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ABSTRACT

ROUTE PLANNING OF ELECTRIC FREIGHT VEHICLES BY CONSIDERING
INTERNAL AND ENVIRONMENTAL CONDITIONS

Sina Rastani

Industrial Engineering Ph.D. Dissertation, Aug 2020

Dissertation Supervisor: Prof. Bilent Catay

Keywords: electric vehicle routing, energy consumption, metaheuristics, green logistics

Electric freight vehicles have strong potential to reduce emissions stemming from
logistics operations; however, their limited range still causes critical limitations. Range
anxiety is directly related to the total amount of energy consumed during trips. There are
several operational factors that affect the energy consumption of electric vehicles and
should be considered for accurate route planning. In this thesis, we investigate the effect
of ambient temperature, cargo weight, road gradient, and regenerative braking process on
the fleet composition, energy consumption, and routing decisions in last-mile delivery
operations. First, we consider the influence of ambient temperature on the energy
consumption of the vehicle. Cabin heating or cooling may significantly increase the
energy discharged from the battery during the trip and reduce the driving range.
Additionally, cold temperatures decrease battery efficiency and cause performance losses.
We formulate this problem as a mixed-integer linear program and solve the small-size
instances using a commercial solver. For the large-size instances we resort to an Adaptive
Large Neighborhood Search method. We also provide a case study based on the real data
provided by Ekol Logistics in their Adana operations. Then, we propose new
preprocessing techniques to reduce the problem size and enhance the computational
performance of the solution methods. Furthermore, we develop an algorithm that can be
used to identify if a problem instance is infeasible. Our experimental study validates the
performance of the proposed preprocessing techniques and feasibility check algorithm.
Next, we take into account the effect of cargo weight on the energy consumption and
routing decisions. We formulate three alternartive mathematical models and investigate
their effectiveness. We also develop a Large Neighborhood Search (LNS) method by



using an exact method to repair the partial solution. Finally, we tackle the problem
involving cargo weight and road gradient by considering regenerative braking.
Considering the road gradient, a loaded vehicle going uphill will consume significantly
more energy. On the other hand, when it travels downhill it can recharge its battery
through recuperation. For this problem, we introduce a new dataset generated using the
benchmark data form the literature. We adapt our LNS and perform an extensive
computational study using the generated data. Overall, our results show that the route
plans made without considering any of these factors may lead to inefficiencies,
unforeseen costs, and disruptions in logistics operations.



OZET

ICSEL VE CEVRESEL KOSULLARI GOZ ONUNDE BULUNDURARAK
ELEKTRIKLI YUK ARACLARININ ROTA PLANLAMASI

Sina Rastani

Endiistri Miithendisligi, Agustos 2020

Tez Danismant: Prof. Dr. Bulent Catay

Anahtar Kelimeler: elektrikli ara¢ rotalama, enerji tiiketimi, metasezgisel, yesil lojistik

Elektrikli aracglarin kullanim1 lojistik operasyonlarimdan kaynaklanan zararli gazlarin
salimimin azaltilmasinda 6nemli bir potansiyel sunar. Ancak, bu araglarin menzillerinin
kisa olmast yaygin kullanimlarini siirlayan en 6nemli faktordiir. Menzil kaygisi,
yolculuk sirasinda tiiketilen toplam enerji miktar ile dogrudan iligkilidir. Dogru rota
planlamasi igin elektrikli araglarin enerji tiiketimini etkileyen operasyonel etkenlerin
dikkate alinmasi gerekir. Bu tezde bu etkenlerden ortam sicakligi, yik agirligi, yol egimi
ve rejeneratif frenleme ele alinmistir. Arag kabininin isitilmasi veya sogutulmasi yolculuk
boyunca tlketilen enerjiyi ylksek olgiide artirabilir ve buna bagli olarak da aracin
menzilini kisaltir. Bunun yaninda, ¢ok soguk hava kosullarinin batarya verimini azalttig
ve performans kaybina neden oldugu bilinmektedir. Ayrica, aragta tasinan yukin
agirh@ina bagli olarak enerji tuketimi de artmaktadir. Yol egimi goz Oniinde
bulunduruldugunda, yokus yukar1 giden yiiklii bir aracin enerji tuketimi diz yolda
ilerleyen bir araca gore daha fazla olacaktir. Ote yandan, ara¢ yokus asagi hareket
ettiginde ise geri kazanim yoluyla bataryasini sarj edebilmektedir. Bu ¢alismada, kentsel
lojistik operasyonlarinda bu etkenlerin ara¢ filosu kompozisyonuna, toplam enerji
tlketimine ve rotalama kararlarina nasil etki ettikleri incelenmektedir. Farkli problemler
icin bu etkenleri g6z o6nunde bulunduran matematiksel programlama modelleri
sunulmakta, kii¢iik boyutlu problemler i¢in bir eniyileme yazilimi ile bu modeller
cozulurken blytk boyutlu problemleri ¢cozmek icin Genis Komsuluk Arama metasezgisel
yaklasgiminindan faydalanilmaktadir. Bu kapsamda, problem boyutunu kigiltmek ve
¢ozlim yontemlerinin hesaplama performansini artirmak i¢in yeni 6n isleme yontemleri
de Onerilmektedir. Ayrica, bir problemin olurlu olup olmadigini belirlemek igin bir



algoritma gelistirilmistir. Sunulan modellerin ve gelistirilen ¢6zim yd&ntemlerinin
performansi literatlirdeki veri setleri kullanilarak kapsamli deneysel ¢alismalarla
incelenmistir. Ayrica, literatirde yol egimini i¢eren bir veri seti bulunmadigi i¢in buna
yonelik yeni bir veri seti sunulmustur. Elde edilen sonuglar, bu etkenler dikkate
alinmadan yapilan rota planlariin lojistik operasyonlarinda 6ngériilmeyen maliyetlere ve
aksakliklara yol agabilecegini gostermektedir. Ayrica, 6nerilen 6n isleme yontemlerinin
ve olurluluk kontrol algoritmasinin etkinlikleri yapilan deneylerle gésterilmistir.
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1. INTRODUCTION

Transportation sector is responsible from 14% of global anthropogenic emissions and
23% of energy-related global greenhouse gas (GHG) emissions around the world
(Edenhofer et al., 2014; Raadal et al., 2011). About 75% of transport-related emissions
can be attributed to road transport (International Energy Agency, 2017). Road transport
is also a major source of air pollutants, particularly NOx and PMzs. To reduce negative
effects and mitigate emissions, governments are setting ambitious targets. The European
Commission targets 60% reduction in transport-related GHG emissions by 2050
compared to 1990 levels (European Commission, 2011).

Urban transport is particularly important because road vehicles are mostly used in high
population areas, which causes the concentration of emissions in the cities (International
Energy Agency, 2016). In Europe, urban transport constitutes 23% of transport-related
emissions, 6% of which is due to urban freight transport, i.e. transportation of goods
(European Commission, 2013). City logistics, therefore, has a significant portion in the
urban transport emissions and the EC targets “COz free city logistics” by 2030 (European
Commission, 2013). In addition, several cities have issued plans to ban domestic sales of
new diesel and gasoline-powered cars as of 2025 in the Scandinavian countries and as of
2030 in most of the European countries (DW, 2018).

Replacing internal combustion engine vehicles (ICEVs) with battery electric vehicles
(BEVs) is one of the most promising approaches to achieve these targets. This thesis aims
to develop effective models and solution methods for the route planning of BEVs.
Throughout this thesis, we will refer to a commercial BEV as EV (Electric Vehicle) in
line with the Vehicle Routing Problem (VRP) literature.



1.1. Advantages and disadvantages of using EVs

The EVs use only electricity as an energy source, hence, they constitute a good alternative
to gasoline and diesel-powered vehicles. Furthermore, EVs provide cost benefits during
operation with lower energy consumption per distance traveled due to more efficient
powertrains (Wu et al., 2015). Limited driving range, long recharge durations, inadequate
charging infrastructure, and high acquisition costs are the major drawbacks of EVs.
Logistics companies might have advantages regarding these drawbacks since they have
the chance to plan their itineraries, therefore charging times and durations, and install

their own charging stations at their depots (Giordano et al., 2017).

1.2. Overview of the Fuel and Energy Consumption Approaches

The amount of fuel consumed by a vehicle that causes pollution depends on load, speed,
slope, weather conditions, acceleration, air density, vehicle’s frontal area and other
factors. A variety of models which are mostly based on simulation have been presented
to calculate fuel consumption such as aaSIDRA and aaMOTION (Akcelik and Besley
2003) and the Comprehensive Modal Emission Model (Barth et al., 2005), which have
been used to test various strategies for CO- reduction (Barth and Boriboonsomsin 2008).
Palmer proposed an integrated routing and emission model for the freight vehicles and
discussed the effect of speed on polluting under different congestion and time window

scenarios. However, he did not consider vehicle loads in his model (Palmer 2007).

A vehicle routing and scheduling problem with time windows was addressed by Maden
et al. which depends on the time of travel. They solved a case study of a fleet of delivery
vehicles in the UK by applying a heuristic and reported up to 7% saving in CO2 emissions
(Maden et al., 2010). A similar problem to that Maden el al. was studied by Jabali et al.
which tries to obtain optimal speed with respect to emission. They calculated the emission
with a nonlinear function of speed. They did not consider other factors that affect the
vehicle’s emission. An iterative TS was proposed to solve VRP instances taken from the

literature (Jabali et al., 2012). Hsu et al. addressed a VRP with energy considerations.
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The problem’s aim is to distribute perishable foods with means of vehicles with
refrigerators. The objective is to minimize transportation, inventory, energy, and

violations of time windows costs (Hsu et al., 2007).

Fuel and energy consumption were studied in VRP and Electric Vehicle Routing Problem
(EVRP) recently, as it is becoming more and more important to decrease emission (in
conventional vehicles) and increase driving range with a limited battery capacity in the
electric fleet. In the VRP literature Bektas and Laporte (2011) introduced the pollution
routing problem (PRP) which is an extension of classical VRP that considers not only
traveled distance, but also the amount of greenhouse emissions, fuel, travel times, and
their costs. They stated that speed and load have the most imperative effect on the amount
of pollution emitted by a vehicle. They used a function introduced by Barth et al. for
calculating emission costs (Barth et al., 2005; Barth and Boriboonsomsin 2009). They
showed that fuel consumption as a function of speed is a U-shape function which means
that fuel consumption decreases and then increases as the speed increases. Bektas and
Laporte proposed mathematical models for PRP with or without time windows and
illustrated their computational experiments performed on realistic instances (Bektas and
Laporte 2011).

Demir et al. (2011) analyzed and numerically compared several available freight
transportation vehicle emission models. As a result, they showed U-shape diagrams
corresponding to fuel consumption for three types of vehicles under various speed levels
estimated by the engine power module (Demir et al., 2011). Suzuki (2011) developed an
approach for the time-constrained, multiple-stop, truck-routing problem which minimizes
the distance a vehicle should travel with a heavy load in a given tour by sequencing the
customer visits such that heavier items are unloaded first while lighter items are unloaded
later, and it considers the amount of fuel burned during the time a truck is detained at
customer sites. This problem is a kind of load-dependent problem and minimizes fuel

consumption and emission (Suzuki 2011).

Demir et al. (2012) proposed an Adaptive Large Neighborhood Search (ALNS) heuristic
for solving the pollution routing problem which has time windows and determines the
speed of each vehicle on each route segment in order to minimize a function which

considers fuel, emission, and driver costs (Demir et al., 2012). Demir et al. (2014)
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addressed an extension for the PRP named bi-objective PRP which includes two objective
functions that minimize fuel consumption and driving time which are conflicting and are
thus considered separately. They presented an ALNS combined with a speed optimization
procedure to solve the bi-objective PRP (Demir et al., 2014).

Wu et al. (2015) studied electric vehicles’ energy consumption. Their analyses showed
that the EV is more efficient when driving on in-city routes than driving on freeway
routes. Moreover, they analyzed the relations among the EV’s power, the vehicle’s speed,
acceleration, and the roadway grade. They proposed an analytical EV power estimation
model (Wu et al., 2015).

Suzuki (2016) addressed a PRP model that needs fewer user inputs. Their model
incorporates only a subset of all factors affecting trucks’ fuel consumption. Their solution
approach treats the PRP which is a single-objective problem, as a dual-objective problem
that minimizes distance traveled and vehicle payload. By means of Simulated Annealing
(SA), a Pareto frontier for this dual-objective problem was approximated. Then a Tabu
Search (TS) algorithm which explores only the regions near the frontier was applied in

order to improve each component of the frontier (Suzuki 2016).

1.3. Electric Vehicle Routing Problem

The Electric Vehicle Routing Problem (EVRP) is an extension of the well-known Vehicle
Routing Problem (VRP) where the fleet consists of EVs. The aim of VRP is to determine
the minimum cost routes that serve a set of customers with known demands. The
utilization of an EV fleet in logistics operations reduces the tailpipe emissions and help
companies achieve their sustainability objectives while decreasing the operational costs.
On the other hand, limited battery capacity, recharging strategies, and long charging
durations bring additional complexity to the problem. These challenges have attracted the

interest of many researchers and studies on EVRP has recently gained momentum.



1.4. Thesis Organization

In chapter 2 we consider the impact of ambient temperature on the fleet sizing, battery
recharging and routing decisions within the context of EVRPs in logistics operations.
Particularly, we focus on the EVRP with time windows (EVRPTW) by allowing partial
charging. Ambient temperature can cause a rise in energy consumption of EVs since cabin
heating or cooling may significantly increase the energy discharged from the battery
during the trip and reduce the driving range. Additionally, cold temperatures decrease
battery efficiency and cause performance losses. First, we present the Mixed-Integer
Linear Programming (MILP) formulation of the problem. Next, we perform an extensive
computational study based on benchmark data from the literature. For solving the small-
size instances we use a commercial solver (CPLEX). For solving the large-size instances
we employ an ALNS algorithm. We show how the fleet compositions and route plans
change under different weather conditions using benchmark data from the literature as
well as real data from a logistics company. This study is published in Transportation
Research Part D: Transport and Environment as “Effects of ambient temperature on the

route planning of electric freight vehicles” by Sina Rastani, Tugce Yiiksel and Biilent

Catay.

Chapter 3 presents some reduction techniques and develops a preprocessing procedure to
reduce the graph, hence the number of decision variables in EVRPTW. Furthermore, we
propose an algorithm to identify whether a problem instance is feasible or not. Extensive
computational tests are performed to investigate the performance of the proposed
approaches. This study is submitted to Computers & Operations Research as “Speed-up

techniques for solving the electric vehicle routing problem with time windows”.

In the 4th chapter, we address the load-dependent variant of EVRPTW with partial
recharges by taking into account the energy consumption associated with the cargo
carried on the vehicle. Carrying more load by an EV causes more energy consumption.
We present the MILP formulation of the problem and perform an extensive experimental
study to investigate the influence of load on the routing decisions. We solve small-size
instances using a commercial solver (GUROBI), and for the large-size instances, we

develop a Large Neighbourhood Search (LNS) algorithm. The results show that cargo
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weight may create substantial changes in the route plans and fleet size. Additionally, we
equipped the proposed LNS method with exact insertion operator by joining LNS
metaheuristic coded in Python with GUROBI to obtain better solutions. This work is
accepted to be published in ICLS 2020 edited volume by Springer as “Electric Vehicle
Routing Problem with Time Windows and Cargo Weight”.

Chapter 5 studies EVRPTW with partial recharges by taking into account the energy
consumption associated with the road gradient and the cargo carried on the vehicle.
Traveling on an arc with a positive road gradient requires more energy comparing to an
arc in a flat network. As the gradient of an arc slightly rises, the energy consumption per
unit distance increases which can extremely increase the energy consumption on that arc.
Furthermore, in the operations where the EVs deal with heavy loads, the effect of road
gradient on the energy consumption intensifies since an EV moving uphill with heavy
load requires more energy in order to finish its journey. On the other hand, if an EV
traverses on an arc with a negative road gradient where the driver needs to push the brake
pedal in order to travel with a constant speed, energy can be saved on the battery because
of the regenerative braking technology. We generate data based on the benchmark
datasets in the literature by assigning altitude to each node in the network. Clustering
techniques are used to elevate the nodes in order to have a consistent dataset. We present
an LNS algorithm to solve the small and large-size instances. Results show that
considering road gradient along with cargo load can significantly change the routing

decisions and it can make the problem infeasible in the networks with steep road slope.

Finally, concluding remarks and future directions of research are presented in the last
chapter of the thesis.



2. EFFECTS OF AMBIENT TEMPERATURE ON THE ROUTE
PLANNING OF ELECTRIC FREIGHT VEHICLES

2.1. Introduction to Electric Vehicle Routing Problem with Time Windows and
Literature Review

The Electric Vehicle Routing Problem (EVRP) is an extension of the well-known Vehicle
Routing Problem (VRP) where the fleet consists of EVs. The aim of VRP is to determine
the minimum cost routes that serve a set of customers with known demands. The
utilization of an EV fleet in logistics operations reduces the tailpipe emissions and help
companies achieve their sustainability objectives while decreasing the operational costs.
On the other hand, limited battery capacity, recharging strategies, and long charging
durations bring additional complexity to the problem. These challenges have attracted the
interest of many researchers and studies on EVRP has recently gained momentum.

Conrad and Figliozzi (2011) is the first study that considers an EV fleet within the context
of VRP. In this problem, EVs are recharged at selected customer locations at a fixed cost.
The objective is minimizing the fleet size and a total cost function associated with
recharges, distance, and service time. Erdogan and Miller-Hooks (2012) generalized the
problem by considering alternative fuel vehicles (AFVs) and introduced the Green
Vehicle Routing Problem (GVRP). The authors assumed that the fuel is consumed
proportional to the distance, the tank is fully refueled at the alternative fueling stations
(AFSs), and the refueling time is constant. The objective is to minimize the total distance.
Wang and Cheu (2013) addressed a similar problem for an electric taxi fleet by also

assuming full recharge strategy.



Schneider et al. (2014) introduced EVRP with Time Window (EVRPTW) by also
assuming full recharge strategy. They formulated the mathematical programming model
and proposed three hybrid Variable Neighborhood Search (VNS) and TS algorithms.
They tested the performance of their algorithms using benchmark instances for GVRP
and Multi-Depot VRP with Inter-Depot Routes. They also generated a new data set based
on the well-known Solomon (1987) Vehicle Routing Problem with Time Windows
(VRPTW) data. Afroditi et al. (2014) also developed a mathematical model for EVRPTW
with full recharges and provided insights about the trends in the literature. Bruglieri et al.
(2015) relaxed the full recharge assumption and developed a Variable Neighborhood
Search Branching method to solve small-size instances. Keskin and Catay (2016) also
allowed partial recharges and implemented an Adaptive Large Neighborhood Search
(ALNS) method by introducing several new removal and insertion mechanisms specific
to the problem. Desaulniers et al. (2016) also attacked EVRPTW and attempted to solve

four variants optimality using branch-price-and-cut algorithm.

Several extensions of EVRP and EVRPTW have been addressed in the literature such as
the utilization of a mixed fleet of EVs and ICEVs (Goeke and Schneider, 2015; Sassi et
al., 2015, Macrina et al., 2018, Hiermann et al., 2019), heterogeneous fleet of EVs
(Hiermann et al., 2016), fast charging technologies (Felipe et al., 2014; Catay and Keskin,
2017; Keskin and Catay, 2018), nonlinear charging function (Montoya et al., 2017; Froger
etal., 2019), battery swap stations (Yang and Sun, 2015; Hof et al., 2017; Paz et al., 2018),
and time-dependent waiting times at stations (Keskin et al., 2019). In addition, EV fleets
have also been considered within the framework of Location Routing Problem (Worley
et al., 2012; Hof et al., 2017; Schiffer et al., 2018), Two-echelon VRP (Jie et al., 2019),
and Two-stage EVRP (Basso et al., 2019) that integrates path finding with route planning.

In a parallel setting, Montoya et al. (2016) used a two-phase heuristic for solving GVRP.
Bruglieri et al. (2016) also tackled GVRP and presented a three-index formulation to
reduce the number of decision variables in the problem and proposed a method to
eliminate the dominated stations. Recently, Bruglieri et al., (2018) developed a path-based
exact approach to solve small size GVRP instances. For larger instances, they converted
their exact method to a heuristic approach. Ko¢ and Karaoglan (2016) also introduced a
new GVRP formulation with fewer constraints and decision variables , and implemented

a Simulated Annealing (SA) method to solve it. Leggieri and Haouari (2017) presented a



new formulation for EVRPTW and proposed a reduction procedure to speed up solving
the problem. A comprehensive survey about the use of EVs in distribution operations is
provided in Pelletier et al. (2016).

Most of the aforementioned studies assume a constant rate of energy consumption per
unit distance traveled. However, the EV energy consumption varies with operating
conditions such as driving style (speed and acceleration), road profile, vehicle load, and
weather. Among these, ambient temperature has a significant effect on EV’s performance.
Yuksel and Michalek (2015) showed that, compared to mild climate regions, energy
consumption of EVs can rise, which can result in up to 41% decrease in the driving range.
Temperature affects energy consumption due to heater use and decreased battery
efficiency in cold temperatures, and increased use of air conditioning in hot temperatures.
Neubauer and Wood (2014) showed that EV energy consumption can increase by 24%
due to heating, ventilation, and air conditioning (HVAC) used in cold climates. Yi et al.
(2018) studied the impact of ambient temperature on the energy consumption and demand
for charging of an autonomous EV. Their aim is to determine the path from an origin node
to a destination node as well as the recharging time at each intermediate charging station
node. Using a taxi pick-up and drop-off dataset from New York City, they observed that
in hot and cold temperatures the energy consumption and charging demand of the fleet
can increase by 20% and 60%, respectively. Temperature effect in EVs is more dominant
at cold weather compared to diesel/gasoline counterparts because EVs do not have the
option to use excess engine temperature for cabin heating. Extreme temperatures might
therefore cause considerable changes in route planning. Depending on the weather
conditions, a larger fleet of EVs may be needed on certain seasons/days in order to
perform the desired logistics operations and/or the EVs may need more frequent recharges
because of the increase in energy consumption. In extreme conditions, it may even not be

possible to find a feasible route plan.

The aim of this chapter is to investigate the impact of ambient temperature on routing
decisions of EVs in logistics operations. Particularly, we focus on the EVRPTW by
allowing partial charging (Keskin and Catay, 2016). To the best of our knowledge, this is
the first study that investigates the influence of ambient temperature on the fleet sizing,
battery recharging and routing decisions within the context of EVRPs. Our contributions

to the literature are twofold: (i) we extend the mathematical model of EVRPTW by



incorporating the effect of temperature in the energy consumption of the vehicles; and (ii)
show how the fleet compositions and route plans change under different weather
conditions using benchmark data from literature as well as real data from a logistics

company.

The remainder of the article is organized as follows: Section 2.2 depicts the problem and
formulates the mathematical programming model. Section 2.3 describes the methodology
employed to solve it. Section 2.4 presents the computational results and discusses the
influence of the ambient temperature on route plans and energy consumptions. Section
2.5 presents a case study based on the last mile delivery operations of Ekol Logistics in

Southern Turkey. Final remarks and future research directions conclude this chapter.

2.2. Problem description and mathematical model

In this chapter, we address EVRPTW which involves a homogeneous fleet of EVs and a
set of customers whose demands, time windows, and service durations are known. Similar
to the previous studies the battery state of charge (SoC) decreases proportional to the
distance traveled; however, we also take into account the effect of ambient temperature
on the energy consumption during the trip. In addition, we allow partial recharging and
its duration depends on the amount of energy transferred. Fully recharging the battery can
shorten its lifespan (Sweda et al., 2017) and it is a common practice in the real world to
operate within the first phase of recharging where the energy transferred is a linear
function of the recharge duration in order to prolong the battery life (Pelletier et al., 2017).
So, without loss of generality, we assume that the energy recharged at the stations is linear
function of time. We assume that the EV can be recharged at most once between two

consecutive customers, which is the practical case in urban logistics.

The change in energy consumption with temperature is contingent on the duration of the
trip and effect of temperature on charging efficiency is not considered. It is assumed that
the driver turns off the heating/cooling equipment in the recharging stations, as it is a
time-consuming process. Without loss of generality, the energy consumption related to
on-board auxiliary systems are neglected in this chapter. In addition, we assume that EVs
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are recharged overnight and depart from the depot with full battery. In line with the
EVRPTW literature, we adopt a hierarchical objective function where the primary
objective is to minimize the fleet size whereas the secondary objective is to minimize total

energy consumption (Schneider et al., 2014; Keskin and Catay 2016).

2.2.1. Temperature effect on energy consumption

To estimate how energy consumption changes with temperature, we use a similar
approach as in Yuksel and Michalek (2015) and construct a model based on real-world
data collected from Nissan Leaf drivers over more than 7000 trips across North America.
Publicly available data reports average driving range with respect to temperature and
includes no other information on the trip and driver profiles. Energy consumption in
kilowatt-hour per mile (kWh/mile) versus ambient temperature is shown in Figure 2.1. In
their study, Yuksel and Michalek use a model obtained by fitting a single curve to the
available data. To improve accuracy, we divide data into two and fit two separate
polynomial curves for data points below and above 22 °C as shown by blue and red curves
in Figure 2.1. The functional relationships between energy consumption per unit distance

and temperature can be given as follows:

0.3392 — 0.005238 T — 0.0001078 T? + 1.047 107> T3 +

_ 3.955x 1077T* - 1.362x 1078 T> —3.109 x 1071076, T <22°C
hiear(T) = (2.1)

0.4211 — 0.01627 T + 0.0004229 T?, T = 22°C

where hpgar 1S in KWh/mile when T is in °C. Note that Nissan Leaf is a light duty
passenger vehicle; however, we assume that the same kind of relation with temperature
holds for all sizes of commercial vehicles used in logistics operations as well. In addition,
since there is no further information available about the driver and trip profiles, we follow
the same assumption in Yuksel and Michalek (2015) and we attribute the efficiency
change given in Figure 2.1 only to the ambient temperature.

A similar study performed by National Renewable Energy Laboratory (NREL) for a fleet
consisting of medium-duty EVs reports slightly higher energy consumption at cold
temperatures (Duran et al., 2014). Their results show that the average energy consumption
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of medium-duty EVs running in NY almost doubled in January 2013 when the average
minimum temperature observed is -20°C as compared to May 2013 when the minimum
temperature is around 18°C. According to the Nissan Leaf based data we used, the ratio
between the similar temperatures is 1.52 (i.e. 1.52 times more energy consumption in -
21°C compared to 22°C). Therefore, our results might be slightly more on the conservative
side. However, the data on Nissan Leaf investigates hot weather as well as cold climate,

therefore we found it more reliable to use for our purposes.

According to Eg. (2.1) the minimum energy consumption occurs at 22°C, corresponding
to 0.27 kWh/mile. We used this as our base case and normalized the energy consumption
at other temperatures for other vehicles using Eq. (2.2). In addition, we assumed that the
additional energy consumption, compared to the base case, arises from the using

heating/cooling equipment and battery efficiency drop in cold temperatures.

hiear(T)

e (T) = hiEar(22°0)

* hyen(22°0C) (2.2)

where hygy (T) is the normalized energy consumption of the commercial vehicle under
consideration at temperature T and hygy(22°C) is the actual energy consumption of the
commercial vehicle at 22°C (or without temperature effects).

Assuming that one unit of energy is consumed to travel one unit of distance in the base
case, i.e. hygy(22°C) = 1, the energy consumption at other temperatures are shown in
Table 2.1. Temperature effect on energy consumption at 8°C has the similar impact as at
27°C. Same phenomenon can be observed for other cold/hot temperature pairs as
presented in Table 2.1.

Table 2.1 Energy consumption at different temperatures

Temperature (°C)  Condition Energy Consumption (per unit distance)
22 Mild 1.00
8 or 27 Intermediate 1.09
0or33 Intense 1.27
-21 0or 38 Extreme 1.52
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Figure 2.1 Energy consumption vs. ambient temperature for Nissan Leaf

In Figure 2.2, we present a simple example that illustrates how temperature affects the
optimal route plans and how it can increase the energy consumption or cause infeasibility.
The example involves one depot equipped with a charger, two customers and one station.
All customers must be served, and the vehicle tours should start from and terminate at the
depot. For the sake of simplicity, we do not consider the cargo capacity and time-window
constraints. The battery capacity of the EV is three units. The distances are symmetric
and the numbers on the arcs represent the energy consumptions. The directed arcs with
solid line show the optimal routes. Figure 2.2 (a) demonstrates the network and optimal
route in a mild temperature (22°C). We assume that the vehicle travels at constant speed
and as there is no need for cooling/heating in this temperature, it consumes one unit of
energy per unit distance traveled. So, the numbers on the arcs in this network also show
the distances. In the optimal solution, one EV serves both customer by cruising a total
distance of 3 units and consuming 3 units of energy. In Figure 2.2 (b)-(d), the temperature
is colder, so heating equipment causes more energy consumption in comparison with the
mild case. Figure 2.2 (b) shows the optimal route plan for the intermediate case when the
temperature is 8°C. The consumption rate per unit distance is 1.09 in this case and one EV
serves both customers by traveling a total distance of 3.9 units and consuming 4.25 units
of energy. Note that the EV needs a recharging at the station in order to continue its tour.

In Figure 2.2 (c) as the ambient temperature effect is more intense (the consumption rate
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is 1.27), each customer is served by a dedicated EV and the total energy consumption is
5.08. Figure 2.2 (d) depicts the case where the weather is too cold (-21°C) and the
temperature effect is extreme (the consumption rate is 1.52). We see that customer 1 can
still be served by a dedicated EV; however, no EV can visit customer 2 and reach the
station or return to the depot without running out of battery. So, the problem becomes

infeasible.

05 054" z
1 1.09
1.4 i jg 1.53

(a) 22°C (b) 8°C

064

1.78

(c)0°C (d) -21°C

Figure 2.2 Optimal route plans that change according to varying temperatures

2.2.2. Mathematical formulation

Similar to the notation and modelling conventions in Keskin and Catay (2016) and
Bruglieri et al. (2016) we define V = {1, ..., n} as the set of customers and F as the set of
recharging stations. Vertices 0 and n + 1 denote the depot where each vehicle departs
from O (departure depot) and returns to n + 1 (arrival depot) at the end of its tour. We

define Vo, =V U {0}, V,,;u =V U{n+1}and Vy,.1 =V U{0,n + 1}. Then, the problem
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can be represented on a complete directed graph G = (N,A) with the set of arcs
A= {(i,)Ii,j €N,i # j}, where N =V, ., UF is the total set of nodes on the network.
The energy consumption depends on the distance traveled and the duration of the trip.
Each customer i € V has a positive demand g;, service time s;, and time window |[e;, [;].
All EVs have a cargo capacity of C and a battery capacity of Q. At each recharging station,
one unit of energy is transferred in g time units. The direct distance from customer i to

customer j is represented by d;; whereas the vehicle travels the additional distance of

~

dijs = dis + dg; — d;j if itis recharged at station s en-route. Notice that the battery can be
recharged at most once between two consecutive customers, which is not an unrealistic

assumption within the context of city logistics (Keskin and Catay, 2018).

Similarly, ¢;; denotes the travel time from customer i to customer j if the journey is direct
and £;;5 = t;s + t5; — t;; is the additional travel time if it is via station s. Note that £;;; does
not include the recharging time at station s. The energy consumed for moving the vehicle
one-unit distance is represented by h¢ whereas h* denotes the energy consumed by the
cabin heating or cooling system per unit time. At cold temperatures, h also includes the
extra energy consumed per unit time due to battery efficiency drop. The total energy
consumption is a linear function of the distance and duration of the journey from customer
i to customer j and is calculated as h;; = h®d;; + h't;; when the journey is direct. If the
battery is recharged at station s en-route, the additional energy consumption is calculated

as flijs = hiS + hS] - hU

Table 2.2 Mathematical notation for EVRPTW with ambient temperature

Sets:
V Set of customers
V, Set of customers and departure depot
V,.+1 Setof customers and arrival depot
Von+1 Setof customers, departure, and arrival depots
F Set of recharging stations
N Set of customers, stations, and depots
K Set of vehicles

Parameters:
d;; Distance between node i and j
dijs Additional distance of visiting station s between customers i and j, c?l-js =dis +dgj—d;j
t;j Travel time from node i and j

t;;s Additional trip time of visiting station s between customers i and j, £;;s = t;s + ts; — t;;
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q; Demand of customer i

r; Service time of customer i
[e;,I;] Time window of customer i

C Freight capacity

Q Battery capacity

g Recharging rate

h;; Total energy consumed to traverse arc (i, j)
ﬁijs Additional consumption if the vehicle is recharged in station s while traveling from
customer i to customer j, Eijs = his + hgj — hy;
Decision variables:

T; Service starting time at customer i
yk battery SoC of vehicle k upon arrival at (departure from) customer/depot i € Vg .44

yikjs battery SoC of vehicle k upon arrival at station s € F on route (i,s,j), i € Vy,j € Vy4q

Yk battery SoC of vehicle k at departure from station s € F on route (i,s,)), i € Vo,j € V41

ijs
xlkj 1 if vehicle k travels from node i € V, to node j € V,,,.1; 0 otherwise

z{‘js 1 if vehicle k traverses arc (i, ), i € V,,j € Vp41, through station s € F; 0 otherwise

The decision variables yf, y/5;, and Y/, keep track of battery SoC of vehicle k at arrival
at customer/depot i € V.4, at arrival at station s € F on route (i, s, j), i € Vy,j € Vpp4q,
and at departure from station s € F on route (i, s, j), i € V,,j € V41, respectively. Service
starting time at any node i € N is denoted by ;. The binary decision variable x{‘j takes
value 1 if vehicle k travels from node i € V;, to node j € V,,, and 0 otherwise. The binary
decision variable Zikjs takes value 1 if vehicle k traverses arc (i,j), i € Vy,j € Vyiq,

through station s € F. The mathematical notation is summarized in Table 2.2Error!

Reference source not found..

The mixed-integer programming model of the problem can be formulated as follows:

Min ° " (e + ) hgszks) @23

i€Vy jE€EVR+1 KEK SEF
subject to
yE =0 VkeK (2.9)
k=1 VieV (2.5)
J€Vn+1 kEK

J#i
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VieV,keK 2.6
lekj_zxikj: J (2.6)

i€Vy i€Vn41
i*j i*j
ZzikjSlegcj VieVy,jEVy,kEK,i#] 2.7
SEF
T+ (b + xS+ Z(fijszikjs + gV — v ViEVo) EVnnk €K L) (28)
SEF
—lL(1-xf) <7
Z Z qixk < C VkeK (2.10)
i€V j€Vn41
J#i
OSy]gcSyik_h”xikj_i_Q(l_xikj_i_zzikjS) VieVy,jEVy,kEK i+ (2.11)
SEF
VieV,,jeE JkeK,i+j 2.12
v < ) (o= hyzb) + Q0= 2h) (€ Vo) € Vi k €K i) @12)
SEF SEF
+Q(1 —xf)
0 < yks < ¥k — hygzlis + Q(1 —xK) VieVy,jeVy,sEFkEK i#j (213)
yfjs < yi’;s < Qijs VieV,jeEV,SEFkEK,i+] (214)
ngj € {0,1} VieV,jeEV, 1, kEKi#]j (2.15)
Zikjs € {0,1} VieV,jeEVy,SEFkEK,i#j (2.16)

The objective function (2.3) minimizes the total energy consumption. Constraints (2.4)
set the battery SoC of the EVs to full when they depart from the depot. The connectivity
of customer visits is enforced by constraints (2.5) whereas the flow conservation at each
vertex is ensured by constraints (2.6). Constraints (2.7) make sure that vehicle k serves
customer j after customer i if it travels from i to j by recharging its battery en-route.
Constraints (2.8) guarantee the time feasibility of arcs emanating from the customers (and
the depot). Constraints (2.9) establish the service time windows restriction. Constraints
(2.8) and (2.9) also eliminate the formation of sub-tours. Constraints (2.10) impose the
cargo capacities of the vehicles. Constraints (2.11)-(2.14) keep track of the battery SoC
at each node and make sure that it never falls below zero. Constraints (2.11) establish the
battery SoC consistency if the vehicle travels from customer i to customer j without
recharging en-route. Constraints (2.12) determine battery SoC at the arrival at customer j
if the vehicle visits a recharging station after it has departed from customer i whereas

constraints (2.13) check battery SoC at the arrival at a station if the battery is recharged
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en-route. Constraints (2.14) set the limits for battery SoC when the vehicle departs from
a station. Finally, constraints (2.15)-(2.16) define the binary decision variables.

2.3. Solution methodology

Small-size problems can be solved on a commercial solver using the above mathematical
formulation. For large-size instances that are not tractable, we resort to ALNS. ALNS is
a metaheuristic method introduced by Rgpke and Pisinger (2006a, 2006b) and has been
employed for solving various VRPs including VRPTW variants (Pisinger and Ropke,
2007; Ribeiro and Laporte, 2012; Demir et al., 2012; Aksen et al., 2014; Grangier et al.,
2016; Emec et al., 2016; Kog et al., 2016). It has also been successfully applied to
EVRPTW and its extensions (Goeke and Schneider, 2015; Hiermann et al., 2016; Keskin
and Catay, 2016; Wen et al., 2016; Schiffer and Walther, 2017; Schiffer et al., 2018;
Keskin and Catay, 2018; Keskin et al., 2019).

ALNS is a neighborhood search technique that consists of a destroy-and-repair
framework where at each iteration a destroy operator is used to remove some nodes from
the current solution and a repair operator is applied to insert the removed nodes to improve
the incumbent solution. The insertion and removal mechanisms are associated with a
numerical score which is updated after each iteration based on their performances. If a
mechanism yields to a good solution, its corresponding score and consequently the

probability of selecting that mechanism in the subsequent iterations increase.

In this chapter, we employ the ALNS algorithm presented in Keskin and Catay (2016).
Since the graph may become incomplete due to the increased energy consumption on arcs
in low/high temperatures, the algorithm may struggle to find a feasible solution in certain
cases. To overcome this problem, we introduce a new station insertion mechanism utilized
both for constructing the initial solution and improving it within the ALNS framework.
The insertion algorithms in the ALNS approach of Keskin and Catay (2016) are designed
to insert a station in one of the preceding arcs when the insertion of a customer leads to a
negative battery SoC at the arrival at that customer. However, adding only one station to
the route may not be sufficient in our case since the energy consumption can significantly

increase due to the ambient temperature. So, we propose a new station insertion
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mechanism in which multiple stations can be inserted to the route simultaneously. We

refer to this algorithm as Multi-Station Insertion (MSI) and describe it as follows:

Multi-Station Insertion (MSI): When the insertion of a customer yields an infeasible
partial route with respect to the battery SoC, we insert a station on the arc traversed
immediately before arriving at the customer with negative SoC and recharge the battery
to the maximum level allowed by the battery capacity and time windows restrictions of
the succeeding customers. If the SoC is still negative at that customer or if the energy on
the battery is not sufficient to reach the inserted station, we attempt inserting another
station prior to the customer visited before traveling to the recently inserted station. This

procedure is repeated until the partial route becomes energy feasible.

The interested reader is referred to Keskin and Catay (2016) about the details of the ALNS

implementation, destroy and insertion mechanisms, and parameters utilized.

2.4. Computational study

We use the well-known data set of Schneider et al. (2014) to analyze the effect of the
ambient temperature on the fleet size, energy consumption, and route plans. The data
consists of three problem types where the customers are clustered (c-type), randomly
distributed (r-type), and both clustered and randomly distributed (rc-type). It is also
classified in two types, which differ by the length of the time windows, scheduling
horizon, and vehicle cargo and battery capacities. In subsets rl, c1, and rcl, the time
windows are narrow and the scheduling horizon is short whereas the time windows are
wide and the scheduling horizon is longer in subsets r2, c2, and rc2. Furthermore, each
subset assumes an EV fleet with different cargo and battery capacity. For the sake of
simplicity, the consumption rate is assumed to be one unit of energy per unit distance
traveled. We use this rate for mild temperature condition and consider the rates given in

Table 2.1 for other cases.

Cities around the world may experience extremely low or high temperatures, which
substantially affects the energy consumption of the EVs. For instance, the daytime
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temperature dropped below -20°C in Saskatoon, Saskatchewan in 10 days and below
- 15°C in 26 days during 2017. In addition, Montreal, Quebec experienced below -15°C
in 8 days and below -10°C in 22 days. On the other hand, the temperature was above 40°C
in 75 days in Las Vegas and 97 days in Phoenix. Moreover, Rome observed above 35°C
in 32 days during the same year. So, in our experiments we consider temperatures between
-21°C and 38°C, which are not unusual to observe for many cities around the world
(accuweather, 2018).

To investigate the influence of ambient temperature on energy consumption and routing
decisions, we solve 36 small-size and 29 large-size benchmark instances. We use IBM
ILOG CPLEX 12.6.3 optimization solver for the small instances and ALNS algorithm to
solve larger instances on a workstation equipped with Intel(R) Core(TM) i7-8700
processor with 3.20 GHz speed and 16 GB RAM. We limit the CPU run time with 2

hours. The detailed numerical results are presented in Appendix A.

Table 2.3 Number of infeasible problems in small-size dataset for different temperature

conditions
#Cust #inst Mild Intermediate Intense Extreme
5 12 0 0 3 4
10 12 0 2 7 9
15 12 0 0 5 8
Total 36 0 2 15 21

2.4.1. The influence of ambient temperature on routing decisions in small-size

instances

Different temperature cases are investigated on the three subsets of 12 small-size
instances. Each subset involves 5, 10, and 15 customers and different number of stations
varying between two and eight. We solved each instance for four different temperature
conditions. So, the total number of problems solved is 3 X 12 X 4 = 144. The detailed
results are provided in Appendix A. In Table 2.3, we report the number of infeasible
problems. In this table, ‘#Cust’ indicates the number of customers in the data set and
‘#Inst’ is the number of instances. Out of 144 problems, 106 are feasible. Since all

instances are feasible in mild temperature, we can say that weather conditions make 35%
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of the problems (38 out of 108) infeasible. Among 106 feasible problems, CPLEX solved
101 problems optimally and provided an upper-bound for the remaining five within two
hours. As expected, we observe that infeasibility increases as the temperature conditions
change from mild to extreme. While only 6% of the problems are infeasible in the
intermediate case, 42% and 58% of the problems become infeasible when the temperature

conditions are intense and extreme, respectively.

Table 2.4 The influence of ambient temperature on route plans in small-size instances

# of Instances Average Increase
Ambient Temperature Feasible Larger Fleet A #Veh AEC
Intermediate 34 /36 3/34 4% 12%
Intense 21/36 6/21 15% 40%
Extreme 15/ 36 10/15 46% 81%

Table 2.4 summarizes how different temperature levels affect the solutions in small-size
instances. In this table, column ‘Feasible’ reports the number of feasible solutions for
different temperatures whereas ‘Larger Fleet’ column shows the number of instances in
which more EVs are needed compared to the fleet size in the mild condition. ‘A #Veh’
and ‘A EC’ columns give the average percentage increase in the fleet size and energy
consumption, respectively, again compared to the mild case. The number of infeasible
instances increases as the temperature conditions change from mild to extreme, as
expected. In the intense temperature case, 15 of the 36 instances become infeasible and
six instances among the feasible ones require one extra vehicle each in comparison to the
mild case. The most critical case happens when the temperature effect is extreme. In this
case, 21 instances turn out to be infeasible and 10 instances among the feasible ones need
more vehicles to satisfy the customer demands on time (two out of these 10 instances
need two additional vehicles whereas remaining eight instances require one additional
vehicle each, compared to the base case). The fleet size grows by 4%, 15% and 46% in
the intermediate, intense and extreme temperature cases compared to the mild case.
Noting that our primary objective is to minimize the number of vehicles, we also observe
significant increase in energy consumption at low temperatures. In the intense
temperature case, the average energy consumption increases by 40% compared to mild
temperature whereas this increase almost doubles and reaches 81% in the extreme
conditions. All these results show the crucial effect of weather conditions on total energy

consumption when the logistics operations are performed using an EV fleet.
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It is important to note that compared to the mild case even though Table 2.1 reports 9%,
27%, and 52% increases in the energy consumption per unit distance for the intermediate,
intense, and extreme temperature cases, respectively, the average energy consumption in
the route plans shows an increase of 12%, 40%, and 81%. This substantial difference is

the result of visiting more stations en-route and making longer detours.

2.4.2. The influence of ambient temperature on routing decisions in large-size
Instances

The large-size data consists of 29 instances with 100 customers and 21 stations. We focus
on type-1 problems with narrow time windows since wide time windows have minor
influence on the recharging decisions (Desaulniers et al., 2016; Keskin and Catay, 2018).
We solved each instance 10 times using ALNS under four different temperature
conditions. Since a large set of recharging stations is available, all problems are feasible
in intermediate and intense conditions. However, ALNS faced difficulty in finding a
feasible solution, particularly for r- and rc-type problems. So, we performed 100 runs in
these problem sets. Yet, ALNS still failed to solve six rc-type problems in the extreme

case. Even though we cannot prove it, it is highly likely that these problems are infeasible.

Table 2.5 Average results for large-size problems

Mild Intermediate Intense Extreme
Type #Veh EC #Veh EC #Veh EC #Veh EC
c 10.6 1003.05 10.8 1103.33 11.1 1352.62 11.8 1608.89
r 13.0 1240.03 13.3 1365.47 14.1 1656.17 15.2 2117.24
rc 12.9 1409.54 13.3 1572.00 14.3 1929.25 - -

The results are summarized in Table 2.5 and detailed results are given in Appendix A. In
Table 2.5, ‘#Veh’ shows the average number of vehicles employed whereas ‘EC’ reports
the average energy consumption in the problems solved. Results for rc-type problems are
not reported because of the aforementioned reason. Furthermore, we observe that the fleet
size and energy consumption increase as the temperature drops, as expected. Since the
customers are clustered, type-c instances are affected less from the ambient temperature

compared to r- and rc-type instances. In the extreme case the average fleet size and
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average energy consumption in type-c instances increase by 11% and 60%, respectively,
as compared to the mild case, whereas the increases in type-r instances are 17% and 71%,

respectively.

Table 2.6 The influence of ambient temperature on route plans in large-size instances

# of Instances Average Increase
Ambient Temperature  Feasible  Larger Fleet A#Veh AEC
Intermediate 29/29 9/29 3% 11%
Intense 29/29 24 /29 8% 35%
Extreme 23/29 22 /23 15% 68%

Table 2.6 shows the effect of the ambient temperature on route plans in large-size
instances. The results are similar to those observed for small-size problems, except the
feasibility issue. While 93% of the large-size problems (81 out of 87) were solved feasibly
under rougher temperature conditions, this percentage drops to 65% for the small-size
data set. This is due to the scarcity of the recharging stations in the small-size data set. In
addition, the need for a larger fleet is observed in more problems in the large-size data
set: 68% of the problems compared to 27% in the small-size data set. Specifically, in
almost all large-size problems (22 out of 23) more EVs are needed in extreme temperature
compared to the mild case. On the other hand, the average percentage increase in the fleet
size is significantly smaller. For example, for the extreme case this value is 15% for large-
size data set compared to 46% for the small-size. The reason behind this is the actual size
of the fleet: for the mild case, the number of EVs in the fleet is between one and five in
small-size data whereas in large-size data the fleet size varies from 10 to 18. So, two
additional EVs in the intense case imply a more significant percentage change in a small-

size problem compared to the large-size.

When we consider the average energy consumption in the route plans, we observe an
increase of 11%, 35%, and 68% for the intermediate, intense, and extreme cases,
respectively, in comparison to the base case of mild temperature. Notice that these
percentages are slightly smaller than those reported in Table 2.4. This may be due to the
availability of more stations in large-size data, hence, shorter detours for recharging.

Nevertheless, these values still reveal a higher consumption rate than those in Table 2.1.
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Figure 2.3 Monthly daytime highest/average/lowest temperatures in Adana during 2017

2.5. Case study

In this section, we consider the last-mile distribution planning of Ekol Logistics, a third-
party logistics service provider in Turkey. To show the effect of temperature on real world
fleet operations, we solve their routing problem in Adana. Adana is a city located in
Southern Turkey with a year-round mild-to-hot and mostly humid climate. The highest,
average, and lowest daytime temperatures in 2017 are illustrated in Figure 2.3. January
was the coldest month in which the lowest, average, and highest daytime temperatures
were 8°C, 13°C, and 18°C, respectively; however, July was the warmest, where the highest
daytime temperature reached as high as 44°C (Accuweather.com, 2018; Weather.com,
2018). Using cooling equipment is necessary in Adana for several months and it affects
the energy consumption, which makes it worthwhile to analyze the optimal route plans

for an EV fleet under those conditions.

Table 2.7 Case study data: time windows and demands of the customers

Customers
8 9 10 11 12 13 14 15 16 17 18 19
Early service time 8:30 8:30 10:00 8:30 8:30 8:30 8:30 8:30 13:00 8:30 10:00 9:30
Late service time 17:30 17:30 12:00 17:30 17:30 10:00 17:30 17:30 15:00 12:00 16:00 12:00
Service time (min) 9 5 4 15 4 90 4 7 53 10 12 10
Demand (kg) 50 6 15 2267 27 4586 27 175 277 71 170.7 65
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Ekol uses diesel vehicle fleet of light commercial Fiat Ducato vans. We investigate how
the routes would change if they used electric Fiat Ducato vans (eDucato) in their fleet.
So, we consider Ducato EVs that have a cyclable battery capacity of 62 kWh and can
carry loads up to 718.4 kg. eDucato has an advertised driving range of 200 km, which
corresponds to an energy consumption of 0.31 kWh/km (BD Automotive, 2018).
Neglecting other factors, we assume that in the mild case the EVs consume
hyeg(22°C) = 0.31 KkWh/km, i.e. we assume that the advertised energy consumption
corresponds to consumption at 22°C. Using the relation in Eq. (2.2) in section 2.2.1, the
energy consumption for the intermediate (27°C), intense (33°C), and extreme (38°C) cases
are obtained as 0.34, 0.4, and 0.47 kWh/km, respectively. To solve the problem with
CPLEX, we focused on a smaller subset of 12 selected customers and we assumed that
EVs can recharge at depot as well as at public charging stations in that region. These
stations have level 2 AC chargers with 22 kVA power as well as specific time windows
for providing service (Esarj, 2018). The depot operates between 5:00 and 17:30 and is
represented with index ‘1°. Indices ‘2°-°7’ refer to the stations and ‘8’-‘19” denote the
customers. Table 2.7 shows the time-windows, service times, and demands of the
customers. The distance matrix is provided in Appendix C.

Figure 2.4 illustrates the geographical locations of the depot, customers, and stations. The
black circle shows the depot, the customers and stations are represented with green pins
and red chargers, respectively. The city center is magnified for a clearer view of the
region. The optimal route plans for different cases are plotted in Figure 2.5. In this figure,
the depot, customers, and stations are displayed with a triangle, circles, and station icons,
respectively. Station 2 represents the charger located in the depot. Battery SoCs are given
next to the nodes in kWh. The two numbers provided next to the stations show the arrival
and departure SoC values; the difference gives the amount of energy charged at the
station. The SoC does not change at the customers. We assume that all EVs are fully

charged at the depot overnight.

In Figure 2.5(a), we see that, all customers can be served using two vehicles in the mild
case when the energy consumption is lowest. EV1 visits Station 2 (in the depot) once to
recharge 8.3 kWh of energy. Total energy consumption in this case is 121.6 kWh. In the
intermediate case illustrated in Figure 2.5(b), all customers are also served with two

vehicles;
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Figure 2.4 Geographical area

however, EV2 visits Station 7 and Station 2 to recharge 45.9 and 7.5 kWh, respectively.
The total energy consumption is 168.5 kWh, which corresponds to an increase of 39%
compared to the mild case. In addition, the sequence of the visits to the customers changes
since charging at stations is a time-consuming process and can affect the routing decisions
due to customers’ time-windows. In the intense case shown in Figure 2.5(c), the effect of
ambient temperature on energy consumption is even stronger and it is not possible to
make all deliveries using two vehicles. Therefore, the fleet consists of three EVs and EV1
and EV2 visits Stations 7 and 4, respectively, to recharge en-route. The total energy
consumption becomes 186.7 kWh, an increase by 54% compared to the mild case. Notice
this dramatic increase in the real environment compared to the average increase of 40%

in the synthetic benchmark data reported in Table 2.4.

The route plans in the extreme case are not illustrated because no feasible solution exists.
When the ambient temperature is 38°C the EV energy consumption increases to 0.47
kwh/km. In this case, the EV cannot serve customer 15 because the trip from depot to
that customer requires 45.62 kWh of energy and the EV will run out of battery en-route
if it returns to depot directly or travels to the nearest station (Station 7) which requires an
additional 19.50 kWh. Hence the problem is infeasible. All route plans are given in

Appendix B.
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Figure 2.5 Optimal route plans at different ambient temperature conditions
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As this case study demonstrates, ambient temperature can have a strong effect on the
delivery operations. According to the meteorological records from Adana in the year
2017, the maximum temperature measured was higher than 27, 33 and 38°C for 177, 98
and 3 days, respectively (accuweather, 2018). Also, as can be depicted from Figure 2.3 it
is possible to observe temperatures as high as 44°C. Routing decisions made without

considering these high temperature values can cause inefficient operations or disruptions.

2.6. Discussion and conclusion

In this chapter, we focused on EVRPTW with partial recharge by considering the effect
of ambient temperature on the fleet size and energy consumption. We introduced the
mathematical model of the problem and used it to solve small-size problems on CPLEX.
We solved large-size problems with an ALNS algorithm. We also performed a case study
using real-world data from a logistics service provider in Adana, Turkey where we
optimized the delivery routes for a network of 12 customers at four different days with
different ambient temperature values. Our results showed that temperature can have a
significant effect on the delivery operations since as temperature increases: (i) the total
energy consumption of the operations increases, (ii) the route, therefore the sequence of
customers served changes, (iii) the number of vehicles required to complete the service
might increase, and (iv) it might become impossible to serve all customers using an EV
fleet. Routing plans made without considering the temperature effect might not be cost-
optimal or might even become infeasible at hotter days. Similar results might also be
observed at colder temperatures, since vehicle energy consumption will also increase with
a decrease in temperature as shown in Figure 2.1. This issue is particularly important in
regions with extreme weather conditions as well as in temperature-sensitive operations
such as cold logistics chains. Therefore, planning ahead for expected weather conditions
can reduce the efficiency losses and prevent operation failures. In this chapter, we provide
a framework that enables to perform such routing plans in last/first mile logistics

activities.

The results of this study can have various implications for real world managerial decisions

in logistics operations. To address the aforementioned issues, logistics service providers
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might consider running a mixed fleet with different powertrain options (EVs, ICEVs,
hybrid and plug-in hybrid EVs). Increasing the number of available charging stations
and/or having a fleet of EVs with fast-charging capabilities might reduce the impact of
temperature. However, frequent and fast charging can have battery life implications and
this trade-off has to be considered when planning. Similarly, vehicles with longer driving
ranges would reduce the impact, but this would require having bigger batteries and

therefore reducing the load capacity; another trade-off that needs to be assessed.

There are some limitations and assumptions in this chapter. We used data collected from
Nissan Leaf (a light duty passenger vehicle) users and generalize the temperature
dependency relation to be used for a medium-duty EV. In reality, the commercial vehicle
might differ in heating, ventilation, air conditioning (HVAC) efficiency, and battery
technology, and might therefore have a different actual consumption. In addition, the data
was collected from several Nissan Leaf drivers and the reported results reflect the average
of their behavior. Individual drivers might differ in terms of driving style and speed, as
well as in climate control preferences, therefore might experience different results.
Furthermore, in our case study we only consider recorded temperature levels, however,
in Adana humidity can reach 70% in summer months (Weather.com, 2018) and the feels-
like temperature was recorded as high as 47°C in 2017 (Daily Sabah, 2017). This would
cause an increase on the HVAC load and more drastic effects on routing plans might be
observed. Nevertheless, our results show the general trends fairly, since HVAC use will
increase energy consumption for all EVs, even though its degree may change from vehicle
to vehicle. This chapter is the first to investigate these effects within the context of vehicle
routing and scheduling.
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3. SPEED-UP TECHNIQUES FOR SOLVING THE ELECTRIC
VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

3.1. Introduction to Electric Vehicle Routing Problem with Time Windows

Electric vehicles (EVs) are becoming more popular in logistics and transportation
operations throughout the world due to various factors including government incentives,
fluctuations in oil prices, energy efficiency of electric engines compared to internal
combustion engines and low electricity prices. They also help companies reduce their
carbon footprint and meet their sustainability objectives. On the other hand, limited
driving range and long recharging times of EVs raise additional challenges in route
planning. A trip from a customer to another may not be realizable because of long travel
distance and/or customer service time windows. In certain cases, it may not even be
possible to serve some customers using an EV. While it may be difficult to trace the
infeasibility of a given instance, the elimination of infeasible arcs may speed up the
solution algorithm. In this chapter, we consider the Electric Vehicle Routing Problem
with Time Windows (EVRPTW) and propose new preprocessing techniques to reduce
the problem size and enhance the computational performance of the solution methods.
Furthermore, we develop an algorithm which can be used to identify if a problem instance

is infeasible.

EVRPTW is an extension of the Vehicle Routing Problem with Time Windows
(VRPTW) where an EV fleet serves the customers instead of internal combustion engine
vehicles. The first study that considers an EV fleet in freight transportation was conducted
by Conrad and Figliozzi (2011) where EVs can recharge at selected customer locations.
Erdogan and Miller-Hooks (2012) introduced the Green Vehicle Routing Problem
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(GVRP) where the fleet consists of alternative fuel vehicles (AFVs). In this problem,
AFVs are allowed to refuel at public alternative fueling stations (AFSs). The refueling
time is assumed constant and the tank is full at departure from the station. Wang and Cheu
(2013) investigated a similar problem for a fleet of electric taxis by considering a similar

full recharge strategy.

Schneider et al. (2014) introduced EVRPTW by assuming a full recharge strategy as well.
They formulated the mathematical programming model of the problem and developed a
hybrid metaheuristic approach that combines Variable Neighborhood Search (VNS) and
TS algorithms. They also generated a new data set based on the well-known Solomon
(1987) dataset for VRPTW. The full recharge assumption was relaxed by Bruglieri et al.
(2015) and Keskin and Catay (2016). The former proposed a VNS Branching method to
solve small-size problems whereas the latter developed an Adaptive Large Neighborhood
Search (ALNS) algorithm that efficiently solves large-size problems. Desaulniers et al.
(2016) considered four recharging cases in EVRPTW, namely full and partial strategies
allowing single and multiple recharges en-route, and proposed a branch-price-and-cut

algorithm.

In the literature, several variants of EVRP and EVRPTW were addressed including the
cases of operating a mixed fleet of EVs and internal combustion engine vehicles (Goeke
and Schneider, 2015; Sassi et al., 2015, Macrina et al., 2018, Hiermann et al., 2019),
heterogeneous fleet of EVs (Hiermann et al., 2016), fast charging (Felipe et al., 2014;
Catay and Keskin, 2017; Keskin and Catay, 2018), non-linear charging function
(Montoya et al., 2017; Froger et al., 2019), battery swapping (Yang and Sun, 2015; Hof
et al., 2017; Paz et al., 2018), location routing (Worley et al., 2012; Hof et al., 2017,
Schiffer and Walther, 2017), two-echelons (Jie et al., 2019), flexible time windows (Tas,
2020), and two-stages (Basso et al., 2019). Some recent studies addressed the availability
of recharging stations and queueing for recharging service (Froger et al., 2017; Keskin et
al., 2019). A comprehensive review of the EV technology and survey of the EVRP
variants may be found in Pelletier et al. (2016), Pelletier et al. (2017), and Erdeli¢ and
Cari¢ (2019).

In this chapter, we revisit the EVRPTW by allowing partial recharges and present some

reduction techniques. Our contributions to the literature are threefold: (i) we develop a
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preprocessing procedure to reduce the graph, hence the number of decision variables in
the problem; (ii) we propose an algorithm to identify whether a problem instance is
feasible or not; (iii) we perform extensive computational tests to investigate the
performance of the proposed approaches. The remainder of this chapter is organized as
follows: the problem description and mathematical model are presented in Section 3.2.
Section 3.3 introduces the network reduction procedure by describing the proposed
preprocessing techniques and valid inequalities. Section 3.4 presents an algorithm that
effectively checks the feasibility of a problem instance. Section 3.5 investigates the
impact of the proposed preprocessing techniques on the computational performance. Final

remarks and future research directions conclude this chapter.

3.2. Problem statement

EVRPTW deals with a set of customers with known demands, service time windows, and
service durations. The fleet is homogeneous and consists of EVs that are allowed to
recharge their batteries en-route at charging stations. Although the energy transferred by
a charger is a non-linear function of the recharge duration, recharging in the first phase is
a linear function of time and it is practical in the real world to operate within this phase
to prolong the battery life (Pelletier et al., 2017). Therefore, without loss of generality,
we assume a linear recharging function. Similar to the second chapter we allow one
recharge between two consecutive customers, which is the practical case in last-mile
logistics (Bruglieri et al., 2016; Keskin and Catay, 2018; Bruglieri et al., 2018). We
assume that all EVs depart with full battery as they can be recharged overnight in the
depot. The objective function is to minimize the total energy consumption by using

minimum number of vehicles.

We use the notation and modelling conventions in line with the recent literature for ease
of understanding (see Keskin and Catay, 2016; Bruglieri et al., 2016). V = {1, ..., n} and
F denote the set of customers and recharging stations, respectively. All EVs depart from
node 0 (departure depot) and at the end of their tour return to node n + 1 (arrival depot).
Let Vo=V U{0}, Vyyu =V U{n+1}and Vg1 = VU{0,n+ 1}. The problem can be
defined on a complete directed graph G = (N,A) where A ={(i,j)|i,j € N,i # j}
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represents the set of arcs and N = V;, ,,; U F is the total set of nodes. Each customer i € V
is associated with service time s;, time window [e;, [;], and a positive demand q;. The
battery and cargo capacities of the vehicles are denoted by Q and C, respectively. g is the
recharge rate per unit time and h is discharge rate per unit distance. d;; and t;; represent
the distance and travel time, respectively, from customer i to customer j if the journey is
direct. If the vehicle recharges at station s during its trip from customer i to customer j,
then ciijs =d;s +dg; — d;; and &5 = t;5 + tg; — t;; denote the additional detour distance
and travel time. Note that £;;; does not include the recharging time at station s. The total
energy consumption from customer i to customer j is calculated as h;; = h x d;; when the
journey is direct whereas the additional energy consumption is ﬁijs = hjs + hg; — hy; if

the journey is via station s.

We keep track of battery SoC at arrival at customer/depot i € V; .4, at arrival at station
s € F on route (i,s,j), i € V,,j € V41, and at departure from station s € F on route
(i,5,)), L € Vo, j € V44 using decision variables y;, y;js, and Y, respectively. 7; denotes
service starting time at node i € N. x;; is a binary decision variable where it takes value
1 if node j € V,,,, visited after node i € V, and 0 otherwise. The binary decision variable
z;js takes value 1 if arc (i,)) is traversed, i € V,,j € V,,,4, by visiting station s € F en-

route. Table 3.1 summarize the mathematical notation.

Table 3.1 Mathematical notation for EVRPTW

Sets:
V Set of customers
V, Set of customers and departure depot
V.41 Setof customers and arrival depot
Von+1 Setof customers, departure, and arrival depots
F Set of recharging stations
N Set of customers, stations, and depots

Parameters:
d;; Distance between node i and j

&US Additional distance of visiting station s between customers i and j, &ijs =dis +ds; — d;;
t;j Travel time from node i and j

t;;s Additional trip time of visiting station s between customers i and j, £;;5 = t;s + ts; — t;;
q; Demand of customer i
r; Time required to serve customer i
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[e;,1;] Service time window of customer i
C Cargo capacity of the vehicles
Q Battery capacity of the vehicles
g Recharging rate

h;; Total energy consumed to traverse arc (i, j), h;; = h X d;;

h; js Additional consumption if station s is visited between customers i and j, h; js =

Decision variables:
T; Service starting time at customer i
u; Cargo level at departure from customer i

y; Battery SoC of a vehicle upon arrival at (departure from) customer/depot i € Vg .41

yijs Battery SoC of a vehicle upon arrival at station s € F on route (i, s, j), i € Vo, j € Vpiq

Y

x;j 1if avehicle travels from node i € V, to node j € V,,.1; 0 otherwise

z;js 1ifavehicle traverses arc (i, j), i € Vy,j € Vy,44, through station s € F; 0 otherwise

s Battery SoC of a vehicle at departure from station s € F on route (i, s, j), i € Vo,j € Vipyq

The 0-1 mixed-integer programming formulation of the problem is as follows:

Mll’lz Z (hijxij-l_ziiijszijs)-l_P z xoj

i€EVy jE€EVR41 SEF JE€Vn41

subject to
Yo =10

xij =1
J€Vn41

J#i

i€V 7
i#j i#j
Z Zijs < Xij
SEF

T+ (i +r)x; + Z(fijszijs + 9(Yijs — ¥ijs))
SEF
- lo(l - xl'j) < Tj

qi Sui Suj—qjxij+C(1—xU)SC

0<y;<y;i—hyx;+Q(1—x; + Zzijs)

SEF

VieV

VjevV

Vi€EVyjEVypyi %)

VieEVy,j€Vyi%]

VjeN
Vi€EVy) €V i#]j

VieEVy,j€Vyi%]
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y] < Z(Yus _ hsjzijs) 4+ Q(l _ zzijs) Vie Vo,j € Vn+1,i :pt] (310)

SEF SEF
+Q(1 —xy5)
0 <yijs < yi — hiszijs + Q(1 — x;5) VieVy,j€EVy,SEF,i#] (3.11)
Vijs < Yijs < Qzjs VieEVy,j€EVyr,SEF,i+] (3.12)
x;j € {0,1} VieVy,jEVu,i#j (3.13)
zijs € {0,1} Vi€EVyjEVys,sEF,i#] (3.14)

The objective function (3.1) minimizes the total energy consumed by a fleet consisting of
minimum number of EVs. The latter is guaranteed with the last term which minimizes the
number of routes by associating each with a large positive penalty P. Constraints (3.2(2.4)
assure that the EVs depart the depot with their batteries fully recharged. Constraints (3.3)
and (3.4(2.6) are the connectivity and flow conservation constraints. Constraints (3.5)
guarantee that if the EV travels from customer i to customer j by recharging its battery
en-route, then it serves customer j following customer i. Constraints (3.6) keep track of
service times and ensure their consistency. Constraints (3.7) make sure that each customer
is served within its predetermined time windows. Constraints (3.6) and (3.7) serve as
subtour elimination constraints as well. Cargo capacity of the vehicles is imposed by
constraints (3.8). Constraints (3.9)-(3.12) determine the battery SoC at each node and
ensure that it is never negative. Constraints (3.9) check the battery SoC consistency if an
EV travels from customer i to customer j without recharging en-route. Constraints (3.10)
keep track of battery SoC at the arrival at customer j if the vehicle visits a recharging
station after it has departed from customer i. Battery SoC at the arrival at a recharging
station is established by Constraints (3.11). Constraints (3.12) impose lower and upper
bounds on the battery SoC at departure from recharging stations. Finally, the domain of

binary decision variables are defined by constraints (3.13) and (3.14).

3.3. Network reduction

Schneider et al. (2014) presented some basic preprocessing steps to remove the infeasible
arcs. The removal of infeasible arcs may significantly reduce the graph and hence,

accelerate the solution time. So, in this section, we propose a set of conditions that helps
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identify infeasible arcs and remove them from the problem in an attempt to reduce the

computational effort and enhance solution quality.

3.3.1. Connectivity of the depot to a customer

A vehicle departing from depot 0 can visit customer i if it can reach station s (the closest
station to the customer i) after visiting customer i without violating the battery capacity
and time-window restrictions. There are two possible cases: (a) the vehicle travels to
customer i directly; (b) the vehicle travels to customer i after having its battery recharged

en-route.

In case (a), we define 6,; and 6,5 as the earliest times that the vehicle can start serving
customer i, and the vehicle can arrive at station s, respectively. If at least one of the
conditions (3.15)-(3.17) is violated, then the vehicle cannot travel from the depot to

customer i directly.

hoi + his < Q iev (3.15)
901' = eo + toi S li l € V,E € F (316)
eig = maX{GOi, ei} + T + ti§ < lg i € V,E eEF (317)

Conditions (3.15) and (3.16) impose energy consumption and time-window restrictions
for a vehicle to reach customer i after having departed from the depot. Condition (3.17)

checks the time window feasibility of station s.

Let F,,; be the set of feasible stations that can be visited when the vehicle travels from the
depot to customer i. In case (b), we define 6, 6;, and /5 as the earliest times that the
vehicle can start recharging at station s € F;, the vehicle can start serving customer i,
and the vehicle can arrive at s, respectively. u, denotes the minimum amount of energy
that the vehicle should recharge in station s in order to continue its route to reach station
s after visiting customer i and is calculated as u; = hg; + his — (Q — hy,). Consider the

following conditions:
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hos < Q SEF (3.18)

Bos = g + tos < L sEF (3.19)
05 = max{fys, e} +gus) +ts < I; iEV,seF (3.20)
hy + hiz < Q i€EV,sEF,SEF (3.21)
0z = max{fg, e} +1i+ts <5 i€V,seF,SEF (3.22)

Conditions (3.18) and (3.19) impose energy consumption and time-window restrictions
for a vehicle to reach station s after having departed from the depot. Condition (3.20)
checks the time window feasibility of customer i. Conditions (3.21) and (3.22) make sure
that after visiting customer i the vehicle can arrive at station s without running out of
energy and before its late service time Is, recpectively. Station s is included in F; if it
satisfies (3.18)-(3.22). If Fy; = @, then a vehicle departing from the depot cannot reach
customer i after having been recharged en-route.

SoC=¢Q
ho; fé\ hiE R
AD toi o ts ¥
€q 905 < li 9{3 < lE

(@) The vehicle travels directly from the depot to customer i
SoC=¢Q

ij
Sl / iS ’
905 < I

0~ <5

s —

(b) The vehicle is recharged while traveling from the depot to customer i

Figure 3.1 Conditions for the connectivity of the depot to customer i

Arc (0,i) can be removed from the set of potential arcs in the network if the vehicle
cannot travel to customer i directly or via a station from the depot. Both cases are

illustrated in Figure 3.1.

3.3.2. Connectivity of a customer to another customer

Customer j is accessible from customer i if the vehicle can reach station s (closest station

to customer j) after having departed from station s (closest station to customer i) and
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visited customers i and j on its path without violating battery capacity and time-window
restrictions. Again, there are two possible cases: (a) the vehicle travels to customer j
directly; (b) the vehicle travels to customer j after having its battery recharged en-route.
Case (a) is feasible if all the following conditions hold:

Osi = es+t5; < [; ieEV,sEF (3.23)
0;j = max {fs;, e} +1; +t;; < [ ,JEV,sEF (3.24)
8js = max {0;j,e}+m + tis < l§ i,jeV, sj‘ EF (3.25)
hs: + hij + hjs < Q LjEV,S,SEF (3.26)

Conditions (3.23), (3.24), and (3.25) make sure that the service start time at customer i,
customer j, and station s are less than their latest service times, respectively. Condition
(3.26) checks whether the vehicle battery capacity is sufficient to make this trip. If
condition (3.26) does not hold, the vehicle cannot make this path without recharging

between customers i and j.

For case (b), let F;; be the set of feasible stations that can be visited between customers i

and j. Then, consider the following conditions:

hsi + his < Q ieV,seF,seF (3.27)
h5j+hj§SQ jJEV,seF,s€F (3.28)
0;s = max {O5;,e;} +1; +tis < I i€EV,seEF,seF (3.29)
0sj = max {0;;,es} + g(us) +ts; < | i,jEV,sEF (3.30)
6js = max {0, e;} + 17 + tjs < I jJEV,seEF,seF (3.31)

where pg = hg; + hjs — (Q — hs;—hys) is the minimum energy that the vehicle needs to
travel path i > s = j. Conditions (3.27) and (3.28) check the driving range to serve
customer i and customer j, respectively. Conditions (3.29), (3.30), and (3.31) assure time-
window feasibility of station s, customer j, and station s, respectively. Station s is
included in F;; if (3.23) and (3.27)-(3.31) are satisfied. If F;; = @, then the vehicle cannot
travel from customer i to customer j via any station. Arc (i, j) can be removed from the

set of potential arcs in the network if customer i is not connected to customer j directly

38



or via a station. Figure 3.2 shows the conditions that customer i is connected to customer

SoC=Q
b () hy ()i
C, C,
, tsi U tl} U tjg ’
es s < ; 0 = Bjs <l

(@) The vehicle is recharged while traveling from customer i to customer j

SoC=Q
hsi fél\ hys hs; fa hjs
’ tsn tis ; tsj \/ tis ’
es b5 < 1; bis < Is bsj = Ojs < I

(b) The vehicle travels directly from customer i to customer j

Figure 3.2 Conditions for the connectivity of customer i to customer j

3.3.3. Connectivity of a customer to the depot

Depot n + 1 is accessible from customer j if a fully charged vehicle departing from station
s (closest station to customer j) can serve customer j and then reach the depot without
violating the battery capacity and time-window restrictions. Again, the trip from customer

Jj to the depot can be direct (a) or via a station (b). For case (a), consider the following

conditions:
hgj + hj,n+1 < Q ] € V,§ EF (332)
9§j= €§+t§jglj jEV,iEF (333)
Oin+1 = maX{By,ej} + 7+ tnrr < by JEV,sEF (3.34)

Condition (3.32) checks the driving range feasibility whereas conditions (3.33) and (3.34)
control the time-window feasibility of customer j and the depot at the end of the trip,
respectively. 6; denotes the earliest time that customer j can be served if the vehicle
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travels from station s to customer j while 6,,., represents the earliest time that the

vehicle can return to depot after having served customer j.

SoC=0Q
hif fC\ hj,"n.+1 ii
’ tgj U t]'m+1 D
€£ gij = lj Hj,n+1 = ln+1

(@) The vehicle is recharged while traveling from customer j to depot n + 1

SoC=0Q
hij fC\ h]S . hS,?H-l ij
’ tgj U tjs ; ts,n+1
€£ Qij < lj 9]’3 < ls gs,n+1 < ln+1

(b) The vehicle travels directly from customer j to depot n + 1

Figure 3.3 Conditions for the connectivity of customer j to depot n+1

For case (b), let F;,,, be the set of feasible stations that the vehicle can visit when

traveling from customer j to depot n + 1. Consider the following conditions:

hgj + hjs < Q jJEV,sEF,s€EF (3.35)
;s = max {6, e} +5; + tjs < I jJEV,sEF,s€EF (3.36)
hsn1 = Q SEF (3.37)
95’n+1 < ln+1 SEF (338)

where pg' = hgpniq — (Q — hsj—hys) represents the minimum amount of energy that the
vehicle needs to recharge in station s in order to return to the depot. Conditions (3.35)
and (3.36) check the driving range and time-window feasibility of the trip from customer
Jj to station s, respectively, whereas conditions (3.37) and (3.38) do the same for the trip
from station s to the depot. 6;,,,; = max{6;s,es} + g(us') + ts 41 Shows the earliest time
that the vehicle can return to depot in this case. Station s is included in F; ., if (3.33) and
(3.35)-(3.38) are satisfied. If F; ,,; = @, then the vehicle cannot travel from customer j to

depot via any station. Arc (j,n + 1) can be removed from the set of arcs in the network if
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customer j is not connected to the depot directly or via a station. Both cases are illustrated

in Figure 3.3.

3.3.4. Valid inequalities

We add the following valid inequalities to tighten the model and speed up the solution

time:
Zpj1 =0 VJj€Vni (3.39)
Zi,n+1,1 = 0 VL (S VO (340)
] 41
J€Vn+1
Jj#i
€9 + tOi < T; < ln+1 - ti,n+1 VieN (342)

Noting that recharging station 1 is located at the depot, equalities (3.39) and (3.40) prevent
a vehicle to be recharged there immediately after it has departed from or before it arrives
at the depot. Inequalities (3.41) impose a limitation on battery SoC when the vehicle
departs from a customer. Inequalities (3.42) tighten the time window constraints

associated with the stations and customers.

Note that we also apply the well-known capacity cut that assign two customers on
different routes if their total demand exceeds the cargo capacity and benefit from station

dominance rules presented by Bruglieri et al. (2016).

3.4. Feasibility check algorithm

The problem is infeasible if at least one customer cannot be accessible from the depot
because of the driving range and/or time window restriction. To detect such infeasibilities,
we present an algorithm that checks whether the EV can reach every customer j from the

depot and return to depot from that customer without running out of battery and violating
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the corresponding time windows. Since the battery is full when departing from the depot
but has less energy when departing from a customer, the infeasibility of the return trip is
more likely. So, we give priority to checking first the path from the customer to the depot.
The “path” here refers to the sequence of customers visited. To reduce the computation
time, we adopt the k-shortest paths approach since shorter paths are more likely to be
feasible due to less energy consumption. The flowchart of the algorithm is illustrated in

Figure 3.4.

In the first step, we investigate whether the EV can return to depot after serving customer
j either directly or by visiting other customers on its path without running out of energy.
Note that since once recharge is permitted between two consecutive customers, the EV
may have to visit multiple customers and be able to recharge its battery multiple times in
order to reach the depot. We check if there is a feasible path from customer j to depot by
solving k™ shortest path. If no such path exists then the problem is infeasible; otherwise,

we select the shortest path from the set of shortest paths from customer j to depot. The

(n-2)

maximum possible number for k is ¥;% % it ("7?) where n is the number of customers

plus depot.

If a feasible path is found in the first step, in the second step, the algorithm checks whether
there exists a path from the depot to customer j (using k™ shortest path approach) such
that none of the customers served in the return trip is visited again. If no feasible path
exists, then the algorithm returns to step one and continues the same search procedure
continuing from the (k + 1) shortest path from customer j to depot and proceeds with
the second step when a feasible path is determined. This procedure is repeated for all the
customers until feasible forward and return paths are determined. If no such path exists
for a customer, then the problem is infeasible. Note that all possible paths are evaluated

in the worst case.
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k; : number of paths between customer j and depot
n : number of customers

Select customer j

Determine all shortest
paths from
customer j to depot

Does any
path exist?

No Problem Infeasible
STOP

No

Yes

Select kth
shortest path

<

es

A
Determine all shortest paths from
depot to customer j without revisiting
the customers on the kt shortest k=k+1
path from customer j to depot

l

Does any
path exist?

Yes No

Figure 3.4 Feasibility check algorithm

3.5. Numerical results

To investigate the impact of the proposed preprocessing techniques on computation time
and solution quality, we perform computational tests using Schneider et al. (2014) data.
This data consists of three problem types where the customers are clustered (c-type),
randomly distributed (r-type), and both clustered and randomly distributed (rc-type). The
data is also classified in two types which differ by the length of the time windows, and
the vehicle cargo and battery capacities. Subsets rl, c1, and rcl involve narrow time
windows and shorter scheduling horizon whereas the time windows are wide, and the

scheduling horizon is longer in subsets r2, c2, and rc2. The data includes small and large-
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size instances. In our investigation we used 12 small-size instances which involve 15
customers and 3 to 8 recharging stations and 29 type-1 large-size instances which consist

of 100 customers and 21 stations.

Although all the instances in Schneider et al. (2014) dataset are feasible, we usually do
not know whether all the customers in a given data can be served using an EV fleet subject
to range anxiety. In the second chapter we investigated the influence of ambient
temperature on routing decisions and observed that a problem may become infeasible
because of increased energy consumption due to the utilization of heater/cooler in
cold/hot weather conditions. Furthermore, the graph may benefit more from the proposed
preprocessing techniques as its size may reduce with increased consumption rate. So, to
better investigate the performance of the preprocessing techniques and feasibility check
algorithm, we consider three different temperature conditions as described in chapter 2:
mild (22°C), intermediate (8°C or 27°C), and intense (0°C or 33°C). The original data
corresponds to the mild temperature case where the consumption rate is set equal to 1.0
unit of energy per unit distance/time traveled and it increases to 1.09 and 1.27 in

intermediate and intense cases, respectively.

All the experiments were performed on a workstation equipped with Intel(R) Core (TM)
i7-8700 processor with 3.20 GHz speed and 32 GB RAM. Gurobi 9.00 optimization
solver was used to solve the small-size instances with 2-hour run-time limit. To solve

large-size instances, we employ ALNS.

3.5.1. Analysis of network reduction

Table 3.2 Error! Reference source not found.reports the average network densities
under different temperature conditions after applying the proposed preprocessing
procedure to different data types. ‘#Inst’ refers to the number of instances. In the
benchmark problems, the customer network is complete (in mild temperature conditions);
S0, the network density is 100% without any preprocessing. We observe that in small-size
dataset the network density decreases to 76.73% on the average. In other words, almost
Y4 of the x;; variables can be eliminated from the problem. The reduction is more

significant in intermediate and intense cases as expected, where the average densities are
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73.92 and 63.60%, respectively. Similar reduction behavior can be observed in large-size
instances as well. These results indicate that a solution method may greatly benefit from

the proposed reduction techniques.

Table 3.2 Average customer-network densities after preprocessing

Small-size Instances Large-size Instances
Data Type #Inst Mild Intermediate Intense  #Ilnst Mild Intermediate Intense
r 4 73.62 70.06 56.88 9 74.39 72.36 67.14
c 4  76.55 74.42 65.48 12 71.50 69.15 63.11
rc 4 80.02 77.27 68.45 8 69.32 66.72 61.44
All 12 76.73 73.92 63.60 29 72.09 69.81 64.31

3.5.2. Performance on small-size problems

The results for mild, intermediate, and intense cases for small-size instances are presented
in Table 3.3, Table 3.4, and Table 3.5, respectively. In these tables, columns ‘#Veh’,
‘EC’, ‘t(sec)’, and ‘%Gap’ refer to the number of vehicles, energy consumption, run time
in seconds and the percentage gap between the upper bound and lower bound as reported
by Gurobi in 2-hour time limit, respectively whereas ‘%At’ in the last column reports the

percentage acceleration in run time.

Table 3.3 Results for small-size instances in the mild case

Without Preprocessing With Preprocessing
Instance #Veh EC t(sec) %Gap #Veh EC t(sec) %Gap %At
r102c15-s8 5 412.78 1.23 0.00 5 41278 0.62 0.00 49.37
r105c15-s6 4 336.15 0.86 0.00 4 336.15 0.86 0.00 0.00
r202c¢15-s6 1 507.32 7013.14 0.00 1 507.32 1435.40 0.00 79.53
r209c15-s5 1 31324 310.88 0.00 1 31324 252.14 0.00 18.89
c103c15-s5 3 348.46 7200.00 32.75 3 348.46 7200.00 32.72 0.00
c106c¢15-s3 3 275.13 108.76 0.00 3 275.13 4.98 0.00 9542
c202c15-s5 2 38362 215.96 0.00 2 38362 19413 0.00 10.11
c208c15-s4 2 300,55 102.59 0.00 2 300.55 67.35 0.00 34.35
rc103c15-s5 4 397.67 7200.00 43.34 4 397.67 607.98 0.00 9156
rc108c15-s5 3 370.25 7200.00 98.60 3 370.25 7200.00 97.44 0.00
rc202c15-s5 2 394.39 8.88 0.00 2 394.39 5.09 0.00 4262
rc204c15-s7 1 382.22 7200.00 96.81 1 38222 7200.00 96.80 0.00
Average 258 368.48 3046.86 2263 2.6 36848 2014.05 1891 35.15
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In the mild case (original data), the preprocessing did not improve the solution quality;
however, it reduced the average %Gap from 22.63% to 18.91% and speeded up the solver
by 35% on the average. Particularly in problem ‘rc103c15-s5, the solver stopped after 2
hours with a 43% gap whereas it proved the optimality of the upper bound in almost 10

minutes when preprocessing was applied.

Table 3.4 Results for small-size instances in the intermediate case

Without Preprocessing With Preprocessing
Instance #Veh EC t(sec) %Gap #Veh EC t(sec) %Gap %ot
r102c15-s8 5 469.75 1.78 0.00 5 469.75 0.80 0.00 55.26
r105c15-s6 4 396.56 0.95 0.00 4 396.56 0.59 0.00 37.71
r202c15-s6 2 40324 4215.16 0.00 2 40324 619.78 0.00 85.30
r209c15-s5 1 36352 286.93 0.00 1 363.52 61.33 0.00 78.63
€103c15-s5 3 408.13 7200.00 32.74 3 408.13 7200.00 32.68 0.00
c106¢15-s3 3 38233 71.08 0.00 3 38233 22.24 0.00 68.72
c202c15-s5 2 418.14  393.79 0.00 2 41814  206.59 0.00 4754
c208c15-s4 2 327.60 26.25 0.00 2 327.60 14.25 0.00 45.72
rc103c15-s5 4 433.46 5206.26 0.00 4 43346  635.09 0.00 87.80
rc108c15-s5 3 428.86 7200.00 97.92 3 428.86 7200.00 65.69 0.00
rc202¢15-s5 2 475.28 8.61 0.00 2 475.28 5.95 0.00 30.89
rc204¢15-s7 1 41949 7200.00 96.55 1 41949 7200.00 96.54 0.00
Average 2.67 41053 265090 1893 2.67 41053 193055 16.24 44.80

Table 3.4 Table 3.4shows that in the intermediate case, preprocessing reduced the average
%Gap from 18.93% to 16.24% and accelerated Gurobi by 44.80% on the average.
Furthermore, in problem ‘rc108c15-s5’, it allowed Gurobi to reduce the optimality gap
from 97.92% to 65.59% in 2-hour time limit.

Table 3.5 Results for small-size instances in the intense case

Without Preprocessing With Preprocessing
Instance #Veh EC t(sec) %Gap #Veh EC t(sec) %Gap %At
r102c15-s8 — INF 1.39 0.00 — INF <0.01 0.00 99.99
r105c15-s6 5 51452 1.55 0.00 5 51452 0.67 0.00 56.57
r202c15-s6 — INF  5691.56 0.00 — INF <0.01 0.00 99.99
r209c15-s5 — NS 7200.00 — — INF <0.01 0.00 99.99
€103c15-s5 3 509.10 7200.00 32.63 3 509.10 6081.78 0.00 1553
€106c15-s3 3 525.15 20.30 0.00 3 525.15 1.62 0.00 92.00
€202¢15-s5 2 57139 104.37 0.00 2 571.39 10.08 0.00 90.34
c208c15-s4 2 500.95 76.58 0.00 2 500.95 13.52 0.00 82.35
rc103cl15-s5 4 508.13 1880.45 0.00 4 508.13 217.83 0.00 88.42
rc108cl5-sb5 — NS 7200.00 — INF 0.02 0.00 99.99
rc202c15-s5 — INF 16.86 0.00 INF <0.01 0.00 99.99
rc204cl15-s7 1 509.49 7200.00 95.96 1 509.49 7200.00 95.94 0.00

Average 286 519.82 304942 1286 2.86 519.82 1127.13 8.00 77.10
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The results for the intense case are presented in Table 3.5. In this case, preprocessing
reduced the average %Gap from 12.86% to 8.00% and speeded up the solver by 77.10%
on the average. It also allowed Gurobi prove the optimality of the upper bound for
problem ‘c103c15-s5° and infeasibility of ‘r209C15-s5° and ‘rc108C15-s5’ in less than a
second. Note that without preprocessing Gurobi could neither find an upper bound for

these two problems nor prove they are infeasible at the end of 2 hours.

5 7
3 9 0
22 24
#Feas #Opt #Inf C1#NoS #Feas #Opt #Inf C#NoOS
a) Without preprocessing b) With preprocessing

Figure 3.5 Summary of results for small-size instances

The results on small-size instances are summarized in Figure 3.5. In this figure, ‘#Feas’,
‘#Opt’, ‘#Inf’, and ‘NoS’ indicate the number of instances that are feasible but could not
be solved optimally in 2 hours, the number instances solved optimally, the number of
infeasible instances, and the number of instances with no solution, respectively. The
figure shows that Gurobi equipped with preprocessing found the optimal solution in two
instances which could not be solved optimally without preprocessing within 2-hour time
limit. Furthermore, Gurobi was unable to provide an upper bound in two instances neither
could it prove their infeasibility within the given time limit whereas the proposed

preprocessing allowed it to prove that they are infeasible.

3.5.3. Performance on large-size problems
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To investigate the performance of the proposed preprocessing on large-size instances, we
implement it in an ALNS algorithm. ALNS involves a destroy-and-repair framework
where the current solution is partially destroyed at each iteration by randomly removing
some customers and then repaired by inserting the removed customers into the partial
solution in an attempt to improve the incumbent solution. Numerical scores are associated
with each insertion and removal operator, which are updated based on their performances
after each iteration. In this chapter, we employ the ALNS algorithm presented in chapter
2 and perform 10 runs on each instance.

Table 3.6 Result for large-size instances in mild case

Without Preprocessing With Preprocessing
Instance #Veh EC t(sec) #Veh EC t(sec) %ot
c101 12 1043.38 139.05 12 1043.38 132,77 452
c102 11  1019.68 315.39 11 1019.68 29400 6.78
c103 10 973.92 772.10 10 974.09 719.03  6.87
cl104 10 886.84 1638.93 10 886.76  1351.14 17.56
c105 11  1022.75 150.58 11 1046.01 14552  3.36
c106 11  1022.15 219.95 11 1009.75 213.68 2.85
c107 10 1070.30 276.25 10 1050.18 248.77  9.95
c108 10 1044.76 339.77 10 1045.91 31463 7.40
c109 10 943.69 472.16 10 969.72 449.16  4.87
rio1 18 1642.74 62.01 17  1685.19 5727 7.65
ri02 16  1437.66 142.77 15 1513.97 126.18 11.62
ri0o3 13 1256.89 151.76 13 1263.42 14280 591
ri04 11 1096.27 279.72 11  1086.90 250.74 10.36
r105 15 1402.64 75.89 14 145437 69.14  8.89
r106 13 1370.55 126.30 13 1313.64 120.70  4.43
rio7 11  1154.86 215.79 11  1143.30 19949 7.56
ri08 11  1043.75 302.94 11  1052.60 290.06 4.25
r109 13 1216.39 121.16 13 1212.84 11472 532
r110 12 111447 215.51 12 1107.45 201.33  6.58
ri11 12 1108.86 227.41 12 1105.93 218,57  3.89
ri12 11 1035.29 297.02 11 1034.00 282.92 4.75
rc101 15 1755.13 85.10 15 1691.93 75.34 11.47
rc102 14 1585.91 111.91 14  1526.15 93.03 16.87
rc103 13 1360.77 159.69 12 1380.54 141.00 11.70
rc104 11 1213.39 251.45 11 1196.25 229.46  8.75
rc105 14 1470.17 85.57 14 1460.91 82.28 3.85
rc106 13 1452.45 109.35 13 142157 95.66 12.52
rc107 12 1266.05 180.15 12 1265.90 163.85 9.04
rc108 11 1193.58 211.46 11  1163.32 191.39 9.49

Average 1221 1174.46 266.80 12.07 1163.66 24188 7.90
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The results of large-size instances are shown in Table 3.6, Table 3.7 and Table 3.8 for
mild, intermediate, and intense cases, respectively. In these tables, column ‘t(sec)’ reports
the average computation time of 10 runs in seconds and column ‘%At’ shows the
percentage reduction in the average run time. The last row presents the averages for the
whole data set. Note that the average energy consumption reported here is calculated for
the instances whose solutions involve same number of vehicles with and without using
preprocessing. #Veh and EC values in bold indicate an improvement in the number of

vehicles and energy consumption, respectively.

Table 3.6 Table 3.7shows the results for the mild case. We observe that the preprocessing
can reduce the run time of ALNS by up to 17.56% whereas the average speedup is 7.90%.
Furthermore, ALNS with preprocessing provided better solutions in 21 instances out of

29, four regarding fleet size and 17 regarding energy consumption.
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Table 3.7 Result for large-size instances in the intermediate case

Without Preprocessing With Preprocessing
Instance #Veh EC t(sec) #Veh EC t(sec) %At
cl01 12 114219 133.88 12 1142.19 117.05 12,57
cl02 11 1128.89 261.35 11 112943 23799 8.94
c103 10 1085.16 722.05 10 1147.76 643.74 10.85
cl04 10 988.31 1187.30 10 979.24 947.11 20.23
c105 11  1153.29 141.83 11  1153.29 12428 12.37
c106 11  1138.75 200.44 11 1122.87 189.63  5.39
cl07 11 1116.60 260.65 11 111498 22554 13.47
c108 11  1098.49 384.33 10 1158.48 293.69 23.58
c109 10 1087.70 398.80 10 1047.38 369.69 7.30
riol 18 1809.06 72.14 18 1839.91 63.75 11.63
ri02 16 1605.22 152.46 16  1589.85 12551 17.68
rio3 14 1395.47 179.72 14 1374.79 152.76 15.00
ri04 12 119154 321.32 12 1190.98 27177 15.42
r105 15 1557.40 90.43 15 1576.50 80.34 11.16
r106 14 1420.32 141.72 13 1433.83 12480 11.94
rio7 12 1255.45 215.52 12 1243.24 193.67 10.14
rio8 11 114311 379.74 11  1169.01 325.27 14.34
r109 13 1361.21 131.83 13 1349.94 116.51 11.62
r110 12 1225.59 216.36 12 1224.70 190.80 11.81
ri11 12 1259.48 22351 12 123142 206.11  7.79
ri12 11 116181 319.61 11 1149.99 288.78  9.65
rc101 16 1901.34 94.59 16 1908.44 76.81 18.79
rc102 15 1717.75 108.19 15 1688.56 88.01 18.65
rc103 13 1529.18 150.35 13 147151 128.54 1451
rc104 12 1350.57 236.83 12 1341.80 209.06 11.73
rc105 14 1647.14 91.96 14 1644.00 81.63 11.23
rc106 13 1706.69 101.23 13 1673.52 83.32 17.69
rc107 12 1396.43 186.32 12 1405.94 152.84 17.97
rc108 11 1326.87 231.81 11  1330.47 193.29 16.62

Average 1252 134749 25297 1245 1342.29 217.32 13.45

Table 3.7 reports the results for the intermediate case. We see that preprocessing
accelerates ALNS by 13.45% on average with a maximum speedup of 23.58%.
Furthermore, better solution quality is achieved in 17 instances, two with reduced fleet

size and 15 with less energy consumption.
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Table 3.8 Result for large-size instances in the intense case

Without Preprocessing With Preprocessing
Instance #Veh EC t(sec) #Veh EC t(sec) odt
cl101 12 1363.48 115.76 12 1363.04 90.49 21.82
€102 11  1388.57 358.81 11  1406.31 255.04 28.92
c103 11  1302.35 678.06 11  1301.08 475.62 29.85
c104 11  1253.78 1185.04 10 1318.18 806.17 31.97
€105 11 143227 179.03 11 142447 13159 26.50
c106 11 1449.76 240.94 11  1403.87 17491 27.41
€107 11  1356.79 197.78 11  1368.01 152.88 22.70
c108 11  1338.30 288.27 11 1319.37 207.77 27.93
c109 11 1288.30 388.06 11 1296.39 30345 21.80
riol 19  2265.32 72.70 19 223210 62.14 1452
ri02 16  1989.45 149.07 16  1998.27 107.28 28.04
ri03 14 172153 172.21 14  1697.69 134.13 22.11
ri04 12 144411 321.02 12 142355 255.26 20.49
r105 16 1868.20 104.33 16 1831.89 88.50 15.18
r106 15 1704.90 176.32 14 174857 122.24 30.67
rio7 13 1537.90 214.62 13  1518.26 176.85 17.60
r108 12 1389.93 415.33 12 1386.60 312.81 24.68
ri09 14  1638.86 127.33 14 1631.04 102.03 19.87
ri10 13 1471.46 229.11 13 148483 173.70 24.19
ri11 13 1477.05 222.29 13 1482.63 175.07 21.24
ri12 12 1365.34 332.78 12 1364.46 249.61 24.99
rc101 17 239481 82.21 17  2348.68 67.82 17.50
rc102 16 2130.26 140.72 16 2109.60 111.21 20.97
rc103 14 1874.29 142.96 14 1847.07 108.72 23.95
rcl104 12 1690.18 260.09 12 1668.35 191.87 26.23
rc105 15 204141 110.88 15 1995.72 89.36 1941
rc106 15 1910.64 114.38 15 1953.04 79.23 30.73
rc107 13 1737.06 177.62 13 1735.73 13149 25.97
rc108 12 1655.34 214.08 12 1637.30 165.88 22.52

Average 13.21 1649.00 25558 13.14 1638.12 189.76  23.79

The results for the intense case are given in Table 3.8. As the energy consumption per
unit distance is higher in this case, the graph can be reduced further and ALNS can benefit
more from the preprocessing. As expected, ALNS provides better solutions in 22
instances, two and 20 with respect to the number of vehicles and energy consumption,
respectively. Furthermore, it accelerates the computational time up to 31.97% and the

average speedup is 23.79% for the whole data set.
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Table 3.9 Summary of results for large-size instances

# Instances Improved

Objective Mild Intermediate Intense
#Veh 4 2 2
EC 17 15 20

Table 3.9 summarizes the improvements observed in large-size instances. The total
number of instances that we considered is 29 x 3 = 87. Overall, in 8 instances we see
reduction in the fleet size and saving in the energy consumption in 52 instances. It is worth
noting that some of these improvements may be due to the stochastic nature of ALNS.
Nevertheless, the results show that the proposed preprocessing is effective in enhancing

the performance in terms of both solution quality and computation time.

3.5.4. ldentifying infeasibility

We compared the performance of the proposed feasibility check algorithm and that of
Gurobi with and without using the preprocessing procedures as well as determining the
infeasibility of a problem, if exists. Note that while all the large-size instances are feasible
five out of 36 small-size instances are shown to be infeasible (using preprocessing). We
consider these five instances and summarize in Table 3.10 the average run times and
number of instances proven to be infeasible by Gurobi (with and without preprocessing)
and the proposed feasibility check algorithm. Without employing the proposed
preprocessing Gurobi can identify three as infeasible with an average computation time
of 4021 seconds whereas it can prove all five to be infeasible in only 0.003 seconds on
the average when it is equipped with the preprocessing. Furthermore, the proposed
feasibility check algorithm can also identify these 5 infeasible instances in only 0.4
seconds on the average. These results support the benefit of the proposed preprocessing
and show that an instance which is infeasible can be effectively identified using the

feasibility check algorithm without using a solver.
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Table 3.10 Average results for identifying infeasibilities

Gurobi without Gurobi with Feasibility Check
Preprocessing Preprocessing Algorithm
Average time (s) 4021.960 0.003 0.400
#Infeasible identified 3 5 5

3.6. Concluding remarks

In this chapter, we revisited the EVRPTW and proposed new preprocessing techniques to
reduce the problem size and accelerate the computational performance of the solution
methods. In addition, we developed an algorithm to check the feasibility of an instance.
Our experimental tests showed that the proposed preprocessing can reduce the graph by
up to 37% on average and speed up the computation time by up to 95% and 32% on small-
and large-size instances, respectively. Furthermore, it allowed ALNS to find better
solutions in many large-size instances, by reducing the fleet size or saving energy.
Moreover, the proposed feasibility check algorithm was able to detect all the instances

proven infeasible.
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4. Electric Vehicle Routing Problem with Time Windows and Cargo
Weight

4.1. Introduction to Electric Vehicle Routing Problem with Time Windows
considering cargo load

Electric Vehicle Routing Problem (EVRP) is an extension for VRP, where EVs are used
in the fleet instead of fossil fuel vehicles. EVs reduce tailpipe emission and enhance green
logistics. It tries to handle distribution tasks of logistics companies by minimizing the
total energy consumption cost of serving customers and satisfying their demands. EVRP
with Time Window (EVRPTW) is introduced by Schneider et al. (2014) where a full-
recharge strategy was adopted. The authors developed the mathematical programming
formulation of the problem and proposed a hybrid Variable Neighbourhood Search (VNS)
and Tabu Search (TS) algorithm to solve it. Different variants of EVRP and EVRPTW
were addressed in several studies including the cases of partial recharge (Bruglieri et al,
2015; Keskin and Catay, 2016), mixed fleet (Goeke and Schneider, 2015; Hiermann et al,
2016), location routing (Schiffer and Walther, 2017), fast charging (Felipe et al., 2014;
Catay and Keskin, 2017; Keskin and Catay, 2018), non-linear charging function
(Montoya et al.,2017; Froger et al., 2019), battery swapping (Yang and Sun, 2015; Hof et
al., 2017; Paz et al., 2018). Desaulniers et al. (2016) also studied EVRPTW and proposed
a branch-price-and-cut algorithm to solve four different recharging strategies. Some
recent studies have dealt with the availability of recharging stations and queueing for
recharging service (Froger et al., 2017; Kullman et al., 2018; Keskin et al., 2019). A
comprehensive review of the EV technology and survey of the EVRP variants may be
found in Pelletier et al. (2016), Pelletier et al. (2017), and Erdeli¢ and Cari¢ (2019).
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Energy consumption on the road does not only depend on the distance traveled but many
other factors including the vehicle's weight, velocity, auxiliary equipment (internal
factors) as well as ambient temperature and road gradient (external factors). These factors
have been often neglected in the VRP literature either because they make the problem too
complex to solve or the driving range is not an issue as the vehicles can easily refuel at a
nearby gas station. However, they may play a critical role in the operational efficiency of
the EVs since they can increase their energy consumption significantly which is discussed
in chapter 2. Among them, the weight of the transported cargo may play a crucial role in
route planning. The logistics operations of hypermarkets, hardware stores and other
companies that deal with heavy loads are examples for which a load-dependent model
produces more efficient transportation plans in comparison with basic routing models

(Zachariadis et al., 2015), which constitutes the main motivation of this study.

Load-dependent Vehicle Routing Problem (LDVRP) was introduced in Kara et al. (2007).
They used the weighted distance objective and relate it with the energy requirements of
vehicles. They proposed mathematical formulations for collection and distribution cases.
Xiao et al. (2012) attacked the same problem by emphasizing the relation of the weighted
distance with the fuel consumption of the vehicles within the context of Fuel Capacitated
VRP. Zachariadis et al. (2015) extended LDVRP by considering simultaneous pick-ups

and deliveries and proposed a local-search algorithm to solve large-scale instances.

In this chapter, we address the load-dependent variant of EVRPTW with partial recharges
by taking into account the energy consumption associated with the cargo carried on the
vehicle. We adopt a hierarchical objective function where the primary objective is to
minimize the fleet size whereas the secondary objective is to minimize total energy
consumption. We solve small-size instances using a commercial solver, and for the large-
size instances, we develop a Large Neighbourhood Search (LNS) algorithm. The
remainder of this chapter is organized as follows: section 4.2 introduces the problem and
formulates its mathematical programming model. Section 4.3 describes the proposed LNS
method. Section 4.4 presents the experimental study and discusses the results. Finally,

concluding remarks are provided in section 4.5.
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4.2. Problem definition and formulations

We tackle EVRPTW where a homogeneous fleet of EVs serve a set of customers with
known demands, time windows, and service times. As opposed to previous studies in the
literature which assume that the energy on the battery is consumed proportional to the
distance traveled, we take into account the additional energy consumption related to
freight load. Carrying more load by an EV causes more energy consumption.
Furthermore, we allow partial recharging and its duration depends on the amount of
energy transferred. Since it is a common practice in the real world to operate within the
first phase of recharging where the energy transferred is a linear function of the recharge
duration in order to prolong the battery life (Pelletier et al., 2017), we also assume a linear
charging function. In addition, we assume that the EV can be recharged at most once
between two consecutive customers, which is practical in last-mile logistics. We consider
a pick-up problem where the load of the EV increases along its tour as it visits the
customers. Each EV departs from the depot with the full battery since it can be recharged

overnight.

4.2.1. Energy consumption function

The energy consumption of an EV that travels from one node to another depends on
various factors such as its mass, shape, road gradient, acceleration, etc. By using tractive
power requirements placed on the vehicle at the wheels, the power demand of a vehicle

can be obtained using function (4.2) (Demir et al., 2012):

F = Ma + Mgsinf + 0.5C;pAV? + MgC,cosf 4.1)
Ptract(kW) == FU/].OOO (42)

where F shows the tractive effort as calculated in (4.1), M is the total weight of the vehicle
that consist of its curb weight and the cargo load (kg), a is the acceleration (m/sec?), g
is the gravitational constant, 6 is road gradient, C, is the coefficient of aerodynamic drag,

p is the air density in (kg/m3), A is the frontal area, v is the speed (m/s), and C, the
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coefficient of rolling resistance. The tractive power requirement can be converted to

second-by-second battery power output (kW) as follows:

P = Ptract/ﬂtf + Pucc (4.3)

where the vehicle’s drive train efficiency is shown by p.r which includes the energy
losses between electric motor and battery as well as the energy losses in transforming
energy to the wheels. P,.. is the power demand associated with the accessory equipment
such as air conditioning, audio system, cabin lights, which is neglected in this study. Then,

the energy consumption in (kWh/km) can be calculated as follows:

E=P/v (4.4)

4.2.2. Mathematical models

We presented and evaluated three models to check their performances.

Model I. In line with the mathematical notation and modelling convention in the literature
(Schneider et al., 2014; Keskin and Catay 2016) we define V = {1, ...,n} as the set of
customers and F as the set of recharging stations. Vertices 0 and n + 1 denote the depot
where each vehicle departs from O (departure depot) and returns to n + 1 (arrival depot)
at the end of its tour. We define Vo =V U {0}, Vyuu = VU{n+ 1} and Vo4 =V U
{0,n + 1}. Then, the problem can be represented on a complete directed graph G =
(N, A) with the set of arcs A = {(i,j)|i,j € N, i # j}, where N =V ,,1 U F is the total

set of nodes on the network.

The energy consumption depends on the distance traveled and the total weight of the EV,
which is affected by the cargo load carried on the EV. Each customer i € V has a positive
demand g;, service time s;, and time window [e;, [;]. All EVs have a cargo capacity of C
and a battery capacity of Q. At each recharging station, one unit of energy is transferred

in g time units. The direct distance from node i to j is represented by d;;.
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Travel time from customer i to customer j is denoted by ¢;; if the journey is direct and
tijs = tis + ts; — t;; is the additional travel time if it is via station s. Note that £;;; does
not include the recharging time at station s. The amount of extra energy needed in order
to move one unit of cargo is represented by w. The total energy consumption starting

from customer i to customer j is calculated as (h + wu;)d;;, where u; is the weight of

ijo
the load on the vehicle upon departure from customer i.

The decision variables y[, yf;, and Y/, keep track of battery SoC of vehicle k at arrival
at customer/depot i, at arrival at station s on route (i, s, j), and at departure from station
sonroute (i, s, j), respectively. 7; denotes the time when the loading starts at customer i.

The binary decision variable x{‘j takes value 1 if vehicle k travels from node i to node j,

k

and 0 otherwise whereas the binary decision variable z;j, takes value 1 if vehicle k

traverses arc (i, j), through station s.

Min Z(yé‘ — i) + Z Z Z Z(Yi’}s — i) (4.5)

keEK i€V jEVp4+1 KEK SEF
subject to
Vs =Q VkeK (4.6)
k
JEVn4+1 kEK VieV (47)
Jj#i
k k —
inj—in,-—O VieV,keK (4.8)
i€V, i€EVp41 ! !
i#j i%j
k k
Zzijs < Xij Vi€EVy,jEVy,kEK,i#] (4.9)
SEF
T+ (b +m)xk + z tszks + g(YV — k)
I SEF( v D) Vi€EVyjEVy k€K, i #] (4.10)
—lo(1— xi"]-) <T
+Zzikjs) VieVy,jEVy,kEK I +] (4.12)
SEF
yf <Y — (h+ wu)dg; + M1 - zf5) VieVy,jeEVy,SEFkEK,i#] (413)
0 < yfs <y = (h+wu)dys + M(1 — zf5) Vi€EVy,j€EVpy,sEFKEKi#] (414)
viis < Y < Qzf VieVy,j€e€Vy,sEFkEK,i+j (4.15)
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k k
yii <Q E x5 '
! i€V ! VjEVp k€K (4.16)
i#j

W=z u; + quxf‘f—c(l—zxf‘j) Vi€EVy)j€Vpyri#j (4.17)
keK keEK

0<u; <C Vi€ Voni1 (4.18)

xf5 €{0,1} VieVy,jEVy,kEK,i#] (4.19)

zf5s € {0,1} Vi€EVy,jEVy1,SEFkEK,i#j (4.20)

The objective function (4.5) minimizes the total energy consumption. Constraints (4.6)
set the initial battery SoC of EVs at departure to full. The connectivity of customer visits
is imposed by constraints (4.7) whereas the flow conservation at each vertex is ensured
by constraints (4.8). Constraints (4.9) make sure that vehicle k serves customer j after
customer i if it travels from i to j by recharging its battery en-route. Constraints (4.10)
guarantee the time feasibility of arcs emanating from the customers (the depot).
Constraints (4.11) establish the service time windows restriction. Constraints (4.10) and
(4.11) also eliminate the formation of sub-tours. Constraints (4.12)-(4.15) keep track of
the battery SoC at each node and make sure that it never falls below zero where M = Q +
(h +w. ey q;)- max (d;;). Constraints (4.12) establish the battery SoC consistency if
the vehicle travels from customer i to customer j without recharging en-route. Constraints
(4.13) determine battery SoC at the arrival at customer j if the vehicle visits a recharging
station after it has departed from customer i whereas constraints (4.14) check battery SoC
at the arrival at a station if the battery is recharged en-route. Constraints (4.15) set the
limits for battery SoC when the vehicle departs from a station. Constraints (4.16) allow
positive battery SoC at the arrival of an EV at customer j only if that EV serves customer
j. Constraints (4.17) keep track of the load of the vehicle throughout its journey.
Constraints (4.18) ensure the non-negativity of the load on the vehicle and guarantee that
the cargo capacity is not exceeded. Finally, constraints (4.19) and (4.20) define the binary

decision variables.

Model I1. In order to decrease the size of the problem we eliminate the vehicle index and
instead we used the dummy copies of the arrival depot in order to keep track of the battery
SoC. We define AD as the set of arrival depots and accordingly we define V,, =V U AD

and Vo 4p = V U {0} U AD. Then, the problem can be represented on a complete directed
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graph G = (N, A) with the set of arcs A = {(i,j)[i,j € N,i # j}, where N =V 4p U F is

the total set of nodes on the network.

Min (yg — yap) + Z Z Z(Yijs — Yijs) (4.21)

i€V, JEV 2op SEF

subject to
Yo =0 (4.22)
=1 eV 4.23
&0 Vie (4.23)
JET
xij =1 .
L€V, VJj€Vap (4.24)
i#j
Z Xij — Z x; =0 .
& & Vjev (4.25)
i#j i#j
Z Zijs = Xij Vi€EVyjEVipi#j (4.26)
SEF
7y + (b + 1) + Z (fijszijs +9(Yys — J/ijs))
SEF Vl € Vo,j € VAD'i ¢] (427)
—lo(l - xl-]-) < Tj
e <T; < VjEN (4.28)
0<y; <y~ (h+wu)d+ M1 - x +Zzijs) Vi€EVyj€EVapi#j (4.29)
SEF
yjSYijs—(h+wul-)d5,-+M(1—zijs) VieVy,jeEVip,seEF,i+j (4.30)
0 < yijs <y — (h + wu)dis + M(1 — z5) Vi€eV,jEVuy,s€F,i#j (431)
Yijs < Yijs < Qzijs Vi€EVyjEVyp,sEF,i#j (432
oY x |
g & Y Y jEVy (4.33)
i#j
uqui+ quU—C(l—xU) ViEVO,jEVAD,l.:Fj (434)
0<u; <C Vi€ Voup (4.35)
x;j € {0,1} VieVy,j€eEVup,i#]j (4.36)
z;js € {0,1} Vi€EVyj€EVup,sEF,i#j (437)
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The objective function and constraints are similar to the model I; however, the vehicle
index is removed and instead a set of arrival depots are added to the model where each

copy of arrival depot is corresponding to a vehicle.

Model I11. The vehicle index is eliminated, but we did not use the dummy copies of the
arrival depot. A mixed-integer nonlinear programming model is used where the objective
function is nonlinear, and it minimizes the energy consumption where it is calculated by
the multiplication of energy consumption rate per unit distance times traveled distance.
In the load-dependent case the energy consumption rate per unit distance is related to the
amount of cargo carried on that arc which is a decision variable. This causes nonlinearity

in the objective function. The constraints are similar to the previous models.

Min Z Z (Chyj + wudij)x;; + Z(ﬁijs + wudyjs)zs) (4.38)
i€EVy jE€EVR41 SEF

subject to

Yo =10 (4.39)
xij =1 .

& Viev (4.40)

j#i

Z Xij — Z xji =0 .

& & VjevV (4.41)

i+j i+j

Z Zijs = Xij Vi€EVyjEVyyi#] (4.42)

SEF
T; + (tij + Ti)xij + Z (fijszijs + g(Yijs - J/ijs))
= Vi€EVyj€Vyyi#j (4.43)

—lo(l - xl-j) < Tj

g =17 = VjEN (4.44)

0<y;j<y;—(h+wujd; + M(1 —x;; + Z Zijs) Vi€V ) € Vysy i % (4.45)
SEF

yj < Vi — (h+wu)dg; + M(1 — z;5) Vi€V, jEVy1,SEF,i#] (4.46)

0 <yijs <y — (h+wuw)d + M(1 — z5) VieVy,j€EVy,SEF,i#j (447)

Yijs < Yijs < Qzijs Vi€EVyjEVys1,SEF,i#]j (4.48)
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yi <Q Z Xii .
J & Y V j € Vye (4.49)
i#j

u = w; + qjx;; — C(1— x;5) VieVy,jEVy,i#]j (4.50)
0y <C Vi€Voni1 (4.51)
x;j € {0,1} VieVy,jEVy,i#]j (4.52)
z;js € {0,1} VieV,jeVy,SEF,i#j (453)

In order to check whether the objective function of model 111 is convex or concave, we
considered a small instance where there are only a depot and one customer. The objective

function can be written as Eq. (4.54):

note that dy; = d; and ho; = hyo since the network is symmetric. For the sake of
simplicity, we will use d and h instead of them. The Hessian matrix comprises geometric

information about the surface z = f(x, y). The Hessian matrix of z = f(X, y) is defined as

fxx fx
Hf(x:y): fyx fyi]

at any point where all of the second partial derivatives of function f exist. Let’s matrix H

shows the Hessian matrix of the function Eqg. (4.54) as:

xO,l xl,O uO u1
X0,1 0 0 wd 0
H =X 0 0 0 wdl
Uy wd 0 O 0
Uq 0 wd O 0

We need to calculate the Eigenvalues of the Hessian matrix to obtain geometric
information about the surface of the function. If all the eigenvalues are positive the
function will be convex. If all of them be negative, the function will be concave.
Otherwise, if some of them are positive and some negative signs, the function will be

neither convex nor concave and it will have a saddle point. In order to calculate the
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eigenvalues, we should compute det(H —IA) = 0 where the A values show the

eigenvalues.

0 0 wd 0 -1 0 0 0 -1 0 wd 0
det([ 0 0 O Wd] _ [ 0o -1 0 0]) _ det([ 0 -1 0 Wd])

wd 0 0 0 0 0 -1 0 wd 0 -1 0

0 wd 0 0 0 0 0o -1 0 wd 0 -4

= - wd)?2?=0 - A= twd

Since w and d are positive thus A values can be positive or negative. Therefore, the
eigenvalues are not totally positive or negative and the function is neither convex nor
concave. Consequently, the solution obtained from this model is a local minimum for the

original model.

4.3. Large Neighborhood Search algorithm

We attempt to solve small-size instances using a commercial solver. To solve the large-
size instances, we develop an LNS method. LNS was introduced by Shaw (1998) and
aims at improving an initial solution by using several destroy and repair mechanisms
iteratively. In each iteration, some customers are removed from the solution and reinserted
into the routes to create a new feasible solution. This procedure is repeated for a
predetermined number of iterations. LNS and Adaptive LNS (ALNS) have been
successfully applied to many VRP variants including EVRPs and EVRPTWs (Goeke and
Schneider, 2015; Keskin and Catay, 2016; Wen et al., 2016; Hiermann et al., 2016;
Schiffer and Walther, 2017; Schiffer et al., 2018; Keskin and Catay, 2018; Keskin et al.,
2019).

We create the initial solution using the insertion heuristic of Keskin and Catay (2016)
where the cost of inserting a customer into a route is calculated as (h + wu;)d;;, +
(h + ww)dy; — (h + wu;)d;;. This insertion cost is calculated for all unvisited
customers and the minimum cost insertion is performed by ensuring that the related
constraints are not violated. If an EV runs out energy, a station may be inserted to make

its tour energy feasible. We use First-Feasible Station Insertion algorithm which will be
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described in Section 4.3.2. If no customer can be feasibly inserted in the route, a new

route is initialized, and the procedure is repeated until all customers are served.

Our LNS consists of customer destroy and repair mechanisms. In each iteration, a
customer removal algorithm is applied to a feasible solution to remove a subset of
customers from the routes. If any station is no longer needed in the partial solution, they
are removed as well. Next, we apply a customer insertion algorithm that inserts all the
customers removed to repair the solution in an attempt to obtain a new improved solution.
Stations may be inserted to maintain the energy feasibility along the route. This procedure
continues until the stopping criterion is satisfied, which is a limit on the number of
iterations in our implementation. Note that the set of stations that can be visited between
any two customers is reduced by using the dominance rules presented in Bruglieri et al.
(2016).

4.3.1. Destroy operators

The current feasible solution is destroyed by removing y customers. We use Worst-
Consumption, Random Worst-Consumption, Shaw, Random Worst-Time, Random,
Random Route Removal and Greedy Route Removal procedures of Keskin and Catay,
(2016) by modifying them for the load-dependent problem. The destroy operators are
selected randomly.

e Worst-Consumption algorithm selects the customers with high energy consumption
imposed on the route by visiting that customer, which is calculated as (h + wu;)d;;, +
(h + ww)dy; — (h + wu;)d;; that considers distance and cargo load effect in energy
consumption.

e Random Worst-Consumption sorts the customers with respect to the associated energy
consumptions, considers a subset of o X y customers with the highest costs to select y
customers randomly and remove them.

e Shaw Removal removes similar customers with respect to their energy consumption,
earliest service time, being in the same route, and their demand. It randomly selects

customer i and calculates the relatedness measure as R;; = ¢ h;d;; + ¢2|ei — e,-| +
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$3li; + ¢4|D; — D;| to find similar customers j. ¢,-¢, are the Shaw parameters,
l;; = —1ifiandj are in the same route, 1 otherwise. Small R;; shows high similarity.

So, using the non-decreasing order of the relatedness value with customer i, y customers
are removed from the solution.

e Random Worst-Time algorithm is a version of Shaw Removal where ¢;, ¢3, ¢, are set
equal to 0. The customers are sorted in the non-decreasing order of their relatedness
values and y customers are randomly removed from the subset of ¢ X y customers with
the lowest relatedness values.

e Random Removal mechanism randomly removes y customers from the solution.

e Random Route Removal algorithm randomly removes w routes from the solution.

e Greedy Route Removal mechanism sorts the routes in the non-decreasing order of the
number of customers visited and removes w routes which serve the least number of
customers.

Note that the Route Removal algorithms attempt to reduce the fleet size.

4.3.2. Repair operators

We adapt Random Greedy, Regret-2, Random Time-Based, Random Greedy with Noise
Function, and Regret-2 with Noise Function repair algorithms of Keskin and Catay (2016)
and Demir et al. (2012) for our load-dependent case. In addition, we propose Exhaustive
Greedy, Exhaustive Time-Based, Exhaustive Time-Based with Noise Function, and
Random Time-Based with Noise Function mechanisms. The repair operators are selected

randomly.

e Random Greedy Insertion selects a customer and inserts it in the best position which
leads to least increase in energy consumption.

e Regret-2 Insertion tries to avoid the higher costs in the subsequent iteration. It calculates
the difference between the cost of the best insertion and the second-best insertion for
all customers and selects the customer with the highest difference.

e Random Time-Based Insertion calculates insertion costs similar to the Exhaustive
Time-Based algorithm, however, at first an unassigned customer is selected randomly,

and the algorithm inserts it in its best position.
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e Random Greedy Insertion with Noise Function is an extension of the Random Greedy
Insertion mechanism with a degree of freedom. We use the same noise function
presented in Demir et al. (2012). The cost of insertion using the freedom degree is
calculated as NewCost = ActualCost + due, where d represents the maximum
distance in the network, the noise parameter used for diversification is shown by y, and
€ is a random number between [-1, 1].

e Exhaustive Greedy Insertion considers all possible insertion positions for all not-
inserted customers and selects the customer-position matching which leads to least
increase of energy consumption.

e Exhaustive Time-Based Insertion calculates the difference between the route duration
after and before inserting a customer as the insertion cost. For all customers, the
insertion costs in all possible positions are calculated and the customer with least the

insertion cost is selected.

Note that Regret-2 with Noise Function, Exhaustive Time-Based with Noise Function,
Random Time-Based with Noise Function are extensions of Regret-2, Exhaustive Time-
Based and Random Time-Based insertion mechanisms, respectively, using a similar noise

function.

As we mentioned earlier, the unnecessary stations are removed from the partial solution
obtained using the destroy operator. During the repair procedure, the insertion of a
customer may not be feasible with respect to battery SoC. In that case, we first attempt to
increase the recharge quantity if a station is visited prior to arriving at that customer. If
the energy recharged at the station cannot be increased or no station is visited en-route
we apply a station insertion operator to make the insertion feasible. We modified Best
Station Insertion from the literature (Keskin and Catay, 2016) and Multiple Station
Insertion operators introduced in section 2.3 and applied them for the load-dependent
problem. Also, we develop First Feasible Station Insertion operator for this problem. Note

that at most one station can be inserted between two consecutive customers in a route.
e First-Feasible Station Insertion considers the first customer (or depot) where the vehicle

arrives at with negative SoC and checks the insertion of a station in the preceding arcs

backward. The first station which makes the problem feasible is inserted.
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e Best-Station Insertion algorithm checks all possible stations in all possible arcs before
the first customer (or depot) with negative SoC and inserts the best station in its best
position.

e Multiple-Station Insertion algorithm inserts multiple stations into a route when the
insertion of a single station cannot make the route feasible. A station is inserted on the
arc traversed immediately before arriving at the customer (or depot) with a negative
SoC where the vehicle is recharged up to the maximum level allowed by the battery
capacity and time windows restrictions of the succeeding customers. If the SoC is still
negative at that customer or if the vehicle runs out of energy before reaching the inserted
station, we attempt to insert another station prior to the last customer visited before
traveling to the recently inserted station. This procedure is repeated until the route

becomes energy feasible.

One of the First-Feasible Station Insertion and Best-Station Insertion algorithms is
selected randomly. If it does not a feasible route, we resort to Multiple-Station Insertion
algorithm. Note that, we remove all stations in the solution after every g iterations and
use Best-Station Insertion algorithm to insert stations to obtain an improved feasible

solution.

4.3.3. Repair-opt operator

We introduce a repair operator that attempts to insert the removed customers in the partial
solution optimally along with the recharging stations, if needed. We use Gurobi solver to
solve the mathematical model to reinsert removed customers and stations in their best
places in the given partial routes in order to obtain a better solution. We call this repair
operator in the algorithm after performing # iterations because it is expensive in terms of
computational time and is more promising after the algorithm converges to a good
solution. Furthermore, as the LNS algorithm progresses it provides tight upper bounds on
the number of vehicles, which accelerates Gurobi solver’s run time. The performance of
the proposed model is investigated in section 4.4. The parameters for the LNS are

illustrated in Appendix D.
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4.4. Experimental study

We performed our computational tests using the dataset of Schneider et al. (2014) and
Desaulniers et al. (2016) for the small-size and large-size instances, respectively. The
small-size dataset consists of 36 instances involving 5, 10, and 15 customers, and the
large-size dataset includes 56 instances generated based on the VRPTW instances of
Solomon (1987). The instances are classified according to the geographic distribution of
the customers: clustered (c-type), random (r-type), and half clustered half random (rc-
type). Furthermore, in type-1 problems (i.e., subsets r1, c1, rcl) the planning horizon is
shorter, and customers’ time windows are narrower compared to type-2 problems (i.e.,
r2, c2, rc2). In our study, we only consider type-1 problems from the large-size dataset as
they better exhibit the influence of recharging decisions on route planning (Desaulniers
etal., 2016; Keskin and Catay, 2018). In order to deal with realistic vehicle cargo capacity
and customer demands, we assumed an electric truck based on the specifications provided
in Demir et al. (2012). Since the capacity of this vehicle is 3650 kg, we converted the
demand quantities to reasonable weights by multiplying each by (3650/
original capacity) in order to observe the effect of cargo weight on energy
consumption. We assumed a drive train efficiency of 0.9 as EVs are more efficient than
internal combustion engine vehicles. Furthermore, since the EVs in the original data are
assumed to consume one unit of energy per unit distance/time traveled, we used Eq. (4.4)
to calculate the actual energy consumption of an empty vehicle (i.e., 6350 kg) per unit
distance and scaled it to h = 1. We used the same approach to determine the energy
consumption w associated with unit load carried. We consider a flat network where road

gradients are zero and we neglected vehicle acceleration.

The small-size instances were solved using GUROBI 9.0 with a 2-hour time limit. LNS
was employed to solve both small- and large-size instances. LNS was coded in Python
3.7.1 and all runs were performed on an Intel Core(TM) i7-8700 processor with 3.20 GHz
speed and 32 GB RAM. We performed five runs for each instance. The number of LNS
iterations is set to 1000 for the small-size instances and 6000 for the large-size instances.
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4.4.1. Analysis on the performance of the proposed models

In this section, we analyzed the performance of the models introduced in section 4.2.2.

Table 4.1 presents the results obtained from models I, Il and 111 for the load-dependent

case. “#Veh”, “EC”, and “t” refer to the fleet size, energy consumption, and run time (in

seconds), respectively. Rows “Avg.” present the average values for the number of

vehicles, energy consumption (for the instances with the same number of vehicles), and

the run time for the instances with 5, 10, and 15 customers. The total averages for all the

instances are shown in the row “Total Avg.”.

Table 4.1 Comparison of results obtained using different models for the load-dependent

case
Model | Model Il Model 111

Instance #Veh EC t (sec) #Veh EC t (sec) #Veh EC t (sec)

r104c5-s3 2 14154 <1 2 14154 <1 2 14154 <1
r105c5-s3 2 159.23 <1 2 159.23 <1 2 159.23 <1
r202c5-s3 1 14412 <1 1 14412 <1 1 14412 <1
r203c5-s4 1 181.32 <1 1 18132 <1 1 18132 <1
c101c5-s3 2 266.02 <1 2 266.02 <1 2 266.02 <1
€103c5-s2 1 186.83 <1 1 186.83 <1 1 186.83 <1
€206¢5-s4 1 250.63 <1 1 25063 <1 1 250.63 <1
€208c5-s3 1 168.91 <1 1 16891 <1 1 168.91 <1
rc105c5-s4 2 256.62 <1 2  256.62 <1 2 256.62 <1
rc108c5-s4 2 264.00 <1 2 264.00 <1 2 264.00 <1
rc204c5-s4 1 188.59 <1 1 18859 <1 1 188.59 <1
rc208c5-s3 1 170.82 <1 1 170.82 <1 1 170.82 <1
Avg. 142 198.22 0.33 142  198.22 0.25 142 198.22 0.04
r102c10-s4 3  336.00 37 3 336.00 4 3  336.00 <1
r103c10-s3 2 220.50 1507 2 22050 213 2 220.50 <1
r201c10-s4 1 26240 6 1 262.40 4 1 262.40 <1
r203c10-s5 1 227.26 7200 1 227.26 3297 1 227.26 <1
€101c10-s5 3 410.10 117 3 410.10 11 3 410.10 <1
c104c10-s4 2 30881 7200 2 305.64 7200 2 305.64 1
€202c10-s5 1 319.04 8 1 319.04 <1 1 319.04 <1
€205¢10-s3 2 23374 148 2 23374 18 2 23374 <1
rc102c10-s4 5 475.00 435 5 475.00 54 5 475.00 <1
rc108c10-s4 3 364.62 4472 3 364.62 46 3  364.62 <1
rc201c10-s4 1 424.49 <1 1 424.49 <1 1 424.49 <1
rc205c10-s4 2 33454 432 2 33454 103 2 33454 <1
Avg. 217 326.38 1796.85 217  326.11 912.57 217 326.11 0.92
r102c15-s8 5 430.83 7200 5 430.83 7200 5 430.83 <1
r105c15-s6 4 350.09 7200 4 350.09 7200 4 350.09 <1
r202c15-s6 2 365.06 7200 2 365.06 7200 1 590.31 7200
r209c15-s5 1 36183 7200 1 34731 7200 1 34731 145
€103c15-s5 4 393.15 7200 3 403.18 7200 3 40197 27
c106¢15-s3 3 370.84 7200 3 35229 2478 3 35229 4
€202c15-s5 2 408.12 7200 2 39319 7200 2 393.19 2
€208c15-s4 2 310.12 7200 2 310.12 7200 2 310.12 <1
rc103c15-s5 5 415.62 7200 4 415.79 7200 4 41579 4
rc108c15-s5 5 45349 7200 4 430.69 7200 3 417.92 72
rc202c15-s5 2 403.03 7200 2 403.03 7200 2 403.03 1
rc204c15-s7 1  444.03 7200 1 402.41 7200 1  402.15 7200
Avg. 3.00 384.86 7200.00 2.75 373.66  6806.50 2.58 373.63 1221.41
Total Avg. 2.19 303.15 2999.06 211  299.33 2573.11 2.06 299.32 407.46
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The results show that the model Il overperforms model 1 in two instances with respect to
the number of vehicles and in five instances regarding energy consumption. On the other
hand, the computational time for model I is 14.2% less than the model | on the average.
Model 111 obtains solutions with a smaller number of vehicles in two instances and
improves two instances with respect to the energy consumption compared to the model

I1. The computational time for model 111 is about 84.2 % less than model 11 on the average.

Table 4.2 Results for small-size instances obtained using GUROBI and LNS for Load
Independent and Load-dependent cases

GUROBI LNS
Load Independent Load Dependent Load Dependent
Instance #Veh EC t (sec) #Veh EC t(sec)  %AEC #Veh EC t (sec)
r104c5-s3 2 136.69 <1 2 14154 <1 3.55 2 14154 1
r105c5-s3 2 156.08 <1 2 159.23 <1 2.01 2 159.23 1
r202c5-s3 1 128.88 <1 1 14412 <l 1182 1 14412 2
r203c5-s4 1 179.06 <1 1 181.32 <1 1.27 1 18132 2
€101c5-s3 2 257.75 <1 2 266.02 <1 321 2 266.02 1
¢103¢5-s2 1 175.37 <1 1 186.83 <1 6.54 1 186.83 1
€206c5-s4 1 24256 <1 1 25063 <1 3.33 1 250.63 2
€208¢5-s3 1 16434 <1 1 16891 <1 2.78 1 16891 2
rc105c5-s4 2 233.77 <1 2 256.62 <1 9.78 2 256.62 1
rc108c5-s4 2 25393 <1 2 264.00 <1 3.97 2 264.00 1
rc204c¢5-s4 1 185.16 <1 1 188.59 <1 1.85 1 18859 3
rc208c5-s3 1 167.98 <1 1 170.82 <1 1.69 1 170.82 2
Avg. 1.42 190.13 0.02 1.42  198.22 0.04 4.32 1.42  198.22 1.57
r102c10-s4 3 249.19 <1 3 336.00 <l 3484 3  336.00 3
r103c10-s3 2 206.30 1 2 22050 <1 6.88 2 220.50 14
r201c10-s4 1 24151 <1 1 26240 <1 8.65 1 26240 2
r203c10-s5 1 222.64 <1 1 227.26 <1 2.08 1 22726 8
¢101c10-s5 3 388.25 <1 3  410.10 <1 5.63 3  410.10 2
c104c10-s4 2 27393 <1 2 305.64 1 1158 2 305.64 85
¢202c10-s5 1 304.06 <1 1 319.04 <1 4.93 1 319.04 1
€205c10-s3 2 228.28 <1 2 23374 <1 2.39 2 23374 3
rc102c10-s4 4 424.00 <1 5  475.00 <1 - 5 475.00 2
rc108c10-s4 3 347.90 <1 3 364.62 <1 4.81 3  364.62 4
rc201c10-s4 1 41286 <1 1 424.49 <1 2.82 1 42449 3
rc205c10-s4 2 325.98 <1 2 33454 <1 2.63 2 33454 4
Avg. 2.08 290.99 0.23 217 31258 0.92 7.93 217  312.58 10.94
r102c15-s8 5 412.78 1 5 430.83 <1 437 5 430.83 5
r105c15-s6 4 336.15 <1 4 350.09 <1 4.15 4 350.09 4
r202c15-s6 1 507.32 1152 1 59031 7200 16.36 2 365.06 272
r209c15-s5 1 31324 10 1 34731 145 10.88 1 34731 36
¢103c15-s5 3 348.46 1 3 401.97 27  15.36 3 40197 419
c106¢15-s3 3 27513 <1 3 352.29 4 28.04 3 35229 12
c202c15-s5 2 383.62 2 2 39319 2 2.50 2 393.19 33
c208c15-s4 2 300.55 <1 2 310.12 <1 3.18 2 310.12 15
rc103c15-s5 4  397.67 2 4 41579 4 4.56 4 415.79 57
rc108c15-s5 3 370.25 6 3 41792 72 12.88 3 417.92 20
rc202c15-s5 2 394.39 <1 2 403.03 1 2.19 2 403.03 11
rc204c15-s7 1 38222 7200 1 402.15 7200 5.21 1 40215 371
Avg. 2.58 355.86 697.90 2.58 384.06 1221.41 9.14 2.67 384.06 104.63
Total Avg. 2.03 278.99 232.72 2.38  298.29 407.46 7.13 242  298.29 39.05

Although model 111 does not guarantee to obtain the global opima, the results show that
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it can find a better solution with resptect to the number of vehicles and energy
consumption with less computational run times compared to the other models, that is why

we can use it in the repair-opt operator of the LNS algorithm.

4.4.2. Analysis on the effect of load on the route planning

The results for small-size instances are provided in Table 4.2 which also shows the
performance of LNS with respect to Gurobi. Column “GUROBI” shows the results using
GUROBI and “LNS” provides the results obtained by the proposed LNS algorithm.
Column “Load Independent” reports the results for the case that does not take into account
the increased energy consumption associated with the cargo carried whereas column
“Load Dependent” shows the results for the case that considers the load on the vehicle.

Table 4.3 Result for large-size instances obtained using LNS for Load-Independent and
Load-Dependent cases

Load Independent Load Dependent
Instance #Veh EC t (sec) #Veh EC t (sec)
rio1 17 1679.69 782 18 1741.27 712
r102 16 1607.23 1761 17 1630.97 1135
ri03 14 127751 2200 14 1404.57 1885
rio4 12 1162.21 2776 13 124714 2545
r105 15 1348.54 1608 16 1482.75 1324
r106 14 1404.93 1885 15 1469.73 1752
r107 12 1243.62 2057 13 1332.27 1774
rio8 12 1091.86 3085 12 1267.00 2571
ri09 14 1261.83 1854 14 141550 1734
ri10 13 1146.24 2656 13 1251.46 2129
ri1l 12 1193.67 2567 13 1262.93 2029
ri12 12 110543 3616 12 1218.47 2763
Avg. 13.58 1176.57 2237.23 14.08 131140 1862.85
c101 12 1043.38 682 12 1186.46 718
cl02 11 1100.17 2252 12 1173.36 1969
c103 11 1246.22 3019 11  1395.65 3005
cl04 11 1142.82 5640 11 137341 4524
cl105 11  1037.26 1617 12 1161.57 1345
c106 11 1040.79 1896 12 1166.90 1919
cl07 11 1021.93 2142 12 1179.50 1634
c108 12 1096.64 2570 12 1206.47 2466
c109 11 1001.64 3667 11 131841 2648
Avg. 11.22 1106.14 2609.59 11.67 1296.08  2247.49
rc101 15 1652.33 1733 17 1921.03 1119
rc102 16 1607.69 1517 16 1815.88 1555
rc103 14 1501.91 1884 14 1722.56 1773
rc104 12 1380.05 2496 13 151547 2930
rc105 15 1539.88 2015 15 1734.78 1654
rc106 14 1484.98 1930 15 1650.57 1557
rc107 12 1264.11 2314 13 1467.85 2060
rc108 12 1398.05 2815 13 1533.09 2240
Avg. 13.75 1549.83 2087.81 1450 1757.74 1861.02
Total Avg. 12.85 127751 2311.54 13.42 1455.07 1990.45
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The comparison of these two columns exhibits the influence of the load on routing
decisions. “t” and “%AEC’ refers to the average run time (in seconds) and the percentage
increase in the energy consumption comparing load-independent and load-dependent
case, respectively. The results show that #Veh increases by one in one instance (rc102c10-
s4). Furthermore, we observe that EC values obtained in the load-independent case are
far from the actual energy consumption found by taking into account the cargo load.
Finally, we see that LNS finds optimal solutions (or equal to the upper bound obtained
from Gurobi) in 35 out of 36 instances. In one instance (r202c15-s6) it finds a solution
with a higher number of vehicles which is equal to the upper bound gained from models
I and I1.

We solved the large-size instances for both load-independent and load-dependent cases
using LNS. The results are provided in Table 4.3Error! Reference source not found..
We observe that the number of vehicles increases by two in one instance and by one in
fifteen instances (shown in bold) in the load-dependent case compared to the load-
independent. Furthermore, in the remaining thirteen instances, EC increases by 13.90%
on the average. These results show the importance of considering cargo weight in route

optimization.

4.4.3. Analysis on the repair-opt operator

In this section, we investigate the performance of the repair-opt operator on the
performance of the proposed LNS algorithm for the load-dependent problem. Note that
we performed the LNS algorithm for 15000 and 25000 iterations for solving the small
and large-size instances, respectively, when it does not include the repair-opt mechanism.
We performed our tests on the 5-, 10-, 15-, and 100-customer instances. The results are
summarized in Table 4.4. “#Inst”, “#Veh”, “EC”, “t (sec)”” denote the number of instances
solved, the average number of vehicles, average energy consumption and average
computational time, respectively. “#Bet.Veh” and “#Bet.EC” refer the number of
instances where LNS with repair-opt operator obtains a better solution with regard to the
number of vehicles and energy consumption, respectively. The results show that the

repair-opt operator allowed LNS to find better solutions in 8 small-size instances out of
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36: in two instances it reduces the fleet size whereas in six instances it decreased the total
energy consumption. In the large-size instances, the LNS equipped with the repair-opt
operator achieves reduced fleet size in three instances and provides savings in energy
consumption in sixteen instances. The detailed results are reported in Appendix E. These
results show the contribution of the repair-opt operator in the overall performance of the
LNS algorithm.

Table 4.4 Average results for solving small and large-size instances without and with
considering repair-opt operator in LNS algorithm

Without Repair-opt With Repair-opt
Instance #Inst  #Veh EC t (sec) #Veh EC t(sec) #Bet.Veh  #Bet.EC
5-Customer 12 142  198.33 10.83 142  198.33 1.57 0 0
10-Customer 12 2.33 318.30 22.08 217 315.30 10.94 2 4
15-Customer 12 2.67 390.75 43.50 2.67 382.44 104.63 0 2
100-Customer-R 12 1425 1386.98 2325.83 14.08 137158 1862.85 2 6
100-Customer-C 9 11.78 1254.27 2695.85 11.67 1230.42 2247.49 1 8
100-Customer-RC 8 1450 1664.60 2186.83 1450 1670.15 1861.02 0 2

4.5. Conclusions and future directions

In this chapter, we addressed EVRPTW with partial recharge by taking into account the
energy consumption associated with the cargo carried on the vehicle. We formulated three
different 0-1 mixed-integer programming models of the problem and compared their
performances on small-size instances. For solving the large-size instances, we developed
an LNS method by proposing new destroy and repair operators as well as a new repair
mechanism based on an exact method. Our computational tests showed how the fleet size
and/or energy consumption increase in comparison to the case where the load factor is
neglected and revealed the importance of considering the cargo weight of the vehicles for
more accurate route planning. Our experiments also showed the contribution of the

proposed exact repair method on the performance of the LNS algorithm.
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5. Electric Vehicle Routing Problem with Time Windows
considering Cargo Weight, Road Gradient and Regenerative

Braking

5.1. Introduction to Electric Vehicle Routing Problem with Time Windows and
Effect of Road Gradient on Energy Consumption

Studying different factors which affect energy consumption is often neglected in the VRP
literature since it may bring more complexity to the problem or it may not an important
issue as the ICEs does not need to refuel frequently and the refueling process is pretty
fast. Nevertheless, because of the limited battery capacity in EVs which restricts their
driving ranges, and recharging process, which is time-consuming, considering the factors
which affect energy consumption in the EVRP literature becomes vital. Energy
consumption on the road does not only depend on the distance traveled but many other
factors including the vehicle's weight, velocity, auxiliary equipment (internal factors) as
well as ambient temperature and road gradient (external factors). Among them, the road
gradient and the weight of the transported cargo may significantly influence the routing
decisions. In the reality the road network of the cities where the logistic companies
operate are not flat. Traveling on an arc with a positive road gradient requires more energy
comparing to an arc in a flat network. As the gradient of an arc slightly rises, the energy
consumption per unit distance increases which can extremely increase the energy
consumption on that arc. Furthermore, in the operations where the EVs deal with heavy
loads, the effect of road gradient on the energy consumption intensifies since an EV
moving uphill with heavy load requires more energy in order to finish its journey. On the
other hand, if an EV traverses on an arc with a negative road gradient where the driver
needs to push the brake pedal in order to travel with a constant speed, energy can be saved

on the battery because of the regenerative braking technology (Clegg, 1996, Xu et al.,
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2011, Zhang et al., 2008, Wu et al., 2015). The companies dealing with heavy loads which
are operating in the cities that are not flat get affected more and are examples for which a
model considering cargo weight and road gradient network produces more effective
transportation strategies in comparison with basic routing mode, which is the main

motivation of this study.

In this chapter, we address an EVRPTW with partial recharges by taking into account the
energy consumption associated with the road gradient, regenerative braking, and the
cargo carried on the vehicle. We assume that the road gradient between two nodes is the
average gradient in that road. We adopt a hierarchical objective function where the
primary objective is to minimize the fleet size whereas the secondary objective is to
minimize total energy consumption. We develop a Large Neighbourhood Search (LNS)
algorithm to solve the problem. The remainder of this chapter is organized as follows:
section 5.2 introduces the problem and formulates its mathematical programming model.
Section 5.3 presents the experimental study and discusses the results. Finally, concluding
remarks are provided in section 5.4.

5.2. Problem description

A homogeneous fleet of EVs serves a set of customers with known demands, time
windows, and service times in the context of EVRPTW. Contrasted with former studies
in the literature that assume a constant energy consumption proportional to the distance
traveled, we consider the additional energy consumption related to road gradient,
regenerative braking, and freight load. Carrying more load by an EV on the roads with
positive road gradient causes more energy consumption while if the vehicle travels on the
arcs with negative road gradient where the driver needs to push the brake pedal to keep
the vehicle speed constant, the energy released from braking can be saved in the battery.
When an EV regenerate energy in negative road gradient arcs, not also it does not
consume energy but also it saves the energy in the battery. Moreover, we allow partial
recharging, and charging duration depends on the amount of energy transferred. It is a
common practice in the real world to operate within the first phase of recharging where
the energy transferred is a linear function of the recharge duration in order to prolong the
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battery life (Pelletier et al., 2017) thus we also assume a linear charging function.
Furthermore, we assume that the EV can be recharged at most once between two
consecutive customers, which is practical in last-mile logistics. We consider a pick-up
problem where the load of the EV increases along its tour as it visits the customers. Each

EV departs from the depot with the full battery since it can be recharged overnight.

5.2.1. Energy consumption considering road gradient and regenerative braking

Considering the tractive power function in chapter 4 (Eq. 4.2), once the road gradient is
positive the tractive power will be positive. However, if the road gradient is negative and
Ma + 0.5C;pAV? + MgC,cosf = |Mgsin6| the tractive power will be positive but if
the road is steeper and Ma + 0.5C;pAV? + MgC,cosf < |Mgsinf| the tractive power
will be negative and thus the vehicle can save energy using the regenerative braking
technology.

When the tractive power is positive, it can be converted to second-by-second engine
power output (kW) as Eq. (4.3). On the other hand, if the tractive power is negative the
second-by-second battery power output (kW) will be:

P = Uy Prrace + Pace (5-1)

where p,. represents the efficiency of the regenerative braking process since the engine
cannot save the whole regenerated energy in the battery. Then, the energy consumption
in (kWh/km) can be calculated using Eqg. (4.4). Finally, the energy consumption on an

arc considering its gradient and the vehicle’s cargo weight will be as follows:

hij(ui) = dij(Ptract(ui)//"tf)/v Ptract(ui) =0 (kW) (5-2)

hij(ui) = dij(ur-Ptract(ui))/v Ptract(ui) <0 (kW) (5-3)

where P....:(u;) is the tractive power for the arc (i, j) considering its gradient and the
cargo load carrying by the vehicle on that arc. P4+ (u;) is the function of load and it

depends on the sequence of the routes. The distance between i and j is represented by d;;
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and consequently the total energy consumption on arc (i, j) is denoted by h;;(w;) which

is a function of the cargo load.

5.2.2. Problem formulation

All the sets, parameters, and decision variables are similar to the model I in section 4.2.2
except the energy consumption. The energy consumption on arc (i, j) is calculated by

h;j(u;) which includes the effect of road gradient and cargo load.

Min Z(y(]){ - Yr]f+1) + Z Z Z Z(YLIJCS - yl'kjs) (5.4)

kek i€Vy j€Vp4q kEK SEF
subject to
yE =0 VkeK (5.5)
Z Z x{‘j =1 .
& e VieVv (5.6)
j#i
Z x5 — Z x5 =0 .
& & VieV,kekK (5.7)
i#j i#j
Zzikjsgxlki ViEVy)EVipk €K, i %] (5.8)
SEF
T+ (ty +m)xk + Z tiszks + gV — vES)
Y SEF( s ) ViEVyj €V k €K, i#j (5.9)
—l,(1—- xi"j) <7
€j < T]' < l]' V] EN (510)
OSY}‘Syi"—hif(ui)+M(1—xl"j+zzf§s) ViEVyj €V k€K, i #j (5.11)
SEF
yF <YK —hgj(w) + M(1 - zf5) ViEVy,jEVy1,SEFkEK,i#j (512
0 < yfs <y — his(u) + M(1 — zf55) Vi€EVy,jEVy1,SEFkEK,i#j (513)
v S Y < Qzf ViEVy,j€EVy,sEFkEK i+] (514)
k k
oy |
J & Y Vj€EVy,kEK (5.15)
i#j
up =z u;+ quxikj_c(l_zxikj) Vi€EVy )€V, i+ (5.16)
keK keK
0<u;<C Vi€ Vypit (5.17)
xf; € {0,1} VieVy,jEVy,kEK I +] (5.18)

77



zf5s € {0,1} VieVy,j€EVy,sSEFkEKi#j (519

The objective function (5.4) minimizes the total energy consumption. Constraints (5.5)
set the initial battery SoC of EVs at departure to full. The connectivity of customer visits
is imposed by constraints (5.6) whereas the flow conservation at each vertex is ensured
by constraints (5.7). Constraints (5.8) make sure that vehicle k serves customer j after
customer i if it travels from i to j by recharging its battery en-route. Constraints (5.9)
guarantee the time feasibility of arcs emanating from the customers (the depot).
Constraints (5.10) establish the service time windows restriction. Constraints (5.9) and
(5.10) also eliminate the formation of sub-tours. Constraints (5.11)-(5.14) keep track of
the battery SoC at each node and make sure that it never falls below zero where
M = Q + max (h;;(w;) ). Constraints (5.11) establish the battery SoC consistency if the
vehicle travels from customer i to customer j by recharging en-route. Constraints (5.12)
determine battery SoC at the arrival at customer j if the vehicle visits a recharging station
after it has departed from customer i whereas constraints (5.13) check battery SoC at the
arrival at a station if the battery is recharged en-route. Constraints (5.14) set the limits for
battery SoC when the vehicle departs from a station. Constraints (5.15) allow positive
battery SoC at the arrival of an EV at customer j only if that EV serves customer j.
Constraints (5.16) keep track of the load of the vehicle throughout its journey. Constraints
(5.17) ensure the non-negativity of the load on the vehicle and guarantee that the cargo
capacity is not exceeded. Finally, constraints (5.18) and (5.19) define the binary decision

variables.

Constraints (5.11)-(5.13) are nonlinear since h;;(w;) is a function of the load as well as

efficiency factors that should be decided. If the tractive power is positive, Eq. (5.2) will

be used and if it is negative Eq. (5.3) will be used.

5.3. Experimental design and computational study
We modified the proposed LNS in section 4.3 to solve small and large-size instances. It

contains all the operators except the repair-opt operator since the constraints are nonlinear

because of considering load and road gradient and it is not possible to solve it using a
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commercial solver. The initial solution method, destroy, and repair operators are the same,
but we modified the energy consumption on each arc which is calculated by equations
Eq. (5.2) and (5.3).

We generated data based on Schneider et al. (2014) and Desaulniers et al. (2016) datasets
to perform the computational tests for small-size and large-size instances, respectively.
We assumed a drive train efficiency of 0.9 as EVs are more efficient than internal
combustion engine vehicles. We used the same vehicle specifications as section 4. The
regenerative braking efficiency is assumed to be 0.8 which means that 80% of the
regenerated energy in the braking process can be saved in the battery. Furthermore, since
the EVs in the original data are assumed to consume one unit of energy per unit
distance/time traveled, we used Eq. (4.4) to calculate the actual energy consumption of
an empty vehicle (i.e., 6350 kg) per unit distance on a flat network and scaled itto h = 1.
We calculate the energy consumption considering road gradient and cargo load weight
and scaled it correspondingly. We assumed that the vehicles move at a constant speed and

we neglected vehicle acceleration.

LNS was employed to solve both small- and large-size instances. LNS was coded in
Python 3.7.1 and all runs were performed on an Intel Core(TM) i7-8700 processor with
3.20 GHz speed and 32 GB RAM. We performed five runs for each instance. The number
of LNS iterations is set to 15000 for the small-size instances and 25000 for the large-size.

5.3.1. Data Generation

With the purpose of generating road gradients, we assign an altitude to each node in the
network. In order to have consistent data, we applied the well known K-Means clustering
algorithm to cluster the data based on their distance. We assign a high/low altitude to the
cluster centers and based on the distance of the nodes in that cluster from the cluster
center, we decrease/increase their altitude. We clustered 5-, 10-, 15-, and 100-customer
instances into 2, 3, 4, and 10 clusters. We assumed three gradient levels based on the road
gradient standards. “Level”, “nearly level”, and “very gentle slope” are the cases that we
considered. In the level case, the network is flat, and the average absolute road gradient

is zero. In the “nearly level” and “very gentle slope” cases the averages of absolute road
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gradients are [0.3 — 1.1) and [1.1 — 3), respectively (Geography fieldwork, 2020).
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Figure 5.1. Scatter network for “c101” with 100 customers

Figure 5.1 shows the scatter network of “c101” with 100 customers, 21 stations, and one
depot. The color bar denotes the altitude of the nodes which is between [-0.71, 1.00]. We
clustered this network into 10 clusters and assigned an altitude to each node based on their

distance from the cluster center which they are assigned.
The network related to “c101” is illustrated in Figure 5.2. In order to make the slope of the

roads more observable, we draw the z axis between [-3, 3] and assigned a color bar which

is related to the nodes’ altitude.
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Figure 5.2. Network for "¢101" with 100 customers

5.3.2. Analysis on the effect of road gradient and regenerative braking on the

route planning

The results for small-size instances are provided in Table 5.1. Column “Level” reports
the results for the case that the network is flat. The results in this column are
corresponding to the results of model 111 in section 4.2.2 where the network is flat and
only the cargo load affects the energy consumption whereas columns “Nearly Level” and
“Very Gentle Slope” show the results for the cases that the road gradients are considered.
The comparison of these columns exhibits the influence of the road gradient on routing
decisions. “#Veh”, “EC”, and “t” refer to the fleet size, energy consumption, and average
run time (in seconds), respectively. “%AEC’ denotes the percentage change in the energy
consumption comparing the energy consumption of “Nearly Level” and “Very Gentle
Slope” cases with the “Level” case (only the cases where the number of vehicles is equal).
Rows “Avg.” present the average values for the number of vehicles, energy consumption
(for the instances with the same number of vehicles), and the run time for the instances
with 5, 10, and 15 customers. The total averages for all the instances are shown in the

row “Total Avg.”.
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Table 5.1 Result for small-size instances using LNS for Level, Nearly Level, Very
Gentle Slope cases

Instance Level Nearly Level Very Gentle Slope

#Veh EC #Veh EC t(sec) %AEC #Veh EC t(sec) %AEC
r104c5-s3 2 14154 2 14297 63 1.01 - -
r105c5-s3 2 159.23 2 184.89 18 16.12 - -
r202c5-s3 1 14412 1 14375 80 -0.25 1 200.45 69 39.09
r203c5-s4 1 18132 1 216.72 55 19.52 - -
c101c5-s3 2 266.02 2 29215 22 9.82 - -
€103c5-s2 1 186.83 1 196.20 28 5.02 2 197.16 33 -
€206c5-s4 1 250.63 1 340.45 40 35.84 - -
€208c5-s3 1 168.91 1 186.15 103 10.20 - -
rc105c5-s4 2 256.62 2 25051 16 -2.38 3 283.84 44 -
rc108c5-s4 2 264.00 2 25827 48 -2.17 - -
rc204c5-s4 1 188.59 1 187.74 93 -0.45 1 196.94 110 4.43
rc208c5-s3 1 170.82 1 188.34 90 10.26 - -
Avg. 1.42 198.22 142 21568 5451 8.54 21.76
r102c10-s4 3 336.00 3 306.91 74 -8.66 - -
r103c10-s3 2 220.50 2 22301 132 1.14 2 226.88 7 2.89
r201c10-s4 1 262.40 1 31185 22 18.85 - -
r203c10-s5 1 227.26 2 259.03 513 - - -
€101c10-s5 3 41010 3 437.26 42 6.62 3 523.44 36 27.64
€104c10-s4 2 305.64 2 32507 338 6.36 3 395.61 376 -
€202c10-s5 1 319.04 1 335.64 68 5.20 2 260.54 209 -
€205¢10-s3 2 23374 2 270.04 142 15.53 4 49111 141 -
rc102c10-s4 5 475.00 5 44719 40 -5.86 - -
rc108c10-s4 3 364.62 3 37459 122 2.73 - -
rc201c10-s4 1 42449 1 45427 33 7.02 2 343.60 215 -
rc205c10-s4 2 33454 2 380.39 191 13.70 - -
Avg. 2.17 335.10 2.25 35147 143.06 5.69 15.26
r102c15-s8 5 430.83 5 41878 107 -2.80 - -
r105c15-s6 4 350.09 4 403.60 129 15.28 - -
r202c15-s6 1 590.31 2 41740 462 - - -
r209c15-s5 1 34731 1 456.32 63 31.39 - -
€103c15-s5 3 401.97 3 41869 413 4.16 - -
c106¢15-s3 3 35229 3 31351 237 -11.01 3 51468 74 46.10
€202c15-s5 2 39319 2 44940 268 14.30 3 553.46 263 -
€208c15-s4 2 31012 2 416.33 729 34.25 - -
rc103c15-s5 4 41579 4 44713 140 7.54 - -
rc108c15-s5 3 41792 3 43481 150 4.04 - -
rc202c15-s5 2 403.03 2 41691 516 3.44 - -
rc204c15-s7 1 402.15 1 517.56 1097 28.70 2 397.73 1199 -
Avg. 2.58 384.06 2.67 426.64 359.25 11.75 46.10
Total Avg. 2.06 305.79 211 331.26 185.60 8.66 27.70

The results show that the number of vehicles increases by one in two instances in the
“Nearly Level” case (shown in bold) compared to the “Level” case. Furthermore, we
observe that although energy consumption values obtained in the “Nearly Level” case are
often higher than the energy consumption in “Level” case, in eight instances the energy
consumption decreases by considering the effect of road gradient since vehicles can save

energy using the regenerative braking process. The maximum energy saving happens in
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“c106¢15-s3” by an 11% reduction in energy consumption compared to the “Level” case.
Finally, we see in the “Very Gentle Slope” case that LNS can solve thirteen instances and
the rest of them can be infeasible since the road gradient effect increases but we cannot
prove their infeasibilities. In the seven instances, the number of vehicles increased by one
and in one instance the number of vehicles increased by two compared to the “Level”
case. The energy consumption for the instances with the same number of vehicles
increased up to 46.10 % in “c106¢15-s3”.

We solved the large-size instances for the mentioned cases using LNS. The results are
provided in Table 5.2. We observe that in the “Nearly Level” case, the number of vehicles
increases by one in the six instances, and in one instance it increases by two (shown in
bold) compared to the “Level” case. Furthermore, in “c102” where the number of vehicles
does not change, the energy consumption increases by 20.14%. In the Very Gentle Slope
case, the LNS is unable to find a feasible initial solution as the roads became steeper and
the energy consumption increased in the uphill arcs significantly. These results show the
importance of considering the road gradient in route optimization.

Table 5.2 Result for large-size instances using LNS for Level, Nearly Level cases

| Level Nearly Level
nstance #Veh EC #Veh EC t (sec)
riol 18 1741.27 19 1980.58 2000
r1o2 17 1630.97 18 173465 3535
rio3 14 140457 15 1607.73 6616
c101 12 1186.46 13 143555 4544
c102 12 1173.36 12 1409.67 12102
c103 11  1395.65 13 154449 20327
rc101 17 1921.03 18 2056.67 4207
rc102 16 1815.88 18 2130.69 4906
rc103 14 172256 15 1690.53 7316

5.4. Conclusions and future research

In this chapter, we investigated the effect of road gradient, regenerative braking process,
and cargo weight carried on the vehicle for the EVRPTW with a partial recharge strategy.

Furthermore, we generated data based on the benchmark datasets in the literature by
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assigning altitude to each node in the network. Clustering techniques are used to elevate
the nodes in order to have a consistent dataset. We presented an LNS algorithm to solve
the small and large-size instances. Results show that considering road gradient along with
cargo load can significantly change the routing decisions and it can make the problem

infeasible in the networks with steep road slope.
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6. Concluding Remarks and Future Research Directions

In this thesis, we investigate the effect of ambient temperature, cargo weight, road
gradient, and regenerative braking process on the fleet composition, energy consumption,
and routing decisions in last-mile delivery operations. We propose new preprocessing
techniques to reduce the problem size and enhance the computational performance of the

solution methods.

In chapter 2 we studied EVRPTW with partial recharge by considering the effect of
ambient temperature on the fleet size and energy consumption. We introduced the
mathematical model of the problem and used it to solve small-size problems on CPLEX.
We solved large-size problems with an ALNS algorithm. We also performed a case study
using real-world data from a logistics service provider in Adana, Turkey. Our results
showed that temperature can have a significant effect on the delivery operations since as
temperature increases/decreases. It can increase the total energy consumption of the
operations as well as the fleet size, and the routing might become impossible to serve all
customers using an EV fleet. Routing plans made without considering the temperature
effect might not be cost-optimal or might even become infeasible at hotter/chilly days.
We performed our case study simulations considering one temperature level for each case;
however, the temperature actually changes during the day. Further research on this topic
may address the time-dependent variant of the problem that takes into account the hourly

change of temperature may improve the accuracy of the results.

In chapter 3, we revisited the EVRPTW and proposed new preprocessing techniques to
reduce the problem size and accelerate the computational performance of the solution
methods. Furthermore, we developed an algorithm to check the feasibility of an instance.
Our experimental tests showed that the proposed preprocessing can reduce the graph by

up to 37% on average and speed up the computation time by up to 95% and 32% on small-
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and large-size instances, respectively. Furthermore, it allowed ALNS to find better
solutions in many large-size instances, by reducing the fleet size or saving energy.
Moreover, the proposed feasibility check algorithm was able to detect all the instances
proven infeasible. Further research on this topic may focus on other EVRP variants where
a solution method can benefit from the proposed preprocessing techniques and feasibility
check algorithm. The proposed approaches can be easily incorporated in different settings
such as nonlinear charging times, different charging technologies, partial-full or single-
multiple recharging strategies en-route, load-dependent EVRP. In addition, the influence
of the proposed preprocessing can also be investigated on the performances of exact
methods such as branch-and-cut and branch-and-price algorithms where the reduction
rules can eliminate some branching options at each node and reduce the size of the
branching tree.

In chapter 4 we addressed EVRPTW with partial recharge by taking into account the
energy consumption associated with the cargo carried on the vehicle. We formulated three
alternative mathematical models and tested their performances by solving the small-size
instances using Gurobi solver. For the large-size instances, we proposed an LNS method.
Our computational tests showed how the fleet size and/or energy consumption increase
in comparison to the case where the load factor is neglected and revealed the importance
of considering the weight of the vehicles for more accurate route planning.

In chapter 5 we investigated the effect of road gradient, regenerative braking process, and
cargo weight carried on the vehicle for the EVRPTW with partial recharge strategy.
Furthermore, we generated new data based on the benchmark datasets in the literature by
assigning altitude to each node in the network. Clustering techniques are used to elevate
the nodes in order to have a consistent dataset. We presented an LNS algorithm to solve
the small- and large-size instances. Our results showed that considering road gradient
along with cargo load can significantly change the routing decisions and it can make the

problem infeasible in the networks with steep road slope.

We assumed charging stations were always available whenever the vehicles required
recharging; however, this may not be the case in real life and there might be queues in the
stations. In addition, as mentioned before, it is possible for logistics service providers to

own a heterogenous fleet to address the implications of different factors on energy
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consumption. The optimal combination of different powertrain options will depend on
the needs of the operation, as well as on the regional climate conditions and road network.
Optimal fleet and route design for different regions arises as a challenging problem to be
studied. Furthermore, the emission benefits of having an EV fleet compared to mixed
fleet should be assessed. EVs are one of the most promising technologies to provide
emission benefits in logistics operations; however, the effect of operational needs, climate
and other regional conditions on these benefits need further investigation. Time-
dependent EVRPTW where the traffic imposes different speed levels in different time

periods is another future research direction in this field.
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Appendix A. Results for benchmark instances

In this section, we provide the detailed results of our computational study on 5-, 10-, and
15-customer instances in Table A.1 as well as 100-customer instances in Table A.2. In
Table A.1, the instance name in the first column expresses the problem type as well as
the number of customers and stations it includes. For example, ‘r104c5-s3’ indicates that
the customers are randomly distributed (r), their time windows are narrow (104), and the
data involves 5 customers (c5) and 3 stations (s3). In Table A.2, the instance name
indicates only the geographical distribution of the customers since all instances have the
same number of customers and stations. Under each temperature case, columns ‘#Veh’,
‘EC’, ‘t (sec)’ refer to the number of vehicles in the fleet, total energy consumption of the
route plan, and the run time in seconds. Note that in Table A.1, if the run time is 7200
seconds the optimality of the solution is not guaranteed.
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Table A.1. Results for 5-, 10-, and 15-customer benchmark instances in different
ambient temperatures

Mild Intermediate Intense Extreme
Inst. #Veh EC t(sec) #Veh EC t(sec) #Veh EC t(sec) #Veh EC t(sec)
r104c5-s3 2 137 <1 2 163 <1 2 203 <1 2 265 <1
r105c5-s3 2 156 <1 2 212 <1 INF <1 INF <1
r202c5-s3 1 129 <1 1 155 <1 1 205 <1 1 245 <1
r203c5-s4 1 179 <1 1 195 <1 1 264 <1 2 351 <1
¢101c5-s3 2 258 <1 2 281 <1 3 344 <1 INF <1
¢103c5-s2 1 175 <1 1 191 <1 INF <1 INF <1
€206c5-s4 1 243 <1 1 272 <1 INF <1 INF <1
€208¢c5-s3 1 164 <1 1 179 <1 1 209 <1 1 305 <1
rc105c5-s4 2 233 <1 2 268 <1 2 314 <1 3 403 <1
rc108c5-s4 2 254 <1 2 277 <1 2 329 <1 4 591 <1
rc204c5-s4 1 185 <1 1 206 <1 1 252 <1 2 319 <1
rc208c5-s3 1 168 <1 1 189 <1 1 227 <1 1 308 <1
r102c10-s4 3 249 <1 4 287 <1 4 346 <1 5 495 <1
r103c10-s3 2 206 8 2 228 5 INF <1 INF <1
r201c10-s4 1 242 <1 1 288 <1 2 323 <1 2 435 <1
r203c10-s5 1 223 <1 1 280 1 INF <1 INF <1
¢101c10-s5 3 388 <1 3 423 <1 INF <1 INF <1
¢104¢10-s4 2 274 <1 2 314 1 2 440 16 INF <1
€202c¢10-s5 1 304 <1 1 331 <1 2 320 <1 2 383 <1
¢c205¢10-s3 2 228 <1 INF <1 INF <1 INF <1
rc102c10-s4 4 424 <1 INF <1 INF <1 INF <1
rc108c10-s4 3 348 <1 3 384 1 INF <1 INF <1
rc201c10-s4 1 413 <1 2 388 <1 2 462 <1 INF <1
rc205c10-s4 2 326 <1 2 390 <1 INF <1 INF <1
r102c15-s8 5 413 3 5 470 4 INF <1 INF <1
r105c15-s6 4 336 2 4 397 1 5 515 62 INF <1
r202c15-s6 1 507 594 2 403 21 INF <1 INF <1
r209c15-s5 1 313 11 1 364 27 INF <1 INF <1
¢103c15-s5 3 348 33 3 408 297 3 509 839 4 630 92
¢106¢15-s3 3 275 2 3 382 49 3 525 19 INF <1
¢202c¢15-s5 2 384 11 2 418 21 2 571 163 3 710 20
€208c15-s4 2 301 1 2 328 1 2 501 20 INF <1
rc103c15-s5 4 398 117 4 433 156 4 508 31 5 750 1745
rc108c15-s5 3 370 2002 3 429 7200 INF <1 INF <1
rc202c15-s5 2 394 1 2 475 2 INF <1 INF <1
rc204c15-s7 1 382 7200 1 419 7200 1 504 7200 1 621 7200
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Table A.2. Results for 100-customer benchmark instances in different ambient
temperatures

Mild Intermediate Intense Extreme

Inst. #Veh EC t(sec) #Veh EC t(sec) #Veh EC t(sec) #Veh EC t(sec)

cl01 12 1043.38 140 12 1142.19 130 12 1363.48 113 12 1652.78 112
€102 11 1019.68 342 11 1128.89 270 11 1388.57 290 12 1604.49 335
c103 10 973.92 928 10 1085.16 741 11 1302.35 530 11 1628.51 415
c104 10 886.84 2017 10 988.31 1328 11 1253.78 1122 11 1560.71 987
c105 11 1022.75 169 11 1153.29 144 11 1432.27 175 12 1612.39 185
c106 11 1022.15 244 11 1138.75 233 11 1449.76 276 12 1605.75 193
c107 10 1070.30 229 11 1116.60 259 11 1356.79 239 12 1611.13 279
c108 10 1044.76 244 11 1098.49 302 11 1338.30 302 12 1601.25 322
c109 10 943.69 471 10 1078.24 1088 11 1288.30 420 12 1602.99 567

rio1 18 1642.74 67 18 1809.06 77 19 226532 74 21 281171 76
ri02 16 1437.66 148 16 1605.22 161 16 1989.45 165 18 2454.76 123
ri03 13 1256.89 145 14 1395.47 207 14 1721.53 189 15 2120.62 165
rio4 11 1096.27 239 12 119154 312 12 144411 316 13 1873.86 282
r105 15 1402.64 79 15 1557.40 84 16 1868.20 106 17 2379.43 108
r106 13 1370.55 131 14 1420.32 169 15 1704.90 182 16 2297.56 131
r107 11 1154.86 262 12 1255.45 221 13 1537.90 226 14 1930.08 240
ri0s 11 1043.75 342 11 1143.11 461 12 1389.93 443 13 1862.81 401
ri09 13 1216.39 118 13 1361.21 126 14 1638.86 136 15 2101.29 130
r110 12 1114.47 213 12 122559 211 13 1471.46 208 13 1838.66 257
ri1i 12 1108.86 257 12 1259.48 213 13 1477.05 219 14 1921.64 193
ri12 11 1035.29 286 11 1161.81 246 12 1365.34 285 13 1814.48 271

rcl01 15 1755.13 84 16 1901.34 100 17 239481 92 - - -
rc102 14 158591 117 15 1717.75 109 16 2130.26 103 - - -
rc103 13 1360.77 154 13 1529.18 131 14 1874.29 136 - - -
rc104 11 1213.39 189 12 135057 84 12 1690.18 318 - - -
rcl05 14 1470.17 85 14 1647.14 84 15 2041.41 112 - - -
rcl06 13 1431.33 129 13 1706.69 98 15 1910.64 158 - - -
rc107 12 1266.05 198 12 1396.43 184 13 1737.06 219 14 2236.70 161
rc108 11 1193.58 190 11 1326.87 208 12 1655.34 265 13 2139.63 177
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Appendix B. Optimal route plans for different temperatures in Adana

Tables B.1 reports the optimal route plans showing the arrival time at each node on the

route, the/departure time, and the energy consumption along the route for different

temperatures.
Table B.1. Optimal route plans at different ambient temperatures
Mild Case (19°C) EC (KWh)

Route 1 1 15 8 2 10 19 9 16 11 12 1 70.3
Arr. time - 830 10113 1024 1051 11:.05 11:20 13:00 1356 14:13 14:22
Dep. time 500 837 1022 10:47 1055 1115 11:25 1353 1411 1417 -
Route 2 1 13 18 17 14 1 513
Aurr. time - 830 10:34 1055 12:23 12:30
Dep. time 500 10:00 1046 11:05 12:27 -

Intermediate Case (27°C)
Routel . . 1.7 .15 10 19 9 12 2 16 11 8 1 122
Aurr. time - 718 957 1145 1159 12:15 12:27 12:36 13:06 14:01 14:24 14:35
Dep. time 500 915 10:04 11:49 12:09 1220 12:31 12:56 1359 14:16 14:33 -
Route 2 1 13 18 17 14 1 56.3
Aurr. time - 830 10:34 1055 12:23 12:30
Dep. time 500 10:00 1046 11:05 12:27 -

Intense Case (33°C)

Route 1 1 15 7 8 1 107.9
Aurr. time - 830 919 1333 1344
Dep. time 500 837 1124 13142 -
Route 2 1 13 18 17 4 14 1 66.2
Aurr. time - 830 10:34 1055 1140 12:34 12:42
Dep. time 500 1000 1046 11:05 1151 12:38 -
Route 3 1 10 19 9 16 11 12 1 126
Aurr. time - 10:00 10:14 10:30 13:00 1356 14:13 14:22
Dep. time 500 10:04 1024 10:35 13:53 14:11 14:17 -

Extreme Case (39°C)

INFEASIBLE

91



Appendix C. Distance data of the distribution network in Adana

Table C.1 presents distances between each pair of nodes in kilometers. The first row and first column indicate the node indexes where “1°,

2°-47’, and ‘8’-‘19’ represent depot, stations, and customers, respectively.

Table C.1. Distance matrix (km)

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.00 0.00 28.70 5220 78.69 8153 138.00 225 1188 350 6.67 4.65 4239 341 97.08 9.06 80.33 76.48 12.20
2 0.00 0.00 28.70 52.20 78.69 8153 138.00 225 1188 350 6.67 4.65 4239 341 9708 9.06 80.33 76.48 12.20
3 2490 2490 0.00 29.20 54.10 57.50 159.50 26.90 2220 2280 2590 24.10 19.40 2250 121.72 25.30 56.70 53.49 18.70
4 4520 4520 20.40 0.00 32.10 3550 179.90 47.30 42.60 43.20 46.30 4450 5.00 42.90 142.12 4570 34.40 31.70 39.10
5 76.90 7690 5210 31.70 0.00 5.50211.60 79.00 7430 7490 78.00 76.20 36.70 74.60 173.82 77.40 430 5.80 70.80
6 81.20 81.20 56.40 36.00 430 0.0021590 8330 78.60 79.20 82.30 80.50 40.85 7890 178.12 81.70 150 8.60 75.10
7 131.26 131.26 159.96 183.46 209.71 212,55 0.00 129.00 139.00 134.18 135.27 133.00 173.41 134.43 42.60 137.50 211.35 207.50 142.43
8 226 226 3096 54.46 80.71 835513632 0.00 1356 518 835 6.33 4441 543 9482 10.74 8235 7850 14.23
9 11.80 11.80 25.82 49.22 76.18 79.02 14535 13.27 0.00 10.01 544 7.35 39.88 12.80 10590 353 77.82 73.97 4.82
10 344 344 2650 4990 76.45 79.28 139.00 491 1046 000 597 395 4015 292 9924 765 78.08 7423 9.96
11 641 641 2931 5271 80.87 83.71 13995 787 578 564 000 195 4457 7.7110050 297 8251 78.66 8.31
12 446 446 30.20 5360 80.14 8298 138.00 592 731 370 227 000 4384 577 9855 450 8178 7793 943
13 4264 4264 18.10 11.40 36.30 39.14 177.60 44.89 39.90 40.61 44.00 4220 0.00 40.60 139.72 43.40 37.94 34.09 36.31
14 3.18 3.18 26.30 49.80 76.27 79.11 137.00 543 1177 161 7.11 509 3997 0.00 10026 896 7791 74.05 9.78
15 98.23 98.23 126.87 150.27 176.68 179.52 41.50 95.96 106.11 100.37 102.67 100.40 140.38 101.39  0.00 103.81 178.32 174.47 107.12
16 929 929 28.10 52.03 7899 81.83 14284 10.76 281 7.68 293 4.84 4269 9.27 10339 0.00 80.63 76.78 7.63
17 80.20 80.20 55.40 35.00 3.30 1.20 21490 8230 77.60 78.20 81.30 79.50 39.35 77.90 177.12 80.70 0.00 9.10 74.10
18 76.40 76.40 5150 31.20 590 9.15211.00 7840 73.70 7430 77.40 75.60 34.68 74.00173.22 76.80 7.95 0.00 70.20
19 13.97 1397 21.00 4440 7256 7540 145.00 1544 526 1069 8.78 997 36.26 11.03 106.34 8.79 7420 70.35 0.00
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Appendix D. Parameters

The parameters used in the LNS algorithm are displayed in Table D.1.

Table D.1. Parameter values

Par.  Description Value
y Number of customers removed Random between [20%, 55%] of all customers
I'  Number of customers removed when exact method is selected as ~ Random between [15%, 45%] of all customers
insertion operator
o  Parameter used in Random Worst-Consumption and Random 15
Worst-Time algorithm
w Number of routes removed Random between [10%, 40%] of all routes
¢,  First Shaw parameter 0.5
¢,  Second Shaw parameter 0.25
¢3  Third Shaw parameter 0.15
¢,  Fourth Shaw parameter 0.25
u Noise parameter 0.1
€ Random number for noise function Random between [-1, 1]
a  First-Feasible Station Insertion selection probability 0.7
6,  Worst-Consumption selection probability 0.30
6, Random Worst-Consumption selection probability 0.23
83  Shaw selection probability 0.08
6, Random Worst-Time selection probability 0.08
6s  Random selection probability 0.08
8¢  Random Route Removal selection probability 0.15
6;  Greedy Route Removal selection probability 0.08
A, Exhaustive Greedy Insertion selection probability 0.066
A,  Random Greedy Insertion selection probability 0.133
A3 Regret-2 Insertion selection probability 0.266
A,  Exhaustive Time-Based Insertion selection probability 0.133
As  Random Time-Based Insertion selection probability 0.066
A¢  Random Greedy Insertion selection probability 0.066
A, Regret-2 with Noise Function insertion selection probability 0.066
Ag  Exhaustive Time-Based with Noise Function insertion selection 0.066
probability
Ao Random Time-Based with Noise Function insertion selection 0.066
probability
B Number of iterations to remove and reinsert stations 50
n The number of iterations until calling the exact method for small 800, 5700

and large-size instances
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Appendix E. Detailed result analyzing the performance of repair-opt operator

The results for the small-size instances obtained from LNS algorithm without and with
considering repair-opt operator for the load-dependent case are reported in Table E.1.
“%AEC” refers to the percentage change in energy consumption between the solution
obtained from LNS without and with considering the repair-opt operator.

Table E.1. Results for the small-size instances obtained from LNS algorithms without
and with considering repair-opt operator for the load-dependent case

LNS Matheuristic
Instance #Veh EC 't (sec) #Veh EC t(sec) %AEC
r104c¢5-s3 2 142 11 2 142 1 0.00
r105¢5-s3 2 159 8 2 159 1 0.00
r202¢5-s3 1 144 16 1 144 2 0.00
r203c5-s4 1 181 9 1 181 2 0.00
¢101c5-s3 2 266 9 2 266 1 0.00
¢103c5-s2 1 187 10 1 187 1 0.00
c206¢5-s4 1 251 10 1 251 2 0.00
¢208c5-s3 1 169 9 1 169 2 0.00
rc105c5-s4 2 257 8 2 257 1 0.00
rc108c5-s4 2 264 10 2 264 1 0.00
rc204c5-s4 1 189 16 1 189 3 0.00
rc208c5-s3 1 171 14 1 171 2 0.00
r102c10-s4 4 272 22 3 336 3 -
r103c10-s3 2 220 29 2 220 14 0.00
r201c10-s4 1 270 14 1 262 2 -2.82
r203¢10-s5 1 227 4 1 227 8 0.00
¢101c10-s5 3 428 20 3 410 2 -4.21
c104c10-s4 2 308 48 2 306 85 -0.77
¢202c10-s5 1 321 9 1 319 1 -0.62
€205¢10-s3 2 234 26 2 234 3 0.00
rc102¢10-s4 5 475 17 5 475 2 0.00
rc108c10-s4 3 365 23 3 365 4 0.00
rc201¢10-s4 2 327 28 1 424 3 -
rc205c¢10-s4 2 335 25 2 335 4 0.00
r102¢15-s8 5 431 28 5 431 5 -0.04
r105¢15-s6 4 350 32 4 350 4 0.00
r202c15-s6 2 365 30 2 365 272 0.00
r209¢15-s5 1 360 25 1 347 36 -3.52
¢103c15-s5 3 402 73 3 402 419 -0.01
¢106¢15-s3 3 352 52 3 352 12 0.00
c202c15-s5 2 393 44 2 393 33 0.00
c208c15-s4 2 310 47 2 310 15 0.00
rc103c15-s5 4 416 45 4 416 57 0.00
rc108c15-s5 3 418 40 3 418 20 0.00
rc202¢15-s5 2 403 48 2 403 11 0.01
rc204c15-s7 1 489 58 1 402 371 -17.76

The results show that in the small-size instances, 8 instances LNS with considering the
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repair-opt operator finds better solutions compared with the LNS algorithm without
considering repair-opt operator. In two instances, it improves the number of vehicles and
in six instances it improves the solution with respect to energy consumption

(improvements are shown in bold).

The results for the large-size instances obtained from the Matheuristic and LNS
algorithms for the load-dependent case are reported in Table E.2. The LNS with
considering repair-opt operator overperforms LNS without considering repair-opt
operator in three instances with respect to the number of vehicles and in sixteen instances

with respect to the energy consumption (improvements are shown in bold).

Table E.2. Results for the large-size instances obtained from LNS algorithms without
and with considering repair-opt operator for the load-dependent case

LNS Matheuristic

#Veh Best time #Veh Best time 9% AEC
r101 19 1833 1357 18 1741 712 -
r102 17 1746 1430 17 1631 1135 -6.57
r103 14 1375 1898 14 1405 1885 2.13
r104 13 1253 3017 13 1247 2545 -0.49
r105 16 1481 1629 16 1483 1324 0.12
r106 15 1469 1928 15 1470 1752 0.06
r107 13 1357 2148 13 1332 1774  -1.83
r108 12 1190 3596 11 1252 2571 -
r109 14 1457 1818 14 1416 1734 -2.87
r110 13 1256 2967 13 1251 2129  -0.36
ri11 13 1271 2601 13 1263 2029 -0.66
r112 12 1204 3521 12 1218 2763 1.19
c101 12 1198 1454 12 1186 718  -0.93
c102 12 1210 2008 12 1173 1969 -3.05
c103 11 1433 2809 11 1396 3005 -2.61
c104 11 1456 5247 11 1373 4524  -5.68
c105 12 1167 1934 12 1162 1345 -0.50
c106 12 1171 2348 12 1167 1919 -0.39
c107 12 1183 2490 12 1180 1634  -0.32
c108 12 1215 3060 12 1206 2466  -0.70
c109 12 1256 2913 11 1318 2648 -
rc101 17 1947 1485 17 1921 1119 -1.34
rc102 16 1812 1627 16 1816 1555 0.23
rc103 14 1653 1975 14 1723 1773 4.23
rc104 13 1490 3282 13 1515 2930 1.71
rc105 15 1734 1845 15 1735 1654 0.02
rc106 15 1630 2008 15 1651 1557 1.25
rc107 13 1523 2486 13 1468 2060  -3.65
rc108 13 1527 2786 13 1533 2240 0.37
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