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ABSTRACT

MIXED-INTEGER EXPONENTIAL CONE PROGRAMMING IN ACTION:
SPARSE LOGISTIC REGRESSION AND OPTIMAL HISTOGRAM

CONSTRUCTION

SAHAND ASGHARIEH AHARI

Industrial Engineering M.Sc. THESIS, August 2020

Thesis Supervisor: Asst. Prof. Dr. Burak Kocuk

Keywords: mixed-integer conic programming, machine learning, sparse logistic
regression, Kullback-Leibler divergence

In this study, two problems namely as, Feature Subset Selection In Logistic Regres-
sion and Optimal Histogram Construction are formulated and solved using solver
MOSEK. The common characteristic of both problems is that the objective func-
tions are Exponential Cone-representable. In the first problem, a prediction model is
derived to predict the dichotomous dependent variable using labeled datasets which
is known as classification in the context of machine learning. Different versions of
the model are derived by the means of regularization and goodness of fit measures
including Akaike Information Criteria, Bayesian Information Criteria, and Adjusted
McFadden. Furthermore, the performance of these different versions are evaluated
over a set of toy examples and benchmark datasets. The second model is devel-
oped to find the optimal bin width of histograms with the aim of minimizing Kull-
back–Leibler divergence, which is called Information gain in machine learning. The
success of the proposed model is demonstrated over randomly generated instances
from different probability distributions including Normal, Gamma and Poission.
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ÖZET

KARMA TAMSAYILI ÜSTEL KONİK PROGRAMLAMA UYGULAMALARI:
SEYREK LOJİSTİK REGRESYON VE ENİYİ HİSTOGRAM İNŞAASI

SAHAND ASGHARIEH AHARI

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, Ağustos 2020

Tez Danışmanı: Dr. Öğr. Üyesi Burak Kocuk

Anahtar Kelimeler: karma tamsayılı üstel konik programlama, makine öğrenmesi,
seyrek lojistik regresyon, Kulllback Leibler uzaklığı

Bu çalışmada Öznitelik Altküme Seçmeli Seyrek Lojistik Regresyon ve Eniyi His-
togram İnşaası Problemleri’nin gösterimleri verilmiştir. Ortak özelliği amaç fonksiy-
onlarının üstel konik programlama gösterimli olan bu iki problem, MOSEK çözücüsü
ile çözülmüştür. İlk problemde, makine öğrenmesinde sınıflandırma olarak bilinen
etiketli veri kümeleri üzerinde ikili bağımlı değişkeni tahmin etmek için bir model
kurulmuştur. Bu modelin Akaike, Bayesçi ve Düzeltilmiş McFadden Bilgi Kıstasları
gibi uyum iyiliklerini göz önünde bulunduran sürümleri çözülmüştür. Bu model-
lerin başarımı, rassal olarak üretilen ve literatürden alınan veri kümeleri üzerinde
ölçülmüştür. İkinci model, histogramlarda Kullback-Leibler uzaklığını enküçükleye-
cek şekilde eniyi bölme genişliğini bulmak için geliştirilmiştir. Bu modelin başarımı
Normal, Gamma ve Poisson olasılık dağılımlardan üretilen rassal veri kümeleri üz-
erinde ölçülmüştür.
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1. Introduction

The aim of this thesis is to derive a mixed- integer exponential cone model for two
different problems that lie in the intersection of optimization and machine learning.
The first problem is sparse logistic regression and the second is optimal histogram
construction. In this section, we review the related literature and the basic defini-
tions.

1.1 Mixed-Integer Conic Optimization

In this section, we will represent the general form of conic programming and will
discuss mixed-integer conic programming (MICP) models for different types of cones.
We will also provide a brief review for the existing solution methods of MICPs and
at the same time their applications in different areas.

Definition 1.1. A set K ⊆ Rn is called a cone if λx ∈K ∀x ∈K, λ≥ 0.

Definition 1.2. A cone K is a regular cone if it is closed, convex, pointed, and
full-dimensional.

To give a definition for conic programs, in addition to the definition of a cone
provided in Definition 1.1, we need to define a conic inequality.

Definition 1.3. Let K be a regular cone. Then a conic inequality for the pairs of
vectors u and v is defined as:

u≥K v ⇐⇒ u−v ∈K.
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By using Definition 1.3, we can define a conic programming problrm as in (1.1):

(1.1) min
x

{
cTx|Ax≥K b

}
,

in which we optimize a linear function over a conic inequality defined with respect
to a cone K.

Conic programming is a generalization of linear programming since we can choose
K as the cone of nonnegative orthant [1]. In the following parts, we will provide a
review for the conic programming considering two widely used nonlinear cones.

Second-order cone programming (SOCP) and semidefinite programming (SDP) are
among the most common conic programming classes. In this thesis, we are more
interested in mixed-integer conic programming (MICP) which deals with conic op-
timization problems involving integer variables. There are many research studies in
which different problems have been modeled using MICP formulations [2]. In this
part, we will discuss solution methods and the applications of MICPs.

General formulation of mixed-integer second order cone programs (MISOCPs) is
expressed as (1.2) [2]:

(1.2)


min
x∈X

cTx

s.t. ‖Aix+ bi‖2 ≤ aTi x+di, i= 1, . . . ,m,

where x is the vector of decision variables with size n and the set X is defined as

X = {(v,w) : v ∈ Zp,w ∈ Rq},

with

p+ q = n,c ∈ Rn,Ai ∈ Rmi×n, bi ∈ Rmi ,ai ∈ Rn,di ∈ R, i= 1, . . . ,n.

First, we discuss the case where p is equal to zero, hence, (1.2) reduces to a convex
optimization problem known as SOCP [3]. A group of convex optimization problems
including Linear Programs (LPs), Quadratic Programs (QPs), and Quadratically
Constrained Quadratic Programs (QCQPs) can be formulated as SOCPs [4]. The
primal-dual interior point method can be extended to solve SOCPs [5, 6]. Moreover,
as SOCP is a special case of Nonlinear Programming (NLP), the interior point
method which has been proposed for NLP could possibly be extended for SOCPs.
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The applications of SOCPs can be found in different fields including combinatorial
optimization, robust optimization, finance, and engineering [3].

Second, we discuss the case p 6= 0 in which (1.2) represents an MISOCP. Gener-
ally, we can divide solution methods of MISOCPs into two groups. First group
includes extension of mixed-integer linear programming (MILP) approaches while
the second includes special-purpose mixed-integer nonlinear programming (MINLP)
approaches. We note that interior point methods for SOCPs have some deficiencies
when applied to MISOCPs, although they are computationally efficient and theo-
retically robust algorithms for SOCPs. One of these drawbacks is being difficult
to warm start the algorithm due to the requirement of starting from a strictly fea-
sible primal-dual pair of solutions [2]. Solution algorithms to solve MISOCPs are
extensively discussed in the literature as well. Gomory cuts and tight relaxations
[7], rounding cuts [8], and MILP methods applied to lifted polyhedral relaxation [9]
are among approaches for finding the solution of MISOCPs. From application per-
spective, MISOCPs are a widely used class of problems in different fields [2] such as
portfolio optimization, network design [10], delays in telecommunication networks
[11], battery swapping stations on a freeway network [12], and power distribution
systems [13].

Semidefinite programming is another important subclass in conic programming in
which the aim is to minimize a linear function subject to a linear matrix inequality
(LMI) [14]:

(1.3)


min cTx

s.t. F0 +x1F1 + . . . ,+xmFm � 0,

where Fi ∈ Sn×n and x ∈ Rm.

In fact, SDP can be interpreted as an extension of linear programming where matrix
inequalities appear instead of element-wise inequalities of vectors. In other words, we
consider the inequalities with respect to the cone of positive semi-definite matrices
rather than the cone of non-negative orthant. The applications of SDP can be
found in combinatorial optimization [15], control theory [16], and signal processing
and communications [17]. Semidefinite programming is a powerful tool for tackling
with non-convex quadratically constrained quadratic programs (QCQP) as well [17].

By the existence of some integer variables, SDPs turn to mixed-integer semidefinite
programming (MISDPs). From application perspective, MISDPs are mainly divided

3



into two groups where the first group is reformulation of combinatorial optimization
problems and the second is expressing structure of problems. Ellipsoidal uncertainty
sets in robust optimization is a proper illustration of the latter group to show the im-
portance of SDPs [18]. The main method for solving MISDPs is branch-and-bound,
however, based on the structure of some specific problems such as graph partitioning
[19] and max-cut problem [20], exceptional approaches have been proposed [21].

One of the other important cones is called exponential cone which is used in both
models of this thesis namely as, feature subset selection in logistic regression and
optimal histogram construction. As mixed-integer exponential cone programming
(MIEXP) is the main idea of this research, we will cover the details in methodology
section.

In this section the main ideas related to MICPs were summarized. In the next
section, we will continue by a brief introduction for machine learning and a de-
tailed discussion on an specific application of it due to its relevance with application
problem of this thesis.

1.2 Machine Learning

Benefiting from the theory of statistics, machine learning is the process of learning
from past experiences to construct a model which can be either descriptive, predic-
tive, or both. Some applications of machine learning are regression, unsupervised
learning, reinforcement learning, and learning associations [22]. In addition to the
mentioned applications, there is another important application known as classifica-
tion, which is also one of the main pillars of this thesis. Hence, the following section
will be dedicated to this application.

1.2.1 Classification and Data Prediction Models

Classification in data mining is defined as associating each data point to one of
the available predefined classes [23]. In other words, the problems in which the
dependent variable is qualitative, meaning that it takes on values in one of finite
different classes, are often categorized as classification problems [24]. In this section,

4



we will provide a review on the most common classification methods including the
logistic regression which is the related classification method for this thesis.

I. Naive Bayes

In Naive Bayes classifications, the learning procedures become simple by the as-
sumption that features are independent for a given class of dependent variable.
Even under this simplistic assumption, the Naive Bayes classifier is confirmed to
have a reasonable performance for some certain applications comparing to the other
classification methods [25]. By focusing on the relations between data characteris-
tics and the performance of Naive Bayes classifier, it is revealed that in the cases
of functionally dependent or totally independent features, the Naive Bayes classifier
demonstrates its best performance. From application perspective, the performance
of Naive Bayes is significantly promising for medical diagnosis and text classification
[26].

II. Decision Trees

Decision tree classification (DTC) approach is a subgroup of multi-stage decision
making in which a compound decision is divided into several smaller and simpler
decisions. DTC approach is mainly divided into three steps including i) choosing a
proper structure for the tree, ii) selecting feature subsets at each level, and iii) defin-
ing a decision rule. The advantage of DTC is the elimination of high-dimensionality
and estimation of a complicated global decision region using some manageable local
decision regions. On the contrary, the drawbacks are the increase of search time
in the presence of large number of classes and accumulation of errors for different
levels of tree. [27].

III. Instance-Based Learning

The main idea of instance-based learning (IBL) is adopted from nearest neighbor-
hood classification method which is extensively discussed in [24]. An IBL algorithm
is described by a similarity function, concept description updater and classification
function, and the goal is that the similar instances should have the same class la-
bel. The advantages of IBL methods are their simplicity and low updating cost.
On the other hand, inflexibility of these methods to irrelevant features and being
computationally expensive classifiers can be recognized as their disadvantages [28].

IV. Support Vector Machines

Support vector machines (SVM) is another widely used method for classification.
The aim of this method is to find a separating hyperplane or hypersurface with max-
imal margin (and minimum classification error for non-linear SVM) that separates
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the training data generally into two clusters and then labels the instances of test
data considering the generated hyperplane (or hypersurface). The SVM model with
a separating hyperplane is represented as in (1.4) [29]:

(1.4)


min
w,b,ε

n∑
i=1

εi+C‖w‖22

s.t. yi(wTxi+ b)≥ 1− εi−vi, i= 1, . . . ,n

εi ≥ 0 i= 1, . . . ,n,

where n shows the number of data points and C is the penalty term for each mis-
classified data point predefined by the user. We note that there exist some methods
such as grid search for parameter tuning [30].
Different extensions of SVM have been proposed in the literature. One of the im-
portant extensions deal with the imbalanced training data, where the cardinality of
the existing classes are different from each other. To deal with this issue, weighted
support vector machine (WSVM) model is proposed in [31]. In this method, the
penalty term is taken proportional to the cardinality of each class in training dataset.
Therefore, the penalty term will be greater for the misclassification of minority class.
The formulation in the case of binary output data is given by (1.5).

(1.5)


min
w,b,ε,v

1
2‖w‖

2
2 + C

2|I+|
∑
i∈I+

ε2i + C

2|I−|
∑
i∈I−

ε2i

s.t. yi(wTxi+ b)≥ 1− εi−vi, i ∈ I.

In [32], inspired by the `1-SVM (see e.g. [33]), a SVM model is developed for feature
subset selection considering a budget constraint:

(1.6)



min
w,b,ε,v

n∑
i=1

εi

s.t. yi(wTxi+ b)≥ 1− εi, i= 1, . . . ,n

ljvj ≤ wj ≤ ujvj j = 1, . . . ,p
p∑
j=1

cjvj ≤B

vj ∈ {0,1} j = 1, . . . ,n

εi ≥ 0 i= 1, . . . ,n.
6



If vj = 1 then the jth feature is selected and the value of wj can fluctuate between
the lower bound lj and upper bound uj . The term cj is the cost of choosing the
feature j. The main disadvantage of using this model is that for a specific value of
B, there exists multiple optimal solutions with a zero optimal value, especially in
the cases where n� p. The extension of this work is presented in [34] to avoid the
aforementioned criticism.

V. Neural Networks

Neural networks have been used in different areas including signal processing, expert
systems, modeling and forecasting [35]. Generally, neural networks consist of input
layer and output layer while there could be some intermediate layers called as hidden
layers [36]. Each of the hidden layers contains a set of nodes which are identified
by an activation function, threshold value, and a vector of weights. In the absence
of hidden layers and adopting a sigmoidal activation function, the model will be
equivalent to the logistic regression model [37].

VI. Logistic Regression

Logistic regression is a type of regression where the dependent variable takes only
a finite set of values [38]. When the cardinality of this finite set of values is two,
it is called binary logistic regression (these two values are usually zero and one).
However, the independent variables are not restricted to a finite set of values and
also can take continuous, categorical, or binary values.

Binary logistic regression is formally defined as follows: Given a dataset {xi,yi}n,
where xi ∈ Rp (p is the total number of features) and yi ∈ {0,1}, one is interested
in the conditional probability revealed in (1.7):

(1.7) P (yi = 1|xi) = 1
1 + eβ

T xi
.

The aim here is to estimate the parameter β. The most common methods for
estimating this parameter are maximum likelihood (ML) and iteratively re-weighted
least squares (IRLS). In the ML method, the estimator of β, denoted by β̂, is
obtained by maximizing the likelihood function (1.8):

(1.8)
n∏
i=1

p(yi|xi).

There is no closed-form solution for β̂, so in high dimensional datasets, especially
when the number of features is significantly greater than that of instances, the
estimation of β̂ using these methods may not lead to an appropriate estimation.
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However, some of these features are redundant which means that they are not influ-
ential to the independent variable value [39]. Therefore, we can reduce the number
of features to have a better estimation of β̂ by eliminating redundant features and
using truly important ones when constructing a model. The action of finding appro-
priate features is called feature subset selection. We will introduce some prevailing
feature subset selection methods in section 1.2.2.

1.2.2 Feature Selection

Feature subset selection is the process of choosing a subset of features to construct
a model (see Definition 2.2 for the formal definition of feature selection). Major
reasons of using feature subset selection fall into three main categories: (i) improving
prediction accuracy, (ii) making the model easier to interpret, and (iii) decreasing the
time of prediction [40]. In general, there are two important factors to be considered
in variable selection. Firstly, developing a criterion to draw a comparison among the
subsets and secondly, not being computationally expensive. A naive and inefficient
way to find the best subset is to consider all possible combinations of features,
which leads to 2k subsets where, k is the number of independent variables. As the
number of subsets increases exponentially with k, for large numbers of independent
variables, this procedure is computationally intractable. In case of knowing the
number of variables to be selected in advance, the problem could be solved by
minimizing the sum of squared deviation. However, fixing the number of variables
to be selected in advance is disadvantageous, hence, in [41] some Goodness of Fit
Measures (GOf) including Adjusted R2, Akaike Information Criteria (AIC), and
Bayesian Information Criteria (BIC) are adopted to overcome this problem.

Feature selection methods fall into three main categories including Wrapper, Filter,
and Embedded approaches [42]. In linear regression models, shrinkage methods
are adopted to apply feature selection. In shrinkage method, unlike the models
that fit a linear model containing a subset of predictors, a model is constructed by
including all predictors and shrinking some of the coefficient estimates to zero by
regularization techniques. Hence, shrinkage methods by estimating the values for
some of the predictors’ coefficient as zero, excludes those predictors from the model
and develops a sparse model as well. [24]. Some important shrinkage techniques are
as follows:

I. Smoothly Clipped Absolute Deviation Penalty (SCAD)
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In [43], a variable selection model with a nonconcave penalized likelihood is intro-
duced to overcome the problems of using stepwise selection methods including the
computational costs and the ignorance of stochastic errors. The stepwise methods
are illustrated in [25]. SCAD method selects the variables and simultaneously es-
timates the value of the coefficient of each selected variable. The penalty function
used in this method (i) contributes to a sparse solution, (ii) assures the stability of
model selection, and (iii) provides an unbiased estimation of the coefficients.

II. Least Absolute Shrinkage and Selection Operator (LASSO)

In regression models, one can estimate the coefficients by ordinary least squares
(OLS), however, the drawbacks of this method are the low prediction accuracy and
interpretability [44]. Lasso technique shrinks a subset of the coefficients estimation
exactly to zero by adding constraints or regularization on the variables, hence, devel-
ops a sparse model to improve the prediction accuracy and provides an interpretable
model at the same time [24].

III. Minimax Concave penalty (MCP)

Although the LASSO technique is fast, it is biased, hence, may lead to inconsistency
in feature selection. To handle this, a nearly unbiased model known as MC+ is
proposed in [45] which consists of two components. First component is a minimax
concave penalty technique and the second is Penalized Linear Unbiased Selection
(PLUS) algorithm. The mentioned study proves the promising performance of this
algorithm in terms of accuracy and computational efficiency.

By means of penalized iteratively reweighted least squares (IRLS), the mentioned
algorithms are also applicable for logistic regression as well. However, shrinkage
methods require a proper selection of tuning parameters, which is a challenging task
in the case of high-dimensionality [39]. Hence, we will now discuss another group
of methods offered for feature selection known as group of Bayesian methodologies,
which are free of parameter tuning. In Bayesian methodology, indicator models
are widely used in high-dimensional situations to determine the truly important
variables. In Indicator models, a binary variable is assigned to each feature which
takes value one if the feature is important and zero otherwise. Bayesian variable
selection methods consist of i) a prior to produce a posterior distribution, and ii) an
approach for information extraction from posterior. Now, we review some of these
methods.

I. Bayesian Lasso

There are a variety of models such as LASSO for variable selection and coefficient
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estimation simultaneously with focus on consistency property. In [46], a Bayesian
based formulation is developed which covers most of the versions of LASSO and
simultaneously is superior to these versions in producing valid standard errors. This
model which is called as Bayesian LASSO is built up on a geometrically ergodic
Markov chain to extract information from posterior and revealed to have either
similar or better performance in comparison with the other versions of LASSO.

II. Iterated Conditional Modes/Medians (ICMM) method

In [47], an algorithm is developed to construct empirical Bayesian variable selec-
tion. The motivation of this method is to handle the deficiencies of MCMC based
Bayesian methods. MCMC algorithms are computationally expensive and the pro-
cess of obtaining appropriate hyperparameters may be problematic for this algo-
rithm. However, ICMM algorithms have the advantages of easy implementation
and fast computation and make the best use of every single observation even if the
sample size is small. The drawback of this algorithm is its tendency to generate
many false negatives.

III. Expectation-Maximization based Variable Selection (EMVS)

As mentioned before, the second ingredient of Bayesian variable selection is extract-
ing information from the posterior. The common method for this step is using the
MCMC method, however, EMVS is a deterministic model proposed as a substitute
for MCMC, which is more efficient regarding the solution time and characterizing
sparse models [48]. EMVS is highly sensitive to the initial value which may result in
not obtaining the global optimal, however, this issue can be handled by a determin-
istic annealing variant. EMVS is a flexible method and revealed to have a promising
performance when the number of features is considerably greater than the existing
data points [49].

In this section, we introduced a set of commonly used methods for feature selection.
In the next section, we will focus on the first factor of feature subset selection
methods mentioned in section 1.2.2.

1.3 Statistical Measures for Prediction Models

As mentioned in section 1.2.2, for every feature subset selection method, a criterion
should be defined to draw a comparison between the subsets. Here, we introduce
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some of these criteria.

1.3.1 Traditional Fit Tests

I. R2 and Pseudo-R2 statistics: In Gaussian regression, one can use R2 statistics
or adjusted-R2 as a goodness-of-fit measure. The definition of R2 is as follows:

(1.9) R2 = 1−
∑n
i=1(ŷi−yi)2∑n
i=1(yi− ȳ)2 = RSS

TSS
,

where ŷi is the estimation of actual yi for each i and ȳ is their mean. Here, the
terms RSS and TSS stand for residual sum of squares and total sum of squares,
respectively.

The value of R2 is between 0 and 1, and the higher the value is, the better the model
is fitted in terms of the training error. The main concern with R2 is that the training
error can be a poor estimator of the test error and by adding the predictors to the
model, R2 will always increase. Hence, the highest R2 is achieved by adding all the
predictors to the model. Although this scenario leads to a low training error, it can
cause overfitting meaning that the model performs well over the training data but
not over the test data. However, lowering the test error is of the main interest [24].
Hence, adjusted-R2 (1.10) is defined by statisticians in which adding unimportant
features will decrease the value of adjusted-R2, due to the presence of k as a penalty
factor.

(1.10) R2
adj = 1−

SSE
n−k−1
TSS
n−1

,

where n is the number of instances, k is the number of selected predictors (features)
and SSE is sum of squared errors. Same as R2, higher values of adjusted-R2 is
preferred. However, unlike R2, the value of adjusted-R2 does not always increase
by adding predictors meaning that once the truly important features are selected,
adding noise predictors might decrease the adjusted-R2 value [24].

Unfortunately, R2 statistics could not be applied for logistic regression as it does not
provide any information to decide among models [38]. However, in terms of logistic
regression, Pseudo-R2 statistics have been considered by the statisticians. There are
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different types of Pseudo-R2 but the widely used form is given as in (1.11):

(1.11) 1− LLF
LLC

,

where LLF is the full model and LLC is the intercept-only model [38]. Another
commonly used Pseudo-R2 statistics is called the adjusted McFadden (see 2.17 for
the formal definition) which we will also use in our optimization.

II. Likelihood ratio statistics

Likelihood ratio test is used to figure out if adding a feature or a group of features
modifies the performance of the model. The formulation is given by (1.12):

(1.12) G=−2(LLr−LLf ),

where LLf and LLr are the log-likelihood of the full and reduced model, respectively
[38].

1.3.2 Information Criteria Tests

Information criteria test is a measure to evaluate the goodness of the fitted model
when used for prediction of the test data. Two of the important subclass of informa-
tion criteria are Akaike information criteria (AIC) and Bayesian information criteria
(BIC), where both of them aim to maximize likelihood function while considering
different terms to penalize the number of features added to the model. Here, we
provide the definition of each criteria [50].

AIC =−2LL+ 2k, BIC =−2LL+k logn,

where, LL represents loglikelihood function. k and n represent the number of pre-
dictors and data points, respectively.

1.4 Histograms
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Pearson introduced histograms for the first time as an approximating tool to repre-
sent the distribution of a given dataset [51]. In histograms, the whole range of data
has to be divided into a number of intervals, called as bins. Hence, it is required to
find the breaking points of these non-overlapping intervals. Bin width is the most
important parameter of a histogram which should be predetermined in a proper
way to capture the essential structure of the data. In fact, bin width manages over
smoothing or under smoothing of the estimation meaning that providing insufficient
details and abundant details, respectively [52].

In [53], histograms are defined as nonparametric density estimators that are being
used to summarize the data. Converging to the true density function is a crucial
issue and simultaneously a motivation to find the methods culminating in an op-
timal histogram, hence, by the notion of minimizing the integrated mean squared
error, a method was proposed to obtain the optimal histogram [53]. In another re-
search study, histogram is considered as piecewise-constant model of the probability
density and an algorithm is proposed based on Bayesian probability theory [54].
Additionally, Akaike information criteria (AIC) is also used to obtain optimal his-
togram with the aim of decreasing the subjectivity when identifying the smoothing
parameter [55].

In this section, we considered some of the existing models for the problems in this
thesis and covered the basic related concepts. In Chapter 2, we will explain our
approach to derive MICP models for both of the application problems of this thesis.

1.5 Contribution

In this chapter, to model the sparse logistic regression and optimal histogram con-
struction problems, we propose mixed-integer exponential cone (MIEXP) models
with the aim of maximizing the likelihood function and minimizing the Kullback-
Leibler divergence (KL-divergence), respectively. To the best of our knowledge, there
has been no attempt to solve these problems using MICPs. The performance of our
models are promising when comparing to the available methods in the literature.
We will discuss the details of our approach in the methodology section.
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2. Methodology

In this chapter, we will develop two MICP models where the first models is dedi-
cated to feature subset selection in logistic regression and the second is generating
optimal histograms with the aim of maximizing the likelihood function and mini-
mizing the Kullback-Leibler divergence, respectively. The common characteristic of
both problems is that their objective functions are Exponential Cone-representable
and their feasible regions are mixed-integer linear representable.

In the first problem, we aim to derive a model for sparse logistic regression problem
which is a trending research avenue. This interest stems from the presence of datasets
with categorical outputs in many fields of study including medical science, social
science, finance, and portfolio management. Notice that, linear regression will have
a poor performance in constructing a prediction model over such datasets since the
dependent variable takes a finite set of values. Hence, our motivation in the first
problem is to derive an exact method by developing an MICP formulation, which
has not been considered in the literature. Next, by adopting information criteria
measures and regularization, we will modify the model and analyze the performance
of each version.

In the second problem, we develop a model that can be used to obtain optimal
histograms. In [51], Pearson introduced histograms for the first time as an ap-
proximating tool to represent the distribution of a given dataset. Bin width is the
most important parameter of a histogram as it manages over smoothing or under
smoothing of the estimation, meaning that providing insufficient details and abun-
dant details, respectively [52]. In this model, our aim is to find the optimal bin width
and at the same time breaking points with the aim of minimizing the KL-divergence
of the given integer data to the generated histogram.

In Section 2.1, we will briefly explain linear regression and MILP model for Sparse
Linear Regression which was our starting point for the sparse logistic regression
model we propose in section 2.2. Finally, Section 2.3 will be dedicated to the optimal
histogram construction model.
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2.1 Linear Regression

Regression models are among the most important prediction models for both quan-
titative (taking numerical values) and qualitative (taking values from a finite set)
variables. A regression model relates a dependent variable y to a function of known
x and unknown α. Suppose that we have n data points (ŷi; x̂i1, x̂i2, ..., x̂iq), for
i= 1, . . . ,n in which ŷi’s are the values of dependent variables and x̂ij for i= 1, . . . ,n
and j = 1, . . . ,p is the value of independent variable for the ith data point. The
following linear model is defined to predict the value of the dependent variable y
given the independent variables x:

(2.1) y = α0 +α1x1 + ...+αpxp+ ε,

where ε is the error term for the data points and α0 is the intercept.

Definition 2.1. Let q ≥ 1. Then, the `q norm of x ∈ Rn is given by

||x||q =
(

n∑
i=1
|xi|q

) 1
q

.

Let X̂n×p denote a matrix whose (i, j) entry is the value of the dependent variable
j in the ith observation, i = 1, . . . ,p, j = 1, . . . ,n. A common procedure to find the
values of the unknown coefficients αi’s is to minimize the sum of squared error:

(2.2) min
α
‖ŷ− X̂Tα‖22,

where X̂ and ŷ are given. We note that it is possible to use other norms including
`1-norm and `∞-norm.

2.1.1 Sparse Model for linear regression

Definition 2.2. ([24]) Variable selection is the method of excluding irrelevant vari-
ables which are not influential to the response in regression models with the aim of
increasing the interpretability of the model.
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The main goals of variable (feature) selection are improving prediction accuracy
and making the model easier to interpret. Although one may assume that the more
variables are included to construct a model, the better the prediction accuracy is,
it may lead to a phenomenon known as overfitting. Overfitting occurs when the
model performs well for the training data and reveals a poor performance over the
test data. Moreover, by eliminating irrelevant variables, the model might be easier
to interpret. Hence, constructing sparse models is of a great interest. In the next
part, we will discuss a model for sparse linear regression which is presented in [56].

First, for the ease of notation we define the operator “◦” as the element-wise product
of a matrix, also known as the Hadamard product [57].

Definition 2.3. Given two matrices Am×n and Bm×n, the elements of matrix
Cm×n = A◦B is defined as

cij = aijbij , i= 1, . . . ,m j = 1, . . . ,n.

To obtain a sparse (2.1), we define a binary vector z ∈ {0,1}p+1 in which jth element
zj takes value one if the jth independent variable is chosen and zero otherwise (z0 is
associated to the intercept). Therefore, problem (2.2) is modified as the following:

min
α,z
‖ŷ− X̂T (α◦ z)‖q(2.3a)

s.t. z ∈ {0,1}p+1.(2.3b)

Notice that this model is non-linear due to the presence of the bilinear terms α, z,
and the norm function. In the sequel, we will first linearize the bilinear terms by
benefiting from the fact the zj is binary and assuming that the magnitude of αj is
bounded by some constantM . After this common step for all the norms considered,
we will obtain MICP or MILP formulations depending on the particular norm under
consideration.

First, we define a new set of decision variables w such that:

w = α◦ z,

where z0 always takes value 1 to ensure the intercept to be always chosen.

Now, we can rewrite (2.3):
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min
w,α,z

‖ŷ− X̂Tw‖q(2.4a)

s.t. −Mz ≤ w ≤Mz(2.4b)

α− (e− z)M ≤ w ≤ α− (e− z)(−M)(2.4c)

z ∈ {0,1}p+1.(2.4d)

Notice that if an independent variable j is selected, then the corresponding wj will
be equal to αj and it will be zero otherwise. The vector e∈Rn represents the vector
of ones.

Following the previous discussion and using (2.4), sparse linear regression models
will be presented with respect to `1, `2, and `∞ norms.

I. `1-based sparse linear regression model is given as in (2.5):

min
w,α,z,u

∑n

i=1ui(2.5a)

s.t. yi−xiwi ≤ ui(2.5b)

−yi+xiwi ≤ ui(2.5c)

(2.4b),(2.4c),(2.4d).

II. `2-based sparse linear regression model is shown in (2.6):

Although `2 norm cannot be linearized, (2.6) can be solved as a second-order cone.

min
w,α,z,u

∑n

i=1ui(2.6a)

s.t. (yi−xiwi)2 ≤ ui(2.6b)

(2.4b),(2.4c),(2.4d).

III. `∞-based sparse linear regression model is given by (2.7):
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min
w,α,z,u

u(2.7a)

s.t. yi−xiwi ≤(2.7b)

−yi+xiwi ≤ u(2.7c)

(2.4b),(2.4c),(2.4d).

Finally, adding the following constraint to above models, we enforce an upper bound
for the number of variables to be selected:

(2.8)
n∑
i=1

zi ≤K.

In (2.8), K is treated as a parameter rather than a variable, which means that
the number of variables to be selected has to be known in advance and this can
be considered as a disadvantage. However, there exist some approaches including
Goodness of Fit (GOF) measure discussed in Section 1.3.2 to overcome this issue.
As the sparse linear regression is not the main problem of interest in this thesis,
we assume prior information on the number of variables to be selected through the
implementation to just provide an insight for the sparse logistic regression model.
See Appendix A for a preliminary experimental analysis of sparse linear regression.

2.2 Logistic Regression

Limitations of ordinary least squares regression to handle the binary variables as an
outcome is a motivation to consider logistic regression for the classification purpose
[25]. There are some important research areas ranging from medical science to
social science in which there exist datasets that the value of dependent variable is
limited to a finite set of values. The most common example is the specific group of
medical tests which has positive and negative outcomes for the dependent variable.
Additionally, logistic regression is not limited to the binary output and can handle
the datasets in which the dependent variable has more than two classes. This type
of logistic regression is called as “multinomial logistic regression”.

Generally, in regression models, selecting truly important vectors can help to fit
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a model which is more interpretable, especially when the number of independent
variables is high [25]. As mentioned in Definition 2.2, this procedure is known as
variable (feature) selection. Exact techniques and heuristic techniques are the two
main approaches for dealing with the feature selection problem. Although exact
techniques provide optimal solution, due to the fact that feature selection problem
is NP-Hard [58], they cannot be applied efficiently for large datasets. For these
settings, heuristic methods which provide proper solutions in a reasonable time
might be preferred. Recently, feature subset selection in regression models have
been the area of interest for many research studies. As an illustration, in [41], a
mixed-integer second order cone programming model is introduced for feature subset
selection in linear regression. Considering the logistic regression, [58] proposed a
heuristic method based on Tabu search and [39] introduced an exact method based
on Bayesian methodology. Our contribution in this part of thesis will be to provide
an MICP formulation for feature subset selection in logistic regression. We will first,
present some basic definitions.

Logistic Regression determines the conditional probability of the class Y given that
X = x.

P (Y |X = x).

Definition 2.4. Given p ∈ [0,1), odds ratio is defined as p
1−p .

Unlike the probability, odds is not bounded by 0 and 1. By taking the logarithm,
we have a function known as log-odds:

(2.9) log(odds) = log
(

p

1−p

)

Observe that log-odds function can take any value from −∞ to ∞. Hence, we can
fit a linear regression model as follows:

log
(

p(x)
1−p(x)

)
= α0 +α1x1 + ...+αnxn,

where p(x) = p(Y = 1|X = x). In the next parts, we will discuss background materials
required to derive the sparse logistic regression model in Sections 2.2.1 and 2.2.2.
Finally, we will present the model in Section 2.2.3.
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2.2.1 Exponential cone

Exponential cone programming is an important subclass of conic programming which
is also used to formulate both of the models in this thesis. Hence, we will discuss
the exponential cones in this part.

Definition 2.5. The exponential cone is defined as the set:

Kexp = Cl{x ∈ R3 : x1 ≥ x2e
x3
x2 , x2 > 0},

where Cl is the closure of a set.

Definition 2.6. Let f : Rn→R be a function. Then g(x,t) = t f(xt ) : R
n×R++→

R is called the perspective of f .

We present the proof of the following lemma for completeness.

Lemma 2.1. If f is a convex function, then the perspective of f is also a convex
function.

Proof. To prove this lemma we have to show that:

g(λx1 + (1−λ)x2,λt1 + (1−λ)t2)≤ λg(x1, t1) + (1−λ)g(x2, t2).

By supposition we know that f is convex. Then we have:

g(λx1 + (1−λ)x2,λt1 + (1−λ)t2)

= [λt1 + (1−λ)t2]f(λx1 + (1−λ)x2
λt1 + (1−λ)t2

)

= [λt1 + (1−λ)t2]f( λx1
λt1 + (1−λ)t2

+ (1−λ)x2
λt1 + (1−λ)t2

)

= [λt1 + (1−λ)t2]f( λt1
[λt1 + (1−λ)t2]

x1
t1

+ (1−λt2)
[λt1 + (1−λ)t2]

x2
t2

)

≤ [λt1 + (1−λ)t2]( λt1
[λt1 + (1−λ)t2]f(x1

t1
) + (1−λ)t2

[λt1 + (1−λ)t2]f(x2
t2

))

= λt1f(x1
t1

) + (1−λ)t2f(x2
t2

)

= λg(x1, t1) + (1−λ)g(x2, t2).

The above inequality holds due to the convexity of function f .

Let f(x3) = ex3 . Then, by Definition 2.6, the perspective of f is g(x3,x2) = x2e
x3
x2 .
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Hence, the set:
Cl{x ∈ R3 : x1 ≥ x2e

x3
x2 , x2 > 0},

is the closure of the epigraph of function g. In fact, the exponential cone is the
closure of the epigraph of the perspective of the exponential function.

Lemma 2.2. A function is convex if and only if the epigraph of the function is
convex.

Exponential function is a convex function and by Lemma 2.1 we conclude that
g(x1,x2) is a convex function as well. Finally, the convexity of the exponential cone
can be proved by Lemma 2.2.

Considering the convex optimization problems, it is possible to represents an impor-
tant subset of these problems in the form of conic programming and solve them using
the existing solvers. Exponential cone is one of the widely used cones to transfer a
convex optimization problem into an equivalent conic programming problem in the
presence of exponential and logarithm functions. Logistic regression, Sparse logis-
tic regression, and Geometric programming are among the problems which can be
formulated as an exponential cone programming [59]. In this study, we will transfer
the Sparse logistic regression and the Optimal histogram construction problems into
their equivalent exponential cone programming versions.

The following definition will be the key in our analysis.

Definition 2.7. The function f(θ) =− log( 1
1+e−θT x

) is called logistic cost function.

Proposition 2.1. The conic representation of logistic cost function is given by [60]

e−θ

T x−t ≤ u⇒ (u,1,−(θTx+ t)) ∈Kexp

e−t ≤ v⇒ (v,1,−t) ∈Kexp

1
u+v ≥ 1⇒ u+v ≤ 1

Proof. We have

t≥ log( 1
1 + e−θT x

)−1⇒ et ≥ 1 + e−θ
T x⇒ et

1 + e−θT x
≥ 1⇒ 1

e−t︸︷︷︸
v

+e−θ
T x−t︸ ︷︷ ︸
u

≥ 1

⇒ e−t ≤ v, e−θ
T x−t ≤ u, 1

u+v
≥ 1.
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2.2.2 Logistic Regression as an Exponential Cone Program

In logistic regression, one tries to fit the unknown coefficient vector (θ in 2.10) as a
maximum likelihood estimator. The likelihood function is given by

(2.10) L(θ) =
n∏
i=1

fθ(xi)yi(1−fθ(xi))(1−yi),

where f is Probability Density Function (PDF) while x and y are the vectors of
independent variable and dependent variable, respectively.

Log-likelihood function (2.11) is obtained by taking logarithm of (2.10) :

LL(θ) =
n∑
i=1

ln(fθ(xi)yi(1−fθ(xi))(1−yi))

=
n∑
i=1

lnfθ(xi)yi +
n∑
i=1

ln(1−fθ(xi))(1−yi)

=
n∑
i=1

yi lnfθ(xi) +
n∑
i=1

(1−yi) ln(1−fθ(xi)).

(2.11)

Considering the Bernoulli distribution for the dependent variable y, we can replace
fθ(xi) in (2.11) with P (x) = P (Y = 1|X = x). The value of P (x) is equal to 1

1+e−θT xi
and can be calculated by Logit function in equation 2.9.

By replacing fθ(xi) in (2.11) with P (x) , we have:

LL(θ) =−
n∑
i=1

yi ln(1 + e−θ
T xi) +

n∑
i=1

(1−yi)[−θTxi− ln(1 + e−θ
T xi)]

=−
n∑
i=1

ln(1 + e−θ
T xi)−

n∑
i=1

(1−yi)θTxi.
(2.12)

Now, to estimate the unknown vector of θ, we maximize the log-likelihood function:

max
θ

n∑
i=1

ln(1 + e−θ
T xi)−1−

n∑
i=1

(1−yi)θTxi.(2.13)

With the aim of transforming problem (2.13) into a conic programming problem,
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first, we reformulate it as:

max
θ, t

n∑
i=1

ti−
n∑
i=1

(1−yi)θTxi(2.14a)

s.t. ln(1 + e−θ
T xi)−1 ≥ ti i= 1, . . . ,n.(2.14b)

Second, we transform constraint (2.14b) into its equivalent conic form using Propo-
sition 2.1. Finally, the equivalent conic form of logistic regression problem will be
as:

max
θ, t,u,v

n∑
i=1

ti−
n∑
i=1

(1−yi)θTxi(2.15a)

s.t. ui+vi ≤ 1 i= 1, . . . ,n,(2.15b)

(vi,1, ti) ∈Kexp i= 1, . . . ,n,(2.15c)

(ui,1,−θTxi+ ti) ∈Kexp i= 1, . . . ,n.(2.15d)

In this section, we provided the conic formulation of logistic regression problem. In
Section 2.2.3, we will derive a model for feature subset selection in logistic regression
by adding a group of constraints to model (2.15). The aims of the constraints to be
added are to force the model to select the truly important features and at the same
time to estimate the value of corresponding elements of coefficient vector.

2.2.3 Sparse Logistic Regression Model

In sparse logistic regression model, the aim is to find the best subset of independent
variables in the same fashion as what was discussed for sparse linear regression in
Section 2.1.1. Hence, similar to the sparse linear regression, we define a binary
vector z ∈ {0,1}p (intercept excluded) in which jth element zj takes value one if the
jth independent variable is chosen and zero otherwise . Finally, the MIEXP model
for feature subset selection in logistic regression is given as follows:
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max
θ, t,u,v

n∑
i=1

ti−
n∑
i=1

(1−yi)wTxi(2.16a)

s.t. ui+vi ≤ 1 i= 1, . . . ,n,(2.16b)

(vi,1,+ti) ∈Kexp i= 1, . . . ,n,(2.16c)

(ui,1,−wTxi+ ti) ∈Kexp i= 1, . . . ,n,(2.16d)
p∑
j=1

zj ≤ k,(2.16e)

−Mz ≤ w ≤Mz,(2.16f)

zj ∈ {0,1}p(2.16g)

In this model the number of features to be selected is not a variable but a parameter.
In the next section, we present modified versions of this model based on some GOF
measures.

2.2.4 Modified Sparse Logistic Regression Model Using GOF Measures

As discussed before, the requirement to know the number of features to be selected
in advance, can be considered as a disadvantage, especially when the number of fea-
tures is high. To overcome this issue, we can use different goodness of fit measures
including adjusted McFadden, Akaike Information Criteria (AIC) and Bayesian In-
formation Criteria (BIC) discussed in Section 1.3. In the next step, we will present
the modification of model (2.16) based on these measures.

2.2.4.1 Adjusted McFadden Modification

Adjusted McFadden measure is defined as:

(2.17) R2
adj = 1− logL(Mfull)−k

logL(Mnull)
,

where Mfull is full model and Mnull represents the case in which only intercept is
used to construct a model [38]. In fact by adding term k, we are penalizing adding
extra predictors to the model [25]. We note that in the Mcfadden model, “k” which
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is the number of features to be selected is no longer a parameter but a variable. The
modified model is as follows:

max
θ, t,u,v,k

n∑
i=1

ti−
n∑
i=1

(1−yi)wTxi−k(2.18a)

s.t. (2.16b)− (2.16g)(2.18b)

The same as adjusted-R2 discussed in Section 1.3.1, we are interested in higher values
of adjusted McFadden. Therefore, we have to minimize the term logL(M)−k

logL(Mnull) in (2.17).
As the value of likelihood is between zero and one, the logarithm of likelihood is
less than equal to zero. Hence, considering the fact that logL(Mnull) is a negative
constant term, we just have to maximize the term logL(M)− k. Consequently,
problem (2.18) is the modified version of problem (2.16) with respect to adjusted
McFadden measure.

2.2.4.2 AIC and BIC Modification

In this section, information criteria measures of AIC and BIC will be considered to
modify the model. The same as McFadden, the only change will be in the objective
function.

Definition 2.8. AIC and BIC measures are given by:

AIC =−2LL+ 2k, BIC =−2LL+ ln(n)k

where k is the number of features and n is the number of instances [38].

By Definition 2.8, the modified models based on AIC and BIC are given by (2.19)
and (2.20), respectively.

min
θ, t,u,v,k

−2
n∑
i=1

ti+ 2
n∑
i=1

(1−yi)wTxi+ 2k(2.19a)

s.t. (2.16b)− (2.16g)(2.19b)
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min
θ, t,u,v,k

−2
n∑
i=1

ti+ 2
n∑
i=1

(1−yi)wTxi+ ln(n)k(2.20a)

s.t. (2.16b)− (2.16g)(2.20b)

Note that, AIC and McFadden are equivalent in the sense of optimization as if we
multiply the objective function of (2.19) by the constant term −1

2 , we will have the
same objective function as in (2.18.)

We note that, in the case of existing highly correlated independent variables (fea-
tures) in problems (2.18)-(2.20), a high variance model will be achieved and the
higher the correlation is, the more unrealistic the model will be [61]. To handle
this issue, a family of methods known as regularization techniques are introduced in
the literature (see [62] for different methods of regularization and detailed theory).
Moreover, regularization prevents overfitting, especially in the case that the size of
training data is relatively small [63]. As a result, to avoid both overfitting and gen-
erating high variance models, we also considered the `2-regularization form of the
problems (2.18)-(2.20) as well. This is a commonly used regularization technique
and is also considered by [60] for logistic regression formulation.

Problem (2.21) represents the model in [60].

min
θ, t,u,v

−
n∑
i=1

ti+
n∑
i=1

(1−yi)wTxi+λ‖θ‖2,(2.21a)

s.t. (2.16b)− (2.16d)

The term λ‖θ‖2 in problem (2.21) is the mentioned `2-regularization term. From
statistic perspective, this term can be considered as prior knowledge indicating that
θ should not be very large while from the optimization perspective, it provides a
trade-off between having a small θ and solving the problem [62]. In Chapter 3, we
will report and discuss the computational results of these models over a group of
toy examples and a bunch of benchmark datasets. In the next section, we present
commonly used metrics to quantify the performance of binary classifiers.

2.2.5 Metrics For Binary Classifiers Performance
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In this section, we will explain commonly used metrics which are required to evaluate
the binary classifiers.

Definition 2.9. ([64]) An m×m matrix defined for a classifier to represent the
predicted and actual classification, is called a confusion matrix. The rows of this
matrix show the actual class and the columns are dedicated to the predicted class.
Here, m is the number of existing classes.

As we consider binary logistic regression in our study, the confusion matrix will be
as Table 2.1. Here, based on Definition 2.9, the value of m is equal to two.

Predicted class
P (+) N (-)

Actual
class

P (+) TP FN
N (-) FP TN

Table 2.1 Confusion matrix for binary classifiers.

The definition of the terms used in Table 2.1 for the binary confusion matrix is
provided in Table 2.2.

TP: true positive FN: false negative
FP: false positive TN: true negative

Table 2.2 Definitions of the confusion matrix elements.

Using the defined terms in Table 2.2, several metrics to quantify the performance of
binary classifiers are introduced in Table 2.3 [65].

Accuracy (TP+TN)
P+N

Error (FP+FN)
P+N

Positive Predicted value TP
TP+FP

Negative Predicted value TN
TN+FN

Sensitivity TP
P

Specificity TN
N

FP Rate FP
N

F Score 2∗Precision∗Sensitivity
Precision+Sensitivity

Table 2.3 Metrics for evaluating performance of the binary classifiers.

In Chapter 3, we will present the computational results of our proposed models for
sparse logistic regression and will evaluate their performance using metrics in Table
2.3.
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2.3 Optimal Histogram Construction

This section is dedicated to our MICP model for Optimal Histogram Construction.
As mentioned in Section 1.4, several models have been proposed to find the optimal
bins width, when constructing histograms. However, to the best of our knowledge,
there has been no attempt to formulate this problem as an MICP. Hence, we propose
an MIEXP model for this problem with the aim of minimizing KL-divergence as it is
a measure to quantify how close an arbitrary distribution is to the true distribution.
In this model, for a given data, we will fit a histogram in such a way that the KL-
divergence of data to the fitted histogram is minimized. Note that both probability
distributions must be defined on the same probability space.

In the next part, we will provide definition and conic representation of the KL-
divergence function.

2.3.1 Kullback and Leibler (KL) Divergence

Kullback and Leibler introduced a sufficiency criteria (KL-divergence) by considering
the divergence between statistical populations [66]. In fact, it measures how close the
estimated probability distribution is to the reference distribution. The definition of
KL-divergence for discrete random variables defined over the same probability space
is as follows:

Definition 2.10. KL-divergence for two discrete probability distribution P and Q
is defined as:

DKL(P ||Q) =
∑
x∈X

P (x) log
(
P (x)
Q(x)

)
.

Here, X is the probability space that Q and P are defined on.

We note that the KL divergence does not define a distance between two distributions
since it is not symmetric in general, that is,

DKL(P ||Q) 6=DKL(Q||P )

The KL-divergence is also used extensively in machine learning and information
theory, and is interpreted as the information gain if the Q is substituted by P [66].
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In this model, we are interested in minimizing the discrete KL-divergence function
provided in Definition 2.10:

(2.22) min
Q

∑
x∈X

P (x) log
(
P (x)
Q(x)

)
.

Equivalent optimization problem for problem (2.22) is as follows:

min
t,Q

∑
x∈X

t(x)(2.23a)

s.t. t(x)≥ P (x) log
(
P(x)
Q(x)

)
∀x ∈ X .(2.23b)

Proposition 2.2. ([60]) Exponential cone representation of the inequality t ≥
x log

(
x
y

)
is given by

(y,x,−t) ∈Kexp

Proof.

t≥ x log
(
x

y

)
⇒ t≥−x log

(
y

x

)
⇒ e

−t
x ≤ y

x
⇒ xe

−t
x ≤ y

⇒ (y,x,−t) ∈Kexp

Finally, using Proposition 2.2, MIEXP formulation of problem (2.23) is given by

min
Q,t

∑
x∈X

t(x)(2.24a)

s.t. (Q(x),P (x),−t(x)) ∈Kexp ∀x ∈ X(2.24b)

In this section, we provided the conic representation of the KL-divergence function.
In Section 2.3.2, we will extend this model to introduce a MIEXP model for the
optimal histogram construction problem by adding a set of constraints. In this
model, we assume that we have m integer observations to be divided into k bins.
The probability of each observation θi is defined as pi. The aim is to associate each
observation θi, i = 1, . . . ,m with one of the k bins while minimizing the Kullback-
Leibler divergence of given data to our fitted histogram. Without loss of generality,
we assume that θi’s are ordered.
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2.3.2 Optimal Histogram Construction Problem

In this section, we will extend problem (2.24) by considering a set of assumptions
to obtain an MIEXP model for optimal histogram construction problem. These
assumptions are I) ensuring that at least one observation is dedicated to each bin,
II) allocating each observation to exactly one bin, and III) if observation θi is al-
located to bin j, then observation θi+1 must be either allocated to bin j or j+ 1.
Furthermore, we need to define a set of decision variables as follows:

 xij = 1 if observation i belongs to bin j
xij = 0 O.W

qi = probability of θi in estimated distribution

Qj = probability of bin j in estimated distribution

To clarify, we provide the following example. Let us define the vector of p=[0.1, 0.2,
0.4, 0.3], which represents the probability of observations θi’s. If we assume k = 2
and the model associates the first two observations to the first bin and the remain-
der to the second bin, then the value of Q1 and Q2 are 0.3 and 0.7, respectively.
Consequently, the values of q1 and q2 will be equal to 0.15 while those of q3 and q4

will be equal to 0.35.

Finally, the MIEXP model for this problem is given as:
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min
q, t,x,Q

m∑
i=1

ti(2.25a)

s.t. (qi,pi,−ti) ∈Kexp ∀i,(2.25b)
m∑
i=1

xij ≥ 1 ∀j,(2.25c)

k∑
j=1

xij = 1 ∀i,(2.25d)

xij ≤ xi+1,j +xi+1,j+1 ∀i, j,(2.25e)
j∑

j′=1
xij′+

k∑
j′′=j+2

xi+1,j′′ ≤ 1 ∀i, j,(2.25f)

Qj =
m∑
i′=1

pi′xi′j ∀j,(2.25g)

Qj∑m
i′=1xi′j

− (1−xij)≤ qi ≤
Qj∑m

i′=1xi′j
+ (1−xij) ∀i, j,(2.25h)

where, i= 1, . . . ,m, i′ = 1, . . . ,m, and j = 1, . . . ,k. The purpose of constraints (2.25c)
and (2.25d) are to satisfy the assumptions I and II, respectively while both con-
straints (2.25e) and (2.25f) are added to the model to satisfy assumption III.

Observe that constraint (2.25h) is nonlinear. Therefore, to linearize this constraint,
we write it as follows:

Qj− (1−xij)
m∑
i′=1

xi′j︸ ︷︷ ︸
Expression 1

≤ qi
m∑
i′=1

xi′j︸ ︷︷ ︸
Expression 2

≤Qj + (1−xij)
m∑
i′=1

xi′j.

Linearization of Expression 1: We define new variables uii′j such that:

(1−xij)xi′j = uii′j ∀i,∀i′,∀j

Then the linear form will be as follows by defining new variables vi:

(2.26)

vi =
m∑
i′=1

uii′j ∀i,∀j

0≤ uii′j ≤ xi′j ∀i,∀i′,∀j

(1−xij)− (1−xi′j)≤ uii′j ≤ (1−xij) ∀i,∀i′,∀j

Linearization of Expression 2: We define new variables αii′j such that:

31



αii′j = qixi′j ∀i,∀i′,∀j

Then the linear form will be as follows by defining new variables wi:

(2.27)

wi =
m∑
i′=1

αii′j ∀i,∀j

0≤ αii′j ≤ xi′j ∀i,∀i′,∀j

qi− (1−xi′j)≤ αii′j ≤ qi ∀i,∀i′,∀j

Finally, the MIEXP model for optimal histogram construction is given by (2.28):

min
q, t,x,Q

m∑
i=1

ti(2.28a)

s.t. (2.25b)− (2.25g),(2.28b)

(2.26),(2.27),(2.28c)

Qj−vi ≤ wi ≤Qj +vi ∀i, j(2.28d)

In Chapter 3, we will present the computational results of this model and evaluate
its performance for different distributions.
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3. Results and Discussion

In this chapter, we will present and discuss the computational results for both the
feature subset selection in logistic regression and optimal histogram construction
models in detail. For the former problem, we will start with an analysis over a
group of toy examples, which arms us with a primary insight about the performance
of our model over different settings such as the numbers of features, observations,
and correlations between features. In these settings, as we already know the truly
important features, it is easier to analyze the success of the models. However, in
practice we have no prior information over the features. Therefore, we will also
evaluate the performance of our models over a bunch of benchmark datasets which
have been considered by the related works in the literature. Regarding the second
model, the aim is to evaluate the performance of our proposed method in terms of
KL-divergence with the case in which the bin widths are equal. The motivation of
this setting is that Python packages acts in the same fashion and generates equal
bin widths when constructing a histogram. To show the superiority of our model,
we will assume different probability distributions including Normal, Gamma, and
Poisson for the observations. Then, we will compare the KL-divergence of our fitted
model to the given data with that of equal bin widths.

Finally, we note that solver Mosek is used for the implementation of both problems
due to its capability of supporting MIEXPs.

3.1 Computational Results For Sparse Logistic Regression

In this part, we will report the computational results of our MIEXP model for
feature subset selection in logistic regression problem for a group of toy examples
and benchmark datasets. First, we will explain two procedures which we consider
for all the datasets followed by an explanation for the parameters that all the models
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have in common.

Procedure 1:

As discussed before, to evaluate the performance of a model, one should consider
its performance over the test data once the model is trained by the training data.
Hence, with the aim of dividing the datasets into training and test data, we used
10-fold cross validation. In this setting, the dataset is divided into ten folds of equal
size where each fold in turn is used for testing and the remainder for training [67].

Procedure 2:

For the evaluation process, we require a group of measures to quantify the perfor-
mance of the models. For this purpose, we use accuracy, F-score, and NPV (see
Table 2.3 for the definition of each term). Accuracy deals with the true positive and
true negative predictions while the main concern of F-score is false negative and
false positive predictions. Finally, NPV is a measure for false negative prediction.
Moreover, we also include sparsity and Harmonic mean of accuracy and sparsity,
defined in [39], as other metrics. Sparsity is given by

(3.1) Sparsity = 1− Number of non-zero elements of a vector
Number of total elements of a vector ,

and Harmonic mean is defined as

(3.2) Harmonic mean = 2
1

Accuracy + 1
Sparsity

.

Harmonic mean quantifies the trade-off between intrepretability and prediction ac-
curacy of a model, meaning that keeping accuracy as high as possible while including
less numbers of predictors (features) to the model. Notice that we are interested in
higher values of all the measures defined in this part. Throughout this thesis, we
will report the mean value of each measure obtained from 10-fold cross validation.
We used Scikit-learn package to perform cross validation [68].

In this part, we will provide the explanations of the common parameters of the
models.

I. Success Rate of Bernoulli Distribution:

As mentioned in Section 2.2.2, we assume Bernoulli distribution for the dependent
variable y. Remember that we are interested in finding P (x) = P (Y = 1|X = x).
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In this thesis, we fix the success parameter of Bernoulli distribution (p) equal to
0.5 meaning that if P (x) = P (Y = 1|X = x) ≥ 0.5, the dependent variable y takes
value one and zero otherwise. Therefore, having equation (1.7) and the value of
coefficient estimated by the model, we can calculate this probability for each of the
observations and label them as 0 or 1 based on the value obtained for probability.
In fact, we compute the probability given θi’s and mark the observations as 0 or 1.
Then, we compare them with the real values of dependent variables and calculate
the binary metrics with respect to the obtained classes for the observations by the
model and real classes.

II. Regularization Parameter λ:

For the models in which we assume regularization for the coefficients (see model
(2.21) for instance), the regularization parameter λ should be defined in advance.
Although an arbitrary value can be assigned for it, the value of λ is highly dependent
to dataset. Hence, we prefer to tune this parameter for each of the datasets using
the glmnet package in solver R [69].

III. Seed number:

Throughout the implementation, with the aim of reproducing the same folds when
performing cross validation for all the models for a given dataset, we use a fixed seed
number. This parameter provides us the opportunity to fairly evaluate and compare
the performance of all the models in this thesis as they use the same combinations
for the test and training data.

IV. Big-M :

In our proposed models for feature selection, Big-M constraint in model (2.16) plays
a crucial role. Finding the value of big-M which provides an upper bound for the
coefficients is problematic as it should be greater than the largest true coefficient
and at the same time not too large in a way that it causes significant increase in
time of obtaining the desired optimality gap. In the following part we will present
available solutions to tackle with this issue and our findings in this regard.

Finding the value of big-M is completely dependent to the the dataset. Therefore,
one way is trial and error to find this value although it is not efficient. We refer the
reader to [70] in which this approach is considered. An alternative is to use SOS type
1 reformulation introduced in [56]. In this approach, big-M constraint is replaced
by the following term based on our notation:

(3.3) SOS type 1 : {1− zj ,wj} j = 1, . . . ,p.
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SOS type 1 constraint (3.3) satisfies the condition in which no more than one variable
can be nonzero (either wj or 1−zj). Hence, it is equivalent to the big-M constraint.
This method is free of choosing big-M value, however, we cannot implement this
method in our models as solver MOSEK does not support SOS type 1 constraints.

To set the value of big-M , we also try to extend the data-driven method for sparse
linear regression proposed in [56] to our sparse logistic regression model. Inspired
by the mentioned study, solving the following sets of optimization problems will
provide the sufficient value for big-M .

max
θ

θj(3.4a)

s.t.
n∑
i=1

ln(1 + e−θ
T xi)−1−

n∑
i=1

(1−yi)θTxi ≤ UB.(3.4b)

min
θ

θj(3.5a)

s.t.
n∑
i=1

ln(1 + e−θ
T xi)−1−

n∑
i=1

(1−yi)θTxi ≤ UB.(3.5b)

Here, UB is an upper bound for the optimal value of problem (2.15) and θj represents
the jth element of the coefficient vector θ. Let u+

j and u−j for j = 1, . . . ,p, be the
optimal solutions for (3.4) and (3.5), respectively. Then, the sufficient value for
big-M can be set as:

big-M := max
j
{|u+

j |, |u
−
j |}.

In sparse logistic regression, the UB in (3.4) and (3.5) can be set to zero. The reason
is, in model (2.15), we are maximizing the log-likelihood function. knowing that the
likelihood function generates values between zero and one, it can be concluded that
zero provides an upper bound for the log-likelihood function.

Finally, we note that at least one of problems (3.4) and (3.5) is unbounded. In
fact, by ignoring trivial case where xi = 0, if observation xi > 0 problem (3.4) will be
unbounded and if xi< 0, then problem (3.5) will be unbounded. This analysis shows
that it is not easy to find an appropriate value for big-M in advance. Therefore, in
our experimental analysis, we solve our MIXEP models with different big-M values
such as 10, 100, and 1000.

V. Termination Criteria:
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In case of high dimensionality, especially when he number of observations is far less
than the number of features, the solver may fail to obtain the desired optimality gap.
Notice that adding constraint (2.16e), to the problem (2.15), makes it NP-Hard [56].
Therefore, we set a time based termination criteria throughout the implementation.
We also mention that for some data sets the lower bound immediately reaches to the
optimal value, however, it takes time to certify the optimality by the upper bound.
(Recall that we have a maximization problem in this case). We provide Figure 3.1
to visualize this phenomenon.

(a) p= 70,n= 25,k = 5 (b) p= 100,n= 100,k = 7

Figure 3.1 The convergence of lower bound and upper bound by time. This figure
is provided for two toy examples. Although, the lower bound reaches the optimal
value in a few seconds, it takes time for the upper bound to certify optimality.

Based on Figure 3.1, for the cases in which there exist high optimality gap, it is
possible that the incumbent feasible solution is (nearly) optimal or nearly optimal
solution, however this may not be proven in general.

3.1.1 Experimental Analysis for the Toy Examples

In our implementation, we will first evaluate the performance of the models over
a group of toy examples and scenarios provided in [39]. The mentioned study,
introduced a Bayesian methodology for feature subset selection in logistic regression.
Throughout these examples p and n shows the number of features and data points
(observations), respectively.

Example 1: In this case, we fix the number of features as p = 30 and the number
of observations alters as n = 25,100,200,500, respectively. Each dataset is drawn
from the multivariate normal distribution N ∼ (0, Ip). Note that in this case, using
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identity matrix as covariance matrix leads to generation of totally independent fea-
tures. Finally, we assume the coefficients of all features to be zero except those with
indices 1, 6, 11, 15, 21, and 26 where they have the value equal to -2.0, -1.5, -1.0,
1.0, 1.5, 2.0, respectively.

Example 2: In this case, we include more features and set p = 50 and consider
cases with n= 35,50,100,200. Each dataset is drawn from the multivariate normal
distribution N ∼ (0,∑) with ∑

ij = 0.8|i−j|. Here, there are correlations between
pair of features. Finally, we set the coefficients of all features to be zero except
those with indices 1, 11, 21, 31, and 41, which are all equal to 0.8.

Considering Example 1 and Example 2, we will evaluate the performance of our
model both in terms of selecting true features (interpretablity) and prediction ac-
curacy. Due to the structure of these examples, we have prior information about
the number of true features. Hence, we can simply use model (2.16). For these
examples, setting big-M value to 10 is more than enough considering the magnitude
of the coefficients. Moreover, the termination criteria is fixed to 60 seconds for these
examples.

(a) p= 30,n= 25 (b) p= 30,n= 100

(c) p= 30,n= 200 (d) p= 30,n= 500

Figure 3.2 Performance of the model in selecting the true coefficients for Example
1.
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Figure 3.2 reveals that for cases 3.2b-3.2d, the model selects all the true coefficients,
however in Figure (3.2a), it includes 2 wrong features. As we can see, the number
of observation in this case is relatively small which affects the performance of the
model.

Another interesting inference from this figure is related to the value of coefficients.
As discussed in Section 3.1, if there exist relatively sufficient observations, the model
selects the value of the largest coefficient equal to the big-M value and scales other
coefficients accordingly. We can observe that when the number of observations is
large enough, scaling of coefficients by the model might be more accurate (this
pattern can be detected by comparing Figures 3.2b and 3.2c). As an illustration, in
Figure 3.2d, the values of coefficients found by the MIEXP model are almost 5 times
greater than the true coefficient values, because in this case the ratio of big-M value
to the largest true coefficient value, which are ten and two, respectively, is equal to
five. These figures are provided to evaluate the performance the model in terms of
intrepretability which is the capability of selecting the true coefficients. In Table
3.1, we will evaluate the performance of the model in terms of prediction accuracy.

n Acc. F-score Harmonic
mean NPV Opt

gap.
25 0.8166 0.9333 0.7873 0.4000 0
100 0.9900 0.9857 0.8847 1.0000 0
200 0.9850 0.9873 0.8827 1.0000 0
500 0.9900 0.9901 0.8848 0.9917 0

Table 3.1 Performance of the model in terms of binary metrics for Example 1.

As we can see from the Table 3.1, the model performs nearly perfectly in terms
of prediction as well. We can see the significant improvement in the performance
of the model once the number of observations increases from 25 to 100 and it has
almost the same performance when the number of observations are 100, 200, and
500, respectively.

Figure 3.3 and Table 3.2 show the performance of the model for the second exam-
ple. The performance of the model is similar as in Example 1 in terms of both
intrepretability and prediction, hence, the same conclusions as Example 1 can be
drawn for Example 2 as well.
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(a) p= 50,n= 35 (b) p= 50,n= 50

(c) p= 50,n= 100 (d) p= 50,n= 200

Figure 3.3 Performance of the model in selecting the true coefficients for Example.

n Acc. F-score Harmonic
mean NPV Opt

gap.
35 0.7333 0.9314 0.7740 0.7166 0.0660
50 0.9200 0.8333 0.9045 0.9750 0.0000
100 0.9800 0.9818 0.9378 0.9600 0.0000
200 0.9950 0.9941 0.9450 1.0000 0.0000

Table 3.2 Performance of the model in terms of binary metrics for Example 2.

In the next step, we will consider four different scenarios to evaluate the performance
of the model for differently structured datasets. We will briefly explain each scenario.

Scenario 1:

For this scenario, we assume p = 100 and n = 50,80,110. The value of coefficients
with indices 1, 36, and 71 are set to be 2.5 while the others are zero. Each dataset
is drawn from the multivariate normal distribution N ∼ (0,∑) with ∑ij = 0.94|i−j|.

Scenario 2:

For the purpose of evaluating the performance of the models in a less sparse situation,
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we increase the number of true coefficients in this scenario. Hence, the coefficients
with the indices 1,16,31, . . . ,91 will have the value of 2.5 while others are set to be
zero. Moreover, we consider the multivariate normal distribution N ∼ (0,∑) with∑
ij = 0.8|i−j| for datasets. Remaining parameters are the same as Scenario 1.

Scenario 3:

In this scenario, we will change the magnitude of the value of the coefficients by
assuming that the coefficients with the indices 1,16,31, . . . ,91 will have the value
of 0.6 while others are set to be zero. The rest of the structure is identical to the
Scenario 2.

Scenario 4:

In this scenario, we will consider the combination of previous scenarios for high
dimensional cases. Hence, we assume the value of p to be 300 while n takes the
values 200, 300, and 400, respectively. There exist 15 true coefficients in this scenario
where the value of coefficients with the indices 1,21,41, . . . ,181 are assumed to be
0.6 and those with indices 201,221, . . . ,281 take the value 2. The value of remaining
coefficients are set to be zero. Moreover, each data set is drawn from the multivariate
normal distribution N ∼ (0,∑) with ∑ij = 0.8|i−j|.

We will use model (2.16) for these scenarios as we know the number of true coeffi-
cients in advance. Table 3.3 shows the performance of the model for each scenario
in terms of prediction accuracy.

n Acc. F-score Harmonic
mean NPV Opt.

gap
50 0.9800 0.9700 0.9739 1.0000 0.0000
80 0.9750 0.9523 0.9718 1.0000 0.0000
110 1.0000 1.0000 0.9847 1.0000 0.0000

(a) Scenario 1

n Acc. F-score Harmonic
mean NPV Opt.

gap
50 0.8200 0.8547 0.8490 0.7000 0.6678
80 0.8625 0.8290 0.8917 0.9266 0.9169
110 1.0000 0.9637 1.0000 1.0000 0.3368

(b) Scenario 2
n Acc. F-score Harmonic

mean NPV Opt.
gap

50 0.8200 0.8547 0.8490 0.7000 0.6802
80 0.8625 0.8290 0.8917 0.9266 0.9183
110 1.0000 1.0000 0.9637 1.0000 0.3589

(c) Scenario 3

n Acc. F-score Harmonic
mean NPV Opt.

gap
200 0.8250 0.8206 0.8785 0.8605 0.9999
300 0.9066 0.9276 0.9204 0.9204 0.9998
400 0.9375 0.9413 0.9434 0.9521 0.9991

(d) Scenario 4

Table 3.3 Performance of model (2.16) for the scenarios in terms of prediction.

As we can see from Table 3.3, by increasing the number of true coefficients in
Scenario 2 compared to Scenario 1, the model fails to obtain the desired optimality
gap and the performance of the model decreases in terms of prediction accuracy.
However, when the number of observations is high (in these cases 110), the difference
between performance of the model over these datasets is insignificant. Comparing
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Scenario 2 with Scenario 3, we can observe that decreasing the magnitude of the
coefficients (weak signal strength) has not affected the performance of the model.
Considering Scenario 4, we can see that in the case of high dimensionality, the
model completely fails to obtain the desired optimality gap, however the prediction
performance of the model for this scenario is still quite satisfactory. This may stem
from occurrence of the same pattern we discussed in Figure 3.1. Overall, our model
reveals a significantly better performance for all the toy examples and scenarios in
comparison to the methods discussed in [39].

In the next step, we will discuss the performance of our method in terms of select-
ing the true coefficients for each of the scenarios. Figures 3.4-3.7, represents the
mentioned performance for the Scenarios 1 to 4, respectively.

(a) p= 100,n= 50 (b) p= 100,n= 80

(c) p= 100,n= 110

Figure 3.4 Performance of the model in terms of selecting the true coefficients for
Scenario 1.
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(a) p= 100,n= 50 (b) p= 100,n= 80

(c) p= 100,n= 110

Figure 3.5 Performance of the model in terms of selecting the true coefficients for
Scenario 2.

(a) p= 100,n= 50 (b) p= 100,n= 80

(c) p= 100,n= 110

Figure 3.6 Performance of the model in terms of selecting the true coefficients for
Scenario 3.
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(a) p= 300,n= 200 (b) p= 300,n= 300

(c) p= 300,n= 400

Figure 3.7 Performance of the model in terms of selecting the true coefficients for
Scenario 4.

Figure 3.4, shows that when the number of true coefficients is small, the model per-
forms very well for all the cases with different observation sizes. However, when the
number of true predictors increases, the model fails to find all the true coefficients,
especially when the sample size is relatively small (see Figure 3.5). For Scenario 3,
the sample size plays the identical role as in Scenario 2, meaning that when the mag-
nitude of the coefficients is small, the model requires more observations to perform
well (see Figure 3.3c). Finally, Figure 3.3d represents that the weak signal strength
(decreasing the magnitude of coefficients) affects the performance of the model in
terms of finding the true features. Note that in this scenario the last five coefficients
have been always chosen correctly due to their strong signal strength.

We presented and discussed the performance of our model over a set of toy examples.
In the next part, we will consider a group of benchmark datasets from the literature.
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3.1.2 Experimental Analysis for Benchmark Datasets

For sparse logistic regression model, we used a group of datasets from UCI Machine
Learning Repository [71]. Overall, we will divide these datasets into two main groups
as easy (p < n) and hard (n< p) datasets. The details of these two groups are shown
in Table 3.4 and Table 3.5, respectively.

Dataset n p
Breast 699 10
Heart 270 14

Parkinson 195 23
Divorce 170 55
Sonar 208 60

Table 3.4 Easy datasets: p< n. p and n are the number of features and observations,
respectively.

Dataset n p
LSVT 126 310
Colon 62 386

Leukemia 72 985

Table 3.5 Hard datasets: p> n. p and n are the number of features and observations,
respectively.

We compare the performance of several models. Two of our models rely on con-
tinuous conic programs known as Logistic Regression (model(2.15)) and also its
`2− regularization version and abbreviated as Regularized Log.Reg. For all these
datasets, we will consider three different versions of our model for the implementa-
tion purpose. The first model is constructed by adding `2-regularization term for
the coefficients in (2.19) and (2.20) models and is named as Regularized MIEXP.
The second version considers (2.19) and (2.20) models called as MIEXP. Finally
in the last version, to prevent the model from associating very small values to the
coefficients, we add a constraint to both (2.19) and (2.20) models which certifies the
value of each coefficient to be greater than 0.1 if the model selects that coefficient.
This version is denoted as MIEXP with Lower bound For Coefficients. Moreover, we
repeat the experiments for different values of big-M which are 10, 100, and 1000,
and also for different values of termination criteria which are 60, 300, and 600 sec-
onds. We note that, for the datasets in which the desired optimality gap is obtained
in 60 seconds, we do not repeat the experiment for the greater values of termination
criteria.

45



Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.8444 0.8199 0.0000 0.8986 0.0000 0 14.0

Logistic
Regression 60 NA 0.8407 0.8170 0.0000 0.8909 0.0000 0 14.0

Regularized

MIEXP
60

AIC
101 0.7778 0.7693 0.4044 0.7792 0.3286 0 9.4
102 0.7778 0.7693 0.4044 0.7792 0.3286 0 9.4
103 0.7778 0.7693 0.3961 0.7792 0.3214 0 9.5

BIC
101 0.8222 0.7942 0.6709 0.8625 0.5714 0 6.0
102 0.8222 0.7942 0.6709 0.8625 0.5714 0 6.0
103 0.8222 0.7942 0.6600 0.8625 0.5571 0 6.1

MIEXP 60

AIC
101 0.8074 0.7801 0.3602 0.8518 0.2429 0 10.6
102 0.8074 0.7801 0.3602 0.8518 0.2429 0 10.6
103 0.8074 0.7801 0.3602 0.8518 0.2429 0 10.6

BIC
101 0.8222 0.7942 0.6709 0.8625 0.5714 0 6.0
102 0.8222 0.7942 0.6709 0.8625 0.5714 0 6.0
103 0.8222 0.7942 0.6652 0.8625 0.5643 0 6.1

MIEXP

with
Lower bound

For
Coefficients

60

AIC
101 0.8074 0.7801 0.3602 0.8518 0.2429 0 10.6
102 0.8074 0.7801 0.3602 0.8518 0.2429 0 10.6
103 0.8074 0.7801 0.3602 0.8518 0.2429 0 10.6

BIC
101 0.8222 0.7942 0.6709 0.8625 0.5714 0 6.0
102 0.8222 0.7942 0.6709 0.8625 0.5714 0 6.0
103 0.8222 0.7942 0.6652 0.8625 0.5643 0 6.1

Table 3.6 Performance of the models in terms of prediction for the Heart dataset.

As can be observed from Table 3.6, the regularized logistic regression has the best
prediction performance for the Heart dataset. However, in terms of intrepretability,
it reveals a highly poor performance by adding all the features to the model. On the
other hand, the BIC model compromises the intrepretability and prediction accuracy
which results in obtaining the highest harmonic mean value. In fact, although it
constructs a model by six predictors, its performance is very close to the regularized
logistic regression in terms of prediction accuracy. The impact of the regularization
can be observed in the AIC models. In this case, the regularized versions constructs
the model with less number of predictors in average compared to MIEXP and MI-
EXP model with lower bound. Additionally, the performances of the MIEXP and
the MIEXP model with lower bound are identical for this dataset, meaning that
MIEXP model already associates values bigger than 0.1 to the coefficients.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.9628 0.9446 0.0000 0.9746 0.0000 0 10.0

Logistic
Regression 60 NA 0.9628 0.9446 0.0000 0.9746 0.0000 0 10.0

Regularized

MIEXP
60

AIC
101 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4
102 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4
103 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4

BIC
101 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6
102 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6
103 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6

MIEXP 60

AIC
101 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4
102 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4
103 0.9600 0.9405 0.3939 0.9746 0.2500 0 7.5

BIC
101 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6
102 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6
103 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6

MIEXP

with
Lower bound

For
Coefficients

60

AIC
101 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4
102 0.9600 0.9405 0.4066 0.9746 0.2600 0 7.4
103 0.9600 0.9405 0.3939 0.9746 0.2500 0 7.5

BIC
101 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6
102 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6
103 0.9528 0.9292 0.6002 0.9723 0.4400 0 5.6

Table 3.7 Performance of the models in terms of prediction for the Breast dataset.

The performance of the models for the Breast dataset are almost the same as the
Heart dataset with some minor differences. In this case, regularization does not
affect the average number of selected features. Moreover, the AIC model has almost
the same performance as the regularized logistic regression and logistic regression
versions, due to the slight difference between the number of selected features. The
BIC method has the best performance in terms of harmonic mean for the Breast
dataset as well.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.8411 0.8946 0.0083 0.5792 0.0043 0 22.9

Logistic
Regression 60 NA 0.8468 0.8973 0.0249 0.6592 0.0130 0 22.7

Regularized

MIEXP
60

AIC
101 0.8458 0.8972 0.8068 0.6333 0.7739 0 5.2
102 0.8405 0.8936 0.8153 0.6333 0.7957 0 4.7
103 0.8408 0.8936 0.7648 0.6333 0.7043 0 6.8

BIC
101 0.8505 0.9018 0.8562 0.6167 0.8652 0 3.1
102 0.8505 0.9008 0.8560 0.6167 0.8652 0 3.1
103 0.8205 0.8807 0.7732 0.5767 0.7348 0 6.1

MIEXP 60

AIC
101 0.8458 0.8972 0.8068 0.6333 0.7739 0 5.2
102 0.8508 0.9008 0.8114 0.6333 0.7783 0 5.1
103 0.8621 0.9075 0.6503 0.6592 0.5261 0 10.9

BIC
101 0.8505 0.9018 0.8562 0.6167 0.8652 0 3.1
102 0.8455 0.8974 0.8452 0.6167 0.8478 0 3.5
103 0.8305 0.8882 0.7681 0.5767 0.7174 0 6.5

MIEXP

with
Lower bound

For
Coefficients

60

AIC
101 0.8508 0.9008 0.8164 0.6333 0.7870 0 4.9
102 0.8508 0.9008 0.8185 0.6333 0.7913 0 4.8
103 0.8721 0.9134 0.6523 0.6992 0.5261 0 10.9

BIC
101 0.8505 0.9018 0.8562 0.6167 0.8652 0 3.1
102 0.8455 0.8974 0.8452 0.6167 0.8478 0 3.5
103 0.8305 0.8882 0.7681 0.5767 0.7174 0 6.5

Table 3.8 Performance of the models in terms of prediction for the Parkinson dataset.

In Parkinson dataset, both BIC and AIC outperform the logistic regression models
in terms of accuracy and F-score in most of the cases, although they include less
predictors to the model. The same as previous datsets, BIC has the highest harmonic
mean. For this dataset, we can observe the difference between the MIEXP and
MIEXP with lower bound for coefficients for the AIC models. The MIEXP model
with lower bound generates a more sparse model compared to MIEXP. The reason
is that when the MIEXP constructs the model for this case, it associates values less
than 0.1 to the coefficients.

Generally, we can conclude that for these datasets the BIC model shows the best
performance in most cases and regularization caused to generate better models in
terms of sparsity. We also note that the all the MIEXP models are solved to opti-
mality for these three datasets.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.9765 0.9766 0.0000 1.0000 0.0000 0.0000 55.0

Logistic
Regression NA 0.9765 0.9766 0.0000 1.0000 0.0000 0.0000 55.0

Regularized
MIEXP

60

AIC
101 0.9588 0.9569 0.9431 0.9684 0.9291 0.1446 3.9
102 0.9706 0.9701 0.9071 0.9709 0.8527 0.6842 8.1
103 0.9471 0.9392 0.8327 0.9519 0.7455 0.8336 14.0

BIC
101 0.9706 0.9699 0.9565 0.9900 0.9436 0.0438 3.1
102 0.9706 0.9707 0.9244 0.9709 0.8836 0.6310 6.4
103 0.9706 0.9688 0.8797 0.9784 0.8055 0.7916 10.7

300

AIC
101 0.9706 0.9699 0.9516 0.9900 0.9345 0.0000 3.6
102 0.9706 0.9699 0.9506 0.9900 0.9327 0.1793 3.7
103 0.9706 0.9699 0.9380 0.9900 0.9091 0.4228 5.0

BIC
101 0.9706 0.9699 0.9575 0.9900 0.9455 0.0000 3.0
102 0.9706 0.9699 0.9565 0.9900 0.9436 0.1186 3.1
103 0.9588 0.9545 0.9403 0.9718 0.9236 0.3393 4.2

600

AIC
101 0.9706 0.9699 0.9516 0.9900 0.9345 0.0000 3.6
102 0.9706 0.9699 0.9516 0.9900 0.9345 0.0663 3.6
103 0.9588 0.9579 0.9441 0.9642 0.9309 0.2276 3.8

BIC
101 0.9706 0.9699 0.9575 0.9900 0.9455 0.0000 3.0
102 0.9706 0.9699 0.9575 0.9900 0.9455 0.0062 3.0
103 0.9706 0.9699 0.9507 0.9900 0.9327 0.1591 3.7

MIEXP

60

AIC
101 0.9471 0.9440 0.9337 0.9559 0.9218 0.2028 4.3
102 0.9588 0.9564 0.9424 0.9525 0.9273 0.4561 4.0
103 0.9647 0.9597 0.9423 0.9718 0.9218 0.6492 4.3

BIC
101 0.9647 0.9655 0.9498 0.9733 0.9364 0.1270 3.5
102 0.9529 0.9474 0.9395 0.9468 0.9273 0.4635 4.0
103 0.9529 0.9510 0.9387 0.9352 0.9255 0.6519 4.1

300

AIC
101 0.9706 0.9699 0.9516 0.9900 0.9345 0.0000 3.6
102 0.9647 0.9651 0.9491 0.9775 0.9345 0.1273 3.6
103 0.9588 0.9578 0.9463 0.9517 0.9345 0.2915 3.6

BIC
101 0.9706 0.9699 0.9575 0.9900 0.9455 0.0000 3.0
102 0.9706 0.9674 0.9576 0.9809 0.9455 0.1008 3.0
103 0.9706 0.9699 0.9537 0.9775 0.9382 0.2884 3.4

600

AIC
101 0.9706 0.9699 0.9516 0.9900 0.9345 0.0000 3.6
102 0.9647 0.9651 0.9491 0.9775 0.9345 0.0490 3.6
103 0.9647 0.9655 0.9491 0.9608 0.9345 0.2032 3.6

BIC
101 0.9706 0.9699 0.9575 0.9900 0.9455 0.0000 3.0
102 0.9647 0.9622 0.9548 0.9684 0.9455 0.0112 3.0
103 0.9706 0.9699 0.9576 0.9775 0.9455 0.1654 3.0

MIEXP
with

Lower bound
on

Coefficient

60

AIC
101 0.9647 0.9655 0.9441 0.9733 0.9255 0.2201 4.1
102 0.9647 0.9651 0.9442 0.9775 0.9255 0.4689 4.1
103 0.9588 0.9540 0.9395 0.9559 0.9218 0.6782 4.3

BIC
101 0.9647 0.9651 0.9497 0.9900 0.9364 0.1324 3.5
102 0.9706 0.9674 0.9499 0.9809 0.9309 0.4415 3.8
103 0.9529 0.9467 0.9368 0.9268 0.9218 0.6883 4.3

300

AIC
101 0.9706 0.9699 0.9516 0.9900 0.9345 0.0000 3.6
102 0.9706 0.9704 0.9519 0.9900 0.9345 0.1383 3.6
103 0.9706 0.9704 0.9489 0.9900 0.9291 0.3412 3.9

BIC
101 0.9706 0.9699 0.9575 0.9900 0.9455 0.0000 3.0
102 0.9647 0.9622 0.9548 0.9684 0.9455 0.1122 3.0
103 0.9588 0.9531 0.9443 0.9601 0.9309 0.3565 3.8

600

AIC
101 0.9706 0.9699 0.9516 0.9900 0.9345 0.0000 3.6
102 0.9706 0.9704 0.9519 0.9900 0.9345 0.0583 3.6
103 0.9765 0.9751 0.9547 0.9900 0.9345 0.2200 3.6

BIC
101 0.9706 0.9699 0.9575 0.9900 0.9455 0.0000 3.0
102 0.9706 0.9674 0.9576 0.9809 0.9455 0.0201 3.0
103 0.9647 0.9622 0.9548 0.9684 0.9455 0.0505 3.0

Table 3.9 Performance of the models in terms of prediction for the Divorce dataset.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.7505 0.7219 0.0000 0.7730 0.0000 0.0000 61.0

Logistic
Regression NA 0.7410 0.7095 0.0000 0.7798 0.0000 0.0000 61.0

Regularized
MIEXP

60

AIC
101 0.7645 0.7449 0.7127 0.7852 0.6705 0.0564 20.1
102 0.7500 0.7152 0.4866 0.7875 0.3738 0.3790 38.2
103 0.7169 0.6875 0.4347 0.7331 0.3246 0.4713 41.2

BIC
101 0.7119 0.6789 0.7731 0.7432 0.8541 0.0685 8.9
102 0.7029 0.6539 0.7296 0.7717 0.7738 0.4286 13.8
103 0.7555 0.7292 0.7021 0.7918 0.6721 0.5781 20.0

300

AIC
101 0.7595 0.7406 0.7261 0.7780 0.7016 0.0200 18.2
102 0.7357 0.7087 0.6329 0.7664 0.5639 0.2612 26.6
103 0.7357 0.6981 0.6414 0.7943 0.5787 0.3381 25.7

BIC
101 0.7217 0.7070 0.7907 0.7128 0.8770 0.0115 7.5
102 0.7124 0.6751 0.7673 0.7577 0.8410 0.3148 9.7
103 0.7219 0.6968 0.8014 0.7444 0.9033 0.4284 5.9

600

AIC
101 0.7595 0.7406 0.7261 0.7780 0.7016 0.0106 18.2
102 0.7314 0.6976 0.6462 0.7946 0.5984 0.2245 24.5
103 0.7267 0.6922 0.6349 0.7803 0.5770 0.2955 25.8

BIC
101 0.7217 0.7070 0.7907 0.7128 0.8770 0.0026 7.5
102 0.6729 0.6420 0.7436 0.6917 0.8361 0.2577 10.0
103 0.7033 0.6708 0.7815 0.7353 0.8918 0.3762 6.6

MIEXP

60

AIC
101 0.7833 0.7659 0.7320 0.8046 0.6902 0.0464 18.9
102 0.7314 0.6994 0.5493 0.7640 0.4541 0.3757 33.3
103 0.7507 0.7310 0.4293 0.7762 0.3049 0.6879 42.4

BIC
101 0.7026 0.6748 0.7695 0.7323 0.8574 0.0647 8.7
102 0.7021 0.6798 0.6679 0.7092 0.6672 0.4445 20.3
103 0.6883 0.6422 0.5837 0.7473 0.6082 0.7279 23.9

300

AIC
101 0.7595 0.7395 0.7235 0.7780 0.6951 0.0153 18.6
102 0.7310 0.6995 0.6527 0.7576 0.5934 0.2289 24.8
103 0.7260 0.6943 0.4987 0.7484 0.3852 0.5409 37.5

BIC
101 0.7169 0.7016 0.7877 0.7128 0.8770 0.0109 7.5
102 0.7405 0.7184 0.7462 0.7514 0.7623 0.3335 14.5
103 0.7200 0.6970 0.6993 0.7518 0.7311 0.6105 16.4

600

AIC
101 0.7595 0.7395 0.7235 0.7780 0.6951 0.0070 18.6
102 0.7214 0.6875 0.6465 0.7465 0.5902 0.2058 25.0
103 0.7212 0.6941 0.5231 0.7393 0.4148 0.4842 35.7

BIC
101 0.7169 0.7016 0.7877 0.7128 0.8770 0.0032 7.5
102 0.7162 0.6887 0.7499 0.7293 0.7984 0.2917 12.3
103 0.7400 0.7142 0.7489 0.7752 0.7967 0.5777 12.4

MIEXP
with

Lower bound
on

Coefficient

60

AIC
101 0.7595 0.7326 0.7138 0.7964 0.6770 0.3566 19.7
102 0.7550 0.7173 0.4804 0.7946 0.3590 0.6855 39.1
103 0.7214 0.6803 0.3823 0.7805 0.2639 0.8417 44.9

BIC
101 0.7176 0.6892 0.7791 0.7511 0.8607 0.4621 8.5
102 0.6736 0.6526 0.6848 0.6731 0.7311 0.7285 16.4
103 0.6740 0.6302 0.5118 0.7319 0.4803 0.8015 31.7

300

AIC
101 0.7595 0.7395 0.7235 0.7780 0.6951 0.0168 18.6
102 0.7360 0.7048 0.6328 0.7647 0.5623 0.2478 26.7
103 0.7307 0.7010 0.5026 0.7504 0.3852 0.5353 37.5

BIC
101 0.7169 0.7016 0.7877 0.7128 0.8770 0.0114 7.5
102 0.7114 0.6867 0.7251 0.7231 0.7508 0.3488 15.2
103 0.7119 0.6967 0.6551 0.7090 0.6639 0.6256 20.5

600

AIC
101 0.7595 0.7395 0.7235 0.7780 0.6951 0.0070 18.6
102 0.7360 0.7023 0.6494 0.7690 0.5852 0.2110 25.3
103 0.7402 0.7167 0.5353 0.7493 0.4230 0.4856 35.2

BIC
101 0.7169 0.7016 0.7877 0.7128 0.8770 0.0035 7.5
102 0.6926 0.6503 0.7267 0.7357 0.7738 0.3032 13.8
103 0.6929 0.6796 0.7063 0.6774 0.7770 0.5847 13.6

Table 3.10 Performance of the models in terms of prediction for the Sonar dataset.
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Although Divorce and Sonar datasets are categorized as easy datasets based on
our definition, in most cases the high number of predictors and the insufficient
number of observations results in larger optimality gap. To overcome this issue,
we set three different values for termination criteria which are 60, 300, and 600
seconds. By increasing the run time, the optimality gap decreases for all cases,
even reaching to zero for some cases. We can observe that the higher the value of
big-M is, the greater the optimality gap will be. This clarifies the importance of
choosing the smallest possible big-M . Although there are large optimality gaps for
Divorce and Sonar datasets, almost the same pattern as in first three datasets can
be detected. BIC tends to construct more sparse models while keeping accuracy
as high as possible. In Divorce dataset, the performance of our method in terms of
intrepretability is significantly better that logistic regression models and very close to
their performance in terms of prediction accuracy. Quite interestingly, our method,
outperforms logistic regression in both terms of sparsity and prediction accuracy in
the Sonar dataset.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.reg 60 NA NA 0.7077 0.6565 0.0051 0.6086 0.0026 0.0000 309.2

Logistic
Regression NA 0.5167 0.5156 0.0251 0.3340 0.0129 0.0000 306.0

Regularized
MIEXP

60

AIC
101 0.6673 0.6012 0.7750 0.5896 0.9345 0.5771 20.3
102 0.6833 0.6381 0.7610 0.5689 0.8735 0.9341 39.2
103 0.4641 0.6216 0.6169 0.3316 0.9865 0.9891 4.2

BIC
101 0.6763 0.6229 0.7808 0.5992 0.9374 0.6248 19.4
102 0.7006 0.6432 0.7957 0.6376 0.9348 0.9235 20.2
103 0.4237 0.5307 0.5514 0.1681 0.9787 0.9881 6.6

300

AIC
101 0.6897 0.6333 0.7891 0.5856 0.9352 0.5156 20.1
102 0.6423 0.5948 0.7380 0.5446 0.8784 0.9051 37.7
103 0.7026 0.6315 0.7767 0.6660 0.9097 0.9703 28.0

BIC
101 0.6429 0.6035 0.7599 0.5231 0.9397 0.5569 18.7
102 0.7558 0.6900 0.8230 0.6870 0.9197 0.8845 24.9
103 0.6173 0.5813 0.7433 0.4946 0.9616 0.9541 11.9

600

AIC
101 0.6987 0.6325 0.7950 0.6412 0.9365 0.4912 19.7
102 0.6910 0.6224 0.7672 0.5947 0.8826 0.8966 36.4
103 0.6436 0.6473 0.7378 0.5787 0.8835 0.9580 36.1

BIC
101 0.7154 0.6807 0.8055 0.6087 0.9400 0.5317 18.6
102 0.7551 0.7038 0.8238 0.6578 0.9165 0.8708 25.9
103 0.6263 0.5756 0.7561 0.5168 0.9832 0.9379 5.2

MIEXP

60

AIC
101 0.6981 0.6371 0.7931 0.6182 0.9345 0.5919 20.3
102 0.6923 0.6209 0.7939 0.6120 0.9503 0.8977 15.4
103 0.7474 0.6604 0.8327 0.7100 0.9552 0.9872 13.9

BIC
101 0.6769 0.6194 0.7791 0.6034 0.9390 0.6186 18.9
102 0.7404 0.6457 0.8269 0.7128 0.9506 0.9033 15.3
103 0.7090 0.6297 0.8090 0.6412 0.9561 0.9881 13.6

300

AIC
101 0.7141 0.6534 0.8031 0.6280 0.9365 0.5245 19.7
102 0.7077 0.6304 0.8053 0.6370 0.9506 0.7852 15.3
103 0.7308 0.6543 0.8212 0.6600 0.9552 0.9038 13.9

BIC
101 0.6814 0.6130 0.7867 0.6057 0.9410 0.5538 18.3
102 0.7551 0.6650 0.8373 0.7169 0.9523 0.7890 14.8
103 0.7090 0.6297 0.8090 0.6412 0.9561 0.9053 13.6

600

AIC
101 0.6756 0.6100 0.7795 0.6098 0.9365 0.4986 19.7
102 0.6923 0.6185 0.7961 0.6120 0.9510 0.7620 15.2
103 0.7308 0.6543 0.8212 0.6600 0.9552 0.8645 13.9

BIC
101 0.6744 0.6076 0.7814 0.5973 0.9410 0.5283 18.3
102 0.7385 0.6529 0.8277 0.6836 0.9532 0.7651 14.5
103 0.7090 0.6297 0.8090 0.6412 0.9561 0.8651 13.6

MIEXP
with

Lower bound
on

Coefficient

60

AIC
101 0.6974 0.6526 0.7942 0.5870 0.9339 0.6089 20.5
102 0.7006 0.6257 0.7997 0.6287 0.9497 0.9047 15.6
103 0.7071 0.6305 0.8063 0.6307 0.9555 0.9864 13.8

BIC
101 0.6603 0.6051 0.7707 0.5701 0.9390 0.6362 18.9
102 0.7641 0.6705 0.8424 0.7328 0.9503 0.9098 15.4
103 0.6686 0.5944 0.7829 0.5848 0.9552 0.9882 13.9

300

AIC
101 0.7224 0.6452 0.8122 0.6648 0.9355 0.5342 20.0
102 0.7077 0.6304 0.8053 0.6370 0.9506 0.7904 15.3
103 0.7071 0.6305 0.8063 0.6307 0.9555 0.9113 13.8

BIC
101 0.7308 0.6554 0.8175 0.6606 0.9416 0.5644 18.1
102 0.7641 0.6739 0.8425 0.7294 0.9516 0.7978 15.0
103 0.6769 0.6004 0.7887 0.5973 0.9561 0.9240 13.6

600

AIC
101 0.7532 0.6910 0.8327 0.6691 0.9368 0.5062 19.6
102 0.6994 0.6183 0.7993 0.6370 0.9506 0.7672 15.3
103 0.7071 0.6305 0.8063 0.6307 0.9555 0.8749 13.8

BIC
101 0.6994 0.6267 0.7985 0.6189 0.9419 0.5388 18.0
102 0.7641 0.6739 0.8425 0.7294 0.9516 0.7760 15.0
103 0.6769 0.6004 0.7887 0.5973 0.9561 0.8971 13.6

Table 3.11 Performance of the models in terms of prediction for the LSVT dataset.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.7143 NAN 0.0062 0.9083 0.0031 0.0000 384.8

Logistic
Regression NA 0.3881 NAN 0.0021 1.0000 0.0010 0.0000 385.6

Regularized
MIEXP

60

AIC
101 0.7905 0.8077 0.8667 0.8583 0.9790 0.4700 8.1
102 0.8095 0.8392 0.8777 0.8583 0.9648 0.9209 13.6
103 0.5762 0.6371 0.7130 0.6167 0.9873 0.9746 4.9

BIC
101 0.7619 0.7838 0.8526 0.9083 0.9811 0.4685 7.3
102 0.7619 0.8040 0.8440 0.8000 0.9645 0.9307 13.7
103 0.6286 0.7258 0.7544 0.5000 0.9966 0.9505 1.3

300

AIC
101 0.7619 0.7802 0.8483 0.8583 0.9811 0.3538 7.3
102 0.7762 0.7973 0.8458 0.9500 0.9593 0.8638 15.7
103 0.5286 0.5929 0.6637 0.5167 0.9966 0.9567 1.3

BIC
101 0.7905 0.8238 0.8684 0.8833 0.9832 0.3480 6.5
102 0.7000 0.7113 0.8023 0.8250 0.9697 0.8599 11.7
103 0.6952 0.7847 0.8042 0.6000 0.9969 0.9282 1.2

600

AIC
101 0.8095 0.8394 0.8770 0.9000 0.9821 0.3031 6.9
102 0.7905 0.8120 0.8646 0.9167 0.9627 0.8372 14.4
103 0.5619 0.6290 0.6896 0.5500 0.9946 0.9547 2.1

BIC
101 0.7071 0.7658 0.8044 0.7000 0.9839 0.2992 6.2
102 0.7643 0.7929 0.8465 0.8833 0.9733 0.8366 10.3
103 0.6619 0.7514 0.7821 0.5667 0.9902 0.9264 3.8

MIEXP

60

AIC
101 0.7738 0.8075 0.8581 0.6833 0.9795 0.4919 7.9
102 0.7619 0.7698 0.8505 0.7750 0.9858 0.8931 5.5
103 0.7952 0.8124 0.8761 0.8500 0.9863 0.9851 5.3

BIC
101 0.7476 0.7696 0.8384 0.8833 0.9821 0.5153 6.9
102 0.7786 0.7974 0.8596 0.6250 0.9860 0.8831 5.4
103 0.8190 0.8261 0.8901 0.7917 0.9855 0.9871 5.6

300

AIC
101 0.7571 0.7767 0.8499 0.8500 0.9813 0.3591 7.2
102 0.7786 0.7788 0.8596 0.8750 0.9860 0.6763 5.4
103 0.7952 0.8124 0.8761 0.8500 0.9863 0.8306 5.3

BIC
101 0.7643 0.7841 0.8494 0.8500 0.9832 0.3816 6.5
102 0.7786 0.7974 0.8596 0.6250 0.9860 0.6804 5.4
103 0.8357 0.8368 0.9009 0.8417 0.9858 0.8486 5.5

600

AIC
101 0.7452 0.7772 0.8439 0.8500 0.9819 0.3305 7
102 0.7786 0.7788 0.8596 0.8750 0.9860 0.6053 5.4
103 0.8262 0.8429 0.8937 0.8500 0.9863 0.7858 5.3

BIC
101 0.7286 0.7735 0.8240 0.8000 0.9845 0.2899 6
102 0.7786 0.7974 0.8596 0.6250 0.9860 0.6071 5.4
103 0.8214 0.8284 0.8934 0.9667 0.9858 0.7929 5.5

MIEXP
with

Lower bound
on

Coefficient

60

AIC
101 0.8738 0.8894 0.9208 0.9417 0.9788 0.5068 8.2
102 0.7619 0.7698 0.8504 0.7750 0.9852 0.8981 5.7
103 0.8429 0.8568 0.9045 0.8500 0.9863 0.9851 5.3

BIC
101 0.7310 0.7534 0.8285 0.8833 0.9801 0.5368 7.7
102 0.7786 0.7942 0.8595 0.6750 0.9858 0.8938 5.5
103 0.8381 0.8457 0.9023 0.9083 0.9858 0.9868 5.5

300

AIC
101 0.8429 0.8439 0.9021 0.9667 0.9803 0.3987 7.6
102 0.7619 0.7698 0.8505 0.7750 0.9858 0.7281 5.5
103 0.8286 0.8435 0.8941 0.8500 0.9863 0.9067 5.3

BIC
101 0.7143 0.7617 0.8183 0.8000 0.9813 0.4332 7.2
102 0.7786 0.7942 0.8596 0.6750 0.9860 0.7158 5.4
103 0.8381 0.8457 0.9023 0.9083 0.9858 0.9240 5.5

600

AIC
101 0.8405 0.8538 0.9007 0.8500 0.9819 0.3418 7
102 0.7786 0.7788 0.8596 0.8750 0.9860 0.6213 5.4
103 0.8262 0.8429 0.8937 0.8500 0.9863 0.7879 5.3

BIC
101 0.6119 0.7548 0.7379 0.7500 0.9834 0.3408 6.4
102 0.7786 0.7974 0.8596 0.6250 0.9860 0.6290 5.4
103 0.8214 0.8266 0.8915 0.9083 0.9858 0.7950 5.5

Table 3.12 Performance of the models in terms of prediction for the Colon dataset.
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Method Time
(sec)

Model
type

Big
M Acc. F-score Harmonic

mean NPV sparsity Opt
gap

Ave.
of

features
Regularized
Log.Reg 60 NA NA 0.9589 0.9381 0.0598 0.9583 0.0309 0.0000 954.6

Logistic
Regression NA 0.3589 0.5027 0.0046 0.0167 0.0023 0.0000 982.7

Regularized
MIEXP

60

AIC
101 0.7357 0.6993 0.8299 0.6250 0.9938 0.9070 6.1
102 0.6018 0.6712 0.7260 0.4050 0.9969 0.9522 3.1
103 0.8250 0.7924 0.8918 0.7267 0.9902 0.9559 9.7

BIC
101 0.4982 0.5521 0.6241 0.3100 0.9992 0.8869 0.8
102 0.3607 0.5049 0.5110 0.0250 0.9999 0.9509 0.1
103 0.5143 0.6679 0.6447 0.3217 0.9986 0.9579 1.4

300

AIC
101 0.7500 0.7136 0.8503 0.6200 0.9933 0.8771 6.6
102 0.7232 0.6775 0.8270 0.6417 0.9962 0.9345 3.7
103 0.8500 0.7971 0.9092 0.8033 0.9902 0.9386 9.7

BIC
101 0.6839 0.6444 0.7909 0.5933 0.9979 0.8389 2.1
102 0.6000 0.5817 0.7423 0.4483 0.9985 0.9289 1.5
103 0.7411 0.6875 0.8377 0.6467 0.9976 0.9460 2.4

600

AIC
101 0.7482 0.7167 0.8488 0.5950 0.9929 0.8655 7.0
102 0.7393 0.6851 0.8388 0.6833 0.9968 0.9194 3.2
103 0.8625 0.7927 0.9169 0.8483 0.9904 0.9268 9.5

BIC
101 0.8304 0.8222 0.8942 0.7600 0.9968 0.8139 3.2
102 0.6125 0.5945 0.7529 0.4500 0.9982 0.9018 1.8
103 0.7696 0.7013 0.8543 0.7550 0.9975 0.9109 2.5

MIEXP

60

AIC
101 0.8625 0.8963 0.9127 0.8450 0.9952 0.6618 4.7
102 0.9857 0.9857 0.9913 0.9750 0.9979 0.8947 2.1
103 0.9143 0.8690 0.9503 0.9183 0.9978 0.9871 2.2

BIC
101 0.8607 0.8138 0.9210 0.8883 0.9957 0.6677 4.2
102 0.9857 0.9857 0.9912 0.9750 0.9978 0.9069 2.2
103 0.8857 0.8413 0.9336 0.8817 0.9978 0.9879 2.2

300

AIC
101 0.8464 0.9373 0.9042 0.8233 0.9958 0.5712 4.1
102 1.0000 1.0000 0.9989 1.0000 0.9979 0.8947 2.1
103 0.8893 0.9319 0.9373 0.8817 0.9978 0.9871 2.2

BIC
101 0.9018 0.8348 0.9442 0.9383 0.9963 0.5943 3.6
102 0.9571 0.9357 0.9746 0.9550 0.9978 0.9069 2.2
103 0.9143 0.8524 0.9503 0.9383 0.9978 0.9879 2.2

600

AIC
101 0.8464 0.9536 0.9043 0.8233 0.9960 0.5245 3.9
102 1.0000 1.0000 0.9989 1.0000 0.9979 0.8947 2.1
103 0.8893 0.9484 0.9373 0.8817 0.9978 0.9871 2.2

BIC
101 0.8750 0.7871 0.9300 0.9133 0.9965 0.5053 3.4
102 0.9571 0.9357 0.9746 0.9550 0.9978 0.9069 2.2
103 0.9143 0.8524 0.9503 0.9383 0.9978 0.9879 2.2

MIEXP
with

Lower bound
on

Coefficient

60

AIC
101 0.8054 0.9468 0.8807 0.8000 0.9951 0.6753 4.8
102 0.9857 0.9857 0.9913 0.9750 0.9979 0.8947 2.1
103 0.9571 0.9357 0.9746 0.9550 0.9978 0.9871 2.2

BIC
101 0.8893 0.8135 0.9363 0.9217 0.9956 0.6777 4.3
102 0.9857 0.9857 0.9912 0.9750 0.9978 0.9069 2.2
103 0.9143 0.8750 0.9490 0.9300 0.9978 0.9879 2.2

300

AIC
101 0.9179 0.9548 0.9517 0.9167 0.9957 0.6022 4.2
102 1.0000 1.0000 0.9989 1.0000 0.9979 0.8947 2.1
103 0.8589 0.9526 0.9164 0.8817 0.9978 0.9871 2.2

BIC
101 0.8893 0.8246 0.9366 0.9250 0.9963 0.6137 3.6
102 0.9429 0.9925 0.9640 0.9550 0.9978 0.9069 2.2
103 0.8571 0.9527 0.9154 0.8850 0.9978 0.9879 2.2

600

AIC
101 0.9143 0.9636 0.9494 0.9183 0.9958 0.5661 4.1
102 1.0000 1.0000 0.9989 1.0000 0.9979 0.8947 2.1
103 0.8589 0.9736 0.9164 0.8817 0.9978 0.9871 2.2

BIC
101 0.9018 0.8437 0.9443 0.9250 0.9964 0.5653 3.5
102 0.9429 1.0000 0.9640 0.9550 0.9978 0.9069 2.2
103 0.8571 0.9736 0.9154 0.8850 0.9978 0.9879 2.2

Table 3.13 Performance of the models in terms of prediction for the Leukemia
dataset. 54



LSVT, Colon, and Leukemia datasets are categorized as hard datasets based on our
definition. We can observe the impact of high dimensionality on the performance
of the models through these datasets. By increasing the number of features, it
takes more time for the upper bound to certify the optimality [56]. We can easily
observe this for hard datasets. However, we can see that the models are of better
performance in terms of prediction accuracy compared to logistic regression models
while constructing sparse models which increases the intrepretability of the models.
This implies that models generated by the logistic regression may be overfitted
which can be easily observed in Leukemia dataset where the prediction accuracy is
extremely low for this model. Overall, overfitting occurs when the model performs
well over the training data but reveals a poor performance over the test data. To
check if overfitting occurs for logistic regression model in Leukemia dataset, we can
look at the accuracy, F-score, and NPV metrics over the training data for this version
and obtained value 1 for all the metrics. Hence, it is a proof of overfitting. Moreover,
we can observe that for LSVT, Colon, and Leukemia datasets, performance of the
regularized logistic regression is significantly better than logistic regression model
in terms of prediction accuracy. This observation represents the importance of
regularization in these models. Finally, we note that for all the hard datasets, there
exists at least one method which outperforms logistic regression models in both
terms of intrepretability and prediction accuracy.

3.2 Computational Results For Optimal Histograms

In this section, we present the computational results for the optimal histograms
model. For this part, we consider three different distributions (Normal, Gamma,
and Poisson) and perform 50 simulations with a sample size of 100 random inte-
ger variables. The goal of this model is to construct histograms with the aim of
minimizing the KL-divergence. Hence, the KL divergence of the histograms gen-
erated with our proposed model and that of an equal bin width are compared. In
this experiment we set the solution of Python package as an initial solution for our
method. We set the number of bins for each simulation as follows:

(3.6) Number of bins = min
{

10, |Si|2

}
,
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where, |Si| is the number of different values generated at each simulation i= 1, . . . ,50.
As an illustration, the value of |S| for the vector [1,1,1,5,6,6,9,9,9,9] is 4. In the
proceeding parts, we will present the performance of the model with regard to the
KL-divergence for each of the distributions.

I. Normal distribution

When considering the Normal distribution, we perform five different sets of sim-
ulations by setting different values for the variance parameter. The mean of all
the Normal distributions, assumed to be equal to 30, as it is not influential to the
performance of the model. In Figure 3.8, we provide the results for the mentioned
structures.

(a) N (30,1) (b) N (30,2)

(c) N (30,3) (d) N (30,4)

(e) N (30,5)

Figure 3.8 KL-divergence of MIEXP method and Equal bin width for Normal dis-
tributions.
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By construction, the KL-divergence of MIEXP model is always smaller, however,
for some instances, there are significant differences with respect to the value of KL-
divergence. As an illustration, we can point the 48th instance of N (30,2). Figure
3.9 provides the histograms of this instance for the both models. In Figure 3.9,
we provided the histogram of 48th simulation for the Normal distribution in which
there is relatively significant difference between MIEXP model and equal bin widths
in terms of KL-divergence value. The values for MIEXP and Equal bin widths are
0.03 and 0.11 ,respectively.

Generally, the larger the variance is, the harder the problem will be. The reason is
that increasing the variance results in generation of a wider range of instances which
results in adding more decision variables and constraints to the model.

(a) N (30,2)

(b) N (30,2) (c) N (30,2)

Figure 3.9 Histograms of initial data, MIEXP model, and Equal bin widths for the
48th simulation of N (30,2).
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II. Gamma distribution

For Gamma distribution, we considered the five sets of parameters showed in (Fig-
ure3.10).

(a) Gamma (1,1) (b) Gamma (1,2)

(c) Gamma (1,3) (d) Gamma (1,4)

(e) Gamma (1,5)

Figure 3.10 KL-divergence of MIEXP method and equal bin widths for Gamma
distributions.

For the Gamma distribution, the number of instances with significant difference in
KL-divergence value is lower than that of Normal case. For this distribution we
also provide the histograms generated by MIEXP and Equal bin width model for
the 15th instance of Gamma (1,1). Similar to the case of Normal distribution, by
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increasing the scale parameter of Gamma distribution, it takes more time for the
solver to obtain the desired optimality gap. However, it is not as extreme as Normal
distribution.

(a) Gamma (1,1)

(b) Gamma (1,1) (c) Gamma (1,1)

Figure 3.11 Histograms of initial data, MIEXP model, and Equal bin widths for the
15th simulation of Gamma(1,1).

For Gamma distribution, we provide the histograms of 15th simulations in which
the values of KL-divergence for MIEXP model and Equal bin widths are 0.03 and
0.29 respectively. In the next part, we will provide the experimental analysis for the
Poisson distribution.
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III. Poissondistribution

For Poisson distribution, we consider the five sets of parameters showed in Fig-
ure.3.12.

(a) Poisson(λ=1) (b) Poisson(λ=2)

(c) Poisson(λ=3) (d) Poisson(λ=4)

(e) Poisson(λ=5)

Figure 3.12 KL-divergence of MIEXP method and Equal bin widths for Poissondis-
tributions.

Poisson distribution, shows a considerable difference between the KL-divergence of
MIEXP and Equal bin width model. Moreover, the performance of the solver for the
Poisson distribution in terms of solution time is relatively better than Gamma and
Normal distributions. In fact, by increasing the parameter of Poisson distribution
(λ), the run time increases similar to the Gamma and Normal distributions, however,
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this increase in solution time is not as much as Normal and Gamma distribution. For
this distribution, we provide the histograms of 18th instance of Poisson(λ =1).For
disPoissontribution, we provide the histograms of 15th simulations in which the
values of KL-divergence for MIEXP model and Equal bin widths are 0.009 and
0.123, respectively.

(a) Poisson(λ=1)

(b) Poisson(λ=1) (c) Poisson(λ=1)

Figure 3.13 Histograms of initial data, MIEXP model, and Equal bin widths for the
18th simulation of Poisson(λ=1).

61



4. Conclusion

This thesis is dedicated to formulate and solve two problems from the intersection of
machine learning and optimization called feature subset selection in logistic regres-
sion and optimal histogram construction. For both of the mentioned problems, we
developed a mixed-integer exponential cone programming (MIEXP) model. To the
best of our knowledge, there has not been any attempt in the literature to formulate
these problems as a conic program. Our motivation for the first problem was the
undeniable role of logistic regression in fitting a model for the datasets in which the
value of dependent variable is limited to a finite set of values. The presence of this
type of dataset in important research areas such as medical science has made logistic
regression an area of research interest. In this thesis, given a binary output dataset,
we aimed to fit a logistic regression model. Our main goal was to select the truly
important independent variables when constructing the model, which is known as
feature subset selection problem. There are multiple heuristic and exact methods
for feature subset selection in logistic regression such as stepwise model selection
methods and Bayesian methodologies. In this thesis, we developed a novel exact
method using the conic representation of the maximum likelihood function. We also
introduced modified versions of this model by considering widely used goodness of
fit measures (GOF) including Akaike Information Criteria (AIC), Bayesian Informa-
tion Criteria (BIC), and Adjusted McFadden. Additionally, we analyzed the impact
of regularization on the performance of each version. For the evaluation purposes,
the performance of the models in both terms of interpretability (constructing sparse
models) and prediction accuracy were considered over the toy examples provided
in [39] and a group of benchmark datasets from the literature. The performance
of our models over the toy examples were significantly better than those methods
provided in [39] and for the benchmark datasets, were either better or very close to
these methods. Although our main focus was on the interpretability of the generated
model by choosing the truly important features, the performance of this model in
terms of prediction accuracy was highly satisfying as well. We note that, in the case
of high dimensionality, especially when the number of features is larger than the
number of observations, the model might fail to reach the desired optimality gap.
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We showed that the reason might be slow convergence of the upper bound to certify
the optimality gap while the current feasible solution might already be an optimal
solution. One solution to reduce the optimality gap might be modifying the model
by adding valid inequalities which can be considered in the future works.

In the second model, we introduced an MIEXP formulation for the optimal his-
togram construction problem. Our motivation to model this problem was its impor-
tance in the field of machine learning and information theory. Our solution approach
was based on the conic representation for the KL-divergence function. In this prob-
lem, for a given set of integer data, we developed a model to fit a histogram to this
data with the aim of minimizing the KL-divergence of the data to the fitted model
through finding optimal bin widths in the histogram. We experimented with differ-
ent probability distributions for the data including Normal, Gamma, and Poisson.
Then, we compared the KL-divergence of our fitted model with the case of equal
bin widths. The result showed that at the worst case, the KL-divergence value for
our model was equal to that of equal bins width while in the most cases it was sig-
nificantly lower. We observed that increasing the variance of the data will impose a
computational burden in solving the model. The performance of the model in terms
of solution time was significantly better for the Poisson distribution, especially in
comparison with the Normal distribution.

Finally, we remind that the common characteristic of both problems considered in
this thesis was that their objective functions were Exponential Cone-representable.
For the future works, one might consider the sets and functions which have expo-
nential cone representation such as (entropy function) and try to formulate related
applications such as (Decision Tree) as an MIEXP problem.
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Appendices

A Computational Results for Sparse Linear Regression

For the purpose of implementation, three different collections of random data points
are generated considering different distributions for the error term as the following:

I. ε∼ Uniform (-1,1)

II. ε∼ Normal (0,1)

III. Standard-Cauchy

Toy Example:

To generate the data points, we assume ten independent variables (features), where
the coefficients of the first five variables are set in the order of 102 while the rest
five are set in the order of 10. The true coefficient vector is [250,-200,220,-190,180,-
10,15,8,-13,17,10], and 150 data points and error terms are randomly generated by
this predetermined coefficient vector. For the purpose of evaluating the performance
of the model in the term of sparsity, two different upper-bounds are set for the k in
Table 1 which are the number of variables to be selected.

k = 10

`1

Uniform [10.09 249.97 -200.17 220.27 -189.96 179.99 -10.20 14.86 7.86 -13.00 17.07 ]
Normal [10.02 250.16 -199.56 220.06 -189.77 179.95 -9.74 15.36 7.68 -12.73 17.29 ]
Cauchy [10.24 249.90 -199.72 220.11 -189.61 179.82 -9.84 15.02 6.87 -12.76 16.86 ]

`2

Uniform [10.07 249.86 -200.12 220.16 -190.04 179.98 -10.14 14.88 7.84 -13.05 17.14 ]
Normal [10.02 249.94 -199.84 220.06 -189.66 179.94 -9.89 15.28 7.65 -12.97 17.08 ]
Cauchy [10.43 250.26 -198.76 221.98 -189.72 180.40 -10.18 14.00 6.99 -13.18 16.55 ]

`∞

Uniform [10.07 249.95 -199.94 220.07 -190.01 180.03 -10.11 14.94 7.96 -13.17 17.00 ]
Normal [10.15 249.88 -200.10 220.31 -189.43 179.86 -10.07 15.06 7.71 -12.99 17.07 ]
Cauchy [12.52 251.76 -193.11 228.18 -187.60 179.38 -6.04 13.91 10.21 -16.24 13.40 ]

k = 5

`1

Uniform [6.50 249.70 -196.91 223.05 -192.84 171.67 0.0 0.0 0.0 0.0 0.0 ]
Normal [7.02 250.04 -195.51 222.49 -192.51 171.33 0.0 0.0 0.0 0.0 0.0 ]
Cauchy [8.64 251.48 -195.55 226.67 -191.27 173.31 0.0 0.0 0.0 0.0 0.0 ]

`2

Uniform [7.33 250.08 -198.92 222.11 -190.69 174.20 0.0 0.0 0.0 0.0 0.0 ]
Normal [7.28 250.18 -198.66 222.00 -190.36 174.21 0.0 0.0 0.0 0.0 0.0 ]
Cauchy [7.74 250.53 -197.47 223.95 -190.43 174.80 0.0 0.0 0.0 0.0 0.0 ]

`∞

Uniform [10.24 251.64 -193.29 218.81 -188.85 174.27 0.0 0.0 0.0 0.0 0.0 ]
Normal [11.06 250.43 -192.77 220.07 -189.25 171.87 0.0 0.0 0.0 0.0 0.0 ]
Cauchy [7.50 254.62 -189.26 231.09 -189.67 170.42 0.0 0.0 0.0 0.0 0.0 ]

Table 1 The estimated coefficient vectors using `1, `2, and `∞ norms with respect
to different error term distributions and values of k.
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In the case that k was equal to five the model chose the variables with highest
coefficient absolute values. It can imply the significant effect of the variables with
higher coefficient to generate a model that predict the dependent variable more
accurately. Note that the first element of each vector is the intercept which is forced
to be always chosen by the model.

In Table-2, the Mean Squared Error (MSE) of estimated coefficients for different
values of k is reported.

k = 10 k = 8 k = 5
Normal Uniform Cauchy Normal Uniform Cauchy Normal Uniform Cauchy

`1 0.07 0.03 0.06 1.34 1.35 1.37 2.96 2.96 3.03
`2 0.06 0.01 0.43 1.31 1.32 1.39 2.93 2.93 2.94
`∞ 0.08 0.00 2.91 1.36 1.34 2.80 3.15 3.159 3.53

Table 2 Mean squared error (MSE) of estimated coefficient vectors.

As Table 2 represents, when k is equal to 10 and the model is not sparse, the norms
`1, `2, and `∞ performs better when the error term distribution is Cauchy, Normal,
and Uniform, respectively. However, by decreasing the number of variables to be
selected to ensure sparsity, in most of the cases `2 reveals a better performance (for
k=8 and k=5).

The coefficient error are measured in Table 2 but to evaluate the performance of
model, the training and test errors should be considered. For this purpose, we
implemented 10-fold cross validation for 150 data points where 90 percent of the
data used for training and remaining 10 percent for the test at each iteration. This
procedure repeated for 5 iterations. Table 3 shows the average of training errors
and Table 4 represents that of test errors.

k = 10 k = 8 k = 5
Normal Uniform Cauchy Normal Uniform Cauchy Normal Uniform Cauchy

`1 0.08 0.04 0.76 0.58 0.58 0.98 1.41 1.40 1.58
`2 0.08 0.04 0.74 0.56 0.57 0.96 1.39 1.38 1.55
`∞ 0.09 0.04 1.49 0.60 0.61 1.51 1.49 1.497 1.85

Table 3 Train errors for sparse linear regression model.

k = 10 k = 8 k = 5
Normal Uniform Cauchy Normal Uniform Cauchy Normal Uniform Cauchy

`1 0.27 0.15 1.79 1.87 1.92 2.84 4.40 4.34 4.85
`2 0.27 0.15 1.96 1.82 1.84 2.87 4.31 4.29 4.77
`∞ 0.30 0.14 4.77 1.89 1921.00 4.90 4.52 4.51 5.76

Table 4 Test errors for sparse linear regression model.

As it can be concluded from these two tables, almost the same pattern for MSE
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applies for the training and test error meaning that in the presence of sparsity, the
`2 norms has the best performance, in general.
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