com/statistics/735904/worldwide-x86-intel-amd-market-share/
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require heavy software development efforts such as binary translation because it
is already implemented on the processor by default. Thus, virtualization is now a
more easily accessible technology. It is possible to take advantage of these features of
the VT-x technology by executing the necessary assembly instructions in a running
bare-metal system. For example, a researcher created a hypervisor with 10 lines of
assembly code33.

After the initial release, Intel proposed additional improvements to its virtualization
technology such as the Extended Page Table (EPT) feature. EPT aims to avoid the
overhead of page table operations incurred due to the translation between the virtual
machine and hypervisor. To this end, it allows a guest operating system to modify
directly its own page tables. Consequently, the virtual machine can control memory
operations (read, write, and execute) in the guest machine thanks to its control over
the page-table34.

As a result of all these improvements, Intel provides a complete virtualization solu-
tion through VT-x for all users. Indeed, existing tools for dynamic malware analysis
take advantage of these benefits using VT-x technology through large-scale projects
such as Xen. They use these advantages to emulate the entire operating system
in a virtualized environment. This makes the tools of the current solutions both
challenging to deploy and enables them to be detected by evasive malware due to
their differences from bare-metal systems. In our study, we use bare-metal (physical
system) directly as the analysis environment. Also, we use VT-x technology not to
emulate the operating system, but to execute our analysis tools in a more privileged
level than the operating system. Thus, we aim to have more control over the op-
erating system kernel and running applications. However, as mainstream dynamic
analysis tools run on top of a virtualization layer the latter needs it to be installed
first, which is impossible for a running system. Also, this additional layer may incur
time and resource overhead, which can create anomaly, which helps malware detect
the analysis tool. ISKRA suffers none of those disadvantages.

When ISKRA starts working, it creates a hypervisor by using VT-x. This hypervisor
is responsible for deploying analysis instruments on the environment. The ISKRA
framework runs malware samples and performs analysis by monitoring all their
system calls. Therefore, a system call monitoring mechanism is needed, which is
implemented by the hypervisor.

33See https://github.com/ionescu007/SimpleVisor

34See https://rayanfam.com/topics/hypervisor-from-scratch-part-7/
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Figure 2.3 Inline hooking overview

The Windows operating system provides no legitimate mechanism to directly mon-
itor system calls. On the contrary, it tries to prevent tools that aim to capture
system calls by using technologies such as Kernel Patch Protection (KBB or also
known as “PatchGuard"35). Monitoring tools locate executable code segments of the
system calls in the memory and overwrite arbitrary part of it (using JMP instruc-
tions or breakpoints) to redirect execution flow to their own code segments. After
they complete the necessary operations to log system calls activities, they return
execution flow to the instructions of original system calls. This method is known
as inline hooking36, which circumvents KBB. Figure 2.3 shows an overview of inline
hooking. The hypervisor in the ISKRA framework uses the same methodology to
deploy system call monitoring.

We previously mention that the EPT technology allows us to track and interfere
with memory operations. The hypervisor deployed by ISKRA also configures an
EPT entry to create EPT violations on reading and writing operations within the
memory region of hooks. The processor transmits EPT violations to hypervisors
to allow them for handling those violations37. Therefore, the hypervisor can detect
any read or write operation to memory regions that contain instructions for inline
hooking and hide them from other system components such as PatchGuard and
malware.

Finally, to log system call executions, the hypervisor adds breakpoints at the mem-
ory regions of the system calls, which create violations that are handled by the
hypervisor. Therefore, the hypervisor can now log system call executions. The only

35See https://bit.ly/3i2OuR7

36See https://blog.nettitude.com/uk/windows-inline-function-hooking

37For more information about implementation see https://github.com/tandasat/DdiMon
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difference of this logging method from a typical inline hook is that it uses breakpoints
instead of JMP instructions. As hook handlers are invisible to the guest system,
the hook handler would not execute if JMP instructions were used. Therefore, we
use breakpoints to redirect execution flow to the hook handler in the hypervisor by
triggering violations.

In summary, with the help of the VT-x, we can deploy our framework on a running
bare-metal system. It has extensive control over the operating system and appli-
cations including malware. Furthermore, EPT allows the privileged framework to
interfere with memory operations and hide its presence.
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3. ISKRA FRAMEWORK

The emergence and rise of the threat intelligence community has led to relatively
quick and prompt discovery of malware attacks at the onset. With public services
such as VirusTotal, anyone can easily check if a suspicious software is malicious
provided that it is previously analyzed. This shifts the priority of malware developers
from having fully undetectable malware to developing malware that can hide its
behavior even after it is detected. When malware detects that it is analyzed, it
stops running or does not execute its actual malicious code. This prevents the
analyst from conducting an in-depth examination of malware, which is essential to
perform preventive and remedial actions.

To address this fundamental concern, we present a dynamic analysis framework for
use in detailed examination of evasive malware that hides their behavior during
analysis. The framework can also be profitably used incident response cases, where
the aim is not only detect cyber attacks but also investigate and resolve them. The
framework provides analysis in a bare-metal system so that it can successfully detect
malicious software that has managed to escape emulation and virtualization based
analysis tools. It also allows the incident response operations to be performed di-
rectly in the system under attack and malware cannot possibly disrupts the analysis
as it cannot detect it. The framework performs malware analysis in three basic
stages: i) data collection, ii) decision making, and iii) threat report generation. In
the following section, detailed information will be given about these three stages.
Figure 3.1 illustrates an overview of the dynamic analysis platform. The figure shows
that the ISKRA driver executing in the VMX root mode, which is deployed in a very
low level, is responsible to collect data and sends to the ISKRA agent for further
process. The driver is in the regular format of a Windows kernel-mode software
driver. It is compiled, debugged, and installed as a regular driver executable file.
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Figure 3.1 Overview of ISKRA

3.1 Data Collection

In this stage, three types of data are collected to assist malware analysis process:

• System calls

• File header information

• Network packet capture

• Performance counters statistics before and after running malware

The ISKRA framework checks if the monitored system calls reveal any data per-
taining to the deployment of the analyst tools (such as debuggers, disassemblers,
etc.). If that is the case, the framework alter or remove the data in return value,
so the presence of analyst tools is hidden from other software in the system such
as malware. For example, analysts often use tools such as debuggers and disas-
semblers, as well as command interpreter (such as cmd.exe) or scripting tools such
as Powershell and Python to interact with the system under examination. Since
attackers are familiar with common analysis techniques and tools, they check the
presence of the tools that are most frequently used in malware analysis. One of the
most frequent methods used by evasive malware for this purpose is to obtain a list
of running processes in the system and compare it with the list of frequently used
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analysis tools. If they detect that an analysis tool is running on the target system,
they adapt their behavior in order to hide their malicious intentions.

As a countermeasure to this evasion method, the ISKRA framework controls tool
names in the return value of the NtQuerySystemInformation system call, which
can be used for obtaining a list of the running processes’ names. If the framework
detects such malware analysis tools’ name in the return value, it hides their presence
by removing them from the list. The framework maintains an easily configurable
list, therefore the analyst can modify it to hide any tools that is used in the analysis.
Thus, the framework can hide both its own components and other malware analysis
tools from malicious software.

The ISKRA agent component also extracts file header information, captures net-
work packets and sends them to the database component along with the system
calls collected by the driver component. It is possible to use this data, which is
obtained and shared in order to provide more detailed information to analysts in
the classification of malware with appropriate algorithms (Schultz, Eskin, Zadok &
Stolfo, 2001)(Stakhanova, Couture & Ghorbani, 2011).

In a typical malware analysis environment, when the analysis of a malware is com-
pleted, the environment is reset to its initial state for the next analysis. So, the
tangling of evidence between the two successive analyses in the same environment
is avoided. As our framework is designed to be deployed as an automatic dynamic
analysis tool, its agent component is responsible for not only resetting, but also
recording all system changes during the analysis. Resetting the environment by
deleting all changes is a configurable feature of the ISKRA. Thus, the deletion of
possible evidence (such as files and registry keys created by the malware) is prevented
when the framework is used during incident response. At the end of a predefined
automatic analysis period, the ISKRA agent transmits the logs to the database as
can be seen in Figure 3.1.

3.2 Data Preprocessing

It this stage, data about malware’s dynamic behaviour transmitted by the agent
component is parsed and preprocessed; as a result a file containing system calls and
its parameters by suspicious executables is created. Example loglines are included
in Figure 3.2.
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Figure 3.2 has two different calls that are collected from "NtCreateSection" and
"RtlCompareUnicodeString" system calls. "NtCreateSection" creates a shared ob-
ject, which represents a section of memory that can be shared with other pro-
cesses. Shared objects are also used to map a file into memory address space.
In our example, the “AllocationAttributes” parameter has SEC_IMAGE bit-
mask value (specified in Microsoft Developer Network Documentation), which in-
dicates that this system call is used for mapping an executable file into mem-
ory. We can link this information with ProcessId and the file parameters.
Line 1 in Figure 3.2 points out that the process with ID 0x00000c5c maps "De-
vice\HarddiskVolume2\Windows\System32\samcli.dll" into its memory. "samcli.dll
is a "dynamic-link library (DLL) file, which handles Security Accounts Man-
ager (SAM) operations, through which we understand that a suspicious executable
that generates logs in Figure 3.2 intends to interact with users’ passwords in the tar-
get machine. As illustrated here, an analyst can use this information to understand
the malware’s capabilities and intentions.

In the second line of Figure 3.2, "RtlCompareUnicodeString" is used to compare
"WDSCORE.dll" and "oleaut32.dll" strings. Similarly malware’s intentions can be
inferred from the logs of "RtlCompareUnicodeString". For instance, evasive malware
generally has a blacklist for known analyst tool names such as debuggers, disassem-
blers, etc.; then it checks the presence of blacklisted process names in the current
process list running on the target machine. To this end, malware makes string
comparisons between the current process list objects and blacklist objects. So if an
analyst sees malware analyst tools names in string comparison in "RtlCompareUni-
codeString" logs, the analyst deduces that evasive malware checks the presence of
analyst tools in the target machine.

Figure 3.2 Captured System Call Example

23



3.3 Threat Report Generation

It this stage, a threat report is generated that can be examined by the analyst. This
report, which is created in JSON format for easy manual editing or interpretation
through software, contains essentially the following information:

• Main Portable Executable (PE) header information. This header contains all
necessary information for the Windows operating system to load an executable
into memory and execute it. An analyst uses that information to verify that
the current environment meets the executable’s requirements. For example, if
the PE header specifies the .NET framework requirement, an analyst under-
stands that the framework must be installed in the environment to execute
the malware.

• Process list

• System calls (together with their parameters) made by the suspicious process

• Summary of HTTP and DNS requests extracted from network packet capture.

The threat report obtained is recorded in the database and presented to the analyst
through a user-friendly web interface.
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4. BEHAVIOUR DATA MONITORING

In this section, we provide detailed information about the dynamic analysis frame-
work component that not only detects evasive malware, but also monitors its dy-
namic behavior.

The main method used by evasive malware, which is the subject of our study, to
avoid analysis by security products, is to profile its execution environment and to
refrain from performing its harmful activities when it detects an environment, which
is dissimilar to typical user profile such as emulation tools. For this reason, analysts
want to obtain the most detailed information about the behavior of malware while
leaving minimal traces in the system. However, emulation and traditional virtu-
alization technologies used today can be easily detected by malicious software due
to their physical differences from the bare metal system (Yokoyama, Ishii, Tanabe,
Papa, Yoshioka, Matsumoto, Kasama, Inoue, Brengel, Backes & Rossow, 2016).
Moreover, these methods, which are based on the external intervention of the entire
operating system, become unusable when the analyst wants to move to a bare metal
system.

The dynamic analysis framework proposed in this study employs the Extended Page
Tables (EPT) feature provided by Intel VT-x technology1 to enable behavior mon-
itoring without being detected by malware. With the VT-x technology that comes
with the second-generation Intel processors, virtual machine monitoring has become
a much more useful method. It enables the development of faster, less costly, and
more effective virtualization solutions. The technology brought the concepts of the
VMX root mode and the VMX non-root mode in addition to the privilege levels com-
monly called Ring 0 through Ring 3. While the root mode is developed for use by the
host system, the non-root mode is developed for use by the virtual machine. With
the EPT feature, which was later added to this technology, it is possible to virtualize
the memory management unit (MMU) processes, so that a bare metal hypervisor
running in the VMX root mode can have full control over the code and data in the

1See https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-
virtualization-technology.html
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virtual machine. As of today, Intel VT-x and EPT technologies allow monitoring

Figure 4.1 Overview of kernel component

from a level that has more privilege than malware and low level software including
the operating system and rootkits. Our dynamic analysis framework monitors sys-
tem calls using these advantages brought by Intel VT-x and EPT technologies. It
simply monitors system calls with the HyperPlatform hypervisor (Korkin & Tanda,
2017). Figure 4.1 shows an overview of the driver component and how it is situated
with respect to OS kernel and user mode applications.
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5. MODEL CONSTRUCTION

In our experiments, system call sequences are examined using different approaches
with different machine learning and deep learning algorithms. In this section, we ex-
plain approaches and methodologies used in our experiments. Then, the subsequent
section will present experimental results.

In one approach, machine learning models are tested using TF-IDF values of n-
grams of system calls. After the pre-processing step, a separate file is created in
the database containing system calls made by a specific malware sample. TF-IDF
values of n-grams are extracted from these files and used as features in the machine
learning models. During the tests, separate models are created and evaluated with
different n-gram lengths and machine learning algorithms. For n-gram notations in
this study, we use single length n-grams (such as n = 1 for monograms) and n-gram
ranges (such as n = [2,4]). The notation, where the range is used, means that n-
grams are selected for all lengths within that range. For example, n = [1,2] means
monograms and bigrams are used.

In another approach, the system calls are converted to number sequences, and model-
ing and evaluation are performed by applying the Long Short Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) algorithm on these sequences. A unique integer
value is assigned for each different system call for use in the data processing phase,
so that system call logs are converted to number sequences. Table 5.1 shows an
example subset of the mapping between system calls and corresponding unique in-
tegers.

In both approaches, instead of treating them separately, we group system calls that

RtlInitUnicodeString 1
NtSetInformationFile 2
NtCreateSection 3
NtAllocateVirtualMemory 4
NtCreateFile 5

Table 5.1 An Example Subset Of The System Calls And Their Unique Integer Values

27



Systam Call Category System Calls

Memory
MmCopyVirtualMemory, NtCreateSection
NtAllocateVirtualMemory, RtlDecompressBuffer,
RtlDecompressBufferEx

File
NtCreateFile, NtDeleteFile, NtQueryDirectoryFile,
NtReadFile, NtSetInformationFile, NtDeviceIoControlFile,
NtWriteFile

Process
NtOpenProcess, NtCreateProcess, NtOpenProcessToken,
NtOpenThreadToken, PsCreateSystemThread,
PsSuspendProcess, PsResumeProcess

String RtlAnsiStringToUnicodeString, RtlUnicodeStringToAnsiString,
RtlInitUnicodeString, RtlCompareUnicodeString RtlInitAnsiString

Privilege NtAdjustPrivilegesToken, NtDuplicateToken SeAccessCheck,

Registry RtlCreateRegistryKey, RtlQueryRegistryValuesEx,
RtlDeleteRegistryValue, RtlRtlCheckRegistryKey

Table 5.2 Hooked system calls and their corresponding categories

operate with similar operating system objects into categories and report the effects
of grouping on the accuracy of the machine learning models. Table 5.2 shows system
call categories.

In yet another approach, we use system call parameters as inputs in our machine
learning algorithms and show that they can be used to distinguish the malicious
behavior with high accuracy.

All software, including malicious software, interact with the operating system to
fulfill their fundamental functionality. User mode software often uses the application
programming interface (API) provided by the operating system when interacting
with the system and other system components in order to ensure compatibility
with frequently released operating system updates and to reduce the executable
size. When these APIs will perform low-level operations that are handled by the
kernel of the operating system, such as hardware-related operations or creating new
processes, they make the relevant system calls and turn over the execution of the
related task to the kernel.

Unlike API calls, many system calls are not made available directly to software de-
velopers in the Windows (and many other) operating system, and not all system
calls provided by the operating system are documented. However, thanks to endeav-
ors of the reverse engineering community, it is now elementary for any software to
use these system calls directly. To summarize, software that performs low-level op-
erations gives rise to system calls either through user-mode APIs or directly through
the kernel.

Malware is known to attempt to evade security solutions by calling system functions
directly instead of user mode APIs. For instance, as many security products monitor
user mode APIs, malware can easily bypass them by interacting with kernel directly.

Also, since system calls operate on low-level system components, it is a laborious

28



Figure 5.1 Example API Sequence for Code Injection

endeavor to re-implement them. After all, any error in their implementation may
cause critical system failures. To avoid this, malware developers, therefore, tend to
invoke available system calls instead of re-implementing them as do other legitimate
programs. Consequently, by monitoring system calls we can observe and investigate
interactions of malicious software with the operating system reliably to a greater
extent.

A single system call performs one primary operating system job. But even a single
task that the malware wants to perform is more involved and often leads to multiple
system calls. For example, a single malicious task such file stealing may cause system
calls for obtaining file handle (e.g. NtCreateFile) and reading file (e.g. NtReadFile).
Therefore, we examine the system calls as system call sequences to capture their
intentions and context.

The NtCreateSection system call can be used either by a benign program to map
data to memory or by malicious software to run its code in another process by
employing what is known as code injection. However, if the other system calls are
also invoked, then one can infer if the call is a part of a malicious action. Figure 5.1
shows the API sequence generated by malware called Trickbot, which is an infamous
financial Trojan family, while performing code injection. Fundamental steps of this
operation listed below:

• Create a new suspended process

• Retrieve the context of its main thread
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• Allocate sufficient memory space for malicious code at the target process’s
memory range

• Write its malicious code to the allocated memory space

• Set start of the malicious code as the thread instruction pointer

• Resume the thread

As can be understood from the example, an ordered set of system calls proves to be
instrumental to distinguish a malicious act.

Originally, we aim to monitor system call parameters to obtain in-depth information
about system calls and eventually create indicators of compromise (IOC) lists from
string valued parameters, such as file paths, process names, and registry paths. Also,
particular string values of system call parameters prove to be reliable features in our
machine learning algorithms to classify malicious behavior. We also report their
performance as an alternative and competitive method for malware classification.

Additionally, the ISKRA collects the network traffic, PE file header information,
and hardware performance counters (HPC). For this study, however, we don’t lever-
age the network packets and file headers collected by the ISKRA. Similarly, we
do not use hardware performance counters-based (HPC-based) sampling within the
scope of this paper. However, we facilitate HPC sampling in the framework as they
prove to be instrumental in detecting sophisticated attacks such as cache-based at-
tacks (Kulah, Dincer, Yilmaz & Savas, 2019) (Chiappetta, Savas & Yilmaz, 2016).
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6. EXPERIMENTAL RESULTS

The proposed dynamic analysis platform is tested using two different methods. In
the first method, recent evasive malware samples are identified in the current cam-
paigns using our field experience and verified by manual methods. In addition to
the experiments with our framework, we analyzed the malware samples detected by
manual methods using other existing dynamic analysis solutions and compare their
performance with that of our framework. In the second method, experiments are
carried out on samples obtained by random sampling from the malware data sets
provided by the suspicious file inspection service, called VirusTotal.

6.1 Real World Examples

This section includes recent examples of malware campaigns observed worldwide in
2020, for which all necessary indicators of compromise (IOC) are not detected by the
existing analysis solutions. Recall that the IOC includes the necessary information
to detect, analyze and prevent malware operations. Although there are various
proposals in the cyber security community for the classification of IOC types, there is
no generally accepted IOC type classification scheme. Within the scope of this study,
the performance of a dynamic analysis platform in extracting the necessary IOC
information is evaluated with its success in finding file system and network traces,
which provide the most essential information. This includes file system changes
and data such as remote server address, port, and protocol used by malware to
communicate with its command and control server, which is the most distinguishing
information left by an evasive malware sample. Therefore, it is essential to ensure
that malware executes in the analysis environment, fulfills its original intent and
reveals these types of information.

In the following, we provide the details of our study with three evasive malware
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samples that cannot be detected by existing dynamic analysis tools, which include

• ANY.RUN1

• JOE Sandbox2

• CAPE SAndbox3

6.1.1 Zloader

Zloader malware, a derivative of the Zeus malware, has been distributed since Febru-
ary 2016. Cybercriminals launched worldwide Zloader attacks targeting users during
the coronavirus outbreak in 2020. Zloader can be used to install new malware on vic-
tim machines and can also steal victims’ passwords using “the man-in-the-browser”
method. In the method, Zloader injects malicious code into running web browser
processes in the victim machine and then hooks network relevant functions invoked
within the browser process so that malware can sniff usernames and passwords.

For attackers, it is not a straightforward undertaking to convince potential victims
to execute an arbitrary executable file in an e-mail attachment. Therefore, in the
Zloader malware campaign, attackers carry out their operation in two stages. In the
first stage, spam e-mails with malicious Microsoft Office Excel attachments are sent
to potential victims. These spams contain phishing text to trick targets into opening
the file in the e-mail attachment. These Excel files contain malicious macro codes,
which are written in VBA (Visual Basic for Applications) language, to download
and execute actual Zloader malware payload. The second stage starts when the
malicious code is executed.

This attack campaign employs effective methods to evade automated dynamic anal-
ysis platforms. As a result, the existing dynamic analysis services cannot completely
analyze and collect all necessary information to profile the malware behaviour since it
cannot be monitored dynamically even when it is found to be malicious via signature-
based methods. When the evasion methods applied by the Zloader campaign are
examined with reverse engineering tools and techniques, it can be seen that malicious
macro codes in the first stage of the attack collect information about the working

1See https://any.run/

2See https://www.joesandbox.com/

3See https://capesandbox.com/
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environment, and based on these information they can detect automatic analysis so-
lutions. More specifically, these malicious macro codes, which execute in the process
context of the Excel process, obtain information about window GUI properties of the
Excel process, macro debugger presence, and operating system properties. Existing
dynamic analysis platforms generally use command-line tools to easily automate the
analysis pipeline and use low display resolutions to reduce virtual machine system
requirements. The malicious macro codes use window properties of the Excel soft-
ware user interface and compare them with widely used end-user system properties.
Based on this comparison, malware can differentiate anomalous systems such as
those deploying dynamic analysis environments. In addition, many dynamic anal-
ysis solutions implement only necessary parts of the actual physical computer to
operate at a minimum cost. The malicious macro codes, then, check the presence
of mouse and audio system in the working environment to catch the presence of
dynamic analysis platforms. The following list shows all information used by macro
in the Zloader malware4 to this end:

• Is the window hidden?

• Is the window maximized?

• Window size

• Is the malicious macro code debugged?

• The workspace width

• the workspace height

• Whether a mouse is plugged

• Whether the computer can play audio

Figure 6.1 Zloader Network Traffic Captured by the ISKRA

To evaluate the effectiveness of current solutions for Zloader, we searched public
analysis reports of it in three different online analysis platforms. These platforms
are Joe Sandbox, ANY.RUN and CAPE Sandbox. We observed that even if these
platforms successfully classify malware samples by matching signature, they could
not reveal the malware’s command control server because they were detected by

4See https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-weaponization/

33



the evasion methods5,6,7. Figure 6.1 shows a network packet capture of the Zloader
command and control server address resolution obtained by ISKRA.

6.1.2 GuLoader

GuLoader is a VB5/6 downloader that was active in the first half of 2020. Unlike
the Zloader malware, it has no harmful functions beyond downloading other
malware samples (generally those intended for online banking users) in the target
system. We observe that the existing analysis solutions are again insufficient due
to the anti-analysis methods employed by this campaign. GuLoader efficiently uses
well-known anti-analysis methods to evade current solutions, which are explained
below:

Virtual machine related strings It checks for the presence of
"C:\ProgramData\qemu-ga\qga.state" file in execution environment. This file
is a part of QEMU Guest Agent software8.

Number of application windows It counts the number of top-level appli-
cation windows by using EnumWindows Windows API. If the number is less than
12, then the malware terminates itself9.

To evaluate the effectiveness of current solutions for Guloader, we obtained a
sample Guloader10 by our private sector partnership and analysed it with three
different online analysis platforms. Our observations are explained in the following.

Joe Sandbox It successfully classified the sample as GuLoader; but the re-
port clearly states that the detection depends on behaviour signature. There
is no network traffic in the report. This shows that the malware abstains from
fulfilling its fundamental function and downloads no other malware. Network traffic

5https://capesandbox.com/analysis/52317/

6https://app.any.run/tasks/5361f747-19ac-4877-bde0-fb0cc86ecd3c/

7https://www.joesandbox.com/analysis/257133/0/htmlnetwork

8See https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html

9https://www.crowdstrike.com/blog/guloader-malware-analysis/

10SHA1: 2ee96ccec4d361aebe8540492f233491b386caa7
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information is especially important to learn more about the attack campaign and
its origins; but the Joe Sandbox failed to provide it.

ANY.RUN It failed to classify the GuLoader sample as malware. There is
no detected malware artifact, network or file operation in the report.

CAPE Sandbox It only detects a static signature of the sample. There is
no implication in the report that points to the download and execution of a
malware sample.

In our experiment on the relevant harmful executable, ISKRA framework

Figure 6.2 GuLoader Network Traffic Captured by the ISKRA

successfully classified the sample as malicious by using its machine learning based
classifier. Also, the ISKRA captured network traffic between the malware and
its command and control server. Figure 6.2 shows the HTTP traffic summary
generated by the ISKRA framework. An analyst that can access this summary
from the framework dashboard, easily obtains necessary network IOC to detect
and block the GuLoader campaign without further manual investigation on the
malicious executable.

6.1.3 MassLogger

MassLogger is a stealer developed using the .NET programming language employed
by attacks in 2020. This malware, which steals user passwords and sends this data
over SMTP, is another family of malware that bypasses current dynamic analysis
platforms. It detects analysis platforms by using various methods as explained in
the following.

Virtualization Software Detection MassLogger initially gets computer
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system properties by querying Windows Management Instrumentation (WMI)
with “Select * from Win32_ComputerSystem". Then, it compares computer
manufacturer property with widely used virtualization software names. If the
computer manufacturer’s name is Vmware or Virtualbox, the malware terminates
itself11.

Analysis Component Detection MassLogger checks widely used sandbox
components in the execution environment. For instance, to detect Sandboxie open
source sandbox, the malware checks existence of "SbieDLL.dll" module, which is
the Sandboxie sandbox’s user-mode component, by invoking GetModuleHandle
Windows API.

By our private sector alliance, we obtained a Masslogger malware sample12.
Then, in order to examine the analysis results of current solutions, we uploaded the
sample into the three dynamic analysis platform and obtained their reports, which
are summarized in the following.

Joe Sandbox The report states that this sample is classified by a static
signature match on unpacked binary13. Reverse engineering on the malware sample
proves that Masslogger sends stolen data over SMTP. But the Joe Sandbox report
has no SMTP related network traffic. Thus, the report returned by Joe Sandbox is
missing network-related IOC information.

ANY.RUN The report14 returns “No threats detected” as a result and has
no data indicating harmful operations of the MassLogger sample.

CAPE Sandbox It classifies the sample as Masslogger. But the report15

declares that the sample is firstly processed by the “Unpacker" task to decompress
it. After that, the sample is classified by scanning static signatures on the processed
binary file. However, these two steps are essentially based on the previous manual
analysis of the relevant malware family. Therefore, they need to be updated as
the malware sample is updated. Command and control server hostname is shown
in the “DNS" section of the CAPE Sandbox report. But there is no SMTP traffic

11See https://fr3d.hk/blog/masslogger-frankenstein-s-creation

12SHA1: 851c8818d44587d188dde10cee1eda582e97118e

13See https://www.joesandbox.com/analysis/237655/0/html

14See https://app.any.run/tasks/a48223e2-fea3-44ac-817e-3a976ae2f9a5/

15See https://capesandbox.com/analysis/42194/
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captured. Thus, an analyst with no preliminary information about the Masslogger,
cannot relate DNS resolution with any other information in the report. Another
consequence of the lack of SMTP traffic in the CAPE sandbox report is that stolen
data from the target system cannot be observed.

Figure 6.3 MassLogger Network Traffic Captured by ISKRA

In our experiment for the same sample on the ISKRA dynamic analysis frame-
work, we successfully obtained network packet capture between the malware and
its command and control server. Figure 6.3 shows the details of harmful SMTP
traffic (some parts redacted for concealing stolen data). In summary, the ISKRA
framework provides below information with these traffic:

• Command and control SMTP server address from "To" field.

• Malware family name from "Subject" field.

• Stolen infomation from victim device. Because stolen data is sent in plain over
SMTP.

An analyst can easily extract ZIP attachment from the network packet capture and
then reveal malware configuration, which can be seen in the Figure 6.4.

6.1.4 Cradle Ransomware

Cradle is a ransomware family that was disclosed by security researchers in 201716.
This ransomware is sold as ready to use a crimeware kit in Dark Web. Also, an

16See https://www.cyber.nj.gov/threat-center/threat-profiles/ransomware-variants/cradlecore
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Figure 6.4 MassLogger Configuration Extracted from the ISKRA logs.

attacker can buy this malware as a source code project to make her/his own mod-
ifications. It targets more than 300 file types in Windows operating system and
encrypts them with the Blowfish blockcipher encryption algorithm. A cybersecu-
rity organization found an advertisement for Cradle ransomware in an underground
forum17. The advertisement reveals that the ransomware has an evasion feature.
A simple, but effective feature is based on the CPU core number of the target ma-
chine. Modern personal computers usually have a multicore CPU. However, some
dynamic malware analysis platforms use single-core systems while building an anal-
ysis environment to limit the system cost. Thus, attackers use this dissimilarity to
detect dynamic analysis platforms as in the case of Cradle.

To assess the effectiveness of the current platforms for Cradle, we obtained a sample
of this malware campaign18 by our private sector partnership and analyzed it with
different online analysis platforms. Our experiments are explained in the following.

17See https://www.forcepoint.com/blog/x-labs/cradlecore-ransomware-source-code-sale

18SHA1: a2a164a4a535c5542accb45d1268ac072b48ff1a
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Joe Sandbox The Joe sandbox report19 for the sample contains network
IOC information. But the “File Activities" section in the report has no indicator for
file operations of the ransomware sample. File IOC is the most essential information
for detecting and analyzing ransomware families as they rename encrypted files
with a unique extension. This suggests that Joe Sandbox fails to execute the sample.

ANY.RUN The report20 has no IOC for file or network operations of the
ransomware. Apparently, ANY.RUN fails to execute the sample.

CAPE Sandbox CAPE Sandbox is the only public solution among those
we tested that is able to run Cradle. The report contains the command and control
server address and lists renamed encrypted files.

In our experiments, the ISKRA framework manages to obtain all necessary
network and file indicators. Detected indicators contain command and control
server address and modified file list. Figure 6.5 shows the ransom note created by
Cradle ransomware. This ransom note is captured by the ISKRA framework from
file modification logs. Hence, an analyzer easily identifies malware family and its
purpose by using this ransom note.

Figure 6.5 Ransom Note Obtained with the ISKRA.

6.2 Samples from VirusTotal

To evaluate the performance of our dynamic analysis platform in monitoring malware
and the usability of the data collected by this platform, we experimented with 72

19See https://www.joesandbox.com/analysis/267105/0/html

20See https://app.any.run/tasks/9fedbfcc-c6d0-4a18-a32a-8a3440211201
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sample software files. While 32 of the files are benign 40 of them are known malicious
files, which are obtained by random sampling from the VirusTotal dataset. Each
malicious sample and its report, which is created by the ISKRA framework, are
manually analyzed and it is observed that the actual purpose and behavior of the
malware are identical. This shows us that our dynamic analysis platform can run
the malware sample and collect dynamic behaviour data without being detected by
current malware campaigns.

For the benign sample collection, we crawled files from two different sources. The
first source is a free portable software website21. For this, we developed a web crawler
and downloaded 100 portable software samples. The second source for benign files
is an end-user machine. We wrote a file crawler for the Windows operating system
and collected 792 executables from a freshly installed system. After collecting all
these samples, we selected 32 benign files by random sampling. Each test sample is
executed for 5 minutes in the test environment. 80% of the sample set are reserved
for training, the other 20% for testing. In the experiments, a total of 628,463 system
calls are collected by executing 72 samples. A total of 501,522 of these system
calls are collected from the malicious samples. The average number of system calls
collected from a malicious sample is 11,941 for the benign samples, with an overall
average of 8411. Figure 6.6 summarizes the system call counts of the captured logs.

Figure 6.6 System Calls Count Variation

In the experiments, we tried different machine learning classification methods and
reported their performance (cf. Tables 6.1, 6.2, 6.3, 6.4). As the signature-based
detection is not used and a malware sample is used in the classification phase for
the first time, it is considered as zero-day malware.

We first worked with mono-grams (i.e., n = 1) of raw system call sequences and
calculated their TF-IDF values. Two cases are considered. In Case I, (See Table 6.1),

21https://www.portablefreeware.com/
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Classifier Precision Recall AUC
LogisticRegression solver=’lbfgs’ 0.63 0.83 0.57
SVC kernel=’rbf’ 0.58 1.00 0.50
SVC kernel=’linear’ 0.65 0.79 0.59
DecisionTreeClassifier, max_depth=3 0.75 0.64 0.67
DecisionTreeClassifier, max_depth=4 0.61 0.60 0.53
KNeighborsClassifier, k=2 0.74 0.33 0.58
KNeighborsClassifier, k=3 0.67 0.43 0.56
KNeighborsClassifier, k=4 0.82 0.33 0.62

Table 6.1 Case I: classification results for all system calls using monograms (i.e.,
n = 1) and dictionary size is 22

Classifier Precision Recall AUC
LogisticRegression solver=’lbfgs’ 0.65 0.93 0.61
SVC kernel=’linear’ 0.58 1.00 0.50
DecisionTreeClassifier max_depth=3 0.73 0.83 0.70
DecisionTreeClassifier max_depth=4 0.75 0.79 0.71
KNeighborsClassifier, k=2 0.84 0.62 0.73
KNeighborsClassifier, k=3 0.71 0.69 0.65
KNeighborsClassifier, k=4 0.81 0.62 0.71

Table 6.2 Case II: classification results for system calls in the sample data set using
monograms (i.e., n = 1) and dictionary size is 21

in addition to those in the data set, system calls from all processes that happen to
be running are used for the training and classification phases. This case represents
a noisy setting. In Case II (See Table 6.2), only the system calls in the sample data
set are used. Case II represents a typical analysis scenario, in which the analyst
inspects a given sample. Table 6.1 shows that the best AUC is %67 for Case I and
it is obtained with the Decision Tree classifier. Also, Table 6.2 shows that the best
AUC is %73 for Case II and it is obtained with the k-nearest neighbors classifier.
When we compare the best AUC scores of Case I and Case II, we observe that the
best AUC in Case II is 6% better than the one in Case I.

As expected, Case I, which is noisy, is less successful than Case II. All the same,
the AUC score of 67% (See Table 6.1) shows that Case I is still highly valuable
for analysis by reducing the number of suspicious applications in cases, where the
source of the incident is unknown such as digital forensic and incident response
applications. Note that in those types of applications we envisage that forensic
experts or incident response team members work with a running system and are not
provided with samples, but inspect calls from all types of processes to find out the
culprit.
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Classifier Precision Recall AUC
LogisticRegression solver=’lbfgs’ 0.67 0.69 0.61
SVC kernel=’linear’ 0.76 0.60 0.66
DecisionTreeClassifier max_depth=3 0.78 0.74 0.72
DecisionTreeClassifier max_depth=3 0.75 0.64 0.67
KNeighborsClassifier, k=2 0.88 0.33 0.63
KNeighborsClassifier, k=3 0.76 0.45 0.63
KNeighborsClassifier, k=4 0.93 0.33 0.65
Randomforest, n_estimators=5 0.64 0.69 0.58
Randomforest, n_estimators=10 0.70 0.67 0.63

Table 6.3 Case I: results for n-gram range of [2, 4] and dictionary size is 3725

Classifier Precision Recall AUC
LogisticRegression solver=’lbfgs’ 0.66 0.83 0.62
SVC kernel=’linear’ 0.68 0.71 0.62
DecisionTreeClassifier max_depth=3 0.86 0.86 0.83
DecisionTreeClassifier max_depth=4 0.81 0.81 0.77
KNeighborsClassifier, k=2 0.76 0.67 0.68
KNeighborsClassifier, k=3 0.67 0.83 0.63
KNeighborsClassifier, k=4 0.76 0.69 0.70
Randomforest, n_estimators=5 0.76 0.90 0.75
Randomforest, n_estimators=10 0.82 0.88 0.81

Table 6.4 Case II: results for n-gram range of [2, 4] and dictionary size is 3899

Next, we investigated the effect of n-grams of system calls by experimenting with
various ranges of n. With the help of the TfidfVectorizer function in the scikit-
learn library, TF-IDF values of n-grams of system calls are extracted in various
ranges of n and experiments are carried out with machine learning algorithms. The
algorithms we tested during the experiments are Logistic Regression, Support Vector
Classification, Decision Tree, k-nearest neighbors algorithm (k Neighbors), Random
Forest. We chose these algorithms as we observed that they are frequently used
in malware classification tasks. The highest success rates in the experiments are
obtained in the n-gram range of [2, 4]. Table 6.3 shows the results of the experiments
for system calls collected from all processes (Case I), and Table 6.4 shows the system
calls in the sample data set (Case II). The figures in the tables show that grouping
system calls as n-grams improves the detection performance and the AUC can exceed
80%.

After experimenting with classical machine learning algorithms, we investigated
the performance of more sophisticated deep learning techniques in developing our
decision-making model. Since our data set consists of system call sequences, we opt
for the long short-term memory (LSTM) networks due to their success in processing
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Parameter Possible Values
Hidden dimensions 10, 40, 70, 100
Dropout Rate 0.4, 0.5, 0.6
Batch Size 32, 64, 128
Max Epochs 10, 20, 30

Table 6.5 Tested hyperparametes for the LSTM networks

Score Type Value
Accuracy 0.8333
Precision 0.8333
Recall 0.8333
F1-Score 0.8333
AUC 0.8333

Table 6.6 LSTM experiments results for Case II

data sequences (Vinayakumar, Soman, Poornachandran & Sachin Kumar, 2018).
We used the PyTorch machine learning library to implement the experiments. To
analyze the system call sequences by using the LSTM networks, we have to work
with numeric arrays. With the sklearn.preprocessing.LabelEncoder function,
we transformed the system call sequences into integer arrays. We divided the sys-
tem call sequence data set of 72 samples into training and test sets with reserving
20% for test data set size. We utilized hyperparameter optimization option with
GridSearchCV function of the scikit-learn library to create the most suitable LSTM
network for our data set. The possible parameter set that are used during param-
eter optimization tests are given in Table 6.5. The GridSearchCV function reports
that the most successful parameter combination is as follows: Max Epochs = 10,
Dropout Rate = 0.4, Hidden Dimensions = 10, Batch Size = 32.

Using the LSTM network generated with the best hyperparameters, the performance
scores given in Table 6.6 are obtained. As can be observed in the table the AUC
score can get as high as 83.3%, which is in fact better than those obtained using
classical machine learning algorithms (cf. Tables 6.1, 6.2, 6.3, 6.4).

6.2.1 String Parameter Classification

In addition to system calls, we collected their associated parameters. In particular,
the string parameters of the system calls collected in the experiments are extracted
and analyzed with machine learning. Although all types of system call parameters
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Classifier Precision Recall AUC
LogisticRegression solver=’lbfgs’ 0.55 0.78 0.47
SVC kernel=’linear’ 0.54 0.71 0.45
DecisionTreeClassifier max_depth=3 0.85 0.80 0.80
KNeighborsClassifier, k=3 0.6 0.5 0.52
RandomForestClassifier (n_estimator = 5) 0.67 0.73 0.62

Table 6.7 Classification scores of string system call parameters using various machine
learning algorithms (Case II and n = 3)

Classifier Precision Recall AUC
(2, 3) 0.88 0.86 0.85
(2, 4) 0.88 0.83 0.84
(2, 5) 0.90 0.88 0.88
(2, 6) 0.92 0.83 0.87
(2, 7) 0.89 0.79 0.83
(2, 8) 0.89 0.79 0.83
(2, 9) 0.86 0.88 0.84
(2, 10) 0.92 0.81 0.86

Table 6.8 String classification using decision tree algorithm (Case II and n ∈ [2,10])

(such as handles and kernel-mode data structures) can be utilized, our field expe-
rience on this subject suggests that string type parameters provide more insight
about malware with less preprocess steps on the logs. Thus, only the string type
parameters are used during the experiments in this section.

In the experiments, a total of 186723 strings are collected by executing 72 sam-
ples. A total of 118,739 these strings are collected from the malicious samples. For
feature extracting and model training for string parameter classification, we used
TF-IDF values of n-grams of strings. It is a similar method that we used in the
previous section for system call sequences classification. Table 6.7 lists the detec-
tion scores obtained using various machine learning algorithms for tri-grams (n = 3).
The dictionary size of tri-grams (n = 3) is 161,205.

As can be observed in Table 6.7, the best method turns out to be the decision tree
algorithm with an AUC of 80%. Therefore, we further our experiments with decision
tree using n-grams for different ranges of n and show the resulting performance in
Table 6.8. As can be seen in the table, n-grams of system call string parameters
for n ∈ {2,3,4}, which have 479,684 dictionary size, result in an AUC score of as
high as 88% for a decision tree of maximum depth of 5, which is the highest value
achieved in all our experiments.
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System Specification
Computer Lenovo ThinkPad E480
OS Windows 10 Home
OS Build Version 16299
CPU Intel Core i5-8250U
Memory 4 GB

Table 6.9 Test Environment System Specification

Score Before Monitoring While Monitoring
CPU Score 899 896
Float Ops 196996727 196451877
Integer Ops 1276258232 1268521848
Hash Ops 1393523 1392959
Ram Score 135 134
RAM Speed 11556 MB/s 11418 MB/s
Disk Score 34 34
Write Speed 138 MB/s 129 MB/s
Read Speed 133 MB/s 136 MB/s

Table 6.10 Benchmark Results

6.3 Benchmark

In this section, we report the overhead in system performance scores when we run
our dynamic analysis framework in a notebook computer, whose specifications are
listed in Table 6.9.

Using the benchmark software Novabench (see https://novabench.com), perfor-
mance tests are carried out before and after running our dynamic analysis platform
in the physical environment in Table 6.9. Performance metrics such as “CPU Score”,
“Float Ops” are listed in the first column of Table 6.10. The results given in the Ta-
ble 6.10 represent the two benchmark measures made during the experiments. The
"Before Monitoring" column shows the measurements results before running ISKRA.
The "While Monitoring" column shows the measurement results while ISKRA run-
ning and collecting system call logs. "CPU Score" in Table 6.10 shows the evaluation
result for CPU score. The "Ops" values in the following rows represent the number
of instructions in different sets (such as Float and Integer) that are executed dur-
ing evaluation. "Ram Score" in Table 6.10 shows the evaluation result for memory
transfer performance. "Disk Score" in Table 6.10 shows the evaluation result for
direct, sequential disk read and write speeds. The benchmark scores in the table
suggest that the overhead in overall system performance is negligibly low. This ba-
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sically means that the computer system that is turned into an analysis environment
can continue functioning without significant adverse effect on its performance. The
low performance overhead is especially important in incident response cases as the
proposed analysis platform can run even in computers with low performance.

In addition, the change in the system performance cannot be distinguished from
normal fluctuations in performance. Consequently, we think that the overhead is
not enough for malware to detect the presence of ISKRA by side-channel analysis.
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7. RELATED WORK

As malware is probably the most essential instrument utilized by cyber attackers,
malware analysis is the primary course of action taken by security analysis teams to
battle cyber attacks. However, the increasing number and sophistication of malware
attacks and their involved evasion techniques render the task of security analysts
difficult. Therefore, stealthy, accurate, and fast dynamic malware analysis is an
open problem. This section summarizes the solutions suggested in related works in
the literature.

Although solutions based on virtualization Cuckoo Sandbox1 and emulation Anubis2

provide analysts with straightforward installation and usage, they can be easily de-
tected by hardware fingerprinting methods due to their differences from bare metal
physical systems. Drakvuf (Lengyel, Maresca, Payne, Webster, Vogl & Kiayias,
2014), CXPInspector3, and Ether (Dinaburg, Royal, Sharif & Lee, 2008), which are
hypervisor-based dynamic analysis solutions, depend on external virtualization soft-
ware.Although KVM, Xen, and QEMU based solutions are more successful against
evasion methods relying on virtualization and emulation detection, they are not fully
immune to hardware fingerprinting techniques used by malicious software. Besides,
due to the platforms on which they are installed such as a specific operating system,
they stand not a fully flexible solution especially for forensic and emergency response

External Virtualization
Software Dependency

Analysis on Bare
Metal Machine

Turn Existing System to
Analysis Environment

Machine Learning Based
Classification Assistant

Cuckoo Sandbox Virtualbox (in default) No No No
CXPInspertor KVM No No No
Drakvuf Xen No No No
Anubis QEMU No No No
Ether XEN No No No
ISKRA None Yes Yes Yes

Table 7.1 Comparison of ISKRA and known and popular dynamic analysis
platforms.

1See https://cuckoosandbox.org/

2See http://anubis.iseclab.org/

3See https://www.syssec.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2012/11/26/TR-HGI-
2012-002.pdf
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applications4

Table 7.1 presents a qualitative comparison of ISKRA and other known and popular
dynamic analysis platforms.

4The incident response operation may require the creation of a similar computing platform to that under
attack. This, in turn, necessitates the installation of various software, which takes considerable time. Our
framework requires only a single installation on the target system.
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8. DISCUSSION

In this section, we will discuss the extent of the immunity of the ISKRA framework
to evasion techniques. Considering the possible evasion methods against the ISKRA
framework, one of the first points of attack is pertaining to the installation phase
of the framework. Since the framework offers different usage areas, two different
cases are possible during installation. The first case is to build a dynamic analysis
environment in a freshly installed system. In this case, since there is assumed to
be no existing malware in the system, there is no risk that prevents the correct
installation of the framework.

The second case concerns running the framework on an infected system, for instance
during an incident response operation. Malware running on a compromised device
can disrupt the integrity of the system and change its normal behavior. Thus, it
can compromise all interactions with the system. In such a case, it can monitor
and prevent new software installations, including the ISKRA framework. However,
this attack requires that malware perform attacks such as privilege escalation, which
are complicated as we observe in targeted attacks. Also, such interventions to the
system make the malware attack much more conspicuous. Thus, it contradicts with
the primary aim of the type of malware studied here, which is to evade detection.
For this reason, we think that common attacks that can be performed during the
installation of ISKRA will be ineffective as they can be easily detected.

Once the correct installation is achieved, the ISKRA driver component will hide itself
from malicious software by using the advantages of Intel VT-x, as explained previ-
ously. But, there is still a possibility that the agent component running in user mode
will be targeted by attackers. For this, the ISKRA driver implements evasion tech-
niques as it can monitor the outputs and return values of the system calls and alter
them to remove data which indicates the presence of the framework. For instance, it
deletes the process name of the ISKRA agent from the NtQuerySystemInformation
system call output to remove it from the process list.

On the other hand, performing network and file operations, which are now done by
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the ISKRA agent, in the driver component would be more costly in the VMX root
mode than in the user mode. This is expected as the use of high-performance APIs
offered by the operating system is quite limited. This would increase the running cost
of the framework and cause the framework to consume more system resources. The
increased usage of system resources may even allow malware to detect the framework
by deploying side-channel analysis. Obviously, there is a trade-off here: make the
ISKRA agent immune against attacks by running it in the VMX root mode, but
accept heavy overhead as well as risk detection; and run it in the user mode and
use evasion techniques to make it invisible to attackers, but still risk intervention
by attackers. In this study, we opt for the latter.
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9. CONCLUSION AND FURTHER WORK

Dynamic analysis platforms are one of the main tools used by cybersecurity experts
to respond quickly to an increasing number of malware threats. However, eva-
sion techniques used by current malware campaigns prevent these platforms from
detecting malware and extracting the necessary indicator of compromise (IoC) in-
formation.

Based on the hypervisor-based monitoring system, the dynamic analysis platform
proposed in this study, ISKRA, can record the behavior of malicious software with-
out being detected as it runs at a higher level of privilege than malware. The existing
solutions examined in Section 6.1 and Chapter 7 depend on large-scale platforms
such as Xen, QEMU, or Virtualbox to create an analysis environment. But, ISKRA
can work on all physical and virtualized systems and its only requirement is Intel
VT-x support. Thanks to that it can be installed on an existing working system, this
feature allows any computer with VT-x to be transformed into an automated anal-
ysis platform and supports analysis without being detected by the attacker during
an incident response operation without the need for any changes in the codebase.

In this study, we experiment with very recent and the most evasive types of malware
samples and show that none of them can detect the analysis framework. Therefore,
they run, attempt to fulfill their mission and leaves all IoC behind, which is open to
full inspection.

Also in our experiments, system call sequences collected by ISKRA are analyzed;
and the results show that it is possible to detect malicious software without the need
for any signature database with an AUC as high as 82%.

In the future, the analysis of collected system calls can be carried out in real-time as
they are collected so that ISKRA will not only be able to bypass evasion techniques
employed by malware and detect them, but also to prevent malware attacks in end-
user machines. Besides, system call sequence groups can be examined and mapped to
"MITRE ATT&CK" techniques. This will make it easier for analysts to understand
and classify the behavior of malicious software.
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