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ABSTRACT

COMPARISON OF ROBUST OPTIMIZATION MODELS FOR PORTFOLIO
OPTIMIZATION

POLEN ARABACI

INDUSTRIAL ENGINEERING M.S. THESIS, August 2020

Thesis Supervisor: Assist. Prof. Dr. BURAK KOCUK

Keywords: portfolio optimization, robust optimization, conic programming

Using optimization techniques in portfolio selection has attracted significant atten-
tion in financial decisions. However, one of the main challenging aspects faced in
optimal portfolio selection is that the models are sensitive to the estimations of the
uncertain parameters. In this thesis, we focus on the robust optimization problems
to incorporate uncertain parameters into the standard portfolio problems. First, we
provide an overview of well-known optimization models when risk measures consid-
ered are variance, Value-at-Risk, and Conditional Value-at-Risk. Then, we provide
reformulations of the robust versions of these portfolio optimization problems as
conic programs when the uncertainty sets involve polytopic, ellipsoidal, or budgeted
uncertainty for either mean return vector or covariance matrix or both. Finally, we
conduct a computational study on two real data sets to evaluate and compare the
effectiveness of the robust optimization approaches.
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ÖZET

PORTFÖY ENIYILEMESI IÇIN GÜRBÜZ ENIYILEME MODELLERININ
KARŞILAŞTIRMASI

POLEN ARABACI

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, AĞUSTOS 2020

Tez Danışmanı: Dr. BURAK KOCUK

Anahtar Kelimeler: portföy eniyilemesi, gürbüz eniyileme, konik programlama

Portföy seçiminde eniyileme tekniklerinin kullanılması finansal kararlarda büyük ilgi
görmüştür. Bununla birlikte, optimal portföy seçiminde karşılaşılan temel zorluk-
lardan biri, modellerin belirsiz parametrelerin tahminlerine duyarlı olmasıdır. Bu
tezde, belirsiz parametreleri standart portföy problemine dahil etmek için gürbüz
eniyileme problemlerine odaklanıyoruz. İlk olarak, dikkate alınan risk önlemleri
varyans, Riske Maruz Değer ve Koşullu Riske Maruz Değer olduğunda, bilinen eniy-
ileme modellerine genel bir bakış sunuyoruz. Ardından, belirsizlik kümeleri, orta-
lama getiri vektörü veya kovaryans matrisi veya her ikisi için politopik, elipsoidal
veya bütçelenmiş belirsizlik içerdiğinde, bu portföy eniyileme problemlerinin gürbüz
versiyonlarının konik program olarak yeniden gösterilmesini sağlıyoruz. Son olarak,
gürbüz eniyileme yaklaşımlarının etkinliğini değerlendirmek ve karşılaştırmak için
iki gerçek veri seti üzerinde sayısal bir çalışma yürütüyoruz.
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1. INTRODUCTION

Portfolio selection problem seeks to determine the best investment to be made in a
number of risky assets given a certain amount of fund. Due to the uncertain nature
of asset returns, future performance of the selected portfolio may have poor out-
comes, hence, investors also need to consider the risk associated with their decisions.
Therefore, portfolio optimization has become one of the most popular methods used
in financial portfolio decisions. In the early years of 1950’s, the theory of optimal
portfolio selection was developed by Markowitz (1952). According to the theory,
the optimal portfolio problem aims to construct a portfolio which achieves maxi-
mum expected return with a minimum risk. However, the existence of these two
conflicting objectives has become one of the most challenging aspects of the optimal
portfolio problem. Thus, risk adjusted models are considered to combine risk and
return to present a trade-off.

Although the Markowitz model has been used as a framework to find the opti-
mal portfolios for decades, it suffers from a number of shortcomings. As one of
the shortcomings, variance is considered as not an adequate risk measure. There-
fore, models with different measures of risks such as Value-at-Risk and Conditional
Value-at-Risk are considered in literature. Moreover, despite the importance of the
Markowitz model in theory, portfolios determined by this model are sensitive to
the estimations of the parameters. In this thesis, we illustrate this sensitivity issue
related to the portfolio optimization in Figure 5.1. This example demonstrates that
“optimal” decisions obtained from the Markowitz model might have poor perfor-
mance in an out-of-sample test due to the existence of estimation errors. In order to
incorporate estimation errors or data perturbations into the portfolio optimization
process, we consider robust optimization. More specifically, we present an analysis
of several robust portfolio optimization problems with different uncertainty sets and
reformulated the associated two-stage problems into their single-stage conic pro-
gram equivalents. We also compare the performance of these models using two real
datasets from the literature.

The remainder of the thesis is organized as follows: In Chapter 2, we review the

1



related literature on different approaches of portfolio optimization. In Chapter 3, we
review some of the well-known optimization problems to compromise the conflicting
objectives of the standard optimization problems. In addition to these acknowledged
optimization models, we present robust optimization models involving uncertain
parameters for a variety of financial risks in Chapter 4. Here, we cast the robust
optimization problems as conic program when the uncertainty sets involve polytopic,
ellipsoidal or budgeted uncertainty for the parameters. In Chapter 5, we provide
our computational experiments on S&P 500 and MIBTEL data sets and compare
the resulting optimal portfolios. Finally, we present the concluding remarks of this
thesis in Chapter 6.
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2. LITERATURE REVIEW

In the 1950’s, Markowitz (1952) developed the theory of optimal selection of portfo-
lios. Markowitz porfolio optimization problem, also called the mean-variance prob-
lem, adopts variance as the risk measure. The paper acknowledges that the expected
return is desirable while the variance is undesirable, so there is a trade off between
risk and return. Although Markowitz portfolio problem is used as the primary
framework, there are many studies that point out its shortcomings. Black & Lit-
terman (1992) show that the decision of optimal portfolio is sensitive to the mean
vector and covariance matrix estimations in the classical mean-variance model. The
authors point out that even a small change in the mean estimation can result in a
large change in the optimal portfolio selection. Best & Grauer (1991) focus on sen-
sitivity of optimal portfolios. Their analysis shows that optimal portfolio weights
obtained from the mean-variance model are highly sensitive to changes in asset
means. Chopra & Ziemba (2013) also focus on the effect of errors in inputs on
optimal portfolio. They show that although errors in mean have extreme effects on
optimal portfolio, errors in variance and covariance matrix also affect the optimal
portfolio choice. Broadie (1993) investigates the effects of estimation errors of pa-
rameters on the results of the mean-variance model using simulation. According to
the paper, using estimated parameters can cause significant errors in efficient fron-
tiers due to the error-maximization property and the estimated frontier results with
larger errors than the actual frontier.

In the literature, there are many different approaches on portfolio optimization to
resolve the sensitivity issue experiences in mean-variance optimal portfolio problems
due to slight changes in inputs. Frost & Savarino (1988) suggest to conduct Bayesian
estimation of mean and covariance to reduce the errors in estimation and improve
the portfolio performance. Even though their approach reduces the sensitivity of
the parameter estimates, it does not provide any optimality guarantee on the port-
folio. Black & Litterman (1990) propose an approach to overcome the sensitivity
issue by combining the classical Markowitz approach with a prior information on
the market. Thus, investors can combine and compare their view for currencies
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and fixed-income securities’ expected returns, which are generated by using Inter-
national Capital Asset Pricing Model (ICAPM) equilibrium. Idzorek (2007) claims
that the shortcomings of Markowitz portfolio optimization can be overcome by the
Black–Litterman model. The author gives information about relatively few works
related to the Black-Litterman model and combine them step by step. This paper
introduces a new method to control tilts and the final portfolio weights caused by
views.

All the studies mentioned above investigate the problem with no consideration on
time varying effect on data. Different from these studies, some construct weighted
portfolio problems to focus on time varying effect on data. According to Perry
(2010), the Markowitz model generally uses the historical data as equally weighted
but this model neglects the current market conditions. In order to take current
market conditions into consideration more accurately, this paper uses exponentially
weighted moving average (EWMA). In their approach, EWMA assigns weight fac-
tors to data points that decrease exponentially for the older observations. Lee &
Stevenson (2003) also use time weighted returns in order to take current market con-
ditions into consideration more accurately. In order to apply weights to the data,
their method uses the length of historical estimation period and forms a Fisher dis-
tributed lag model. For the optimal portfolio selection, Horasanlı & Fidan (2007)
consider exponentially weighted moving averages and generalize autoregressive con-
ditional heteroscedasticity techniques.

2.1 Portfolio Optimization with Robust Approaches

Robust optimization, which considers uncertainty in parameters, is a suitable ap-
proach to construct optimal portfolios. Ben-Tal & Nemirovski (1998) has a signif-
icant effect on the robust optimizations’ progress. Throughout the years, different
researchers show that the robust optimization can incorporate the perturbations in
the parameters into the optimization process and avoid infeasible solutions. For ex-
ample, Bertsimas, Brown & Caramanis (2011) study the robust optimization theory
by focusing on the computational attractiveness and applicability of approaches.
As one of the applications of robust optimization, they develop uncertainty models
for mean return and covariance in portfolio selection. Goldfarb & Iyengar (2003)
also consider robust portfolio selection problems and develop a second-order cone
program that captures the uncertainty structures for market parameters. Lobo &
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Boyd (2000) focus on the worst-case analysis and robustness. The authors con-
struct the problem of minimizing the worst-case variance with box and ellipsoidal
uncertainty sets for mean and covariance. They show that computing the worst-case
variance can be formulated as semidefinite programming problem and it can be ef-
ficiently computed by using interior point methods. Ceria & Stubbs (2006) explore
the negative effect of estimation error on mean-variance optimal portfolios. The au-
thors show that estimation errors in expected returns can cause optimal portfolios
to significantly overestimate the true optimal portfolio. They propose to use robust
optimization in order to decrease the sensitivity of asset weights in mean-variance
optimal portfolios against slight changes in input parameters and constraints. Their
analysis shows that the efficient frontier of the portfolios obtained by using robust
optimization can be closer to the true efficient frontier and the realized returns can
be better. Instead of focusing on mean vector, DeMiguel & Nogales (2009) propose
a robust approach for portfolio selection problem by using robust estimators. Their
method is performed by solving a single nonlinear program and show that their so-
lution to the portfolio construction problem has better stability. Tütüncü & Koenig
(2004) focus on finding optimal asset allocation under the worst possible realiza-
tions of the uncertain inputs. They construct componentwise uncertainty sets for
the mean return vector and the covariance matrix. Their paper formulates resulting
problem as a saddle-point problem with semidefinite constraints.

2.2 Portfolio Optimization with Value-at-Risk

Despite the fact that the mean-variance portfolio problem is accepted as the pri-
mary framework, it is argued that the variance is not an adequate measure of risk.
Instead of variance, Value at Risk (VaR) is embraced as a better risk measure for
downside risk in a portfolio. Goldfarb & Iyengar (2003) consider the robust VaR
portfolio selection problem and recast it as a second-order cone program under nor-
mal distribution. This paper proposes models that are robust to parameter uncer-
tainty and estimation errors. The authors conducted two types of tests; performance
on simulated data and sample path performance on real market data. In order to
avoid user-defined parameters, they select both the classical and robust portfolios by
maximizing the Sharpe ratio. Ghaoui, Oks & Oustry (2003) investigate the robust
portfolio optimization using worst-case VaR. They assume that the distribution is
only partially known with information on the mean vector and covariance matrix are
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available through box and ellipsoidal sets. Their approach computes and optimizes
the worst-case VaR, the largest VaR accessible. Models are cast as semidefinite pro-
grams along with the uncertainty in moments, factor models, support constraints
and relative entropy information.

2.3 Portfolio Optimization with Conditional Value-at-Risk

Although VaR is a popular measure of risk, it suffers from its shortcoming as in-
stability and difficult to work with different distributions than normal distribution.
Therefore, many researchers have taken Conditional Value-at-Risk (CVaR), which
is defined as the mean of the tail distribution exceeding VaR, into consideration due
to its desirable properties. Moreover, VaR is neither a coherent risk measure (since
it is not subadditive) nor a convex function (Artzner, Delbaen, Eber & Heath, 1999;
Pflug, 2000) Rockafellar & Uryasev (2002); Rockafellar, Uryasev & others (2000)
introduce an approach on optimizing or hedging a portfolio by minimizing CVaR.
Although they focus on minimizing CVaR instead of VaR, they indicate that port-
folios with low CVaR have also low VaR. They show that using linear programming
and nonsmooth optimization, CVaR can be minimized efficiently.

Krokhmal, Palmquist & Uryasev (2002) focus on extending the approach for opti-
mization of CVaR to solve optimization problems with CVaR constraints. Instead
of minimizing CVaR, they suggest to maximize expected returns with a set of con-
straints on CVaR. The authors show that by using multiple CVaR constraints with
different confidence levels, loss distribution can be changed. Their approach provides
a Monte Carlo simulation to avoid making assumptions on distribution. Therefore,
the approach can be used for large number of instruments and scenarios. Fur-
thermore, the comparison with the standard mean-variance approach shows that
using CVaR in constraints for given expected returns results with smaller risk than
the mean-variance approach. Zhu & Fukushima (2009) propose a robust portfolio
problem where they consider the worst-case CVaR with partial information on the
underlying probability distribution. The authors formulate the portfolio problem
either as linear or second-order cone program depending on which type of uncer-
tainty (box or ellipsoidal) set is considered. This paper shows that the larger risk
is usually rewarded by a higher return. As a result of their market data simulation
and Monte Carlo simulation, the author argue that the risk increases as the value
of the uncertainty parameter increases. Although a robust portfolio policy usually

6



depends on the structure of the uncertainty set, they claim that their approach
has more flexibility in portfolio selection. Different from the studies above, Pang
& Karan (2018) prefer to use multi-variate elliptical distributions rather than the
multi-variate normal distribution on returns to analyze the non-normal behavior of
data. The portfolio problem is constructed as the Black-Litterman model with upper
bound on the risk measure CVaR. Kocuk & Cornuéjols (2020) consider the portfo-
lio optimization that minimizes the Conditional Value-at-Risk under a mixture of
normal distribution. In order to incorporate market information into a portfolio,
they propose a Black-Litterman approach using an inverse optimization framework.
Their approach show that the portfolio risk can be reduced while achieving similar
returns with the classical market-based approaches.
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3. STANDARD OPTIMIZATION MODELS

In this chapter, we review the standard optimization problems for portfolio construc-
tion. We assume throughout this chapter that the following pieces of information
are known and given:

• n is the total number of assets.

• µ is mean vector of returns of n assets.

• Σ is positive semidefinite covariance matrix of returns of n assets.

In this chapter, decision variable x denotes a portfolio vector.

In an ideal situation, the aim of an investor is to achieve minimum risk and maximum
expected return. However, since these two objectives might be conflicting, a com-
promise has to be made. We will now review some of the well-known optimization
problems proposed for this purpose.

3.1 Markowitz Model

The theory of optimal selection of portfolios is developed by Markowitz (1952).
Markowitz porfolio optimization problem, also called mean-variance problem, adopts
variance as the risk measure. The theory presents a trade-off between risk and return
as follows.
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min
x

xTΣx− τµTx(3.1a)

s.t. eTx= 1(3.1b)

x≥ 0.(3.1c)

The first and the second parts of the objection function (3.1a) refer to risk, which
is measured by the variance of the return, and the expected return of the portfolio,
respectively. Since minimizing risk and maximizing expected return at the same
time might be conflicting, the expected return is multiplied with a constant factor
τ > 0 to combine risk and return into a single objective function. Here, 1

τ is a risk-
aversion constant used to quantify the trade-off between the expected return and
risk. The first constraint (3.1b) corresponds to the summation of the proportions of
the total funds invested in portfolio vector xi equals to 1. In order to prevent short
sales, we also introduce the non-negativity constraint (3.1c).

3.2 Worst-Case Value-at-Risk Model

Value-at-risk (VaR) is a statistical measure which quantifies the level of risk within
a portfolio. Cornuejols & Tütüncü (2005) exhibits the general definition of α-level
VaR as where X is a random variable that stands for loss from a portfolio for a
certain period of time. Moreover, it is stated that the negative value of X represents
return of a portfolio. The following equation gives the formulation of the α-level
VaR where α ∈ (0,1) :

VaRα(X) := min{γ : P (X ≥ γ)≤ 1−α}.(3.2)

Throughout the years, many studies have focused on optimizing the portfolio by
using VaR as the risk measure. As discussed in the literature review, VaR is seen as
a ‘better’ risk measure than variance since it is directly related to the quantification
of the loss of a portfolio. We use the formulation of the worst-case VaR as the
largest VaR attainable problem from Ghaoui et al. (2003), which does not require
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any distributional assumption.

min K(α)
√
xTΣx−µTx(3.3a)

s.t. (3.1b)− (3.1c).

Independent from any assumptions on distribution to the random returns, the ob-
jective function (3.3a) refers to largest value that can be assigned to V aRα(X).
Thus, this defines an upper bound on VaR. The risk factor K(α) is defined as
K(α) =

√(
1−α
α

)
, proposed in the papers Ghaoui et al. (2003) and Bertsimas &

Popescu (2002) for finding the upper bound on VaR.

3.3 Conditional Value-at-Risk Model

Although VaR is a popular risk measure, it is neither coherent nor convex in general.
Instead, many practitioners prefer to use Conditional Value-at-Risk (CVaR), which
has these two desirable features.

One can obtain CVaR, also called the expected loss given that the loss exceeds VaR,
using the following formula:

CVaRα(X) =−E[X |X ≤−VaRα(X)] .(3.4)

Here, the random variable X represents the return of a portfolio investment.

As an example of a portfolio optimization problem involving CVaR, let us assume
that the return vector is distributed as a multivariate normal with parameters µ
and Σ, and replace the variance term in the Markowitz model with CVaR. Then,
we obtain the following convex program:

min
x

(
−µTx+ φ(Φ−1(α))

α

√
xTΣx

)
− τµTx(3.5a)

s.t. (3.1b)− (3.1c).
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Here, φ and Φ are the probability density function (pdf) and cumulative distribu-
tion function (cdf) of the standard normal distribution, and α is a predetermined
constant. The objective function (3.5a) refers to minimizing the CVaR as a risk
measure and combining the risk with the expected return for some τ > 0.

We note that there may not exist a closed form expression for CVaR under an
arbitrary distribution.
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4. ROBUST OPTIMIZATION MODELS

Robust optimization considers uncertainty in problem parameters. One can describe
the uncertainty of the parameters by defining uncertainty sets. Our main motivation
to use robust optimization approaches in portfolio optimization is to overcome the
sensitivity problems caused by the uncertainty in data. To simply put, we have
no complete knowledge on parameters of portfolio problem in real life. Therefore,
estimating these unknown parameters can result in errors which have negative effects
on the optimal portfolios obtained through optimization.

The purpose of this chapter is to present an analysis of robust portfolio optimization
problems involving uncertain parameters. We show how to build robust portfolio
problems where objective function has robustness and minimizes the risk with a
trade-off between risk and return. Even tough we cannot know the exact value
of true parameters in reality, we also cannot expect to solve portfolio optimiza-
tion problems with high accuracy with fully unknown parameters (Lobo & Boyd
(2000)). Therefore, we build the two-stage problems where the parameters are
partially known with different uncertainty sets and then obtain their single-stage
equivalents as conic programs.

Throughout this chapter, we will denote the sample mean and sample covariance as
µ̂ and Σ̂, respectively.
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Table 4.1 Portfolio Optimization Models with Uncertainty Sets.

Uncertainty
Set

Optimization
Model Markowitz

(1952)
Worst Case
VaR (Ghaoui
et al. (2003))

CVaR Mixture
(Kocuk & Cor-
nuéjols (2020))

Polyhedral for mean Lobo & Boyd
(2000)

Ghaoui et al.
(2003)

Budgeted for mean (Ben-Tal
& Nemirovski (2001), Bertsi-
mas & Sim (2004))
Ellipsoidal for mean Ceria &

Stubbs
(2006),
Lobo & Boyd
(2000)

Ghaoui et al.
(2003)

Covariance Lobo & Boyd
(2000)

Mean-Covariance Lobo & Boyd
(2000)

Ghaoui et al.
(2003)

We note that Table 4.1 shows some well-known portfolio optimization models and
uncertainty sets for the parameters considered in this thesis.

4.1 Markowitz Model

Let us recall problem (3.1) we stated as in the Markowitz framework that combines
the expected return and variance in the objective function. In order to incorporate
robustness into the objective function, we consider the following general form of a
two-stage problem:

min
x

max
(Σ,µ)∈S

xTΣx− τµTx(4.1a)

s.t. (3.1b)− (3.1c)

Here, S denotes the uncertainty set and τ is a given positive number. In the sequel,
we reformulate problem (4.1) as a single-stage conic program when the uncertainty
set S involves polytopic, budgeted or ellipsoidal uncertainty for either mean µ or
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covariance Σ or both.

4.1.1 Polyhedral Uncertainty for Mean

In this section, we first look at a generic polyhedral uncertainty for mean µ while
assuming that Σ is known (or estimated from data) as Σ̂ and µ̄ =µ̂ (although other
choices are allowed). In particular, let us consider the following uncertainty set:

S := {(µ,Σ) : Aµ≤ b, Σ = Σ̂},

where A ∈ Rm×n and b ∈ Rn are given.

The inner problem in (4.1) can be written as below:

max
µ
−µTx(4.2a)

s.t. Aµ≤ b. : λ(4.2b)

Let us associate a dual variable λ with primal constraint (4.2b) and obtain the dual
problem as follows:

min
λ

λT b(4.3a)

s.t. ATλ=−x(4.3b)

λ≥ 0.(4.3c)

Assuming that the strong duality holds between problems (4.2) and (4.3), we ob-
tain a single-stage reformulation of problem (4.1) as the following convex quadratic
problem:

min
x,λ
{xTΣx+ τλT b : ATλ=−x,eTx= 1,λ,x≥ 0}.(4.4)

Next, we focus on a special case of polyhedral uncertainty, which we will refer to as
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box uncertainty. In particular, let us consider the following uncertainty set:

S := {(µ,Σ) : ‖µ− µ̄‖∞ ≤Υ, Σ = Σ̂},

where Υ is a positive scalar controlling the robustness level.

Firstly, the inner problem of (4.1) can be written as follows:

max
µ
−µTx(4.5a)

s.t. ‖µ− µ̄‖∞ ≤Υ.(4.5b)

Since constraint (4.5b) involves the infinity-norm, we linearize the inner problem as
below:

max
µ
−µTx(4.6a)

s.t. µ− µ̄≤Υe : λ+(4.6b)

−µ+ µ̄≤Υe. : λ−(4.6c)

Here, e is defined as the vector of ones. By introducing the dual variables λ+ and λ−

for constraints (4.6b) and (4.6c) respectively, we obtain the dual problem as follows:

min
λ+,λ−

λ+T (Υ + µ̄) +λ−T (Υ− µ̄)(4.7a)

s.t. λ+−λ− =−x(4.7b)

λ+,λ− ≥ 0.(4.7c)

Since strong duality always holds between problems (4.6) and (4.7) (due to the fact
the feasible region of the primal problem is a nonempty polytope), we obtain the
single-stage reformulation of problem (4.1) as follows:
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min
x,λ+,λ−

{xTΣx+ τ(λ+T (Υ + µ̄) +λ−T (Υ− µ̄)) :

λ+−λ− =−x,eTx= 1,x,λ+,λ− ≥ 0}.(4.8)

Note that the problem (4.8) is again a convex quadratic optimization problem.

4.1.2 Budgeted Uncertainty for Mean

Here, we consider a budgeted uncertainty (Ben-Tal & Nemirovski (2001)), which can
be treated as the intersection of the infinity-norm and the 1-norm for mean µ, while
assuming that Σ is known (or estimated from data) as Σ̂ and µ̄ =µ̂ (although other
choices are allowed). In particular, let us consider the following uncertainty set:

S :=

(µ,Σ) :
n∑
j=1

|µj− µ̄j |
µ̄j

≤Υ, Σ = Σ̂

 ,
where Υ is a positive scalar controlling the robustness level.

Assuming that µ̄ is a positive vector, we first write the inner problem of (4.1) as
follows:

max
µ
−µTx(4.9a)

s.t.
n∑
j=1

|µj− µ̄j |
µ̄j

≤Υ.(4.9b)

Since constraint (4.9b) involves absolute values, we linearize the inner problem as
follows:

max
µ
−µTx(4.10a)

s.t. µj− µ̄j
µ̄j

≤ uj j = 1, ...,n : u+
j(4.10b)

µj− µ̄j
µ̄j

≤−uj j = 1, ...,n : u−j(4.10c)
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n∑
j=1

uj ≤Υ. : γ(4.10d)

By introducing the dual variables u+
j ,u

−
j , and γ for constraints (4.10b), (4.10c), and

(4.10d) respectively, we obtain the dual problem as the following form:

min eT (u+−u−) +γΥ(4.11a)

s.t. 1
µ̄j
u+− 1

µ̄j
u− =−x(4.11b)

γe−u+−u− = 0(4.11c)

γ,u+,u− ≥ 0(4.11d)

Finally, we reformulate the single-stage equivalent of problem (4.1) as the following
convex quadratic problem:

min
x,γ,u+,u−

{
(xTΣx+ τ(eT (u+−u−) +γΥ)) :

eTx= 1, 1
µ̄j
u+
j −

1
µ̄j
u−j =−xj ,γeT −u+−u− = 0,γ,u+,u−x≥ 0

}
.(4.12)

4.1.3 Ellipsoidal Uncertainty for Mean

In this section, an ellipsoidal uncertainty is considered for mean µ while assuming
that Σ is known (or estimated from data) as Σ̂. Let us consider the following
uncertainty set specifically:

S := {(µ,Σ) : (µ− µ̄)TΩ−1(µ− µ̄)≤Υ2, Σ = Σ̂},

where Υ is a positive scalar controlling the robustness level and Ω � 0 is given (in
the computational experiments, we will take Ω = Σ̂ and µ̄ =µ̂ although other choices
are also allowed).

Firstly, we write the inner problem of (4.1) as below:
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max
µ
−µTx(4.13a)

s.t. ‖Ω−1/2(µ− µ̄)‖2 ≤Υ.(4.13b)

Let us introduce µ′ := Ω1/2(µ− µ̄) and rewrite the problem (4.13) as follows:

−xT µ̄+ max
µ′
− (xTΩ1/2)µ′(4.14a)

s.t. ‖µ′‖2 ≤Υ.(4.14b)

By using Karush-Kuhn-Tucker (KKT) optimality conditions, we obtain the optimal
value of problem (4.14) as below:

−xT µ̄+‖ΥΩ1/2x‖2.

Finally, we obtain a single-stage reformulation of problem (4.1) as the following:

min
x
{xTΣx− τxT µ̄+ τ‖ΥΩ1/2x‖2 : eTx= 1,x≥ 0}.(4.15)

Note that problem (4.15) is a convex program. In particular, it can be recast as a
second-order cone program.

4.1.4 Uncertainty for Covariance Matrix

Now, we look at the case in which the covariance matrix Σ is uncertain while as-
suming that µ is known (or estimated from data) as µ̂. In particular, let us consider
the following uncertainty set:

S := {(µ,Σ) : (1−β)Σ̂� Σ� (1 +β)Σ̂, µ= µ̂},
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where the matrix Σ̂ is the sample covariance estimated from data and the scalar
β ∈ [0,1] controls the robustness level.

The inner problem of (4.1) can be written as follows:

max
Σ�0

Tr(xxTΣ)(4.16a)

s.t. Σ� (1 +β)Σ̂ : Λ+(4.16b)

−Σ�−(1−β)Σ̂ : Λ−(4.16c)

By associating dual variables Λ+ and Λ− with constraints (4.16b) and (4.16c) re-
spectively, we obtain the dual problem as below:

min
Λ+,Λ−

(1 +β)Tr(Σ̂Λ+)− (1−β)Tr(Σ̂Λ−)(4.17a)

s.t.
Λ+−Λ− x

xT 1

� 0(4.17b)

Λ+,Λ− � 0.(4.17c)

We note that we use the Schur’s Complement Lemma to rewrite the constraint
Λ+−Λ− � xxT as in (4.17b).

Finally, the single-stage problem is written as follows:

min
x,Λ+,Λ−

{
(1 +β)Tr(Σ̂Λ+)− (1−β)Tr(Σ̂Λ−)− τxT µ̄) :

eTx= 1,
Λ+−Λ− x

xT 1

� 0,Λ+,Λ− � 0,x≥ 0
}
.(4.18)

Note that problem (4.18) is a semidefinite program.

4.1.5 Uncertainty for Mean and Covariance Matrix

In this section, we consider uncertainty for both covariance matrix Σ and mean
vector µ. Our uncertainty set involves ellipsoidal uncertainty for µ and the upper
and lower bounds for Σ (in matrix sense). We particularly consider the following
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uncertainty set:

S := {(µ,Σ) : (µ− µ̄)TΣ−1(µ− µ̄)≤Υ2, (1−β)Σ̂� Σ� (1 +β)Σ̂},

where the matrix Σ̂ and µ̂ are the sample covariance and mean estimated from data,
β ∈ [0,1] and Υ are positive scalars, controlling the robustness level.

Firstly, the inner problem of (4.1) can be written as follows:

max
Σ,µ

Tr(xxTΣ)− τµTx(4.19a)

s.t. Σ� (1 +β)Σ̂(4.19b)

−Σ�−(1−β)Σ̂(4.19c)  Σ µ− µ̄
µT − µ̄T Υ2

� 0.(4.19d)

Note that (4.19d) is constructed by using Schur’s Complement. We rewrite the
above problem in the canonical conic program form as follows:

max
Σ,µ

Tr(xxTΣ)− τµTx(4.20a)

s.t. Σ� (1 +β)Σ̂ : Λ+(4.20b)

−Σ�−(1−β)Σ̂ : Λ−(4.20c)  −Σ −µ
−µT 0

�
 0 −µ̄
−µ̄T Υ2

 . :
γ11 γ12

γ21 γ22

(4.20d)

After associating the dual variables to the primal constraints in problem (4.20), we
obtain the dual problem as follows:

min
Λ+,Λ−,γ

(1 +β)Tr(Σ̂Λ+)− (1−β)Tr(Σ̂Λ−) + Υ2γ22−2µ̄γ12(4.21a)

s.t.
Λ+−Λ−−γ11 x

xT 1

� 0(4.21b)
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−2γ12 =−τx(4.21c)

γ =
γ11 γ12

γ21 γ22

� 0(4.21d)

Λ+,Λ−,γ � 0.(4.21e)

Finally, we reformulate the single-stage equivalent of problem (4.1) as the the fol-
lowing semidefinite program:

min
x,Λ+,Λ−,γ

(1 +β)Tr(Σ̂Λ+)− (1−β)Tr(Σ̂Λ−) + Υ2γ22−2µ̄γ12(4.22a)

s.t. (4.21b)− (4.21e)

(3.1b)− (3.1c).

4.2 Worst Case Value-at-Risk Model

In this section, we focus on the robust optimization version of the worst-case VaR
model presented in Section 3.2. We will assume that the parameters of problem
(3.3), that is µ and Σ, are uncertain. In order to incorporate robustness into the
objective function, we formulate the following general form of a two-stage problem:

min
x

max
(µ,Σ)∈S

K(α)
√
xTΣx−µTx(4.23a)

s.t. (3.1b)− (3.1c).

In the sequel, we reformulate problem (4.23) as a single-stage conic program when
the uncertainty set S involves polytopic, budgeted or ellipsoidal uncertainty for
either mean µ or covariance Σ or both.
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4.2.1 Polyhedral Uncertainty for Mean

In this section, we consider box uncertainty as a special case of polyhedral uncer-
tainty for mean µ while covariance Σ is assumed to be known (or estimated from
data) as Σ̂ and µ̄ =µ̂ (although other choices are allowed). Now, let us consider the
following uncertainty set:

S := {(µ,Σ) : ‖µ− µ̄‖∞ ≤Υ, Σ = Σ̂},

where Υ is a positive scalar controlling the robustness level.

Firstly, we write the inner problem of (4.23) as the following:

max
µ
−µTx(4.24a)

s.t. ‖µ− µ̄‖∞ ≤Υ.(4.24b)

Since problem (4.24) is identical to the inner problem in Section 4.1.1, the remaining
derivations regarding the reformulation are also the same. Therefore, we directly
give the single-stage reformulation of problem (4.23) as follows:

min
x,λ+,λ−

{K(α)
√
xTΣx+ (λ+T (Υ + µ̄) +λ−T (Υ− µ̄)) :

λ+−λ− =−x,eTx= 1,x,λ+,λ− ≥ 0}.(4.25)

Note that the problem (4.25) is a convex optimization problem.

4.2.2 Budgeted Uncertainty for Mean

In this section, we consider the budgeted uncertainty for mean vector µ, assuming
that covariance matrix Σ is known (or estimated from data) as Σ̂ and µ̄ =µ̂. Here,
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let us consider the following uncertainty set particularly:

S :=

(µ,Σ) :
n∑
j=1

|µj− µ̄j |
µ̄j

≤Υ, Σ = Σ̂

 ,
where Υ is a positive scalar controlling the robustness level.

Firstly, we write the inner problem of (4.23) as follows:

max
µ
−µTx(4.26a)

s.t.
n∑
j=1

|µj− µ̄j |
µ̄j

≤Υ.(4.26b)

Note that the inner problem in Section 4.1.2 is identical to problem (4.26) due to the
consideration of the same uncertainty set for the mean vector. Hence, we omit the
rest of the derivations and provide the single-stage reformulation of problem (4.23)
as the following convex optimization problem:

min
x,γ,u+,u−

{
K(α)

√
xTΣx+ (eT (u+−u−) +γΥ) :

(4.27)

eTx= 1, 1
µ̄j
u+
j −

1
µ̄j
u−j =−xj ,γeT −u+−u− = 0,γ,u+,u−x≥ 0

}
.

4.2.3 Ellipsoidal Uncertainty for Mean

Here, we consider an ellipsoidal uncertainty for mean µ while assuming that co-
variance Σ is known (or estimated from data) as Σ̂. Let us consider the following
uncertainty set specifically:

S := {(µ,Σ) : (µ− µ̄)TΩ−1(µ− µ̄)≤Υ2, Σ = Σ̂},

where Υ is a positive scalar controlling the robustness level and Ω � 0 is given (in
the computational experiments, we will take Ω = Σ̂ and µ̄= µ̂).

The inner problem of (4.23) is written as the following formulation:

23



max
µ
−µTx(4.28a)

s.t. ‖Ω−1/2(µ− µ̄)‖2 ≤Υ.(4.28b)

Here, the inner problem in Section 4.1.3 and problem (4.28) are identical since the
uncertainty sets for mean vector are the same for both problems. This leads the
derivations to be equivalent. Therefore, we can obtain a single-stage reformulation
of problem (4.23) as the follows:

min
x

{
K(α)

√
xTΣx−xT µ̄+‖ΥΩ1/2x‖2 : eTx= 1,x≥ 0

}
.(4.29)

Note that problem (4.29) is a convex program. In particular, it can be recast as a
second-order cone program.

4.2.4 Uncertainty for Covariance Matrix

In this section, we look at the case in which the covariance matrix Σ is uncertain
while assuming that µ is known (or estimated from data) as µ̄. In particular, let us
consider the following uncertainty set:

S := {(1−β)Σ̂� Σ� (1 +β)Σ̂, µ= µ̂},

where the matrix Σ̂ and µ̂ are the sample covariance and sample mean estimated
from data and the scalar β ∈ [0,1] controls the robustness level.

Firstly, the inner problem of (4.23) can be written as the following:

max
Σ�0

K(α)
√
xTΣx(4.30a)

s.t. Σ� (1 +β)Σ̂(4.30b)

−Σ�−(1−β)Σ̂.(4.30c)
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Since the objective function (4.30a) involves square root, we introduce a variable y
as below:

max
Σ,y

K(α)y(4.31a)

s.t. Σ� (1 +β)Σ̂(4.31b)

Σ�−(1−β)Σ̂(4.31c)

xTΣx≥ y2.(4.31d)

We note that constraint (4.31d) is second-order cone representable, it can be written
as in constraint (4.32d):

max
Σ,y

K(α)y(4.32a)

s.t. Σ� (1 +β)Σ̂ : Λ+(4.32b)

−Σ�−(1−β)Σ̂ : Λ−(4.32c) 
−2 0

0 (vec(xxT ))T

0 −(vec(xxT ))T


 y

vec(Σ)

≤L3


0
1
1

 . :


a

b

c

(4.32d)

Here, vec(U) is the vectorized version of a matrix U .

After introducing the dual variables as in problem (4.32), we obtain the dual problem
as follows:

min
Λ+,Λ−,a,b,c

(1 +α)Tr(Σ̂Λ+)− (1−α)Tr(Σ̂Λ−) + b+ c(4.33a)

s.t.
Λ+−Λ− x

xT (c− b)−1

� 0(4.33b)

a≤−K(α)
2(4.33c)


a

b

c

 ∈ L3(4.33d)
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Λ+,Λ− � 0.(4.33e)

Note that we use the Schur’s Complement Lemma together with Claims 1-3 to
rewrite the constraint Λ+−Λ−−γ11 � x(c− b)xT as in (4.33b).

Claim 1 There exists an optimal solution to (4.33) such that

a∗ =−K(α)
2 .

Proof 1 We know that a only appears in a ≤ −K(α)
2 and


a

b

c

 ∈ L3. Suppose

a∗ <−K(α)
2 and a∗2 + b2 ≤ c2. In this case, we can choose a∗∗ =−K(α)

2 and obtain
a∗∗2 + b2 < c2 (note that a∗ < a∗∗ =⇒ ‖a∗‖> ‖a∗∗‖).

Hence, we can always set a∗ = −K(α)
2 .

Claim 2 In an optimal solution to (4.33), we have a2 + b2 = c2.

Proof 2 Suppose a2 + b2 ≤ c2. Instead we consider c̃=
√
a2 + b2 < c.

Observe that


a

b

c̃

 ∈ L3 and we have

Λ+−Λ−−γ11 x

xT (c− b)−1

� 0 =⇒
Λ+−Λ−−γ11 x

xT (c̃− b)−1

� 0,

since (c− b)−1 < (c̃− b)−1 due to c̃ < c.

However, this contradicts to optimality as objective contribution of (b+ c) is larger
than objective contribution of (b+ c̃).

Claim 3 We can rewrite the positive semidefinite constraintΛ+−Λ−−γ11 x

xT (c− b)−1

� 0 as
Λ+−Λ−−γ11 x

xT 4
K2(ε)(b+ c)

� 0.

Proof 3 Due to Claims 1 and 2, we have

c2 = a2 + b2 = K2(ε)
4 + b2

=⇒ (c− b)(c+ b) = K2(ε)
4
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=⇒ (c− b)−1 = 4
K2(ε)(b+ c)

In short, we can add
Λ+−Λ−−γ11 x

xT 4
K2(ε)(b+ c)

 � 0 and a∗ = −K(α)
2 as con-

straints (4.34b) and (4.34c), respectively.

We rewrite problem (4.33) due to Claims 1-3 as the following semidefinite program:

min
Λ+,Λ−,a,b,c

(1 +α)Tr(Σ̂Λ+)− (1−α)Tr(Σ̂Λ−) + b+ c(4.34a)

s.t.
Λ+−Λ− x

xT 4
K2(ε)(b+ c)

� 0(4.34b)

a=−K(α)
2(4.34c)


a

b

c

 ∈ L3(4.34d)

Λ+,Λ− � 0.(4.34e)

Finally, the single-stage reformulation is obtained as follows:

min
x,Λ+,Λ−,a,b,c

(1 +α)Tr(Σ̂Λ+)− (1−α)Tr(Σ̂Λ−) + b+ c−xTµ(4.35a)

s.t. (4.34b)− (4.34e)

(3.1b)− (3.1c).

Note that problem (4.35) is a semidefinite program.
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4.2.5 Uncertainty for Mean and Covariance Matrix

Now, we consider uncertainty for both covariance matrix Σ and mean vector µ in
this section. Our uncertainty set involves ellipsoidal uncertainty for µ and the upper
and lower bounds for Σ (in matrix sense). We consider the following uncertainty set
particularly:

S := {(µ,Σ) : (µ− µ̄)TΣ−1(µ− µ̄)≤Υ2, (1−β)Σ̂� Σ� (1 +β)Σ̂},

where the matrix Σ̂ and µ̂ are the sample covariance and sample mean estimated
from data, β ∈ [0,1] and Υ are positive scalars, controlling the robustness level.

The inner problem of (4.23) can be written as follows:

max
µ,Σ

K(α)
√
xTΣx−µTx(4.36a)

s.t. Σ� (1 +β)Σ̂(4.36b)

−Σ�−(1−β)Σ̂(4.36c)  Σ µ− µ̄
µT − µ̄T Υ2

� 0.(4.36d)

Note that (4.36d) is constructed by using Schur’s Complement. Here, we introduce
a variable y in objective function (4.36a) such that xTΣx ≥ y2. This leads the
derivations of problem (4.36) to be the same with problem (4.31). Therefore, we
can write the canonical conic problem as the following:

max
µ,Σ,y

K(α)y−µTx(4.37a)

s.t. Σ� (1 +β)Σ̂ : Λ+(4.37b)

−Σ�−(1−β)Σ̂ : Λ−(4.37c) 
−2 0

0 (vec(xxT ))T

0 −(vec(xxT ))T


 y

vec(Σ)

≤L3


0
1
1

 :


a

b

c

(4.37d)
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 −Σ −µ
−µT 0

�
 0 −µ̄
−µ̄T Υ2

 :
.γ11 γ12

γ21 γ22

(4.37e)

After associating the dual variables in problem (4.37), the dual problem is obtained
as follows:

min
Λ+,Λ−,a,b,c,γ

(1 +β)Tr(Σ̂Λ+)− (1−β)Tr(Σ̂Λ−) + b+ c+ Υ2γ22−2µ̄Tγ12(4.38a)

s.t.
Λ+−Λ−−γ11 x

xT 4
K2(ε)(b+ c)

� 0(4.38b)

a=−K(α)
2(4.38c)

−2γ12 =−x(4.38d)

γ =
γ11 γ12

γ21 γ22

� 0(4.38e)


a

b

c

 ∈ L3(4.38f)

Λ+,Λ−,γ � 0.(4.38g)

We note that we reformulate constraints (4.38b) and (4.38c), due to Claims 1-
3. Finally, the single-stage reformulation of the problem (4.23) is written as the
following semidefinite program:

min
x,Λ+,Λ−,a,b,c,γ

(1 +β)Tr(Σ̂Λ+)− (1−β)Tr(Σ̂Λ−) + b+ c+ Υ2γ22−2µ̄Tγ12(4.39a)

s.t. (4.38b)− (4.38g)

(3.1b)− (3.1c).
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4.3 Conditional Value-at-Risk Model under Mixture Distribution

In this section, we focus on the robust optimization version of the CVaR model
presented in Section 3.3 under the assumption that the return vector is distributed
according to a mixture of two multivariate normals. The reasons we consider a mix-
ture distribution with the CVaR optimization model are two-fold: i) The Markowitz
and worst-case VaR models are distribution independent, ii) the merits of mixture
distribution with the CVaR optimization model are discussed in a recent paper by
Kocuk & Cornuéjols (2020). In this probabilistic model, random returns come from
the normal distributions N

(
µ1,Σ1

)
with probability ρ1 and N

(
µ2,Σ2

)
with proba-

bility ρ2. The motivation for such a model is that although most of the time (say
with probability ρ1) stock returns behave as normally distributed as N

(
µ1,Σ1

)
, ev-

ery once in a while (say with probability ρ2) a shock happens and shifts the mean
of the normal distribution to the left with a higher variance as N

(
µ2,Σ2

)
(see the

discussions in Kocuk & Cornuéjols (2020) for details). We note that if a data set
is given, we can compute the parameters of a mixture distribution by using the
Expectation-Maximization (EM) Algorithm (Dempster, Laird & Rubin (1977)).

Since the CVaR function does not have a closed form expression in this case, we
utilize a second-order cone representable approximation proposed in Kocuk & Cor-
nuéjols (2020). Throughout this section, we will assume that the parameters of
problem (3.5), that is µ1, Σ1, µ2 and Σ2, are uncertain. In order to incorporate
robustness into the objective function, we formulate the following general form of a
two-stage problem:

min
x

2∑
i=1

max
(µi,Σi)∈Si

(
zi(ρi)

√
xTΣix−µiTx− τρiµi

T
x
)

(4.40a)

s.t. (3.1b)− (3.1c).

Here, the parameter ρi represents the probability of i-th normal random variable
and is assumed to be known, and the function zi(ρi) is defined as

zi (ρi) :=
φ
(
Φ−1 (α/ρi)

)
α/ρi

,

for i = 1,2. We will assume that α < 0.5 in model (4.40), which is not a restrictive
assumption.
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In the sequel, we reformulate problem (4.40) as a single-stage conic program when
the uncertainty set Si involves polytopic, budgeted or ellipsoidal uncertainty for
either mean µi or covariance Σi or both.

4.3.1 Polyhedral Uncertainty for Mean

In this section, we consider box uncertainty as a special case of polyhedral uncer-
tainty for mean vectors µi while covariance matrices Σi are assumed to be known
(or estimated from data) as Σ̂i. Now, let us consider the following uncertainty sets:

Si := {(µi,Σi) : ‖µi− µ̄i‖∞ ≤Υi, Σi = Σ̂i},

where Υi is a positive scalar controlling the robustness level for i = 1,2. (In the
computational experiments we will take µ̄i = µ̂i).

The inner problem of (4.40) is written as follows:

max
µ1,µ2

2∑
i=1
−µiTx(4.41a)

s.t. ‖µi− µ̄i‖∞ ≤Υi i= 1,2.(4.41b)

Here, we note that the remaining derivations of the inner problem in Section 4.1.1
are the same, we obtain the single-stage reformulation of the problem (4.40) as
follows:

min
x,λ1

+,λ1
−,λ2

+,λ2
−

2∑
i=1

[zi(ρi)
√
xTΣix+ (τρi+ 1)λi+T (Υi+ µ̄i)

+λi
−T (Υi− µ̄i)](4.42a)

s.t. λi+−λi− =−x i= 1,2(4.42b)

λi
+,λi

− ≥ 0 i= 1,2(4.42c)

(3.1b)− (3.1c).
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Note that problem (4.42) is a convex optimization problem.

4.3.2 Budgeted Uncertainty for Mean

Now, we consider a budgeted uncertainty for mean vectors µi, while assuming that
covariance matrices Σi are known (or estimated from data) as Σ̂i. In particular, let
us consider the following uncertainty sets:

Si :=

(µi,Σi) :
n∑
j=1

|µij− µ̄ij |
µ̄ij

≤Υi, Σi = Σ̂i

 ,
where Υi is a positive scalar controlling the robustness level for i = 1,2. In the
computational experiments we will take µ̄i = µ̂i.

Firstly, the inner problem of (4.40) can be written as follows:

max
µ1,µ2

2∑
i=1
−µiTx(4.43a)

s.t.
n∑
j=1

|µij− µ̄ij |
µ̄ij

≤Υi i= 1,2.(4.43b)

Let us recall the inner problem in Section 4.1.2. Since the rest of the derivations
in that section are the same (due to the fact that the uncertainty sets considered
are identical), we obtain the single-stage reformulation of the problem (4.40) as the
following convex optimization problem:

min
x,u+,u−,γ

2∑
i=1

[zi(ρi)
√
xTΣix+ (τρi+ 1)(eT (ui+−ui−) +γiΥi)](4.44a)

s.t. 1
µ̄ij
ui+− 1

µ̄ij
ui− =−x i= 1,2(4.44b)

γie−ui+−ui− = 0 i= 1,2(4.44c)

γi,ui+,ui− ≥ 0 i= 1,2(4.44d)

(3.1b)− (3.1c).
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4.3.3 Ellipsoidal Uncertainty for Mean

In this section, an ellipsoidal uncertainty is considered for mean vectors µi while
assuming that covariance matrices Σi are known (or estimated from data) as Σ̂i.
Let us consider the following uncertainty sets specifically:

Si := {(µi,Σi) : (µi− µ̄i)TΩi−1(µi− µ̄i)≤Υi
2, Σi = Σ̂i},

where Υi is a positive scalar controlling the robustness level and Ωi � 0 is given (in
the computational experiments, we will take Ωi = Σ̂i and µ̄i = µ̂i although other
choices are also allowed).

Firstly, we write the inner problem of (4.40) as below:

max
µ1,µ2

2∑
i=1
−µiTx(4.45a)

s.t. ‖Ωi−1/2(µi− µ̄i)‖2 ≤Υi i= 1,2.(4.45b)

Let us recall the inner problem in Section 4.1.3. the rest of the derivations in
that section are the same (due to the fact that the uncertainty sets considered are
identical), we obtain the single-stage reformulation of the problem (4.40) as the
following:

min
x

{ 2∑
i=1

[zi(ρi)
√
xTΣix− (τρi+ 1)xT µ̄i+ (τρi+ 1)‖ΥiΩi1/2x‖2] : eTx= 1,x≥ 0

}
.

(4.46)

Note that problem (4.46) is a convex program. In particular, it can be recast as
second-order cone program.

4.3.4 Uncertainty for Covariance Matrix

Now, we look at the case in which the covariance matrix Σi is uncertain while
assuming that µi is known (or estimated from data) as µ̂i. In particular, let us
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consider the following uncertainty sets:

Si := {(µi,Σi) : (1−βi)Σ̂i � Σi � (1 +βi)Σ̂i, µi = µ̂i},

where the matrix Σ̂i is the sample covariance estimated from data and the scalar
βi ∈ [0,1] controls the robustness level for i= 1,2.

The inner problem of (4.40) can be written as follows:

max
Σ1,Σ2�0

2∑
i=1

(zi(ρi)
√
xTΣix)(4.47a)

s.t. Σi � (1 +βi)Σ̂i i= 1,2(4.47b)

−Σi �−(1−βi)Σ̂i i= 1,2.(4.47c)

Since the objective function (4.47a) involves square root, we introduce a variable yi
such that xTΣix≥ yi2 as in the following canonical conic problem:

max
Σ,y

2∑
i=1

[zi(ρi)yi](4.48a)

s.t. Σi � (1 +βi)Σ̂i i= 1,2 : Λi+(4.48b)

−Σi �−(1−βi)Σ̂i i= 1,2 : Λi−(4.48c) 
−2 0

0 (vec(xxT ))T

0 −(vec(xxT ))T


 yi

vec(Σi)

≤L3


0
1
1

 i= 1,2. :


ai

bi

ci

(4.48d)

After introducing the dual variables as in problem (4.48), we obtain the dual problem
after introducing the dual variables Λi+ and Λi− as below:

min
Λ+,Λ−,a,b,c

2∑
i=1

[(1 +βi)Tr(Σ̂iΛi+)− (1−βi)Tr(Σ̂iΛi−) + bi+ ci](4.49a)

s.t.
Λi+−Λi−−γi11 x

xT 4
z2

i (ρi)
(bi+ ci)

� 0 i= 1,2(4.49b)
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ai =−zi(ρi)2 i= 1,2(4.49c)

ai

bi

ci

 ∈ L3 i= 1,2(4.49d)

Λi+,Λi− � 0 i= 1,2.(4.49e)

We note that constraints (4.49b) and (4.49c) are reformulated according to Claims
1-3. Finally, we reformulate the single-stage equivalent of problem (4.40) as the
following semidefinite program:

min
x,Λ+,Λ−,a,b,c

2∑
i=1

[(1 +βi)Tr(Σ̂iΛi+)− (1−βi)Tr(Σ̂iΛi−) + bi+ ci(4.50a)

−µiTx− τρiµi
T
x]

s.t. (4.49b)− (4.49e)

(3.1b)− (3.1c).

4.3.5 Uncertainty for Mean and Covariance Matrix

In this section, we consider uncertainty for both covariance matrices Σi and mean
vectors µi. Our uncertainty set involves ellipsoidal uncertainty for µi and the upper
and lower bounds for Σi (in matrix sense). In particular, let us consider the following
uncertainty sets:

Si := {(µi,Σi) : (µi− µ̄i)TΣi−1(µi− µ̄i)≤Υi
2, (1−βi)Σ̂i � Σi � (1 +βi)Σ̂i},

where the matrix Σ̂i is the sample covariance estimated from data, βi ∈ [0,1] and Υi

are positive scalars, controlling the robustness level for i= 1,2 (in the computational
experiments, we will take µ̄i = µ̂i).
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The inner problem is written as the following:

max
(µ,Σ)

2∑
i=1

(
zi(ρi)

√
xTΣix−µiTx− τρiµi

T
x
)

(4.51a)

s.t. Σi � (1 +βi)Σ̂i i= 1,2(4.51b)

−Σi �−(1−βi)Σ̂i i= 1,2(4.51c)  Σi µi− µ̄i

µi
T − µ̄iT Υi

2

� 0 i= 1,2.(4.51d)

Note that (4.51) is constructed by using Schur’s Complement. Here, the following
derivations will be the equivalent versions of the problems (4.48)-(4.49) respectively.
Therefore, we introduce the dual variables in the canonical conic problem (4.52) as
the following:

max
µ,Σ,y

2∑
i=1

(
zi(ρi)yi−µi

T
x− τρiµi

T
x
)

(4.52a)

s.t. Σi � (1 +βi)Σ̂i i= 1,2 : Λi+
(4.52b)

−Σi �−(1−βi)Σ̂i i= 1,2 : Λi−
(4.52c)


−2 0
0 (vec(xxT ))T

0 −(vec(xxT ))T


 yi

vec(Σi)

≤L3


0
1
1

 i= 1,2 :


ai

bi

ci


(4.52d)

 −Σi −µi

−µiT 0

�
 0 µ̄i

T

−µ̄iT Υi
2

 i= 1,2. :
γi11 γi12
γi21 γi22


(4.52e)

After introducing the dual variables, the dual problem can be obtained as follows:
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min
x,Λ+,Λ−,a,b,c

2∑
i=1

[(1 +βi)Tr(Σ̂iΛi+)− (1−βi)Tr(Σ̂iΛi−) + bi+ ci(4.53a)

+ Υ2γi22−2µ̄iTγi12]

s.t.
Λi+−Λi−−γi11 x

xT 4
z2

i (ρi)
(b+ c)

� 0 i= 1,2(4.53b)

ai =−zi(ρi)2(4.53c)

−2γ1
12 =−(τρi+ 1)x i= 1,2(4.53d)

γi =
γi11 γi12
γi21 γi22

� 0 i= 1,2(4.53e)


ai

bi

ci

 ∈ L3 i= 1,2(4.53f)

Λi+,Λi−,γi � 0 i= 1,2.(4.53g)

Finally, the single-stage reformulation of the problem (4.40) is obtained as the fol-
lowing semidefinite problem:

min
x,Λ+,Λ−,a,b,c

2∑
i=1

[(1 +βi)Tr(Σ̂iΛi+)− (1−βi)Tr(Σ̂iΛi−) + bi+ ci](4.54a)

+ Υi
2γi22−2µ̄iTγi12

s.t. (4.53b)− (4.53g)

(3.1b)− (3.1c).
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5. COMPUTATIONAL EXPERIMENTS

In this chapter, we present the results of our computational experiments, which have
been conducted to investigate the effectiveness of robust optimization approaches
and assess their impact on optimal portfolios. We first explain the two data sets used
in our computational experiments in Section 5.1. Then, we utilize two approaches
to evaluate the performance of the robust optimization models: i) A rolling horizon
based evaluation in Section 5.2, and ii) an efficient frontier based evaluation in
Section 5.3.

5.1 Data Sets

In our computational experiments, we use two data sets listed below:

• Standard & Poors 500: We use a real data set provided by Kocuk & Cornuéjols
(2020) from Standard & Poors (S&P) 500 index spanning 30 years between
January 1987–December 2016 with monthly resolution. This gives us 360 asset
return realizations for 11 sectors considered in this paper.

• MIBTEL: We use data set from MIBTEL index of Borsa Italiana provided
by (Ces) between March 2003–March 2008 with weekly resolution. We cate-
gorize 146 assets into sectors based on (YF). This gives us 264 asset return
realizations for 11 sectors considered in this paper.

In Tables 5.1 and 5.2, we provide the estimates for normal fits of S&P 500 and
MIBTEL data sets. We note that the tables are in percentages and covariance
matrices are provided in Tables A.1 and A.2.
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Table 5.1 S&P 500 Data Set.

Sector Normal
µ σ

Energy 1.177 6.274
Consumer discretionary 1.511 5.312
Consumer staples 1.391 4.141
Real estate 1.151 7.235
Industrials 1.289 5.143
Financials 1.332 6.272
Telecomunication services 1.032 5.470
Information technolegy 1.726 7.093
Materials 1.390 5.688
Health care 1.416 4.637
Utilities 1.014 4.274

Table 5.2 MIBTEL Data Set.

Sector Normal
µ σ

Energy 0.569 3.075
Consumer Cyclical 0.181 1.904
Capital Goods 0.297 6.706
Real Estate 0.116 2.772
Industrials 0.360 2.076
Financials 0.189 1.678
Communication 0.016 2.409
Technology 0.231 2.295
Basic Materials 0.263 2.385
Health care 0.171 2.362
Utilities 0.298 2.222

We implement all the experiments using CVXPY which is a Python-embedded mod-
eling language. The solver MOSEK is used in the code to solve second-order cone
and semidefinite programs. All computational experiments are carried out on a 64-
bit machine with Intel Xeon E5-2640 v3 processor at 2.60 GHz using 12.4 GB of
RAM.

5.2 Rolling Horizon Based Evaluation

The first evaluation scheme we use in this thesis is based on an out-of-sample analysis
using the real data sets. Let T be the number of data points available, and H and m
be positive integers. The main idea of the rolling horizon based evaluation scheme
is to use the return vectors of the last H periods, namely, rt−H+1, . . . , rt to estimate
the parameters of a portfolio optimization problem, which we use to determine the
portfolio decision x∗,t for time period t+ 1. Then, we evaluate the performance of
this decision using the return vector rt+1 as γt+1 = rt+1T

x∗,t. Finally, we repeat this
procedure for t = T/2, . . . ,T and for different values of τ and evaluate the overall
performance.

Algorithm 1 outlines the main steps of the procedure summarized above. We fix
H = T/2 and α = 0.01 throughout this chapter.
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Algorithm 1
Input: Distribution, Optimization Model, Realizations = {r1, ..., rT}, T, H, α.

Output x∗.
1: for τ = τ1 to τm do
2: for t=H to T −1 do
3: Compute parameters (Θ̂t) of Distribution using rt−H+1, . . . , rt

4: Solve Optimization Model (Θ̂t, τ,α) to obtain x∗,t

5: Compute γt+1 = rt+1T
x∗,t

6: end for
7: Report statistical measures using γ

T
2 +1(τ), ...,γT (τ) (such as

avgτ ,stdevτ ,VaRτ ,CVaRτ )
8: end for

In the remainder of this section, we provide a comparison of the various robust
optimization models constructed in Chapter 4 with respect to different uncertainty
sets and robustness levels.

5.2.1 Markowitz Model

In this subsection, we will present the performance of the standard Markowitz model
(3.1) and the robust Markowitz models in Section 4.1 on the data sets we mentioned
earlier. In the following figures, we will provide the average expected return of the
optimal portfolios with respect to risk measures; standard deviation, CVaR0.01, and
VaR0.01 for different values of risk aversion constant τ .

5.2.1.1 Performance of the Standard Markowitz Model

As a benchmark, we first solve the standard Markowitz model (3.1) The following
Figures 5.1 and 5.2 will illustrate the results of this problem for two data sets.
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Figure 5.1 Performance comparison of the standard Markowitz model for the S&P
500 data set.
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Figure 5.2 Performance comparison of the standard Markowitz model for the MIB-
TEL data set.

In Figure 5.1, one can observe that as the value of τ increases towards the right
side on the horizontal axis, the average return starts to decrease while the standard
deviation starts to increase. As a result, even the slightest difference in τ leads
different portfolios. Counter-intuitively, Figure 5.1 shows that τ = 0 (which puts no
weight at all to mean return) yields the best mean return. We attribute this to the
fact that mean returns are very hard to estimate. On the other hand, Figure 5.2
demonstrates a behavior in which return and risk increase at the same time. Thus,
the MIBTEL data set shows more reliable results than the S&P 500 data set does.
This might be due to the fact that the MIBTEL data set is provided spanning 5
years with weekly resolution whereas the S&P 500 is given spanning 30 years with
monthly resolution.

In the remainder of this subsection, we solve several robust versions of the Markowitz
optimization model and provide the corresponding results in comparison with the
results of the standard Markowitz model.
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5.2.1.2 Performance of the Robust Markowitz Model with Polyhedral

Uncertainty

Here, the following figures will show the performance of the robust Markowitz model
with polyhedral uncertainty discussed in Section 4.1.1 on the data sets.
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Figure 5.3 Performance comparison of the robust Markowitz model with polyhedral
uncertainty for mean for the S&P 500 data set.
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Figure 5.4 Performance comparison of the robust Markowitz model with polyhedral
uncertainty for mean for the MIBTEL data set.

As can be seen from Figures 5.3 and 5.4, the frontiers of standard and robust models
are overlapping, meaning that for the same level for risk, the return does not change.

5.2.1.3 Performance of the Robust Markowitz Model with Budgeted Un-

certainty

In this subsection, we will present the performance of the robust Markowitz model
with budgeted uncertainty discussed in Section 4.1.2 on the data sets.
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Figure 5.5 Performance comparison of the robust Markowitz model with budgeted
uncertainty for mean for the S&P 500 data set.
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Figure 5.6 Performance comparison of the robust Markowitz model with budgeted
uncertainty for mean for the MIBTEL data set.

In Figure 5.5, one can say that as Υ increases, for the same level of standard devi-
ation, the average return of the robust models’ portfolios dominates the standard
model slightly. However, Figure 5.6 shows that for different Υ values, the results
of optimal portfolios do not change significantly. According to this figure, if the
investor is more inclined to take risks, then using robust models may yield higher
returns for a same level standard deviation, CVaR or VaR.

5.2.1.4 Performance of the Robust Markowitz Model with Ellipsoidal Un-

certainty

In this subsection, we present the performance of the robust Markowitz model with
ellipsoidal uncertainty discussed in Section 4.1.3.
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Figure 5.7 Performance comparison of the robust Markowitz model with ellipsoidal
uncertainty for mean for the S&P 500 data set.
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Figure 5.8 Performance comparison of the robust Markowitz model with ellipsoidal
uncertainty for mean for the MIBTEL data set.

According to Figure 5.7, one can say that even the slightest increase in the robustness
level Υ results in a lower average return and risk. However, in Figure 5.8, the
performance of the robust model on the MIBTEL data set shows that the lower risk
levels may yield higher returns.

5.2.1.5 Performance of the Robust Markowitz Model with Uncertainty

for Covariance

Here, the following figures will demonstrate the performance of the robust Markowitz
model with uncertainty for covariance discussed in Section 4.1.4 for the data sets.
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Figure 5.9 Performance comparison of the robust Markowitz model with uncertainty
for covariance for the S&P 500 data set.
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Figure 5.10 Performance comparison of the robust Markowitz model with uncer-
tainty for covariance for the MIBTEL data set.

Figures 5.9 and 5.10 show that although β increases, it does not lead to a significant
change in the average return and risk. This is due to the fact that sensitivity in
estimating the covariance matrix is comparably less than the sensitivity in estimating
the mean return vector.

5.2.1.6 Performance of the Robust Markowitz Model with Uncertainty

for Mean and Covariance

In this subsection, the following figures will demonstrate the performance of the
robust Markowitz model with uncertainty for mean and covariance discussed in
Section 4.1.5 on the data sets.
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Figure 5.11 Performance comparison of the robust Markowitz model with uncer-
tainty for mean and covariance for the S&P 500 data set.
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Figure 5.12 Performance comparison of the robust Markowitz model with uncer-
tainty for mean and covariance for the MIBTEL data set.

Figure 5.11 shows that although the difference is not much, the average return
increases as the robustness levels of both β and γ increase. On the other hand,
Figure 5.12 suggests that using the robust model on the MIBTEL data for the lower
risk levels may yield higher returns.

5.2.2 Robust Worst Case Value-at-Risk Models

In this subsection, we provide the results of the robust versions of the worst case
Value-at-Risk model discussed in Section 4.2 on the data sets we mentioned earlier.
In sequel, following figures will demonstrate the average expected return of the
optimal portfolios with respect to risk measures; standard deviation, CVaR0.01, and
VaR0.01 for different values of K(α).
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5.2.2.1 Performance of the Robust Worst Case Value-at-Risk Model with

Polyhedral Uncertainty

The following figures present the performance of the robust worst case VaR model
with polyhedral uncertainty discussed in Section 4.2.1 on the data sets.
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Figure 5.13 Performance comparison of the robust worst case VaR model with poly-
hedral uncertainty for mean for the S&P 500 data set.
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Figure 5.14 Performance comparison of the robust worst case VaR model with poly-
hedral uncertainty for mean for the MIBTEL data set.

As can be seen from Figures 5.13 and 5.14, this robust model is not very sensitive
to changes in the Υ parameter. Although resulting portfolios change according to
K(α), there is no significant difference.

5.2.2.2 Performance of the Robust Worst Case Value-at-Risk Model with

Budgeted Uncertainty

In this subsection, we present the performance of the robust model with budgeted
uncertainty discussed in Section 4.2.2. The following Figures 5.15 and 5.16 show
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that although the resulting portfolios change slightly according to parameter α, this
robust model is not very sensitive to the changes in parameter Υ.
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Figure 5.15 Performance comparison of the robust worst case VaR model with bud-
geted uncertainty for mean for the S&P 500 data set.
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Figure 5.16 Performance comparison of the robust worst case VaR model with bud-
geted uncertainty for mean for the MIBTEL data set.

As can be seen from Figure 5.16, robust models result in poor portfolios with negative
returns. We have the following explanation for this observation: Let us recall the
worst-case value-at-risk model (4.23). Since this model does not consider return in
the objective function, it gives more emphasis in reducing the risk, which eventually
results in negative returns.

5.2.2.3 Performance of the Robust Worst Case Value-at-Risk Model with

Ellipsoidal Uncertainty

Here, the following figures will demonstrate the performance of the robust model
with ellipsoidal uncertainty discussed in Section 4.2.3 on the data sets.
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Figure 5.17 Performance comparison of the robust worst case VaR model with el-
lipsoidal uncertainty for mean for the S&P 500 data set.
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Figure 5.18 Performance comparison of the robust worst case VaR model with el-
lipsoidal uncertainty for mean for the MIBTEL data set.

Figures 5.17 and 5.18 depict that the robust model is not very sensitive to changes
in parameter Υ.

5.2.2.4 Performance of the Robust Worst Case Value-at-Risk Model with

Uncertainty for Covariance

In this subsection, we present the performance of the robust problem with uncer-
tainty for covariance discussed in Section 4.2.4 on the data sets. The following
Figures 5.19 and 5.20 demonstrate that changes in β does not lead to a significant
change in the resulting portfolios.
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Figure 5.19 Performance comparison of the robust worst case VaR model with un-
certainty for covariance matrix for the S&P 500 data set.
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Figure 5.20 Performance comparison of the robust worst case VaR model with un-
certainty for covariance for the MIBTEL data set.

5.2.2.5 Performance of the Robust Worst Case Value-at-Risk Model with

Uncertainty for Mean and Covariance

Here, the following figures will demonstrate the performance of the robust model
with uncertainty for mean and covariance discussed in Section 4.2.5 on the data sets.
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Figure 5.21 Performance comparison of the robust worst case VaR with uncertainty
for mean and covariance for the S&P 500 data set.
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Figure 5.22 Performance comparison of the robust worst case VaR model with un-
certainty for mean and covariance for the MIBTEL data set.

As can be seen form the Figures 5.21 and 5.22, robust model is not very sensitive
to changes in the robustness levels Υ and β.

5.2.3 Robust Conditional Value-at-Risk Model under Mixture Distribu-

tion

In this subsection, we solve the robust versions of the CVaR model assuming the
random return vector is distributed as a mixture of normals discussed in Section
5.2.3. In order to estimate the parameters of the two mixtures, we employ the
EM Algorithm on S&P 500 and MIBTEL data sets. However, we could obtain the
following relations between the parameters only for the S&P 500 data set:

ρ̂1 > ρ̂2, µ̂
1 > µ̂2, Σ̂2 > Σ̂1.

Therefore, in our experiments, we only use this data set as the above relations do
not hold for the MIBTEL dat set (see Section 4.3 and Kocuk & Cornuéjols (2020)
for the details about the significance of these relations). In sequel, the following
figures will demonstrate the average expected return of the optimal portfolios with
risk measures; standard deviation, CVaR0.01, and VaR0.01 for different values of risk
aversion constant τ .
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5.2.3.1 Performance of the Robust CVaR Model under Mixture Distri-

bution with Polyhedral Uncertainty

Here, we will present the performance of the robust model with polyhedral uncer-
tainty discussed in Section 4.3.1.
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Figure 5.23 Performance comparison of the robust CVaR model with polyhedral
uncertainty for mean for the normal with ρ1 of the mixture for the S&P 500 data
set.
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Figure 5.24 Performance comparison of the robust CVaR model with polyhedral
uncertainty for mean for the normal with ρ2 of the mixture for the S&P 500 data
set.

According to Figures 5.23 and 5.24 one can say that, independent from the mixture,
the robust problem is not very sensitive to any change in the robustness level.

5.2.3.2 Performance of the Robust CVaR Model under Mixture Distri-

bution with Budgeted Uncertainty

In this subsection, we will present the performance of the robust robust model with
budgeted uncertainty discussed in Section 4.3.2.
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Figure 5.25 Performance comparison of the robust CVaR model with budgeted un-
certainty for mean for the normal with ρ1 of the mixture for the S&P 500 data
set.
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Figure 5.26 Performance comparison of the robust CVaR model with budgeted un-
certainty for mean for the normal with ρ2 of the mixture for the S&P 500 data
set.

As can be seen from Figure 5.25, as Υ increases, the average return of the robust
model starts to dominate the standard model while risk stays at similar levels for
greater values of τ . By contrast, Figure 5.26 shows that robust models result in
poor portfolios as the robustness level increases.

5.2.3.3 Performance of the Robust CVaR Model under Mixture Distri-

bution with Ellipsoidal Uncertainty

The following figures will show the performance of the robust model with ellipsoidal
uncertainty discussed in Section 4.3.2.
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Figure 5.27 Performance comparison of the robust CVaR model with ellipsoidal
uncertainty for mean for the normal with ρ1 of the mixture for the S&P 500 data
set.
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Figure 5.28 Performance comparison of the robust CVaR model with ellipsoidal
uncertainty for mean for the normal with ρ2 of the mixture for the S&P 500 data
set.

In Figure 5.27, one can say that the resulting robust portfolios are inversely corre-
lated with the increment in the robustness level in general. Moreover, for the same
level of risk, the robust problem may result with a lower return. On the other hand,
Figure 5.28 shows that for some same risk levels, the robust model results with
higher returns. This may be due to the fact that the random returns come from the
different normals of the mixture.

5.2.3.4 Performance of the Robust CVaR Model under Mixture Distri-

bution with Uncertainty for Covariance

In this subsection, we present the performance of the robust model with uncertainty
for covariance discussed in Section 4.3.4.
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Figure 5.29 Performance comparison of the robust CVaR model with uncertainty
for covariance for the normal with ρ1 of the mixture for the S&P 500 data set.
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Figure 5.30 Performance comparison of the robust CVaR model with uncertainty
for covariance for the normal with ρ2 of the mixture for the S&P 500 data set.

According to Figures 5.29 and 5.30, one can say that the robust model remains
nearly unchanged for the different values of β.

Unfortunately, due to some numerical problems, we cannot solve the robust CVaR
model under mixture distribution with uncertainty for mean and covariance dis-
cussed in Section 4.3.5

5.3 Efficient Frontier Based Evaluation

Among all feasible portfolios at the same risk level, the one with the maximum
expected return is called an efficient portfolio. An efficient frontier of portfolios can
be obtained with a collection of efficient portfolios (Broadie (1993)). As shown by
Ceria & Stubbs (2006), slightly different expected returns can cause portfolios to
be very different. Therefore, to consider the error-maximization effect, we use an
efficient frontier based analysis as another evaluation scheme.
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Let again T be the number of data points available and m be a positive integer. As
a first step in our approach, we compute the sample mean and sample covariance of
the return vectors r1, ..., rT coming from real data. In the rest of the algorithm, these
values are treated as true parameters. Then, by using these parameters, a synthetic
data set is sampled, which is denoted ξ̂1, ..., ξ̂T . Once we have the synthetic data set,
we again estimate the parameters of the unknown true distribution. Then, we solve
the optimization problem for each τ in order to obtain optimal portfolio vectors x∗

and x∗∗ of synthetic and true data respectively. In order to compute the estimated
(γtest) and actual (γtact) expected returns, we evaluate the optimal portfolio vector
x∗ with ξ̂t and rt respectively. Then, true expected returns γttrue are computed by
evaluating the portfolio vector x∗∗ with rt. Finally, we repeat this procedure for
t= 1, . . . ,T and for different values of τ and we evaluate the overall performance.

Algorithm 2 outlines the steps of the procedure summarized above.

Algorithm 2
Input: Distribution, Optimization Model, Realizations = {r1, ..., rT}, T,α.
Output x∗, x∗∗.

1: Estimate parameters (Θtrue) of Distribution using {r1, ..., rT}
2: Sample T random return vectors from Distribution (Θtrue) : ξ̂1, ..., ξ̂T

3: Estimate Θtrue using ξ̂1, ..., ξ̂T as Θ̂
4: for τ = τ1 to τm do
5: Solve Optimization Model (Θtrue, τ,α) to obtain x∗∗

6: Solve Optimization Model (Θ̂, τ,α) to obtain x∗

7: for t= 1 to T do
8: Compute γttrue = x∗∗T rt

9: Compute γtest = x∗T ξ̂t

10: Compute γtact = x∗T rt

11: end for
12: Report statistical measures using γestτ ,γactτ ,andγtrueτ (such as avgτ , stdevτ ,

VaRτ , CVaRτ )
13: end for
14: Draw frontiers

In sequel, figures will demonstrate the effects of changes in robustness levels for
uncertain parameters on optimal portfolios.
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5.3.1 Results of the Markowitz Model

In this subsection, we solve the standard and robust versions of the Markowitz
model (3.1). The following figures will demonstrate the average expected return of
the optimal portfolios with respect to risk measures; standard deviation, CVaR0.01,
and VaR0.01 for different values of risk aversion constant τ .
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Figure 5.31 Efficient frontiers of the standard Markowitz model for the S&P 500
data set.
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Figure 5.32 Efficient frontiers of the standard Markowitz model for the MIBTEL
data set.

The actual frontier always lies below the true frontier by definition. In Figure
5.31 and 5.32, illustrated frontiers support this fact. Since expected returns are
overestimated, the estimated frontier gives a result that is very different with higher
expected returns from the true frontier. Therefore, estimation errors in mean return
misleads the investor and results in dominated portfolios, especially when τ is large.
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5.3.1.1 Results of the Robust Markowitz Model with Polyhedral Uncer-

tainty

Here, the following figures will present the results of the robust Markowitz model
with polyhedral uncertainty discussed in Section 4.1.1 on the data sets.
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Figure 5.33 Efficient frontiers of the robust Markowitz model with polyhedral un-
certainty for mean for the S&P 500 data set when Υ = 0.5.
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Figure 5.34 Efficient frontiers of the robust Markowitz model with polyhedral un-
certainty for mean for the MIBTEL data set when Υ = 0.5.

As can be seen from Figures 5.33 and 5.34, robust portfolio models are not very
sensitive to changes in the Υ.

5.3.1.2 Results of the Robust Markowitz Model with Budgeted Uncer-

tainty

In this subsection, the following figures will present the results of the robust
Markowitz model with budgeted uncertainty discussed in Section 4.1.2 on the data
sets. Although the aim is to get true and actual frontiers closer as in Ceria & Stubbs
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(2006), experimental computations show that actual frontiers outperform the robust
actual frontiers.

3 3.5 4 4.5 5 5.5 6 6.51.00

1.20

1.40

1.60

1.80

2.00

2.20

Standard Deviation

Av
er
ag
e
R
et
ur
n

6 8 10 12 14 16 18 201.00

1.20

1.40

1.60

1.80

2.00

2.20

CVaR

Av
er
ag
e
R
et
ur
n

Estimated True Actual Robust Estimated Robust Actual

6 8 10 12 14 16 18 201.00

1.20

1.40

1.60

1.80

2.00

2.20

VaR

Av
er
ag
e
R
et
ur
n

Figure 5.35 Efficient frontiers of the robust Markowitz model with budgeted uncer-
tainty for mean for the S&P 500 data set when Υ = 0.5.
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Figure 5.36 Efficient frontiers of the robust Markowitz model with budgeted uncer-
tainty for mean for the MIBTEL data set when Υ = 0.5.

Figures 5.35 and 5.36 depict that, as the result of using robust optimization, the
estimated frontier lie closer to the true frontier.

5.3.1.3 Results of the Robust Markowitz Model with Ellipsoidal Uncer-

tainty

Here, we present the results of the robust Markowitz model with ellipsoidal uncer-
tainty discussed in Section 4.3.2 on the S&P 500 data set.
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Figure 5.37 Efficient frontiers of the robust Markowitz model with ellipsoidal uncer-
tainty for mean for the S&P 500 data set when Υ = 0.1.
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Figure 5.38 Efficient frontiers of the robust Markowitz model with ellipsoidal uncer-
tainty for mean for the MIBTEL data set when Υ = 0.1.

Figures 5.37 and 5.38 shows that the robust frontiers result in same average return
with the standard frontiers for the same risk levels; standard deviation, CVaR, and
VaR.

In this chapter, one of the general conclusions regarding the performances of the
experiments is that if the investor is inclined to take more risk (or is a risk-taker),
then using robust optimization models cause the optimal portfolio to yield with
higher returns. Second, using robust Markowitz model with budgeted uncertainty
for the same levels of risk may result with higher returns. Third, the parameter β
which controls robustness level for covariance, does not have a significant effect on
portfolios. Lastly, optimal portfolios of the MIBTEL data set shows more reliable
results than the S&P 500 data set does for the standard Markowitz model. This
might be due to the fact that the difference in the time spanning of the data sets.
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6. CONCLUSION

In this thesis, we address a number of challenging aspects of portfolio optimization
problem including conflicting objectives, inadequate risk measures, and sensitivity
issue in parameter estimation. We provide an overview of risk adjusted optimization
models with different risk measures including variance, Value-at-Risk, and Condi-
tional Value-at-Risk. We then adapt robust optimization to incorporate estimation
errors or perturbations into the standard portfolio optimization problem. We present
an analysis on robust portfolio optimization problems with uncertainty sets involving
polytopic, ellipsoidal, or budgeted uncertainty for either mean or covariance or both,
and cast these problems as conic programs. Moreover, we provide computational ex-
periments on two different data sets and compare the performances of the resulting
portfolios. Our computational experiments show that optimal portfolios constructed
with the robust optimization models yield higher returns and higher risk than the
standard portfolio models. Furthermore, employing robust models with budgeted
uncertainty for the same levels of risk results in portfolios with higher returns. Fi-
nally, we conclude that changes in the robustness levels for covariance matrix have
relatively limited effect on resulting portfolios than the mean return vector.
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APPENDIX A
Table A.1 Covariance Martix of the S&P 500 Data.

Sector Energy Consumer discretionary Consumer staples Real estate Industrials Financials Telecomunication services Information technolegy Materials Health care Utilities
Energy 0.39467 0.15328 0.09222 0.17256 0.17998 0.18296 0.10578 0.16700 0.21803 0.11611 0.08835
Consumer discretionary 0.15328 0.28297 0.13578 0.26924 0.22956 0.24931 0.14119 0.26058 0.22964 0.13237 0.05476
Consumer staples 0.09222 0.13578 0.17198 0.15055 0.13905 0.15840 0.10254 0.11175 0.13007 0.13338 0.07370
Real estate 0.17256 0.26924 0.15055 0.52492 0.26411 0.27134 0.14250 0.26131 0.29716 0.13643 0.08078
Industrials 0.17998 0.22956 0.13905 0.26411 0.26528 0.25398 0.13513 0.23726 0.24327 0.14576 0.07437
Financials 0.18296 0.24931 0.15840 0.27134 0.25398 0.39451 0.14458 0.22606 0.24142 0.17601 0.08495
Telecomunication services 0.10578 0.14119 0.10254 0.14250 0.13513 0.14458 0.30009 0.16993 0.12452 0.10015 0.07304
Information technolegy 0.16700 0.26058 0.11175 0.26131 0.23726 0.22606 0.16993 0.50455 0.22041 0.13847 0.02584
Materials 0.21803 0.22964 0.13007 0.29716 0.24327 0.24142 0.12452 0.22041 0.32438 0.13312 0.05912
Health care 0.11611 0.13237 0.13338 0.13643 0.14576 0.17601 0.10015 0.13847 0.13312 0.21559 0.07575
Utilities 0.08835 0.05476 0.07370 0.08078 0.07437 0.08495 0.07304 0.02584 0.05912 0.07575 0.18319

Table A.2 Covariance Martix of the MIBTEL Data.

Sector Energy Capital Goods Consumer Cyclical Real Estate Industrials Financials Communication Basic Materials Technology Healthcare Utilities
Energy 0.094908 0.027610 0.014517 0.033282 0.027966 0.022030 0.027298 0.029921 0.028578 0.023419 0.022406
Capital Goods 0.027610 0.036395 0.015373 0.033163 0.031305 0.024230 0.032785 0.032171 0.032232 0.025560 0.026245
Consumer Cyclical 0.014517 0.015373 0.451436 0.029711 0.022663 0.017910 0.027925 0.020968 0.026278 0.013837 0.018758
Real Estate 0.033282 0.033163 0.029711 0.077146 0.036037 0.027016 0.037380 0.033850 0.036737 0.027750 0.030204
Industrials 0.027966 0.031305 0.022663 0.036037 0.043266 0.023052 0.033021 0.032831 0.034763 0.027804 0.026924
Financials 0.022030 0.024230 0.017910 0.027016 0.023052 0.028269 0.028018 0.026276 0.025289 0.022582 0.022985
Communication 0.027298 0.032785 0.027925 0.037380 0.033021 0.028018 0.058229 0.038335 0.034061 0.028857 0.030853
Basic Materials 0.029921 0.032171 0.020968 0.033850 0.032831 0.026276 0.038335 0.052891 0.032656 0.030330 0.026788
Technology 0.028578 0.032232 0.026278 0.036737 0.034763 0.025289 0.034061 0.032656 0.057101 0.028595 0.033516
Healthcare 0.023419 0.025560 0.013837 0.027750 0.027804 0.022582 0.028857 0.030330 0.028595 0.055992 0.023332
Utilities 0.022406 0.026245 0.018758 0.030204 0.026924 0.022985 0.030853 0.026788 0.033516 0.023332 0.049563
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