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Electric freight vehicles have strong potential to reduce emissions stemming from 

logistics operations; however, their limited range still causes critical limitations. Range 

anxiety is directly related to the total amount of energy consumed during trips. There are 

several operational factors that affect the energy consumption of electric vehicles and 

should be considered for accurate route planning. In this thesis, we investigate the effect 

of ambient temperature, cargo weight, road gradient, and regenerative braking process on 

the fleet composition, energy consumption, and routing decisions in last-mile delivery 

operations. First, we consider the influence of ambient temperature on the energy 

consumption of the vehicle. Cabin heating or cooling may significantly increase the 

energy discharged from the battery during the trip and reduce the driving range. 

Additionally, cold temperatures decrease battery efficiency and cause performance losses. 

We formulate this problem as a mixed-integer linear program and solve the small-size 

instances using a commercial solver. For the large-size instances we resort to an Adaptive 

Large Neighborhood Search method. We also provide a case study based on the real data 

provided by Ekol Logistics in their Adana operations. Then, we propose new 

preprocessing techniques to reduce the problem size and enhance the computational 

performance of the solution methods. Furthermore, we develop an algorithm that can be 

used to identify if a problem instance is infeasible. Our experimental study validates the 

performance of the proposed preprocessing techniques and feasibility check algorithm. 

Next, we take into account the effect of cargo weight on the energy consumption and 

routing decisions. We formulate three alternartive mathematical models and investigate 

their effectiveness. We also develop a Large Neighborhood Search (LNS) method by 
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using an exact method to repair the partial solution. Finally, we tackle the problem 

involving cargo weight and road gradient by considering regenerative braking. 

Considering the road gradient, a loaded vehicle going uphill will consume significantly 

more energy. On the other hand, when it travels downhill it can recharge its battery 

through recuperation. For this problem, we introduce a new dataset generated using the 

benchmark data form the literature. We adapt our LNS and perform an extensive 

computational study using the generated data. Overall, our results show that the route 

plans made without considering any of these factors may lead to inefficiencies, 

unforeseen costs, and disruptions in logistics operations.   
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Elektrikli araçların kullanımı lojistik operasyonlarından kaynaklanan zararlı gazların 

salımının azaltılmasında önemli bir potansiyel sunar. Ancak, bu araçların menzillerinin 

kısa olması yaygın kullanımlarını sınırlayan en önemli faktördür. Menzil kaygısı, 

yolculuk sırasında tüketilen toplam enerji miktarı ile doğrudan ilişkilidir. Doğru rota 

planlaması için elektrikli araçların enerji tüketimini etkileyen operasyonel etkenlerin 

dikkate alınması gerekir. Bu tezde bu etkenlerden ortam sıcaklığı, yük ağırlığı, yol eğimi 

ve rejeneratif frenleme ele alınmıştır. Araç kabininin ısıtılması veya soğutulması yolculuk 

boyunca tüketilen enerjiyi yüksek ölçüde artırabilir ve buna bağlı olarak da aracın 

menzilini kısaltır. Bunun yanında, çok soğuk hava koşullarının batarya verimini azalttığı 

ve performans kaybına neden olduğu bilinmektedir. Ayrıca, araçta taşınan yükün 

ağırlığına bağlı olarak enerji tüketimi de artmaktadır. Yol eğimi göz önünde 

bulundurulduğunda, yokuş yukarı giden yüklü bir aracın enerji tüketimi düz yolda 

ilerleyen bir araca göre daha fazla olacaktır. Öte yandan, araç yokuş aşağı hareket 

ettiğinde ise geri kazanım yoluyla bataryasını şarj edebilmektedir. Bu çalışmada, kentsel 

lojistik operasyonlarında bu etkenlerin araç filosu kompozisyonuna, toplam enerji 

tüketimine ve rotalama kararlarına nasıl etki ettikleri incelenmektedir. Farklı problemler 

için bu etkenleri göz önünde bulunduran matematiksel programlama modelleri 

sunulmakta, küçük boyutlu problemler için bir eniyileme yazılımı ile bu modeller 

çözülürken büyük boyutlu problemleri çözmek için Geniş Komşuluk Arama metasezgisel 

yaklaşımınından faydalanılmaktadır. Bu kapsamda, problem boyutunu küçültmek ve 

çözüm yöntemlerinin hesaplama performansını artırmak için yeni ön işleme yöntemleri 

de önerilmektedir. Ayrıca, bir problemin olurlu olup olmadığını belirlemek için bir 
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algoritma geliştirilmiştir. Sunulan modellerin ve geliştirilen çözüm yöntemlerinin 

performansı literatürdeki veri setleri kullanılarak kapsamlı deneysel çalışmalarla 

incelenmiştir. Ayrıca, literatürde yol eğimini içeren bir veri seti bulunmadığı için buna 

yönelik yeni bir veri seti sunulmuştur. Elde edilen sonuçlar, bu etkenler dikkate 

alınmadan yapılan rota planlarının lojistik operasyonlarında öngörülmeyen maliyetlere ve 

aksaklıklara yol açabileceğini göstermektedir. Ayrıca, önerilen ön işleme yöntemlerinin 

ve olurluluk kontrol algoritmasının etkinlikleri yapılan deneylerle gösterilmiştir.  
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1. INTRODUCTION 

 

 

 

Transportation sector is responsible from 14% of global anthropogenic emissions and 

23% of energy-related global greenhouse gas (GHG) emissions around the world 

(Edenhofer et al., 2014; Raadal et al., 2011). About 75% of transport-related emissions 

can be attributed to road transport (International Energy Agency, 2017). Road transport 

is also a major source of air pollutants, particularly NOx and PM2.5. To reduce negative 

effects and mitigate emissions, governments are setting ambitious targets. The European 

Commission targets 60% reduction in transport-related GHG emissions by 2050 

compared to 1990 levels (European Commission, 2011).  

 

Urban transport is particularly important because road vehicles are mostly used in high 

population areas, which causes the concentration of emissions in the cities (International 

Energy Agency, 2016). In Europe, urban transport constitutes 23% of transport-related 

emissions, 6% of which is due to urban freight transport, i.e. transportation of goods 

(European Commission, 2013). City logistics, therefore, has a significant portion in the 

urban transport emissions and the EC targets “CO2 free city logistics” by 2030 (European 

Commission, 2013). In addition, several cities have issued plans to ban domestic sales of 

new diesel and gasoline-powered cars as of 2025 in the Scandinavian countries and as of 

2030 in most of the European countries (DW, 2018). 

 

Replacing internal combustion engine vehicles (ICEVs) with battery electric vehicles 

(BEVs) is one of the most promising approaches to achieve these targets. This thesis aims 

to develop effective models and solution methods for the route planning of BEVs. 

Throughout this thesis, we will refer to a commercial BEV as EV (Electric Vehicle) in 

line with the Vehicle Routing Problem (VRP) literature. 
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 Advantages and disadvantages of using EVs 

 

 

The EVs use only electricity as an energy source, hence, they constitute a good alternative 

to gasoline and diesel-powered vehicles. Furthermore, EVs provide cost benefits during 

operation with lower energy consumption per distance traveled due to more efficient 

powertrains (Wu et al., 2015). Limited driving range, long recharge durations, inadequate 

charging infrastructure, and high acquisition costs are the major drawbacks of EVs. 

Logistics companies might have advantages regarding these drawbacks since they have 

the chance to plan their itineraries, therefore charging times and durations, and install 

their own charging stations at their depots (Giordano et al., 2017).  

 

 

 Overview of the Fuel and Energy Consumption Approaches 

 

 

The amount of fuel consumed by a vehicle that causes pollution depends on load, speed, 

slope, weather conditions, acceleration, air density, vehicle’s frontal area and other 

factors. A variety of models which are mostly based on simulation have been presented 

to calculate fuel consumption such as aaSIDRA and aaMOTION (Akcelik and Besley 

2003) and the Comprehensive Modal Emission Model (Barth et al., 2005), which have 

been used to test various strategies for CO2 reduction (Barth and Boriboonsomsin 2008). 

Palmer proposed an integrated routing and emission model for the freight vehicles and 

discussed the effect of speed on polluting under different congestion and time window 

scenarios. However, he did not consider vehicle loads in his model (Palmer 2007).  

 

A vehicle routing and scheduling problem with time windows was addressed by Maden 

et al. which depends on the time of travel. They solved a case study of a fleet of delivery 

vehicles in the UK by applying a heuristic and reported up to 7% saving in CO2 emissions 

(Maden et al., 2010). A similar problem to that Maden el al. was studied by Jabali et al. 

which tries to obtain optimal speed with respect to emission. They calculated the emission 

with a nonlinear function of speed. They did not consider other factors that affect the 

vehicle’s emission. An iterative TS was proposed to solve VRP instances taken from the 

literature (Jabali et al., 2012). Hsu et al.  addressed a VRP with energy considerations. 
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The problem’s aim is to distribute perishable foods with means of vehicles with 

refrigerators. The objective is to minimize transportation, inventory, energy, and 

violations of time windows costs (Hsu et al., 2007). 

 

Fuel and energy consumption were studied in VRP and Electric Vehicle Routing Problem 

(EVRP) recently, as it is becoming more and more important to decrease emission (in 

conventional vehicles) and increase driving range with a limited battery capacity in the 

electric fleet. In the VRP literature Bektaş and Laporte (2011) introduced the pollution 

routing problem (PRP) which is an extension of classical VRP that considers not only 

traveled distance, but also the amount of greenhouse emissions, fuel, travel times, and 

their costs. They stated that speed and load have the most imperative effect on the amount 

of pollution emitted by a vehicle. They used a function introduced by Barth et al. for 

calculating emission costs (Barth et al., 2005; Barth and Boriboonsomsin 2009). They 

showed that fuel consumption as a function of speed is a U-shape function which means 

that fuel consumption decreases and then increases as the speed increases. Bektaş and 

Laporte proposed mathematical models for PRP with or without time windows and 

illustrated their computational experiments performed on realistic instances (Bektaş and 

Laporte 2011). 

 

Demir et al. (2011) analyzed and numerically compared several available freight 

transportation vehicle emission models. As a result, they showed U-shape diagrams 

corresponding to fuel consumption for three types of vehicles under various speed levels 

estimated by the engine power module (Demir et al., 2011). Suzuki (2011) developed an 

approach for the time-constrained, multiple-stop, truck-routing problem which minimizes 

the distance a vehicle should travel with a heavy load in a given tour by sequencing the 

customer visits such that heavier items are unloaded first while lighter items are unloaded 

later, and it considers the amount of fuel burned during the time a truck is detained at 

customer sites. This problem is a kind of load-dependent problem and minimizes fuel 

consumption and emission (Suzuki 2011). 

 

Demir et al. (2012) proposed an Adaptive Large Neighborhood Search (ALNS) heuristic 

for solving the pollution routing problem which has time windows and determines the 

speed of each vehicle on each route segment in order to minimize a function which 

considers fuel, emission, and driver costs (Demir et al., 2012). Demir et al. (2014) 
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addressed an extension for the PRP named bi-objective PRP which includes two objective 

functions that minimize fuel consumption and driving time which are conflicting and are 

thus considered separately. They presented an ALNS combined with a speed optimization 

procedure to solve the bi-objective PRP (Demir et al., 2014). 

 

Wu et al. (2015) studied electric vehicles’ energy consumption. Their analyses showed 

that the EV is more efficient when driving on in-city routes than driving on freeway 

routes. Moreover, they analyzed the relations among the EV’s power, the vehicle’s speed, 

acceleration, and the roadway grade. They proposed an analytical EV power estimation 

model (Wu et al., 2015). 

 

Suzuki (2016) addressed a PRP model that needs fewer user inputs. Their model 

incorporates only a subset of all factors affecting trucks’ fuel consumption. Their solution 

approach treats the PRP which is a single-objective problem, as a dual-objective problem 

that minimizes distance traveled and vehicle payload. By means of Simulated Annealing 

(SA), a Pareto frontier for this dual-objective problem was approximated. Then a Tabu 

Search (TS) algorithm which explores only the regions near the frontier was applied in 

order to improve each component of the frontier (Suzuki 2016). 

 

 Electric Vehicle Routing Problem 

 

 

The Electric Vehicle Routing Problem (EVRP) is an extension of the well-known Vehicle 

Routing Problem (VRP) where the fleet consists of EVs. The aim of VRP is to determine 

the minimum cost routes that serve a set of customers with known demands. The 

utilization of an EV fleet in logistics operations reduces the tailpipe emissions and help 

companies achieve their sustainability objectives while decreasing the operational costs. 

On the other hand, limited battery capacity, recharging strategies, and long charging 

durations bring additional complexity to the problem. These challenges have attracted the 

interest of many researchers and studies on EVRP has recently gained momentum.  
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 Thesis Organization 

 

 

In chapter 2 we consider the impact of ambient temperature on the fleet sizing, battery 

recharging and routing decisions within the context of EVRPs in logistics operations. 

Particularly, we focus on the EVRP with time windows (EVRPTW) by allowing partial 

charging. Ambient temperature can cause a rise in energy consumption of EVs since cabin 

heating or cooling may significantly increase the energy discharged from the battery 

during the trip and reduce the driving range. Additionally, cold temperatures decrease 

battery efficiency and cause performance losses. First, we present the Mixed-Integer 

Linear Programming (MILP) formulation of the problem. Next, we perform an extensive 

computational study based on benchmark data from the literature. For solving the small-

size instances we use a commercial solver (CPLEX). For solving the large-size instances 

we employ an ALNS algorithm. We show how the fleet compositions and route plans 

change under different weather conditions using benchmark data from the literature as 

well as real data from a logistics company. This study is published in Transportation 

Research Part D: Transport and Environment as “Effects of ambient temperature on the 

route planning of electric freight vehicles” by Sina Rastani, Tuğçe Yüksel and Bülent 

Çatay.  

 

Chapter 3 presents some reduction techniques and develops a preprocessing procedure to 

reduce the graph, hence the number of decision variables in EVRPTW. Furthermore, we 

propose an algorithm to identify whether a problem instance is feasible or not. Extensive 

computational tests are performed to investigate the performance of the proposed 

approaches. This study is submitted to Computers & Operations Research as “Speed-up 

techniques for solving the electric vehicle routing problem with time windows”. 

 

In the 4th chapter, we address the load-dependent variant of EVRPTW with partial 

recharges by taking into account the energy consumption associated with the cargo 

carried on the vehicle. Carrying more load by an EV causes more energy consumption. 

We present the MILP formulation of the problem and perform an extensive experimental 

study to investigate the influence of load on the routing decisions. We solve small-size 

instances using a commercial solver (GUROBI), and for the large-size instances, we 

develop a Large Neighbourhood Search (LNS) algorithm. The results show that cargo 
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weight may create substantial changes in the route plans and fleet size. Additionally, we 

equipped the proposed LNS method with exact insertion operator by joining LNS 

metaheuristic coded in Python with GUROBI to obtain better solutions. This work is 

accepted to be published in ICLS 2020 edited volume by Springer as “Electric Vehicle 

Routing Problem with Time Windows and Cargo Weight”. 

 

Chapter 5 studies EVRPTW with partial recharges by taking into account the energy 

consumption associated with the road gradient and the cargo carried on the vehicle. 

Traveling on an arc with a positive road gradient requires more energy comparing to an 

arc in a flat network. As the gradient of an arc slightly rises, the energy consumption per 

unit distance increases which can extremely increase the energy consumption on that arc. 

Furthermore, in the operations where the EVs deal with heavy loads, the effect of road 

gradient on the energy consumption intensifies since an EV moving uphill with heavy 

load requires more energy in order to finish its journey. On the other hand, if an EV 

traverses on an arc with a negative road gradient where the driver needs to push the brake 

pedal in order to travel with a constant speed, energy can be saved on the battery because 

of the regenerative braking technology. We generate data based on the benchmark 

datasets in the literature by assigning altitude to each node in the network. Clustering 

techniques are used to elevate the nodes in order to have a consistent dataset. We present 

an LNS algorithm to solve the small and large-size instances. Results show that 

considering road gradient along with cargo load can significantly change the routing 

decisions and it can make the problem infeasible in the networks with steep road slope.   

 

Finally, concluding remarks and future directions of research are presented in the last 

chapter of the thesis. 
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2. EFFECTS OF AMBIENT TEMPERATURE ON THE ROUTE 

PLANNING OF ELECTRIC FREIGHT VEHICLES 

 

 

 

 Introduction to Electric Vehicle Routing Problem with Time Windows and 

Literature Review 

  

 

The Electric Vehicle Routing Problem (EVRP) is an extension of the well-known Vehicle 

Routing Problem (VRP) where the fleet consists of EVs. The aim of VRP is to determine 

the minimum cost routes that serve a set of customers with known demands. The 

utilization of an EV fleet in logistics operations reduces the tailpipe emissions and help 

companies achieve their sustainability objectives while decreasing the operational costs. 

On the other hand, limited battery capacity, recharging strategies, and long charging 

durations bring additional complexity to the problem. These challenges have attracted the 

interest of many researchers and studies on EVRP has recently gained momentum.  

 

Conrad and Figliozzi (2011) is the first study that considers an EV fleet within the context 

of VRP. In this problem, EVs are recharged at selected customer locations at a fixed cost. 

The objective is minimizing the fleet size and a total cost function associated with 

recharges, distance, and service time. Erdoğan and Miller-Hooks (2012) generalized the 

problem by considering alternative fuel vehicles (AFVs) and introduced the Green 

Vehicle Routing Problem (GVRP). The authors assumed that the fuel is consumed 

proportional to the distance, the tank is fully refueled at the alternative fueling stations 

(AFSs), and the refueling time is constant. The objective is to minimize the total distance. 

Wang and Cheu (2013) addressed a similar problem for an electric taxi fleet by also 

assuming full recharge strategy. 

 



  8 

 

Schneider et al. (2014) introduced EVRP with Time Window (EVRPTW) by also 

assuming full recharge strategy. They formulated the mathematical programming model 

and proposed three hybrid Variable Neighborhood Search (VNS) and TS algorithms. 

They tested the performance of their algorithms using benchmark instances for GVRP 

and Multi-Depot VRP with Inter-Depot Routes. They also generated a new data set based 

on the well-known Solomon (1987) Vehicle Routing Problem with Time Windows 

(VRPTW) data. Afroditi et al. (2014) also developed a mathematical model for EVRPTW 

with full recharges and provided insights about the trends in the literature. Bruglieri et al. 

(2015) relaxed the full recharge assumption and developed a Variable Neighborhood 

Search Branching method to solve small-size instances. Keskin and Çatay (2016) also 

allowed partial recharges and  implemented an Adaptive Large Neighborhood Search 

(ALNS) method by introducing several new removal and insertion mechanisms specific 

to the problem. Desaulniers et al. (2016) also attacked EVRPTW and attempted to solve 

four variants optimality using branch-price-and-cut algorithm. 

 

Several extensions of EVRP and EVRPTW have been addressed in the literature such as 

the utilization of a mixed fleet of EVs and ICEVs (Goeke and Schneider, 2015; Sassi et 

al., 2015, Macrina et al., 2018, Hiermann et al., 2019), heterogeneous fleet of EVs 

(Hiermann et al., 2016), fast charging technologies (Felipe et al., 2014; Çatay and Keskin, 

2017; Keskin and Çatay, 2018), nonlinear charging function (Montoya et al., 2017; Froger 

et al., 2019), battery swap stations (Yang and Sun, 2015; Hof et al., 2017; Paz et al., 2018), 

and time-dependent waiting times at stations (Keskin et al., 2019). In addition,  EV fleets 

have also been considered within the framework of Location Routing Problem (Worley 

et al., 2012; Hof et al., 2017; Schiffer et al., 2018), Two-echelon VRP (Jie et al., 2019), 

and Two-stage EVRP (Basso et al., 2019) that integrates path finding with route planning. 

 

In a parallel setting, Montoya et al. (2016) used a two-phase heuristic for solving GVRP. 

Bruglieri et al. (2016) also tackled GVRP and presented a three-index formulation to 

reduce the number of decision variables in the problem and proposed a method to 

eliminate the dominated stations. Recently, Bruglieri et al., (2018) developed a path-based 

exact approach to solve small size GVRP instances. For larger instances, they converted 

their exact method to a heuristic approach. Koç and Karaoğlan (2016) also introduced a 

new GVRP formulation with fewer constraints and decision variables , and implemented 

a Simulated Annealing (SA) method to solve it. Leggieri and Haouari (2017) presented a 
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new formulation for EVRPTW and proposed a reduction procedure to speed up solving 

the problem.  A comprehensive survey about the use of EVs in distribution operations is 

provided in Pelletier et al. (2016). 

 

Most of the aforementioned studies assume a constant rate of energy consumption per 

unit distance traveled. However, the EV energy consumption varies with operating 

conditions such as driving style (speed and acceleration), road profile, vehicle load, and 

weather. Among these, ambient temperature has a significant effect on EV’s performance. 

Yuksel and Michalek (2015) showed that, compared to mild climate regions, energy 

consumption of EVs can rise, which can result in up to 41% decrease in the driving range. 

Temperature affects energy consumption due to heater use and decreased battery 

efficiency in cold temperatures, and increased use of air conditioning in hot temperatures. 

Neubauer and Wood (2014) showed that EV energy consumption can increase by 24% 

due to heating, ventilation, and air conditioning (HVAC) used in cold climates. Yi et al. 

(2018) studied the impact of ambient temperature on the energy consumption and demand 

for charging of an autonomous EV. Their aim is to determine the path from an origin node 

to a destination node as well as the recharging time at each intermediate charging station 

node. Using a taxi pick-up and drop-off dataset from New York City, they observed that 

in hot and cold temperatures the energy consumption and charging demand of the fleet 

can increase by 20% and 60%, respectively. Temperature effect in EVs is more dominant 

at cold weather compared to diesel/gasoline counterparts because EVs do not have the 

option to use excess engine temperature for cabin heating. Extreme temperatures might 

therefore cause considerable changes in route planning. Depending on the weather 

conditions, a larger fleet of EVs may be needed on certain seasons/days in order to 

perform the desired logistics operations and/or the EVs may need more frequent recharges 

because of the increase in energy consumption. In extreme conditions, it may even not be 

possible to find a feasible route plan. 

 

The aim of this chapter is to investigate the impact of ambient temperature on routing 

decisions of EVs in logistics operations. Particularly, we focus on the EVRPTW by 

allowing partial charging (Keskin and Çatay, 2016). To the best of our knowledge, this is 

the first study that investigates the influence of ambient temperature on the fleet sizing, 

battery recharging and routing decisions within the context of EVRPs. Our contributions 

to the literature are twofold: (i) we extend the mathematical model of EVRPTW by 
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incorporating the effect of temperature in the energy consumption of the vehicles; and (ii) 

show how the fleet compositions and route plans change under different weather 

conditions using benchmark data from literature as well as real data from a logistics 

company.  

 

The remainder of the article is organized as follows: Section 2.2 depicts the problem and 

formulates the mathematical programming model. Section 2.3 describes the methodology 

employed to solve it. Section 2.4 presents the computational results and discusses the 

influence of the ambient temperature on route plans and energy consumptions. Section 

2.5 presents a case study based on the last mile delivery operations of Ekol Logistics in 

Southern Turkey. Final remarks and future research directions conclude this chapter. 

 

 

 Problem description and mathematical model 

 

 

In this chapter, we address EVRPTW which involves a homogeneous fleet of EVs and a 

set of customers whose demands, time windows, and service durations are known. Similar 

to the previous studies the battery state of charge (SoC) decreases proportional to the 

distance traveled; however, we also take into account the effect of ambient temperature 

on the energy consumption during the trip. In addition, we allow partial recharging and 

its duration depends on the amount of energy transferred. Fully recharging the battery can 

shorten its lifespan (Sweda et al., 2017) and it is a common practice in the real world to 

operate within the first phase of recharging where the energy transferred is a linear 

function of the recharge duration in order to prolong the battery life (Pelletier et al., 2017). 

So, without loss of generality, we assume that the energy recharged at the stations is linear 

function of time. We assume that the EV can be recharged at most once between two 

consecutive customers, which is the practical case in urban logistics.  

 

The change in energy consumption with temperature is contingent on the duration of the 

trip and effect of temperature on charging efficiency is not considered. It is assumed that 

the driver turns off the heating/cooling equipment in the recharging stations, as it is a 

time-consuming process. Without loss of generality, the energy consumption related to 

on-board auxiliary systems are neglected in this chapter. In addition, we assume that EVs 
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are recharged overnight and depart from the depot with full battery. In line with the 

EVRPTW literature, we adopt a hierarchical objective function where the primary 

objective is to minimize the fleet size whereas the secondary objective is to minimize total 

energy consumption (Schneider et al., 2014; Keskin and Çatay 2016). 

 

 

2.2.1.  Temperature effect on energy consumption 

 

To estimate how energy consumption changes with temperature, we use a similar 

approach as in Yuksel and Michalek (2015) and construct a model based on real-world 

data collected from Nissan Leaf drivers over more than 7000 trips across North America. 

Publicly available data reports average driving range with respect to temperature and 

includes no other information on the trip and driver profiles. Energy consumption in 

kilowatt-hour per mile (kWh/mile) versus ambient temperature is shown in Figure 2.1. In 

their study, Yuksel and Michalek use a model obtained by fitting a single curve to the 

available data. To improve accuracy, we divide data into two and fit two separate 

polynomial curves for data points below and above 22 ºC as shown by blue and red curves 

in Figure 2.1. The functional relationships between energy consumption per unit distance 

and temperature can be given as follows: 

 

ℎ𝐿𝐸𝐴𝐹(𝑇) = {

0.3392 − 0.005238 𝑇 − 0.0001078 𝑇2 +  1.047 10−5 𝑇3 +   
     3.955 × 10−7𝑇4 − 1.362 × 10−8 𝑇5 − 3.109 × 10−10 𝑇6,

 
0.4211 −  0.01627 𝑇 + 0.0004229  𝑇2 ,                                        

 

 

𝑇 < 22𝑜𝐶 

 

𝑇 ≥ 22𝑜𝐶 

(2.1) 

 

where  ℎLEAF is in kWh/mile when 𝑇 is in ⁰C. Note that Nissan Leaf is a light duty 

passenger vehicle; however, we assume that the same kind of relation with temperature 

holds for all sizes of commercial vehicles used in logistics operations as well. In addition, 

since there is no further information available about the driver and trip profiles, we follow 

the same assumption in  Yuksel and Michalek (2015) and we attribute the efficiency 

change given in Figure 2.1 only to the ambient temperature. 

 

A similar study performed by National Renewable Energy Laboratory (NREL) for a fleet 

consisting of medium-duty EVs reports slightly higher energy consumption at cold 

temperatures (Duran et al., 2014). Their results show that the average energy consumption 
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of medium-duty EVs running in NY almost doubled in January 2013 when the average 

minimum temperature observed is -20ºC as compared to May 2013 when the minimum 

temperature is around 18oC. According to the Nissan Leaf based data we used, the ratio 

between the similar temperatures is 1.52 (i.e. 1.52 times more energy consumption in -

21ºC compared to 22ºC). Therefore, our results might be slightly more on the conservative 

side. However, the data on Nissan Leaf investigates hot weather as well as cold climate, 

therefore we found it more reliable to use for our purposes. 

 

According to Eq. (2.1) the minimum energy consumption occurs at 22oC, corresponding 

to 0.27 kWh/mile. We used this as our base case and normalized the energy consumption 

at other temperatures for other vehicles using Eq. (2.2). In addition, we assumed that the 

additional energy consumption, compared to the base case, arises from the using 

heating/cooling equipment and battery efficiency drop in cold temperatures. 

 

ℎVEH(𝑇) =
ℎLEAF(𝑇)

ℎLEAF(22𝑜𝐶)
∙ ℎVEH(22oC) (2.2) 

 

where ℎVEH(𝑇) is the normalized energy consumption of the commercial vehicle under 

consideration at temperature T and ℎVEH(22oC) is the actual energy consumption of the 

commercial vehicle at 22oC (or without temperature effects). 

 

Assuming that one unit of energy is consumed to travel one unit of distance in the base 

case, i.e. ℎVEH(22𝑜C) = 1, the energy consumption at other temperatures are shown in 

Table 2.1. Temperature effect on energy consumption at 8ºC has the similar impact as at 

27ºC. Same phenomenon can be observed for other cold/hot temperature pairs as 

presented in Table 2.1.  

 

Table 2.1 Energy consumption at different temperatures 

Temperature (ºC) Condition Energy Consumption (per unit distance)

22 Mild 1.00

   8 or 27 Intermediate 1.09

   0 or 33 Intense 1.27

-21 or 38 Extreme 1.52  
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Figure 2.1 Energy consumption vs. ambient temperature for Nissan Leaf 

 

In Figure 2.2, we present a simple example that illustrates how temperature affects the 

optimal route plans and how it can increase the energy consumption or cause infeasibility. 

The example involves one depot equipped with a charger, two customers and one station. 

All customers must be served, and the vehicle tours should start from and terminate at the 

depot. For the sake of simplicity, we do not consider the cargo capacity and time-window 

constraints. The battery capacity of the EV is three units. The distances are symmetric 

and the numbers on the arcs represent the energy consumptions. The directed arcs with 

solid line show the optimal routes. Figure 2.2 (a) demonstrates the network and optimal 

route in a mild temperature (22ºC). We assume that the vehicle travels at constant speed 

and as there is no need for cooling/heating in this temperature, it consumes one unit of 

energy per unit distance traveled.  So, the numbers on the arcs in this network also show 

the distances. In the optimal solution, one EV serves both customer by cruising a total 

distance of 3 units and consuming 3 units of energy. In Figure 2.2 (b)-(d), the temperature 

is colder, so heating equipment causes more energy consumption in comparison with the 

mild case. Figure 2.2 (b) shows the optimal route plan for the intermediate case when the 

temperature is 8ºC. The consumption rate per unit distance is 1.09 in this case and one EV 

serves both customers by traveling a total distance of 3.9 units and consuming 4.25 units 

of energy. Note that the EV needs a recharging at the station in order to continue its tour. 

In Figure 2.2 (c) as the ambient temperature effect is more intense (the consumption rate 
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is 1.27), each customer is served by a dedicated EV and the total energy consumption is 

5.08. Figure 2.2 (d) depicts the case where the weather is too cold (-21ºC) and the 

temperature effect is extreme (the consumption rate is 1.52). We see that customer 1 can 

still be served by a dedicated EV; however, no EV can visit customer 2 and reach the 

station or return to the depot without running out of battery. So, the problem becomes 

infeasible.  
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Figure 2.2 Optimal route plans that change according to varying temperatures 

 

 

2.2.2. Mathematical formulation 

 

Similar to the notation and modelling conventions in Keskin and Çatay (2016) and 

Bruglieri et al. (2016) we define 𝑉 = {1, … , 𝑛} as the set of customers and F as the set of 

recharging stations. Vertices 0 and 𝑛 + 1 denote the depot where each vehicle departs 

from 0 (departure depot) and returns to 𝑛 + 1 (arrival depot) at the end of its tour. We 

define 𝑉0 = 𝑉 ∪ {0}, 𝑉𝑛+1 = 𝑉 ∪ {𝑛 + 1} and 𝑉0,𝑛+1 = 𝑉 ∪ {0, 𝑛 + 1}. Then, the problem 
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can be represented on a complete directed graph 𝐺 = (𝑁, 𝐴) with the set of arcs 

𝐴 =  {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}, where 𝑁 = 𝑉0,𝑛+1 ∪ 𝐹 is the total set of nodes on the network.  

The energy consumption depends on the distance traveled and the duration of the trip. 

Each customer 𝑖 ∈ 𝑉 has a positive demand 𝑞𝑖, service time 𝑠𝑖, and time window [𝑒𝑖, 𝑙𝑖]. 

All EVs have a cargo capacity of 𝐶 and a battery capacity of 𝑄. At each recharging station, 

one unit of energy is transferred in 𝑔 time units. The direct distance from customer 𝑖 to 

customer 𝑗 is represented by 𝑑𝑖𝑗 whereas the vehicle travels the additional distance of 

�̂�𝑖𝑗𝑠 = 𝑑𝑖𝑠 + 𝑑𝑠𝑗 − 𝑑𝑖𝑗 if it is recharged at station 𝑠 en-route. Notice that the battery can be 

recharged at most once between two consecutive customers, which is not an unrealistic 

assumption within the context of city logistics (Keskin and Çatay, 2018). 

 

Similarly, 𝑡𝑖𝑗 denotes the travel time from customer 𝑖 to customer 𝑗 if the journey is direct 

and �̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 + 𝑡𝑠𝑗 − 𝑡𝑖𝑗 is the additional travel time if it is via station 𝑠. Note that �̂�𝑖𝑗𝑠 does 

not include the recharging time at station 𝑠.  The energy consumed for moving the vehicle 

one-unit distance is represented by ℎ𝑑 whereas ℎ𝑡 denotes the energy consumed by the 

cabin heating or cooling system per unit time. At cold temperatures, ℎ𝑡 also includes the 

extra energy consumed per unit time due to battery efficiency drop. The total energy 

consumption is a linear function of the distance and duration of the journey from customer 

𝑖 to customer 𝑗 and is calculated as ℎ𝑖𝑗 = ℎ𝑑𝑑𝑖𝑗 + ℎ𝑡𝑡𝑖𝑗 when the journey is direct. If the 

battery is recharged at station 𝑠 en-route, the additional energy consumption is calculated 

as ℎ̂𝑖𝑗𝑠 = ℎ𝑖𝑠 + ℎ𝑠𝑗 − ℎ𝑖𝑗.  

 

Table 2.2 Mathematical notation for EVRPTW with ambient temperature 

Sets:  

𝑉 Set of customers 

𝑉0 Set of customers and departure depot 

𝑉𝑛+1 Set of customers and arrival depot 

𝑉0,𝑛+1 Set of customers, departure, and arrival depots 

𝐹 Set of recharging stations 

𝑁 Set of customers, stations, and depots 

𝐾 Set of vehicles 

Parameters: 

𝑑𝑖𝑗 Distance between node 𝑖 and 𝑗 

�̂�𝑖𝑗𝑠 Additional distance of visiting station 𝑠 between customers 𝑖 and 𝑗, �̂�𝑖𝑗𝑠 = 𝑑𝑖𝑠 + 𝑑𝑠𝑗 − 𝑑𝑖𝑗 

𝑡𝑖𝑗 Travel time from node 𝑖 and 𝑗 

�̂�𝑖𝑗𝑠 Additional trip time of visiting station 𝑠 between customers 𝑖 and 𝑗, �̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 + 𝑡𝑠𝑗 − 𝑡𝑖𝑗 
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𝑞𝑖 Demand of customer 𝑖 

𝑟𝑖 Service time of customer 𝑖 

[𝑒𝑖 , 𝑙𝑖] Time window of customer 𝑖 

𝐶 Freight capacity  

𝑄 Battery capacity  

𝑔 Recharging rate 

ℎ𝑖𝑗 Total energy consumed to traverse arc (𝑖, 𝑗) 

ℎ̂𝑖𝑗𝑠 Additional consumption if the vehicle is recharged in station 𝑠 while traveling from 

customer 𝑖 to customer 𝑗, ℎ̂𝑖𝑗𝑠 = ℎ𝑖𝑠 + ℎ𝑠𝑗 − ℎ𝑖𝑗 

Decision variables: 

𝜏𝑖 Service starting time at customer 𝑖 

𝑦𝑖
𝑘 battery SoC of vehicle 𝑘 upon arrival at (departure from) customer/depot 𝑖 ∈ 𝑉0,𝑛+1 

𝑦𝑖𝑗𝑠
𝑘  battery SoC of vehicle 𝑘 upon arrival at station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 

𝑌𝑖𝑗𝑠
𝑘  battery SoC of vehicle 𝑘 at departure from station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 

𝑥𝑖𝑗
𝑘  1 if vehicle 𝑘 travels from node 𝑖 ∈ 𝑉0 to node 𝑗 ∈ 𝑉𝑛+1; 0 otherwise 

𝑧𝑖𝑗𝑠
𝑘  1 if vehicle 𝑘 traverses arc (𝑖, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, through station 𝑠 ∈ 𝐹; 0 otherwise 

 

The decision variables 𝑦𝑖
𝑘, 𝑦𝑖𝑗𝑠

𝑘 , and 𝑌𝑖𝑗𝑠
𝑘 , keep track of battery SoC of vehicle 𝑘 at arrival 

at customer/depot 𝑖 ∈ 𝑉0,𝑛+1, at arrival at station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 

and at departure from station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, respectively. Service 

starting time at any node 𝑖 ∈ 𝑁 is denoted by 𝜏𝑖. The binary decision variable 𝑥𝑖𝑗
𝑘  takes 

value 1 if vehicle 𝑘 travels from node 𝑖 ∈ 𝑉0 to node 𝑗 ∈ 𝑉𝑛+1 and 0 otherwise. The binary 

decision variable 𝑧𝑖𝑗𝑠
𝑘  takes value 1 if vehicle 𝑘 traverses arc (𝑖, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 

through station 𝑠 ∈ 𝐹. The mathematical notation is summarized in Table 2.2Error! 

Reference source not found..  

 

The mixed-integer programming model of the problem can be formulated as follows: 

 

Min ∑ ∑ ∑(ℎ𝑖𝑗𝑥𝑖𝑗
𝑘 + ∑ ℎ̂𝑖𝑗𝑠𝑧𝑖𝑗𝑠

𝑘

𝑠∈𝐹

)

𝑘∈𝐾𝑗∈𝑉𝑛+1𝑖∈𝑉0

 
 (2.3) 

subject to   

𝑦0
𝑘 = 𝑄 ∀ 𝑘 ∈ 𝐾 (2.4) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑛+1
𝑗≠𝑖

= 1 ∀ 𝑖 ∈ 𝑉 (2.5) 
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∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉0
𝑖≠𝑗

− ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉𝑛+1
𝑖≠𝑗

= 0 ∀ 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (2.6) 

∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

≤ 𝑥𝑖𝑗
𝑘  ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.7) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗
𝑘 + ∑(�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠

𝑘 + 𝑔(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 ))

𝑠∈𝐹

− 𝑙0(1 − 𝑥𝑖𝑗
𝑘 ) ≤ 𝜏𝑗 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.8) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀ 𝑗 ∈ 𝑁 (2.9) 

∑ ∑ 𝑞𝑖𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑛+1
𝑗≠𝑖

𝑖∈𝑉

≤ 𝐶 ∀ 𝑘 ∈ 𝐾 (2.10) 

0 ≤ 𝑦𝑗
𝑘 ≤ 𝑦𝑖

𝑘 − ℎ𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑄(1 − 𝑥𝑖𝑗

𝑘 + ∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.11) 

𝑦𝑗
𝑘 ≤ ∑(𝑌𝑖𝑗𝑠

𝑘 − ℎ𝑠𝑗𝑧𝑖𝑗𝑠
𝑘 )

𝑠∈𝐹

+ 𝑄(1 − ∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

) 

+𝑄(1 − 𝑥𝑖𝑗
𝑘 ) 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.12) 

0 ≤ 𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑦𝑖

𝑘 − ℎ𝑖𝑠𝑧𝑖𝑗𝑠
𝑘 + 𝑄(1 − 𝑥𝑖𝑗

𝑘 ) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.13) 

𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑌𝑖𝑗𝑠

𝑘 ≤ 𝑄𝑧𝑖𝑗𝑠
𝑘  ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.14) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.15) 

𝑧𝑖𝑗𝑠
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.16) 

 

The objective function (2.3) minimizes the total energy consumption. Constraints (2.4) 

set the battery SoC of the EVs to full when they depart from the depot. The connectivity 

of customer visits is enforced by constraints (2.5) whereas the flow conservation at each 

vertex is ensured by constraints (2.6). Constraints (2.7) make sure that vehicle 𝑘 serves 

customer 𝑗 after customer 𝑖 if it travels from 𝑖 to 𝑗 by recharging its battery en-route. 

Constraints (2.8) guarantee the time feasibility of arcs emanating from the customers (and 

the depot). Constraints (2.9) establish the service time windows restriction. Constraints 

(2.8) and (2.9) also eliminate the formation of sub-tours. Constraints (2.10) impose the 

cargo capacities of the vehicles. Constraints (2.11)-(2.14) keep track of the battery SoC 

at each node and make sure that it never falls below zero. Constraints (2.11) establish the 

battery SoC consistency if the vehicle travels from customer 𝑖 to customer 𝑗 without 

recharging en-route. Constraints (2.12) determine battery SoC at the arrival at customer 𝑗 

if the vehicle visits a recharging station after it has departed from customer 𝑖 whereas 

constraints (2.13) check battery SoC at the arrival at a station if the battery is recharged 
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en-route. Constraints (2.14) set the limits for battery SoC when the vehicle departs from 

a station. Finally, constraints (2.15)-(2.16) define the binary decision variables. 

 Solution methodology 

 

 

Small-size problems can be solved on a commercial solver using the above mathematical 

formulation. For large-size instances that are not tractable, we resort to ALNS. ALNS is 

a metaheuristic method introduced by Røpke and Pisinger (2006a, 2006b) and has been 

employed for solving various VRPs including VRPTW variants (Pisinger and Ropke, 

2007; Ribeiro and Laporte, 2012; Demir et al., 2012; Aksen et al., 2014; Grangier et al., 

2016; Emeç et al., 2016; Koç et al., 2016). It has also been successfully applied to 

EVRPTW and its extensions (Goeke and Schneider, 2015; Hiermann et al., 2016; Keskin 

and Çatay, 2016; Wen et al., 2016; Schiffer and Walther, 2017; Schiffer et al., 2018; 

Keskin and Çatay, 2018; Keskin et al., 2019).  

 

ALNS is a neighborhood search technique that consists of a destroy-and-repair 

framework where at each iteration a destroy operator is used to remove some nodes from 

the current solution and a repair operator is applied to insert the removed nodes to improve 

the incumbent solution. The insertion and removal mechanisms are associated with a 

numerical score which is updated after each iteration based on their performances. If a 

mechanism yields to a good solution, its corresponding score and consequently the 

probability of selecting that mechanism in the subsequent iterations increase.  

 

In this chapter, we employ the ALNS algorithm presented in Keskin and Çatay (2016). 

Since the graph may become incomplete due to the increased energy consumption on arcs 

in low/high temperatures, the algorithm may struggle to find a feasible solution in certain 

cases. To overcome this problem, we introduce a new station insertion mechanism utilized 

both for constructing the initial solution and improving it within the ALNS framework. 

The insertion algorithms in the ALNS approach of Keskin and Çatay (2016) are designed 

to insert a station in one of the preceding arcs when the insertion of a customer leads to a 

negative battery SoC at the arrival at that customer. However, adding only one station to 

the route may not be sufficient in our case since the energy consumption can significantly 

increase due to the ambient temperature. So, we propose a new station insertion 
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mechanism in which multiple stations can be inserted to the route simultaneously. We 

refer to this algorithm as Multi-Station Insertion (MSI) and describe it as follows: 

 

Multi-Station Insertion (MSI): When the insertion of a customer yields an infeasible 

partial route with respect to the battery SoC, we insert a station on the arc traversed 

immediately before arriving at the customer with negative SoC and recharge the battery 

to the maximum level allowed by the battery capacity and time windows restrictions of 

the succeeding customers. If the SoC is still negative at that customer or if the energy on 

the battery is not sufficient to reach the inserted station, we attempt inserting another 

station prior to the customer visited before traveling to the recently inserted station. This 

procedure is repeated until the partial route becomes energy feasible. 

 

The interested reader is referred to Keskin and Çatay (2016) about the details of the ALNS 

implementation, destroy and insertion mechanisms, and parameters utilized.  

 

 

 Computational study 

 

 

We use the well-known data set of Schneider et al. (2014) to analyze the effect of the 

ambient temperature on the fleet size, energy consumption, and route plans. The data 

consists of three problem types where the customers are clustered (c-type), randomly 

distributed (r-type), and both clustered and randomly distributed (rc-type). It is also 

classified in two types, which differ by the length of the time windows, scheduling 

horizon, and vehicle cargo and battery capacities. In subsets r1, c1, and rc1, the time 

windows are narrow and the scheduling horizon is short whereas the time windows are 

wide and the scheduling horizon is longer in subsets r2, c2, and rc2. Furthermore, each 

subset assumes an EV fleet with different cargo and battery capacity. For the sake of 

simplicity, the consumption rate is assumed to be one unit of energy per unit distance 

traveled. We use this rate for mild temperature condition and consider the rates given in 

Table 2.1 for other cases. 

 

Cities around the world may experience extremely low or high temperatures, which 

substantially affects the energy consumption of the EVs. For instance, the daytime 
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temperature dropped below -20ºC in Saskatoon, Saskatchewan in 10 days and below 

- 15ºC in 26 days during 2017. In addition, Montreal, Quebec experienced below -15ºC 

in 8 days and below -10ºC in 22 days. On the other hand, the temperature was above 40ºC 

in 75 days in Las Vegas and 97 days in Phoenix. Moreover, Rome observed above 35ºC 

in 32 days during the same year. So, in our experiments we consider temperatures between 

-21ºC and 38ºC, which are not unusual to observe for many cities around the world 

(accuweather, 2018).  

 

To investigate the influence of ambient temperature on energy consumption and routing 

decisions, we solve 36 small-size and 29 large-size benchmark instances. We use IBM 

ILOG CPLEX 12.6.3 optimization solver for the small instances and ALNS algorithm to 

solve larger instances on a workstation equipped with Intel(R) Core(TM) i7-8700 

processor with 3.20 GHz speed and 16 GB RAM. We limit the CPU run time with 2 

hours. The detailed numerical results are presented in Appendix A.  

 

Table 2.3 Number of infeasible problems in small-size dataset for different temperature 

conditions 

#Cust #Inst Mild Intermediate Intense Extreme

5 12 0 0 3 4

10 12 0 2 7 9

15 12 0 0 5 8

Total 36 0 2 15 21  

 

 

2.4.1. The influence of ambient temperature on routing decisions in small-size 

instances 

 

Different temperature cases are investigated on the three subsets of 12 small-size 

instances. Each subset involves 5, 10, and 15 customers and different number of stations 

varying between two and eight. We solved each instance for four different temperature 

conditions. So, the total number of problems solved is 3 × 12 × 4 = 144. The detailed 

results are provided in Appendix A. In Table 2.3, we report the number of infeasible 

problems. In this table, ‘#Cust’ indicates the number of customers in the data set and 

‘#Inst’ is the number of instances. Out of 144 problems, 106 are feasible. Since all 

instances are feasible in mild temperature, we can say that weather conditions make 35% 



  21 

 

of the problems (38 out of 108) infeasible. Among 106 feasible problems, CPLEX solved 

101 problems optimally and provided an upper-bound for the remaining five within two 

hours. As expected, we observe that infeasibility increases as the temperature conditions 

change from mild to extreme. While only 6% of the problems are infeasible in the 

intermediate case, 42% and 58% of the problems become infeasible when the temperature 

conditions are intense and extreme, respectively.  

 

Table 2.4 The influence of ambient temperature on route plans in small-size instances 

Feasible Larger Fleet Δ #Veh  Δ EC  

Intermediate 34 / 36   3 / 34 4% 12%

Intense 21 / 36   6 / 21 15% 40%

Extreme 15 / 36 10 / 15 46% 81%

# of Instances Average Increase
Ambient Temperature

 

 

Table 2.4 summarizes how different temperature levels affect the solutions in small-size 

instances. In this table, column ‘Feasible’ reports the number of feasible solutions for 

different temperatures whereas ‘Larger Fleet’ column shows the number of instances in 

which more EVs are needed compared to the fleet size in the mild condition. ‘Δ #Veh’ 

and ‘Δ EC’ columns give the average percentage increase in the fleet size and energy 

consumption, respectively, again compared to the mild case. The number of infeasible 

instances increases as the temperature conditions change from mild to extreme, as 

expected. In the intense temperature case, 15 of the 36 instances become infeasible and 

six instances among the feasible ones require one extra vehicle each in comparison to the 

mild case. The most critical case happens when the temperature effect is extreme. In this 

case, 21 instances turn out to be infeasible and 10 instances among the feasible ones need 

more vehicles to satisfy the customer demands on time (two out of these 10 instances 

need two additional vehicles whereas remaining eight instances require one additional 

vehicle each, compared to the base case). The fleet size grows by 4%, 15% and 46% in 

the intermediate, intense and extreme temperature cases compared to the mild case. 

Noting that our primary objective is to minimize the number of vehicles, we also observe 

significant increase in energy consumption at low temperatures. In the intense 

temperature case, the average energy consumption increases by 40% compared to mild 

temperature whereas this increase almost doubles and reaches 81% in the extreme 

conditions. All these results show the crucial effect of weather conditions on total energy 

consumption when the logistics operations are performed using an EV fleet.  
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It is important to note that compared to the mild case even though Table 2.1 reports 9%, 

27%, and 52% increases in the energy consumption per unit distance for the intermediate, 

intense, and extreme temperature cases, respectively, the average energy consumption in 

the route plans shows an increase of 12%, 40%, and 81%. This substantial difference is 

the result of visiting more stations en-route and making longer detours. 

 

 

2.4.2. The influence of ambient temperature on routing decisions in large-size 

instances 
 

The large-size data consists of 29 instances with 100 customers and 21 stations. We focus 

on type-1 problems with narrow time windows since wide time windows have minor 

influence on the recharging decisions (Desaulniers et al., 2016; Keskin and Çatay, 2018). 

We solved each instance 10 times using ALNS under four different temperature 

conditions. Since a large set of recharging stations is available, all problems are feasible 

in intermediate and intense conditions. However, ALNS faced difficulty in finding a 

feasible solution, particularly for r- and rc-type problems. So, we performed 100 runs in 

these problem sets. Yet, ALNS still failed to solve six rc-type problems in the extreme 

case. Even though we cannot prove it, it is highly likely that these problems are infeasible. 

 

Table 2.5 Average results for large-size problems 

Type #Veh EC #Veh EC #Veh EC #Veh EC

c 10.6 1003.05 10.8 1103.33 11.1 1352.62 11.8 1608.89

r 13.0 1240.03 13.3 1365.47 14.1 1656.17 15.2 2117.24

rc 12.9 1409.54 13.3 1572.00 14.3 1929.25 − −

Mild Intermediate Intense Extreme

 

 

The results are summarized in Table 2.5 and detailed results are given in Appendix A. In 

Table 2.5, ‘#Veh’ shows the average number of vehicles employed whereas ‘EC’ reports 

the average energy consumption in the problems solved. Results for rc-type problems are 

not reported because of the aforementioned reason. Furthermore, we observe that the fleet 

size and energy consumption increase as the temperature drops, as expected. Since the 

customers are clustered, type-c instances are affected less from the ambient temperature 

compared to r- and rc-type instances. In the extreme case the average fleet size and 
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average energy consumption in type-c instances increase by 11% and 60%, respectively, 

as compared to the mild case, whereas the increases in type-r instances are 17% and 71%, 

respectively. 

 

Table 2.6 The influence of ambient temperature on route plans in large-size instances 

Feasible Larger Fleet Δ #Veh  Δ EC  

Intermediate 29 / 29    9 / 29 3% 11%

Intense 29 / 29  24 / 29 8% 35%

Extreme 23 / 29  22 / 23 15% 68%

# of Instances Average Increase

Ambient Temperature

 

 

Table 2.6 shows the effect of the ambient temperature on route plans in large-size 

instances. The results are similar to those observed for small-size problems, except the 

feasibility issue. While 93% of the large-size problems (81 out of 87) were solved feasibly 

under rougher temperature conditions, this percentage drops to 65% for the small-size 

data set. This is due to the scarcity of the recharging stations in the small-size data set. In 

addition, the need for a larger fleet is observed in more problems in the large-size data 

set:  68% of the problems compared to 27% in the small-size data set. Specifically, in 

almost all large-size problems (22 out of 23) more EVs are needed in extreme temperature 

compared to the mild case. On the other hand, the average percentage increase in the fleet 

size is significantly smaller. For example, for the extreme case this value is 15% for large-

size data set compared to 46% for the small-size. The reason behind this is the actual size 

of the fleet: for the mild case, the number of EVs in the fleet is between one and five in 

small-size data whereas in large-size data the fleet size varies from 10 to 18. So, two 

additional EVs in the intense case imply a more significant percentage change in a small-

size problem compared to the large-size.   

 

When we consider the average energy consumption in the route plans, we observe an 

increase of 11%, 35%, and 68% for the intermediate, intense, and extreme cases, 

respectively, in comparison to the base case of mild temperature. Notice that these 

percentages are slightly smaller than those reported in Table 2.4. This may be due to the 

availability of more stations in large-size data, hence, shorter detours for recharging. 

Nevertheless, these values still reveal a higher consumption rate than those in Table 2.1. 
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Figure 2.3 Monthly daytime highest/average/lowest temperatures in Adana during 2017 

 

 

 Case study 

 

 

In this section, we consider the last-mile distribution planning of Ekol Logistics, a third-

party logistics service provider in Turkey. To show the effect of temperature on real world 

fleet operations, we solve their routing problem in Adana. Adana is a city located in 

Southern Turkey with a year-round mild-to-hot and mostly humid climate. The highest, 

average, and lowest daytime temperatures in 2017 are illustrated in Figure 2.3. January 

was the coldest month in which the lowest, average, and highest daytime temperatures 

were 8ºC, 13ºC, and 18ºC, respectively; however, July was the warmest, where the highest 

daytime temperature reached as high as 44ºC (Accuweather.com, 2018; Weather.com, 

2018). Using cooling equipment is necessary in Adana for several months and it affects 

the energy consumption, which makes it worthwhile to analyze the optimal route plans 

for an EV fleet under those conditions. 

 

Table 2.7 Case study data: time windows and demands of the customers 

8 9 10 11 12 13 14 15 16 17 18 19

Early service time 8:30 8:30 10:00 8:30 8:30 8:30 8:30 8:30 13:00 8:30 10:00 9:30

Late service time 17:30 17:30 12:00 17:30 17:30 10:00 17:30 17:30 15:00 12:00 16:00 12:00

Service time (min) 9 5 4 15 4 90 4 7 53 10 12 10

Demand (kg) 50 6 1.5 226.7 2.7 458.6 2.7 17.5 277 71 170.7 65

Customers
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Ekol uses diesel vehicle fleet of light commercial Fiat Ducato vans. We investigate how 

the routes would change if they used electric Fiat Ducato vans (eDucato) in their fleet. 

So, we consider Ducato EVs that have a cyclable battery capacity of 62 kWh and can 

carry loads up to 718.4 kg. eDucato has an advertised driving range of 200 km, which 

corresponds to an energy consumption of 0.31 kWh/km (BD Automotive, 2018). 

Neglecting other factors, we assume that in the mild case the EVs consume 

ℎVEH(22oC) = 0.31 kWh/km, i.e. we assume that the advertised energy consumption 

corresponds to consumption at 22ºC. Using the relation in Eq. (2.2) in section 2.2.1, the 

energy consumption for the intermediate (27ºC), intense (33ºC), and extreme (38ºC) cases 

are obtained as 0.34, 0.4, and 0.47 kWh/km, respectively. To solve the problem with 

CPLEX, we focused on a smaller subset of 12 selected customers and we assumed that 

EVs can recharge at depot as well as at public charging stations in that region. These 

stations have level 2 AC chargers with 22 kVA power as well as specific time windows 

for providing service (Eşarj, 2018). The depot operates between 5:00 and 17:30 and is 

represented with index ‘1’. Indices ‘2’-‘7’ refer to the stations and ‘8’-‘19’ denote the 

customers. Table 2.7 shows the time-windows, service times, and demands of the 

customers. The distance matrix is provided in Appendix C.  

 

Figure 2.4 illustrates the geographical locations of the depot, customers, and stations. The 

black circle shows the depot, the customers and stations are represented with green pins 

and red chargers, respectively. The city center is magnified for a clearer view of the 

region. The optimal route plans for different cases are plotted in Figure 2.5. In this figure, 

the depot, customers, and stations are displayed with a triangle, circles, and station icons, 

respectively. Station 2 represents the charger located in the depot. Battery SoCs are given 

next to the nodes in kWh. The two numbers provided next to the stations show the arrival 

and departure SoC values; the difference gives the amount of energy charged at the 

station. The SoC does not change at the customers. We assume that all EVs are fully 

charged at the depot overnight. 

 

In Figure 2.5(a), we see that, all customers can be served using two vehicles in the mild 

case when the energy consumption is lowest. EV1 visits Station 2 (in the depot) once to 

recharge 8.3 kWh of energy.  Total energy consumption in this case is 121.6 kWh. In the 

intermediate case illustrated in Figure 2.5(b), all customers are also served with two 

vehicles; 
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Figure 2.4 Geographical area 

 

however, EV2 visits Station 7 and Station 2 to recharge 45.9 and 7.5 kWh, respectively. 

The total energy consumption is 168.5 kWh, which corresponds to an increase of 39% 

compared to the mild case. In addition, the sequence of the visits to the customers changes 

since charging at stations is a time-consuming process and can affect the routing decisions 

due to customers’ time-windows. In the intense case shown in Figure 2.5(c), the effect of 

ambient temperature on energy consumption is even stronger and it is not possible to 

make all deliveries using two vehicles. Therefore, the fleet consists of three EVs and EV1 

and EV2 visits Stations 7 and 4, respectively, to recharge en-route. The total energy 

consumption becomes 186.7 kWh, an increase by 54% compared to the mild case. Notice 

this dramatic increase in the real environment compared to the average increase of 40% 

in the synthetic benchmark data reported in Table 2.4. 

 

The route plans in the extreme case are not illustrated because no feasible solution exists. 

When the ambient temperature is 38ºC the EV energy consumption increases to 0.47 

kWh/km. In this case, the EV cannot serve customer 15 because the trip from depot to 

that customer requires 45.62 kWh of energy and the EV will run out of battery en-route 

if it returns to depot directly or travels to the nearest station (Station 7) which requires an 

additional 19.50 kWh. Hence the problem is infeasible. All route plans are given in 

Appendix B.  

 

 



  27 

 

1

15

8

7

14

10

19

9 16

11

12

13

18

17

6

5

4

3

2

31.9

2.21.5

8.7

5.6

4.0 2.9 2.0

1.4

48.9

38.3
11.7

 
 

 
 

 
 

Figure 2.5 Optimal route plans at different ambient temperature conditions 

(a) Mild Case (EC=121.6 kWh) 

(b) Intermediate Case (EC=168.5 kWh) 

(c) Intense Case (EC=186.7 kWh) 
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As this case study demonstrates, ambient temperature can have a strong effect on the 

delivery operations. According to the meteorological records from Adana in the year 

2017, the maximum temperature measured was higher than 27, 33 and 38oC for 177, 98 

and 3 days, respectively (accuweather, 2018). Also, as can be depicted from Figure 2.3 it 

is possible to observe temperatures as high as 44oC. Routing decisions made without 

considering these high temperature values can cause inefficient operations or disruptions.  

 

 

 Discussion and conclusion 

 

 

In this chapter, we focused on EVRPTW with partial recharge by considering the effect 

of ambient temperature on the fleet size and energy consumption. We introduced the 

mathematical model of the problem and used it to solve small-size problems on CPLEX. 

We solved large-size problems with an ALNS algorithm. We also performed a case study 

using real-world data from a logistics service provider in Adana, Turkey where we 

optimized the delivery routes for a network of 12 customers at four different days with 

different ambient temperature values. Our results showed that temperature can have a 

significant effect on the delivery operations since as temperature increases: (i) the total 

energy consumption of the operations increases, (ii) the route, therefore the sequence of 

customers served changes, (iii) the number of vehicles required to complete the service 

might increase, and (iv) it might become impossible to serve all customers using an EV 

fleet. Routing plans made without considering the temperature effect might not be cost-

optimal or might even become infeasible at hotter days. Similar results might also be 

observed at colder temperatures, since vehicle energy consumption will also increase with 

a decrease in temperature as shown in Figure 2.1. This issue is particularly important in 

regions with extreme weather conditions as well as in temperature-sensitive operations 

such as cold logistics chains. Therefore, planning ahead for expected weather conditions 

can reduce the efficiency losses and prevent operation failures. In this chapter, we provide 

a framework that enables to perform such routing plans in last/first mile logistics 

activities. 

 

The results of this study can have various implications for real world managerial decisions 

in logistics operations. To address the aforementioned issues, logistics service providers 
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might consider running a mixed fleet with different powertrain options (EVs, ICEVs, 

hybrid and plug-in hybrid EVs). Increasing the number of available charging stations 

and/or having a fleet of EVs with fast-charging capabilities might reduce the impact of 

temperature. However, frequent and fast charging can have battery life implications and 

this trade-off has to be considered when planning. Similarly, vehicles with longer driving 

ranges would reduce the impact, but this would require having bigger batteries and 

therefore reducing the load capacity; another trade-off that needs to be assessed.  

 

There are some limitations and assumptions in this chapter. We used data collected from 

Nissan Leaf (a light duty passenger vehicle) users and generalize the temperature 

dependency relation to be used for a medium-duty EV. In reality, the commercial vehicle 

might differ in heating, ventilation, air conditioning (HVAC) efficiency, and battery 

technology, and might therefore have a different actual consumption. In addition, the data 

was collected from several Nissan Leaf drivers and the reported results reflect the average 

of their behavior. Individual drivers might differ in terms of driving style and speed, as 

well as in climate control preferences, therefore might experience different results. 

Furthermore, in our case study we only consider recorded temperature levels, however, 

in Adana humidity can reach 70% in summer months (Weather.com, 2018) and the feels-

like temperature was recorded as high as 47oC in 2017 (Daily Sabah, 2017). This would 

cause an increase on the HVAC load and more drastic effects on routing plans might be 

observed. Nevertheless, our results show the general trends fairly, since HVAC use will 

increase energy consumption for all EVs, even though its degree may change from vehicle 

to vehicle. This chapter is the first to investigate these effects within the context of vehicle 

routing and scheduling.  
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3. SPEED-UP TECHNIQUES FOR SOLVING THE ELECTRIC 

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

 

 

 

 Introduction to Electric Vehicle Routing Problem with Time Windows 

 

 

Electric vehicles (EVs) are becoming more popular in logistics and transportation 

operations throughout the world due to various factors including government incentives, 

fluctuations in oil prices, energy efficiency of electric engines compared to internal 

combustion engines and low electricity prices. They also help companies reduce their 

carbon footprint and meet their sustainability objectives. On the other hand, limited 

driving range and long recharging times of EVs raise additional challenges in route 

planning. A trip from a customer to another may not be realizable because of long travel 

distance and/or customer service time windows. In certain cases, it may not even be 

possible to serve some customers using an EV. While it may be difficult to trace the 

infeasibility of a given instance, the elimination of infeasible arcs may speed up the 

solution algorithm. In this chapter, we consider the Electric Vehicle Routing Problem 

with Time Windows (EVRPTW) and propose new preprocessing techniques to reduce 

the problem size and enhance the computational performance of the solution methods. 

Furthermore, we develop an algorithm which can be used to identify if a problem instance 

is infeasible.  

 

EVRPTW is an extension of the Vehicle Routing Problem with Time Windows 

(VRPTW) where an EV fleet serves the customers instead of internal combustion engine 

vehicles. The first study that considers an EV fleet in freight transportation was conducted 

by Conrad and Figliozzi (2011) where EVs can recharge at selected customer locations. 

Erdoğan and Miller-Hooks (2012) introduced the Green Vehicle Routing Problem 
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(GVRP) where the fleet consists of alternative fuel vehicles (AFVs). In this problem, 

AFVs are allowed to refuel at public alternative fueling stations (AFSs). The refueling 

time is assumed constant and the tank is full at departure from the station. Wang and Cheu 

(2013) investigated a similar problem for a fleet of electric taxis by considering a similar 

full recharge strategy. 

 

Schneider et al. (2014) introduced EVRPTW by assuming a full recharge strategy as well. 

They formulated the mathematical programming model of the problem and developed a 

hybrid metaheuristic approach that combines Variable Neighborhood Search (VNS) and 

TS algorithms. They also generated a new data set based on the well-known Solomon 

(1987) dataset for VRPTW. The full recharge assumption was relaxed by Bruglieri et al. 

(2015) and Keskin and Çatay (2016). The former proposed a VNS Branching method to 

solve small-size problems whereas the latter developed an Adaptive Large Neighborhood 

Search (ALNS) algorithm that efficiently solves large-size problems. Desaulniers et al. 

(2016) considered four recharging cases in EVRPTW, namely full and partial strategies 

allowing single and multiple recharges en-route, and proposed a branch-price-and-cut 

algorithm.  

 

In the literature, several variants of EVRP and EVRPTW were addressed including the 

cases of operating a mixed fleet of EVs and internal combustion engine vehicles (Goeke 

and Schneider, 2015; Sassi et al., 2015, Macrina et al., 2018, Hiermann et al., 2019), 

heterogeneous fleet of EVs (Hiermann et al., 2016), fast charging (Felipe et al., 2014; 

Çatay and Keskin, 2017; Keskin and Çatay, 2018), non-linear charging function 

(Montoya et al., 2017; Froger et al., 2019), battery swapping (Yang and Sun, 2015; Hof 

et al., 2017; Paz et al., 2018), location routing (Worley et al., 2012; Hof et al., 2017; 

Schiffer and Walther, 2017), two-echelons (Jie et al., 2019), flexible time windows (Taş, 

2020), and two-stages (Basso et al., 2019). Some recent studies addressed the availability 

of recharging stations and queueing for recharging service (Froger et al., 2017; Keskin et 

al., 2019). A  comprehensive review of the EV technology and survey of the EVRP 

variants may be found in Pelletier et al. (2016), Pelletier et al. (2017), and Erdelić and 

Carić (2019). 

 

In this chapter, we revisit the EVRPTW by allowing partial recharges and present some 

reduction techniques. Our contributions to the literature are threefold: (i) we develop a 
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preprocessing procedure to reduce the graph, hence the number of decision variables in 

the problem; (ii) we propose an algorithm to identify whether a problem instance is 

feasible or not; (iii) we perform extensive computational tests to investigate the 

performance of the proposed approaches. The remainder of this chapter is organized as 

follows: the problem description and mathematical model are presented in Section 3.2. 

Section 3.3 introduces the network reduction procedure by describing the proposed 

preprocessing techniques and valid inequalities. Section 3.4 presents an algorithm that 

effectively checks the feasibility of a problem instance. Section 3.5 investigates the 

impact of the proposed preprocessing techniques on the computational performance. Final 

remarks and future research directions conclude this chapter. 

 

 

 Problem statement 

 

 

EVRPTW deals with a set of customers with known demands, service time windows, and 

service durations. The fleet is homogeneous and consists of EVs that are allowed to 

recharge their batteries en-route at charging stations. Although the energy transferred by 

a charger is a non-linear function of the recharge duration, recharging in the first phase is 

a linear function of time and it is practical in the real world to operate within this phase 

to prolong the battery life (Pelletier et al., 2017). Therefore, without loss of generality, 

we assume a linear recharging function. Similar to the second chapter we allow one 

recharge between two consecutive customers, which is the practical case in last-mile 

logistics (Bruglieri et al., 2016; Keskin and Çatay, 2018; Bruglieri et al., 2018). We 

assume that all EVs depart with full battery as they can be recharged overnight in the 

depot. The objective function is to minimize the total energy consumption by using 

minimum number of vehicles. 

 

We use the notation and modelling conventions in line with the recent literature for ease 

of understanding (see Keskin and Çatay, 2016; Bruglieri et al., 2016). 𝑉 = {1, … , 𝑛} and 

F denote the set of customers and recharging stations, respectively. All EVs depart from 

node 0 (departure depot) and at the end of their tour return to node 𝑛 + 1 (arrival depot). 

Let  𝑉0 = 𝑉 ∪ {0}, 𝑉𝑛+1 = 𝑉 ∪ {𝑛 + 1} and 𝑉0,𝑛+1 =  𝑉 ∪ {0, 𝑛 + 1}. The problem can be 

defined on a complete directed graph 𝐺 =  (𝑁, 𝐴) where 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} 
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represents the set of arcs and 𝑁 = 𝑉0,𝑛+1 ∪ 𝐹 is the total set of nodes. Each customer 𝑖 ∈ 𝑉 

is associated with service time 𝑠𝑖, time window [𝑒𝑖, 𝑙𝑖], and a positive demand 𝑞𝑖. The 

battery and cargo capacities of the vehicles are denoted by 𝑄 and 𝐶, respectively. 𝑔 is the 

recharge rate per unit time and ℎ is discharge rate per unit distance. 𝑑𝑖𝑗 and 𝑡𝑖𝑗 represent 

the distance and travel time, respectively, from customer 𝑖 to customer 𝑗 if the journey is 

direct. If the vehicle recharges at station 𝑠 during its trip from customer 𝑖 to customer 𝑗, 

then �̂�𝑖𝑗𝑠 = 𝑑𝑖𝑠 + 𝑑𝑠𝑗 − 𝑑𝑖𝑗 and �̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 + 𝑡𝑠𝑗 − 𝑡𝑖𝑗 denote the additional detour distance 

and travel time. Note that �̂�𝑖𝑗𝑠 does not include the recharging time at station 𝑠. The total 

energy consumption from customer 𝑖 to customer 𝑗 is calculated as ℎ𝑖𝑗 = ℎ × 𝑑𝑖𝑗 when the 

journey is direct whereas the additional energy consumption is ℎ̂𝑖𝑗𝑠 = ℎ𝑖𝑠 + ℎ𝑠𝑗 − ℎ𝑖𝑗 if 

the journey is via station 𝑠. 

 

We keep track of battery SoC at arrival at customer/depot 𝑖 ∈ 𝑉0,𝑛+1, at arrival at station 

𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, and at departure from station 𝑠 ∈ 𝐹 on route 

(𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 using decision variables 𝑦𝑖, 𝑦𝑖𝑗𝑠, and 𝑌𝑖𝑗𝑠, respectively. 𝜏𝑖 denotes 

service starting time at node 𝑖 ∈ 𝑁. 𝑥𝑖𝑗 is a binary decision variable where it takes value 

1 if node 𝑗 ∈ 𝑉𝑛+1 visited after node 𝑖 ∈ 𝑉0 and 0 otherwise. The binary decision variable 

𝑧𝑖𝑗𝑠 takes value 1 if arc (𝑖, 𝑗) is traversed, 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, by visiting station 𝑠 ∈ 𝐹 en-

route. Table 3.1 summarize the mathematical notation. 

 

Table 3.1 Mathematical notation for EVRPTW 

Sets:  

𝑉 Set of customers 

𝑉0 Set of customers and departure depot 

𝑉𝑛+1 Set of customers and arrival depot 

𝑉0,𝑛+1 Set of customers, departure, and arrival depots 

𝐹 Set of recharging stations 

𝑁 Set of customers, stations, and depots 

Parameters: 

𝑑𝑖𝑗 Distance between node 𝑖 and 𝑗 

�̂�𝑖𝑗𝑠 Additional distance of visiting station 𝑠 between customers 𝑖 and 𝑗, �̂�𝑖𝑗𝑠 = 𝑑𝑖𝑠 + 𝑑𝑠𝑗 − 𝑑𝑖𝑗 

𝑡𝑖𝑗 Travel time from node 𝑖 and 𝑗 

�̂�𝑖𝑗𝑠 Additional trip time of visiting station 𝑠 between customers 𝑖 and 𝑗, �̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 + 𝑡𝑠𝑗 − 𝑡𝑖𝑗 

𝑞𝑖 Demand of customer 𝑖 

𝑟𝑖 Time required to serve customer 𝑖 
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[𝑒𝑖 , 𝑙𝑖] Service time window of customer 𝑖 

𝐶 Cargo capacity of the vehicles 

𝑄 Battery capacity of the vehicles 

𝑔 Recharging rate 

ℎ𝑖𝑗 Total energy consumed to traverse arc (𝑖, 𝑗), ℎ𝑖𝑗 = ℎ × 𝑑𝑖𝑗 

ℎ̂𝑖𝑗𝑠 Additional consumption if station 𝑠 is visited between customers 𝑖 and 𝑗, ℎ̂𝑖𝑗𝑠 = ℎ𝑖𝑠 +

ℎ𝑠𝑗 − ℎ𝑖𝑗 

Decision variables: 

𝜏𝑖 Service starting time at customer 𝑖 

𝑢𝑖 Cargo level at departure from customer 𝑖  

𝑦𝑖 Battery SoC of a vehicle upon arrival at (departure from) customer/depot 𝑖 ∈ 𝑉0,𝑛+1 

𝑦𝑖𝑗𝑠 Battery SoC of a vehicle upon arrival at station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 

𝑌𝑖𝑗𝑠 Battery SoC of a vehicle at departure from station 𝑠 ∈ 𝐹 on route (𝑖, 𝑠, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 

𝑥𝑖𝑗 1 if a vehicle travels from node 𝑖 ∈ 𝑉0 to node 𝑗 ∈ 𝑉𝑛+1; 0 otherwise 

𝑧𝑖𝑗𝑠 1 if a vehicle traverses arc (𝑖, 𝑗), 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, through station 𝑠 ∈ 𝐹; 0 otherwise 

 

The 0-1 mixed-integer programming formulation of the problem is as follows: 

 

Min ∑ ∑ (ℎ𝑖𝑗𝑥𝑖𝑗 + ∑ ℎ̂𝑖𝑗𝑠𝑧𝑖𝑗𝑠

𝑠∈𝐹

)

𝑗∈𝑉𝑛+1𝑖∈𝑉0

+ 𝑃 ∑ 𝑥0𝑗

𝑗∈𝑉𝑛+1

 
(3.1) 

subject to   

𝑦0 = 𝑄  (3.2) 

∑ 𝑥𝑖𝑗

𝑗∈𝑉𝑛+1

𝑗≠𝑖

= 1 ∀ 𝑖 ∈ 𝑉 (3.3) 

∑ 𝑥𝑖𝑗

𝑖∈𝑉0

𝑖≠𝑗

− ∑ 𝑥𝑗𝑖

𝑖∈𝑉𝑛+1

𝑖≠𝑗

= 0 ∀ 𝑗 ∈ 𝑉 (3.4) 

∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

≤ 𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (3.5) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗 + ∑(�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠 + 𝑔(𝑌𝑖𝑗𝑠 − 𝑦𝑖𝑗𝑠))

𝑠∈𝐹

− 𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (3.6) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀ 𝑗 ∈ 𝑁 (3.7) 

𝑞𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑗 − 𝑞𝑗𝑥𝑖𝑗 + 𝐶(1 − 𝑥𝑖𝑗) ≤ 𝐶 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (3.8) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − ℎ𝑖𝑗𝑥𝑖𝑗 + 𝑄(1 − 𝑥𝑖𝑗 + ∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (3.9) 
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𝑦𝑗 ≤ ∑(𝑌𝑖𝑗𝑠 − ℎ𝑠𝑗𝑧𝑖𝑗𝑠)

𝑠∈𝐹

+ 𝑄(1 − ∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

) 

+𝑄(1 − 𝑥𝑖𝑗) 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (3.10) 

0 ≤ 𝑦𝑖𝑗𝑠 ≤ 𝑦𝑖 − ℎ𝑖𝑠𝑧𝑖𝑗𝑠 + 𝑄(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (3.11) 

𝑦𝑖𝑗𝑠 ≤ 𝑌𝑖𝑗𝑠 ≤ 𝑄𝑧𝑖𝑗𝑠 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (3.12) 

𝑥𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (3.13) 

𝑧𝑖𝑗𝑠 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (3.14) 

 

The objective function (3.1) minimizes the total energy consumed by a fleet consisting of 

minimum number of EVs. The latter is guaranteed with the last term which minimizes the 

number of routes by associating each with a large positive penalty P. Constraints (3.2(2.4) 

assure that the EVs depart the depot with their batteries fully recharged. Constraints (3.3) 

and (3.4(2.6) are the connectivity and flow conservation constraints.  Constraints (3.5) 

guarantee that if the EV travels from customer 𝑖 to customer 𝑗 by recharging its battery 

en-route, then it serves customer 𝑗 following customer 𝑖. Constraints (3.6) keep track of 

service times and ensure their consistency. Constraints (3.7) make sure that each customer 

is served within its predetermined time windows. Constraints (3.6) and (3.7) serve as 

subtour elimination constraints as well. Cargo capacity of the vehicles is imposed by 

constraints (3.8). Constraints (3.9)-(3.12) determine the battery SoC at each node and 

ensure that it is never negative. Constraints (3.9) check the battery SoC consistency if an 

EV travels from customer 𝑖 to customer 𝑗 without recharging en-route. Constraints (3.10) 

keep track of battery SoC at the arrival at customer 𝑗 if the vehicle visits a recharging 

station after it has departed from customer 𝑖. Battery SoC at the arrival at a recharging 

station is established by Constraints (3.11). Constraints (3.12) impose lower and upper 

bounds on the battery SoC at departure from recharging stations. Finally, the domain of 

binary decision variables are defined by constraints (3.13) and (3.14). 

 

 

 Network reduction 

 

 

Schneider et al. (2014) presented some basic preprocessing steps to remove the infeasible 

arcs. The removal of infeasible arcs may significantly reduce the graph and hence, 

accelerate the solution time. So, in this section, we propose a set of conditions that helps 
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identify infeasible arcs and remove them from the problem in an attempt to reduce the 

computational effort and enhance solution quality.   

 

 

3.3.1. Connectivity of the depot to a customer  

 

A vehicle departing from depot 0 can visit customer 𝑖 if it can reach station 𝑠 (the closest 

station to the customer 𝑖) after visiting customer 𝑖 without violating the battery capacity 

and time-window restrictions. There are two possible cases: (a) the vehicle travels to 

customer 𝑖 directly; (b) the vehicle travels to customer 𝑖 after having its battery recharged 

en-route.  

 

In case (a), we define 𝜃0𝑖 and 𝜃𝑖𝑠 as the earliest times that the vehicle can start serving 

customer 𝑖, and the vehicle can arrive at station 𝑠, respectively. If at least one of the 

conditions (3.15)-(3.17) is violated, then the vehicle cannot travel from the depot to 

customer 𝑖 directly. 

 

ℎ0𝑖 + ℎ𝑖𝑠 ≤ 𝑄 𝑖 ∈ 𝑉 (3.15) 

𝜃0𝑖 = 𝑒0 + 𝑡0𝑖 ≤ 𝑙𝑖 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.16) 

𝜃𝑖𝑠 = max{𝜃0𝑖, 𝑒𝑖} + 𝑟𝑖 + 𝑡𝑖𝑠 ≤ 𝑙𝑠 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.17) 

 

Conditions (3.15) and (3.16) impose energy consumption and time-window restrictions 

for a vehicle to reach customer 𝑖 after having departed from the depot. Condition (3.17) 

checks the time window feasibility of station 𝑠. 

 

Let 𝐹0𝑖 be the set of feasible stations that can be visited when the vehicle travels from the 

depot to customer 𝑖. In case (b), we define 𝜃0𝑠, 𝜃𝑠𝑖, and 𝜃𝑖𝑠
′  as the earliest times that the 

vehicle can start recharging at station 𝑠 ∈ 𝐹0𝑖, the vehicle can start serving customer 𝑖, 

and the vehicle can arrive at 𝑠, respectively. 𝜇𝑠 denotes the minimum amount of energy 

that the vehicle should recharge in station 𝑠 in order to continue its route to reach station 

𝑠 after visiting customer 𝑖 and is calculated as 𝜇𝑠 = ℎ𝑠𝑖 + ℎ𝑖𝑠 − (𝑄 − ℎ0𝑠). Consider the 

following conditions: 

 



  37 

 

ℎ0𝑠 ≤ 𝑄 𝑠 ∈ 𝐹 (3.18) 

𝜃0𝑠 = 𝑒0 + 𝑡0𝑠 ≤ 𝑙𝑠 𝑠 ∈ 𝐹 (3.19) 

𝜃𝑠𝑖 = max{𝜃0𝑠, 𝑒𝑠} + 𝑔(𝜇𝑠) + 𝑡𝑠𝑖 ≤ 𝑙𝑖 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.20) 

ℎ𝑠𝑖 + ℎ𝑖𝑠 ≤ 𝑄 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.21) 

𝜃𝑖𝑠
′ = max{𝜃𝑠𝑖 , 𝑒𝑖} + 𝑟𝑖 + 𝑡𝑖𝑠 ≤ 𝑙𝑠 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.22) 

 

Conditions (3.18) and (3.19) impose energy consumption and time-window restrictions 

for a vehicle to reach station 𝑠 after having departed from the depot. Condition (3.20) 

checks the time window feasibility of customer 𝑖. Conditions (3.21) and (3.22) make sure 

that after visiting customer 𝑖 the vehicle can arrive at station 𝑠 without running out of 

energy and before its late service time 𝑙𝑠, recpectively. Station 𝑠 is included in 𝐹0𝑖 if it 

satisfies (3.18)-(3.22). If 𝐹0𝑖 = ∅, then a vehicle departing from the depot cannot reach 

customer 𝑖 after having been recharged en-route. 

D

SoC = Q

Ci

 

(a) The vehicle travels directly from the depot to customer 𝑖 

D

SoC = Q

Ci

s

 

(b) The vehicle is recharged while traveling from the depot to customer 𝑖 

Figure 3.1 Conditions for the connectivity of the depot to customer i 

 

Arc (0, 𝑖) can be removed from the set of potential arcs in the network if the vehicle 

cannot travel to customer 𝑖 directly or via a station from the depot. Both cases are 

illustrated in Figure 3.1. 

 

 

3.3.2. Connectivity of a customer to another customer 

 

Customer 𝑗 is accessible from customer 𝑖 if the vehicle can reach station 𝑠 (closest station 

to customer 𝑗) after having departed from station 𝑠 (closest station to customer 𝑖) and 
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visited customers 𝑖 and 𝑗 on its path without violating battery capacity and time-window 

restrictions. Again, there are two possible cases: (a) the vehicle travels to customer 𝑗 

directly; (b) the vehicle travels to customer 𝑗 after having its battery recharged en-route. 

Case (a) is feasible if all the following conditions hold: 

 

𝜃𝑠𝑖 =  𝑒𝑠 + 𝑡𝑠𝑖 ≤ 𝑙𝑖 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.23) 

𝜃𝑖𝑗 = max {𝜃𝑠𝑖 , 𝑒𝑖} + 𝑟𝑖 + 𝑡𝑖𝑗 ≤ 𝑙𝑗 𝑖, 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.24) 

𝜃𝑗𝑠 = max {𝜃𝑖𝑗 , 𝑒𝑗} + 𝑟𝑗 + 𝑡𝑗𝑠 ≤ 𝑙𝑠 𝑖, 𝑗 ∈ 𝑉, 𝑠𝑗
∗ ∈ 𝐹 (3.25) 

ℎ𝑠𝑖 + ℎ𝑖𝑗 + ℎ𝑗𝑠 ≤ 𝑄 𝑖, 𝑗 ∈ 𝑉, 𝑠, 𝑠 ∈ 𝐹 (3.26) 

 

Conditions (3.23), (3.24), and (3.25) make sure that the service start time at customer 𝑖, 

customer 𝑗, and station 𝑠 are less than their latest service times, respectively. Condition 

(3.26) checks whether the vehicle battery capacity is sufficient to make this trip. If 

condition (3.26) does not hold, the vehicle cannot make this path without recharging 

between customers 𝑖 and 𝑗.  

 

For case (b), let 𝐹𝑖𝑗 be the set of feasible stations that can be visited between customers 𝑖 

and 𝑗. Then, consider the following conditions: 

 

ℎ𝑠𝑖 + ℎ𝑖𝑠 ≤ 𝑄 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.27) 

ℎ𝑠𝑗 + ℎ𝑗𝑠 ≤ 𝑄 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.28) 

𝜃𝑖𝑠 = max {𝜃𝑠𝑖 , 𝑒𝑖} + 𝑟𝑖 + 𝑡𝑖𝑠 ≤ 𝑙𝑠 𝑖 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.29) 

𝜃𝑠𝑗 = max {𝜃𝑖𝑠
∗ , 𝑒𝑠} + 𝑔(𝜇𝑠

′ ) + 𝑡𝑠𝑗 ≤ 𝑙𝑗 𝑖, 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.30) 

𝜃𝑗𝑠
′ = max {𝜃𝑠𝑗 , 𝑒𝑗} + 𝑟𝑗 + 𝑡𝑗𝑠 ≤ 𝑙𝑠 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.31) 

 

where 𝜇𝑠
′ = ℎ𝑠𝑗 + ℎ𝑗𝑠 − (𝑄 − ℎ𝑠𝑖−ℎ𝑖𝑠) is the minimum energy that the vehicle needs to 

travel path 𝑖 → 𝑠 →  𝑗. Conditions (3.27) and (3.28) check the driving range to serve 

customer 𝑖 and customer 𝑗, respectively. Conditions (3.29), (3.30), and (3.31) assure time-

window feasibility of station 𝑠, customer 𝑗, and station 𝑠, respectively. Station 𝑠 is 

included in 𝐹𝑖𝑗 if (3.23) and (3.27)-(3.31) are satisfied. If 𝐹𝑖𝑗 = ∅, then the vehicle cannot 

travel from customer 𝑖 to customer 𝑗 via any station. Arc (𝑖, 𝑗) can be removed from the 

set of potential arcs in the network if customer 𝑖 is not connected to customer 𝑗 directly 
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or via a station. Figure 3.2 shows the conditions that customer 𝑖 is connected to customer 

𝑗. 

 

Ci

SoC = Q

Cj

 

(a) The vehicle is recharged while traveling from customer 𝑖 to customer 𝑗 

Ci

SoC = Q

Cj

s

 

(b) The vehicle travels directly from customer 𝑖 to customer 𝑗 

Figure 3.2 Conditions for the connectivity of customer i to customer j 

 

 

3.3.3. Connectivity of a customer to the depot 

 

Depot 𝑛 + 1 is accessible from customer 𝑗 if a fully charged vehicle departing from station 

𝑠 (closest station to customer 𝑗) can serve customer 𝑗 and then reach the depot without 

violating the battery capacity and time-window restrictions. Again, the trip from customer 

𝑗 to the depot can be direct (a) or via a station (b). For case (a), consider the following 

conditions: 

 

ℎ𝑠𝑗 + ℎ𝑗,𝑛+1 ≤ 𝑄 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.32) 

𝜃𝑠𝑗 =  𝑒𝑠 + 𝑡𝑠𝑗 ≤ 𝑙𝑗 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.33) 

𝜃𝑗,𝑛+1 = max{𝜃𝑠𝑗 , 𝑒𝑗} + 𝑟𝑗 + 𝑡𝑗,𝑛+1 ≤ 𝑙𝑛+1  𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹 (3.34) 

 

Condition (3.32) checks the driving range feasibility whereas conditions (3.33) and (3.34) 

control the time-window feasibility of customer 𝑗 and the depot at the end of the trip, 

respectively. 𝜃𝑠𝑗 denotes the earliest time that customer 𝑗 can be served if the vehicle 
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travels from station 𝑠 to customer 𝑗  while 𝜃𝑗,𝑛+1 represents the earliest time that the 

vehicle can return to depot after having served customer 𝑗. 

 

Cj

SoC = Q

D

 

(a) The vehicle is recharged while traveling from customer 𝑗 to depot 𝑛 + 1 

Cj

SoC = Q

D

s

 

(b) The vehicle travels directly from customer 𝑗 to depot 𝑛 + 1 

Figure 3.3 Conditions for the connectivity of customer j to depot n+1 

 

For case (b), let 𝐹𝑗,𝑛+1 be the set of feasible stations that the vehicle can visit when 

traveling from customer 𝑗 to depot 𝑛 + 1. Consider the following conditions: 

 

ℎ𝑠𝑗 + ℎ𝑗𝑠 ≤ 𝑄 𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.35) 

𝜃𝑗𝑠 = max {𝜃𝑠𝑗, 𝑒𝑗} + 𝑠𝑗 + 𝑡𝑗𝑠 ≤ 𝑙 𝑠  𝑗 ∈ 𝑉, 𝑠 ∈ 𝐹, 𝑠 ∈ 𝐹 (3.36) 

ℎ𝑠,𝑛+1 ≤ 𝑄 𝑠 ∈ 𝐹 (3.37) 

𝜃𝑠,𝑛+1 ≤ 𝑙𝑛+1  𝑠 ∈ 𝐹 (3.38) 

 

where 𝜇𝑠
′′ = ℎ𝑠,𝑛+1 − (𝑄 − ℎ𝑠𝑗−ℎ𝑗𝑠) represents the minimum amount of energy that the 

vehicle needs to recharge in station 𝑠 in order to return to the depot. Conditions (3.35) 

and (3.36) check the driving range and time-window feasibility of the trip from customer 

𝑗 to station 𝑠, respectively, whereas conditions (3.37) and (3.38) do the same for the trip 

from station 𝑠 to the depot. 𝜃𝑠,𝑛+1 = max{𝜃𝑗𝑠, 𝑒𝑠} + 𝑔(𝜇𝑠
′′) + 𝑡𝑠,𝑛+1 shows the earliest time 

that the vehicle can return to depot in this case. Station 𝑠 is included in 𝐹𝑗,𝑛+1 if (3.33) and 

(3.35)-(3.38) are satisfied. If 𝐹𝑗,𝑛+1 = ∅, then the vehicle cannot travel from customer 𝑗 to 

depot via any station. Arc (𝑗, 𝑛 + 1) can be removed from the set of arcs in the network if 
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customer 𝑗 is not connected to the depot directly or via a station. Both cases are illustrated 

in Figure 3.3. 

 

 

3.3.4. Valid inequalities 

 

We add the following valid inequalities to tighten the model and speed up the solution 

time:  

 

𝑧0𝑗1 = 0 ∀ 𝑗 ∈ 𝑉𝑛+1 (3.39) 

𝑧𝑖,𝑛+1,1 = 0 ∀ 𝑖 ∈ 𝑉0 (3.40) 

𝑦𝑖 ≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑗∈𝑉𝑛+1

𝑗≠𝑖

 ∀ 𝑖 ∈ 𝑉0 (3.41) 

𝑒0 + 𝑡0𝑖 ≤ 𝜏𝑖 ≤ 𝑙𝑛+1 − 𝑡𝑖,𝑛+1 ∀ 𝑖 ∈ 𝑁 (3.42) 

 

Noting that recharging station 1 is located at the depot, equalities (3.39) and (3.40) prevent 

a vehicle to be recharged there immediately after it has departed from or before it arrives 

at the depot. Inequalities (3.41) impose a limitation on battery SoC when the vehicle 

departs from a customer. Inequalities (3.42) tighten the time window constraints 

associated with the stations and customers. 

 

Note that we also apply the well-known capacity cut that assign two customers on 

different routes if their total demand exceeds the cargo capacity and benefit from station 

dominance rules presented by Bruglieri et al. (2016). 

 

 

  Feasibility check algorithm 

 

 

The problem is infeasible if at least one customer cannot be accessible from the depot 

because of the driving range and/or time window restriction. To detect such infeasibilities, 

we present an algorithm that checks whether the EV can reach every customer 𝑗 from the 

depot and return to depot from that customer without running out of battery and violating 
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the corresponding time windows. Since the battery is full when departing from the depot 

but has less energy when departing from a customer, the infeasibility of the return trip is 

more likely. So, we give priority to checking first the path from the customer to the depot. 

The “path” here refers to the sequence of customers visited. To reduce the computation 

time, we adopt the 𝑘-shortest paths approach since shorter paths are more likely to be 

feasible due to less energy consumption. The flowchart of the algorithm is illustrated in 

Figure 3.4. 

 

In the first step, we investigate whether the EV can return to depot after serving customer 

𝑗 either directly or by visiting other customers on its path without running out of energy. 

Note that since once recharge is permitted between two consecutive customers, the EV 

may have to visit multiple customers and be able to recharge its battery multiple times in 

order to reach the depot. We check if there is a feasible path from customer 𝑗 to depot by 

solving kth shortest path. If no such path exists then the problem is infeasible; otherwise, 

we select the shortest path from the set of shortest paths from customer 𝑗 to depot. The 

maximum possible number for k is ∑ 𝑖! (𝑛−2
𝑖

)
(𝑛−2)
𝑖=0  where 𝑛 is the number of customers 

plus depot. 

 

If a feasible path is found in the first step, in the second step, the algorithm checks whether 

there exists a path from the depot to customer 𝑗 (using kth shortest path approach) such 

that none of the customers served in the return trip is visited again. If no feasible path 

exists, then the algorithm returns to step one and continues the same search procedure 

continuing from the (𝑘 + 1)st shortest path from customer 𝑗 to depot and proceeds with 

the second step when a feasible path is determined. This procedure is repeated for all the 

customers until feasible forward and return paths are determined. If no such path exists 

for a customer, then the problem is infeasible. Note that all possible paths are evaluated 

in the worst case. 
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Figure 3.4 Feasibility check algorithm 

 

 

 Numerical results 

 

 

To investigate the impact of the proposed preprocessing techniques on computation time 

and solution quality, we perform computational tests using Schneider et al. (2014) data. 

This data consists of three problem types where the customers are clustered (c-type), 

randomly distributed (r-type), and both clustered and randomly distributed (rc-type). The 

data is also classified in two types which differ by the length of the time windows, and 

the vehicle cargo and battery capacities. Subsets r1, c1, and rc1 involve narrow time 

windows and shorter scheduling horizon whereas the time windows are wide, and the 

scheduling horizon is longer in subsets r2, c2, and rc2. The data includes small and large-
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size instances. In our investigation we used 12 small-size instances which involve 15 

customers and 3 to 8 recharging stations and 29 type-1 large-size instances which consist 

of 100 customers and 21 stations.   

 

Although all the instances in Schneider et al. (2014) dataset are feasible, we usually do 

not know whether all the customers in a given data can be served using an EV fleet subject 

to range anxiety. In the second chapter we investigated the influence of ambient 

temperature on routing decisions and observed that a problem may become infeasible 

because of increased energy consumption due to the utilization of heater/cooler in 

cold/hot weather conditions. Furthermore, the graph may benefit more from the proposed 

preprocessing techniques as its size may reduce with increased consumption rate. So, to 

better investigate the performance of the preprocessing techniques and feasibility check 

algorithm, we consider three different temperature conditions as described in chapter 2: 

mild (22⁰C), intermediate (8⁰C or 27⁰C),  and intense (0⁰C or 33⁰C). The original data 

corresponds to the mild temperature case where the consumption rate is set equal to 1.0 

unit of energy per unit distance/time traveled and it increases to 1.09 and 1.27 in 

intermediate and intense cases, respectively. 

 

All the experiments were performed on a workstation equipped with Intel(R) Core (TM) 

i7-8700 processor with 3.20 GHz speed and 32 GB RAM. Gurobi 9.00 optimization 

solver was used to solve the small-size instances with 2-hour run-time limit. To solve 

large-size instances, we employ ALNS. 

 

 

3.5.1.  Analysis of network reduction 

 

Table 3.2 Error! Reference source not found.reports the average network densities 

under different temperature conditions after applying the proposed preprocessing 

procedure to different data types. ‘#Inst’ refers to the number of instances. In the 

benchmark problems, the customer network is complete (in mild temperature conditions); 

so, the network density is 100% without any preprocessing. We observe that in small-size 

dataset the network density decreases to 76.73% on the average. In other words, almost 

¼ of the 𝑥𝑖𝑗 variables can be eliminated from the problem. The reduction is more 

significant in intermediate and intense cases as expected, where the average densities are 
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73.92 and 63.60%, respectively. Similar reduction behavior can be observed in large-size 

instances as well. These results indicate that a solution method may greatly benefit from 

the proposed reduction techniques. 

  

Table 3.2 Average customer-network densities after preprocessing 

#Inst Mild Intermediate Intense #Inst Mild Intermediate Intense

r 4 73.62 70.06 56.88 9 74.39 72.36 67.14

c 4 76.55 74.42 65.48 12 71.50 69.15 63.11

rc 4 80.02 77.27 68.45 8 69.32 66.72 61.44

All 12 76.73 73.92 63.60 29 72.09 69.81 64.31

Large-size Instances

Data Type

Small-size Instances

 

 

 

3.5.2.  Performance on small-size problems 

 

The results for mild, intermediate, and intense cases for small-size instances are presented 

in Table 3.3, Table 3.4, and Table 3.5, respectively. In these tables, columns ‘#Veh’, 

‘EC’, ‘t(sec)’, and ‘%Gap’ refer to the number of vehicles, energy consumption, run time 

in seconds and the percentage gap between the upper bound and lower bound as reported 

by Gurobi in 2-hour time limit, respectively whereas ‘%Δt’ in the last column reports the 

percentage acceleration in run time.  

 

Table 3.3 Results for small-size instances in the mild case 

Instance #Veh EC t (sec ) %Gap #Veh EC t (sec ) %Gap %Δt

r102c15-s8 5 412.78 1.23 0.00 5 412.78 0.62 0.00 49.37

r105c15-s6 4 336.15 0.86 0.00 4 336.15 0.86 0.00 0.00

r202c15-s6 1 507.32 7013.14 0.00 1 507.32 1435.40 0.00 79.53

r209c15-s5 1 313.24 310.88 0.00 1 313.24 252.14 0.00 18.89

c103c15-s5 3 348.46 7200.00 32.75 3 348.46 7200.00 32.72 0.00

c106c15-s3 3 275.13 108.76 0.00 3 275.13 4.98 0.00 95.42

c202c15-s5 2 383.62 215.96 0.00 2 383.62 194.13 0.00 10.11

c208c15-s4 2 300.55 102.59 0.00 2 300.55 67.35 0.00 34.35

rc103c15-s5 4 397.67 7200.00 43.34 4 397.67 607.98 0.00 91.56

rc108c15-s5 3 370.25 7200.00 98.60 3 370.25 7200.00 97.44 0.00

rc202c15-s5 2 394.39 8.88 0.00 2 394.39 5.09 0.00 42.62

rc204c15-s7 1 382.22 7200.00 96.81 1 382.22 7200.00 96.80 0.00

Average 2.58 368.48 3046.86 22.63 2.6 368.48 2014.05 18.91 35.15

Without Preprocessing With Preprocessing
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In the mild case (original data), the preprocessing did not improve the solution quality; 

however, it reduced the average %Gap from 22.63% to 18.91% and speeded up the solver 

by 35% on the average. Particularly in problem ‘rc103c15-s5’, the solver stopped after 2 

hours with a 43% gap whereas it proved the optimality of the upper bound in almost 10 

minutes when preprocessing was applied. 

 

Table 3.4 Results for small-size instances in the intermediate case 

Instance #Veh EC t (sec ) %Gap #Veh EC t (sec ) %Gap %Δt

r102c15-s8 5 469.75 1.78 0.00 5 469.75 0.80 0.00 55.26

r105c15-s6 4 396.56 0.95 0.00 4 396.56 0.59 0.00 37.71

r202c15-s6 2 403.24 4215.16 0.00 2 403.24 619.78 0.00 85.30

r209c15-s5 1 363.52 286.93 0.00 1 363.52 61.33 0.00 78.63

c103c15-s5 3 408.13 7200.00 32.74 3 408.13 7200.00 32.68 0.00

c106c15-s3 3 382.33 71.08 0.00 3 382.33 22.24 0.00 68.72

c202c15-s5 2 418.14 393.79 0.00 2 418.14 206.59 0.00 47.54

c208c15-s4 2 327.60 26.25 0.00 2 327.60 14.25 0.00 45.72

rc103c15-s5 4 433.46 5206.26 0.00 4 433.46 635.09 0.00 87.80

rc108c15-s5 3 428.86 7200.00 97.92 3 428.86 7200.00 65.69 0.00

rc202c15-s5 2 475.28 8.61 0.00 2 475.28 5.95 0.00 30.89

rc204c15-s7 1 419.49 7200.00 96.55 1 419.49 7200.00 96.54 0.00

Average 2.67 410.53 2650.90 18.93 2.67 410.53 1930.55 16.24 44.80

Without Preprocessing With Preprocessing

 
 

Table 3.4 Table 3.4shows that in the intermediate case, preprocessing reduced the average 

%Gap from 18.93% to 16.24% and accelerated Gurobi by 44.80% on the average. 

Furthermore, in problem ‘rc108c15-s5’, it allowed Gurobi to reduce the optimality gap 

from 97.92% to 65.59% in 2-hour time limit. 

 

Table 3.5 Results for small-size instances in the intense case

Instance #Veh EC t (sec ) %Gap #Veh EC t (sec ) %Gap %Δt

r102c15-s8 — INF 1.39 0.00 — INF < 0.01 0.00 99.99

r105c15-s6 5 514.52 1.55 0.00 5 514.52 0.67 0.00 56.57

r202c15-s6 — INF 5691.56 0.00 — INF < 0.01 0.00 99.99

r209c15-s5 — NS 7200.00 — — INF < 0.01 0.00 99.99

c103c15-s5 3 509.10 7200.00 32.63 3 509.10 6081.78 0.00 15.53

c106c15-s3 3 525.15 20.30 0.00 3 525.15 1.62 0.00 92.00

c202c15-s5 2 571.39 104.37 0.00 2 571.39 10.08 0.00 90.34

c208c15-s4 2 500.95 76.58 0.00 2 500.95 13.52 0.00 82.35

rc103c15-s5 4 508.13 1880.45 0.00 4 508.13 217.83 0.00 88.42

rc108c15-s5 — NS 7200.00 — INF 0.02 0.00 99.99

rc202c15-s5 — INF 16.86 0.00 INF < 0.01 0.00 99.99

rc204c15-s7 1 509.49 7200.00 95.96 1 509.49 7200.00 95.94 0.00

Average 2.86 519.82 3049.42 12.86 2.86 519.82 1127.13 8.00 77.10

Without Preprocessing With Preprocessing
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The results for the intense case are presented in Table 3.5. In this case, preprocessing 

reduced the average %Gap from 12.86% to 8.00% and speeded up the solver by 77.10% 

on the average. It also allowed Gurobi prove the optimality of the upper bound for 

problem ‘c103c15-s5’ and infeasibility of ‘r209C15-s5’ and ‘rc108C15-s5’ in less than a 

second. Note that without preprocessing Gurobi could neither find an upper bound for 

these two problems nor prove they are infeasible at the end of 2 hours.  

 

 

a) Without preprocessing 

 

b) With preprocessing 

Figure 3.5 Summary of results for small-size instances 

 

The results on small-size instances are summarized in Figure 3.5. In this figure, ‘#Feas’, 

‘#Opt’, ‘#Inf’, and ‘NoS’ indicate the number of instances that are feasible but could not 

be solved optimally in 2 hours, the number instances solved optimally, the number of 

infeasible instances, and the number of instances with no solution, respectively. The 

figure shows that Gurobi equipped with preprocessing found the optimal solution in two 

instances which could not be solved optimally without preprocessing within 2-hour time 

limit. Furthermore, Gurobi was unable to provide an upper bound in two instances neither 

could it prove their infeasibility within the given time limit whereas the proposed 

preprocessing allowed it to prove that they are infeasible. 

 

 

3.5.3.  Performance on large-size problems 
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To investigate the performance of the proposed preprocessing on large-size instances, we 

implement it in an ALNS algorithm. ALNS involves a destroy-and-repair framework 

where the current solution is partially destroyed at each iteration by randomly removing 

some customers and then repaired by inserting the removed customers into the partial 

solution in an attempt to improve the incumbent solution. Numerical scores are associated 

with each insertion and removal operator, which are updated based on their performances 

after each iteration. In this chapter, we employ the ALNS algorithm presented in chapter 

2 and perform 10 runs on each instance. 

 

Table 3.6 Result for large-size instances in mild case 

Instance #Veh      EC t (sec ) #Veh     EC t (sec ) %Δt

c101 12 1043.38 139.05 12 1043.38 132.77 4.52

c102 11 1019.68 315.39 11 1019.68 294.00 6.78

c103 10 973.92 772.10 10 974.09 719.03 6.87

c104 10 886.84 1638.93 10 886.76 1351.14 17.56

c105 11 1022.75 150.58 11 1046.01 145.52 3.36

c106 11 1022.15 219.95 11 1009.75 213.68 2.85

c107 10 1070.30 276.25 10 1050.18 248.77 9.95

c108 10 1044.76 339.77 10 1045.91 314.63 7.40

c109 10 943.69 472.16 10 969.72 449.16 4.87

r101 18 1642.74 62.01 17 1685.19 57.27 7.65

r102 16 1437.66 142.77 15 1513.97 126.18 11.62

r103 13 1256.89 151.76 13 1263.42 142.80 5.91

r104 11 1096.27 279.72 11 1086.90 250.74 10.36

r105 15 1402.64 75.89 14 1454.37 69.14 8.89

r106 13 1370.55 126.30 13 1313.64 120.70 4.43

r107 11 1154.86 215.79 11 1143.30 199.49 7.56

r108 11 1043.75 302.94 11 1052.60 290.06 4.25

r109 13 1216.39 121.16 13 1212.84 114.72 5.32

r110 12 1114.47 215.51 12 1107.45 201.33 6.58

r111 12 1108.86 227.41 12 1105.93 218.57 3.89

r112 11 1035.29 297.02 11 1034.00 282.92 4.75

rc101 15 1755.13 85.10 15 1691.93 75.34 11.47

rc102 14 1585.91 111.91 14 1526.15 93.03 16.87

rc103 13 1360.77 159.69 12 1380.54 141.00 11.70

rc104 11 1213.39 251.45 11 1196.25 229.46 8.75

rc105 14 1470.17 85.57 14 1460.91 82.28 3.85

rc106 13 1452.45 109.35 13 1421.57 95.66 12.52

rc107 12 1266.05 180.15 12 1265.90 163.85 9.04

rc108 11 1193.58 211.46 11 1163.32 191.39 9.49

Average 12.21 1174.46 266.80 12.07 1163.66 241.88 7.90

Without Preprocessing With Preprocessing
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The results of large-size instances are shown in Table 3.6, Table 3.7 and Table 3.8 for 

mild, intermediate, and intense cases, respectively. In these tables, column ‘t(sec)’ reports 

the average computation time of 10 runs in seconds and column ‘%Δt’ shows the 

percentage reduction in the average run time. The last row presents the averages for the 

whole data set. Note that the average energy consumption reported here is calculated for 

the instances whose solutions involve same number of vehicles with and without using 

preprocessing. #Veh and EC values in bold indicate an improvement in the number of 

vehicles and energy consumption, respectively. 

 

Table 3.6 Table 3.7shows the results for the mild case. We observe that the preprocessing 

can reduce the run time of ALNS by up to 17.56% whereas the average speedup is 7.90%. 

Furthermore, ALNS with preprocessing provided better solutions in 21 instances out of 

29, four regarding fleet size and 17 regarding energy consumption. 
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Table 3.7 Result for large-size instances in the intermediate case 

Instance #Veh      EC t (sec ) #Veh     EC t (sec ) %Δt

c101 12 1142.19 133.88 12 1142.19 117.05 12.57

c102 11 1128.89 261.35 11 1129.43 237.99 8.94

c103 10 1085.16 722.05 10 1147.76 643.74 10.85

c104 10 988.31 1187.30 10 979.24 947.11 20.23

c105 11 1153.29 141.83 11 1153.29 124.28 12.37

c106 11 1138.75 200.44 11 1122.87 189.63 5.39

c107 11 1116.60 260.65 11 1114.98 225.54 13.47

c108 11 1098.49 384.33 10 1158.48 293.69 23.58

c109 10 1087.70 398.80 10 1047.38 369.69 7.30

r101 18 1809.06 72.14 18 1839.91 63.75 11.63

r102 16 1605.22 152.46 16 1589.85 125.51 17.68

r103 14 1395.47 179.72 14 1374.79 152.76 15.00

r104 12 1191.54 321.32 12 1190.98 271.77 15.42

r105 15 1557.40 90.43 15 1576.50 80.34 11.16

r106 14 1420.32 141.72 13 1433.83 124.80 11.94

r107 12 1255.45 215.52 12 1243.24 193.67 10.14

r108 11 1143.11 379.74 11 1169.01 325.27 14.34

r109 13 1361.21 131.83 13 1349.94 116.51 11.62

r110 12 1225.59 216.36 12 1224.70 190.80 11.81

r111 12 1259.48 223.51 12 1231.42 206.11 7.79

r112 11 1161.81 319.61 11 1149.99 288.78 9.65

rc101 16 1901.34 94.59 16 1908.44 76.81 18.79

rc102 15 1717.75 108.19 15 1688.56 88.01 18.65

rc103 13 1529.18 150.35 13 1471.51 128.54 14.51

rc104 12 1350.57 236.83 12 1341.80 209.06 11.73

rc105 14 1647.14 91.96 14 1644.00 81.63 11.23

rc106 13 1706.69 101.23 13 1673.52 83.32 17.69

rc107 12 1396.43 186.32 12 1405.94 152.84 17.97

rc108 11 1326.87 231.81 11 1330.47 193.29 16.62

Average 12.52 1347.49 252.97 12.45 1342.29 217.32 13.45

Without Preprocessing With Preprocessing

 

 

Table 3.7 reports the results for the intermediate case. We see that preprocessing 

accelerates ALNS by 13.45% on average with a maximum speedup of 23.58%. 

Furthermore, better solution quality is achieved in 17 instances, two with reduced fleet 

size and 15 with less energy consumption. 
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Table 3.8 Result for large-size instances in the intense case 

Instance #Veh      EC t (sec ) #Veh     EC t (sec ) %Δt

c101 12 1363.48 115.76 12 1363.04 90.49 21.82

c102 11 1388.57 358.81 11 1406.31 255.04 28.92

c103 11 1302.35 678.06 11 1301.08 475.62 29.85

c104 11 1253.78 1185.04 10 1318.18 806.17 31.97

c105 11 1432.27 179.03 11 1424.47 131.59 26.50

c106 11 1449.76 240.94 11 1403.87 174.91 27.41

c107 11 1356.79 197.78 11 1368.01 152.88 22.70

c108 11 1338.30 288.27 11 1319.37 207.77 27.93

c109 11 1288.30 388.06 11 1296.39 303.45 21.80

r101 19 2265.32 72.70 19 2232.10 62.14 14.52

r102 16 1989.45 149.07 16 1998.27 107.28 28.04

r103 14 1721.53 172.21 14 1697.69 134.13 22.11

r104 12 1444.11 321.02 12 1423.55 255.26 20.49

r105 16 1868.20 104.33 16 1831.89 88.50 15.18

r106 15 1704.90 176.32 14 1748.57 122.24 30.67

r107 13 1537.90 214.62 13 1518.26 176.85 17.60

r108 12 1389.93 415.33 12 1386.60 312.81 24.68

r109 14 1638.86 127.33 14 1631.04 102.03 19.87

r110 13 1471.46 229.11 13 1484.83 173.70 24.19

r111 13 1477.05 222.29 13 1482.63 175.07 21.24

r112 12 1365.34 332.78 12 1364.46 249.61 24.99

rc101 17 2394.81 82.21 17 2348.68 67.82 17.50

rc102 16 2130.26 140.72 16 2109.60 111.21 20.97

rc103 14 1874.29 142.96 14 1847.07 108.72 23.95

rc104 12 1690.18 260.09 12 1668.35 191.87 26.23

rc105 15 2041.41 110.88 15 1995.72 89.36 19.41

rc106 15 1910.64 114.38 15 1953.04 79.23 30.73

rc107 13 1737.06 177.62 13 1735.73 131.49 25.97

rc108 12 1655.34 214.08 12 1637.30 165.88 22.52

Average 13.21 1649.00 255.58 13.14 1638.12 189.76 23.79

Without Preprocessing With Preprocessing

 
 

The results for the intense case are given in Table 3.8. As the energy consumption per 

unit distance is higher in this case, the graph can be reduced further and ALNS can benefit 

more from the preprocessing. As expected, ALNS provides better solutions in 22 

instances, two and 20 with respect to the number of vehicles and energy consumption, 

respectively. Furthermore, it accelerates the computational time up to 31.97% and the 

average speedup is 23.79% for the whole data set. 
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Table 3.9 Summary of results for large-size instances 

Objective Mild Intermediate Intense

#Veh 4 2 2

EC 17 15 20

# Instances Improved

 

 

Table 3.9 summarizes the improvements observed in large-size instances. The total 

number of instances that we considered is 29 × 3 = 87. Overall, in 8 instances we see 

reduction in the fleet size and saving in the energy consumption in 52 instances. It is worth 

noting that some of these improvements may be due to the stochastic nature of ALNS. 

Nevertheless, the results show that the proposed preprocessing is effective in enhancing 

the performance in terms of both solution quality and computation time. 

 

 

3.5.4.  Identifying infeasibility 

 

We compared the performance of the proposed feasibility check algorithm and that of 

Gurobi with and without using the preprocessing procedures as well as determining the 

infeasibility of a problem, if exists. Note that while all the large-size instances are feasible 

five out of 36 small-size instances are shown to be infeasible (using preprocessing). We 

consider these five instances and summarize in Table 3.10 the average run times and 

number of instances proven to be infeasible by Gurobi (with and without preprocessing) 

and the proposed feasibility check algorithm. Without employing the proposed 

preprocessing Gurobi can identify three as infeasible with an average computation time 

of 4021 seconds whereas it can prove all five to be infeasible in only 0.003 seconds on 

the average when it is equipped with the preprocessing. Furthermore, the proposed 

feasibility check algorithm can also identify these 5 infeasible instances in only 0.4 

seconds on the average. These results support the benefit of the proposed preprocessing 

and show that an instance which is infeasible can be effectively identified using the 

feasibility check algorithm without using a solver. 

 



  53 

 

Table 3.10 Average results for identifying infeasibilities 

Gurobi without 

Preprocessing

Gurobi with 

Preprocessing

Feasibility Check 

Algorithm

Average time (s) 4021.960 0.003 0.400

#Infeasible identified 3 5 5  

 

 

 Concluding remarks 

 

 

In this chapter, we revisited the EVRPTW and proposed new preprocessing techniques to 

reduce the problem size and accelerate the computational performance of the solution 

methods. In addition, we developed an algorithm to check the feasibility of an instance. 

Our experimental tests showed that the proposed preprocessing can reduce the graph by 

up to 37% on average and speed up the computation time by up to 95% and 32% on small- 

and large-size instances, respectively. Furthermore, it allowed ALNS to find better 

solutions in many large-size instances, by reducing the fleet size or saving energy. 

Moreover, the proposed feasibility check algorithm was able to detect all the instances 

proven infeasible. 
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4. Electric Vehicle Routing Problem with Time Windows and Cargo 

Weight 

 

 

 

 Introduction to Electric Vehicle Routing Problem with Time Windows 

considering cargo load 

 

 

Electric Vehicle Routing Problem (EVRP) is an extension for VRP, where EVs are used 

in the fleet instead of fossil fuel vehicles. EVs reduce tailpipe emission and enhance green 

logistics. It tries to handle distribution tasks of logistics companies by minimizing the 

total energy consumption cost of serving customers and satisfying their demands. EVRP 

with Time Window (EVRPTW) is introduced by Schneider et al. (2014) where a full-

recharge strategy was adopted. The authors developed the mathematical programming 

formulation of the problem and proposed a hybrid Variable Neighbourhood Search (VNS) 

and Tabu Search (TS) algorithm to solve it. Different variants of EVRP and EVRPTW 

were addressed in several studies including the cases of partial recharge (Bruglieri et al, 

2015; Keskin and Çatay, 2016), mixed fleet (Goeke and Schneider, 2015; Hiermann et al, 

2016), location routing (Schiffer and Walther, 2017), fast charging (Felipe et al., 2014; 

Çatay and Keskin, 2017; Keskin and Çatay, 2018), non-linear charging function 

(Montoya et al.,2017; Froger et al., 2019), battery swapping (Yang and Sun, 2015; Hof et 

al., 2017; Paz et al., 2018). Desaulniers et al. (2016) also studied EVRPTW and proposed 

a branch-price-and-cut algorithm to solve four different recharging strategies. Some 

recent studies have dealt with the availability of recharging stations and queueing for 

recharging service (Froger et al., 2017; Kullman et al., 2018; Keskin et al., 2019). A 

comprehensive review of the EV technology and survey of the EVRP variants may be 

found in Pelletier et al. (2016), Pelletier et al. (2017), and Erdelić and Carić (2019). 
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Energy consumption on the road does not only depend on the distance traveled but many 

other factors including the vehicle's weight, velocity, auxiliary equipment (internal 

factors) as well as ambient temperature and road gradient (external factors). These factors 

have been often neglected in the VRP literature either because they make the problem too 

complex to solve or the driving range is not an issue as the vehicles can easily refuel at a 

nearby gas station. However, they may play a critical role in the operational efficiency of 

the EVs since they can increase their energy consumption significantly which is discussed 

in chapter 2. Among them, the weight of the transported cargo may play a crucial role in 

route planning. The logistics operations of hypermarkets, hardware stores and other 

companies that deal with heavy loads are examples for which a load-dependent model 

produces more efficient transportation plans in comparison with basic routing models 

(Zachariadis et al., 2015), which constitutes the main motivation of this study. 

 

Load-dependent Vehicle Routing Problem (LDVRP) was introduced in Kara et al. (2007).  

They used the weighted distance objective and relate it with the energy requirements of 

vehicles. They proposed mathematical formulations for collection and distribution cases. 

Xiao et al. (2012) attacked the same problem by emphasizing the relation of the weighted 

distance with the fuel consumption of the vehicles within the context of Fuel Capacitated 

VRP. Zachariadis et al. (2015) extended LDVRP by considering simultaneous pick-ups 

and deliveries and proposed a local-search algorithm to solve large-scale instances. 

  

In this chapter, we address the load-dependent variant of EVRPTW with partial recharges 

by taking into account the energy consumption associated with the cargo carried on the 

vehicle. We adopt a hierarchical objective function where the primary objective is to 

minimize the fleet size whereas the secondary objective is to minimize total energy 

consumption. We solve small-size instances using a commercial solver, and for the large-

size instances, we develop a Large Neighbourhood Search (LNS) algorithm. The 

remainder of this chapter is organized as follows: section 4.2 introduces the problem and 

formulates its mathematical programming model. Section 4.3 describes the proposed LNS 

method. Section 4.4 presents the experimental study and discusses the results. Finally, 

concluding remarks are provided in section 4.5.  
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 Problem definition and formulations 

 

 

We tackle EVRPTW where a homogeneous fleet of EVs serve a set of customers with 

known demands, time windows, and service times. As opposed to previous studies in the 

literature which assume that the energy on the battery is consumed proportional to the 

distance traveled, we take into account the additional energy consumption related to 

freight load. Carrying more load by an EV causes more energy consumption. 

Furthermore, we allow partial recharging and its duration depends on the amount of 

energy transferred. Since it is a common practice in the real world to operate within the 

first phase of recharging where the energy transferred is a linear function of the recharge 

duration in order to prolong the battery life (Pelletier et al., 2017), we also assume a linear 

charging function. In addition, we assume that the EV can be recharged at most once 

between two consecutive customers, which is practical in last-mile logistics. We consider 

a pick-up problem where the load of the EV increases along its tour as it visits the 

customers. Each EV departs from the depot with the full battery since it can be recharged 

overnight.  

 

 

4.2.1. Energy consumption function 

 

The energy consumption of an EV that travels from one node to another depends on 

various factors such as its mass, shape, road gradient, acceleration, etc. By using tractive 

power requirements placed on the vehicle at the wheels, the power demand of a vehicle 

can be obtained using function (4.2) (Demir et al., 2012): 

𝐹 = 𝑀𝑎 + 𝑀𝑔𝑠𝑖𝑛𝜃 + 0.5𝐶𝑑𝜌𝐴𝑉2 + 𝑀𝑔𝐶𝑟𝑐𝑜𝑠𝜃 (4.1) 

𝑃𝑡𝑟𝑎𝑐𝑡(𝑘𝑊) = 𝐹𝑣/1000 (4.2) 

 

where 𝐹 shows the tractive effort as calculated in (4.1), 𝑀 is the total weight of the vehicle 

that consist of its curb weight and the cargo load (𝑘𝑔), 𝑎 is the acceleration (𝑚 𝑠𝑒𝑐2⁄ ), 𝑔 

is the gravitational constant, 𝜃 is road gradient, 𝐶𝑑 is the coefficient of aerodynamic drag, 

𝜌 is the air density in (𝑘𝑔 𝑚3⁄ ), 𝐴 is the frontal area, 𝑣 is the speed (𝑚 𝑠⁄ ), and 𝐶𝑟 the 
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coefficient of rolling resistance. The tractive power requirement can be converted to 

second-by-second battery power output (𝑘𝑊) as follows: 

 

𝑃 = 𝑃𝑡𝑟𝑎𝑐𝑡 𝜇𝑡𝑓⁄ +  𝑃𝑎𝑐𝑐 (4.3) 

 

where the vehicle’s drive train efficiency is shown by 𝜇𝑡𝑓 which includes the energy 

losses between electric motor and battery as well as the energy losses in transforming 

energy to the wheels. 𝑃𝑎𝑐𝑐 is the power demand associated with the accessory equipment 

such as air conditioning, audio system, cabin lights, which is neglected in this study. Then, 

the energy consumption in  (𝑘𝑊ℎ 𝑘𝑚⁄ ) can be calculated as follows:  

 

𝐸 = 𝑃 𝑣⁄  (4.4) 

 

 

4.2.2. Mathematical models 

 

We presented and evaluated three models to check their performances.  

 

Model I. In line with the mathematical notation and modelling convention in the literature 

(Schneider et al., 2014; Keskin and Çatay 2016) we define 𝑉 =  {1, … , 𝑛} as the set of 

customers and F as the set of recharging stations. Vertices 0 and 𝑛 + 1 denote the depot 

where each vehicle departs from 0 (departure depot) and returns to 𝑛 + 1 (arrival depot) 

at the end of its tour. We define 𝑉0 = 𝑉 ∪ {0}, 𝑉𝑛+1 =  𝑉 ∪ {𝑛 + 1} and 𝑉0,𝑛+1 = 𝑉 ∪

{0, 𝑛 + 1}. Then, the problem can be represented on a complete directed graph 𝐺 =

(𝑁, 𝐴) with the set of arcs 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}, where 𝑁 = 𝑉0,𝑛+1 ∪ 𝐹 is the total 

set of nodes on the network.  

The energy consumption depends on the distance traveled and the total weight of the EV, 

which is affected by the cargo load carried on the EV. Each customer 𝑖 ∈ 𝑉 has a positive 

demand 𝑞𝑖, service time 𝑠𝑖, and time window [𝑒𝑖, 𝑙𝑖]. All EVs have a cargo capacity of 𝐶 

and a battery capacity of 𝑄. At each recharging station, one unit of energy is transferred 

in 𝑔 time units. The direct distance from node 𝑖 to 𝑗 is represented by 𝑑𝑖𝑗.  
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Travel time from customer 𝑖 to customer 𝑗 is denoted by 𝑡𝑖𝑗 if the journey is direct and 

�̂�𝑖𝑗𝑠 = 𝑡𝑖𝑠 + 𝑡𝑠𝑗 − 𝑡𝑖𝑗 is the additional travel time if it is via station 𝑠. Note that �̂�𝑖𝑗𝑠 does 

not include the recharging time at station 𝑠.  The amount of extra energy needed in order 

to move one unit of cargo is represented by 𝑤. The total energy consumption starting 

from customer 𝑖 to customer 𝑗 is calculated as (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑗, where 𝑢𝑖 is the weight of 

the load on the vehicle upon departure from customer 𝑖. 

 

The decision variables 𝑦𝑖
𝑘, 𝑦𝑖𝑗𝑠

𝑘 , and 𝑌𝑖𝑗𝑠
𝑘 , keep track of battery SoC of vehicle 𝑘 at arrival 

at customer/depot 𝑖, at arrival at station 𝑠 on route (𝑖, 𝑠, 𝑗), and at departure from station 

𝑠 on route (𝑖, 𝑠, 𝑗), respectively. 𝜏𝑖 denotes the time when the loading starts at customer 𝑖. 

The binary decision variable 𝑥𝑖𝑗
𝑘  takes value 1 if vehicle 𝑘 travels from node 𝑖 to node 𝑗, 

and 0 otherwise whereas the binary decision variable 𝑧𝑖𝑗𝑠
𝑘  takes value 1 if vehicle 𝑘 

traverses arc (𝑖, 𝑗), through station 𝑠. 

 

Min  ∑(𝑦0
𝑘 − 𝑦𝑛+1

𝑘 )

𝑘∈𝐾

+ ∑ ∑ ∑ ∑(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 )

𝑠∈𝐹𝑘∈𝐾𝑗∈𝑉𝑛+1𝑖∈𝑉0

  (4.5) 

subject to   

𝑦0
𝑘 = 𝑄 ∀ 𝑘 ∈ 𝐾 (4.6) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑛+1
𝑗≠𝑖

= 1 
∀ 𝑖 ∈ 𝑉 (4.7) 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉0
𝑖≠𝑗

− ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉𝑛+1
𝑖≠𝑗

= 0 
∀ 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.8) 

∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

≤ 𝑥𝑖𝑗
𝑘  ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.9) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗
𝑘 + ∑ (�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠

𝑘 + 𝑔(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 ))

𝑠∈𝐹

 

−𝑙0(1 − 𝑥𝑖𝑗
𝑘 ) ≤ 𝜏𝑗 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.10) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀ 𝑗 ∈ 𝑁 (4.11) 

0 ≤ 𝑦𝑗
𝑘 ≤ 𝑦𝑖

𝑘 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑗 + 𝑀(1 − 𝑥𝑖𝑗
𝑘

+ ∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.12) 

𝑦𝑗
𝑘 ≤ 𝑌𝑖𝑗𝑠

𝑘 − (ℎ + 𝑤𝑢𝑖)𝑑𝑠𝑗 + 𝑀(1 − 𝑧𝑖𝑗𝑠
𝑘 ) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.13) 

0 ≤ 𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑦𝑖

𝑘 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑠 + 𝑀(1 − 𝑧𝑖𝑗𝑠
𝑘 ) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.14) 

𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑌𝑖𝑗𝑠

𝑘 ≤ 𝑄𝑧𝑖𝑗𝑠
𝑘  ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.15) 
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𝑦𝑗
𝑘 ≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑘

𝑖∈𝑉0
𝑖≠𝑗

 
∀  𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾 (4.16) 

𝑢𝑗 ≥ 𝑢𝑖 +  𝑞𝑗 ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

− 𝐶(1 − ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4.17) 

0 ≤ 𝑢𝑖 ≤ 𝐶 ∀ 𝑖 ∈ 𝑉0,𝑛+1 (4.18) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.19) 

𝑧𝑖𝑗𝑠
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4.20) 

 

The objective function (4.5) minimizes the total energy consumption. Constraints (4.6) 

set the initial battery SoC of EVs at departure to full. The connectivity of customer visits 

is imposed by constraints (4.7) whereas the flow conservation at each vertex is ensured 

by constraints (4.8). Constraints (4.9) make sure that vehicle 𝑘 serves customer 𝑗 after 

customer 𝑖 if it travels from 𝑖 to 𝑗 by recharging its battery en-route. Constraints (4.10) 

guarantee the time feasibility of arcs emanating from the customers (the depot). 

Constraints (4.11) establish the service time windows restriction. Constraints (4.10) and 

(4.11) also eliminate the formation of sub-tours. Constraints (4.12)-(4.15) keep track of 

the battery SoC at each node and make sure that it never falls below zero where 𝑀 =  𝑄 +

(ℎ + 𝑤. ∑ 𝑞𝑖𝑖∈𝑉 ). max (𝑑𝑖𝑗). Constraints (4.12) establish the battery SoC consistency if 

the vehicle travels from customer 𝑖 to customer 𝑗 without recharging en-route. Constraints 

(4.13) determine battery SoC at the arrival at customer 𝑗 if the vehicle visits a recharging 

station after it has departed from customer 𝑖 whereas constraints (4.14) check battery SoC 

at the arrival at a station if the battery is recharged en-route. Constraints (4.15) set the 

limits for battery SoC when the vehicle departs from a station. Constraints (4.16) allow 

positive battery SoC at the arrival of an EV at customer 𝑗 only if that EV serves customer 

𝑗. Constraints (4.17) keep track of the load of the vehicle throughout its journey. 

Constraints (4.18) ensure the non-negativity of the load on the vehicle and guarantee that 

the cargo capacity is not exceeded. Finally, constraints (4.19) and (4.20) define the binary 

decision variables.  

 

Model II. In order to decrease the size of the problem we eliminate the vehicle index and 

instead we used the dummy copies of the arrival depot in order to keep track of the battery 

SoC. We define 𝐴𝐷 as the set of arrival depots and accordingly we define 𝑉𝐴𝐷 = 𝑉 ∪ AD 

and 𝑉0,𝐴𝐷 = 𝑉 ∪ {0} ∪ AD. Then, the problem can be represented on a complete directed 
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graph 𝐺 = (𝑁, 𝐴) with the set of arcs 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}, where 𝑁 = 𝑉0,𝐴𝐷 ∪ 𝐹 is 

the total set of nodes on the network.  

 

Min  (𝑦0 − 𝑦𝐴𝐷) + ∑ ∑ ∑(𝑌𝑖𝑗𝑠 − 𝑦𝑖𝑗𝑠)

𝑠∈𝐹𝑗∈𝑉𝐴𝐷𝑖∈𝑉0

  (4.21) 

subject to   

𝑦0 = 𝑄  (4.22) 

∑ 𝑥𝑖𝑗

𝑗∈𝑉𝐴𝐷

𝑗≠𝑖

= 1 
∀ 𝑖 ∈ 𝑉 (4.23) 

∑ 𝑥𝑖𝑗

𝑖∈𝑉0

𝑖≠𝑗

= 1 
∀ 𝑗 ∈ 𝑉𝐴𝐷 (4.24) 

∑ 𝑥𝑖𝑗

𝑖∈𝑉0

𝑖≠𝑗

− ∑ 𝑥𝑗𝑖

𝑖∈𝑉𝐴𝐷

𝑖≠𝑗

= 0 
∀ 𝑗 ∈ 𝑉 (4.25) 

∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

≤ 𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑖 ≠ 𝑗 (4.26) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗 + ∑ (�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠 + 𝑔(𝑌𝑖𝑗𝑠 − 𝑦𝑖𝑗𝑠))

𝑠∈𝐹

 

−𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑖 ≠ 𝑗 (4.27) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀ 𝑗 ∈ 𝑁 (4.28) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑗 + 𝑀(1 − 𝑥𝑖𝑗 + ∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑖 ≠ 𝑗 (4.29) 

𝑦𝑗 ≤ 𝑌𝑖𝑗𝑠 − (ℎ + 𝑤𝑢𝑖)𝑑𝑠𝑗 + 𝑀(1 − 𝑧𝑖𝑗𝑠) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.30) 

0 ≤ 𝑦𝑖𝑗𝑠 ≤ 𝑦𝑖 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑠 + 𝑀(1 − 𝑧𝑖𝑗𝑠) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.31) 

𝑦𝑖𝑗𝑠 ≤ 𝑌𝑖𝑗𝑠 ≤ 𝑄𝑧𝑖𝑗𝑠 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.32) 

𝑦𝑗 ≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑖∈𝑉0
𝑖≠𝑗

 
∀  𝑗 ∈ 𝑉𝐴𝐷 (4.33) 

𝑢𝑗 ≥ 𝑢𝑖 + 𝑞𝑗𝑥𝑖𝑗 − 𝐶(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑖 ≠ 𝑗 (4.34) 

0 ≤ 𝑢𝑖 ≤ 𝐶 ∀ 𝑖 ∈ 𝑉0,𝐴𝐷 (4.35) 

𝑥𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑖 ≠ 𝑗 (4.36) 

𝑧𝑖𝑗𝑠 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝐴𝐷 , 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.37) 
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The objective function and constraints are similar to the model I; however, the vehicle 

index is removed and instead a set of arrival depots are added to the model where each 

copy of arrival depot is corresponding to a vehicle. 

 

Model III. The vehicle index is eliminated, but we did not use the dummy copies of the 

arrival depot. A mixed-integer nonlinear programming model is used where the objective 

function is nonlinear, and it minimizes the energy consumption where it is calculated by 

the multiplication of energy consumption rate per unit distance times traveled distance. 

In the load-dependent case the energy consumption rate per unit distance is related to the 

amount of cargo carried on that arc which is a decision variable. This causes nonlinearity 

in the objective function. The constraints are similar to the previous models. 

 

Min ∑ ∑ ((ℎ𝑖𝑗 + 𝑤𝑢𝑖𝑑𝑖𝑗)𝑥𝑖𝑗 + ∑(ℎ̂𝑖𝑗𝑠 +  𝑤𝑢𝑖�̂�𝑖𝑗𝑠)𝑧𝑖𝑗𝑠

𝑠∈𝐹

)

𝑗∈𝑉𝑛+1𝑖∈𝑉0

  (4.38) 

subject to   

𝑦0 = 𝑄  (4.39) 

∑ 𝑥𝑖𝑗

𝑗∈𝑉𝑛+1

𝑗≠𝑖

= 1 
∀ 𝑖 ∈ 𝑉 (4.40) 

∑ 𝑥𝑖𝑗

𝑖∈𝑉0

𝑖≠𝑗

− ∑ 𝑥𝑗𝑖

𝑖∈𝑉𝑛+1

𝑖≠𝑗

= 0 
∀ 𝑗 ∈ 𝑉 (4.41) 

∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

≤ 𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4.42) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗 + ∑ (�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠 + 𝑔(𝑌𝑖𝑗𝑠 − 𝑦𝑖𝑗𝑠))

𝑠∈𝐹

 

−𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4.43) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀ 𝑗 ∈ 𝑁 (4.44) 

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑗 + 𝑀(1 − 𝑥𝑖𝑗 + ∑ 𝑧𝑖𝑗𝑠

𝑠∈𝐹

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4.45) 

𝑦𝑗 ≤ 𝑌𝑖𝑗𝑠 − (ℎ + 𝑤𝑢𝑖)𝑑𝑠𝑗 + 𝑀(1 − 𝑧𝑖𝑗𝑠) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.46) 

0 ≤ 𝑦𝑖𝑗𝑠 ≤ 𝑦𝑖 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑠 + 𝑀(1 − 𝑧𝑖𝑗𝑠) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.47) 

𝑦𝑖𝑗𝑠 ≤ 𝑌𝑖𝑗𝑠 ≤ 𝑄𝑧𝑖𝑗𝑠 ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.48) 
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𝑦𝑗 ≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑖∈𝑉0

𝑖≠𝑗

 
∀  𝑗 ∈ 𝑉𝑛+1 (4.49) 

𝑢𝑗 ≥ 𝑢𝑖 + 𝑞𝑗𝑥𝑖𝑗 − 𝐶(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4.50) 

0 ≤ 𝑢𝑖 ≤ 𝐶 ∀ 𝑖 ∈ 𝑉0,𝑛+1 (4.51) 

𝑥𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (4.52) 

𝑧𝑖𝑗𝑠 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑖 ≠ 𝑗 (4.53) 

 

In order to check whether the objective function of model III is convex or concave, we 

considered a small instance where there are only a depot and one customer. The objective 

function can be written as Eq. (4.54):  

 

Min (ℎ0,1 + 𝑤𝑢0𝑑0,1)𝑥0,1 +  (ℎ1,0 + 𝑤𝑢1𝑑1,0)𝑥1,0  (4.54) 

 

note that 𝑑0,1 = 𝑑1,0 and ℎ0,1 = ℎ1,0 since the network is symmetric. For the sake of 

simplicity, we will use 𝑑 and ℎ instead of them. The Hessian matrix comprises geometric 

information about the surface z = f(x, y). The Hessian matrix of z = f(x, y) is defined as 

 

𝐻𝑓(𝑥, 𝑦) = [
𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
] 

 

at any point where all of the second partial derivatives of function f exist. Let’s matrix 𝐻 

shows the Hessian matrix of the function Eq. (4.54) as: 

𝐻 =

𝑥0,1
𝑥1,0 𝑢0 𝑢1

𝑥0,1

𝑥1,0

𝑢0

𝑢1

[

0 0 𝑤𝑑 0
0

𝑤𝑑
0   0 
0   0 

𝑤𝑑
0

0 𝑤𝑑 0  0

]
. 

 

We need to calculate the Eigenvalues of the Hessian matrix to obtain geometric 

information about the surface of the function. If all the eigenvalues are positive the 

function will be convex. If all of them be negative, the function will be concave. 

Otherwise, if some of them are positive and some negative signs, the function will be 

neither convex nor concave and it will have a saddle point. In order to calculate the 
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eigenvalues, we should compute det(𝐻 − 𝐼𝜆) = 0 where the λ values show the 

eigenvalues. 

 

det ([

0 0 𝑤𝑑 0
0

𝑤𝑑
0   0 
0   0 

𝑤𝑑
0

0 𝑤𝑑 0  0

] − [

−𝜆   0    0   0
0
0

−𝜆    0 
  0  −𝜆

  0
  0

0   0     0 −𝜆

]) = 𝑑𝑒𝑡 ([

−𝜆   0    𝑤𝑑   0
0

𝑤𝑑
−𝜆    0 
  0  −𝜆

  𝑤𝑑
  0

0   𝑤𝑑     0 −𝜆

]) 

= (𝜆2 − (𝑤𝑑)2)2 = 0      →    𝜆 =  ±𝑤𝑑. 

 

Since 𝑤 and 𝑑 are positive thus 𝜆 values can be positive or negative. Therefore, the 

eigenvalues are not totally positive or negative and the function is neither convex nor 

concave. Consequently, the solution obtained from this model is a local minimum for the 

original model. 

 

 

 Large Neighborhood Search algorithm 

 

 

We attempt to solve small-size instances using a commercial solver. To solve the large-

size instances, we develop an LNS method. LNS was introduced by Shaw (1998) and 

aims at improving an initial solution by using several destroy and repair mechanisms 

iteratively. In each iteration, some customers are removed from the solution and reinserted 

into the routes to create a new feasible solution. This procedure is repeated for a 

predetermined number of iterations. LNS and Adaptive LNS (ALNS) have been 

successfully applied to many VRP variants including EVRPs and EVRPTWs (Goeke and 

Schneider, 2015; Keskin and Çatay, 2016; Wen et al., 2016; Hiermann et al., 2016; 

Schiffer and Walther, 2017; Schiffer et al., 2018; Keskin and Çatay, 2018; Keskin et al., 

2019). 

 

We create the initial solution using the insertion heuristic of Keskin and Çatay (2016) 

where the cost of inserting a customer into a route is calculated as (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑘 +

(ℎ + 𝑤𝑢𝑘)𝑑𝑘𝑗 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑗. This insertion cost is calculated for all unvisited 

customers and the minimum cost insertion is performed by ensuring that the related 

constraints are not violated.  If an EV runs out energy, a station may be inserted to make 

its tour energy feasible. We use First-Feasible Station Insertion algorithm which will be 
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described in Section 4.3.2. If no customer can be feasibly inserted in the route, a new 

route is initialized, and the procedure is repeated until all customers are served. 

 

Our LNS consists of customer destroy and repair mechanisms. In each iteration, a 

customer removal algorithm is applied to a feasible solution to remove a subset of 

customers from the routes. If any station is no longer needed in the partial solution, they 

are removed as well. Next, we apply a customer insertion algorithm that inserts all the 

customers removed to repair the solution in an attempt to obtain a new improved solution. 

Stations may be inserted to maintain the energy feasibility along the route. This procedure 

continues until the stopping criterion is satisfied, which is a limit on the number of 

iterations in our implementation. Note that the set of stations that can be visited between 

any two customers is reduced by using the dominance rules presented in Bruglieri et al. 

(2016).  

 

 

4.3.1.  Destroy operators 

 

The current feasible solution is destroyed by removing 𝛾 customers. We use Worst-

Consumption, Random Worst-Consumption, Shaw, Random Worst-Time, Random, 

Random Route Removal and Greedy Route Removal procedures of Keskin and Çatay, 

(2016) by modifying them for the load-dependent problem. The destroy operators are 

selected randomly. 

 

• Worst-Consumption algorithm selects the customers with high energy consumption 

imposed on the route by visiting that customer, which is calculated as (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑘 +

(ℎ + 𝑤𝑢𝑘)𝑑𝑘𝑗 − (ℎ + 𝑤𝑢𝑖)𝑑𝑖𝑗 that considers distance and cargo load effect in energy 

consumption.  

• Random Worst-Consumption sorts the customers with respect to the associated energy 

consumptions, considers a subset of 𝜎 × 𝛾 customers with the highest costs to select 𝛾 

customers randomly and remove them.  

• Shaw Removal removes similar customers with respect to their energy consumption, 

earliest service time, being in the same route, and their demand. It randomly selects 

customer 𝑖  and calculates the relatedness measure as 𝑅𝑖𝑗 =  𝜙1ℎ𝑖𝑑𝑖𝑗 +  𝜙2|𝑒𝑖 − 𝑒𝑗|  +



  65 

 

 𝜙3𝑙𝑖𝑗 +  𝜙4|𝐷𝑖 − 𝐷𝑗| to find similar customers 𝑗. 𝜙1-𝜙4 are the Shaw parameters, 

𝑙𝑖𝑗 =  − 1 if 𝑖 and 𝑗 are in the same route, 1 otherwise. Small 𝑅𝑖𝑗 shows high similarity. 

So, using the non-decreasing order of the relatedness value with customer 𝑖, 𝛾 customers 

are removed from the solution.  

• Random Worst-Time algorithm is a version of Shaw Removal where 𝜙1,  𝜙3,  𝜙4 are set 

equal to 0. The customers are sorted in the non-decreasing order of their relatedness 

values and 𝛾 customers are randomly removed from the subset of 𝜎 ×  𝛾 customers with 

the lowest relatedness values. 

• Random Removal mechanism randomly removes 𝛾 customers from the solution. 

• Random Route Removal algorithm randomly removes 𝜔 routes from the solution.  

• Greedy Route Removal mechanism sorts the routes in the non-decreasing order of the 

number of customers visited and removes 𝜔 routes which serve the least number of 

customers. 

Note that the Route Removal algorithms attempt to reduce the fleet size.  

 

 

4.3.2. Repair operators  

 

We adapt Random Greedy, Regret-2, Random Time-Based, Random Greedy with Noise 

Function, and Regret-2 with Noise Function repair algorithms of Keskin and Çatay (2016) 

and Demir et al.  (2012) for our load-dependent case. In addition, we propose Exhaustive 

Greedy, Exhaustive Time-Based, Exhaustive Time-Based with Noise Function, and 

Random Time-Based with Noise Function mechanisms. The repair operators are selected 

randomly. 

• Random Greedy Insertion selects a customer and inserts it in the best position which 

leads to least increase in energy consumption.  

• Regret-2 Insertion tries to avoid the higher costs in the subsequent iteration. It calculates 

the difference between the cost of the best insertion and the second-best insertion for 

all customers and selects the customer with the highest difference.  

• Random Time-Based Insertion calculates insertion costs similar to the Exhaustive 

Time-Based algorithm, however, at first an unassigned customer is selected randomly, 

and the algorithm inserts it in its best position.  
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• Random Greedy Insertion with Noise Function is an extension of the Random Greedy 

Insertion mechanism with a degree of freedom. We use the same noise function 

presented in Demir et al. (2012). The cost of insertion using the freedom degree is 

calculated as 𝑁𝑒𝑤𝐶𝑜𝑠𝑡 = 𝐴𝑐𝑡𝑢𝑎𝑙𝐶𝑜𝑠𝑡 +  �̅�𝜇𝜖, where �̅� represents the maximum 

distance in the network, the noise parameter used for diversification is shown by 𝜇, and 

𝜖 is a random number between [-1, 1]. 

• Exhaustive Greedy Insertion considers all possible insertion positions for all not-

inserted customers and selects the customer-position matching which leads to least 

increase of energy consumption. 

• Exhaustive Time-Based Insertion calculates the difference between the route duration 

after and before inserting a customer as the insertion cost. For all customers, the 

insertion costs in all possible positions are calculated and the customer with least the 

insertion cost is selected.  

 

Note that Regret-2 with Noise Function, Exhaustive Time-Based with Noise Function, 

Random Time-Based with Noise Function are extensions of Regret-2, Exhaustive Time-

Based and Random Time-Based insertion mechanisms, respectively, using a similar noise 

function. 

 

As we mentioned earlier, the unnecessary stations are removed from the partial solution 

obtained using the destroy operator. During the repair procedure, the insertion of a 

customer may not be feasible with respect to battery SoC. In that case, we first attempt to 

increase the recharge quantity if a station is visited prior to arriving at that customer. If 

the energy recharged at the station cannot be increased or no station is visited en-route 

we apply a station insertion operator to make the insertion feasible. We modified Best 

Station Insertion from the literature (Keskin and Çatay, 2016) and Multiple Station 

Insertion operators introduced in section 2.3 and applied them for the load-dependent 

problem. Also, we develop First Feasible Station Insertion operator for this problem. Note 

that at most one station can be inserted between two consecutive customers in a route. 

 

• First-Feasible Station Insertion considers the first customer (or depot) where the vehicle 

arrives at with negative SoC and checks the insertion of a station in the preceding arcs 

backward. The first station which makes the problem feasible is inserted.  
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• Best-Station Insertion algorithm checks all possible stations in all possible arcs before 

the first customer (or depot) with negative SoC and inserts the best station in its best 

position. 

• Multiple-Station Insertion algorithm inserts multiple stations into a route when the 

insertion of a single station cannot make the route feasible. A station is inserted on the 

arc traversed immediately before arriving at the customer (or depot) with a negative 

SoC where the vehicle is recharged up to the maximum level allowed by the battery 

capacity and time windows restrictions of the succeeding customers. If the SoC is still 

negative at that customer or if the vehicle runs out of energy before reaching the inserted 

station, we attempt to insert another station prior to the last customer visited before 

traveling to the recently inserted station. This procedure is repeated until the route 

becomes energy feasible. 

 

One of the First-Feasible Station Insertion and Best-Station Insertion algorithms is 

selected randomly. If it does not a feasible route, we resort to Multiple-Station Insertion 

algorithm. Note that, we remove all stations in the solution after every 𝛽 iterations and 

use Best-Station Insertion algorithm to insert stations to obtain an improved feasible 

solution. 

 

 

4.3.3. Repair-opt operator 

 

We introduce a repair operator that attempts to insert the removed customers in the partial 

solution optimally along with the recharging stations, if needed. We use Gurobi solver to 

solve the mathematical model to reinsert removed customers and stations in their best 

places in the given partial routes in order to obtain a better solution. We call this repair 

operator in the algorithm after performing η iterations because it is expensive in terms of 

computational time and is more promising after the algorithm converges to a good 

solution. Furthermore, as the LNS algorithm progresses it provides tight upper bounds on 

the number of vehicles, which accelerates Gurobi solver’s run time. The performance of 

the proposed model is investigated in section 4.4. The parameters for the LNS are 

illustrated in Appendix D. 
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 Experimental study 

 

We performed our computational tests using the dataset of Schneider et al. (2014) and 

Desaulniers et al. (2016) for the small-size and large-size instances, respectively. The 

small-size dataset consists of 36 instances involving 5, 10, and 15 customers, and the 

large-size dataset includes 56 instances generated based on the VRPTW instances of 

Solomon (1987). The instances are classified according to the geographic distribution of 

the customers: clustered (c-type), random (r-type), and half clustered half random (rc-

type). Furthermore, in type-1 problems (i.e., subsets r1, c1, rc1) the planning horizon is 

shorter, and customers’ time windows are narrower compared to type-2 problems (i.e., 

r2, c2, rc2). In our study, we only consider type-1 problems from the large-size dataset as 

they better exhibit the influence of recharging decisions on route planning (Desaulniers 

et al., 2016; Keskin and Çatay, 2018). In order to deal with realistic vehicle cargo capacity 

and customer demands, we assumed an electric truck based on the specifications provided 

in Demir et al. (2012). Since the capacity of this vehicle is 3650 kg, we converted the 

demand quantities to reasonable weights by multiplying each by (3650/

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) in order to observe the effect of cargo weight on energy 

consumption. We assumed a drive train efficiency of 0.9 as EVs are more efficient than 

internal combustion engine vehicles. Furthermore, since the EVs in the original data are 

assumed to consume one unit of energy per unit distance/time traveled, we used Eq. (4.4) 

to calculate the actual energy consumption of an empty vehicle (i.e., 6350 kg) per unit 

distance and scaled it to ℎ = 1. We used the same approach to determine the energy 

consumption 𝑤 associated with unit load carried. We consider a flat network where road 

gradients are zero and we neglected vehicle acceleration.  

 

The small-size instances were solved using GUROBI 9.0 with a 2-hour time limit. LNS 

was employed to solve both small- and large-size instances. LNS was coded in Python 

3.7.1 and all runs were performed on an Intel Core(TM) i7-8700 processor with 3.20 GHz 

speed and 32 GB RAM. We performed five runs for each instance. The number of LNS 

iterations is set to 1000 for the small-size instances and 6000 for the large-size instances. 
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4.4.1. Analysis on the performance of the proposed models 

 

In this section, we analyzed the performance of the models introduced in section 4.2.2. 

Table 4.1 presents the results obtained from models I, II and III for the load-dependent 

case. “#Veh”, “EC”, and “t” refer to the fleet size, energy consumption, and run time (in 

seconds), respectively. Rows “Avg.” present the average values for the number of 

vehicles, energy consumption (for the instances with the same number of vehicles), and 

the run time for the instances with 5, 10, and 15 customers.  The total averages for all the 

instances are shown in the row “Total Avg.”.  

 

Table 4.1 Comparison of results obtained using different models for the load-dependent 

case 

 

Instance 

Model I  Model II  Model III 

#Veh EC t (sec)  #Veh EC t (sec)  #Veh EC t (sec) 

r104c5-s3 2 141.54 <1  2 141.54 <1  2 141.54 <1 

r105c5-s3 2 159.23 <1  2 159.23 <1  2 159.23 <1 

r202c5-s3 1 144.12 <1  1 144.12 <1  1 144.12 <1 

r203c5-s4 1 181.32 <1  1 181.32 <1  1 181.32 <1 

c101c5-s3 2 266.02 <1  2 266.02 <1  2 266.02 <1 

c103c5-s2 1 186.83 <1  1 186.83 <1  1 186.83 <1 

c206c5-s4 1 250.63 <1  1 250.63 <1  1 250.63 <1 

c208c5-s3 1 168.91 <1  1 168.91 <1  1 168.91 <1 

rc105c5-s4 2 256.62 <1  2 256.62 <1  2 256.62 <1 

rc108c5-s4 2 264.00 <1  2 264.00 <1  2 264.00 <1 

rc204c5-s4 1 188.59 <1  1 188.59 <1  1 188.59 <1 

rc208c5-s3 1 170.82 <1  1 170.82 <1  1 170.82 <1 

Avg. 1.42 198.22 0.33  1.42 198.22 0.25  1.42 198.22 0.04 

r102c10-s4 3 336.00 37  3 336.00 4  3 336.00 <1 

r103c10-s3 2 220.50 1507  2 220.50 213  2 220.50 <1 

r201c10-s4 1 262.40 6  1 262.40 4  1 262.40 <1 

r203c10-s5 1 227.26 7200  1 227.26 3297  1 227.26 <1 

c101c10-s5 3 410.10 117  3 410.10 11  3 410.10 <1 

c104c10-s4 2 308.81 7200  2 305.64 7200  2 305.64 1 

c202c10-s5 1 319.04 8  1 319.04 <1  1 319.04 <1 

c205c10-s3 2 233.74 148  2 233.74 18  2 233.74 <1 

rc102c10-s4 5 475.00 435  5 475.00 54  5 475.00 <1 

rc108c10-s4 3 364.62 4472  3 364.62 46  3 364.62 <1 

rc201c10-s4 1 424.49 <1  1 424.49 <1  1 424.49 <1 

rc205c10-s4 2 334.54 432  2 334.54 103  2 334.54 <1 

Avg. 2.17 326.38 1796.85  2.17 326.11 912.57  2.17 326.11 0.92 

r102c15-s8 5 430.83 7200  5 430.83 7200  5 430.83 <1 

r105c15-s6 4 350.09 7200  4 350.09 7200  4 350.09 <1 

r202c15-s6 2 365.06 7200  2 365.06 7200  1 590.31 7200 

r209c15-s5 1 361.83 7200  1 347.31 7200  1 347.31 145 

c103c15-s5 4 393.15 7200  3 403.18 7200  3 401.97 27 

c106c15-s3 3 370.84 7200  3 352.29 2478  3 352.29 4 

c202c15-s5 2 408.12 7200  2 393.19 7200  2 393.19 2 

c208c15-s4 2 310.12 7200  2 310.12 7200  2 310.12 <1 

rc103c15-s5 5 415.62 7200  4 415.79 7200  4 415.79 4 

rc108c15-s5 5 453.49 7200  4 430.69 7200  3 417.92 72 

rc202c15-s5 2 403.03 7200  2 403.03 7200  2 403.03 1 

rc204c15-s7 1 444.03 7200  1 402.41 7200  1 402.15 7200 

Avg. 3.00 384.86 7200.00  2.75 373.66 6806.50  2.58 373.63 1221.41 

Total Avg. 2.19 303.15 2999.06  2.11 299.33 2573.11  2.06 299.32 407.46 
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The results show that the model II overperforms model I in two instances with respect to 

the number of vehicles and in five instances regarding energy consumption. On the other 

hand, the computational time for model II is 14.2% less than the model I on the average. 

Model III obtains solutions with a smaller number of vehicles in two instances and 

improves two instances with respect to the energy consumption compared to the model 

II. The computational time for model III is about 84.2 % less than model II on the average.  

 

Table 4.2 Results for small-size instances obtained using GUROBI and LNS for Load 

Independent and Load-dependent cases 

 

 

Instance 

GUROBI   LNS 

Load Independent  Load Dependent   Load Dependent 

#Veh EC t (sec)  #Veh EC t (sec) %∆𝐸𝐶  #Veh EC t (sec) 

r104c5-s3 2 136.69 <1  2 141.54 <1 3.55  2 141.54 1 

r105c5-s3 2 156.08 <1  2 159.23 <1 2.01  2 159.23 1 

r202c5-s3 1 128.88 <1  1 144.12 <1 11.82  1 144.12 2 

r203c5-s4 1 179.06 <1  1 181.32 <1 1.27  1 181.32 2 

c101c5-s3 2 257.75 <1  2 266.02 <1 3.21  2 266.02 1 

c103c5-s2 1 175.37 <1  1 186.83 <1 6.54  1 186.83 1 

c206c5-s4 1 242.56 <1  1 250.63 <1 3.33  1 250.63 2 

c208c5-s3 1 164.34 <1  1 168.91 <1 2.78  1 168.91 2 

rc105c5-s4 2 233.77 <1  2 256.62 <1 9.78  2 256.62 1 

rc108c5-s4 2 253.93 <1  2 264.00 <1 3.97  2 264.00 1 

rc204c5-s4 1 185.16 <1  1 188.59 <1 1.85  1 188.59 3 

rc208c5-s3 1 167.98 <1  1 170.82 <1 1.69  1 170.82 2 

Avg. 1.42 190.13 0.02  1. 42 198.22 0.04 4.32  1. 42 198.22 1.57 

r102c10-s4 3 249.19 <1  3 336.00 <1 34.84  3 336.00 3 

r103c10-s3 2 206.30 1  2 220.50 <1 6.88  2 220.50 14 

r201c10-s4 1 241.51 <1  1 262.40 <1 8.65  1 262.40 2 

r203c10-s5 1 222.64 <1  1 227.26 <1 2.08  1 227.26 8 

c101c10-s5 3 388.25 <1  3 410.10 <1 5.63  3 410.10 2 

c104c10-s4 2 273.93 <1  2 305.64 1 11.58  2 305.64 85 

c202c10-s5 1 304.06 <1  1 319.04 <1 4.93  1 319.04 1 

c205c10-s3 2 228.28 <1  2 233.74 <1 2.39  2 233.74 3 

rc102c10-s4 4 424.00 <1  5 475.00 <1    −  5 475.00 2 

rc108c10-s4 3 347.90 <1  3 364.62 <1 4.81  3 364.62 4 

rc201c10-s4 1 412.86 <1  1 424.49 <1 2.82  1 424.49 3 

rc205c10-s4 2 325.98 <1  2 334.54 <1 2.63  2 334.54 4 

Avg. 2.08 290.99 0.23  2.17 312.58 0.92 7.93  2.17 312.58 10.94 

r102c15-s8 5 412.78 1  5 430.83 <1 4.37  5 430.83 5 

r105c15-s6 4 336.15 <1  4 350.09 <1 4.15  4 350.09 4 

r202c15-s6 1 507.32 1152  1 590.31 7200 16.36  2 365.06 272 

r209c15-s5 1 313.24 10  1 347.31 145 10.88  1 347.31 36 

c103c15-s5 3 348.46 1  3 401.97 27 15.36  3 401.97 419 

c106c15-s3 3 275.13 <1  3 352.29 4 28.04  3 352.29 12 

c202c15-s5 2 383.62 2  2 393.19 2 2.50  2 393.19 33 

c208c15-s4 2 300.55 <1  2 310.12 <1 3.18  2 310.12 15 

rc103c15-s5 4 397.67 2  4 415.79 4 4.56  4 415.79 57 

rc108c15-s5 3 370.25 6  3 417.92 72 12.88  3 417.92 20 

rc202c15-s5 2 394.39 <1  2 403.03 1 2.19  2 403.03 11 

rc204c15-s7 1 382.22 7200  1 402.15 7200 5.21  1 402.15 371 

Avg. 2.58 355.86 697.90  2.58 384.06 1221.41 9.14  2.67 384.06 104.63 

Total Avg. 2.03 278.99 232.72  2.38 298.29 407.46 7.13  2.42 298.29 39.05 

 

Although model III does not guarantee to obtain the global opima, the results show that 
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it can find a better solution with resptect to the number of vehicles and energy 

consumption with less computational run times compared to the other models, that is why 

we can use it in the repair-opt operator of the LNS algorithm. 

 

 

4.4.2. Analysis on the effect of load on the route planning 

 

The results for small-size instances are provided in Table 4.2 which also shows the 

performance of LNS with respect to Gurobi. Column “GUROBI” shows the results using 

GUROBI and “LNS” provides the results obtained by the proposed LNS algorithm. 

Column “Load Independent” reports the results for the case that does not take into account 

the increased energy consumption associated with the cargo carried whereas column 

“Load Dependent” shows the results for the case that considers the load on the vehicle. 

 

Table 4.3 Result for large-size instances obtained using LNS for Load-Independent and 

Load-Dependent cases 

 

Instance 

Load Independent  Load Dependent 

#Veh EC t (sec)  #Veh EC t (sec) 

r101 17 1679.69 782  18 1741.27 712 

r102 16 1607.23 1761  17 1630.97 1135 

r103 14 1277.51 2200  14 1404.57 1885 

r104 12 1162.21 2776  13 1247.14 2545 

r105 15 1348.54 1608  16 1482.75 1324 

r106 14 1404.93 1885  15 1469.73 1752 

r107 12 1243.62 2057  13 1332.27 1774 

r108 12 1091.86 3085  12 1267.00 2571 

r109 14 1261.83 1854  14 1415.50 1734 

r110 13 1146.24 2656  13 1251.46 2129 

r111 12 1193.67 2567  13 1262.93 2029 

r112 12 1105.43 3616  12 1218.47 2763 

Avg. 13.58 1176.57 2237.23  14.08 1311.40 1862.85 

c101 12 1043.38 682  12 1186.46 718 

c102 11 1100.17 2252  12 1173.36 1969 

c103 11 1246.22 3019  11 1395.65 3005 

c104 11 1142.82 5640  11 1373.41 4524 

c105 11 1037.26 1617  12 1161.57 1345 

c106 11 1040.79 1896  12 1166.90 1919 

c107 11 1021.93 2142  12 1179.50 1634 

c108 12 1096.64 2570  12 1206.47 2466 

c109 11 1001.64 3667  11 1318.41 2648 

Avg. 11.22 1106.14 2609.59  11.67 1296.08 2247.49 

rc101 15 1652.33 1733  17 1921.03 1119 

rc102 16 1607.69 1517  16 1815.88 1555 

rc103 14 1501.91 1884  14 1722.56 1773 

rc104 12 1380.05 2496  13 1515.47 2930 

rc105 15 1539.88 2015  15 1734.78 1654 

rc106 14 1484.98 1930  15 1650.57 1557 

rc107 12 1264.11 2314  13 1467.85 2060 

rc108 12 1398.05 2815  13 1533.09 2240 

Avg. 13.75 1549.83 2087.81  14.50 1757.74 1861.02 

Total Avg. 12.85 1277.51 2311.54  13.42 1455.07 1990.45 
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The comparison of these two columns exhibits the influence of the load on routing 

decisions. “t” and “%ΔEC’ refers to the average run time (in seconds) and the percentage 

increase in the energy consumption comparing load-independent and load-dependent 

case, respectively. The results show that #Veh increases by one in one instance (rc102c10-

s4). Furthermore, we observe that EC values obtained in the load-independent case are 

far from the actual energy consumption found by taking into account the cargo load. 

Finally, we see that LNS finds optimal solutions (or equal to the upper bound obtained 

from Gurobi) in 35 out of 36 instances. In one instance (r202c15-s6) it finds a solution 

with a higher number of vehicles which is equal to the upper bound gained from models 

I and II. 

 

We solved the large-size instances for both load-independent and load-dependent cases 

using LNS. The results are provided in Table 4.3Error! Reference source not found.. 

We observe that the number of vehicles increases by two in one instance and by one in 

fifteen instances (shown in bold) in the load-dependent case compared to the load-

independent. Furthermore, in the remaining thirteen instances, EC increases by 13.90% 

on the average. These results show the importance of considering cargo weight in route 

optimization. 

 

 

4.4.3. Analysis on the repair-opt operator 

 

In this section, we investigate the performance of the repair-opt operator on the 

performance of the proposed LNS algorithm for the load-dependent problem. Note that 

we performed the LNS algorithm for 15000 and 25000 iterations for solving the small 

and large-size instances, respectively, when it does not include the repair-opt mechanism. 

We performed our tests on the 5-, 10-, 15-, and 100-customer instances. The results are 

summarized in Table 4.4. “#Inst”, “#Veh”, “EC”, “t (sec)” denote the number of instances 

solved, the average number of vehicles, average energy consumption and average 

computational time, respectively. “#Bet.Veh” and “#Bet.EC” refer the number of 

instances where LNS with repair-opt operator obtains a better solution with regard to the 

number of vehicles and energy consumption, respectively. The results show that the 

repair-opt operator allowed LNS to find better solutions in 8 small-size instances out of 
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36: in two instances it reduces the fleet size whereas in six instances it decreased the total 

energy consumption. In the large-size instances, the LNS equipped with the repair-opt 

operator achieves reduced fleet size in three instances and provides savings in energy 

consumption in sixteen instances. The detailed results are reported in Appendix E. These 

results show the contribution of the repair-opt operator in the overall performance of the 

LNS algorithm. 

 

Table 4.4 Average results for solving small and large-size instances without and with 

considering repair-opt operator in LNS algorithm 

 

Instance 

 

#Inst 

Without Repair-opt  With Repair-opt 

#Veh EC t (sec)  #Veh EC t (sec) #Bet.Veh #Bet.EC 

5-Customer 12 1.42 198.33 10.83   1.42 198.33 1.57 0 0 

10-Customer 12 2.33 318.30 22.08   2.17 315.30 10.94 2 4 

15-Customer 12 2.67 390.75 43.50   2.67 382.44 104.63 0 2 

100-Customer-R 12 14.25 1386.98 2325.83   14.08 1371.58 1862.85 2 6 

100-Customer-C 9 11.78 1254.27 2695.85   11.67 1230.42 2247.49 1 8 

100-Customer-RC 8 14.50 1664.60 2186.83   14.50 1670.15 1861.02 0 2 

 

 

 Conclusions and future directions 

 

In this chapter, we addressed EVRPTW with partial recharge by taking into account the 

energy consumption associated with the cargo carried on the vehicle. We formulated three 

different 0-1 mixed-integer programming models of the problem and compared their 

performances on small-size instances. For solving the large-size instances, we developed 

an LNS method by proposing new destroy and repair operators as well as a new repair 

mechanism based on an exact method. Our computational tests showed how the fleet size 

and/or energy consumption increase in comparison to the case where the load factor is 

neglected and revealed the importance of considering the cargo weight of the vehicles for 

more accurate route planning. Our experiments also showed the contribution of the 

proposed exact repair method on the performance of the LNS algorithm. 
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5. Electric Vehicle Routing Problem with Time Windows 

considering Cargo Weight, Road Gradient and Regenerative 

Braking 

 

 

 

 Introduction to Electric Vehicle Routing Problem with Time Windows and 

Effect of Road Gradient on Energy Consumption 

 

 

Studying different factors which affect energy consumption is often neglected in the VRP 

literature since it may bring more complexity to the problem or it may not an important 

issue as the ICEs does not need to refuel frequently and the refueling process is pretty 

fast. Nevertheless, because of the limited battery capacity in EVs which restricts their 

driving ranges, and recharging process, which is time-consuming, considering the factors 

which affect energy consumption in the EVRP literature becomes vital. Energy 

consumption on the road does not only depend on the distance traveled but many other 

factors including the vehicle's weight, velocity, auxiliary equipment (internal factors) as 

well as ambient temperature and road gradient (external factors). Among them, the road 

gradient and the weight of the transported cargo may significantly influence the routing 

decisions. In the reality the road network of the cities where the logistic companies 

operate are not flat. Traveling on an arc with a positive road gradient requires more energy 

comparing to an arc in a flat network. As the gradient of an arc slightly rises, the energy 

consumption per unit distance increases which can extremely increase the energy 

consumption on that arc. Furthermore, in the operations where the EVs deal with heavy 

loads, the effect of road gradient on the energy consumption intensifies since an EV 

moving uphill with heavy load requires more energy in order to finish its journey. On the 

other hand, if an EV traverses on an arc with a negative road gradient where the driver 

needs to push the brake pedal in order to travel with a constant speed, energy can be saved 

on the battery because of the regenerative braking technology (Clegg, 1996, Xu et al., 
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2011, Zhang et al., 2008, Wu et al., 2015). The companies dealing with heavy loads which 

are operating in the cities that are not flat get affected more and are examples for which a 

model considering cargo weight and road gradient network produces more effective 

transportation strategies in comparison with basic routing mode, which is the main 

motivation of this study. 

 

In this chapter, we address an EVRPTW with partial recharges by taking into account the 

energy consumption associated with the road gradient, regenerative braking, and the 

cargo carried on the vehicle. We assume that the road gradient between two nodes is the 

average gradient in that road. We adopt a hierarchical objective function where the 

primary objective is to minimize the fleet size whereas the secondary objective is to 

minimize total energy consumption. We develop a Large Neighbourhood Search (LNS) 

algorithm to solve the problem. The remainder of this chapter is organized as follows: 

section 5.2 introduces the problem and formulates its mathematical programming model. 

Section 5.3 presents the experimental study and discusses the results. Finally, concluding 

remarks are provided in section 5.4.  

 

 

 Problem description 

 

 

A homogeneous fleet of EVs serves a set of customers with known demands, time 

windows, and service times in the context of EVRPTW. Contrasted with former studies 

in the literature that assume a constant energy consumption proportional to the distance 

traveled, we consider the additional energy consumption related to road gradient, 

regenerative braking, and freight load. Carrying more load by an EV on the roads with 

positive road gradient causes more energy consumption while if the vehicle travels on the 

arcs with negative road gradient where the driver needs to push the brake pedal to keep 

the vehicle speed constant, the energy released from braking can be saved in the battery. 

When an EV regenerate energy in negative road gradient arcs, not also it does not 

consume energy but also it saves the energy in the battery. Moreover, we allow partial 

recharging, and charging duration depends on the amount of energy transferred. It is a 

common practice in the real world to operate within the first phase of recharging where 

the energy transferred is a linear function of the recharge duration in order to prolong the 
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battery life (Pelletier et al., 2017) thus we also assume a linear charging function. 

Furthermore, we assume that the EV can be recharged at most once between two 

consecutive customers, which is practical in last-mile logistics. We consider a pick-up 

problem where the load of the EV increases along its tour as it visits the customers. Each 

EV departs from the depot with the full battery since it can be recharged overnight.  

 

 

5.2.1. Energy consumption considering road gradient and regenerative braking 

 

Considering the tractive power function in chapter 4 (Eq. 4.2), once the road gradient is 

positive the tractive power will be positive. However, if the road gradient is negative and 

𝑀𝑎 + 0.5𝐶𝑑𝜌𝐴𝑉2 + 𝑀𝑔𝐶𝑟𝑐𝑜𝑠𝜃 ≥ |𝑀𝑔𝑠𝑖𝑛𝜃| the tractive power will be positive but if 

the road is steeper and 𝑀𝑎 + 0.5𝐶𝑑𝜌𝐴𝑉2 + 𝑀𝑔𝐶𝑟𝑐𝑜𝑠𝜃 < |𝑀𝑔𝑠𝑖𝑛𝜃| the tractive power 

will be negative and thus the vehicle can save energy using the regenerative braking 

technology. 

 

When the tractive power is positive, it can be converted to second-by-second engine 

power output (𝑘𝑊) as Eq. (4.3). On the other hand, if the tractive power is negative the 

second-by-second battery power output (𝑘𝑊) will be: 

 

𝑃 = 𝜇𝑟 . 𝑃𝑡𝑟𝑎𝑐𝑡 +  𝑃𝑎𝑐𝑐 (5.1) 

 

where 𝜇𝑟 represents the efficiency of the regenerative braking process since the engine 

cannot save the whole regenerated energy in the battery. Then, the energy consumption 

in  (𝑘𝑊ℎ 𝑘𝑚⁄ ) can be calculated using Eq. (4.4). Finally, the energy consumption on an 

arc considering its gradient and the vehicle’s cargo weight will be as follows: 

 

ℎ𝑖𝑗(𝑢𝑖) = 𝑑𝑖𝑗(𝑃𝑡𝑟𝑎𝑐𝑡(𝑢𝑖) 𝜇𝑡𝑓⁄ ) 𝑣⁄  𝑃𝑡𝑟𝑎𝑐𝑡(𝑢𝑖) ≥ 0  (𝑘𝑊) (5.2) 

ℎ𝑖𝑗(𝑢𝑖) = 𝑑𝑖𝑗(𝜇𝑟 . 𝑃𝑡𝑟𝑎𝑐𝑡(𝑢𝑖)) 𝑣⁄  𝑃𝑡𝑟𝑎𝑐𝑡(𝑢𝑖) < 0  (𝑘𝑊) (5.3) 

 

where 𝑃𝑡𝑟𝑎𝑐𝑡(𝑢𝑖) is the tractive power for the arc (i, j) considering its gradient and the 

cargo load carrying by the vehicle on that arc.  𝑃𝑡𝑟𝑎𝑐𝑡(𝑢𝑖) is the function of load and it 

depends on the sequence of the routes. The distance between i and j is represented by 𝑑𝑖𝑗 
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and consequently the total energy consumption on arc (i, j) is denoted by ℎ𝑖𝑗(𝑢𝑖) which 

is a function of the cargo load. 

5.2.2. Problem formulation 

 

All the sets, parameters, and decision variables are similar to the model I in section 4.2.2 

except the energy consumption. The energy consumption on arc (i, j) is calculated by 

ℎ𝑖𝑗(𝑢𝑖) which includes the effect of road gradient and cargo load. 

 

Min  ∑(𝑦0
𝑘 − 𝑦𝑛+1

𝑘 )

𝑘∈𝐾

+ ∑ ∑ ∑ ∑(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 )

𝑠∈𝐹𝑘∈𝐾𝑗∈𝑉𝑛+1𝑖∈𝑉0

 (5.4) 

subject to   

𝑦0
𝑘 = 𝑄 ∀ 𝑘 ∈ 𝐾 (5.5) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑛+1
𝑗≠𝑖

= 1 
∀ 𝑖 ∈ 𝑉 (5.6) 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉0
𝑖≠𝑗

− ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉𝑛+1
𝑖≠𝑗

= 0 
∀ 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.7) 

∑ 𝑧𝑖𝑗𝑠
𝑘

𝑠∈𝐹

≤ 𝑥𝑖𝑗
𝑘  ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.8) 

𝜏𝑖 + (𝑡𝑖𝑗 + 𝑟𝑖)𝑥𝑖𝑗
𝑘 + ∑ (�̂�𝑖𝑗𝑠𝑧𝑖𝑗𝑠

𝑘 + 𝑔(𝑌𝑖𝑗𝑠
𝑘 − 𝑦𝑖𝑗𝑠

𝑘 ))

𝑠∈𝐹

 

−𝑙0(1 − 𝑥𝑖𝑗
𝑘 ) ≤ 𝜏𝑗 

∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.9) 

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀ 𝑗 ∈ 𝑁 (5.10) 

0 ≤ 𝑦𝑗
𝑘 ≤ 𝑦𝑖

𝑘 − ℎ𝑖𝑗(𝑢𝑖) + 𝑀(1 − 𝑥𝑖𝑗
𝑘 + ∑ 𝑧𝑖𝑗𝑠

𝑘

𝑠∈𝐹

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.11) 

𝑦𝑗
𝑘 ≤ 𝑌𝑖𝑗𝑠

𝑘 − ℎ𝑠𝑗(𝑢𝑖) + 𝑀(1 − 𝑧𝑖𝑗𝑠
𝑘 ) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.12) 

0 ≤ 𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑦𝑖

𝑘 − ℎ𝑖𝑠(𝑢𝑖) + 𝑀(1 − 𝑧𝑖𝑗𝑠
𝑘 ) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.13) 

𝑦𝑖𝑗𝑠
𝑘 ≤ 𝑌𝑖𝑗𝑠

𝑘 ≤ 𝑄𝑧𝑖𝑗𝑠
𝑘  ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.14) 

𝑦𝑗
𝑘 ≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑘

𝑖∈𝑉0
𝑖≠𝑗

 
∀  𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾 (5.15) 

𝑢𝑗 ≥ 𝑢𝑖 +  𝑞𝑗 ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

− 𝐶(1 − ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

) ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑖 ≠ 𝑗 (5.16) 

0 ≤ 𝑢𝑖 ≤ 𝐶 ∀ 𝑖 ∈ 𝑉0,𝑛+1 (5.17) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.18) 
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𝑧𝑖𝑗𝑠
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1, 𝑠 ∈ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.19) 

 

The objective function (5.4) minimizes the total energy consumption. Constraints (5.5) 

set the initial battery SoC of EVs at departure to full. The connectivity of customer visits 

is imposed by constraints (5.6) whereas the flow conservation at each vertex is ensured 

by constraints (5.7). Constraints (5.8) make sure that vehicle 𝑘 serves customer 𝑗 after 

customer 𝑖 if it travels from 𝑖 to 𝑗 by recharging its battery en-route. Constraints (5.9) 

guarantee the time feasibility of arcs emanating from the customers (the depot). 

Constraints (5.10) establish the service time windows restriction. Constraints (5.9) and 

(5.10) also eliminate the formation of sub-tours. Constraints (5.11)-(5.14) keep track of 

the battery SoC at each node and make sure that it never falls below zero where 

𝑀 =   𝑄 +  max (ℎ𝑖𝑗(𝑢𝑖) ). Constraints (5.11) establish the battery SoC consistency if the 

vehicle travels from customer 𝑖 to customer 𝑗 by recharging en-route. Constraints (5.12) 

determine battery SoC at the arrival at customer 𝑗 if the vehicle visits a recharging station 

after it has departed from customer 𝑖 whereas constraints (5.13) check battery SoC at the 

arrival at a station if the battery is recharged en-route. Constraints (5.14) set the limits for 

battery SoC when the vehicle departs from a station. Constraints (5.15) allow positive 

battery SoC at the arrival of an EV at customer 𝑗 only if that EV serves customer 𝑗. 

Constraints (5.16) keep track of the load of the vehicle throughout its journey. Constraints 

(5.17) ensure the non-negativity of the load on the vehicle and guarantee that the cargo 

capacity is not exceeded. Finally, constraints (5.18) and (5.19) define the binary decision 

variables.  

 

Constraints (5.11)-(5.13) are nonlinear since ℎ𝑖𝑗(𝑢𝑖) is a function of the load as well as 

efficiency factors that should be decided. If the tractive power is positive, Eq. (5.2) will 

be used and if it is negative Eq. (5.3) will be used. 

 

 

 Experimental design and computational study 

 

We modified the proposed LNS in section 4.3 to solve small and large-size instances. It 

contains all the operators except the repair-opt operator since the constraints are nonlinear 

because of considering load and road gradient and it is not possible to solve it using a 
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commercial solver. The initial solution method, destroy, and repair operators are the same, 

but we modified the energy consumption on each arc which is calculated by equations 

Eq. (5.2) and (5.3).  

 

We generated data based on Schneider et al. (2014) and Desaulniers et al. (2016) datasets 

to perform the computational tests for small-size and large-size instances, respectively. 

We assumed a drive train efficiency of 0.9 as EVs are more efficient than internal 

combustion engine vehicles. We used the same vehicle specifications as section 4. The 

regenerative braking efficiency is assumed to be 0.8 which means that 80% of the 

regenerated energy in the braking process can be saved in the battery. Furthermore, since 

the EVs in the original data are assumed to consume one unit of energy per unit 

distance/time traveled, we used Eq. (4.4) to calculate the actual energy consumption of 

an empty vehicle (i.e., 6350 kg) per unit distance on a flat network and scaled it to ℎ =  1. 

We calculate the energy consumption considering road gradient and cargo load weight 

and scaled it correspondingly. We assumed that the vehicles move at a constant speed and 

we neglected vehicle acceleration.  

 

LNS was employed to solve both small- and large-size instances. LNS was coded in 

Python 3.7.1 and all runs were performed on an Intel Core(TM) i7-8700 processor with 

3.20 GHz speed and 32 GB RAM. We performed five runs for each instance. The number 

of LNS iterations is set to 15000 for the small-size instances and 25000 for the large-size. 

 

 

5.3.1. Data Generation 

 

With the purpose of generating road gradients, we assign an altitude to each node in the 

network. In order to have consistent data, we applied the well known K-Means clustering 

algorithm to cluster the data based on their distance. We assign a high/low altitude to the 

cluster centers and based on the distance of the nodes in that cluster from the cluster 

center, we decrease/increase their altitude. We clustered 5-, 10-, 15-, and 100-customer 

instances into 2, 3, 4, and 10 clusters. We assumed three gradient levels based on the road 

gradient standards. “Level”, “nearly level”, and “very gentle slope” are the cases that we 

considered. In the level case, the network is flat, and the average absolute road gradient 

is zero. In the “nearly level” and “very gentle slope” cases the averages of absolute road 
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gradients are [0.3 – 1.1) and [1.1 – 3), respectively (Geography fieldwork, 2020). 

 

 

Figure 5.1. Scatter network for “c101” with 100 customers 

 

Figure 5.1 shows the scatter network of “c101” with 100 customers, 21 stations, and one 

depot. The color bar denotes the altitude of the nodes which is between [-0.71, 1.00]. We 

clustered this network into 10 clusters and assigned an altitude to each node based on their 

distance from the cluster center which they are assigned. 

 

The network related to “c101” is illustrated in Figure 5.2. In order to make the slope of the 

roads more observable, we draw the z axis between [-3, 3] and assigned a color bar which 

is related to the nodes’ altitude. 
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Figure 5.2. Network for "c101" with 100 customers 

 

 

5.3.2. Analysis on the effect of road gradient and regenerative braking on the 

route planning 

 

The results for small-size instances are provided in Table 5.1. Column “Level” reports 

the results for the case that the network is flat. The results in this column are 

corresponding to the results of model III in section 4.2.2 where the network is flat and 

only the cargo load affects the energy consumption whereas columns “Nearly Level” and 

“Very Gentle Slope” show the results for the cases that the road gradients are considered. 

The comparison of these columns exhibits the influence of the road gradient on routing 

decisions. “#Veh”, “EC”, and “t” refer to the fleet size, energy consumption, and average 

run time (in seconds), respectively. “%ΔEC’ denotes the percentage change in the energy 

consumption comparing the energy consumption of “Nearly Level” and “Very Gentle 

Slope” cases with the “Level” case (only the cases where the number of vehicles is equal). 

Rows “Avg.” present the average values for the number of vehicles, energy consumption 

(for the instances with the same number of vehicles), and the run time for the instances 

with 5, 10, and 15 customers.  The total averages for all the instances are shown in the 

row “Total Avg.”.   
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Table 5.1 Result for small-size instances using LNS for Level, Nearly Level, Very 

Gentle Slope cases 

Instance 
Level   Nearly Level   Very Gentle Slope 

#Veh EC   #Veh EC t (sec) % ∆EC   #Veh EC t (sec) % ∆EC 

r104c5-s3 2 141.54  2 142.97 63 1.01       −      − 

r105c5-s3 2 159.23  2 184.89 18 16.12       −      − 

r202c5-s3 1 144.12  1 143.75 80 -0.25  1 200.45 69 39.09 

r203c5-s4 1 181.32  1 216.72 55 19.52       −      − 

c101c5-s3 2 266.02  2 292.15 22 9.82       −      − 

c103c5-s2 1 186.83  1 196.20 28 5.02  2 197.16 33     − 

c206c5-s4 1 250.63  1 340.45 40 35.84       −      − 

c208c5-s3 1 168.91  1 186.15 103 10.20       −      − 

rc105c5-s4 2 256.62  2 250.51 16 -2.38  3 283.84 44     − 

rc108c5-s4 2 264.00  2 258.27 48 -2.17       −      − 

rc204c5-s4 1 188.59  1 187.74 93 -0.45  1 196.94 110 4.43 

rc208c5-s3 1 170.82   1 188.34 90 10.26         −       − 

Avg. 1.42 198.22   1.42 215.68 54.51 8.54         21.76 

r102c10-s4 3 336.00  3 306.91 74 -8.66       −      − 

r103c10-s3 2 220.50  2 223.01 132 1.14  2 226.88 77 2.89 

r201c10-s4 1 262.40  1 311.85 22 18.85       −      − 

r203c10-s5 1 227.26  2 259.03 513     −       −      − 

c101c10-s5 3 410.10  3 437.26 42 6.62  3 523.44 36 27.64 

c104c10-s4 2 305.64  2 325.07 338 6.36  3 395.61 376     − 

c202c10-s5 1 319.04  1 335.64 68 5.20  2 260.54 209     − 

c205c10-s3 2 233.74  2 270.04 142 15.53  4 491.11 141     − 

rc102c10-s4 5 475.00  5 447.19 40 -5.86       −      − 

rc108c10-s4 3 364.62  3 374.59 122 2.73       −      − 

rc201c10-s4 1 424.49  1 454.27 33 7.02  2 343.60 215     − 

rc205c10-s4 2 334.54   2 380.39 191 13.70         −       − 

Avg. 2.17 335.10   2.25 351.47 143.06 5.69         15.26 

r102c15-s8 5 430.83  5 418.78 107 -2.80       −      − 

r105c15-s6 4 350.09  4 403.60 129 15.28       −      − 

r202c15-s6 1 590.31  2 417.40 462     −       −      − 

r209c15-s5 1 347.31  1 456.32 63 31.39       −      − 

c103c15-s5 3 401.97  3 418.69 413 4.16       −      − 

c106c15-s3 3 352.29  3 313.51 237 -11.01  3 514.68 74 46.10 

c202c15-s5 2 393.19  2 449.40 268 14.30  3 553.46 263     − 

c208c15-s4 2 310.12  2 416.33 729 34.25       −      − 

rc103c15-s5 4 415.79  4 447.13 140 7.54       −      − 

rc108c15-s5 3 417.92  3 434.81 150 4.04       −      − 

rc202c15-s5 2 403.03  2 416.91 516 3.44       −      − 

rc204c15-s7 1 402.15   1 517.56 1097 28.70   2 397.73 1199     − 

Avg. 2.58 384.06   2.67 426.64 359.25 11.75         46.10 

Total Avg. 2.06 305.79   2.11 331.26 185.60 8.66         27.70 

 

The results show that the number of vehicles increases by one in two instances in the 

“Nearly Level” case (shown in bold) compared to the “Level” case. Furthermore, we 

observe that although energy consumption values obtained in the “Nearly Level” case are 

often higher than the energy consumption in “Level” case, in eight instances the energy 

consumption decreases by considering the effect of road gradient since vehicles can save 

energy using the regenerative braking process. The maximum energy saving happens in 
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“c106c15-s3” by an 11% reduction in energy consumption compared to the “Level” case.  

Finally, we see in the “Very Gentle Slope” case that LNS can solve thirteen instances and 

the rest of them can be infeasible since the road gradient effect increases but we cannot 

prove their infeasibilities. In the seven instances, the number of vehicles increased by one 

and in one instance the number of vehicles increased by two compared to the “Level” 

case. The energy consumption for the instances with the same number of vehicles 

increased up to 46.10 % in “c106c15-s3”.  

 

We solved the large-size instances for the mentioned cases using LNS. The results are 

provided in Table 5.2. We observe that in the “Nearly Level” case, the number of vehicles 

increases by one in the six instances, and in one instance it increases by two (shown in 

bold) compared to the “Level” case. Furthermore, in “c102” where the number of vehicles 

does not change, the energy consumption increases by 20.14%. In the Very Gentle Slope 

case, the LNS is unable to find a feasible initial solution as the roads became steeper and 

the energy consumption increased in the uphill arcs significantly. These results show the 

importance of considering the road gradient in route optimization. 

 

Table 5.2 Result for large-size instances using LNS for Level, Nearly Level cases 

Instance 
Level   Nearly Level 

#Veh EC   #Veh EC t (sec) 

r101 18 1741.27  
19 1980.58 2000 

r102 17 1630.97  
18 1734.65 3535 

r103 14 1404.57  
15 1607.73 6616 

c101 12 1186.46  
13 1435.55 4544 

c102 12 1173.36  12 1409.67 12102 

c103 11 1395.65  
13 1544.49 20327 

rc101 17 1921.03  
18 2056.67 4207 

rc102 16 1815.88  
18 2130.69 4906 

rc103 14 1722.56  
15 1690.53 7316 

 

 

 

 Conclusions and future research 

 

 

In this chapter, we investigated the effect of road gradient, regenerative braking process, 

and cargo weight carried on the vehicle for the EVRPTW with a partial recharge strategy.  

Furthermore, we generated data based on the benchmark datasets in the literature by 
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assigning altitude to each node in the network. Clustering techniques are used to elevate 

the nodes in order to have a consistent dataset. We presented an LNS algorithm to solve 

the small and large-size instances. Results show that considering road gradient along with 

cargo load can significantly change the routing decisions and it can make the problem 

infeasible in the networks with steep road slope. 
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6. Concluding Remarks and Future Research Directions 

 

 

In this thesis, we investigate the effect of ambient temperature, cargo weight, road 

gradient, and regenerative braking process on the fleet composition, energy consumption, 

and routing decisions in last-mile delivery operations. We propose new preprocessing 

techniques to reduce the problem size and enhance the computational performance of the 

solution methods.  

 

In chapter 2 we studied EVRPTW with partial recharge by considering the effect of 

ambient temperature on the fleet size and energy consumption. We introduced the 

mathematical model of the problem and used it to solve small-size problems on CPLEX. 

We solved large-size problems with an ALNS algorithm. We also performed a case study 

using real-world data from a logistics service provider in Adana, Turkey. Our results 

showed that temperature can have a significant effect on the delivery operations since as 

temperature increases/decreases. It can increase the total energy consumption of the 

operations as well as the fleet size, and the routing might become impossible to serve all 

customers using an EV fleet. Routing plans made without considering the temperature 

effect might not be cost-optimal or might even become infeasible at hotter/chilly days. 

We performed our case study simulations considering one temperature level for each case; 

however, the temperature actually changes during the day. Further research on this topic 

may address the time-dependent variant of the problem that takes into account the hourly 

change of temperature may improve the accuracy of the results.   

 

In chapter 3, we revisited the EVRPTW and proposed new preprocessing techniques to 

reduce the problem size and accelerate the computational performance of the solution 

methods. Furthermore, we developed an algorithm to check the feasibility of an instance. 

Our experimental tests showed that the proposed preprocessing can reduce the graph by 

up to 37% on average and speed up the computation time by up to 95% and 32% on small- 
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and large-size instances, respectively. Furthermore, it allowed ALNS to find better 

solutions in many large-size instances, by reducing the fleet size or saving energy. 

Moreover, the proposed feasibility check algorithm was able to detect all the instances 

proven infeasible. Further research on this topic may focus on other EVRP variants where 

a solution method can benefit from the proposed preprocessing techniques and feasibility 

check algorithm. The proposed approaches can be easily incorporated in different settings 

such as nonlinear charging times, different charging technologies, partial-full or single-

multiple recharging strategies en-route, load-dependent EVRP. In addition, the influence 

of the proposed preprocessing can also be investigated on the performances of exact 

methods such as branch-and-cut and branch-and-price algorithms where the reduction 

rules can eliminate some branching options at each node and reduce the size of the 

branching tree. 

 

In chapter 4 we addressed EVRPTW with partial recharge by taking into account the 

energy consumption associated with the cargo carried on the vehicle. We formulated three 

alternative mathematical models and tested their performances by solving the small-size 

instances using Gurobi solver. For the large-size instances, we proposed an LNS method. 

Our computational tests showed how the fleet size and/or energy consumption increase 

in comparison to the case where the load factor is neglected and revealed the importance 

of considering the weight of the vehicles for more accurate route planning. 

 

In chapter 5 we investigated the effect of road gradient, regenerative braking process, and 

cargo weight carried on the vehicle for the EVRPTW with partial recharge strategy. 

Furthermore, we generated new data based on the benchmark datasets in the literature by 

assigning altitude to each node in the network. Clustering techniques are used to elevate 

the nodes in order to have a consistent dataset. We presented an LNS algorithm to solve 

the small- and large-size instances. Our results showed that considering road gradient 

along with cargo load can significantly change the routing decisions and it can make the 

problem infeasible in the networks with steep road slope. 

We assumed charging stations were always available whenever the vehicles required 

recharging; however, this may not be the case in real life and there might be queues in the 

stations. In addition, as mentioned before, it is possible for logistics service providers to 

own a heterogenous fleet to address the implications of different factors on energy 
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consumption. The optimal combination of different powertrain options will depend on 

the needs of the operation, as well as on the regional climate conditions and road network. 

Optimal fleet and route design for different regions arises as a challenging problem to be 

studied. Furthermore, the emission benefits of having an EV fleet compared to mixed 

fleet should be assessed. EVs are one of the most promising technologies to provide 

emission benefits in logistics operations; however, the effect of operational needs, climate 

and other regional conditions on these benefits need further investigation. Time-

dependent EVRPTW where the traffic imposes different speed levels in different time 

periods is another future research direction in this field. 
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Appendix A. Results for benchmark instances 

 

 

 

In this section, we provide the detailed results of our computational study on 5-, 10-, and 

15-customer instances in Table A.1 as well as 100-customer instances in Table A.2. In 

Table A.1, the instance name in the first column expresses the problem type as well as 

the number of customers and stations it includes. For example, ‘r104c5-s3’ indicates that 

the customers are randomly distributed (r), their time windows are narrow (104), and the 

data involves 5 customers (c5) and 3 stations (s3).  In Table A.2, the instance name 

indicates only the geographical distribution of the customers since all instances have the 

same number of customers and stations. Under each temperature case, columns ‘#Veh’, 

‘EC’, ‘t (sec)’ refer to the number of vehicles in the fleet, total energy consumption of the 

route plan, and the run time in seconds. Note that in Table A.1, if the run time is 7200 

seconds the optimality of the solution is not guaranteed. 
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Table A.1. Results for 5-, 10-, and 15-customer benchmark instances in different 

ambient temperatures 

Inst. #Veh EC t (sec) #Veh EC t (sec) #Veh EC t (sec) #Veh EC t (sec)

r104c5-s3 2 137 <1 2 163 <1 2 203 <1 2 265 <1

r105c5-s3 2 156 <1 2 212 <1 INF <1 INF <1

r202c5-s3 1 129 <1 1 155 <1 1 205 <1 1 245 <1

r203c5-s4 1 179 <1 1 195 <1 1 264 <1 2 351 <1

c101c5-s3 2 258 <1 2 281 <1 3 344 <1 INF <1

c103c5-s2 1 175 <1 1 191 <1 INF <1 INF <1

c206c5-s4 1 243 <1 1 272 <1 INF <1 INF <1

c208c5-s3 1 164 <1 1 179 <1 1 209 <1 1 305 <1

rc105c5-s4 2 233 <1 2 268 <1 2 314 <1 3 403 <1

rc108c5-s4 2 254 <1 2 277 <1 2 329 <1 4 591 <1

rc204c5-s4 1 185 <1 1 206 <1 1 252 <1 2 319 <1

rc208c5-s3 1 168 <1 1 189 <1 1 227 <1 1 308 <1

r102c10-s4 3 249 <1 4 287 <1 4 346 <1 5 495 <1

r103c10-s3 2 206 8 2 228 5 INF <1 INF <1

r201c10-s4 1 242 <1 1 288 <1 2 323 <1 2 435 <1

r203c10-s5 1 223 <1 1 280 1 INF <1 INF <1

c101c10-s5 3 388 <1 3 423 <1 INF <1 INF <1

c104c10-s4 2 274 <1 2 314 1 2 440 16 INF <1

c202c10-s5 1 304 <1 1 331 <1 2 320 <1 2 383 <1

c205c10-s3 2 228 <1 INF <1 INF <1 INF <1

rc102c10-s4 4 424 <1 INF <1 INF <1 INF <1

rc108c10-s4 3 348 <1 3 384 1 INF <1 INF <1

rc201c10-s4 1 413 <1 2 388 <1 2 462 <1 INF <1

rc205c10-s4 2 326 <1 2 390 <1 INF <1 INF <1

r102c15-s8 5 413 3 5 470 4 INF <1 INF <1

r105c15-s6 4 336 2 4 397 1 5 515 62 INF <1

r202c15-s6 1 507 594 2 403 21 INF <1 INF <1

r209c15-s5 1 313 11 1 364 27 INF <1 INF <1

c103c15-s5 3 348 33 3 408 297 3 509 839 4 630 92

c106c15-s3 3 275 2 3 382 49 3 525 19 INF <1

c202c15-s5 2 384 11 2 418 21 2 571 163 3 710 20

c208c15-s4 2 301 1 2 328 1 2 501 20 INF <1

rc103c15-s5 4 398 117 4 433 156 4 508 31 5 750 1745

rc108c15-s5 3 370 2002 3 429 7200 INF <1 INF <1

rc202c15-s5 2 394 1 2 475 2 INF <1 INF <1

rc204c15-s7 1 382 7200 1 419 7200 1 504 7200 1 621 7200

Intense ExtremeMild Intermediate
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Table A.2. Results for 100-customer benchmark instances in different ambient 

temperatures 

Inst. #Veh EC t (sec) #Veh EC t (sec) #Veh EC t (sec) #Veh EC t (sec)

c101 12 1043.38 140 12 1142.19 130 12 1363.48 113 12 1652.78 112

c102 11 1019.68 342 11 1128.89 270 11 1388.57 290 12 1604.49 335

c103 10 973.92 928 10 1085.16 741 11 1302.35 530 11 1628.51 415

c104 10 886.84 2017 10 988.31 1328 11 1253.78 1122 11 1560.71 987

c105 11 1022.75 169 11 1153.29 144 11 1432.27 175 12 1612.39 185

c106 11 1022.15 244 11 1138.75 233 11 1449.76 276 12 1605.75 193

c107 10 1070.30 229 11 1116.60 259 11 1356.79 239 12 1611.13 279

c108 10 1044.76 244 11 1098.49 302 11 1338.30 302 12 1601.25 322

c109 10 943.69 471 10 1078.24 1088 11 1288.30 420 12 1602.99 567

r101 18 1642.74 67 18 1809.06 77 19 2265.32 74 21 2811.71 76

r102 16 1437.66 148 16 1605.22 161 16 1989.45 165 18 2454.76 123

r103 13 1256.89 145 14 1395.47 207 14 1721.53 189 15 2120.62 165

r104 11 1096.27 239 12 1191.54 312 12 1444.11 316 13 1873.86 282

r105 15 1402.64 79 15 1557.40 84 16 1868.20 106 17 2379.43 108

r106 13 1370.55 131 14 1420.32 169 15 1704.90 182 16 2297.56 131

r107 11 1154.86 262 12 1255.45 221 13 1537.90 226 14 1930.08 240

r108 11 1043.75 342 11 1143.11 461 12 1389.93 443 13 1862.81 401

r109 13 1216.39 118 13 1361.21 126 14 1638.86 136 15 2101.29 130

r110 12 1114.47 213 12 1225.59 211 13 1471.46 208 13 1838.66 257

r111 12 1108.86 257 12 1259.48 213 13 1477.05 219 14 1921.64 193

r112 11 1035.29 286 11 1161.81 246 12 1365.34 285 13 1814.48 271

rc101 15 1755.13 84 16 1901.34 100 17 2394.81 92 − − −

rc102 14 1585.91 117 15 1717.75 109 16 2130.26 103 − − −

rc103 13 1360.77 154 13 1529.18 131 14 1874.29 136 − − −

rc104 11 1213.39 189 12 1350.57 84 12 1690.18 318 − − −

rc105 14 1470.17 85 14 1647.14 84 15 2041.41 112 − − −

rc106 13 1431.33 129 13 1706.69 98 15 1910.64 158 − − −

rc107 12 1266.05 198 12 1396.43 184 13 1737.06 219 14 2236.70 161

rc108 11 1193.58 190 11 1326.87 208 12 1655.34 265 13 2139.63 177

Mild Intermediate Intense Extreme
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Appendix B. Optimal route plans for different temperatures in Adana 

Tables B.1 reports the optimal route plans showing the arrival time at each node on the 

route, the/departure time, and the energy consumption along the route for different 

temperatures. 

 

Table B.1. Optimal route plans at different ambient temperatures 

EC (kWh)

Route 1 1 15 8 2 10 19 9 16 11 12 1 70.3

Arr. time - 8:30 10:13 10:24 10:51 11:05 11:20 13:00 13:56 14:13 14:22

Dep. time 5:00 8:37 10:22 10:47 10:55 11:15 11:25 13:53 14:11 14:17 -

Route 2 1 13 18 17 14 1 51.3

Arr. time - 8:30 10:34 10:55 12:23 12:30

Dep. time 5:00 10:00 10:46 11:05 12:27 -

Route 1 1 7 15 10 19 9 12 2 16 11 8 1 112.2

Arr. time - 7:18 9:57 11:45 11:59 12:15 12:27 12:36 13:06 14:01 14:24 14:35

Dep. time 5:00 9:15 10:04 11:49 12:09 12:20 12:31 12:56 13:59 14:16 14:33 -

Route 2 1 13 18 17 14 1 56.3

Arr. time - 8:30 10:34 10:55 12:23 12:30

Dep. time 5:00 10:00 10:46 11:05 12:27 -

Route 1 1 15 7 8 1 107.9

Arr. time - 8:30 9:19 13:33 13:44

Dep. time 5:00 8:37 11:24 13:42 -

Route 2 1 13 18 17 4 14 1 66.2

Arr. time - 8:30 10:34 10:55 11:40 12:34 12:42

Dep. time 5:00 10:00 10:46 11:05 11:51 12:38 -

Route 3 1 10 19 9 16 11 12 1 12.6

Arr. time - 10:00 10:14 10:30 13:00 13:56 14:13 14:22

Dep. time 5:00 10:04 10:24 10:35 13:53 14:11 14:17 -

INFEASIBLE

Mild Case (19
o
C)

Intermediate Case (27
o
C)

Intense Case (33
o
C)

Extreme Case (39
o
C)
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Appendix C. Distance data of the distribution network in Adana 

 

Table C.1 presents distances between each pair of nodes in kilometers. The first row and first column indicate the node indexes where ‘1’, 

‘2’-‘7’, and ‘8’-‘19’ represent depot, stations, and customers, respectively.  

 

Table C.1. Distance matrix (km) 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0.00 0.00 28.70 52.20 78.69 81.53 138.00 2.25 11.88 3.50 6.67 4.65 42.39 3.41 97.08 9.06 80.33 76.48 12.20

2 0.00 0.00 28.70 52.20 78.69 81.53 138.00 2.25 11.88 3.50 6.67 4.65 42.39 3.41 97.08 9.06 80.33 76.48 12.20

3 24.90 24.90 0.00 29.20 54.10 57.50 159.50 26.90 22.20 22.80 25.90 24.10 19.40 22.50 121.72 25.30 56.70 53.49 18.70

4 45.20 45.20 20.40 0.00 32.10 35.50 179.90 47.30 42.60 43.20 46.30 44.50 5.00 42.90 142.12 45.70 34.40 31.70 39.10

5 76.90 76.90 52.10 31.70 0.00 5.50 211.60 79.00 74.30 74.90 78.00 76.20 36.70 74.60 173.82 77.40 4.30 5.80 70.80

6 81.20 81.20 56.40 36.00 4.30 0.00 215.90 83.30 78.60 79.20 82.30 80.50 40.85 78.90 178.12 81.70 1.50 8.60 75.10

7 131.26 131.26 159.96 183.46 209.71 212.55 0.00 129.00 139.00 134.18 135.27 133.00 173.41 134.43 42.60 137.50 211.35 207.50 142.43

8 2.26 2.26 30.96 54.46 80.71 83.55 136.32 0.00 13.56 5.18 8.35 6.33 44.41 5.43 94.82 10.74 82.35 78.50 14.23

9 11.80 11.80 25.82 49.22 76.18 79.02 145.35 13.27 0.00 10.01 5.44 7.35 39.88 12.80 105.90 3.53 77.82 73.97 4.82

10 3.44 3.44 26.50 49.90 76.45 79.28 139.00 4.91 10.46 0.00 5.97 3.95 40.15 2.92 99.24 7.65 78.08 74.23 9.96

11 6.41 6.41 29.31 52.71 80.87 83.71 139.95 7.87 5.78 5.64 0.00 1.95 44.57 7.71 100.50 2.97 82.51 78.66 8.31

12 4.46 4.46 30.20 53.60 80.14 82.98 138.00 5.92 7.31 3.70 2.27 0.00 43.84 5.77 98.55 4.50 81.78 77.93 9.43

13 42.64 42.64 18.10 11.40 36.30 39.14 177.60 44.89 39.90 40.61 44.00 42.20 0.00 40.60 139.72 43.40 37.94 34.09 36.31

14 3.18 3.18 26.30 49.80 76.27 79.11 137.00 5.43 11.77 1.61 7.11 5.09 39.97 0.00 100.26 8.96 77.91 74.05 9.78

15 98.23 98.23 126.87 150.27 176.68 179.52 41.50 95.96 106.11 100.37 102.67 100.40 140.38 101.39 0.00 103.81 178.32 174.47 107.12

16 9.29 9.29 28.10 52.03 78.99 81.83 142.84 10.76 2.81 7.68 2.93 4.84 42.69 9.27 103.39 0.00 80.63 76.78 7.63

17 80.20 80.20 55.40 35.00 3.30 1.20 214.90 82.30 77.60 78.20 81.30 79.50 39.35 77.90 177.12 80.70 0.00 9.10 74.10

18 76.40 76.40 51.50 31.20 5.90 9.15 211.00 78.40 73.70 74.30 77.40 75.60 34.68 74.00 173.22 76.80 7.95 0.00 70.20

19 13.97 13.97 21.00 44.40 72.56 75.40 145.00 15.44 5.26 10.69 8.78 9.97 36.26 11.03 106.34 8.79 74.20 70.35 0.00
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Appendix D. Parameters 

 

 

 

The parameters used in the LNS algorithm are displayed in Table D.1. 

 

Table D.1. Parameter values 

Par. Description Value 

𝛾 Number of customers removed Random between [20%, 55%] of all customers 

Γ Number of customers removed when exact method is selected as 

insertion operator 

Random between [15%, 45%] of all customers 

𝜎 Parameter used in Random Worst-Consumption and Random 

Worst-Time algorithm 

1.5 

𝜔 Number of routes removed  Random between [10%, 40%] of all routes 

𝜙1 First Shaw parameter 0.5 

 𝜙2 Second Shaw parameter 0.25 

𝜙3 Third Shaw parameter 0.15 

𝜙4 Fourth Shaw parameter 0.25 

𝜇 Noise parameter 0.1 

𝜖 Random number for noise function Random between [-1, 1] 

α First-Feasible Station Insertion selection probability 0.7 

𝛿1 Worst-Consumption selection probability 0.30 

𝛿2 Random Worst-Consumption selection probability 0.23 

𝛿3 Shaw selection probability 0.08 

𝛿4 Random Worst-Time selection probability 0.08 

𝛿5 Random selection probability 0.08 

𝛿6 Random Route Removal selection probability 0.15 

𝛿7 Greedy Route Removal selection probability 0.08 

𝜆1 Exhaustive Greedy Insertion selection probability 0.066 

𝜆2 Random Greedy Insertion selection probability 0.133 

𝜆3 Regret-2 Insertion selection probability 0.266 

𝜆4 Exhaustive Time-Based Insertion selection probability 0.133 

𝜆5 Random Time-Based Insertion selection probability 0.066 

𝜆6 Random Greedy Insertion selection probability 0.066 

𝜆7 Regret-2 with Noise Function insertion selection probability 0.066 

𝜆8 Exhaustive Time-Based with Noise Function insertion selection 

probability 

0.066 

𝜆9 Random Time-Based with Noise Function insertion selection 

probability 

0.066 

𝛽 Number of iterations to remove and reinsert stations 50 

η The number of iterations until calling the exact method for small 

and large-size instances 

800, 5700  
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Appendix E. Detailed result analyzing the performance of repair-opt operator 

 

 

 

The results for the small-size instances obtained from LNS algorithm without and with 

considering repair-opt operator for the load-dependent case are reported in Table E.1. 

“%ΔEC” refers to the percentage change in energy consumption between the solution 

obtained from LNS without and with considering the repair-opt operator.  

 

Table E.1. Results for the small-size instances obtained from LNS algorithms without 

and with considering repair-opt operator for the load-dependent case 

Instance #Veh EC t  (sec ) #Veh EC t (sec) % ∆EC

r104c5-s3 2 142 11 2 142 1 0.00

r105c5-s3 2 159 8 2 159 1 0.00

r202c5-s3 1 144 16 1 144 2 0.00

r203c5-s4 1 181 9 1 181 2 0.00

c101c5-s3 2 266 9 2 266 1 0.00

c103c5-s2 1 187 10 1 187 1 0.00

c206c5-s4 1 251 10 1 251 2 0.00

c208c5-s3 1 169 9 1 169 2 0.00

rc105c5-s4 2 257 8 2 257 1 0.00

rc108c5-s4 2 264 10 2 264 1 0.00

rc204c5-s4 1 189 16 1 189 3 0.00

rc208c5-s3 1 171 14 1 171 2 0.00

r102c10-s4 4 272 22 3 336 3 −

r103c10-s3 2 220 29 2 220 14 0.00

r201c10-s4 1 270 14 1 262 2 -2.82

r203c10-s5 1 227 4 1 227 8 0.00

c101c10-s5 3 428 20 3 410 2 -4.21

c104c10-s4 2 308 48 2 306 85 -0.77

c202c10-s5 1 321 9 1 319 1 -0.62

c205c10-s3 2 234 26 2 234 3 0.00

rc102c10-s4 5 475 17 5 475 2 0.00

rc108c10-s4 3 365 23 3 365 4 0.00

rc201c10-s4 2 327 28 1 424 3 −

rc205c10-s4 2 335 25 2 335 4 0.00

r102c15-s8 5 431 28 5 431 5 -0.04

r105c15-s6 4 350 32 4 350 4 0.00

r202c15-s6 2 365 30 2 365 272 0.00

r209c15-s5 1 360 25 1 347 36 -3.52

c103c15-s5 3 402 73 3 402 419 -0.01

c106c15-s3 3 352 52 3 352 12 0.00

c202c15-s5 2 393 44 2 393 33 0.00

c208c15-s4 2 310 47 2 310 15 0.00

rc103c15-s5 4 416 45 4 416 57 0.00

rc108c15-s5 3 418 40 3 418 20 0.00

rc202c15-s5 2 403 48 2 403 11 0.01

rc204c15-s7 1 489 58 1 402 371 -17.76

MatheuristicLNS

 

 

The results show that in the small-size instances, 8 instances LNS with considering the 
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repair-opt operator finds better solutions compared with the LNS algorithm without 

considering repair-opt operator. In two instances, it improves the number of vehicles and 

in six instances it improves the solution with respect to energy consumption 

(improvements are shown in bold). 

 

The results for the large-size instances obtained from the Matheuristic and LNS 

algorithms for the load-dependent case are reported in Table E.2. The LNS with 

considering repair-opt operator overperforms LNS without considering repair-opt 

operator in three instances with respect to the number of vehicles and in sixteen instances 

with respect to the energy consumption (improvements are shown in bold).  

 

Table E.2. Results for the large-size instances obtained from LNS algorithms without 

and with considering repair-opt operator for the load-dependent case 

#Veh Best time #Veh Best time % ∆EC
r101 19 1833 1357 18 1741 712 −

r102 17 1746 1430 17 1631 1135 -6.57

r103 14 1375 1898 14 1405 1885 2.13

r104 13 1253 3017 13 1247 2545 -0.49

r105 16 1481 1629 16 1483 1324 0.12

r106 15 1469 1928 15 1470 1752 0.06

r107 13 1357 2148 13 1332 1774 -1.83

r108 12 1190 3596 11 1252 2571 −

r109 14 1457 1818 14 1416 1734 -2.87

r110 13 1256 2967 13 1251 2129 -0.36

r111 13 1271 2601 13 1263 2029 -0.66

r112 12 1204 3521 12 1218 2763 1.19

c101 12 1198 1454 12 1186 718 -0.93

c102 12 1210 2008 12 1173 1969 -3.05

c103 11 1433 2809 11 1396 3005 -2.61

c104 11 1456 5247 11 1373 4524 -5.68

c105 12 1167 1934 12 1162 1345 -0.50

c106 12 1171 2348 12 1167 1919 -0.39

c107 12 1183 2490 12 1180 1634 -0.32

c108 12 1215 3060 12 1206 2466 -0.70

c109 12 1256 2913 11 1318 2648 −

rc101 17 1947 1485 17 1921 1119 -1.34

rc102 16 1812 1627 16 1816 1555 0.23

rc103 14 1653 1975 14 1723 1773 4.23

rc104 13 1490 3282 13 1515 2930 1.71

rc105 15 1734 1845 15 1735 1654 0.02

rc106 15 1630 2008 15 1651 1557 1.25

rc107 13 1523 2486 13 1468 2060 -3.65

rc108 13 1527 2786 13 1533 2240 0.37

LNS Matheuristic
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