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ABSTRACT

POWER IMBALANCE PREDICTION IN TURKISH ENERGY MARKET

HASAN DEMIRTAŞ

BUSINESS ANALYTICS M.A. THESIS, SEP 2020

Thesis Supervisor: Prof. CAN AKKAN

Keywords: electricity load imbalance prediction, intraday market, balancing power
market, predictive analytics, Turkish energy market, energy trade

There are potential trading opportunities in predicting energy imbalance in energy
markets. The energy imbalance in this study is the hourly energy difference between
the final planned production and the real-time consumption at the energy delivery
hour. We name it as net loading. From the perspective of an energy trade company
(TradeCo), being able to predict the net loading can help to make profitable trades in
the intraday market (IM). From the perspective of a generation company (GenCo),
being able to predict the net loading can help to optimize price offers it gives to
TSO in the balancing power market (BPM). Therefore, being able to predict net
loading can provide a competitive edge in the energy market. In this study, net
loading is tried to be numerically predicted for (T+1) up to (T+32) hours where T
is the prediction hour. Net loading follows an autoregressive pattern and therefore,
the developed models are tested against a naïve model that uses the closest available
past net loading value as the prediction. The naïve model works performs better
than random guess for (T+1) up (T+3). Our champion model beats the naïve model
for (T+1) up to (T+32). We have used 15 different machine learning models and
tried to improve them in 3 modeling stages. Among the machine learning models,
the voting ensemble model at the modeling stage 3 gives the best results. The year
2020 data is used as the main test data and 2018, 2019 data is used for modeling.
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ÖZET

TÜRKİYE ENERJİ PİYASASINDA GÜÇ DENGESİZLİK TAHMİNİ

HASAN DEMIRTAŞ

İŞ ANALİTİĞİ YÜKSEK LİSANS TEZİ, MAYIS 2020

Tez Danışmanı: Prof. Dr. Can Akkan

Anahtar Kelimeler: elektrik yük dengesizlik tahmini, güniçi piyasa, dengesizlik güç
piyasası, gözetimli öğrenme, Türkiye Enerji Piyasası, enerji ticareti

Enerji piyasalarında enerji dengesizliğini tahmin ederek sağlanan potansiyel ticaret
fırsatları vardır. Bu çalışmadaki enerji dengesizliği, planlanan nihai üretim ile enerji
teslim saatindeki gerçek zamanlı tüketim arasındaki saatlik enerji farkıdır. Bunu
net dengesizlik olarak adlandırıyoruz. Bir enerji ticaret şirketinin (TradeCo) bakış
açısından, net dengesizliği tahmin edebilmek, gün içi piyasasında (IM) karlı ticaretler
yapmaya yardımcı olabilir. Bir enerji üretim şirketi (GenCo) perspektifinden, net
dengesizliği tahmin edebilmek, dengeleme gücü piyasasında (BPM) TSO’ya verdiği
fiyat tekliflerini optimize etmeye yardımcı olabilir. Bu nedenle, net dengesizliği tah-
min edebilmek enerji piyasasında rekabet avantajı sağlayabilir. Bu çalışmada, T tah-
min saati olarak alınarak (T + 1)’den (T + 32)’e kadar net dengesizlik sayısal olarak
tahmin edilmeye çalışılmıştır. Net dengesizlik, otoregresif bir davranış sergilediği için
geliştirilen modelleri mevcut en yakın geçmiş net dengesizlik değerini tahmin olarak
kullanan naif bir modele karşı test etmekteyiz. Naif model sadece (T + 1)’den (T
+ 3)’e kadar rastgele tahminden daha iyi performans göstermektedir. Şampiyon
modelimiz (T + 1)’den (T + 32)’e kadar tüm saatler için naif modelden daha iyi
tahminleme yapmaktadır. Bu çalışmada 15 farklı makine öğrenimi modeli kullandık
ve bunları 3 modelleme aşamasında geliştirmeye çalıştık. Makine öğrenimi mod-
elleri arasında, modelleme aşaması 3’teki oylama topluluk modeli en iyi sonuçları
vermektedir. Test verisi olarak 2020 yılı verisi, modellemede ise 2018, 2019 verisi
kullanılmıştır.
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1. INTRODUCTION

The objective of this research is to check whether it is possible to predict the usage
of the amount of back-up energy when needed i.e. load imbalance amount balanced
through balancing power market (BPM) which we will name and call as net imbal-
ance during this study. The back-up energy is previously contracted in BPM with
a kind of optioning method meaning transmission system operator (TSO) is free to
use or not at the delivery time.

The Turkish energy market is always dominated by the demand at the delivery
moment. That is why the generation is arranged in real-time to meet the real-time
consumption. That is how the need for a BPM emerged as a perfect matching
of consumption and production is not possible. A day before the delivery time in
the day-ahead market (DAM), the initial trading contracts are made. Then during
the delivery day in the intraday market (IM), the secondary trading is made to
balance the deviations from DAM agreements. IM works as a correction mechanism
for DAM. The remaining deviation after IM trading is balanced by TSO thanks to
the usage of back-up energy options of BPM whose agreements were realized a day
before the delivery time. This study can be regarded as an error correction study for
TSO’s matching model between consumption and generation since it tries to predict
the load imbalance. There are three types of Turkish energy markets mentioned in
this study:

The first one is DAM. Even though DAM is not in the scope of the study, it is
mentioned since both BPM and IM exist to compensate for the deviations from
DAM arrangements. DAM and BPM agreements are determined the day before
the delivery day whereas IM agreements are determined on the delivery day and
the day before as shown in Figure 1.1. The energy trading door for DAM closes
at 12.00 on the day before the delivery day. DAM is the primary auction market
for power trading. It arranges the hourly energy buy-sell activities for the following
day which is the delivery day. The delivery of electricity is based on the contracts
made between sellers and buyers. Buyers put their best efforts to estimate the power
consumption of their portfolio and sellers try to sell their potential energy generation
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with a conditional price scheme. Each party states how much they are willing to
buy and sell at each price level. Bids are submitted to market operator (MO) by
buyers and sellers. Then MO releases the day-ahead prices for each hour. DAM
allows the supply side to adjust their price levels depending on their variable costs.
DAM also enables market participants to balance their portfolios. This leads to a
general fall in the generation and consumption imbalances in the portfolios.

BPM is the second market covered in this study. TSOs gain the ability to balance
the supply demand financially in real-time thanks to BPM. It also helps power
generation companies (GenCo) to get additional profit by either increasing their load
(loading) or by decreasing their load (de-loading). Just after DAM clearing results
are published, a GenCo submits its hourly loading and de-loading order bids to TSO
for BPM. These orders are options from TSO point of view, whereas liabilities from
the points of GenCos which is why they are called orders. Loading orders are usually
offered with prices higher than day-ahead prices, and de-loading orders are offered
with prices lower than of day-ahead prices to guarantee some profit margin. Making
a profit when there is under-supply is straightforward as selling back-up energy at a
higher price level than the regular energy price is profitable. Making a profit when
there is over-supply is somewhat not intuitive to get immediately. The generation
company buys back the energy it sold before with a lower price than its sell price,
thus the company makes money for the amount of energy it buys back without
producing energy since TSO pays money to the GenCo to lower its production.
TSO keeps BPM offers until the delivery time and either accepts or rejects the bids
just before it in case an energy imbalance occurs. If the bids approved are via a
loading or a de-loading order, the GenCo is obliged to fulfil the request of TSO as
stated before. The door for giving balancing energy options to TSO for BPM closes
at 16.00 on the day before the delivery day as shown in Figure 1.1.

IM is the third and the last market covered. During the delivery day and the day
before, the market participants trade energy. IM trading occurs since the consump-
tion trend predicted in DAM is almost never realized perfectly. Additionally, at the
generation side, the non-stable energy production by the wind and the solar power
plants in addition to the unplanned malfunctions or incidents of big GenCos are
also the factors for IM trades. The delivery day concept is different for IM than
DAM and BPM as it is possible to trade as soon as the door opens for (T+1) up to
(T+24). The energy trading door for IM opens at 18.00 as shown in Figure 1.1.

In this study, the goal is to forecast net imbalance on the delivery time for both
IM and BPM. Trading companies can utilize the future net imbalance predictions
starting from the next hour as IM trading is done during the active day. As the
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process shown in Figure 1.1, generation companies can utilize (T+9) net imbalance
prediction as BPM offers are given to TSO a day before at 16.00 which requires to get
the predictions at 15.00 for the next day meaning even predicting 00.00 of the next
day requires predicting for (T+9), thus it is a harder task. This is why predictions
are more beneficial for IM. For this study, an energy TradeCo is partnered with
which is why predicting net imbalance for IM and providing insight for the potential
IM energy price is considered the primary objective.

An example of energy trading is given in Figure 1.2 and Figure 1.3. Four TradeCos
try to balance their portfolios at 23.00 for the next 3 hours, 00.00, 01.00, 02.00.
For simplicity, TradeCos do not trade at any hour other than at 23.00 even though
it is possible to trade any hour in IM. The energy needs of TradeCos are shown
separately for all 3 following hours. Again, for simplicity TradeCos try to balance
their portfolios among themselves first and then if there is a remaining need they
trade with GenCos. Note that GenCos used for trading in IM are independent of the
GenCos that give options in BPM. For 00.00 TradeCos can balance their portfolios
among themselves. For 01.00 TradeCos need GenCos to balance their portfolios
since their trading among them cannot provide balance as a total of their shortage
and excess energy amounts are not the same. For 02.00 a TradeCo does not want
to balance its portfolio at IM and wants to balance it at BPM and use the price
decided by TSO at the delivery hour. After the IM operations are finished the
energy imbalance at the delivery time is balanced by options given by GenCos for
BPM. Even though the portfolios are balanced for 00.00 and 01.00 hours in IM,
imbalances emerge in BPM since energy demand and production can change until
the last moment. Three GenCos give options to TSO at 16.00 for the next day,
(T+9) up to (T+32) for BPM. The options are the same for all hours for simplicity.
At delivery hour 00.00 there is 5 MWh energy need. That means only the GenCoA
can earn revenue by producing the extra energy since it gave the most economic
option, which is $5 for each MWh and its 5 MWh capacity is enough to meet the
need. The resulting revenue it makes is 5*5 = $25. GenCoB and GenCoC lose
their chance for this hour due to their non-competitive prices. If they knew the net
imbalance for this hour, they could have given lower prices and generate revenue at
this hour. At delivery hour 01.00, there is 10 MWh energy need meaning GenCoA
capacity is not enough to meet the need. As a result, GenCoB also sells energy and
makes money. GenCoB’s $6 price per MWh is higher so it makes generates revenue.
The revenue gain difference between GenCoB and GenCoA is the opportunity cost
for GenCoA. If GenCoA had known the net imbalance, it could have set its price
at a higher level and make more money. At this hour GenCoC again could not
make any money due to its non-competitive $7 price per MWh. At delivery hour
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02.00, there is a need to reduce the amount of energy produced by 15 MWh. All
the energy generation reduction capacity needs to be used since the total energy
generation reduction capacity provided by GenCos is 15 MWh. GenCoC makes
the most money since its $7 price per MWh is the highest and other GenCos lose
money due to the opportunity cost. Again, if the net imbalance had been predicted
correctly for this hour, GenCoA and GenCoB could have made more money.

Figure 1.1 Operations in Turkish Energy Markets
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Figure 1.2 An Explanatory Trading Example, IM Part

Figure 1.3 An Explanatory Trading Example, BPM Part
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Energy price prediction methods are classified into seven main categories; simula-
tion, multi-agent, statistical, computational intelligence, machine learning, hybrid
intelligent, and combining forecast. The machine learning category is chosen for this
study since the literature is dominated by machine learning models and they have
better forecasting performance lately. Actual data from the Turkish power market
is used to test the performances of the algorithms.
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2. THE ELECTRICITY SECTOR IN TURKEY

Turkey’s electricity sector was a state monopoly with the generation, transmission,
distribution, and trading functions under the same umbrella before it went through
liberalization transformations like the rest of the world. These transformations led
to the emergence of different types of electricity markets.

2.1 Liberalization of the Electricity Sector

The electricity sector due to its heavy infrastructural composition was a natural
monopoly like other utilities such as gas, telecommunication, water, and sewage
services. A barrier to entry in an industry is defined as the initial cost the potential
entrant to industry must bear which established players do not experience any more
(Lindsay & Stigler, 1969).

The main factors that bring out entry barriers are listed as

1.1 sunk costs,

1.2 social and environmental obligations and regulatory requirements,

1.3 the economies of scale,

1.4 the economies of scope (Poudineh, 2019).

The electricity sector consisted of a unified public company as stated before and sep-
arated into multiple companies. For the old end to end unified non-liberated sector,
the main entry barrier factor was the sunk cost due to infrastructure investments.
It was not possible to bear the cost of a secondary electricity network.

The second important factor was social and environmental obligations and regu-
latory requirements. Even in a hypothetically ideal world with no cost problems
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where investing in a secondary redundant electricity network was feasible, there was
no space for that kind of a network in the cities. Besides implementing such a
network was also non-environmental as it would waste resources of the world.

Thirdly, It is stated the economy of scale concept focuses on the reduction of cost
average when there is a higher level of production of one good whereas the economy
of scope concept focuses on the reduction of the average total cost of production of
a variety of goods (Nickolas, 2019). An electricity supplier who wanted to enter the
business might have needed a certain number of customers before its business was
profitable.

Lastly, the main business of an electricity supplier is to produce energy and manage
to sell the energy to its customers, however, there are side activities that are subject
to retail competition such as metering, billing, the credit assessment, receivables col-
lection, and outage reporting which were very hard to compete against the existing
company.

It is stated there are two main functional integrations of companies, vertical and
horizontal (Dundar & Utas, 2020). The unification of enterprises that are on the
same field is called horizontal integration whereas the unification of enterprises that
are at the different stages of the business like producing, distributing, and serving the
goods is called vertical integration. The sector first started to abandon the integrated
structure mainly with vertical unbundling, then continued the liberalization with
horizontal unbundling as shown in Figure 2.1.
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Figure 2.1 History of Electricity Sector Unbundling in Turkey

Source: (ELDER, 2020)

2.1.1 Vertical Unbundling: Separation of generation, transmission and

distribution

Historically, integrations occurred before the unbundling concept emerged as a need
to be able to centrally regulate the electricity sector in Turkey. According to the
transmission system operator in Turkey, (TEIAS, 2020b), the electricity production
started with 2 kW power in Tarsus with a dynamo power unit connected to a wa-
termill in 1902. Twelve years later, the first electric power plant was constructed
which was Silahtaraga Power Plant, the current campus of Istanbul Bilgi Univer-
sity (Santral Campus). From those initial times to the beginnings of the 1970s, the
investor corporations in the energy sector were governmental financial institutions
Etibank and Iller Bankası besides municipalities. Turkish Electricity Authority was
established by gathering production, transmission, distribution, and retail services
under its umbrella. The corporation remained as Turkish Electricity Corporation
(TEK) until it was separated into the Turkish Electricity Generation and Transmis-
sion Company (TEAS) and Turkish Electricity Distribution Company (TEDAS) in
1994 meaning the distribution and retail functions were still under TEDAS umbrella.
Then TEAS also got separated to Electricity Generation Company (EUAS), TEIAS
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and Turkish Electricity Trading and Contracting Company (TETAS) in 2001 which
could be considered as the completion of the vertical unbundling process.

2.1.2 Horizontal Unbundling: Ownership unbundling, privatization of the

generation and distribution companies

Horizontal and vertical unbundling was realized at different paces in different
parts of the world. It is stated the European Commission propose consid-
ering energy regulation of unbundling of electricity and gas transmission net-
work companies as the preferred form of organization of transmission owner-
ship, with an alternative option of an independent system operator (Pollitt,
Davies∗,P rice∗,Haucap,Mulder∗∗,Shestalova&Zwart, 2007). Some countries
(e.g. the Netherlands) are in the process of extending electricity and gas distri-
bution networks ownership unbundling even further emulating New Zealand where
the creation of standalone electricity distribution network companies was completed
in 1999.

It is stated that even though the construction of energy plants was allowed in 1982,
it was not possible to reduce the dominance of the state in the energy sector until the
2000s in Turkey (Uluatam, 2011). It is claimed Bereket Energy constructed the first
private hydroelectric power plant of Turkey (AYDEM, 2020), Bereket HPP in 1997.
It means the private enterprise entry is delayed around 15 years for hydroelectric
power plants following the regulatory allowance. After the vertical unbundling of
the state-owned electricity companies, the new goal was to change ownership of
the state-owned status of the companies by privatizing the generation companies
and the distribution companies. On the generation side, the plants were privatized
separately. At the distribution side, the country was divided into 21 distribution
regions then the trading and contracting companies were privatized jointly with the
condition of complete separation of these two functions in the following years. The
unbundling legislation did not allow the regions to merge to prevent re-integrations
even though some of them are owned by the same conglomerates.

2.1.3 Deregulation: Separation of retail from distribution and allowance
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of retail electricity providers

It is noted the privatization of electricity distribution and retail companies in Turkey
started with the distribution region of Aydın, Denizli, Muğla provinces i.e. Aydem
EDAS in 2008 (EMO, 2012). At the beginning of 2012, 13 of 21 distribution regions
were already privatized and the remaining 8 were in the privatization process. These
developments were followed by the legislation (EMRA, 2012) which states the retail
and distribution functions in the distribution regions were going to be decomposed
to different companies. It is pointed out the privatization of the EDAS companies
was finished in 2013 (ELDER, 2020). Although the privatization contracts were
signed in 2013, the practical separation of retail and distribution followed it with
some lag which is shown in Figure 2.2. Turkish Electricity Trading and Contracting
Company (TETAS) in Figure 2.1 was closed in 2018 which was not functional after
deregulation according to (LegalGazette, 2018).

It is stated that independent retail companies were allowed with the separation of
distribution and retail (LegalGazette, 2013). It was the starting point of a half
liberal energy market since it only allowed the high electricity consumers as eligible
customers (free agents), thus freed them to buy from retail companies. It is stated
establishment of Energy Exchange Istanbul occurred in 2015 which was followed by
the start of DAM the same year (EXIST, 2020). It is stated the eligible customer
lower limit is 1400 kWh a year in 2020, meaning around monthly ∼$12 (∼80TL),
which is a quite low limit and it shows the electricity market liberalization is close
to the stage of removing the eligible customer lower limit (EMRA, 2020a).
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Figure 2.2 History of Deregulation

Source: (EXIST, 2020)

2.2 Electricity Sector Key Statistics

It is showed there is a strong correlation between electric power consumption and
the economic development state of counties (WorldBank, 2020d). It is also showed
the energy demand per capita did not increase in developed countries in terms of kg
of oil equivalent, however it increased dramatically in the fast-developing countries
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(WorldBank, 2020b). From 1971 to 2014, the demand per capita increase in Turkey
with 2.9 times is above India with 2.4 times and below China with 4.8 times. The
Arab world with 4.8 times also had a dramatic change like China. The net GDP per
capita increase can be found by dividing GDP increase to dollar inflation. According
to (World Bank, GDP per Capita (Current US$) - United States, Turkey ) from 1971
to 2014 GDP in the USA increased from $5609 to $62886 which means roughly 11
times the gross increase. It is remarked the dollar inflation calculated by multiplying
yearly inflations is roughly a total of 600% for the 1971 - 2014 period (WorldBank,
2020c). The GDP per capita roughly increased 2 times which means the value,
or the amount of the products increased 2 times also. This increase is not seen
in electric demand in terms of kg of oil equivalent per capita which indicates the
increase in energy efficiency or the technological advances in production made it
possible to produce 2 times the value with the same amount of energy. GDP per
capita in Turkey increased from $455 to $12095 roughly 30 times that is nearly 3
times of USA which explains the relative increase in demand to 3 times the USA’s.

When the rapid increase in the energy demand per capita is paired with the in-
crease in population from 35.7 million to 77.6 million from 1971 to 2014 according
to (WorldBank, 2020a), the energy consumption (kg of oil equivalent) of Turkey
increased more than 6 times. Although the percentage of the energy obtained from
renewables over the overall production declined over the years with the decrease of
hydro plants’ share in Turkey according to (WorldBank, 2020e), the increase in the
share of new renewables induce a more dynamic energy production since wind and
solar productions are quite weather dependent. It is stated the maximum demand
was 46.1 MW and the minimum demand was 18.2 MW meaning 2.5 ratio of max
to min in 2018 (TEIAS, 2020a). Along with the increase in overall demand and the
introduction of weather-dependent renewables, the dramatic difference between the
maximum and minimum requires well-managed forecasts and the retail markets to
offer optimum prices to the customers. It is reported the energy consumption was
303,674 GWh in 2019 (TEIAS, 2019). It is envisioned the energy demand as 613
386 GWh meaning doubling the current demand in 2039 (TEIAS, 2020a). It is pro-
vided many statistics about the electric sector as it stated the number of consumers
in 2019 was 43 million with a 3 percent increase compared to the previous year
(EMRA, 2019). It also reported the energy usage shares in percentage regarding
the usage purposes as shown in Figure 2.5 and the production shares among private
and public companies in Figure 2.6. The sector provides a significant number of jobs
and investment in the economy of Turkey as the total number of personnel work-
ing in EDAS companies was around 57000 and 32000 of them were employed via
subcontractor companies of the EDAS companies. Besides, the total investment in
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2019 towards the transmission system was $0.48 billion and towards the distribution
system was $1.28 billion.

Figure 2.3 Energy Usage (kg of oil equivalent per capita)

Source: (WorldBank, 2020c)

Figure 2.4 Energy Consumption Change – Key Countries

Source: (WorldBank, 2020b)
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Figure 2.5 Energy Consumption Shares according to Consumer Types

Source: (EMRA, 2019)

Figure 2.6 Energy Production Shares Among Private and Public Companies

Source: (EMRA, 2019)
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2.3 Power Trading

As it is stated the short-term power trading in Turkey is performed in three different
types of markets which are DAM, IM, BPM (EMRA, 2019). The price determination
formulas are open to the public whoever wants to investigate deeper, however, they
are too complicated and beyond the scope of this thesis work to cover. That is why
the objectives, principles, and operations of the three main markets are explained
in detail without touching on the price formulations.

2.3.1 Day-ahead Market

DAM is defined as an organized wholesale electricity market established for electric-
ity energy buying and selling based on the settlement period to be delivered after a
day and operated by MO, Energy Exchange Istanbul (EMRA). It consists of activ-
ities carried out to balance supply and demand in the system and balance market
contracts and production and/or consumption plans for the delivery day (EMRA,
2020b).

DAM objectives are:

• Enabling market participants to balance their production and/or consumption
needs and their contractual obligations the day before.

• Determining the electrical energy reference price.

• Helping TEIAS, the transmission system operator (TSO), for a balanced sys-
tem from the day-ahead.

• Helping TEIAS to perform constraint management from the day-ahead.

• In addition to bilateral agreements, market participants create the opportunity
to buy and sell energy for the next day.

The general principals of DAM:

• DAM transactions are carried out daily, on an hourly basis. Each day consists
of hourly time slots starting at 00:00 and ending at 00:00 the next day.

• The transactions in DAM correspond to constant supply or demand commit-
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ments over the relevant period meaning an average consumption amount is
assumed to be realized and generation companies produce a stable amount
of power during that period to meet the demand. The deviations from these
ideal assumptions are balanced thanks to IM and BPM.

• In DAM, all offers are used for a certain day, and a certain period within that
day.

The operations of DAM:

• Between 12:00 - 13:00 every day, MO calculates the market clearing price,
equilibrium monetary value determined by the bid-ask process of buyers and
sellers, for each hour of the next day and each bid region.

• Every day at 13:00; MO notifies the market participants that participate in
DAM commercial transaction confirmation, which includes the purchase and
sales amounts of each market participant in DAM. In other words, the market
players are informed about the acceptance of the appropriate purchase-sale
offers and rejection of their non-economical offers considering the equilibrium
price.

• Every day between 13:00 - 13:30; Market participants participating in DAM
check the commercial transaction confirmations notified to them by MO and
report their objections regarding commercial transaction approvals to MO
when necessary.

• Every day between 13:30 - 14:00; MO evaluates the objections and informs the
relevant market participants about the results of their objections.

It is mentioned the history of DAM as it points the first step taken in line with
the goal of transitioning from the single buyer, single seller model to a free and
competitive electricity market model was to switch to the monthly 3-time settle-
ment system on July 1, 2006 (EMRA, 2019). The next step was DAM Planning
system, which became operational on December 1, 2009. These transition periods
were very important for the electricity market to be stronger and more dynamic.
The experiences gained by the parties involved in the operation of the market, the
experiences gained in each transition period and the developments they envisaged
were transferred to new market models. December 1, 2011 date was a milestone for
the Turkey Electricity Market as it was the launch date of DAM.
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Figure 2.7 Monthly DAM Matching Energy Amounts for 2019

Source: (EMRA, 2019)

Figure 2.8 Weighted Average DAM Clearing Prices for 2018, 2019

Source: (EMRA, 2019)

2.3.2 Balancing-power Market

It is defined BPM as the organized wholesale electricity market operated by TSO,
where the purchase and sale of the spare capacity obtained with the output power
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change that can be realized in fifteen minutes to serve the purpose of balancing the
supply and demand in real-time (EMRA, 2020b).

BPM objectives:

• Balancing active electrical energy supply and demand in real-time.

• Real-time balancing, ensuring that electrical energy is available to consumers
in an adequate, quality, continuous, and cost-effective manner.

BPM objectives:

• BPM offers are given daily, on an hourly basis. Each day consists of hourly
time slots starting at 00:00 and ending at 00:00 the next day.

• All offers submitted to BPM are valid for a certain balancing unit, a certain
offer region, a certain day, and a certain time period within that day.

• In proposals submitted to BPM, it is essential to propose all the technically
capable capacity of the relevant balancing unit in line with the structure of
the proposal submitted.

• Within the scope of BPM, BPM commitment orders can be given by TEIAS
at any time from the finalization of the day-ahead production/consumption
schedule and the end of the physical delivery time.

The operations of BPM:

• Until 16:00 every day, each market participant participating in BPM will
have final day-ahead production/consumption programs that include hourly
production or consumption values for all settlement mediation-traction units
registered in his name and notifies TSO about the up-regulation and down-
regulation offers regarding BPM.

• Until 17:00 every day, TSO checks the final day-ahead produc-
tion/consumption program notifications and offers for bids plus loads and
determines whether there are any material errors in the notifications. TSO
gets in touch with the relevant market participant regarding the erroneous
notifications and makes necessary corrections until 17:00.

• The up-regulation and down-regulation offer submitted within the context of
BPM are sorted by TSO in the price order for each offer region and each hour.

• As of 17:00 every day, taking the load offered by TSO within the context of
BPM in order to eliminate the energy deficit or surplus occurring in the system
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related to the relevant day or foreseen the future, to create the capacity for
removing system constraints and/or providing ancillary service. Load shedding
bids are evaluated and instructions regarding the bids approved are informed
to the relevant market participants. Notifications regarding the termination
of the instructions are made to the relevant market participants.

• System marginal prices determined in BPM for each hour are determined
by TSO within four hours following the relevant time and announced to the
market participants.

Monthly Volumes in BPM in 2019 are shown in Figure 2.9 and BPM Monthly
Weighted Average Prices in 2018 and 2019 are shown in Figure 2.10.

Figure 2.9 Monthly Volumes in BPM in 2019

Source: (EMRA, 2019)
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Figure 2.10 BPM Monthly Weighted Average Prices in 2018, 2019

Source: (EMRA, 2019)

2.3.3 Intra-day Market

It is defined IM as an organized wholesale electricity market where electricity trading
is done until the closing of IM (EMRA, 2020b). It consists of activities carried out
with the aim to make trading possible during the delivery day. Its activities are
shaped by production and/or consumption plans made by DAM throughout the
day and deviations from them. The BPM participants’ contractual commitments
effective on the prices in the market, thus it is interested in the terms of BPM
participants’ contractual commitments. Main responsible is MO.

Intra-day market objectives:

• Enabling market participants to balance contractual commitments and pro-
duction and/or consumption plans.

• Ensuring the reduction of energy imbalance amounts.

• Providing a balanced system prior to real-time balancing to TSO.

• Creating energy trading opportunities to market participants, in addition to
the bilateral agreements and trading in DAM.
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The general principals of intra-day market:

• The operations can be either hourly or in blocks. The next day hourly con-
tracts are opened at 6pm the day before. The transactions in IM can take
place at any time until IM door closes.

• IM door closing time is one hour before physical delivery.

The operations of IM:

• IM participants report IM offers to the MO every day starting from 18:00
until IM door closing time for the next day (delivery day). It means intraday
arrangements via IM for delivery day’s earlies hour 00:00 can be made at most
6 hours before the consumption.

• IM offers can be updated, cancelled, or suspended by the relevant market
participant until the validity period of the related contract expires unless it
matches. In other words, a seller can increase or decrease the price that it told
until a buyer buys energy at the seller’s offered price. The same is valid for a
buyer as it can change the price level it buys until a seller provides energy at
that price. The system settles at the latest update on the proposal, considering
time information.

• IM participants check the commercial transaction confirmations notified to
them following the matching of the offers and notify their objections to the
Market Operator.

It is stated IM has become operational on July 1, 2015. With IM (EMRA, 2019),
which was brought in addition to DAM, BPM, which were already operating, real-
time trading opportunities were provided, and market participants were given the
opportunity to balance their portfolios in the short term.

Monthly IM matching energy amounts and prices for 2019 are shown in Figure
2.11. Even though it seems like for the April, May and June months, monthly
volume and average price in IM seems slightly negatively correlated compared to
the other months, there is no well-defined business-related explanation for this weak
correlation according to the business owner in the partner TradeCo.
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Figure 2.11 Monthly Volume and Average Price in IM in 2019

Source: (EMRA, 2019)
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3. RESEARCH OBJECTIVES

In the Turkish electricity market, the participants deal with penalties that arise
from both overproduction and underproduction through BPM. Therefore, to trade
optimally it is not enough to know the expected power generation or power con-
sumption values separately. The market players should also position themselves
against the energy difference between consumption and production which we call as
net imbalance to minimize expected balancing costs. The realized net imbalances
are expected to be representative of the intra-day prices of the following hours. Fo-
cusing on this pointed relation is the potential extension of this study as we only
predict net imbalance and do not use the results for a second prediction for IM prices
as a stacked machine learning model fashion.

The energy production and demand values for the next day are sent to MO (EPIAS)
until 12:30. MO accepts energy production offers from the cheapest to the more
expensive production offer until the energy demand prediction is met, which is also
called merit-order. The certain results are announced at 14:00. The deviations
from the predictions are inevitable in energy consumption. That is balanced by
TEIAS accepting the energy production decrease or increase offers from the power
generation companies. The balancing plan is arranged to cost minimum as the offers
are listed from cheapest to the most expensive one to be used when needed for both
increasing the generation or reducing the generation. The offers are sent to TEIAS
until 16:00.

The first objective of this work is to check whether it is possible or not to predict the
imbalance during the day. During the day, a TradeCo keeps track of its customers’
consumption. When the consumption is higher than the energy it purchased previ-
ously in DAM, a need for meeting the energy shortage arises. The missing energy
is purchased in IM. If the company cannot find or choose not to find the missing
energy, the missing energy is supplied at the price dictated by TEIAS which can be
considered as a penalty price since it is the energy produced without any planning.
When the consumption is lower than the energy the TradeCo purchased previously
in DAM, this time the company tries to sell the excess energy in IM. If it cannot sell
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by itself, the selling price is the price TEIAS dictates since TEIAS is the ultimate
buyer and seller. By predicting the net imbalance (imbalance in TEIAS prediction)
during the day with the previously announced net imbalance values, the target is
to help the company to position against the intra-day buy-sell events. Two main
actions are possible with a successful prediction. The first one is to minimize the
penalty price sell-buy action due to an imbalance in customers’ consumption and
energy provided by the TradeCo. The second one is optimizing intra-day energy
trading. The companies have more idea about the potential system net imbalance
as the delivery hour gets closer. If it is possible to predict the imbalance (T+1)
up to (T+24) hours before, the energy can be purchased when it is cheaper and
can be sold when it is more expensive. Let t denote the delivery hour (recall that
T denotes the current hour). By predicting over-demand at (T+8), thus energy
production deficiency, TradeCos can buy X amount of energy at the market price at
t–8, then sell the purchased excessive energy at the market price at t–1 time with a
P profit, the company can make X * P amount of money in 7 hours.

The second objective of this work is to check whether it is possible or not to predict
the imbalance for the next day before sending buy/sell options to TEIAS at 4 p.m.
Assuming the energy company’s production cost is C and the company’s profit is P
for regular energy generation and sell activity, the regular generation offer for DAM
would be C + P. The company only accepts to reduce the energy it produces for
BPM if the profit coming from the energy reduction offer is bigger than its regular
profit P which is P + P, assuming no regulatory forced action. That is why GenCos
give energy reduction offers as options to TSO for BPM with such prices that help
them make more money by not generating the amount of energy given in the option
rather than generating it. On a balanced day, offering a large P can result in no
profit from BPM as the offer would not be realized at the delivery time, since it
will not be needed until the cheaper options run out. On the other hand, during
an extremely unbalanced day, a big P value brings profit since the cheaper options
run out and the energy is sold even though it is more expensive due to the need.
The offers are noticed at 6 p.m., which means the analysis needs to be completed
previously. Assuming a 1-hour operational buffer at 5 p.m. the analysis needs to be
completed. The real-time energy imbalance is announced with an hour delay which
means the imbalance at 4 p.m. is available. The prediction for the next day is at
least 8 hours ahead. The target is to predict 8-32 hours ahead for the next day. Any
prediction better than random is plausible for this case.
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4. POWER MARKET FORECASTING LITERATURE

One of the most similar works to ours is performed in the Polish market (Popławski,
Dudek & Łyp, 2015). It is claimed their prediction method which they called “a
similarity-based method; fuzzy estimator of the regression function” beat machine
learning methods random forest and neural network when applied for the Polish
balancing market’s 15-minute balance prediction periods of the following day. The
best method for predicting the reserve capacities for the next day (day-ahead) is
found as LASSO with penalized quantile regression in the Austrian balancing mar-
ket using public data (Essl, Ortner, Haas & Hettegger, 2017). Their study utilized
quarter-hourly values of load-, generation-, wind, and photovoltaic-forecasts for the
year 2015 a total of 53 variables. Besides machine learning models, stochastic mod-
els are also used with the same purpose in the Norwegian market. It is found for
the short term forecast (1-hour ahead), Seasonal Autoregressive Integrated Moving
Average (SARIMA) model was the best whereas, for the day-ahead forecast (12-
36 hours ahead), CROST (an autoregressive model for unevenly spaced time series
found by Croston) was the best model in balancing market volume forecast (Klæboe,
Eriksrud & Fleten, 2013). At the price side, they forecasted balancing market pre-
mium and found using a naïve approach, the balancing market price from the last
hour, was the best for the short-term forecast (1-hour ahead). For the day-ahead
forecast (12-36 hours ahead), the performances of the models were not satisfactory.
As an alternative method it is tried to model the balancing energy demand as a
mathematical function of market-related variables which are the gradient of load, a
arbitrage incentive, a technical incentive, and a varying general market position, a
non-predictable event risk which can be considered to use a business-related method
rather than a data science approach (Möller, Rachev & Fabozzi, 2011). In another
work, energy price predictions in the German power exchange market is focused
on (Uniejewski, Marcjasz & Weron, 2019). According to them, the most impor-
tant feature for IM was the price at the previous hour. This is an expected result
since both energy production and consumption show auto-regressive behaviour due
to their nature. A second notable finding of the study was the performance of the
naïve model, the price from the last hour, over some of the machine learning models.
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It is claimed they could achieve to train a neural network for an intraday hourly
load forecast with 1.5% MAPE with 89 days data and electricity consumption and
temperature-based 7 features in the Bosnian energy sector (Becirovic & Cosovic,
2016). The significance of the study was the number of data points which 2136
instances for winter (89 days) and 2189 instances for summer (91 days).

If desired, it is possible to find short-term load forecasting studies in the 1990s.
Forecast the half-hourly electric load of the power system of Kuwait with a neural
network model is tried (AlFuhaid, El-Sayed & Mahmoud, 1997). They claimed the
analysis as significant as it decreased both the average absolute forecasting error and
the maximum absolute error. Various load forecasting studies in different parts of
the world were performed. In a study for east asia, day-ahead load in Hong Kong is
predicted (Chow & Leung, 1996) whereas day-ahead load in Crete is also predicted
in another early study (Kiartzis, Zoumas, Theocharis, Bakirtzis & Petridis, 1997).
The studies at those years use day-ahead and short-term forecast concepts together
since there was no concept at those days which can be contradictory with the
current market literature as is often called as spot market and short-term forecast
phrase is used for .

Lastly, two novel studies in the Turkish electricity market are covered. Predicting
intra-day electricity prices is tried and it is found that gated recurrent unit (GRU)
and long short-term memory (LSTM) neural network models perform best with the
data from Jan 2017 to Feb 2019 (Oksuz & Ugurlu, 2019). The same group continued
their research in this area as they tried to check whether modelling knowledge trans-
fer between different power markets is possible. It is found it was possible to utilize
the transfer learning concept of neural network by putting a pre-training step with
the data of other countries in DAM (Gunduz, Ugurlu & Öksüz, 2020). The markets
in the study were Belgium, Germany, France, Norway, and Turkey. As expected,
the model performance increases more significantly when less data is available for
the training.

In Figure 4.1, the key points of the selected works are listed.
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Figure 4.1 Power Market Forecasting Literature Key Points
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5. THEORETICAL BACKGROUND FOR FORECASTING WITH

MACHINE LEARNING

5.1 Main Machine Learning Concepts

Machine learning, data mining, and statistical learning are very similar concepts to
find valuable information in data. The method is to use a part of the historic data
for model training and a part of it for validating the trained model. The trained
and validated model is tested by data the model has not seen before which is gen-
erally separated from modelling data by time. After the test results are successful.
The successfully trained, validated and tested model is used to provide valuable
information for the business party, in this case, the energy TradeCos.

Supervised learning is the methodology of identifying the similarities between data
points directed by the purpose of predicting a target feature. For example, a salary
prediction supervised model decides to use features like education, gender, and pro-
fession if and only if they can explain the salary. It is the main method that we use
for this study.

There is no obvious target for model training in unsupervised learning. It is indicated
unsupervised learning is a methodology in which for every observation i = 1,...,n, we
observe a vector of measurements xi but no associated response yi (James, Witten,
Hastie & Tibshirani, 2013). It is not possible to fit a simple linear regression model
since there is no response variable to predict. Working blindly without the lead of
a response variable is called unsupervised because of the absence of supervision of a
response variable. One method is checking whether the observations can be grouped
(clustered) as relatively distinct groups as shown in Figure 5.1. A clustering task
with two variables and a goal to represent them in three groups is visualized in that
figure. The task is easier when the data points are easily separable like in the left
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illustration, and it gets relatively complicated when the data points are overlapping
like in the right one.

Figure 5.1 Clustering

Source: (James et al., 2013)

Evaluation metrics are the numeric values to understand the success of the models.

• Common performance metrics used for a categorical target are below:

– accuracy; sum of number of correctly predicted true values and false values
total number of values

– precision; number of correct true predicted values
total number of true predicted values

– recall; number of correct true predicted values
total number of true values

– f-score; 2
1

precision + 1
recall

• Common performance metrics used for a numeric target are below where y =
actual, ŷ = predicted, n = data amount (rows), k = number of features (cols):

– MAE; Mean absolute error, 1
n

∑ |y−y| uses the average error amount

– MAPE; Mean absolute percentage error, 1
n

∑ |y−y|
y uses the average error

amount

– RMSE; Root mean square error,
√

1
n

∑ |y−y|2
– R-square; Coefficient of determination, MSE(mean)−MSE(model)

MSE(mean) , explained
error percentage thanks to the model where MSE = 1

n

∑ |y−y|2
– Adjusted R-square; 1−

(
n−1

n−k−1

)
∗(1−R2), puts a basic penalty for addi-

tional features, i.e. among the models with n & 2n features and the same
R-square values, the one with the less features (n) is preferable since the
same performance is obtained with less variables
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Figure 5.2 gives a compact visualization for most of the main machine learning
algorithms.

Figure 5.2 Machine Learning Methods at a Glance

Source: (Essl et al., 2017)

5.2 Supervised learning methods

In this study, there are two parts that many machine learning algorithms are used.
The first one is feature selection for regression, the second one is predicting the
system balance as a numeric value. Multiple feature selections algorithms can be
used together with a mechanism called voting. The working mechanism of voting
is counting the number of methods that indicate whether the variables are impor-
tant or not, then keeping the variables above a certain vote threshold. The reason
many feature selection algorithms are chosen with a voting method is to prevent
overfitting to choices of a single algorithm thus preventing bias. For feature selec-
tion purposes, four different main methods and thirteen different sub-methods are
used. At the prediction part, mainly linear models and tree-based models are used.
Unless otherwise is stated, Scikit-learn is used for all the methods whenever the base
python is not enough for the desired operation (Pedregosa, Varoquaux, Gramfort,
Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos,
Cournapeau, Brucher, Perrot & Duchesnay, 2011). Table 5.1 shows the usage of the
algorithms:
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Table 5.1 Machine Learning Methods

Linear Regression Correlation
Lasso SelectKBest: f_regression (anova-f)
Elastic net SelectKBest: mutual_info_regression
Knn Regression RFE: SGDRegressor
Random Forest RFE: ElasticNetCV
Extra Trees RFE: LassoLarsCV
Adaboost RFE: OrthogonalMatchingPursuitCV
Gradient Boosting RFE: AdaBoostRegressor
XGBoost RFE: GradientBoostingRegressor
LightGBM RFE: ExtraTreesRegressor
CatBoost SelectFromModel: RandomForestRegressor
Naïve method (latest available self-value) SelectFromModel: RidgeCV
Stacking ensemble SelectFromModel: LGBMRegressor
Voting ensemble

5.2.1 Linear Models

A linear model tries to relate the dependent variable, target, the independent vari-
ables with a mathematically linear relation:

y = β0 +β1 ∗x1 +β2 ∗x2

y = β0 +β1 ∗x1 +β2 ∗x2 + ε

y−y = ε

Note that any function which can be reduced to the above formula with transfor-
mations is a linear model. For instance, y = β0 + β1 ∗ x2

1 is again a linear model
since the function can be reduced to linear by assigning z = x2

1 => y = β0 +β1 ∗ z.
It tries to minimize the difference between the prediction and real data, error, by
minimizing the sum of squared errors. The purpose of using squares is penalizing
the big errors more compared to small errors.

There are many linear models. The ones used as part of this thesis research are
briefly explained below:

5.2.1.1 Ridge regression
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In statistics, a less complex model with the same performance is preferable. Ordinary
linear regression does not have an inbuilt method to omit the features which only
provide noise if the R-square value is even slightly improved with the contribution
of noise variables. Ridge tries to address that problem by adding a penalty to the
error term. It is stated in particular, the ridge regression coefficient estimates are
the values that minimize RSS+∑p

j=1β
2
j where λ > 0 is a tuning parameter, to be

determined separately (James et al., 2013). As with least squares, ridge regression
seeks coefficient estimates that fit the data well, by making the RSS small. However,
the second term, λ∗∑j β

2
j , is called a shrinkage penalty, is small when β1. . . ,βp are

close to zero, and so it has the effect of shrinking the estimates of βj towards zero

5.2.1.2 Lasso regression

Lasso is another method to penalize unnecessary inputs. It is stated that lasso and
ridge regression have similar formulations (James et al., 2013). The only difference
is that the β2

j term in the ridge regression penalty has been replaced by |βj | in the
lasso penalty. In statistical parlance, the lasso uses an L1 penalty instead of an L2
penalty. λ∗∑j |βj | is the resulting penalty.

5.2.1.3 Elastic net regression

Elastic net uses a combined penalty of L1 and L2 together. The weights of the
L1 and L2 penalties sum to 1 which means they are inversely related. Elastic-net
penalty is introduced as a different compromise between ridge and lasso (Zou &
Hastie, 2005). Its equation, λ ∗∑p

j=1(α ∗ β2
j + (1−α) ∗ |βj |, shows how ridge and

lasso are combined with the α term.

5.2.2 Tree based methods

A tree is created by splitting data according to conditions. Splitting starts at the root
where all the data points are together and continue with the successive conditions.
The way tree methods split data is similar to a tree shape. That is why they are
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called it. The splitting is based on information gain. Assuming completely balanced
binary data with fifty percent share in each category, the splits try to increase
the odds ratio at the new data segments created with splits. The tree algorithm
would prefer a split option with the resulting two data segments consist of ‘( 80%
CategoryA, 20% CategoryB ) and (20% CategoryA, 80% CategoryB)’ over a split
with the resulting two segments consist of ‘( 60% CategoryA, 40% CategoryB ) and
(40% CategoryA, 60% CategoryB)’ as the odd ratios for the first option are ( 4/1 ,
1/4 ) and for the second option are ( 6/4 , 4/6 ). The target is to create final data
fragments with the best odds ratios. Note that, generally the data is not balanced,
and splitting data into two equal sizes at nodes is not optimal. That is why methods
as entropy gain and Gini are developed and used which we will not cover here.

Decision tree methods can be used both for regression and classification (James
et al., 2013). They segment the predictor space into several simple regions. The
mean or the mode of the training observations in the region to which it belongs is
used to predict a data point. The rules used to divide the predictor space can be
summarized in a tree representation.

5.2.2.1 Single Classification and Regression Tree

Using trees for a single algorithm created the CART concept (Gordon, Breiman,
Friedman, Olshen & Stone, 1984). Metrics and methods for a computer to use
decision trees are also defined by the creators of CART. Their work later helped the
evolution of more complex tree algorithms. The main advantage of using a single
tree is the interpretability of the model.

5.2.2.2 Bagging Regression

Random forest algorithm is established over bagging, that is why it is introduced
before explaining random forest. Bagging is introduced as an improvement to CART
idea (Breiman, 1996). Bagging is using multiple decision trees based on randomly
taken samples from the same dataset. It is mentioned averaging a set of observations
reduces variance (James et al., 2013). Hence a natural way to reduce the variance
and hence increase the prediction accuracy of a statistical learning method is to take
many training sets from the population, build a separate prediction model using each

34



training set, and average the resulting predictions. Using separate prediction results,
f̂1(x), f̂2(x), ..., f̂B(x) (x)), trained on B separate training sets and average them is
logical to obtain a single low-variance statistical learning model. In reality, data is
not redundant to use them separately for each training. The solution is to create
separate datasets by using the available with the methodology called bootstrapping
as B different bootstrapped training data sets are created by taking repeated samples
from the (single) training data set. The result of averaging prediction results can
be denoted as f̂bag(x) = 1

B

∑B
b=1 f̂

∗b(x).

5.2.2.3 Random Forest Regression

The most dominant feature in decision trees is in the first parts of the tree. This
causes dominant features to suppress other features. The idea to overcome this
problem is using randomly selected features (typically the square-root of the original
number of features) for each decision tree. Random forest algorithm is introduced
as an enhancement of tree bagging (Breiman, 2001). This process is called as decor-
relating the trees and assert this process makes the combined prediction outcomes
of resulting trees less variable and hence steadier (James et al., 2013).

5.2.2.4 Extremely Randomized Trees Regression

It is stated the key differences of the algorithm with other tree-based ensemble
methods splitting nodes by choosing cut-points fully at random and using the whole
learning sample rather than a bootstrap replica to grow the trees (Geurts, Ernst &
Wehenkel, 2006).

5.2.2.5 Boosting Regression

The idea of creating additional models to correct the errors of the previous models by
fitting to the errors of the previous models is introduced (Kearns, 1988). Later, It is
mentioned the concept of a weak learner as a produced hypothesis achieving slightly
better performance than a random guess (Schapire, 1990). It is stated boosting
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uses stacking models back to back regarding the previous error by first creating a
tree than creating another tree that tries to fit the residuals of the previous one in
a stage-wise fashion until the predefined number of trees are reached. Note that
boosting does not involve bootstrap sampling (James et al., 2013).

Adaboost A version of boosting called adaptive boosting which tries to create suc-
cessive trees (weak learners) by sampling the wrongly predicted instances more and
correctly predicted instances less is introduced. It also gives an adaptive coefficient
to the trees’ weights in the final model (strong learner) regarding their performance
(Freund & Schapire, 1997).

Gradient Boosting Gradient boosting is introduced as an idea to use the gradient
descent method in boosting as his method views function estimation/approximation
from numerical optimization in function space rather than parameter optimization
perspective (Friedman, 2000). The developed connection between the general boost-
ing idea, stagewise additive expansions, and steepest-descent minimization is named
a general gradient descent boosting paradigm. A month later a modification is added
to the algorithm as stochastic gradient boosting by using subsamples of the training
data for each learning iteration is introduced. Software implemented versions of
gradient boosting are generally the later version (Friedman, 2002). Gradient Boost-
ing and Adaboost were the champion algorithms before Xgboost, LightGBM and
Catboost started become more popular.

XGBoost It is one of the most popular algorithms used in machine learning com-
petitions. The algorithm first came as an R package with a 4-page article like a
user guide, then with the success of the algorithm, the creators have published their
methodology in a more conventional paper format. It is stated choosing the split
point in a tree with a basic exact greedy algorithm takes too much time and the
solution is to use a second-order gradient for approximately best-split point candi-
dates (Chen & Guestrin, 2016). The algorithm also focuses on the sparsity problem
by setting a default direction for each node.

LightGBM Light Gradient Boosting Machine, was created by researchers of Mi-
crosoft Company with their claim improvement over XGBoost. It is state the al-
gorithm’s key difference is the way it creates splits with Gradient-based One-side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) methods as they named
them (Ke, Meng, Finley, Wang, Chen, Ma, Ye & Liu, 2017). GOSS remarks that
data points with greater gradients are more significant to decide splits. Data points
with small gradients are already minimized, so data points with larger gradients
should be the focus as the information gains achieved by splitting at that point are
higher. Note that small gradient points are still kept and GOSS performs a ran-
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dom sampling of them and puts a constant weight value to keep the original data
distribution while the focus is placed on the large gradient points. EFB prioritizes
the exclusive features (features only rarely take non-zero values at the same time)
as such features can be bundled or combined effectively, which reduces the width in
a dataset.

CatBoost Yandex Company’s researchers introduced the CatBoost algorithm. It is
stated they introduce a new boosting scheme which fights biases with a dynamic
boosting they call ordered boosting which helps to reduce overfitting and improves
the quality of the model (Ostroumova, Gusev, Vorobev, Dorogush & Gulin, 2018).
Catboost also provides support for categorical features inherently which means it
does not require one hot encoding process the boosting algorithms that do not
support.
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6. ANALYSIS

During the analysis CRoss Industry Standard Process for Data Mining (CRISP-
DM) Framework in Figure 6.1 is followed. It is one of the first frameworks known
with the purpose of standardizing the stages of data science projects. It starts with
understanding the problem, then continues with understanding the available data.
After the data is understood, desired data is prepared by using the available data.
Analysis and modelling stages follow the data preparation. In the end the results
are checked by validation and the findings are visualized for them to be understood
easily and then they are presented to the business owner.

Figure 6.1 Machine Learning Methods at a Glance

Source: (Medium.com, 2020)
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6.1 Main Machine Learning Concepts

The business issue understanding stage is done by consulting to the experts and
reading the related legislation and the history of the Turkish energy market to
understand the dynamics of it which are explained in detail in Chapter 2. The
business issue is to help market participants to optimize their profit by knowing the
energy imbalance at the delivery time which we call net imbalance in this study,
which is explained in detail in Chapter 3.

In a competitive market like the energy market, any previous knowledge about the
prices that will be realized or the indicators that lead the prices are valuable. By
predicting net imbalance, the market participants can have a better understanding of
the market prices, thus can optimize their operations accordingly. The two possible
benefits for predicting net imbalance value are to have a competitive edge in IM
for energy s and the energy generation companies that give production commitment
offers in case net imbalance is different from zero which is a perfect balance scenario
that rarely happens. In IM, predicting the upcoming 24 hours is valuable since when
the market is opened the closest hour that the trading can be made is the next hour,
and the farthest hour for it is 24 hours later. BPM, the closest hour is after 9 hours
since the commitment offers are given to TSO at 16.00 which means prediction is
possible at 15.00. The next day starts at 00.00 meaning the closest prediction is
ahead 9 hours for BPM. The last hour for the offers is 23.00 of the next day meaning,
the farthest hour for prediction is 32 hours ahead. Predicting net imbalance for IM
is the primary objective since it is the market that energy trading occurs. Besides,
it is a lot easier compared to predicting net imbalance for BPM since the prediction
hours are not as far as they are for BPM. Predicting net imbalance for BPM is the
secondary objective since it is related to energy generation companies rather than
energy s. Besides, it is challenging to predict net imbalance for distant hours.

6.2 Data Understanding Stage

The data understanding stage is done by checking the hourly available net imbalance
value due to the dynamics of the Turkish energy market and checking the possible
data that can be used to predict it. The data is formed around the hourly net
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imbalance values between 15.08.2015 and 05.05.2020. The data tested for predicting
net imbalance can be grouped under four different categories. The raw data consists
of 15120 instances with 18 features. Among these 18 features, 9 of them are time-
based, 3 of them are price-based, 4 of them are forecast based, 1 of them is failures
in the production plants and 1 is the target variable.

The time-based data are:

The operations of IM:

• Year

• Day of the year

• Month of the year

• Day of the month

• Day of the week

• Hour

• Night flag

• Daylight flag

• Twilight_dusk flag

The price-based data are:

• Difference between system marginal price (SMP) and market clearing price
(MCP) of the 6 hours before the delivery time (LatestHour_SMP_MCP)

• PriceFeature1

• PriceFeature2

The forecast-based data are:

• TEIAS demand forecast error of the previous hour (TEIASDemForecastError)

• ForecastedFeature1

• ForecastedFeature2

• ForecastedFeature3

The failure-based data is:

• FailureFeature1
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Figure 6.2 Machine Learning Methods at a Glance

Figure 6.3 Machine Learning Methods at a Glance
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Table 6.1 Descriptive Statistics of (T+1) Target Feature

Modeling Data Test Data Back-Test Data
count 9052 2405 3024
mean 0.46 0.40 -0.04
std 1.11 1.19 1.02
min -4.68 -4.51 -5.20
25% -0.10 -0.22 -0.63
50% 0.31 0.25 0.00
75% 1.12 1.08 0.52
max 5.62 5.86 3.94

Descriptive Statistics of the target feature, Output_f1_NetLoading, are shown in
6.1. Note that these statistics are similar for (T+1) up to (T+32) since they are
simply the iterated versions of each other.

6.3 Data Preparation Stage

The data preparation stage is done using publicly available data and the resulting
generated raw data consists of hourly values of net imbalance between 15.08.2015
and 05.05.2020. This raw data consists of 15120 instances with 18 features. The
gathered data is enriched with feature engineering by creating new features from the
previous 24-hour values of the target feature (here net imbalance) and two of the
input features. Then, manual feature engineering is performed to create combined
features from the existing features. After that, additional new features are created
by factor analysis from some of the features in case the combinations of the features
are more representative than their base features.

The data preparation steps are covered in detail in the later parts of this stage
however the steps do not include data acquisition from multiple resources like the
web and databases. Those steps are done by the business owner, so are not included
in this study.

The part we can consider for this research the data preparation is the feature engi-
neering part which is listed below. This part also includes the separation of time-
independent test data which we also call back-test (back-test) since it is like a
simulation and maintenance of real-time model evaluation in a deployed machine
learning model. Then, modeling data (training-validation) and testing data are sep-
arated with random selection. The reason to separate the test data this early is to
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be sure there is no bias in test data due since both of them do not participate in any
of the feature generations based on the features, outlier removal or feature selection
operations.

We will mainly use the back-test data as the primary test data since it is completely
independent of the train data as it is from another time interval. The test data
is used as the secondary test data. It indicates the possible prediction success in
a market whose dynamics do not change with time. All the operations mentioned
after this point are done via Python programming language and its integrated de-
velopment environment (IDE), Spyder. The laptop used has Intel Core i5-8300H
2.3 GHz processor and 16 GB RAM. Its operating system is Windows 10. The
operations are done first showed in Flowchart 1 and then explained in details after
it.
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Figure 6.4 Data Preparation Stage

6.3.1 Step 1: Lagged data creations

• Lagged data creation operations on net imbalance:

– Target is named as Output_f1_NetLoading to represent the net imbal-
ance value that is tried to be predicted for the 1 hour ahead, future 1 (f1).
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Lagged features of net imbalance are created by taking this output value
as a base for the previous 24 hours. Alternatively stated, the net imbal-
ance value of the previous hour is named as NetLoading_lag2 since it is
2 hours before the net imbalance value that is tried to be predicted. For
Output_f1_NetLoading target, input features from NetLoading_lag2 to
NetLoading_lag24 are created. NetLoading_lag1 is not available since
there is an hour gap between the net imbalance to be announced by TSO.

– Since we predict (T+1) up to (T+32), 32 data frames are created
for each hour tried to be predicted. The targets are named as Out-
put_fX_NetLoading to represent the exact amount of the distant hour
that is wanted to be predicted. The lagged inputs are created by taking
Output_fX_NetLoading as a reference similar to the above data cre-
ation. The 32 hours ahead target is named as Output_f32_NetLoading
and the input features from NetLoading_lag33 to NetLoading_lag55 are
created.

• Lagged data creation operations on LatestHour_SMP_MCP:

– The closest time the SMP_MCP difference is available is 6 hours
before the delivery time. That is why for Output_f1_NetLoading
target, input features from LatestHour_SMP_MCP_lag6 to Lat-
estHour_SMP_MCP_lag24 are created. Same feature creations are done
for all 32 data frames in their respective lags.

• Lagged data creation operations on TEIASDemForecastError:

– The closest time the TEIASDemForecastError is available is 2 hours
before the delivery time. The business owner advised us to get only
the 2, 3, 24 hours lagged versions of the variables. TEIASDemFore-
castError_lag2, TEIASDemForecastError_lag3, TEIASDemForecastEr-
ror_lag24 features are created. The same feature creations are done for
all 32 data frames in their respective lags. The shape of the resulting
data is (15120, 62).

6.3.2 Step 2: Back-test, test, modelling data seperations:

• The first 72 hours of the data points are dropped since creating lagged features
results in NA values in these first 3 days due to not having the previous values
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for the oldest data points.

• All of the 2020 data is kept for back-test. It makes 3024 data points.

• The test data and the modeling data are split in 0.2 to 0.8 ratios resulting in
2405 data points for the test and 9619 data points for the modeling.

6.3.3 Step 3: Feature creation with factor analysis

“(Madnani, 2020)’s factor_analyzer” python library is used for the following oper-
ations.

• Factor analysis applied to modeling data:

– For Output_f1_NetLoading, the features from NetLoading_lag3 to Net-
Loading_lag24 are used to create additional features since the created
features can be more representative compared to the features create them.
NetLoading_lag2 is not included for the factor analysis since it is alone is
the most related feature with the target, so including adding any part of
it to the newly created features is not desired. The same feature creations
are done for all 32 data frames in their respective lags.

– For Output_f1_NetLoading, the features from Lat-
estHour_SMP_MCP_lag6 to LatestHour_SMP_MCP_lag24 are
used to create additional features. The same feature creations are done
for all 32 data frames in their respective lags.

• Factor analysis applied to back-test and test data:

– - The transformations saved while applying factor analysis to the model-
ing data are applied to back-test and test data. . This step is performed
especially by first applying the factor analysis and learning factor anal-
ysis parameters from modeling data rather than mixing modeling and
test/back-test data together. This prevented any bias in testing success
as we did not feed test data insight to modeling by mistake. This oper-
ation is emphasized especially since it is a common mistake to process
modeling data and test data together thus feeding information about test
data to modeling.
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6.3.4 Step 4: Manual feature creations

• NetLoading_lag_c3-7 is created by summing values of the features from Net-
Loading_lag3 to NetLoading_lag7. Same is done for hours between 8-13,
14-19, 20-24. Also pair additions are done for 3-4, 4-5, 5-6.

• ii. Pairwise subtractions are done for 3-2, 4-3, 5-4, 6-5. Net imbalance values
from 10 to 23 are dropped. The idea behind all these feature creations is to
give the feature selection step as much as logical options to select from as the
change between the hours in the successive hours can be a logical indicator of
the net imbalance trend.

6.3.5 Step 5: gathering the created data

• All the created features are added to the data frames except the intentionally
dropped ones. The resulting shapes of the data frames for modeling, test, and
back-test parts are (9619;70), (2405;70), and (3024;70) respectively. All the
32-hour data groups have the same compositions meaning we have 3 * 32 =
96 total data frames at this point.

6.4 Analysis Stage

In this stage, the data with a big pool of features created in the data preparation
stage are analyzed and the data is tried to be made ready for modeling stages. That
is why first the data is cleaned from outlier values. Second, the number of highly
correlated inputs are reduced. Last, the big pool of the features created in the data
preparation step is needed to be reduced.

The operations are done are first showed in Flowchart 2 and then explained in detail
after it.
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Figure 6.5 Analysis Stage
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6.4.1 Step 1: Outliers are eliminated

• The outliers for each feature are dropped in if the sigma distance to the average
of mean and median is greater than 4.5 sigma.

• The point of taking the average of mean and median instead of using only one
of them is trying to benefit from both of their strengths. Taking the median
value as a reference and measuring the distance between the data point and
the median value is strong to prevent the effect of extreme values if the data
is skewed, however, it may cause to remove real data points with a little bit
extreme values to be removed. That is why the average of mean and median
are used together with the goal of being on the safe side against skewed feature
shapes while not removing a little bit of extreme data.

• The point of taking a conservative 4.5 sigma is because clearing the outliers
in this study only aims to drop the shock values in the system or potential
data errors. Other than that all the data is real, so it is not desired to drop
data points even if they are a little bit extreme. That is why the standard 3
sigma distance outlier filter approach is not chosen. Besides, we have 69 input
features at this stage, and we are dropping data points for each feature. If
we have used 3 sigma distance which means dropping 0.3% when the data is
in perfect normal distribution shape and a worst-case scenario happens where
there is no intersection of the outlier data points for 69 input features, 0.3% *
69 = 20.7 of the data would be gone. Since the real-world data is not perfectly
normally distributed it could be even higher.

• When outlier elimination with 3 sigma distance is applied to the modeling
data with Output_f1_NetLoading target variable, the modeling data drops
from 9619 instances to 6234 instances. Losing 35% of the modeling data was
not preferred so 4.5 sigma distance is used and the resulting data frame has
9052 instances meaning dropping only 6% of the instances which is completely
okay. From this point on the number of data instances for each target hour
change since the outlier elimination operation is done regarding the internal
dynamics of each data frame. That is why, after this point data shapes will
be given for the only Output_f1_NetLoading to prevent a potential crowd of
32 data frames just by giving data shape of the closest ahead hour.

6.4.2 Step 2: Feature elimination with correlations phase 1
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• Inputs with [-0.01, 0.01] correlation with the target are dropped.

• Inputs whose absolute correlation value among themselves are more than 0.9
are handled by keeping the one which has the highest correlation with the
target and dropping the others. 0.9 is a very conservative threshold com-
pared to the common practice of using 0.7 or 0.5 thresholds in risk opera-
tions in the banking sector. This conservative threshold is selected to drop
features gradually to be on the safe side. The resulting shape of the model-
ing data is (9052;57). Note that after this point the shapes of the data for
(T+1) up to (T+32) vary according to the operations done based on their
statistical characteristics. Here the shape of the data for target variable Out-
put_f1_NetLoading (T+1) is given for simplicity instead of writing all 32 of
them.

6.4.3 Step 3: Feature selection phase 1

Each of the below methods is asked to select 20 most important features among the
remaining 57 features. This 20 is selected as a common-sense since a higher threshold
causes to the elimination of almost no features and a lower threshold results in a
dramatic decrease in the number of features instead of gradual feature elimination
approach which is tried to be followed in this study

• Statistics-based methods:

– Based on correlation

– Based on F statistic with sklearn.feature_selection.f_regression() func-
tion

– Based on mutual information (MI) with
sklearn.feature_selection.mutual_info_regression()

• Recursive function elimination: It is applied with
sklearn.feature_selection.RFE() function. It selects features with the
desired machine learning in a backward feature selection way. It is used via
the following machine learning models:

– stochastic gradient regression model with linear_model.SGDRegressor()
function

– elastic net regression with linear_model.ElasticNetCV() function
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– lasso lars regression with linear_model.LassoLarsCV() function

– orthogonal matching persuit regression with OrthogonalMatchingPur-
suitCV() function

– adaboost regression with sklearn.ensemble.AdaBoostRegressor() function

– gradient boosting regression with sklearn.ensemble. GradientBoostin-
gRegressor() function

– extra trees regression with sklearn.ensemble.ExtraTreesRegressor() func-
tion

• Selecting features based on importance weights: It is applied with
sklearn.feature_selection.SelectFromModel. It can only be applied to the ma-
chine learning models with feature importance attribute. It is performed with
the following machine learning models:

– Random forest regression with sklearn.ensemble.RandomForestRegressor()
function

– Ridge regression with sklearn.linear_model.RidgeCV() function

– Light gradient boosting regression with lightgbm.LGBMRegressor() func-
tion

• The features which can not get approval from any of these methods are
dropped. This approval by any method is the lowest possible threshold. It
is again selected to drop the features gradually to not miss any important
feature. The resulting shape of the modeling data is (9052;45):

6.4.4 Step 4: Feature elimination with correlations phase 2

Inputs whose absolute correlation value among themselves are more than 0.8 are
handled by keeping the one which has the highest correlation with the target and
dropping the others. 0.8 is the most conservative correlation keep in the applications
I have experienced. It is kept this high to leave as many feature options to the feature
selection parts while preventing overwhelming them with unnecessarily correlated
features. The resulting shape of the modeling data is (9052;33).
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6.4.5 Step 5: Feature selection phase 2

• Each of the methods is asked to select 15 most important feature among the
remaining 33 features:

• The methods used in feature selection phase 1 are also used here. The featuıres
which can not get approval from at least 2 methods are dropped. The resulting
shape of the modeling data is (9052;30):

6.5 Modeling Stage

In this stage, the 11 different machine learning models are used for modeling pur-
poses. A naïve model which assumes the target is the last available net imbalance
as the prediction is used. In other words; for the prediction of next hour target,
Output_f1_NetLoading is assumed to be equal to NetLoading_lag2. This model is
used as the baseline for prediction success. Additionally, these 11 models are used
together thanks to stacking and voting ensemble methods. Thus, 14 models are
used.

The modeling stage is performed in three modeling phases. In the first modeling
phase, the machine learning models with non-optimized features and a fixed number
of features are used. In the second modeling phase, the machine learning models
with optimized features by random search and a fixed number of features are used.
In the third modeling phase, the machine learning models with optimized features
by random search and optimized number of features are used.

In all the three modeling phases, five steps are followed. The first step is applying
standard scaling to the input variables. The second step is the final feature selection
before training the models. The third step is training machine learning models with
the selected features. The fourth step is checking the performances of the trained
models by comparing them to the naïve model, then deciding not to use the bad
performing machine learning models for the two ensemble methods stacking and
voting. The fifth step is to apply stacking and voting ensemble models with the
remaining machine learning models.

Note that, in all the phases these five steps are followed for predicting the next
32 hours in a loop approach meaning net imbalance values for the next 32 hours
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are predicted in each modeling phase. The operations are done are first showed in
flowcharts and then explained in details after them.

6.5.1 Step 1: Standardization

• A standardization of input features is done over the remaining 30 features by
sklearn.preprocessing.StandardScaler() function which applies z transforma-
tion.

• This operation is done on the modeling data and the learned transformation
(Scaler_ss) is applied to back-test and test data. As stated before, to pre-
vent any bias all the data manipulation related operations are performed on
modeling data and then copied operations are applied to back-test and test
data.
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Figure 6.6 Modeling Stage Phase 1; N Features and no Parameter Optimization

6.5.2 Step 2: Feature selection phase for modeling phases 1-2; feature

selection results in pre-decided fix number of features

• In this step, the features standardized are used and the shape of the modeling
data change from (9052;30) to (9052;8). In this modeling stage, we wanted to
see the model performances with a fixed number of features. 8 is chosen after
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trying some numbers such as 6,8,10 since it seemed like a good choice. It may
look like a bold shot, however, it is not that important since for the modeling
phase 3 we will let the models chose the best number of features.

• The selection is done with sklearn.feature_selection.RFE() using a single ma-
chine learning model. It is tried to be used the same model for feature
selection with the respective model in the modeling phase. As an exam-
ple; while creating a feature selector Selector=RFE(estimator=regressor_fsel)
for a modelling regressor reg=regressor_model.fit(X=X_tr,y=y_tr), regres-
sor_fsel=LinearRegression() and regressor_model=LinearRegression() are
used together. The purpose of this is to select features that the model it-
self think is the best.

• Back-test and test data are filtered according to the selected features by the
modeling data.

6.5.3 Step 3: Modeling phase 1; with 8 features and default model pa-

rameters

• 11 different machine learning models are trained:

– Linear regression

– Lasso

– Elastic net

– K nearest neigborhood (KNN)

– Random forest

– Extra trees

– Ada boosting

– Gradient boosting

– Xg boosting

– Light gradient boosting

– Cat boosting
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• A naïve model mentioned before which gets the closest net imbalance as the
predicted value is added for baseline comparison of modeling success of the
other models.

• 7 of the 11 models perform better than or close to naïve model in back-test
data. That is why they are chosen for stacking and voting ensemble models.
These models are.

– Linear regression

– Lasso

– Elastic net

– Extra trees

– Gradient boosting

– Light gradient boosting

– Cat boosting

• 7 good performing models are chosen to be used in stacking and
voting ensemble models. The stacking model is trained with
sklearn.ensemble.StackingRegressor() function and voting model is trained
with sklearn.ensemble.VotingRegressor() function.

• Coefficient of determination (R-square regression score function) results are ob-
tained with sklearn.metrics.r2_score(y_true, y_pred) function , MAE results
are obtained with sklearn.metrics.mean_absolute_error(y_true, y_pred)
function and MAPE is calculated as shown in Figure 6.7.

• R-square, MAE and MAPE performance results are shown in tables from 6.2
up to 6.7. Results for back-test data and test data are labeled from a1 to a3
and b1 to b3 respectively to distinguish them easier.

Figure 6.7 MAPE Calculation
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Table 6.2 Modeling phase 1 – a1. BACK-TEST Data Performance - R-square

linear lasso elastic knn rf et ab gb xgb lgbm catb naive stack voting
nl_f_01 0.585 0.549 0.594 0.382 0.522 0.547 0.302 0.564 0.42 0.497 0.527 0.53 0.569 0.598
nl_f_02 0.429 0.401 0.453 0.243 0.352 0.411 0.259 0.426 0.18 0.334 0.36 0.318 0.418 0.457
nl_f_03 0.286 0.298 0.342 0.028 0.207 0.289 0.17 0.284 0.037 0.016 0.226 0.124 0.297 0.339
nl_f_04 0.216 0.235 0.27 -0.05 0.138 0.169 0.036 0.168 -0.09 -0.01 0.019 -0.04 0.133 0.219
nl_f_05 0.169 0.186 0.221 -0.1 0.088 0.108 -0.06 0.13 -0.19 -0.07 0.01 -0.18 0.104 0.175
nl_f_06 0.123 0.154 0.189 -0.09 0.063 0.082 -0.19 0.083 -0.34 -0.05 0.002 -0.3 0.062 0.15
nl_f_07 0.135 0.135 0.169 -0.1 0.03 0.065 -0.14 0.029 -0.32 -0.09 -0.05 -0.38 0.04 0.132
nl_f_08 0.111 0.121 0.155 -0.13 -0.01 0.024 -0.34 0.037 -0.61 -0.06 -0.09 -0.44 -0 0.128
nl_f_09 0.095 0.106 0.139 -0.18 -0.03 -0.03 -0.23 0.047 -0.26 -0.15 -0.13 -0.49 -0.04 0.09
nl_f_10 0.081 0.099 0.127 -0.18 -0.08 -0.04 -0.19 0.009 -0.47 -0.07 -0.18 -0.54 -0.07 0.111
nl_f_11 0.067 0.096 0.122 -0.15 -0.1 -0.03 -0.14 0.009 -0.24 -0.08 -0.21 -0.58 -0.09 0.106
nl_f_12 0.053 0.094 0.124 -0.16 -0.07 -0.02 -0.31 -0 -0.35 -0.02 -0.14 -0.61 -0.05 0.108
nl_f_13 0.046 0.091 0.119 -0.22 -0.05 -0.02 -0.35 0.021 -0.53 -0.08 -0.13 -0.61 -0.03 0.108
nl_f_14 0.044 0.092 0.118 -0.21 -0.04 0.003 -0.39 0.029 -0.41 -0.01 -0.09 -0.63 -0.01 0.115
nl_f_15 0.048 0.088 0.114 -0.25 -0.04 -0.01 -0.4 0.016 -0.36 -0.06 -0.14 -0.65 -0 0.111
nl_f_16 0.043 0.09 0.112 -0.27 -0.05 -0.02 -0.31 0.017 -0.26 -0.09 -0.11 -0.64 -0.01 0.111
nl_f_17 0.03 0.1 0.121 -0.26 -0.03 0.001 -0.39 0.01 -0.53 -0.16 -0.11 -0.62 -0.01 0.108
nl_f_18 0.047 0.095 0.119 -0.26 -0.06 -0.01 -0.24 0.006 -0.49 -0.12 -0.1 -0.58 -0 0.11
nl_f_19 0.015 0.103 0.122 -0.27 -0.08 -0 -0.2 0.01 -0.52 -0.11 -0.11 -0.53 -0.01 0.109
nl_f_20 0.021 0.105 0.122 -0.25 -0.13 -0.03 -0.39 -0.03 -0.37 -0.07 -0.11 -0.48 -0.02 0.105
nl_f_21 0.034 0.106 0.125 -0.23 -0.16 -0.06 -0.25 -0.04 -0.48 -0.08 -0.13 -0.45 -0.04 0.104
nl_f_22 0.016 0.105 0.123 -0.25 -0.14 -0.08 -0.27 -0.04 -0.62 -0.24 -0.15 -0.43 -0.05 0.11
nl_f_23 0.037 0.103 0.124 -0.2 -0.1 -0.02 -0.37 -0.04 -0.55 -0.13 -0.13 -0.41 -0.04 0.117
nl_f_24 0.015 0.093 0.107 -0.19 -0.09 -0.14 -0.26 -0.03 -0.51 -0.2 -0.14 -0.51 -0.05 0.104
nl_f_25 -0.04 0.084 0.09 -0.23 -0.1 -0.04 -0.15 0.003 -0.26 -0.2 -0.15 -0.58 -0.06 0.117
nl_f_26 -0.04 0.077 0.084 -0.21 -0.11 -0.07 -0.32 -0.01 -0.85 -0.22 -0.17 -0.65 -0.05 0.113
nl_f_27 -0.06 0.071 0.08 -0.27 -0.13 -0.07 -0.2 0.003 -0.43 -0.19 -0.15 -0.72 -0.05 0.114
nl_f_28 -0.06 0.069 0.078 -0.24 -0.14 -0.09 -0.24 -0.03 -0.18 -0.24 -0.2 -0.77 -0.07 0.096
nl_f_29 -0.06 0.069 0.075 -0.24 -0.11 -0.08 -0.28 -0.05 -0.46 -0.15 -0.22 -0.83 -0.09 0.095
nl_f_30 -0.06 0.068 0.073 -0.2 -0.12 -0.11 -0.35 -0.03 -0.73 -0.23 -0.24 -0.88 -0.12 0.101
nl_f_31 -0.06 0.069 0.073 -0.26 -0.12 -0.07 -0.31 -0.03 -0.51 -0.14 -0.2 -0.9 -0.12 0.1
nl_f_32 -0.04 0.071 0.074 -0.2 -0.12 -0.08 -0.13 -0.03 -0.53 -0.23 -0.14 -0.92 -0.1 0.105
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Table 6.3 Modeling phase 1 – a2. BACK-TEST Data Performance - MAE

linear lasso elastic knn rf et ab gb xgb lgbm catb naive stack voting
nl_f_01 0.488 0.517 0.482 0.606 0.527 0.511 0.663 0.5 0.593 0.543 0.522 0.509 0.499 0.481
nl_f_02 0.574 0.596 0.561 0.675 0.622 0.592 0.678 0.59 0.717 0.636 0.612 0.62 0.586 0.568
nl_f_03 0.647 0.641 0.617 0.766 0.686 0.654 0.709 0.654 0.768 0.78 0.675 0.715 0.647 0.627
nl_f_04 0.683 0.665 0.651 0.806 0.727 0.714 0.776 0.71 0.831 0.79 0.768 0.784 0.724 0.687
nl_f_05 0.702 0.686 0.672 0.82 0.748 0.741 0.813 0.722 0.877 0.807 0.773 0.837 0.737 0.704
nl_f_06 0.719 0.699 0.684 0.824 0.755 0.748 0.859 0.739 0.919 0.793 0.782 0.878 0.757 0.714
nl_f_07 0.714 0.707 0.692 0.812 0.771 0.754 0.843 0.767 0.907 0.82 0.807 0.908 0.766 0.726
nl_f_08 0.724 0.712 0.698 0.837 0.79 0.773 0.934 0.767 1.014 0.803 0.827 0.928 0.785 0.732
nl_f_09 0.73 0.717 0.704 0.858 0.796 0.797 0.878 0.762 0.884 0.848 0.835 0.943 0.8 0.745
nl_f_10 0.736 0.718 0.707 0.861 0.817 0.803 0.862 0.781 0.959 0.811 0.855 0.955 0.812 0.73
nl_f_11 0.741 0.718 0.708 0.846 0.824 0.793 0.839 0.777 0.885 0.812 0.878 0.971 0.824 0.732
nl_f_12 0.743 0.72 0.709 0.846 0.817 0.786 0.908 0.78 0.923 0.8 0.841 0.983 0.798 0.724
nl_f_13 0.746 0.722 0.71 0.863 0.802 0.789 0.923 0.772 0.986 0.815 0.841 0.987 0.794 0.724
nl_f_14 0.748 0.722 0.711 0.854 0.801 0.776 0.936 0.766 0.936 0.781 0.82 0.994 0.784 0.72
nl_f_15 0.748 0.725 0.714 0.865 0.796 0.78 0.942 0.771 0.923 0.815 0.844 1.003 0.783 0.724
nl_f_16 0.749 0.724 0.715 0.872 0.793 0.79 0.923 0.771 0.895 0.822 0.833 1.002 0.786 0.723
nl_f_17 0.751 0.719 0.709 0.87 0.786 0.775 0.94 0.775 0.964 0.849 0.826 0.994 0.782 0.724
nl_f_18 0.745 0.72 0.71 0.885 0.803 0.786 0.882 0.776 0.978 0.831 0.827 0.976 0.786 0.724
nl_f_19 0.76 0.718 0.709 0.889 0.81 0.785 0.862 0.783 0.975 0.835 0.831 0.955 0.79 0.725
nl_f_20 0.754 0.715 0.708 0.876 0.827 0.791 0.94 0.787 0.922 0.814 0.834 0.935 0.794 0.726
nl_f_21 0.75 0.715 0.707 0.865 0.839 0.802 0.884 0.792 0.957 0.823 0.843 0.921 0.806 0.729
nl_f_22 0.757 0.716 0.708 0.869 0.831 0.813 0.901 0.792 0.98 0.885 0.845 0.913 0.807 0.727
nl_f_23 0.748 0.716 0.707 0.858 0.82 0.799 0.939 0.796 0.968 0.849 0.852 0.906 0.808 0.724
nl_f_24 0.762 0.719 0.717 0.863 0.828 0.85 0.895 0.805 0.974 0.871 0.852 0.951 0.816 0.729
nl_f_25 0.786 0.72 0.724 0.866 0.825 0.811 0.853 0.79 0.889 0.873 0.849 0.984 0.813 0.726
nl_f_26 0.79 0.722 0.727 0.858 0.835 0.818 0.916 0.794 1.072 0.888 0.868 1.01 0.816 0.728
nl_f_27 0.803 0.724 0.728 0.883 0.848 0.817 0.872 0.79 0.958 0.864 0.852 1.036 0.811 0.73
nl_f_28 0.799 0.724 0.729 0.875 0.849 0.827 0.882 0.804 0.868 0.893 0.869 1.054 0.819 0.736
nl_f_29 0.802 0.724 0.729 0.874 0.839 0.819 0.906 0.809 0.956 0.852 0.88 1.069 0.826 0.737
nl_f_30 0.801 0.725 0.73 0.863 0.834 0.832 0.939 0.801 1.037 0.884 0.893 1.08 0.842 0.738
nl_f_31 0.8 0.724 0.73 0.893 0.843 0.819 0.913 0.8 0.958 0.843 0.87 1.079 0.838 0.736
nl_f_32 0.789 0.724 0.73 0.863 0.838 0.822 0.841 0.798 0.971 0.88 0.846 1.081 0.826 0.735
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Table 6.4 Modeling phase 1 – a3. BACK-TEST Data Performance - MAPE

linear lasso elastic knn rf et ab gb xgb lgbm catb naive stack voting
nl_f_01 289 270 249 400 318 346 409 307 473 385 368 368 313 282
nl_f_02 322 294 282 444 366 364 458 368 523 412 405 454 359 327
nl_f_03 369 284 285 517 387 371 389 412 519 553 418 523 366 347
nl_f_04 424 301 325 493 442 441 498 441 516 480 480 674 422 383
nl_f_05 405 286 312 567 470 433 493 442 527 534 497 722 445 391
nl_f_06 346 256 279 552 446 427 490 445 641 489 498 728 473 388
nl_f_07 309 255 250 499 450 451 471 443 566 502 516 706 490 390
nl_f_08 329 230 241 474 406 407 629 418 643 437 469 717 445 359
nl_f_09 327 232 236 498 396 420 508 415 510 480 510 711 473 377
nl_f_10 327 237 250 529 416 434 482 468 609 394 550 686 487 358
nl_f_11 332 239 254 480 495 412 467 457 516 471 520 678 480 344
nl_f_12 346 244 258 509 527 437 516 482 558 465 601 617 527 370
nl_f_13 369 252 274 633 474 399 606 502 682 505 650 628 599 390
nl_f_14 386 253 280 591 619 456 662 509 588 511 599 579 556 393
nl_f_15 381 251 277 628 456 382 636 495 461 521 578 594 548 380
nl_f_16 382 246 278 589 473 431 629 498 539 502 643 604 526 391
nl_f_17 364 242 268 592 561 456 678 505 742 510 621 622 541 399
nl_f_18 361 247 270 659 485 416 630 499 605 489 659 562 527 391
nl_f_19 379 245 272 543 492 400 611 522 703 535 674 564 545 395
nl_f_20 375 232 266 612 612 422 711 484 580 470 657 572 601 388
nl_f_21 407 236 274 715 702 485 656 565 712 539 691 561 644 429
nl_f_22 408 237 276 794 555 531 610 553 607 584 695 576 647 422
nl_f_23 395 230 264 717 504 487 681 538 632 556 709 609 602 401
nl_f_24 408 224 276 696 479 519 573 513 542 595 600 613 551 389
nl_f_25 412 218 274 509 505 463 538 505 529 471 564 630 527 358
nl_f_26 411 220 273 539 537 462 659 492 847 596 654 614 554 362
nl_f_27 418 221 269 589 566 448 596 529 643 564 545 720 479 348
nl_f_28 409 222 271 597 583 487 629 541 527 581 551 797 473 358
nl_f_29 403 222 269 524 578 478 642 513 602 565 590 822 488 361
nl_f_30 403 222 269 512 544 486 721 537 726 606 648 857 591 394
nl_f_31 406 223 270 526 557 541 630 563 567 514 625 840 548 390
nl_f_32 389 223 271 499 582 484 520 550 597 637 594 830 561 375
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Table 6.5 Modeling phase 1 – b1. TEST Data Performance - R-square

linear lasso elastic knn rf et ab gb xgb lgbm catb naive stack voting
nl_f_01 0.615 0.553 0.587 0.609 0.617 0.629 0.503 0.632 0.624 0.659 0.656 0.496 0.652 0.637
nl_f_02 0.491 0.428 0.471 0.546 0.546 0.576 0.351 0.524 0.601 0.578 0.58 0.3 0.582 0.534
nl_f_03 0.413 0.348 0.391 0.509 0.5 0.546 0.293 0.461 0.538 0.549 0.542 0.159 0.547 0.474
nl_f_04 0.362 0.302 0.339 0.458 0.481 0.569 0.22 0.41 0.553 0.541 0.49 0.021 0.518 0.422
nl_f_05 0.327 0.268 0.303 0.434 0.518 0.567 0.169 0.377 0.549 0.508 0.471 -0.08 0.502 0.392
nl_f_06 0.28 0.243 0.276 0.42 0.531 0.571 0.136 0.366 0.535 0.502 0.543 -0.14 0.574 0.406
nl_f_07 0.251 0.218 0.25 0.414 0.53 0.578 0.163 0.352 0.558 0.513 0.547 -0.24 0.579 0.395
nl_f_08 0.264 0.205 0.232 0.396 0.545 0.585 0.164 0.36 0.576 0.502 0.555 -0.3 0.603 0.395
nl_f_09 0.253 0.192 0.219 0.399 0.543 0.664 0.147 0.337 0.577 0.528 0.532 -0.36 0.564 0.373
nl_f_10 0.231 0.183 0.211 0.372 0.573 0.655 0.153 0.355 0.568 0.499 0.542 -0.37 0.584 0.38
nl_f_11 0.221 0.178 0.206 0.344 0.565 0.657 0.151 0.341 0.578 0.511 0.569 -0.44 0.626 0.386
nl_f_12 0.233 0.178 0.206 0.333 0.576 0.642 0.153 0.345 0.543 0.531 0.57 -0.44 0.64 0.387
nl_f_13 0.23 0.178 0.211 0.429 0.581 0.662 0.17 0.335 0.55 0.531 0.568 -0.46 0.635 0.385
nl_f_14 0.231 0.176 0.21 0.407 0.562 0.644 0.161 0.341 0.546 0.511 0.56 -0.45 0.631 0.384
nl_f_15 0.233 0.173 0.206 0.383 0.582 0.648 0.167 0.338 0.501 0.521 0.566 -0.47 0.635 0.384
nl_f_16 0.235 0.171 0.206 0.396 0.58 0.648 0.163 0.341 0.557 0.519 0.562 -0.47 0.625 0.384
nl_f_17 0.243 0.178 0.214 0.376 0.518 0.574 0.174 0.335 0.58 0.521 0.527 -0.44 0.569 0.372
nl_f_18 0.24 0.173 0.21 0.358 0.557 0.619 0.159 0.345 0.516 0.519 0.553 -0.46 0.603 0.382
nl_f_19 0.244 0.175 0.213 0.373 0.552 0.608 0.171 0.337 0.508 0.523 0.562 -0.49 0.605 0.386
nl_f_20 0.248 0.177 0.215 0.322 0.512 0.59 0.162 0.346 0.474 0.518 0.552 -0.46 0.581 0.386
nl_f_21 0.245 0.174 0.213 0.284 0.509 0.587 0.167 0.341 0.537 0.515 0.561 -0.44 0.583 0.385
nl_f_22 0.248 0.174 0.213 0.396 0.533 0.585 0.158 0.352 0.53 0.526 0.55 -0.4 0.582 0.385
nl_f_23 0.246 0.171 0.209 0.295 0.537 0.583 0.146 0.342 0.552 0.503 0.551 -0.36 0.583 0.383
nl_f_24 0.226 0.155 0.194 0.28 0.526 0.617 0.162 0.321 0.543 0.506 0.499 -0.43 0.535 0.361
nl_f_25 0.216 0.148 0.184 0.333 0.536 0.602 0.153 0.341 0.554 0.52 0.553 -0.49 0.593 0.374
nl_f_26 0.208 0.144 0.176 0.287 0.533 0.62 0.146 0.339 0.528 0.517 0.545 -0.55 0.593 0.371
nl_f_27 0.19 0.14 0.168 0.365 0.549 0.625 0.133 0.351 0.588 0.517 0.555 -0.66 0.606 0.371
nl_f_28 0.187 0.138 0.166 0.294 0.558 0.644 0.139 0.344 0.597 0.516 0.58 -0.71 0.638 0.379
nl_f_29 0.182 0.137 0.164 0.301 0.552 0.636 0.159 0.349 0.568 0.515 0.585 -0.7 0.644 0.384
nl_f_30 0.183 0.138 0.163 0.283 0.556 0.64 0.135 0.34 0.56 0.529 0.571 -0.74 0.622 0.378
nl_f_31 0.186 0.139 0.165 0.322 0.559 0.634 0.135 0.333 0.581 0.524 0.576 -0.74 0.62 0.38
nl_f_32 0.19 0.14 0.166 0.349 0.561 0.643 0.137 0.329 0.574 0.542 0.574 -0.77 0.623 0.378
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Table 6.6 Modeling phase 1 – b2. TEST Data Performance - MAE

linear lasso elastic knn rf et ab gb xgb lgbm catb naive stack voting
nl_f_01 0.537 0.571 0.548 0.523 0.526 0.509 0.636 0.519 0.518 0.5 0.507 0.583 0.507 0.516
nl_f_02 0.623 0.653 0.627 0.57 0.574 0.547 0.739 0.597 0.548 0.565 0.562 0.699 0.554 0.588
nl_f_03 0.672 0.705 0.682 0.596 0.603 0.573 0.76 0.645 0.587 0.591 0.593 0.772 0.579 0.632
nl_f_04 0.707 0.736 0.716 0.635 0.615 0.559 0.814 0.682 0.581 0.597 0.633 0.849 0.605 0.67
nl_f_05 0.729 0.759 0.739 0.645 0.593 0.559 0.857 0.702 0.585 0.622 0.646 0.902 0.617 0.69
nl_f_06 0.758 0.775 0.757 0.655 0.584 0.552 0.874 0.712 0.585 0.622 0.597 0.934 0.562 0.684
nl_f_07 0.773 0.788 0.771 0.653 0.582 0.547 0.85 0.721 0.583 0.619 0.593 0.978 0.554 0.693
nl_f_08 0.771 0.795 0.779 0.677 0.579 0.544 0.857 0.716 0.556 0.616 0.588 0.998 0.538 0.694
nl_f_09 0.775 0.803 0.787 0.674 0.581 0.485 0.862 0.729 0.584 0.611 0.608 1.027 0.574 0.707
nl_f_10 0.782 0.809 0.792 0.683 0.556 0.486 0.858 0.727 0.571 0.624 0.604 1.028 0.555 0.708
nl_f_11 0.793 0.813 0.797 0.712 0.561 0.489 0.861 0.732 0.56 0.615 0.577 1.06 0.515 0.704
nl_f_12 0.788 0.813 0.797 0.708 0.551 0.493 0.858 0.727 0.585 0.61 0.573 1.062 0.5 0.701
nl_f_13 0.793 0.814 0.797 0.648 0.546 0.475 0.848 0.731 0.581 0.609 0.575 1.07 0.503 0.703
nl_f_14 0.792 0.815 0.797 0.665 0.562 0.492 0.856 0.731 0.587 0.614 0.581 1.071 0.507 0.703
nl_f_15 0.791 0.817 0.799 0.681 0.543 0.488 0.853 0.732 0.603 0.612 0.577 1.079 0.501 0.703
nl_f_16 0.79 0.818 0.8 0.675 0.545 0.492 0.846 0.729 0.578 0.606 0.577 1.083 0.511 0.702
nl_f_17 0.786 0.816 0.797 0.69 0.593 0.548 0.852 0.73 0.566 0.613 0.605 1.07 0.557 0.71
nl_f_18 0.788 0.819 0.8 0.698 0.56 0.513 0.855 0.725 0.603 0.612 0.581 1.081 0.527 0.703
nl_f_19 0.784 0.817 0.798 0.688 0.563 0.516 0.844 0.728 0.607 0.609 0.576 1.086 0.528 0.7
nl_f_20 0.783 0.815 0.797 0.716 0.592 0.529 0.85 0.724 0.616 0.61 0.579 1.065 0.545 0.7
nl_f_21 0.787 0.817 0.799 0.747 0.599 0.533 0.856 0.729 0.583 0.605 0.572 1.066 0.543 0.702
nl_f_22 0.787 0.818 0.799 0.67 0.577 0.535 0.852 0.723 0.595 0.602 0.58 1.036 0.546 0.702
nl_f_23 0.788 0.82 0.801 0.734 0.574 0.533 0.863 0.727 0.58 0.605 0.58 1.015 0.542 0.701
nl_f_24 0.797 0.826 0.808 0.743 0.579 0.5 0.851 0.737 0.584 0.606 0.606 1.047 0.57 0.714
nl_f_25 0.797 0.83 0.812 0.705 0.579 0.515 0.85 0.73 0.571 0.601 0.586 1.07 0.538 0.706
nl_f_26 0.801 0.832 0.815 0.744 0.577 0.505 0.858 0.732 0.578 0.605 0.588 1.1 0.54 0.71
nl_f_27 0.81 0.835 0.82 0.691 0.572 0.504 0.871 0.729 0.551 0.607 0.587 1.139 0.535 0.712
nl_f_28 0.812 0.837 0.822 0.731 0.56 0.493 0.863 0.731 0.553 0.607 0.571 1.161 0.509 0.708
nl_f_29 0.813 0.837 0.823 0.715 0.569 0.5 0.86 0.73 0.565 0.609 0.569 1.176 0.506 0.707
nl_f_30 0.813 0.837 0.823 0.735 0.569 0.501 0.872 0.736 0.578 0.606 0.579 1.189 0.523 0.711
nl_f_31 0.813 0.836 0.823 0.715 0.567 0.503 0.863 0.737 0.56 0.613 0.576 1.189 0.525 0.709
nl_f_32 0.811 0.836 0.822 0.706 0.568 0.5 0.864 0.74 0.562 0.601 0.581 1.189 0.523 0.711
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Table 6.7 Modeling phase 1 – b3. TEST Data Performance - MAPE

linear lasso elastic knn rf et ab gb xgb lgbm catb naive stack voting
nl_f_01 164 147 146 162 163 156 198 156 141 144 156 189 149 148
nl_f_02 183 171 170 163 183 162 248 175 163 156 168 227 157 165
nl_f_03 190 176 178 169 173 170 235 189 198 183 179 243 170 177
nl_f_04 214 195 200 207 179 171 310 210 192 174 199 289 188 195
nl_f_05 226 206 212 199 178 163 335 226 190 185 205 348 190 208
nl_f_06 225 205 213 219 170 164 319 219 165 202 184 343 171 201
nl_f_07 233 209 216 208 165 162 272 212 190 195 181 367 168 201
nl_f_08 227 205 212 245 166 161 269 207 167 185 187 357 166 197
nl_f_09 224 209 214 247 179 140 265 220 176 192 201 347 187 205
nl_f_10 234 210 216 233 166 137 255 221 185 186 194 363 174 204
nl_f_11 230 210 216 222 170 145 270 211 173 188 182 336 158 195
nl_f_12 224 210 214 194 159 149 267 208 184 177 181 335 154 194
nl_f_13 225 210 212 198 161 140 250 208 167 184 186 367 153 194
nl_f_14 225 208 211 210 168 145 280 211 183 183 188 352 158 195
nl_f_15 221 206 209 203 170 154 260 207 195 187 189 324 157 192
nl_f_16 217 204 207 181 156 145 253 200 188 176 179 319 147 189
nl_f_17 216 208 208 215 168 157 263 201 192 182 184 312 156 191
nl_f_18 216 207 209 209 162 153 264 198 197 179 177 342 151 188
nl_f_19 215 206 207 197 173 144 236 201 189 175 171 340 148 187
nl_f_20 212 205 206 199 168 145 260 198 196 192 175 332 155 187
nl_f_21 216 205 205 226 174 143 286 198 187 180 163 373 149 186
nl_f_22 214 205 204 183 178 148 247 199 209 187 170 360 152 187
nl_f_23 221 206 207 216 172 150 261 199 191 174 173 359 150 187
nl_f_24 224 206 210 222 175 146 249 206 172 179 184 378 178 192
nl_f_25 218 205 207 201 172 172 240 201 196 181 181 376 159 188
nl_f_26 218 205 208 234 175 158 252 206 186 180 182 362 166 191
nl_f_27 221 206 210 198 174 156 255 207 182 182 179 365 155 191
nl_f_28 226 207 212 202 161 161 252 209 184 178 189 339 162 193
nl_f_29 223 207 211 194 177 154 259 207 184 176 183 363 160 193
nl_f_30 222 207 211 231 169 154 269 205 199 180 187 358 160 193
nl_f_31 222 207 212 232 164 159 260 204 185 190 182 371 161 191
nl_f_32 222 207 212 199 168 155 274 207 183 179 192 381 157 193
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Figure 6.8 Modeling Stage Phase 2; N Features and Optimized Model Parameters
with Random Search

6.5.4 Step 4: Modeling phase 2; with 8 features and optimized model

parameters with random search

• Features selected at step 2 are used.

• Among the remaining 7 models, 1 is linear regression which does
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not need any parameter optimization. That is why parameter op-
timization with random search is performed for the models with
sklearn.model_selection.RandomizedSearchCV() function.

• Among those 6 models, LightGBM is dropped since its performance according
to R-square value is worse than the naïve model both in the modeling phase
1 and modeling phase 2. It was kept to see whether it will be improved with
the random search, however, no improvement is observed. With the linear
regression model remaining 6 good performing models are chosen to be used
in stacking and voting ensemble models. Elasticnet and gradient boosting
methods do not improve with parameter optimization so for ensemble models
their default versions are used which are shown in Figure 6.9.

• R-square, MAE and MAPE performance results are shown in tables from 6.8
up to 6.13.

Figure 6.9 Models used in Voting Ensemble Regressor in Modeling Stage Phase 2
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Table 6.8 Modeling phase 2 – a1. BACK-TEST Data Performance - R-square

linear lasso elastic et gb lgbm catb naive stack voting
nl_f_01 0.585 0.579 0.578 0.555 0.536 0.492 0.542 0.53 0.581 0.603
nl_f_02 0.429 0.453 0.421 0.43 0.343 0.318 0.296 0.318 0.394 0.463
nl_f_03 0.286 0.344 0.307 0.322 0.198 0.002 0.155 0.124 0.257 0.345
nl_f_04 0.216 0.257 0.224 0.247 0.008 0.018 -0.07 -0.04 0.066 0.238
nl_f_05 0.169 0.206 0.177 0.198 -0.03 -0.06 -0.11 -0.18 0.008 0.186
nl_f_06 0.123 0.175 0.147 0.166 -0.04 -0.06 -0.08 -0.3 -0.03 0.172
nl_f_07 0.135 0.153 0.124 0.155 -0.13 -0.1 -0.13 -0.38 -0.08 0.155
nl_f_08 0.111 0.131 0.123 0.145 -0.1 -0.1 -0.23 -0.44 -0.16 0.15
nl_f_09 0.095 0.115 0.107 0.119 -0.14 -0.09 -0.23 -0.49 -0.16 0.117
nl_f_10 0.081 0.098 0.09 0.116 -0.25 -0.11 -0.35 -0.54 -0.25 0.12
nl_f_11 0.067 0.092 0.084 0.11 -0.23 -0.07 -0.32 -0.58 -0.23 0.131
nl_f_12 0.053 0.092 0.089 0.11 -0.19 -0.04 -0.26 -0.61 -0.18 0.122
nl_f_13 0.046 0.103 0.064 0.106 -0.21 -0.1 -0.25 -0.61 -0.19 0.125
nl_f_14 0.044 0.103 0.061 0.113 -0.23 -0.04 -0.23 -0.63 -0.16 0.13
nl_f_15 0.048 0.077 0.056 0.104 -0.22 -0.06 -0.2 -0.65 -0.13 0.13
nl_f_16 0.043 0.088 0.049 0.098 -0.18 -0.12 -0.26 -0.64 -0.2 0.124
nl_f_17 0.03 0.111 0.065 0.099 -0.19 -0.15 -0.2 -0.62 -0.13 0.13
nl_f_18 0.047 0.078 0.056 0.095 -0.18 -0.12 -0.23 -0.58 -0.16 0.12
nl_f_19 0.015 0.082 0.054 0.099 -0.15 -0.08 -0.21 -0.53 -0.14 0.133
nl_f_20 0.021 0.102 0.056 0.095 -0.2 -0.16 -0.24 -0.48 -0.17 0.124
nl_f_21 0.034 0.106 0.054 0.097 -0.27 -0.14 -0.27 -0.45 -0.21 0.126
nl_f_22 0.016 0.104 0.053 0.09 -0.25 -0.27 -0.29 -0.43 -0.22 0.121
nl_f_23 0.037 0.107 0.055 0.079 -0.18 -0.17 -0.3 -0.41 -0.22 0.131
nl_f_24 0.015 0.07 0.028 0.065 -0.14 -0.2 -0.21 -0.51 -0.15 0.13
nl_f_25 -0.04 0.049 0.011 0.082 -0.22 -0.25 -0.29 -0.58 -0.2 0.129
nl_f_26 -0.04 0.045 0.009 0.089 -0.22 -0.17 -0.35 -0.65 -0.26 0.12
nl_f_27 -0.06 0.037 0.014 0.084 -0.34 -0.2 -0.29 -0.72 -0.22 0.124
nl_f_28 -0.06 0.038 0.031 0.078 -0.27 -0.21 -0.35 -0.77 -0.27 0.114
nl_f_29 -0.06 0.024 0.027 0.098 -0.3 -0.27 -0.34 -0.83 -0.25 0.112
nl_f_30 -0.06 0.025 0.018 0.099 -0.35 -0.17 -0.4 -0.88 -0.31 0.11
nl_f_31 -0.06 0.027 0.02 0.089 -0.3 -0.16 -0.36 -0.9 -0.28 0.111
nl_f_32 -0.04 0.025 0.019 0.1 -0.28 -0.27 -0.33 -0.92 -0.24 0.113
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Table 6.9 Modeling phase 2 – a2. BACK-TEST Data Performance - MAE

linear lasso elastic et gb lgbm catb naive stack voting
nl_f_01 0.488 0.493 0.489 0.506 0.518 0.549 0.514 0.509 0.493 0.478
nl_f_02 0.574 0.561 0.577 0.573 0.621 0.646 0.645 0.62 0.6 0.563
nl_f_03 0.647 0.616 0.635 0.627 0.689 0.79 0.708 0.715 0.665 0.622
nl_f_04 0.683 0.662 0.679 0.66 0.767 0.782 0.798 0.784 0.747 0.676
nl_f_05 0.702 0.683 0.699 0.681 0.775 0.813 0.81 0.837 0.769 0.696
nl_f_06 0.719 0.697 0.711 0.694 0.792 0.791 0.813 0.878 0.795 0.702
nl_f_07 0.714 0.706 0.721 0.701 0.821 0.818 0.845 0.908 0.826 0.712
nl_f_08 0.724 0.716 0.72 0.707 0.835 0.824 0.876 0.928 0.852 0.718
nl_f_09 0.73 0.721 0.725 0.72 0.842 0.821 0.879 0.943 0.854 0.728
nl_f_10 0.736 0.726 0.73 0.72 0.898 0.823 0.92 0.955 0.889 0.722
nl_f_11 0.741 0.729 0.731 0.723 0.885 0.817 0.914 0.971 0.885 0.717
nl_f_12 0.743 0.727 0.729 0.722 0.859 0.797 0.886 0.983 0.86 0.716
nl_f_13 0.746 0.72 0.736 0.726 0.878 0.821 0.888 0.987 0.867 0.714
nl_f_14 0.748 0.721 0.739 0.721 0.885 0.79 0.877 0.994 0.852 0.711
nl_f_15 0.748 0.735 0.744 0.727 0.874 0.816 0.866 1.003 0.841 0.71
nl_f_16 0.749 0.731 0.747 0.729 0.867 0.837 0.892 1.002 0.869 0.713
nl_f_17 0.751 0.717 0.735 0.729 0.853 0.839 0.867 0.994 0.842 0.71
nl_f_18 0.745 0.734 0.741 0.731 0.866 0.828 0.869 0.976 0.846 0.715
nl_f_19 0.76 0.732 0.74 0.732 0.843 0.817 0.872 0.955 0.845 0.711
nl_f_20 0.754 0.721 0.738 0.732 0.87 0.853 0.881 0.935 0.855 0.713
nl_f_21 0.75 0.72 0.739 0.728 0.889 0.842 0.898 0.921 0.874 0.713
nl_f_22 0.757 0.722 0.739 0.731 0.885 0.896 0.905 0.913 0.879 0.717
nl_f_23 0.748 0.72 0.739 0.739 0.849 0.853 0.92 0.906 0.893 0.713
nl_f_24 0.762 0.741 0.755 0.741 0.85 0.873 0.884 0.951 0.859 0.719
nl_f_25 0.786 0.749 0.763 0.734 0.882 0.881 0.905 0.984 0.877 0.719
nl_f_26 0.79 0.752 0.766 0.733 0.873 0.865 0.932 1.01 0.902 0.723
nl_f_27 0.803 0.755 0.763 0.732 0.92 0.877 0.904 1.036 0.88 0.723
nl_f_28 0.799 0.754 0.757 0.74 0.898 0.887 0.921 1.054 0.894 0.725
nl_f_29 0.802 0.76 0.759 0.73 0.909 0.904 0.919 1.069 0.892 0.728
nl_f_30 0.801 0.76 0.763 0.731 0.925 0.861 0.939 1.08 0.912 0.728
nl_f_31 0.8 0.758 0.761 0.738 0.902 0.862 0.934 1.079 0.907 0.728
nl_f_32 0.789 0.76 0.761 0.731 0.892 0.893 0.911 1.081 0.884 0.728
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Table 6.10 Modeling phase 2 – a3. BACK-TEST Data Performance - MAPE

linear lasso elastic et gb lgbm catb naive stack voting
nl_f_01 289 266 288 248 345 380 372 368 319 274
nl_f_02 322 322 338 274 421 407 462 454 389 312
nl_f_03 369 323 355 278 440 503 466 523 409 334
nl_f_04 424 385 416 271 496 490 498 674 437 375
nl_f_05 405 372 398 282 557 575 557 722 491 366
nl_f_06 346 346 369 259 511 473 554 728 521 351
nl_f_07 309 313 343 248 470 504 547 706 517 352
nl_f_08 329 316 329 242 539 468 552 717 524 340
nl_f_09 327 314 327 257 544 447 564 711 531 346
nl_f_10 327 305 317 248 650 516 630 686 590 332
nl_f_11 332 311 314 262 517 471 537 678 510 320
nl_f_12 346 315 316 264 608 460 699 617 658 343
nl_f_13 369 322 355 278 648 483 688 628 650 351
nl_f_14 386 330 368 271 669 537 702 579 658 361
nl_f_15 381 338 363 278 721 447 628 594 590 347
nl_f_16 382 328 365 277 673 495 702 604 663 359
nl_f_17 364 312 348 278 684 522 734 622 682 361
nl_f_18 361 331 353 297 762 553 660 562 618 346
nl_f_19 379 332 360 302 576 520 763 564 712 368
nl_f_20 375 317 353 282 700 566 743 572 692 345
nl_f_21 407 323 379 264 811 562 806 561 754 379
nl_f_22 408 327 376 267 680 538 803 576 747 384
nl_f_23 395 313 370 295 708 592 812 609 757 370
nl_f_24 408 340 390 292 544 583 555 613 515 314
nl_f_25 412 341 384 251 671 525 609 630 569 324
nl_f_26 411 345 382 252 585 654 714 614 663 335
nl_f_27 418 344 371 243 623 569 582 720 545 320
nl_f_28 409 344 350 285 543 530 596 797 559 334
nl_f_29 403 345 350 256 671 594 595 822 553 333
nl_f_30 403 345 351 260 737 517 702 857 660 351
nl_f_31 406 344 349 296 689 625 693 840 653 353
nl_f_32 389 350 351 258 665 678 635 830 596 342

67



Table 6.11 Modeling phase 2 – b1. TEST Data Performance - R-square

linear lasso elastic et gb lgbm catb naive stack voting
nl_f_01 0.615 0.576 0.612 0.551 0.64 0.649 0.656 0.496 0.644 0.626
nl_f_02 0.491 0.467 0.493 0.44 0.558 0.557 0.582 0.3 0.577 0.528
nl_f_03 0.413 0.391 0.417 0.367 0.498 0.489 0.548 0.159 0.535 0.464
nl_f_04 0.362 0.341 0.361 0.318 0.446 0.468 0.491 0.021 0.481 0.411
nl_f_05 0.327 0.309 0.326 0.283 0.428 0.437 0.476 -0.08 0.464 0.382
nl_f_06 0.28 0.284 0.299 0.263 0.504 0.456 0.589 -0.14 0.578 0.392
nl_f_07 0.251 0.262 0.272 0.246 0.504 0.458 0.585 -0.24 0.576 0.375
nl_f_08 0.264 0.245 0.246 0.242 0.499 0.447 0.598 -0.3 0.59 0.373
nl_f_09 0.253 0.233 0.233 0.226 0.488 0.458 0.559 -0.36 0.551 0.348
nl_f_10 0.231 0.225 0.226 0.22 0.515 0.441 0.586 -0.37 0.574 0.355
nl_f_11 0.221 0.218 0.221 0.215 0.535 0.448 0.605 -0.44 0.596 0.356
nl_f_12 0.233 0.217 0.221 0.211 0.539 0.449 0.61 -0.44 0.602 0.362
nl_f_13 0.23 0.219 0.233 0.213 0.523 0.447 0.606 -0.46 0.595 0.358
nl_f_14 0.231 0.219 0.233 0.21 0.525 0.44 0.603 -0.45 0.593 0.358
nl_f_15 0.233 0.218 0.23 0.207 0.525 0.46 0.606 -0.47 0.594 0.357
nl_f_16 0.235 0.214 0.231 0.204 0.53 0.44 0.603 -0.47 0.592 0.357
nl_f_17 0.243 0.224 0.241 0.201 0.506 0.447 0.574 -0.44 0.558 0.349
nl_f_18 0.24 0.221 0.238 0.199 0.54 0.436 0.588 -0.46 0.575 0.356
nl_f_19 0.244 0.225 0.243 0.204 0.526 0.455 0.597 -0.49 0.583 0.359
nl_f_20 0.248 0.224 0.245 0.2 0.526 0.45 0.587 -0.46 0.571 0.358
nl_f_21 0.245 0.218 0.241 0.217 0.521 0.448 0.592 -0.44 0.578 0.357
nl_f_22 0.248 0.219 0.243 0.217 0.534 0.456 0.592 -0.4 0.576 0.36
nl_f_23 0.246 0.216 0.237 0.2 0.519 0.419 0.578 -0.36 0.565 0.354
nl_f_24 0.226 0.202 0.223 0.205 0.474 0.434 0.536 -0.43 0.521 0.322
nl_f_25 0.216 0.195 0.213 0.199 0.509 0.462 0.591 -0.49 0.576 0.343
nl_f_26 0.208 0.194 0.206 0.207 0.525 0.451 0.584 -0.55 0.569 0.338
nl_f_27 0.19 0.184 0.198 0.204 0.514 0.458 0.589 -0.66 0.574 0.337
nl_f_28 0.187 0.183 0.183 0.178 0.556 0.452 0.617 -0.71 0.603 0.341
nl_f_29 0.182 0.177 0.183 0.211 0.569 0.454 0.614 -0.7 0.602 0.344
nl_f_30 0.183 0.178 0.18 0.213 0.535 0.445 0.605 -0.74 0.595 0.342
nl_f_31 0.186 0.18 0.183 0.187 0.538 0.451 0.6 -0.74 0.592 0.34
nl_f_32 0.19 0.181 0.184 0.213 0.535 0.477 0.607 -0.77 0.596 0.339
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Table 6.12 Modeling phase 2 – b2. TEST Data Performance - MAE

linear lasso elastic et gb lgbm catb naive stack voting
nl_f_01 0.537 0.555 0.537 0.561 0.52 0.51 0.51 0.583 0.516 0.522
nl_f_02 0.623 0.628 0.617 0.632 0.585 0.583 0.567 0.699 0.567 0.589
nl_f_03 0.672 0.68 0.669 0.681 0.622 0.633 0.587 0.772 0.596 0.636
nl_f_04 0.707 0.714 0.707 0.712 0.656 0.649 0.633 0.849 0.639 0.674
nl_f_05 0.729 0.736 0.73 0.737 0.671 0.667 0.643 0.902 0.65 0.693
nl_f_06 0.758 0.752 0.748 0.749 0.62 0.657 0.557 0.934 0.567 0.691
nl_f_07 0.773 0.764 0.762 0.761 0.618 0.659 0.557 0.978 0.566 0.702
nl_f_08 0.771 0.772 0.772 0.765 0.62 0.661 0.549 0.998 0.555 0.705
nl_f_09 0.775 0.781 0.78 0.777 0.636 0.658 0.586 1.027 0.594 0.72
nl_f_10 0.782 0.786 0.785 0.781 0.628 0.666 0.573 1.028 0.582 0.72
nl_f_11 0.793 0.792 0.79 0.783 0.606 0.658 0.547 1.06 0.555 0.72
nl_f_12 0.788 0.793 0.79 0.784 0.594 0.66 0.541 1.062 0.547 0.716
nl_f_13 0.793 0.793 0.789 0.785 0.604 0.665 0.548 1.07 0.555 0.718
nl_f_14 0.792 0.793 0.788 0.784 0.603 0.668 0.548 1.071 0.555 0.718
nl_f_15 0.791 0.793 0.79 0.788 0.605 0.653 0.547 1.079 0.555 0.718
nl_f_16 0.79 0.794 0.79 0.788 0.603 0.663 0.544 1.083 0.553 0.718
nl_f_17 0.786 0.791 0.785 0.788 0.617 0.659 0.569 1.07 0.581 0.723
nl_f_18 0.788 0.794 0.789 0.791 0.594 0.665 0.554 1.081 0.564 0.719
nl_f_19 0.784 0.791 0.785 0.787 0.605 0.659 0.551 1.086 0.561 0.717
nl_f_20 0.783 0.792 0.783 0.788 0.599 0.653 0.553 1.065 0.564 0.718
nl_f_21 0.787 0.795 0.788 0.785 0.598 0.655 0.547 1.066 0.559 0.72
nl_f_22 0.787 0.795 0.787 0.785 0.594 0.653 0.553 1.036 0.565 0.718
nl_f_23 0.788 0.797 0.79 0.787 0.599 0.668 0.553 1.015 0.563 0.719
nl_f_24 0.797 0.803 0.797 0.792 0.63 0.666 0.578 1.047 0.591 0.733
nl_f_25 0.797 0.805 0.799 0.794 0.614 0.641 0.557 1.07 0.568 0.725
nl_f_26 0.801 0.806 0.802 0.794 0.606 0.655 0.557 1.1 0.567 0.727
nl_f_27 0.81 0.811 0.807 0.795 0.612 0.649 0.557 1.139 0.566 0.729
nl_f_28 0.812 0.813 0.813 0.803 0.591 0.654 0.54 1.161 0.551 0.73
nl_f_29 0.813 0.818 0.813 0.793 0.583 0.654 0.544 1.176 0.554 0.73
nl_f_30 0.813 0.817 0.815 0.793 0.603 0.662 0.552 1.189 0.56 0.73
nl_f_31 0.813 0.816 0.814 0.8 0.603 0.664 0.553 1.189 0.56 0.73
nl_f_32 0.811 0.815 0.814 0.792 0.601 0.649 0.55 1.189 0.559 0.732
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Table 6.13 Modeling phase 2 – b3. TEST Data Performance - MAPE

linear lasso elastic et gb lgbm catb naive stack voting
nl_f_01 164 158 162 127 159 152 160 189 152 149
nl_f_02 183 183 184 142 180 178 176 227 161 162
nl_f_03 190 189 186 157 194 178 182 243 171 173
nl_f_04 214 214 212 168 204 191 207 289 193 193
nl_f_05 226 227 225 174 218 190 211 348 199 205
nl_f_06 225 227 227 169 204 201 178 343 172 198
nl_f_07 233 224 229 170 194 200 183 367 177 200
nl_f_08 227 223 225 169 201 208 188 357 181 194
nl_f_09 224 224 226 173 206 210 195 347 188 202
nl_f_10 234 226 227 172 202 200 199 363 192 201
nl_f_11 230 226 227 175 200 200 189 336 182 194
nl_f_12 224 222 224 175 193 200 190 335 183 191
nl_f_13 225 217 220 173 188 205 191 367 185 192
nl_f_14 225 215 219 172 184 201 184 352 177 190
nl_f_15 221 212 217 169 195 196 193 324 185 189
nl_f_16 217 216 216 167 181 197 166 319 162 183
nl_f_17 216 213 215 172 183 192 181 312 176 187
nl_f_18 216 212 216 169 176 203 180 342 173 185
nl_f_19 215 211 214 168 183 196 180 340 174 185
nl_f_20 212 213 213 167 177 193 180 332 174 186
nl_f_21 216 211 217 160 173 196 171 373 166 184
nl_f_22 214 212 213 159 188 202 175 360 169 184
nl_f_23 221 214 220 168 181 198 178 359 172 185
nl_f_24 224 219 224 159 199 195 190 378 183 194
nl_f_25 218 218 216 160 190 181 181 376 174 186
nl_f_26 218 217 217 159 187 193 188 362 179 188
nl_f_27 221 219 218 159 187 198 179 365 170 186
nl_f_28 226 219 219 167 190 196 185 339 178 189
nl_f_29 223 219 221 160 190 192 194 363 186 191
nl_f_30 222 220 220 158 193 193 190 358 181 188
nl_f_31 222 220 221 168 192 193 189 371 183 189
nl_f_32 222 222 221 160 196 195 191 381 183 191
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Figure 6.10 Modeling Stage Phase 3; Optimized Number of Features and Optimized
Model Parameters with Random Search

6.5.5 Step 5: Feature selection phase for modeling phase 3; feature selec-

tion results in variable number of features

As mentioned in step 2, in this step algorithms are free to choose the best number
of variables. This way, the models can fit to the number of features they consider
best for performance. Note that feature selection number is restarted for it to be
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coherent with the names of the modeling phases

6.5.6 Step 6: Modeling phase 3; with optimized number of features and

optimized model parameters with random search

• Features selected at step 5 are used.

• Among the remaining 6 models, 1 is linear regression which does not
need any parameter optimization. That is why parameter optimiza-
tion with random search is performed for the models with the function
sklearn.model_selection.RandomizedSearchCV().

• iii. Among those 5 models, catboost is dropped by hoping to get a better voting
ensemble result. Even though the performance of catboost for modeling stage
3 is below the naïve model, its previous performances were above the naïve
model. We could just keep it. Model based feature selection is performed only
for individual models, however separate a variable number of features can not
be used for every model in the voting regression model. That is why feature
selection operations are done specifically for every single model not for the two
ensemble models stacking and voting and then the models are trained. It is
seen that the individual models do not beat the previous champion, phase 2
voting. That is why the worst-performing algorithm is dropped for the ensem-
ble models with the hope of beating the phase 2 champion model. Gradient
boosting is used for model selection for the ensemble models as is seen in Fig-
ure 6.11. The final champion is the phase 3 voting ensemble according to the
back-test performances.

• iv. R-square, MAE and MAPE performance results are shown in tables from
6.14 up to 6.19.
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Figure 6.11 Models used in Voting Ensemble Regressor in Modeling Stage Phase 3
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Table 6.14 Modeling phase 3 – a1. BACK-TEST Data Performance - R-square

linear lasso elastic et gb catb naive stack voting
nl_f_01 0.578 0.582 0.594 0.55 0.569 0.506 0.53 0.602 0.612
nl_f_02 0.425 0.461 0.457 0.414 0.429 0.285 0.318 0.464 0.473
nl_f_03 0.309 0.344 0.348 0.311 0.292 0.169 0.124 0.348 0.365
nl_f_04 0.231 0.257 0.271 0.24 0.254 0.066 -0.04 0.287 0.297
nl_f_05 0.175 0.206 0.221 0.193 0.177 -0.09 -0.18 0.192 0.243
nl_f_06 0.144 0.175 0.189 0.16 0.123 -0.09 -0.3 0.161 0.203
nl_f_07 0.109 0.145 0.169 0.151 0.067 -0.08 -0.38 0.121 0.182
nl_f_08 0.078 0.131 0.153 0.142 0.024 -0.11 -0.44 0.099 0.171
nl_f_09 0.068 0.107 0.139 0.129 0.032 -0.15 -0.49 0.086 0.154
nl_f_10 0.037 0.098 0.128 0.123 0.057 -0.22 -0.54 0.075 0.146
nl_f_11 0.029 0.088 0.122 0.125 0.05 -0.19 -0.58 0.073 0.135
nl_f_12 0.015 0.092 0.12 0.117 0.059 -0.17 -0.61 0.075 0.141
nl_f_13 0.049 0.079 0.119 0.114 0.037 -0.22 -0.61 0.081 0.131
nl_f_14 0.027 0.102 0.119 0.114 0.079 -0.14 -0.63 0.095 0.143
nl_f_15 0.017 0.075 0.114 0.11 0.037 -0.18 -0.65 0.057 0.13
nl_f_16 0.029 0.071 0.112 0.106 0.02 -0.1 -0.64 0.033 0.131
nl_f_17 0.03 0.107 0.121 0.103 0.029 -0.16 -0.62 0.049 0.141
nl_f_18 0.017 0.064 0.119 0.103 0.035 -0.17 -0.58 0.069 0.134
nl_f_19 0.018 0.064 0.122 0.105 0.045 -0.21 -0.53 0.056 0.139
nl_f_20 0.018 0.101 0.123 0.108 0.024 -0.22 -0.48 0.03 0.13
nl_f_21 0.012 0.106 0.125 0.094 -0.02 -0.2 -0.45 0.011 0.131
nl_f_22 0.012 0.105 0.123 0.086 -0.03 -0.25 -0.43 0.005 0.128
nl_f_23 0.007 0.107 0.124 0.087 -0.03 -0.17 -0.41 -0 0.134
nl_f_24 -0.02 0.072 0.105 0.071 0 -0.35 -0.51 -0.01 0.128
nl_f_25 -0.03 0.049 0.09 0.078 0.04 -0.25 -0.58 0.036 0.119
nl_f_26 -0.05 0.042 0.084 0.081 0.003 -0.35 -0.65 0.007 0.105
nl_f_27 -0.05 0.037 0.08 0.076 0.029 -0.17 -0.72 0.005 0.105
nl_f_28 -0.04 -0 0.078 0.079 0.025 -0.19 -0.77 0.028 0.109
nl_f_29 -0.04 0.027 0.075 0.086 -0.07 -0.19 -0.83 0.046 0.119
nl_f_30 -0.04 0.025 0.073 0.096 0.052 -0.3 -0.88 0.071 0.121
nl_f_31 -0.05 0.025 0.073 0.092 0.036 -0.14 -0.9 0.06 0.11
nl_f_32 -0.05 0.026 0.074 0.097 0.021 -0.13 -0.92 0.034 0.109
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Table 6.15 Modeling phase 3 – a2. BACK-TEST Data Performance - MAE

linear lasso elastic et gb catb naive stack voting
nl_f_01 0.492 0.493 0.482 0.504 0.498 0.534 0.509 0.477 0.47
nl_f_02 0.579 0.556 0.559 0.579 0.581 0.664 0.62 0.56 0.55
nl_f_03 0.635 0.616 0.613 0.628 0.646 0.717 0.715 0.616 0.605
nl_f_04 0.676 0.662 0.65 0.66 0.666 0.764 0.784 0.648 0.64
nl_f_05 0.699 0.683 0.672 0.681 0.694 0.834 0.837 0.684 0.663
nl_f_06 0.715 0.697 0.684 0.695 0.715 0.818 0.878 0.698 0.679
nl_f_07 0.733 0.711 0.693 0.699 0.75 0.824 0.908 0.723 0.691
nl_f_08 0.748 0.716 0.699 0.704 0.775 0.836 0.928 0.741 0.698
nl_f_09 0.751 0.724 0.704 0.71 0.764 0.857 0.943 0.739 0.703
nl_f_10 0.759 0.726 0.707 0.713 0.757 0.879 0.955 0.747 0.705
nl_f_11 0.764 0.73 0.709 0.712 0.758 0.863 0.971 0.746 0.707
nl_f_12 0.769 0.727 0.71 0.715 0.759 0.864 0.983 0.75 0.706
nl_f_13 0.752 0.734 0.71 0.716 0.767 0.877 0.987 0.749 0.708
nl_f_14 0.763 0.722 0.711 0.717 0.753 0.847 0.994 0.743 0.705
nl_f_15 0.768 0.736 0.714 0.721 0.761 0.86 1.003 0.752 0.71
nl_f_16 0.764 0.743 0.715 0.723 0.771 0.831 1.002 0.765 0.709
nl_f_17 0.757 0.72 0.709 0.725 0.763 0.846 0.994 0.752 0.704
nl_f_18 0.767 0.74 0.71 0.725 0.766 0.854 0.976 0.753 0.707
nl_f_19 0.764 0.738 0.709 0.725 0.762 0.864 0.955 0.757 0.705
nl_f_20 0.764 0.722 0.708 0.726 0.766 0.872 0.935 0.763 0.708
nl_f_21 0.765 0.72 0.707 0.729 0.792 0.863 0.921 0.775 0.708
nl_f_22 0.764 0.721 0.708 0.734 0.792 0.882 0.913 0.777 0.709
nl_f_23 0.764 0.72 0.707 0.733 0.796 0.863 0.906 0.782 0.707
nl_f_24 0.779 0.74 0.717 0.739 0.79 0.93 0.951 0.791 0.712
nl_f_25 0.787 0.749 0.724 0.735 0.773 0.896 0.984 0.773 0.714
nl_f_26 0.792 0.753 0.727 0.735 0.781 0.939 1.01 0.779 0.722
nl_f_27 0.792 0.755 0.728 0.734 0.78 0.872 1.036 0.784 0.723
nl_f_28 0.792 0.774 0.729 0.736 0.782 0.876 1.054 0.779 0.721
nl_f_29 0.793 0.758 0.73 0.734 0.809 0.866 1.069 0.775 0.719
nl_f_30 0.794 0.759 0.73 0.73 0.779 0.913 1.08 0.767 0.719
nl_f_31 0.799 0.759 0.73 0.732 0.777 0.855 1.079 0.767 0.722
nl_f_32 0.795 0.759 0.73 0.731 0.782 0.845 1.081 0.776 0.722
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Table 6.16 Modeling phase 3 – a3. BACK-TEST Data Performance - MAPE

linear lasso elastic et gb catb naive stack voting
nl_f_01 305 270 249 248 295 338 368 260 257
nl_f_02 349 304 279 277 344 452 454 308 293
nl_f_03 376 323 288 270 347 494 523 316 304
nl_f_04 409 385 322 282 396 536 674 355 339
nl_f_05 402 372 310 273 379 551 722 346 321
nl_f_06 386 346 279 266 385 523 728 343 303
nl_f_07 385 326 249 245 403 661 706 356 285
nl_f_08 395 316 244 229 415 623 717 359 284
nl_f_09 387 328 239 220 373 565 711 334 276
nl_f_10 374 305 253 221 380 650 686 373 283
nl_f_11 389 309 258 216 372 606 678 350 280
nl_f_12 393 315 263 227 481 697 617 447 301
nl_f_13 397 362 274 235 494 672 628 418 312
nl_f_14 416 329 280 238 553 601 579 501 335
nl_f_15 409 337 277 240 401 617 594 378 303
nl_f_16 404 344 278 232 395 483 604 377 295
nl_f_17 379 314 268 240 445 676 622 382 306
nl_f_18 390 351 270 246 475 728 562 431 300
nl_f_19 401 355 272 247 501 705 564 469 310
nl_f_20 398 313 266 252 446 685 572 446 302
nl_f_21 422 323 274 254 517 673 561 473 319
nl_f_22 417 327 276 266 532 783 576 487 322
nl_f_23 407 313 264 257 575 688 609 490 322
nl_f_24 417 339 274 254 536 811 613 504 316
nl_f_25 417 341 275 256 469 682 630 453 305
nl_f_26 421 344 273 247 476 795 614 455 304
nl_f_27 413 344 269 236 464 672 720 436 304
nl_f_28 406 378 271 249 500 702 797 476 309
nl_f_29 402 353 268 247 544 612 822 466 308
nl_f_30 407 345 269 248 513 711 857 452 306
nl_f_31 406 346 270 248 481 552 840 452 306
nl_f_32 406 347 271 250 448 555 830 430 297
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Table 6.17 Modeling phase 3 – b1. TEST Data Performance - R-square

linear lasso elastic et gb catb naive stack voting
nl_f_01 0.618 0.579 0.587 0.553 0.631 0.679 0.496 0.624 0.617
nl_f_02 0.499 0.468 0.473 0.438 0.53 0.658 0.3 0.518 0.505
nl_f_03 0.422 0.391 0.394 0.366 0.467 0.654 0.159 0.453 0.432
nl_f_04 0.368 0.341 0.34 0.318 0.434 0.645 0.021 0.414 0.384
nl_f_05 0.33 0.309 0.304 0.287 0.404 0.662 -0.08 0.382 0.349
nl_f_06 0.308 0.284 0.276 0.261 0.388 0.654 -0.14 0.368 0.326
nl_f_07 0.277 0.264 0.251 0.247 0.376 0.666 -0.24 0.354 0.306
nl_f_08 0.261 0.245 0.238 0.244 0.377 0.667 -0.3 0.356 0.3
nl_f_09 0.255 0.236 0.225 0.233 0.366 0.673 -0.36 0.341 0.285
nl_f_10 0.246 0.225 0.217 0.229 0.364 0.67 -0.37 0.343 0.279
nl_f_11 0.242 0.219 0.211 0.22 0.345 0.666 -0.44 0.326 0.266
nl_f_12 0.235 0.217 0.211 0.217 0.349 0.668 -0.44 0.33 0.268
nl_f_13 0.236 0.235 0.211 0.222 0.342 0.679 -0.46 0.323 0.264
nl_f_14 0.238 0.219 0.211 0.219 0.338 0.671 -0.45 0.318 0.265
nl_f_15 0.239 0.218 0.207 0.223 0.337 0.682 -0.47 0.318 0.264
nl_f_16 0.245 0.22 0.206 0.22 0.354 0.676 -0.47 0.335 0.27
nl_f_17 0.249 0.222 0.214 0.217 0.332 0.667 -0.44 0.325 0.268
nl_f_18 0.246 0.244 0.21 0.22 0.348 0.669 -0.46 0.327 0.266
nl_f_19 0.253 0.246 0.213 0.219 0.353 0.681 -0.49 0.334 0.274
nl_f_20 0.253 0.222 0.215 0.217 0.34 0.667 -0.46 0.32 0.269
nl_f_21 0.25 0.218 0.213 0.217 0.351 0.67 -0.44 0.328 0.272
nl_f_22 0.248 0.219 0.213 0.216 0.348 0.665 -0.4 0.327 0.27
nl_f_23 0.248 0.216 0.209 0.216 0.347 0.671 -0.36 0.32 0.269
nl_f_24 0.232 0.201 0.193 0.204 0.354 0.662 -0.43 0.331 0.258
nl_f_25 0.225 0.195 0.183 0.204 0.337 0.675 -0.49 0.319 0.252
nl_f_26 0.214 0.191 0.176 0.204 0.346 0.649 -0.55 0.326 0.245
nl_f_27 0.202 0.184 0.168 0.202 0.347 0.679 -0.66 0.321 0.239
nl_f_28 0.195 0.192 0.166 0.203 0.336 0.662 -0.71 0.316 0.235
nl_f_29 0.191 0.188 0.163 0.207 0.34 0.687 -0.7 0.322 0.236
nl_f_30 0.191 0.178 0.163 0.208 0.342 0.695 -0.74 0.333 0.236
nl_f_31 0.196 0.179 0.165 0.211 0.332 0.692 -0.74 0.318 0.239
nl_f_32 0.198 0.18 0.166 0.215 0.341 0.689 -0.77 0.326 0.239
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Table 6.18 Modeling phase 3 – b2. TEST Data Performance - MAE

linear lasso elastic et gb catb naive stack voting
nl_f_01 0.534 0.554 0.548 0.559 0.518 0.49 0.583 0.527 0.527
nl_f_02 0.615 0.628 0.626 0.634 0.593 0.502 0.699 0.6 0.603
nl_f_03 0.668 0.68 0.68 0.682 0.638 0.505 0.772 0.647 0.655
nl_f_04 0.707 0.714 0.715 0.713 0.665 0.512 0.849 0.677 0.69
nl_f_05 0.732 0.736 0.738 0.734 0.688 0.498 0.902 0.701 0.713
nl_f_06 0.747 0.752 0.757 0.751 0.7 0.505 0.934 0.711 0.73
nl_f_07 0.764 0.764 0.77 0.761 0.704 0.494 0.978 0.718 0.742
nl_f_08 0.772 0.772 0.777 0.763 0.706 0.49 0.998 0.719 0.747
nl_f_09 0.774 0.779 0.785 0.771 0.713 0.488 1.027 0.727 0.755
nl_f_10 0.778 0.786 0.791 0.775 0.718 0.494 1.028 0.728 0.76
nl_f_11 0.783 0.79 0.795 0.781 0.727 0.496 1.06 0.738 0.768
nl_f_12 0.787 0.793 0.796 0.784 0.726 0.491 1.062 0.736 0.768
nl_f_13 0.792 0.79 0.797 0.781 0.727 0.485 1.07 0.738 0.771
nl_f_14 0.788 0.792 0.797 0.782 0.729 0.486 1.071 0.74 0.77
nl_f_15 0.789 0.793 0.799 0.781 0.734 0.478 1.079 0.744 0.771
nl_f_16 0.786 0.792 0.8 0.783 0.722 0.486 1.083 0.733 0.768
nl_f_17 0.785 0.792 0.797 0.783 0.735 0.493 1.07 0.741 0.77
nl_f_18 0.787 0.786 0.8 0.783 0.724 0.485 1.081 0.736 0.77
nl_f_19 0.782 0.784 0.798 0.783 0.722 0.477 1.086 0.732 0.767
nl_f_20 0.781 0.792 0.797 0.784 0.729 0.485 1.065 0.738 0.768
nl_f_21 0.785 0.795 0.799 0.783 0.72 0.483 1.066 0.734 0.768
nl_f_22 0.786 0.795 0.799 0.782 0.724 0.481 1.036 0.736 0.769
nl_f_23 0.786 0.797 0.801 0.782 0.723 0.481 1.015 0.74 0.769
nl_f_24 0.794 0.803 0.808 0.789 0.72 0.493 1.047 0.731 0.774
nl_f_25 0.796 0.805 0.812 0.79 0.728 0.488 1.07 0.737 0.777
nl_f_26 0.8 0.807 0.815 0.791 0.726 0.507 1.1 0.737 0.78
nl_f_27 0.806 0.811 0.82 0.792 0.727 0.477 1.139 0.741 0.783
nl_f_28 0.81 0.81 0.822 0.793 0.733 0.497 1.161 0.743 0.786
nl_f_29 0.811 0.812 0.823 0.792 0.734 0.481 1.176 0.742 0.787
nl_f_30 0.812 0.817 0.823 0.792 0.729 0.479 1.189 0.737 0.786
nl_f_31 0.811 0.816 0.823 0.791 0.735 0.473 1.189 0.744 0.785
nl_f_32 0.811 0.816 0.822 0.79 0.726 0.479 1.189 0.736 0.785
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Table 6.19 Modeling phase 3 – b3. TEST Data Performance - MAPE

linear lasso elastic et gb catb naive stack voting
nl_f_01 162 156 146 127 154 146 189 151 146
nl_f_02 180 180 169 140 170 159 227 163 161
nl_f_03 193 189 180 154 194 167 243 182 175
nl_f_04 217 214 201 165 199 156 289 196 194
nl_f_05 231 227 213 168 220 171 348 212 207
nl_f_06 236 227 213 165 213 168 343 210 208
nl_f_07 242 229 215 165 207 165 367 206 208
nl_f_08 234 223 211 163 211 153 357 208 205
nl_f_09 232 225 214 165 209 160 347 205 206
nl_f_10 230 226 215 169 214 166 363 212 208
nl_f_11 226 223 215 169 218 151 336 211 206
nl_f_12 227 222 213 168 209 153 335 205 204
nl_f_13 232 223 212 166 212 165 367 203 205
nl_f_14 229 215 211 164 211 155 352 207 204
nl_f_15 225 212 208 162 215 169 324 210 202
nl_f_16 220 218 207 161 202 160 319 198 197
nl_f_17 223 213 208 163 207 165 312 203 197
nl_f_18 226 217 209 161 204 147 342 196 197
nl_f_19 223 214 207 160 202 156 340 197 197
nl_f_20 219 212 206 161 200 156 332 195 195
nl_f_21 220 211 205 157 197 148 373 193 193
nl_f_22 221 212 204 159 198 149 360 195 195
nl_f_23 223 214 207 160 200 152 359 199 195
nl_f_24 229 219 210 160 198 157 378 196 200
nl_f_25 219 218 207 157 194 142 376 190 195
nl_f_26 222 218 208 155 199 165 362 194 197
nl_f_27 223 219 210 156 202 146 365 194 197
nl_f_28 222 219 212 157 201 161 339 197 199
nl_f_29 222 218 211 156 206 152 363 194 197
nl_f_30 220 219 211 156 194 158 358 190 196
nl_f_31 222 220 212 156 203 157 371 199 198
nl_f_32 220 220 212 157 200 156 381 197 198

79



6.6 Validation Stage

The validation and visualization stages are the last stages before the deployment of
an industrial project, so the final controls are done at these stages. The validation
stage is generally performed after finishing the work and scoring incoming new data
as time passes. Data scientists and business owners examine the newly scored data
to check if the results make sense in terms of business. It is the real indicator of the
success of the model; however, we do not have new data consistently we acquire.
That is why this stage is simulated by the using year 2020 data for test purposes
(back-test) as it is time independent of the modeling data. We accept this back-test
data as the base for the success of the machine learning pipeline we created. The
validation step in the CRISP-DM framework is measuring the significance of the
resultant machine learning framework with back-test data. This has already been
performed during the modeling stage. The results of the modeling stage have shown
that all the models provide a level of explanation compared to the random guess
and the good ones beat the naive model. That is why currently the study can be
accepted as.

6.7 Visualization Stage

Figure 6.12 shows the (T+1) up to (T+3) R-square results of bad performing models
vs. naïve model and the champion, voting ensemble. Figure 6.13 shows the improve-
ment in back-test R-square results of the champion model through the modeling
phases. It is seen that the best results are obtained in modeling phase 3. Figure
6.14 shows the comparison of back-test and test results of the voting ensemble. It
shows the importance of using timewise separated back-test data since randomly
separated regular test data results seem a lot different. We can say regular test data
causes overfit since the test data is from the same pool with modeling data in terms
of time. Figure 6.15 shows the comparison of the overall champion model and naïve
model in modeling phase 3 by R-square values. Naïve model cannot give any insight
after 3 hours and voting ensemble model provide significant improvement for (T+1)
up to (T+32).
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Figure 6.12 Modeling Phase-1 Back-test Bad Performing Models vs. Naive Model
Voting Ensemble Results
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Figure 6.13 Improvements in Voting Ensembles’ Back-test R-Square Results
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Figure 6.14 Modeling Phase-3 Voting Ensemble Back-test vs. Test Results

Figure 6.15 Modeling Phase-3 Back-test Voting Ensemble vs. Naive Model Results
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7. CONCLUSION

In this study, energy imbalances at the delivery time in the Turkish Energy Mar-
ket for the future 32 hours are tried to be predicted for the intraday market and
balancing power market. The nature of the IM requires net imbalance predictions
for (T+1) up to (T+24). Regarding the ability to forecast the energy imbalance
which we call net imbalance the TradeCo that is partnered with can get commercial
advantages as net imbalance is effective on the IM prices. Since the future hours
that will be predicted are not far and the study is made with a TradeCo, obtaining
successful results for the close hours like (T+1) up to (T+6) for IM has been our
primary objective. The results are promising for this scope since the net imbalance
predicted beats the naive model which is accepting the closest available net imbal-
ance as the prediction with a single variable for all the future 32 hours. Calling a
single variable model as a model may seem like a bold approach however it creates
a good baseline for comparing other models as that single variable is by far the
most explanatory variable for (T+1) up to (T+3). Besides, it makes sense in terms
of business as currently the traders check the closest available past net imbalance
values. The champion is an ensemble model voting regressor which consists of linear
regression, lasso, elastic net, extra trees, gradient boosting models. Another ensem-
ble model stacking and elastic net are the rivals for the champion model. The closest
hour which is the next hour can be predicted with a 0.612 R-square performance.
Even the 6-hours future net imbalance can be predicted with 0.203 R-square suc-
cess. Beyond (T+6), R-square of predicting the future net imbalances goes below
0.2 value. From 6 hours to 32 hours, success gradually decreases to 0.1. The nature
of the BPM requires net imbalance predictions from the 9-hour future to the 32-hour
future. The 9-hour gap between the target hour and the hour that the prediction
is performed is big, so predicting net imbalance values for these hours is harder.
For (T+9) net imbalance prediction R-square found by the champion model voting
ensemble with optimized parameters is 0.154 which is not as strong as the first 6
hours’ predictions. However, without this study, even this level of understanding
was not available, so this can be considered a success. These results are all taken
by a timely separated test data obtained by keeping all the available the year 2020
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data for testing purposes. The next step for this study is to predict the IM price
using the results of this model.
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