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ABSTRACT

A MULTI-PHASE MATHEURISTIC ALGORITHM FOR THE DISTRIBUTION
NETWORK DESIGN PROBLEM OF A SPARE-PARTS SUPPLY CHAIN

SEMIH BOZ

INDUSTRIAL ENGINEERING M.S. THESIS, SEPTEMBER 2020

Thesis Supervisor: Prof. Güvenç Şahin
Thesis Co-Supervisor: Assoc. Prof. Abdullah Daşçı

Keywords: multi period, spare parts, network design, facility location, routing,
after sales service

After-sales services provide companies both financial and competitive advantages.
However, operating distribution networks of after-sales service logistics systems are
more challenging than traditional supply chain networks. Thus, establishing a cost-
efficient network is an arduous task. It requires making critical decisions at both
strategic and tactical levels. Facility location decisions are considered as strate-
gic whereas the tactical level decisions include vehicle size, transshipment amount,
service level and last-mile routes. We study a multi-period multi-commodity spare-
parts distribution network design problem. We propose a mixed integer linear pro-
gramming problem formulation of the problem. To solve this combinatorial opti-
mization problem in a reasonable time, a three-phase matheuristic involving vari-
ations of the original problem formulation is developed. We share and discuss our
findings from a computational study.
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ÖZET

BİR YEDEK PARÇA TEDARİK ZİNCİRİNİN DAĞITIM AĞI TASARIM
PROBLEMİNİ ÇÖZMEK İÇİN ÇOK FAZLI MATSEZGİSEL BİR ALGORİTMA

SEMİH BOZ

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, EYLÜL 2020

Tez Danışmanı: Prof. Güvenç Şahin
Tez İkinci Danışmanı: Doç. Abdullah Daşçı

Anahtar Kelimeler: çok periyot, ağ tasarımı, tesis yerleşimi, rotalama, satış sonrası
hizmet

Satış sonrası hizmetler, firmalara hem finansal hem de rekabetçi avantajlar sağla-
maktadır. Fakat, satış sonrası hizmetleri için kullanılan lojistik sistemlerindeki
dağıtım ağlarını işletmek bilinen geleneksel tedarik zinciri ağlarına göre çok daha
zorludur. Bu durum maliyet açısından verimli bir dağıtım ağı oluşturmayı zor-
laştırır. Maliyet açısından verimli bir dağıtım ağı, stratejik ve taktik seviyede çok
kritik kararlara bağlıdır. Tesislerin yer seçimi stratejik kararlardan iken, nakliye
miktarları, araç büyüklükleri, hizmet seviyeleri ve rotalar taktiksel kararları oluş-
turmaktadır. Bu amaçla, çok periyotlu çok ürünlü yedek parça dağıtım ağı tasarımı
problemini çalışıyoruz ve problemin karma tam sayılı doğrusal programlama prob-
lem gösterimini öneriyoruz. Bu kombinatoryel en iyileme problemini makul bir za-
manda çözebilmek için problem gösteriminin çeşitli versiyonlarını barındıran 3 fazlı
bir mat-sezgisel bir geliştiriyoruz. Bilgisayısal çalışmamızın sonuçlarını paylaşıyor
ve tartışıyoruz.
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1. INTRODUCTION

After-sales service logistics systems provide end product users with service parts,
maintenance and repair services (Cohen, Zheng & Agrawal, 1997). Generally, the
profit margin for initial sale products is around 10% while after-sales service prod-
ucts can yield a profit margin up to 30% (Murthy, Solem & Roren, 2004). After-
sales services also bring competitive advantages besides its financial benefits (Cohen,
Agrawal & Agrawal, 2006)

Even though the after-sales services have lots of benefits, they also bring challenges
that make it harder to establish a cost efficient distribution network configuration.
We address this issue in this thesis. The arrangement of the network we work on is
as follows: A single distribution center which is responsible of procurement of the
parts is employed. The parts are first moved from the distribution center to the
regional depots and then shipped to the service points. Transportation operations
are performed by inbound (from distribution center to regional depots) and out-
bound (from regional depots to the service points) trucks. Our aim is to minimize
the total cost while making both strategic and tactical level decisions. Strategic
level decisions are the depot location assignments and the tactical level decisions in-
clude transshipment amounts, truck size, service level and routing decisions. In this
sense, a connection can be drawn between the problems known as location routing
problems and the spare parts distribution network design problem (Ercan, 2019).

The system we try to optimize constitutes a multi-period multi-commodity multi-
level network design problem. We develop a mixed integer linear programming
formulation where the objective function is minimizing the total cost. The contri-
butions of this study are as follows:

• We present a multi-period multi-commodity multi-level spare parts distribu-
tion network design problem.

• In order to solve the problem, we build a mixed integer linear programming
model incorporating the facility location decisions, inbound and outbound
transportation mode decisions, outbound vehicle routing and service level de-
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cisions.

• We develop a heuristic method to this large scale combinatorial optimization
problem.

The organization of this thesis is as follows: Chapter 2 contains the literature review.
In Chapter 3, the problem is stressed in details and the corresponding mathematical
model is presented. Chapter 4 expatiates the heuristic solution method that we
developed. In Chapter 5, we present and discuss the results obtained from our
experiments. Lastly, we provide the conclusions of the work in Chapter 6.

2



2. LITERATURE REVIEW

After-sales service distribution network problems can include routing decisions, lo-
cation decisions for distribution centers and depots, truck size decisions, inventory
decisions, staff decisions, shift decisions and service level decisions as they are prac-
tised in the literature. Our problem of interest is involved with location, routing,
truck size and service level decisions. We begin reviewing the works done in the
most sub problem.

The vehicle routing problems (VRP) are extensively studied in the past. Laporte &
Osman (1995) present a summary of the works done regarding multi drop truck load.
Toth & Vigo (1998) develop an exact solution method for deterministic cases. Due
to high complexity of the problem, various heuristic procedures are proposed (La-
porte, Gendreau, Potvin & Semet, 2000). Integrating the location decisions, location
routing problems are stressed firstly by Laporte (1988). He proposes deterministic
formulations of the problem. Following, heuristic solution methods are proposed to
solve deterministic VRP cases by Chien (1993), Tuzun & Burke (1999), Barreto,
Ferreira, Paixao & Santos (2007); Prins, Prodhon, Ruiz, Soriano & Wolfler Calvo
(2007).

Harks, Konig, Matuschke, Richter & Schulz (2016) study a supply chain network
design problem where transportation tariff and inventory decisions are made. The
mathematical model that they present deals with a multi-commodity, multi-period,
capacitated logistics problem. They investigate tariff selection subproblem for dif-
ferent transportation cost structures. Although the procedures they suggest may
not necessarily find the optimal solution, they still yield good bounds for mixed
integer programming model.

Despite the fact that after-sales service logistics systems have some similarities with
the traditional supply chain networks, they bring some extra challenges that make
it harder to handle. After-sales services include large number and variety of parts
(Cohen, Zheng-Yu-Sheng & Wang, 1999). They utilize multiple classes of service
(Cohen et al., 1999). The geographical distribution of customers and the need of
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immediate response to the customers with unpredictable and intermittent demand
are the other factors that cause operational difficulties within the system (Cohen
et al., 1999); (Huiskonen, 2001); (Boylan & Syntetos, 2010).

There are also studies whose scope is broader in terms of the number of elements to
be decided. Persson & Saccani (2009) develop a simulation model which calculates
the transportation cost over different scenarios on demand. Suppliers and spare
parts allocation decisions are made for a new second warehouse of which location
is known. Wu, Hsu & Huang (2011) develop a mathematical model for a single
period spare parts network design problem which includes depot location decisions,
transportation mode decisions and staffing decisions. The study embraces a
provision of metaheuristic solution methods. The study of Landrieux & Vandaele
(2012) combines facility location and spare parts inventory management problems
by minimizing the total cost. Recently, Altekin, Aylı & Şahin (2017) provide
a cost minimizing mathematical model for a single period multi echelon spare
part logistics network design problem of a household appliances manufacturer in
Turkey. A mixed integer programming formulation which determines the facility
locations and transportation modes along with the allocation of demand points to
the facilities is proposed. This study also constitutes a base for our study. Klibi
(2010) study a stochastic multi-period location transportation problem. They
propose a hierarchical heuristic solution integrating a tabu search procedure. Their
objective is to maximize the profit. The model involves the determination of
facility locations, transportation modes and vehicle routing. Albareda-Sambola,
Fernández & Nickel (2012) present a mathematical model for a multi period
location-routing problem where the demand is known in advance. They aim to
minimize the total cost while deciding on the facility locations, transportation and
the routing schemes. An approximation method is also provided. A stochastic multi
period inventory-routing problem is studied by Abdul Rahim, Zhong, Aghezzaf
& Aouam (2014). They propose an approximation model using Lagrangian
relaxation. They consider a system where the total cost consists of inventory
cost and transportation-related costs. Employing a single facility, transportation
configuration and routing settings are to be decided. Recently, Mohamed, Klibi
& Vanderbeck (2020) study a two-level distribution network with stochastic multi
period demand. Both distribution center and regional depot locations are to be
decided along with the inbound and outbound transportation arrangement and
routing mechanism. A two-stage stochastic programming formulation is proposed
and solved by using Benders decomposition

4



The differences between our study and some other related studies are shown below.

Figure 2.1 The comparison of related studies.
ASND: After-Sales Network Design

PDND: Production Distribution Network Design.
MTC: Minimize Total Cost
MTP: Maximize Total Profit.
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3. PROBLEM DEFINITION

We study a spare parts distribution network consisting of three types of facilities
which are a distribution center (DC), regional depots and service points. Outsourced
parts that are generally supplied by an external supplier are stored at the DC.
Then, they are sent from the DC to service points through the regional depots. In
our system, we employ a single DC. Inbound trucks are responsible for the direct
shipment of the parts from the DC to the regional depots whereas outbound trucks
carry the parts from the depots to the service points following routes that visit and
serve several service points. We study a multi-period and multi-commodity setting.
The setting is in the sense that service points have different demands in different
periods depending on the length of the planning horizon.. A period can stand for a
day or a three days or a week.

Figure 3.1 The main structure of the spare parts distribution network

We determine the location and the number of the regional depots to open among
candidate locations, truck load and truck size for both inbound and outbound trans-
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portation and routes of the outbound trucks. Our aim is to find the transportation
and distribution scheme with the least cost. The main cost terms are fixed opening
costs of the regional depots and fixed operation costs of trucks. The cost function
for the trucks has a staircase structure with respect to their capacity. It means that
cost of operating a truck is a fixed parameter that varies with the changing sizes of
the trucks.

To solve this problem, we develop a mathematical model in the form of a mixed
integer programming problem formulation. Therefore, we need to establish some
assumptions as follows:

• The length of the planning horizon in terms of demand information is too
short considering the useful life of the facilities. Therefore, location decisions
are not period dependent.

• There is no lead time in transportation and procurement; transportation ac-
tivity in a period satisfies the demand of that period.

• The periods are considered in a cyclic manner. To accommodate continuity,
we treat the system in a way the time goes back to the initial period such that
the first period’s demand will be observed after the last period.

• Inventory related costs are neglected in regional depots and there is no capacity
constraint for the inventory.

• A service point can be served by several regional depots.

• We can only use routes that are predetermined. So, the routing decision is
simply selecting some routes from a finite set.

• There is no transshipment between the regional depots.

• The demand of a service point for a commodity in a period is known only
at the beginning of that period. That hinders us from making a prudential
shipment. However, a portion of back-ordering is allowed as long as some
certain service level is satisfied for that period’s demand.

7



Figure 3.2 The single period problem network structure

Figure 3.3 The multi period problem network structure

3.1 A Mathematical Model

In order to develop a mathematical model for the problem as a mixed integer pro-
gramming problem formulation, we use the following notation.

Indices and Sets

i ∈ I: Alternative depot locations
j ∈ J : Service points
p ∈ P : Part families
t ∈ T : Time periods
r ∈R: All the routes from potential depot locations to service points
Ri: Set of routes that are assigned to depot i
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Rj : Set of routes that contains service point j
Jr: Set of service points covered in route r
Ij : Set of depots that can serve service point j
Ki: Set of volume breaks (0 < Qi1 < Qi2 < . . .) in transportation cost
function from DC to depot i
k ∈ K ′r: Set of volume breaks (0 < Qr1 < Qr2 < . . .) in transportation cost
function for route r

Parameters

Djpt: Demand of service point j for part p for period t
fi: Fixed cost of opening a depot at location i
Qrkt: Capacity of the outbound truck type k using route r in period t
Q′iks: Capacity of the inbound truck type k going to depot i in period s
crkt: Cost of carrying Qrkt or less weight for period t using route r
c′iks: Cost of carrying Q′iks or less weight in period s from the depot i
L: Amount of late delivery allowance periods

Decision variables:

Xjprstu: Amount of part p delivered to service point j through route r in period
u which was transferred to the corresponding depot in period t for the demand in
period s where s≤ t≤ u

Yi =

1, if a depot is opened at location i

0, otherwise

Vrkt =

1, if the truck size k on the route r for the period t is used

0, otherwise

Wiks =

1, if truck size k utilized from DC to depot i in period s

0, otherwise

9



minimize
∑
i∈I

fiYi +
∑
r∈R

∑
k∈Kr

∑
t∈T

Vrktcrkt +
∑
i∈I

∑
k∈Ki

∑
s∈T

c′iksWiks(3.1)

s.t.
∑

r∈Rj

∑
s≤t≤u

Xjprstu =Djpt ∀(j,p,s) ∈ (J,P,T )(3.2)

∑
s≤t≤u

∑
j∈Jr

∑
p∈P

Xjprstu ≤
∑

k∈Kr

QrksVrku ∀r ∈R,∀u ∈ T(3.3)
∑

s≤t≤u

∑
r∈Ri

∑
j∈Jr

∑
p∈P

Xjprstu ≤
∑

k∈K′i

Q′iksWikt ∀i ∈ I,∀t ∈ T(3.4)

∑
k∈Kr

Vrku ≤ Yi ∀(i,r,u) ∈ (I,Ri,T )(3.5)
∑

k∈K′i

Wikt ≤ Yi ∀i ∈ I,∀t ∈ T(3.6)

∑
r∈Rj

s+l∑
u=s

u∑
t=s

Xjprstu ≥ αplDjpt ∀(j,p,s) ∈ (J,P,T ), l = 0,1, ..,L−1(3.7)

Yi ∈ {0,1} ∀i ∈ I(3.8)

Wiks ∈ {0,1} ∀(i,k,s) ∈ (I,Ki,T )(3.9)

Vrkt ∈ {0,1} ∀(r,k, t) ∈ (R,Kr,T )(3.10)

Xjprstu ≥ 0 ∀(j,p,r,s, t,u) ∈ (J,P,R,T,T,T )(3.11)

The objective function (3.1) minimizes the total cost that arises from depot opening,
outbound and inbound truck operations. Constraint (3.2) ensures the demand is
satisfied with on time or late deliveries. Constraint (3.3) and Constraint (3.4) are
to determine the size of the outbound and inbound trucks respectively. Constraints
(3.5) and (3.6) connect depot location decisions with outbound and inbound truck
selection respectively. Constraint (3.7) ensures that the demand is satisfied at least
at the minimum service level. Constraints (3.8), (3.9), (3.10) and (3.11) define the
nature of decision variables. A pre-defined route set is given. We enlarged this set
by adding routes that only serve a single service point. We added these routes for
each and every service point.

However, the problem formulation (3.1)-(3.11) turns out to be very large to solve in
a reasonable time even with the smallest data set. Therefore, we develop heuristic
methods to solve the problem approximately in reasonable time.
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4. A HEURISTIC SOLUTION METHOD

Since this problem is not solvable in reasonable time, we aim to find good feasible
solutions heuristically. Our idea relies on identifying a feasible solution from a
restricted solution space first and then try improving this solution by getting rid of
the restrictions on the solution.

We propose a 3-phase algorithm. The goal of the first phase is to find an initial
feasible solution to the problem by dealing with a restricted problem. In this phase,
we take into account a single period problem for each period in the problem. We
also enforce that each service point is served by only a single truck to restrict the
problem further. We refer to this as "single-sourcing".

In the second phase, the solution found in the first phase is aggregated into a multiple
period solution. The second phase reoptimizes the facility locations by considering
the multiple single-period solutions.

The third phase is an iterative process that takes the result of the second phase
and tries to modify it with slight improvements towards the original problem. The
mechanism of the algorithm can be summarized as follows.

Phase 1:

Step 1.1) For each period, solve a single period problem with single sourcing
constraints individually.

Step 1.2) Make up a restricted multi-period problem instance where selected
routes and opened depots comprise the set of possible routes and candidate depots.

Phase 2:

Step 2.1) Solve the restricted multi-period problem formed in Phase 1.

Step 2.2) Declare the solution as an initial solution for Phase 3.

11



Phase 3:

Step 3.1) For each depot, perform local route set expansion and solve the
expanded multi-period problem.

Step 3.2) Take the solution with the best local improvement as an initial
solution for the next iteration.

Step 3.3) Reiterate this procedure until there is no improvement.

4.1 Phase 1: Single Period Single Sourcing Problem

In phase 1, we solve a single period problem for each period, i.e. we only take into
account a period’s demand and all transportation operations in that period. Late
deliveries are neither allowed nor possible. We adopt a single-sourcing constraint
as the restrictive ingredient to the model which allows a service point to be served
by only one route. Consequently, a service point can be served by only one
depot as each route is emerging from a specific depot. The corresponding integer
programming formulation requires additional parameters as follows:

Djp: Demand of service point j for part p (in terms of weight)
c′ik: Cost of carrying Q′ik or less weight to the depot i
cr: Cost of using route r

In addition to facility location decision variable Yi, we define

Wik =

1, if transportation option k is utilized from DC to depot i

0, otherwise

Zr =

1, if the route r is used

0, otherwise

Accordingly, the problem formulation becomes:
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minimize
∑
i∈I

fiYi +
∑
r∈R

Zrcr +
∑
i∈I

∑
k∈Ki

cikWik(4.1)

s.t.
∑

k∈Ki

QikWik−
∑

r∈Ri

DrZr ≥ 0, ∀i ∈ I(4.2)

−
∑

k∈Ki

Wik +Yi ≥ 0, ∀i ∈ I(4.3)

∑
r∈Rj

Zr = 1, ∀j ∈ J(4.4)

Yi ∈ {0,1} ∀i ∈ I,(4.5)

Wik ∈ {0,1} ∀(i,k) ∈ (I,Ki)(4.6)

Zr ∈ {0,1} ∀r ∈R(4.7)

Similarly structured to the multi period problem formulation, the objective function
(4.1) minimizes the total cost that arises from depot opening, outbound and inbound
truck operations. Constraint (4.2) determines inbound truck size that can cover the
demand. The constraint (4.3) controls the depot location decisions. Constraint (4.4)
enforces single sourcing meaning that a service point can be served one and only one
route. Constraints (4.5), (4.6) and (4.7) determine the nature of decision variables.

4.2 Phase 2: A Feasible Multi-Period Solution On Facility Locations

A reoptimization on facility locations using the original multi-period formulation
based on the results of Phase 1 takes place during this phase. Selected routes and
opened depots from Phase 1 comprise the set of candidate routes and candidate de-
pots. Given the restricted route set and depot set, we solve a multi-period problem.
As a result, we expect to end up with a better solution than previously obtained
because the restrictions in the initial solution are no more in effect. Firstly, the
solution obtained with the aggregation of the solutions of multiple single-period so-
lutions enforces service levels to be 100 percent. In other words, the demand for a
single period is fully satisfied in that period. However, the formulation used in Phase
2 allows this demand to be partially satisfied in the first period when it is received
and the rest can be supplied via back-ordering. This gives a flexibility to adjust both
inbound and outbound truckloads so that their utilization is higher. Therefore, it
can result in operating less number of trucks decreasing the total cost. Secondly, the
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single-sourcing constraint is removed. It means that multiple trucks riding different
routes can serve the same service point. It allows a demand of a service point to
be shared between the serving trucks in any ratio. Thus, the more combinations of
demand packing we have, the more the combinatorial flexibility is reached. Conse-
quently, the better use of truck capacities can reflect as a lower cost. Thirdly, as the
single period problem formulation focuses on a single period requirements, a facility
which is opened for a period may be inert for other periods but this is ignored during
the aggregation of solutions of single period problems. Hence, multi-period problem
formulation could better handle this issue by not opening unnecessary depots. In
this way, the total cost could be decreased.

After obtaining a solution for the multi-period model, the selected routes make up
the route set for the next phase such that if Vrkt = 1 ,∃r ∈R then R′ =R′∪r where
R′ is the route set for the problem in Phase 3. Similarly, the opened depots will be
added into the depot set for the next phase such that Yi = 1 ,∃i ∈ I then I ′ = I ′∪ i
where I ′ is the depot set for Phase 3.

4.3 Phase 3: Improvements Over The Route Selections

This phase provides an iterative local search procedure. By setting the solution
obtained in Phase 2 as the parent solution, we produce multiple child problems
and obtain their solutions out of the parent solution in each iteration. For a given
solution, a child solution requires modifications of the solution associated with a
particular facility represented by the child. The best child solution is set to be
the parent solution of the next generation problems and solutions. This procedure
continues until no child solution is better than its parent.

Given a parent solution, we perform local route set expansion for each selected depot
representing the child solution in that solution separately. Let R′ be the route set
after Phase 2 and let R′i be the route set of the child multi-period problem created
by the local route set expansion using the routes that are emanating from depot
i such that R′i = R′∪Ri. Having different child problems with different route sets
and solving them, the solution with the best local improvement will be the parent
solution for the next iteration. From this solution we redefine the set R′ as follows:

R′ = {r | Vrkt = 1 ,∃r ∈R ,∃k ∈K ′r ,∃t ∈ T}
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Let F be the parent solution’s objective function value and Fi be the the child so-
lution’s objective function value which is produced by the local route set expansion
for depot i. We stop the procedure if min

i
{Fi}= F ∀i ∈ I ′.

The procedure of Phase 3 is as follows:

Let R′ be the route set, I ′ be the depot set and F be the objective function value
of the (initial) solution.

Step 1) For i in I ′;

R′′ =R′∪Ri

Solve multi-period problem by taking the route set as R′′

Fi = Objective function value

Rs
i = {} (Selected routes )

For r,k, t in R′′×K ′r×T ;

if Vrkt = 1

Append r to Rs
i

Step 2) if min
i
{Fi}< F then;

F = min
i
{Fi}

i∗ = argmin
i
{Fi}

R′ =Rs
i∗

Go to Step 1

else

Terminate!
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5. COMPUTATIONAL RESULTS

5.1 Experiment Setup

We generated 3 different problem sizes to investigate how the scale of the problem
affects the performance. They differ in terms of the number of service points, al-
ternative depots, and routes contained. We created 10 data sets for instances of
different sizes to compare the performance of the proposed models and algorithms.
The instance sizes are as follows:

• 30 service points and 10 alternative regional depot locations (30SP)

• 50 service points and 15 alternative regional depot locations (50SP)

• 100 service points and 30 alternative regional depot locations (100SP)

Number of routes in 30SP datasets is ranging between 58 and 91, in 50SP datasets
is between 150 and 213 and in 100SP datasets is ranging between 610 and 786. The
route sets are generated by neighbor search and expanded neighbor search algorithms
adopted from the study by Ercan (2019).

We used a 100x100 grid coordinate system with a single distribution center located
at the center to generate the problem instances. The unit distance is one kilometer.
For each instance, the location of service points are generated randomly and k-means
algorithm is utilized to determine the location of alternative regional depots.

Transportation costs arise from both inbound and outbound operating trucks. Both
type of trucks travel the Euclidean distance between any two points they visit. In-
bound trucks transport the spare parts from DC to a single regional depot. There-
fore, they do not follow a route or go to a combination of depots. However, outbound
trucks deliver the spare parts to the service points following a route. So, their cost
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Figure 5.1 The layout of the system for Instance 1 of 30SP data set

structure is also different. There is a fixed amount to be incurred per kilometer
travelled for inbound trucks whereas the cost of outbound trucks does not depend
on the distance travelled but it is a fixed operating cost for a truck for a period
regardless of the length of its route. We employ trucks of 3 different sizes. The
amount paid per unit distance increases as the size of the inbound trucks increases.
In similar fashion, the fixed cost of an outbound truck also increases with respect
to its size.

Figure 5.2 The cost function for inbound trucks.

As seen on the graph above, employing a bigger sized truck is better than multiple
small sized ones due to economies of scale. Therefore, the model implicitly tries to
use as fewer trucks as possible.
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Figure 5.3 The cost function for outbound trucks.

The last cost term which is fixed opening costs of the regional depots varies
between 12800 and 16600

In our problem setup, we have 3 periods and 3 commodities which are generated by
the aggregation of 10 commodities to simplify the model and to be still able to work
with a multi commodity problem. We allow for one period of late deliveries to the
service points as long as the minimum service level is satisfied for the period when
the demand is received. Different service levels for different commodities are adopted
to create the heterogeneity that stems from the nature of having an environment
with multi commodity.

5.2 Example Problem Results

In order to exhibit how the initial solution evolves into a better solution by the
3-Phase Algorithm and to analyze its cost breakdown we select Instance 2 of the
30SP data set.

First, the optimal value found by the commercial solver is 208765 which consists of
location costs, inbound and outbound truck costs. The 3-Phase Algorithm is able
to obtain the optimal solution quicker than the solver. The comparison table is
presented below. The CPU times are in seconds.

Figure 5.4 The results of Instance 2 of 30SP.
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The solution found in Phase 1 is quite loose as its objective function value is far from
the optimal solution compared to other phases’ result. Phase 2 is where the biggest
improvement is observed and it is already able to find very good upper bound for
a minimization problem. Phase 3 is the fine tuning phase that it tries to improve
solution by small relaxations in every iteration and it finds the optimal solution
for this instance. Next, we present how the components of the objective function
changes within the phases.

Figure 5.5 The outbound truck cost of phases of Instance 2.

Numbers on the column headings represent the period. Gap stands for the mixed-
integer programming optimality gap. For Phase 1, each period’s total cost is dis-
played since the Phase 1 consists of single period problem solutions for each period.
The multi period solution’s total cost is displayed for Phase 2 and Phase 3 prob-
lem solutions. In each column, there is the outbound transportation cost and the
routes used in that period along with the truck sizes. b1 represents the truck with
the smallest size and b3 represents the one with the largest truck. It can be seen
that the number of routes used are decreased in Phase 2 compared to Phase 1. In
addition, the number of large-sized trucks used is decreased while the total number
of trucks used also reduced. That is reflected in the outbound transportation cost.
We have 2 iterations in Phase 2. Each one has an improvement on the total cost
even though the outbound transportation cost remains the same in iteration 1. The
last iteration exhibits how the cost benefit is obtained. If we compare the list of
routes used in period 1 of iteration 1 and iteration 2, the fact that the outbound
transportation cost is decreased in iteration 2. This is achieved by simply replacing
2 middle-sized truck with 2 small-sized trucks despite using one more additional
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truck in total. A similar behaviour follows in period 2.

The truck utilization also provides good insights about the performance of the sys-
tem. We examine the unused spaces of the trucks rather than the percentage uti-
lization. The total truck capacity scrapped in Phase 1 is 9582.9. This number
dramatically decreases in Phase 2 to 1954.2. Iteration 1 of Phase 3, however, pro-
vides no improvement as the set of trucks used is the same with that of Phase 2.
The number of trucks used in full capacity increases in iteration 2 of Phase 3. The
total unused truck capacity in iteration 1 is almost halved in iteration 2 and turns
out to be 954.2.

Figure 5.6 The unused outbound truck spaces.

Figure 5.7 The average percentage outbound truck utilizations of each truck size.

By the table above, we can observe the increasing behaviour of the truck utilization
for further phases. Especially, the improvement in Phase 2 from Phase 1 is steep.

Figure 5.8 has a similar structure to Figure 5.5. In each column, the destination
of the inbound trucks (a depot) and its size are displayed. b1 represents the truck
with the smallest size and b3 represents the one with the largest truck. This table
also shows the information of open depots for each period. While Phase 1 solution
suggests to open depot #4, the Phase 2 solution denies it. An immediate benefit
observed in Phase 2 is that the depot #4 is closed. Iteration 1 of Phase 3 gains
cost advantage by replacing a middle sized truck with a small sized one for both
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Figure 5.8 The inbound truck cost of phases of Instance 2.

period 2 and 3.

5.3 Results Summary

The experiments we conduct are for the comparison of the performance of the com-
mercial solver and the 3-Phase Algorithm for 30SP data sets. The performance is
measured by both the solution time and the objective function value of the solu-
tion. During the experiments, we utilized GUROBI 7.5.2 on PYTHON 3.6 using an
Intel Xeon CPU E5-2640 processor with 2.60 GHz speed, 16 GB RAM and 64-bit
Windows 7 operating system.

We experimented on data sets with different sizes as previously mentioned. For
50SP and 100SP data sets, we calculated both long run and short run performances
since the optimal solution cannot be obtained.

The summary of the experiments are presented in the tables below. The time figures
are in seconds.

For 30 SP data sets, we put 4 hours time limit for both the commercial solver and
3-Phase Algorithm. As seen in the table below, in none of the instances, 3-Phase
Algorithm is terminated by the time limit. However, the solver fails to find the
optimal solution in 5 of the instances. Given that, 3-Phase Algorithm is able to find
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Figure 5.9 The results of 30SP data set.

the optimal solution in only instance 2. Although the 3-Phase Algorithm cannot
yield better solutions than the solver, the algorithm’s solutions can be considered
as good enough and it finds those solutions quicker than the solver.

Figure 5.10 The results of 50SP data set in 8 hours.

For 50SP and beyond data sets, we enforced 8 hours time limit to both solver and
the algorithm long runs. The 3-Phase Algorithm yields better solutions in Instances
7, 8 and 10 in 8-hour runs. We should also note that the run taken on Instance 7
terminated before the time limit is exceeded. We allocated 1 hour to Phase 2 but
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the total run time of the algorithm is 8 hours.

Figure 5.11 The results of 50SP data set in 30 minutes.

By the results of short run experiments where the time limit is 30 minutes, we can
observe that in Instances 1, 2, 4 and 5 the 3-Phase Algorithm performs better than
the solver. Moreover, the algorithm still produces good solutions compared to the
solver in the other instances.

Figure 5.12 The results of 100SP data set in 8 hours.

In experiments with 100SP data set, we imposed a 8-hour limit where 2 hours are
devoted to Phase 2. In 3 of the 10 instances the 3-Phase Algorithm finds better
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Figure 5.13 The results of 100SP data set in 30 minutes.

solutions than the solver. If we compare the short run results in which the total
time limit is 30 minutes and at most 10 minutes are allocated to Phase 2, the
performance of the algorithm outweighs the solver’s. In 7 of the 10 instances, the
solver cannot produce superior solutions than that of the proposed algorithm.
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6. CONCLUSION

In this study, we present a mathematical model for multi period spare parts distribu-
tion network design problem. The model includes facility location decision, inbound
and outbound truckload with the truck size decision, routing decision for outbound
trucks and service level decision. A total cost minimizing mixed integer linear pro-
gramming formulation is proposed. Since, the problem is a large scale combinatorial
optimization problem, the commercial solver struggles to find the optimal solution
for small data sets and fails to find the optimal solution in a reasonable time as the
problem size increases. Therefore, we proposed a heuristic method to deal with the
problem. Because the scale of the problem creates challenges, the idea behind this
heuristic method is to restrict the problem so as to find a feasible initial solution and
seek for improvements from that solution. The proposed algorithm is comprised of
3 phases that the algorithm is named after. The first phase of 3-Phase Algorithm
solves a single period problem with single sourcing constraint. A multi period so-
lution is built upon the single period problem solutions. This solution undergoes a
reoptimization phase. After that, the third phase tries to improve this solution by
relaxing the problem with local route set expansion iteratively.

We test the algorithm on 3 different data sets having 10 instances each. The first one
has 30 service points, 10 candidate regional depot locations and routes .The second
one has 50 service points, 15 candidate regional depot locations and routes. The last
one has 100 service points, 30 candidate regional depot locations and routes. The
3-Phase Algorithm seems to be slightly overtaken by the solver solutions in smaller
cases. However, the algorithm is strong in producing good solutions for bigger cases
in short time against the solver.

One weakness of the algorithm can be that it spends a lot of time solving a problem
during Phase 3 when the average number of routes serving to a service point is high.
Basically, when this statistics is higher, the number of possible deliveries gets higher
and this situation makes it harder to find the optimal one. Thus, spending more
time for an iteration results in completion of less number of iterations. Therefore,
the potential improvement margin may not be achieved in desired time.
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We can suggest to work on this system with a seasonality effect on demand as a future
work. One can also consider incorporating distribution center location decisions into
this study. In addition, including an inventory cost term to the objective function
can be possible without defining any additional decision variables. So, we can suggest
this extension, as well.
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