
LOAD BALANCING BY USING MACHINE LEARNING IN
CPU-GPU HETEROGENEOUS DATABASE MANAGEMENT

SYSTEM

by
ANIL ELAKAŞ

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
August 2020

ANIL ELAKAŞ 2020 c©

All Rights Reserved

ABSTRACT

LOAD BALANCING BY USING MACHINE LEARNING IN CPU-GPU
HETEROGENEOUS DATABASE MANAGEMENT SYSTEM

ANIL ELAKAŞ

COMPUTER SCIENCE AND ENGINEERING M.S. THESIS, DEC 2020

Thesis Supervisor: Asst. Prof. Erdinç Öztürk

Keywords: load balancing, database management systems, machine learning, high
performance computing, query optimization

Conventional OLTP systems are slow in performance for analytical queries. In
the existing heterogeneous architecture OLAP database management systems, no
system distributes work using machine learning. In this study, the DOLAP archi-
tecture, which is a high-performance column-based database management system
developed for shared memory architectures, is explained. Also, job distribution al-
gorithms based on heuristic and machine learning methods have been developed for
computing hardware with different characters such as CPU and GPU on the server
on which the database is running, and their performance has been analyzed.

iv

ÖZET

CPU-GPU HETEROJEN VERITABANI YÖNETIM SISTEMINDE MAKINE
ÖĞRENMESI KULLANARAK YÜK DENGELEME

ANIL ELAKAŞ

BİLGİSAYAR BİLİMLERİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ,
ARALIK 2020

Tez Danışmanı: Asst. Prof. Erdinç Öztürk

Klasik OLTP sistemleri analiz sorguları için performans olarak yavaş kalmaktadır.
Var olan heterojen mimarili OLAP veri tabanı yönetim sistemlerinde ise makine
öğrenmesi kullanarak iş dağıtımı yapan bir sisteme rastlanmamıştır. Bu çalışmada
paylaşımlı hafıza mimarileri için geliştirilmiş, yüksek başarımlı ve sütun tabanlı bir

veri tabanı yönetim sistemi olan DOLAP mimarisi anlatılmıştır. Ayrıca, veri
tabanının üzerinde çalıştığı sunucu üzerinde bulunan, CPU ve GPU gibi farklı
karakterlerdeki hesaplama donanımları için, buluşsal yöntemlere ve makine
öğrenmesi yöntemlerine dayanan iş dağıtım algoritmaları geliştirilmiş ve

performansları analiz edilmiştir.

Anahtar Kelimeler: yük dengeleme, veritabanı yönetim sistemleri, makine
öğrenmesi, yüksek performansla hesaplama, sorgu eniyilemesi

v

ACKNOWLEDGEMENTS

This work is supported by TÜBİTAK project number 118E044.

The successful completion of this project would not have been feasible without the
help of several key individuals. First, I would like to express my deepest gratitude to
my thesis advisor, Asst. Prof. Erdinç Öztürk, for his considerable encouragement,
worthwhile guidance and insightful comments during the thesis process.

I would like to express my sincere gratitude and appreciation to my professors Asst.
Prof. Kamer Kaya and Asst. Prof. Sinan Yıldırım, for their encouragement, creative
and comprehensive advice until this work came to existence.

I would like to express my deepest thanks and sincere appreciation to Asst. Prof.
Alper Özpınar of Istanbul Commerce University, for his ideas and useful comments
during the thesis process.

I am thankful to my teammate, Anes, for his time and effort during the project.

I am deeply grateful to my parents Ayşegül and Aydın for their limitless love, endless
support and precious trust.

I would like to express my heartfelt gratitude and sincere appreciation to my girl-
friend, Esra, for her endless love, support, care and patience.

I would also like to state my special thanks to my close friends: Deniz, Eray, and
Görkem for their support.

vi

Dedicated to
the people who have supported me through my master education.

Especially my family, my love and my friends...

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. MOTIVATION . 2

3. RELATED WORK . 3

4. BACKGROUND . 4
4.1. Multicore and Manycore Architectures . 4

4.1.1. Central Processing Unit (CPU) . 4
4.1.2. CPU Multi-core . 7
4.1.3. Graphic Processing Unit (GPU) . 8
4.1.4. GPU Architecture and Parallelism . 11

4.2. Database Management System (DBMS) . 14
4.2.1. DBMS History and Database Models . 15

4.2.1.1. Early Years and Navigational Database 15
4.2.1.2. Relational Database . 16
4.2.1.3. Object Oriented Database . 17
4.2.1.4. Multi Dimensional Database . 17
4.2.1.5. NoSQL Database . 17
4.2.1.6. New-SQL Database. 19

4.2.2. Workload Types . 19
4.2.2.1. Online Transaction Processing (OLTP) 20
4.2.2.2. Online Analytical Processing (OLAP) 20
4.2.2.3. Hybrid Transaction Analytical Processing (HTAP) . . 20

4.3. Machine Learning . 21
4.3.1. Machine Learning History . 21

viii

4.3.2. Three Paradigms in Machine Learning . 23
4.3.2.1. Supervised Learning . 23
4.3.2.2. Unsupervised Learning . 24
4.3.2.3. Reinforcement Learning . 25

4.4. Load Balancing . 25
4.4.1. Background . 25
4.4.2. Static Load Balancing . 26
4.4.3. Dynamic Load Balancing . 26

5. DOLAP (DATABASE MANAGEMENT SYSTEM) 28
5.1. Background and General Features . 28
5.2. DOLAP Architecture . 29
5.3. DOLAP Data Upload . 30
5.4. DOLAP Queries . 31

5.4.1. DOLAP Bloom Filter . 32
5.4.1.1. Bloom Filter Usage in CPU and GPU Queries 34

5.4.2. DOLAP Query Answering . 35
5.4.2.1. Query Answering on CPU . 35
5.4.2.2. Query Answering on GPU. 35

5.5. DOLAP Data Visualization. 36

6. DOLAP LOAD BALANCER . 40
6.1. Methods . 40

6.1.1. Random Based Method . 41
6.1.2. Algorithm Based Method . 41
6.1.3. Algorithm 2 Based Method . 42
6.1.4. Machine Learning Based Method . 42

7. IMPLEMENTATION RESULTS . 45

8. CONCLUSION . 52

9. FUTURE WORK . 53

BIBLIOGRAPHY. 54

APPENDIX . 56

ix

LIST OF TABLES

Table 7.1. Average query response times for each query types and both
devices . 45

Table 7.2. Scenario results for all load balancing models with 1 user 45
Table 7.3. The numbers of the decisions of Algorithm 1 47
Table 7.4. Scenario results for all load balancing models with 2 users at

the same time . 47

x

LIST OF FIGURES

xi

LIST OF ABBREVIATIONS

CPU: Central Processing Unit
ALU: The Arithmetic Logic Unit
CU: The Control Unit
MIPS: Millions of Instructions per Second
AMD: Advanced Micro Devices
IC : Integrated Circuit
GPU: Graphic Processing Unit
MIT: Massachusetts Institute of Technology
IBM: International Business Machine Corporation
FPGA: Field Programmable Gate Array
OLAP: On-line Analytical Processing
OLTP: On-line Transactional Processing
IoT: Internet of Things
SP: Streaming Processor
API: Application Programming Interface
CUDA: Compute Unified Device Architecture
DMBS: Database Management System
IDS: Integrated Data Store
CODASYL: Conference/Committee on Data Systems Languages
COBOL: Common Business-Oriented Language
IMS: Information Management System
BOM: Bill of materials
ACID: Atomicity, Consistency, Isolation, Durability
SQL: Structured Query Language
MIT: Massachusetts Institute of Technology
AI: Artificial Intelligence
JSON: JavaScript Object Notation
REST: REpresentational State Transfer
CSV: A comma-separated values

xii

1. INTRODUCTION

Big data is a term that describes the large volume of data that inundates a business
on a day-to-day basis. Rather than the amount of data, the usage methodology of
data is important. If analyzed properly, big data can give insights that lead to better
decisions and strategic business moves. Industry analyst Doug Laney expressed the
big data as three Vs: Volume, Velocity and Variety. Through this situation the
concept of big data accelerated in the beginning of the 2000s.

Big data usage has been increasing steadily over the past years. As record counts and
data quantity increases, so does the need for a database system to effectively manage
this quantity of information. To make this information more useful, easy to access
and protected, more efficient and tailor-made database management systems are in
need. For this purpose, we have created DOLAP as a database management system.
DOLAP has a column-based structure designed with OLAP (On-Line Analytical
Processing) analysis queries and tasks in mind.

The developed open-source database can be used efficiently with different architec-
tures such as CPU, GPU, and FPGA at the same time, with smart work distri-
bution methods. DOLAP can increase performance with query optimizations and
sharing methods, which work on a heterogeneous system on the server-side and it is
a database management system where users can generate dynamic and static queries
thanks to the interface developed on the client-side.

In this thesis, four different job distribution methods; random, algorithm 1, al-
gorithm 2 and the multiple linear regression machine learning were designed and
implemented. These methods -especially the multiple linear regression method- can
efficiently distribute analysis queries between CPU and GPU devices. Also, perfor-
mance analyzes and obtained test results were provided.

1

2. MOTIVATION

The main goal was to create a lightweight, adaptable, and scalable database that
does not use an index and relational structure when writing a DOLAP database so
that it can process OLAP workloads quickly. In addition, unpredictable query flow
always become a significant challenge for database management systems especially
ones that uses algorithm based methods; therefore my proposed load balancing
model addresses this issue explicitly by learning query flow and predicting by using
multiple linear regression machine learning method.

2

3. RELATED WORK

Conventional OLTP (On Line Analytical Processing) systems are slow in perfor-
mance in dynamic and continuous analysis queries. Today’s High Performance Com-
puting hardware can perform differently in different queries. GPU-based databases
with high investment such as Kinetica Kinetica (2020) and OmniSci (MapD)
MAPD (2020) have become very popular in recent years. OmniSci is SQL-based,
relational, columnar and specifically developed to harness the massive parallesim of
modern CPU and GPU hardware. Differences between DOLAP and OmniSci are,
OmniSci has multiple CPUs and GPUs where DOLAP has a single CPU and a single
GPU. OmciSci is SQL-based where DOLAP is NoSQL based. DOLAP uses machine
learning in load balancer module where OmniSci is not. Another similar dbms is
Kinetica. Kinetica has a GPU-based architecture. They offers machine learning so-
lution to improve accuracy of inferences but not for a load balancing between CPU
and GPU as we do in DOLAP. Existing OLAP databases do not support CPU,
GPU and FPGA simultaneously on heterogeneous systems. Also, according to the
literature search, different load balancing modules use machine learning in cloud
systems Li, Zhang, Wan, Ren, Zhou, Wu, Yang & Wang (2019), heterogeneous net-
work systems Rajesh, Bagan, K & M (2019) , IoT systems Gomez, Shami & Wang
(2018) and distributed computing systems. However, a system that distributes work
using machine learning has not been encountered in database management systems
with heterogeneous architecture. As a result, no database management system in
the literature can provide all of the features mentioned in the section 1.

3

4. BACKGROUND

The background gives brief but important information about the devices I use in
my project. Each section contains information about their history and how they
worked.

4.1 Multicore and Manycore Architectures

4.1.1 Central Processing Unit (CPU)

We had no chance to spend time without interacting with a processor. For example,
from desktop computers to cell phones, from laptops to tablets, we interact with a
processor in our daily lives.

Intel launched the 4004 processor that was just 4-bit on 1971. Electronic News
introduced the processor with following sentence: ”Announcing A New Era In Inte-
grated Electronics”. In that moment the Intel 4004 became the first general-purpose
programmable processor on the market. It was a "building block" that engineers
could purchase and then customize with software to perform different functions in
a large range of electronic devicesIntel (2020b).

4

Figure 4.1 Intel 4004, First processor

This new fashioned hardware is clocked at 740 kHz rate, with the capacity of
executing up to 92,000 instr/sec with a single instruction cycle of 10.8 microseconds
where it is composed of 2,300 transistor. Intel (2020a)

Intel dominated the CPU market and launched various following CPU designs for
the next 20 years. Then, on March 22, 1993, a new famous name in the CPU
industry’s history has emerged, the Intel Pentium processor. That famous device
operated at a 60-66 MHz and 100 Millions of Instructions per Second (MIPS). It
has a 16 KB L1 cacheIntel (Intel). The innovation movement from Intel continued
for 2 more years. In 1995, AMD which is the major competitor of Intel in today’s
market introduced its first serious product, AMD AM5x86. The race among Intel
and AMD has been going on ever since.

5

Figure 4.2 AMD AM5x86

The one of the milestones in the CPU history was reaching the achievement of the
produce first 1 GHz processor. Intel launched the Intel Pentium III on February
26, 1999, and AMD launched the AMD Athlon on June 23, 1999. However, this
accomplishment was reached first by the AMD Athlon K75 model which is released
in November 1999. Accordingly, "Athlon" was a felicitous name for AMD’s important
processor since it is the Greek word for "Champion/trophy of the games".

Figure 4.3 Intel Pentium III

6

Figure 4.4 AMD Athlon

In just over almost 50 years, processor technology powered up from 740 kHz to the
GHz level which means more than a 1300 % increase, and number of the transistors
increased from 2,300 to more than a billion (over a 434,000 % increase).

4.1.2 CPU Multi-core

The term "multi-core" refers to a multiple-core processor which is an integrated
circuit(IC) where two or more processors have been attached for increased perfor-
mance, reduced power consumption, and more efficient simultaneous processing
of multiple tasks via parallel processing. Parallel processing is based on the
principle of decomposition. Decomposition is breaking the problem into smaller
sub-problems and then solving those small sub-problems concurrently. Because of
the decomposition, parallel computing has become the leading norm in computer
architecture. Figure 4.5 shows the multi-core design details of an Intel I5 750
Quad-Core Processor Rouse (2013) Firesmith (2017).

7

Figure 4.5 Intel I5 750 Quad Core Processor Design

Where parallel processing can complete multiple tasks using two or more processors,
serial processing (also called sequential processing) will only complete one task at
a time using one processor. If a computer needs to complete multiple assigned
tasks, then it will complete one task at a time. Likewise, if a computer using serial
processing needs to complete a complex task, then it will take longer compared to
a parallel processor Rouse (2019b).

Parallel computing saves time by decreasing the computation time. Also, it saves
money because of lower prices of the parallel components. We can solve big problems
by dividing them into the smaller sub problems through using parallel computing
because it is not possible to solve big problems with a single computing resource.
Also, there are some drawbacks which are transmission, speeds, limits to minia-
turization, and economic in serial computing. Nowadays, computer architectures
are believe increasing performance of hardware level in multiple execution units,
pipelined instructions, and multi-core for escaping constrains.

4.1.3 Graphic Processing Unit (GPU)

As Prof. Jack Dongarra indicated, "GPUs have evolved to the point where many
real-world applications are easily implemented on them and run significantly faster
than on multi-core systems. Future computing architectures will be hybrid systems
with parallel-core GPUs working in tandem with multi-core CPUs." We can un-
derstand the future place of high-performance computing from his comment Shi,
Kindratenko & Yang (2013).

8

In the middle of the 20th century, in 1951, the Massachusetts Institute of Technol-
ogy (MIT) produced the Whirlwind, a flight simulator for the Navy. Also it may
be considered the first 3D graphics system, the base of today’s GPUs was formed
in the mid-70s with video shifters and video address generators. They carried out
information from the central processor to the display. Specially designed graphics
chips were extensively used in arcade system boards. In 1976, RCA built the
“Pixie” video chip, which was able to output video signal at 62×128 resolution.
Graphics hardware of the Namco Galaxian arcade system supported RGB color,
multi-colored sprites, and tilemap backgrounds as early as 1979.

The introduction of graphics units happened in early 1980s where both Intel and
International Business Machines Corporation (IBM) brought specially designed
products to the market. IBM started using black and white and a color display
adapter (MDA/CDA) in its computers. Still we couldn’t say it is a modern GPU,
it was a particular computer component designed for one purpose: to display
video. In the beginning, it includes 80 columns and 25 lines that consist of text
characters or symbols. ISBX 275 Video Graphics Controller Multimodule Board,
introduced by Intel in 1983. It was the next radical device. At 515x512 resolution,
it supported only black and white colors while at 256x256 resolution it supported
8 colors. Other companies in the market like Commodore and Texas Instruments
increased their simple graphics capabilities either on-chip or using an external
card. Although these cards had primitive functionality, these were comparatively
high-priced. Primitive processors were supporting functions like shape drawing,
filling an area and modification of basic images.

After two years, in 1985, three engineers from Hong Kong founded Array Technology
Inc in Canada, today is known as ATI Technologies. The company was the leader
of the market for years with its Wonder line of graphics boards and chips. At the
beginning of 1991, S3 Graphics introduced its S3 86C911 card which was one of
the first norms for the GPU industry. It named after the Porsche 911 to refer the
performance increase. In 1995, all great companies in the market have added 2D
acceleration support to their chips.

9

Figure 4.6 S3 S386C911 (1991)

Different “languages” like OpenGL and Direct showed up in the end of the 90s
for supporting the commonality of graphics processing. Throughout the 1990s,
substantial improvement was provided with the additional application programming
interfaces (APIs) on the integration level of video cards. OpenGL boosted the
software’s capability was usually before then Direct and it accomplished being used
across cards and platforms. Before the beginning of the new century, both APIs
established assistance for transform and lighting (T&L) which formed a remarkable
refinement in GPU processing. T&L permitted an effortless mapping of 3D images
to a 2D plane while joining the lighting all in one. At that time, there were some
competitive corporations; NVIDIA, ATI, 3dfx, and S3.

2D graphic processing got into nearly every system by the middle of the 1990s.
Furthermore, the competition was on the road to three dimensions processing.
3DFx’s Voodoo graphics card introduced in 1996 and dominated around %85 of
the market. The next product of the company was Voodoo2 in 1998. The card had
three on board chips. It was also among the first graphics cards to support the
parallel operation of two cards in a single computer.

Figure 4.7 3DFx Voodoo (1996)

10

Then finally, on October 11, 1999, NVIDIA released NVIDIA GeForce 256 which is
the world’s first GPU. NVIDIA specified the graphics processing unit as “a single-
chip processor with integrated modification, lighting, triangle setup/clipping, and
rendering engines that process at a minimum of 10 million polygons/second.”Olena
(2018)

Figure 4.8 NVIDIA GeForce 256 (1999)

4.1.4 GPU Architecture and Parallelism

The graphics processing unit or GPU is a many-core multiprocessor system; the
GPU chip has multiple streaming multiprocessors (SM), each of which consists of
many streaming processors (SP) or cores. An SP is heavily multi-threaded with
in-order execution that falls into SIMT (Single Instruction, Multiple Threads)
architecture which shares its control and instruction cache to others, therefore,
all threads running on SPs share the same function or program which is called
a kernel. This architecture allows performing massive computations on multiple
data within a few seconds. In contrast, The Central Processing Unit (CPU) is
a multi-core unit; each core can achieve high performance for a single-threaded
execution Linderman (2009) Sanders & Kandrot. (2010) Kirk & mei W. Hwu. (2010).

As with Intel and AMD, and ATI have been competing for many years. At the
2007, current level of the rivalry began. The age of the general purpose GPUs.
Both NVIDIA and ATI had been producing their graphics cards with increasing
capabilities. Despite that, these companies choose a separate paths to general
purpose computing GPU (GPGPU). Same year, NVIDIA introduced CUDA

11

(Compute Unified Device Architecture). CUDA, is a parallel computing platform
and application programming interface (API) model. Also, CUDA platform is a
software layer that gives direct access to the GPU’s virtual instruction set and
parallel computational elements, for the execution of compute kernels Wikipedia
(2020). Then, two years after the launch of the CUDA, OpenCL became widely
supported. OpenCL specifies programming languages for programming CPUs,
GPUs, FPGAs and application programming interfaces (APIs) to control the
platform and execute programs on the compute devices. Also, OpenCL provides
a standard interface for parallel computing using task-based and data-based
parallelism Nvidia (2020). Therefore, GPUs became a more common computing
hardware. The following figure shows the CUDA Software Architecture Kaur &
Er.Nishi (2014).

Figure 4.9 CUDA Software Architecture

What could be the next innovation in GPU world? In January 7, 2010, NVIDIA
and Audi introduced NVIDIA’s Tegra GPUs. Tegra powers multimedia systems
in 2010 Audi cars all over the world. This union of American engineering and
German engineering establishes high technology GPUs to the automotive industry,
allowing innovative visual abilities like three dimensions navigation with modern
driver assistance and safety systems, and a "dual zone" multimedia system that
allows two different videos to be shown at the same time on several screens.Nvidia
(2010)

12

Figure 4.10 NVIDIA Tegra GPU

Figure 4.11 Audi Entertainment System With NVIDIA Tegra

"Visual computing has become important discriminator between luxury cars,
whether it’s delivering the necessary information to the driver or offering state-
of-the-art entertainment options to the passengers," said Johan de Nysschen, Audi
of America president. "We partnered with NVIDIA because it is clearly the leader
in this field."

NVIDIA and Audi also worked with Google to provide Google Earth on forthcoming
3G MMI systems powered by NVIDIA GPUs. This union started with the Audi A8
in 2011. Google Earth technology has been developed by Keyhole. NVIDIA invested
in the company and then Google purchased the company. The outcome of this three-
way association is an industry first – a stunning 3D navigation system with detailed
terrain models, snappy performance, 3D landmarks and a highly intuitive visual
interface.

At present, GPUs are not just for graphics. It is used in many different areas such as
artificial intelligence, machine learning, oil exploration, geoscience, scientific image
processing, statistics, linear algebra, 3D reconstruction, medical research, and even
stock options pricing determination.

13

In 2018, Audi launched new Audi A8 — which is the world’s first Level 3 autonomous
driving car to go into production — features a multitude of high-tech splendors, all
powered by NVIDIA Nvidia (2017).

Figure 4.12 Audi A8 AI Car Powered by NVIDIA GPU

4.2 Database Management System (DBMS)

Database Management System (DBMS) is system software for creating and man-
aging databases. A DBMS makes it possible for end-users to create, read, update,
and delete data in a database. The DBMS fundamentally serves as an interface
between the database and end-users or application programs, ensuring that data
is consistently organized and remains easily accessible Rouse (2019a). Some of the
application areas of the DBMS are; banking, airlines, universities, telecommunica-
tion, finance, sales, manufacturing, industry, education, online shopping and HR
management

14

4.2.1 DBMS History and Database Models

4.2.1.1 Early Years and Navigational Database

The history of the DBMS started about 60 years ago. The first example of the
DBMSs was a Navigational Database System. The Navigational Database is a type
of database in which records or objects are found primarily by following references
from other objects. One of the earliest navigational databases was the Integrated
Data Store (IDS), which was developed by Charles Bachman for General Electric
in the 1960s. The Oxford English Dictionary cites a 1962 report by the System
Development Corporation of California as the first use of the term "database" in a
specific technical sense Universiy (2020).

Since computers grew in speed and capability, multiple general-purpose database
systems showed up by the middle of the 1960s for commercial use. Interest in a
standard began to increase, and Charles Bechman, the founder of the Integrated
Data Store, founded the "Database Task Group" within Conference/Committee on
Data Systems Languages (CODASYL), the group responsible for the creation and
standardization of Common Business-Oriented Language (COBOL). In 1971, the
Database Task Group delivered its standard, which generally became known as the
"CODASYL approach". Then, some commercial products based on this approach
entered the market Foote (2017).

In 1966, IBM launched the Information Management System (IMS) with Rockwell
and Caterpillar for the Apollo program, where it was used to inventory the very
large bill of materials (BOM) for the Saturn V moon rocket and Apollo space
vehicle. The IMS Database component stores data using a hierarchical model,
which is quite different from IBM’s later released Relational Database. In IMS,
the hierarchical model is implemented using blocks of data known as segments.
Each segment can contain several pieces of data, which are called fields Foote (2017).

15

4.2.1.2 Relational Database

In 1970, Edgar F. Codd who was working for IBM in Silicon Valley wrote several
papers that described a new method to database structure that finally resulted in
the revolutionary A Relational Model of Data for Large Shared Data Banks. In the
paper, he expressed a new method for storing and working with large databases.
Rather than storing records in some kind of linked list of free-form records as in
CODASYL, Codd proposed a "table" method with a fixed-length records and every
single table used for a different type of entity. A linked-list system would be very
inefficient when storing "sparse" databases where some of the data for anyone record
could be left empty. The relational model solved this by splitting the data into a
series of normalized tables (or relations), with optional elements being moved out
of the main table to where they would take up room only if needed. Data may be
freely inserted, deleted and edited in these tables, with the DBMS doing whatever
maintenance needed to offer a table view to the application/user Praveen, Chandra
& Wani (2017).

IBM started working on a prototype system loosely based on Codd’s concepts
as System R in the early 1970s. System R was the first implementation of SQL,
which has since become the standard relational data query language. In 1975,
the initial edition was ready, afterwards work started on multi table systems.
Through this new system, the data could be split in such a way that all data for a
record need not be stored in one large "chunk". In 1978-1979, multi-user versions
were released. Also, that version includes query language, SQL Praveen et al. (2017).

In 1978 Larry Ellison and his coworkers Bob Miner and Ed Oates wrote the Oracle
Version 1 in assembly language. However, Oracle V1 is never officially released. In
1979, Oracle Version 2, the first commercial SQL relational database management
system, is released. The company changes its name to Relational Software Inc.
(RSI) Oracle (2007).

The 1980s are a precursor of the age of desktop computing. The new computers
authorized their users with spreadsheets like Lotus 1-2-3 and database software like
dBASE. The dBASE was one of the first DBMS for microcomputers and the most
successful in these days Lazzareschi (1990). The dBASE system includes the core
database engine, a query system, a forms engine, and a programming language that
ties all of these components together. dBase’s file format is .dbf, it is widely used in

16

applications needing a simple format to store structured data Praveen et al. (2017).

4.2.1.3 Object Oriented Database

Object-oriented programming started to rise in the early 1990s. A lot of research
has done at that time. One of these works expended existing relational database
concepts by adding object concepts. The researchers intended to possess a declar-
ative query-language based on predicate calculus. One of the most distinguished
research projects, Postgres (UC Berkeley), came up with two products having rela-
tion with that research: Illustra and PostgreSQL. In the mid-1990s, the very first
commercial products stared emerging, including Omniscience (Omniscience Cor-
poration, acquired by original Oracle Lite), Illustra (Illustra information Systems,
acquired by Informix Software, then owned later by IBM), and UniSQL. Moreover,
the founder of Paradigma Software Incorporation, the Ukrainian software developer
Ruslan Zasukhin around the mid-1990s, introduced and distributed the first edi-
tion of Valentina Database as a C++ Software Development Kit (SDK). In the next
decade, PostgeSQL had become a market-base feasible database. Also PostgeSQL is
the starting point for various existing products that maintain its Object-Relational
Database Management System (ORDBMS) features Praveen et al. (2017).

4.2.1.4 Multi Dimensional Database

In such databases, multidimensional structures are used to edit and express data.
These structures are expressed as fragmented cubes and the user accesses the data
through these structures. The idea behind these databases is that a relational model
can be expressed in terms of rows and columns Praveen et al. (2017).

4.2.1.5 NoSQL Database

Despite intensive research on the relational databases and the variations produced,
the fact that these databases are not in the tabular form has created scalability

17

problems in terms of computation costs. NoSQL, word meaning Not Only SQL,
but database model has also opened a new page in search of a database with
flexibility and scalability capabilities. More than 150 products using this database
are currently used by leading companies. This database model can be examined in
four main sub-headings: Key-Value, Column-Based, File-Based and Graph-Based
Grolinger, Higashino, Tiwari & Capretz (2013).

Figure 4.13 NoSQL database typesGrolinger et al. (2013)

The key-value database is a simple data model. The keys in this database model
are used to express a unique value. With this feature, this database model can
be considered as a large dictionary. In this database model value can be used
for any data type (string, integer, array, object) and is invisible to the database.
The key is used to access these values. Also, to be a schema-free database
model, this database is extremely suitable for distributed data systems but is not
suitable for keeping structured and relational data. For such applications to be
executed in this database model, the application interacting with the database
must be coded accordingly. Also, because the data is invisible to the database,
query and indexing operations can only be performed on keys Grolinger et al. (2013).

The second database model is a Column Family Database. Most of the column-
based NoSQL databases are derived from the database model named Bigtable,
which is Google’s column-based database. The data set in this database consists
of rows with different column groups. Like key-value store database, in this
model column key (row key) forms the key. Column-based databases can also
be considered collections of key-value binaries. Or, more extensively, they may
also be considered as expandable recordings that are owned by semi- format
indexes. Column-based databases can keep each row in a different column family.
Column-based databases occupy a large place within the NoSQL databases. Exam-
ples of databases using this model are Cassandra, SQream, Kinetica, Hadoop HBase.

18

The third model is a Document Oriented Database. Document-based NoSQL is
a key-value database derivative that uses keys to locate documents within the
database. Most document-based database expresses documents using JSON and
derivative notations. Document-based databases are useful in applications where the
input is in the form of documents or complex data structures Grolinger et al. (2013).

The last model is a Graph Database. Graph-based databases use graphs as a data
model. This database model can be used to efficiently store relationships between
nodes of the graph. The edges and nodes also have the properties of key-value pairs.
This database model is suitable for use in applications such as social networking
applications, pattern recognition, pathfinding Grolinger et al. (2013).

4.2.1.6 New-SQL Database

NewSQL was created to increase the scalability of relationship-oriented SQL
databases. It aims to increase scalability by compromising relational features. An
interesting feature of these databases is that, although users interact with tables
and relationships, they use different data structures as internal data structures. For
example, NuoDB keeps its data according to the key-value model. Another impor-
tant feature of databases using the NewSQL database model is that they maintain
the ACID (Atomicity, Consistency, Isolation, Durability) properties of the relational
databases, although they are scalable Praveen et al. (2017).

4.2.2 Workload Types

The frequently encountered workloads of today’s databases can be analyzed in two
main sections as transferring information and data analytic.

19

4.2.2.1 Online Transaction Processing (OLTP)

OLTP is the workload that contains transmission records, banking transactions, his-
torical data, in other words, OLTP contains data where the storage and consistency
are essentials. OLTP workloads consist of formatted data and these data must be
compatible with the ACID semantic structure. Fast processing, number of opera-
tions per second are the most wanted features in these workloads, in addition to that
quick answers should be given to quick, simple queries. An example of an OLTP
workload is banking transactions Appuswamy, Karpathiotakis, Porobic & Ailamaki
(2017) Warehouse (2020).

4.2.2.2 Online Analytical Processing (OLAP)

OLAP workloads are usually versions of OLTP workloads that will be applied to
analytical procedures for decision making, planning, and learning purposes. OLAP
workloads are usually summarized and complex queries are executed on them. In
OLAP workload queries, real-time or near-real-time response times are wanted Ap-
puswamy et al. (2017) Warehouse (2020) Conn (2005).

4.2.2.3 Hybrid Transaction Analytical Processing (HTAP)

HTAP workloads are defined by performing OLTP and OLAP workloads on the
same database and shared data on the transfer processing and data analysis. It has
emerged due to the recent need for examination of real word business data which has
been just recorded. High-performance databases that are optimized for working on
HTAP workloads, such as HyPer, are available in the literature Appuswamy et al.
(2017).

20

Figure 4.14 OLTP and OLAP workload typesZheng (2018)

4.3 Machine Learning

Machine learning emphasizes on the development of programs that accesses and
uses data to learn and automate the improvement of its performance from the
gained experience. The major point of machine learning models is to avoid explicit
programming and provide the ability to predict, label and classify automatically.
Figure 4.15 demonstrates the Machine Learning Process.

Figure 4.15 Machine Learning Process

4.3.1 Machine Learning History

Nowadays, machine learning builds tools for instance self-driving cars, unmanned
drones, voice-activated assistants, robots, social media feed, and recent database
management systems. Besides, the concepts behind machine learning have a long
history and depend on maths from ages ago and huge technological development in
computing in the last 70 years.

21

In the 18th Century, Thomas Bayes released "An Essay towards solving a Problem
in the Doctrine of Chances". The essay shows work that supports the basis of the
Bayes Theorem. Adrien-Marie Legendre introduced the Least Squares Method in
1805, which is used widely in data fitting. Followed by "Théorie Analytique des
Probabilités" theorem from Pierre-Simon Laplace published in 1812, in which he
extends Bayes’s work and outlined the term known as Bayes’ Theorem O’Connor
& Robertson (2016). One hundred years later, Andrey Markov described a poem
analyzing technique which became later the Markov Chain.

In the middle of the 20th Century, Alan Turing published Computing Machinery
and Intelligence, where his -long living- famous question emerged: "Can machines
think?". On the basis of the increasing knowledge of the power of computers, the
paper stated the fundamentals of "Artificial Intelligence" through several problem-
atic questions and experiments which were the first attempts to develop artificial
intelligence models. It famously proposed the test known as the ’imitation game’
to determine the degree of dependency from a human’s decision in distinguishing
"Intelligently" between a human and a computer through communication with them
both through typed messages bbc (2020).

In 1951, the first artificial neural network was simulation introduced by Marvin
Minsky and Dean Edmonds, they built it as a computer program to simulate
the organic brain functionalities. The Stochastic Neural Analog Reinforcement
Computer (SNARC) had several experiments to learn from then it was used to
search a maze, similar to what a rat does in a psychology experiment. Marvin
Minsky started to work at the MIT Artificial Intelligence Laboratory and continued
to produce substantial works for the Artificial Intelligence database bbc (2020).

Then, in 1952, Arthur Samuel joins IBM’s Poughkeepsie Laboratory and be-
gins working on some of the very first machine learning programs. He made the
first checkers program on IBM’s first commercial computer, the IBM 701 bbc (2020).

In 1967, Donald Michie created a machine that included 304 matchboxes and beads.
The machine was using reinforcement learning to play Tic-Tac-Toe. The nearest
neighbor algorithm was first introduced in the same year. It was the basis of pattern
recognition. In 1995, the Random Forest Algorithm and Support Vector Machines
model has found. In 1997, after the IBM computer "Deep Blue" defeated the world
chess champion, Garry Kasparov, in a game of a match, AI started attracting

22

the public and enthused researchers to excavate for further improvements bbc (2020).

The successor of Deep Blue in matter of its big impact in the AI field was the great
achievement of AlphaGo at Go game. It was developed by DeepMind researchers.
AlphaGo started winning against professionals in 2015, then overcame the number
two and one players of the game, Lee Sedol and Ke Jie in March 2016 and 2017
respectively. Playing computers and humans, and implementing the Monte Carlo
tree search algorithm to figure next moves was the method of training the AlphaGo’s
neural network.

4.3.2 Three Paradigms in Machine Learning

We can categorized machine learning algorithms in three major topics; supervised
learning, reinforcement learning, and unsupervised learning.

4.3.2.1 Supervised Learning

Supervised Learning is the machine learning task of deriving a learning algorithm
from labeled training data that includes a collection of training examples. Supervised
learning is divided into two parts; Classification and Regression. A classification
problem is when the output variable is a category, such as “red” or “blue”. On
the other hand, a regression problem is when the output variable is a real value
(number), such as “dollars” or “weight”. In a supervised learning model, input and
output variables will be given. Algorithms are trained using labeled data. The
model uses training data to learn a link between the input and the outputs. Also,
the number of classes is known in this method. Supervised learning is a simple,
and highly accurate method when we compare with unsupervised learning. Support
vector machine, neural network, linear regression, multiple linear regression, logistics
regression, random forest, and classification trees are the most popular supervised
machine learning algorithms.

Linear regression analysis is a technique used in statistics for investigating and mod-
eling the relationship between variables. For predictive analysis, linear regression
is commonly used. Since the goal is prediction, the main task of linear regression

23

is to fit a predictive model to a training data set of values of the dependent and
independent variables. After building the model, the process of using the model
is to feed it with unlabeled test data, the fitted model is used to predict the label
(dependent variable).

Simple linear regression is a model with a single independent variable x that has a
relationship with a response y. This relation is a straight line. This simple linear
regression model can be shown as,

(4.1) y = b0 +(b1 ∗x)+ ε

where it has a constant (intercept) value, single coefficient, single independent vari-
able and error component.

For more than one independent variable, the process is called multiple linear regres-
sion. This multiple linear regression model can be expressed as,

(4.2) y = b0 +(b1 ∗x1)+(b2 ∗x2)+(b3 ∗x3)++(bn ∗xn)+ ε

where it has a constant (intercept) value, multiple coefficients, multiple independent
variables and error component.

The regression analysis has the power to predict what is likely to happen in the
future. It mainly depends on historical data to derive equations used to make
future estimation which helps in the decision making process and usually leads to
better decisions.

4.3.2.2 Unsupervised Learning

Unsupervised learning is different from other methods because in this method the
machine receives only the inputs without labels, and the goal of the model is to
extract patterns and draw inferences from the inputs in order to group or classify
into clusters to make decisions, predict future inputs, or perform any other desired
tasks. The number of classes is not known in this method. Also, unsupervised
learning is a computationally complex method when we compare with supervised

24

learning. Cluster, k-means, and hierarchical clustering are the most popular
unsupervised machine learning algorithms.

4.3.2.3 Reinforcement Learning

Reinforcement learning is different from the supervised learning problem because in
this method the machine not receives the correct input/output pairs. In addition
to that, on-line performance is the target, which includes finding a balance between
exploration (of uncharted territory) and development (of current knowledge).
Machine produces actions (a1, a2 , a3, ... an) which is a method of interacting with
its environment. By the actions’ effect exercised on the environment’s state, it leads
the machine to obtain scalar rewards (or punishments) (r1, r2, ..., rn). Therefore,
the aim of the machine narrows down to focus on maximizing the rewards and
minimizing the punishments.

4.4 Load Balancing

4.4.1 Background

Load Balancing is one important concern that can affect the overall performance
of the system. Depending on a system, load balancing is a technique to distribute
workload throughout the servers, devices, computers to increase resources, utilizing
parallelism, improve throughput, increase availability, reduce power consumption
and reduce response time. With proper load balancing waiting time can be kept to
a minimum which will further maximize the response time. Minimizing the decision
time is the most important part of the load balancing. Load Balancing algorithms
can be categorized in two different topics: Static Load Balancing, Dynamic Load
Balancing.

25

4.4.2 Static Load Balancing

The decisions related to load balance are made at compile time when resource re-
quirements are estimated. The advantage of Static Load Balancing is the simplicity
according to both implementation and overhead since there is no need to constantly
monitor the servers, devices, computers for performance statistics.

Figure 4.16 Static Load Balancing

Static Load Balancing works correctly only when servers, devices, computers are
having low variety in the load. Therefore this algorithm is not well suited for our
CPU-GPU Heterogeneous Database Management System.

4.4.3 Dynamic Load Balancing

Dynamic Load Balancing makes changes to the distribution of work among servers,
devices, computers at run-time; they use current or load information when making
distribution decisions. Dynamic load balancing algorithms are advantageous over
static algorithms. But to gain this advantage, the cost to collect and maintain the
load information should be considered.

26

Figure 4.17 Dynamic Load Balancing

27

5. DOLAP (DATABASE MANAGEMENT SYSTEM)

5.1 Background and General Features

DOLAP has a column-based structure designed with OLAP (On-Line Analytical
Processing) analysis queries and tasks in mind. It is aimed that the developed
open-source database can be used efficiently with different computing hardware
such as CPU, GPU, and FPGA at the same time, with smart work distribution
methods. DOLAP can increase performance with query optimization and sharing
methods that work in a heterogeneous system on the server-side. It is a database
management system where users can generate dynamic and static queries thanks
to the interface developed on the client-side. While testing the performance of
DOLAP, the computer with the following features was used.

Operating System: Ubuntu 18.04.3 LTS x86_64
Kernel: 4.15.0-58-generic
CPU: Dual-socket Intel Xeon Gold 6152 @ 3.70GHz (44 cores, 88
threads)
Memory: 1030725MiB DDR4@2666MHz
GPU: Nvidia Quadro GV100, 80 SMs, 2048 threads per block, 2
blocks per SM, 32 GB memory
Compilers and Environment: OpenMP for the CPU and CUDA
for programming the GPU, gcc 7.5, Python 3, Grafana v6.0

28

5.2 DOLAP Architecture

DOLAP is a high-performance database written in C ++ language. The developed
architecture uses the insertion order as the main index to search on all tables. A
record and the fields of this record in the DOLAP are provided by logical links in
block numbers. In this method, records with the same index of adjacent blocks as
many as the number of columns of the data hold different columns of a record. This
scheme allows the data to be passed over one after another to stay close to each
other in memory and to be found in the fastest memory (first cache, then memory,
then hard disk) when it comes to processing. The following figure shows the data
storage and index schema of the DOLAP.

Figure 5.1 The data storage and index scheme of the DOLAP

The DOLAP has an object-based connector in Python to connect to visualization
tools and resolve incoming Lucene Queries, and a core engine that holds the database
and all its functions, written in high-performance, parallel C++, C and CUDA
languages called from that connector. In Python, which is easy to communicate and
follow standards, Lucene queries received in JSON format are resolved and sent to
the C++ core engine compiled as a shared object by wrappers. In there, queries will
be answered on the CPU, GPU, FPGA. The received response is converted to JSON
format on the adapter and sent to the visualization tool via the REST interface. In

29

this part of the project, REST interface implementation is not used in the Core
Engine as it is not practical and standard. All objects created in parallel and high
performance on C ++ are kept as addresses by the adapter and all functions of these
objects are called in C ++. Figure 5.2 shows DOLAP architecture.

Figure 5.2 DOLAP architecture; Interface, adapter and core engine

DOLAP has been designed and developed to meet the need for real-time or nearly
real-time analytical queries on increasing big data. DOLAP, is a column-based
NoSQL database that can work on the graphical accelerator, processor, and FPGA,
and can distribute the job (load balancing) according to processor capacity for in-
coming queries. DOLAP, applies Count-Min sketch, Bloom filter, and on-query
learning techniques that are not available in other database management systems.
The main data structure of the DOLAP is the sketch and bloom filters of the type
of a column (int, string, date, etc.), and the blocks with a certain number of records
of the corresponding column. This number, BLOCK_SIZE, varies according to the
properties of the data and column, especially the data type and data size.

5.3 DOLAP Data Upload

The DOLAP can upload files by ingesting CSV formatted files or adding them to
the database in real-time. An algorithmic representation of the process is given
in Algorithm 1 in Appendix . The general process has been shown in Figure 5.3.
DOLAP, parallelized the rows as column-based and adds blocks with block size
elements to the related columns while uploading the file. Each core is responsible
for one block at a time, and the number of core blocks are added to the database
management system at the same time.

30

Figure 5.3 DOLAP data loading in column format

5.4 DOLAP Queries

DOLAP is used Lucene query language to connect to the graphical interface. Ac-
cording to the previous queries, DOLAP stores the blocks that are more likely to be
crossed in its faster parts. Most probable ones are stored in graphical accelerator
memory, less probable ones are stored in system memory and, the least probable
ones are stored in storage memory. It avoids unnecessary data overrides by asking
the Bloom filter of the relevant block before entering each block after the query
arrives. The simple representation of the query process is given at Figure 5.4.

31

Figure 5.4 Example DOLAP query process

Query types are categorized in order to obtain sharper and more realistic results.
Accordingly, there are three query types.

• Query Type 1 The type of query performed on the entire column without
targeting a specific value. (ex., [fare]).

• Query Type 2 It is a type of query performed on a single specific value in
a single column. (ex., [fare, 11] Returns all data with a value of 11 in this
column.).

• Query Type 3 It is a complex query type that consists of a combination of
queries with different columns and values. (ex., [fare,11,tips,3]).

5.4.1 DOLAP Bloom Filter

DOLAP uses Bloom Filters to avoid the time it takes to process blocks that do not
affect the result of the query in the data it holds in blocks.

The bloom filter is a space-efficient data structure that interrogates the membership
of an element to a certain S set Bloom (1970). Figure 5.5 shows the addition and
query operations on the bloom filter. The filter uses a bit-array of size m. To add
an element x, it uses k independent hash functions that summarize that element in

32

m bits. If the outputs of these functions are shown as h1(x), . . . ,hk(x), the positions
that appear as 1 in each hi(x) output are set to 1 in the corresponding row of
the filter table. When querying the existence of the element in the set, again, the
queried element is summarized with k hash functions. If 1 is seen in all the positions
indicated by the hash functions in the filter table, then the response is returned that
x ∈ S, ie the element x is in the set S. Otherwise, x is not an element of the S set.

Figure 5.5 Bloom Filter

Taking advantage of the concept of polymorphism, a class called "Sketch" is used
in DOLAP to create the bloom filter object when a block is created. As mentioned
earlier, each block in the DOLAP will have its Bloom filter responsible for answering
membership queries to minimize access to the database. Once the structure of a
block is created, a Bloom filter object will also be created. As a result, each block
will be associated with its bloom filter. Figure 5.6 shows the structure of a block of
the DOLAP.

33

Figure 5.6 Bloom Filter for each block

As expected in theory, Bloom filter query response performance increases, especially
as the number of results returned from the database query decreases. When the
more specific value is targeted in the database, the effect of searching with Bloom
filter on performance increases. This performance increase is completely related
to skipping blocks without accessing them. However, it can be seen that if there
are a great number of the query-requested value in the database, the effect of the
Bloom filter decreases since most of the blocks will contain this answer. Thanks to
the bloom filter, an improvement between %20 and %35 (depends on τ value) have
been achieved in total response time.

5.4.1.1 Bloom Filter Usage in CPU and GPU Queries

Since the Query Type 1 query retrieves all the data of the specified column, the
bloom filter is not used with this query type. In other query types other than Query
Type 1, the bloom filter is used to check the query and the desired element in a
specific block. In Query Type 2, before the threads retrieve the results from the
data blocks, each thread will check the i bloom filter corresponding to the block i.
If the filter value entered by the user is not found in this controlled block, that block
will be skipped without having to check all 1024 lines.
In answering Query Type 3, DOLAP works in a similar way to the work it does
when answering other query types. However, in such queries, because the columns
are combined thanks to the AND operation, if the k thread that processes the j
block corresponding to the i column of the query gets a negative result about the
existence of the query value in one of the blocks since at least one of the filtering
values is not a member of the queried block, the entire block is ignored and the
process continues with the next block to prevent time loss as shown in Figure 5.7.

34

Scan with dependency and scan with a dependency with bloom filter CPU query
answering algorithms are given in Appendix.

Figure 5.7 Bloom Filter usage for query type 3

5.4.2 DOLAP Query Answering

5.4.2.1 Query Answering on CPU

The DOLAP database has been designed in such a way that the CPU query response
algorithm can work with multiple threads in parallel in order to provide better
performance when answering queries, especially when answering queries of multiple
users. In keeping data in the DOLAP database, each column contains many blocks
and each block contains 1024 row records. For the tests performed, a 900 block with
1024 row records each was used.

CPU query type 1 algorithm which is not using the bloom filter is given in 2 in
Appendix. For query type 2, scan with dependency and scan with dependency by
using bloom filter algorithms are given in Appendix. For query type 3, the process
proceeds as described in Section 5.4.1.1.

5.4.2.2 Query Answering on GPU

In the query type 1 queries, as in CPU, the bloom filter is not used in GPU. In
the query type 2 queries performed on the GPU, when the Grafana user enters a
value to find in the selected column, the GPU kernel begins to process the query
and only the column where the query is made is copied to the GPU memory as it is
shown in Figure 5.8. The query type 3 query contains all combinations of columns

35

and searched filter value. In such queries answered on the GPU, the kernel assigns
each thread to a row that groups all the columns that meet the values given from a
block.
Different cores are designed according to the different column numbers required in
the queries. For instance, when a query on 2 columns is processed, more threads
and thread blocks are assigned than when a query on 5 columns is processed. This
is because when the number of columns queried increases, the number of rows to
check decreases. Therefore, less number of threads will be sufficient. Consequently,
the protected thread and thread blocks will be simultaneously assigned to answer
another user’s query.

Figure 5.8 Answering Query Type 2 on GPU

5.5 DOLAP Data Visualization

DOLAP uses Grafana for data visualization. Grafana can create visual panels by
using the names of the columns reported to it. These panels form the dashboard.
DOLAP can send the desired value and the associated time value to Grafana in a
single search by using the logical connected block structure to create a time-axis
graph of any desired query. It can execute queries for all panels in a dashboard
simultaneously and distribute these queries to different hardware devices (CPU,
GPU, FPGA) simultaneously.

36

Algorithm 3 adds the ability to refresh the visualization interface to a certain
value, which is very important for a visualization tool, to the DOLAP. In this
way, another value of the same record requested by the interface can be sent to
the interface within the same query process by using the logical links between the
blocks. Example dashboard screen is given in figure 5.13.

Figure 5.9 Example dashboard which is created by using DOLAP

Figure 5.10 Different queries answered on CPU (Query type 3)

37

Figure 5.11 Different queries answered on GPU (Query type 3)

As another example of the Query Type 2 query, as shown in Figure 5.12, the filter
value is entered for a column. In this example, the value entered is also used for
other panels added to the interface.

Figure 5.12 Query type 2 queries
(fare = 7, Tips = 7, Trip miles = 7)

38

Figure 5.13 Query type 2 query dashboard on Grafana (fare = 7)

Figure 5.14 Query type 3 query dashboard on Grafana
(fare = 12 AND tips = 2 AND exras = 0)

39

6. DOLAP LOAD BALANCER

The load balancing technique is to distribute the workload among the comput-
ing hardware on the server to provide parallelization, increase performance, speed,
availability of devices (CPU, GPU), efficiency and reduce power consumption and
response time. With a successful load balancing, the response time can be reduced
by keeping the waiting time of the users to a minimum.

Figure 6.1 General view of the DOLAP

6.1 Methods

Four different load balancing methods have been used and tested. These methods
are; random based, algorithm based, algorithm 2 based and machine learning based.

To measure the performance of DOLAP, Kaggle’s Chicago Taxi Rides 2016 data
set, which contains 20 columns and different types of data structures (uint8_t,
uint32_t, double, string), is used Kaggle (2017). A test scenario was prepared with
the columns of the data set. The scenario includes 300 mixed queries from query
type 1, query type 2 and query type 3 with different columns and values.

40

6.1.1 Random Based Method

In the hard-coded random method, the decision to send the query to the device
queues (CPU & GPU) is given statically, regardless of the query type, average
query response time and instant device states. The query is sent to a randomly
selected device and answered on it.

Figure 6.2 Random-Based Method

6.1.2 Algorithm Based Method

As seen in Algorithm 5 in Appendix 9, the load balancer module gets three
parameters from the devices. These parameters are; CPU usage, GPU usage and
the dev parameter that represents the device that answers the current query type
faster in the previous query records. For example, for query type 2, the average of
the CPU’s response time to all query type 2 queries is compared with the average
of the GPU’s response time to all query type 2 queries, and the device with a
lower time average is determined as the dev parameter. As the database answers
new queries and records the results, the average response times of the devices are
periodically updated.

In the algorithm-based load balancing model, the decision is made according to the
difference in the usage percentages of the CPU and GPU. If the difference in CPU
and GPU usage percentages is greater than a predetermined threshold of τ , the
decision will be the device with less usage percentage. If the usage percentages of
the two devices are equal, the decision will be to choose one of the two devices at
random. If none of these conditions are met, i.e. if the difference between usage
percentages is positive but less than τ , the average response times of the devices will

41

be checked and the dev parameter calculated from these times will be determined
as the decision. If the CPU and GPU usage percentages are equal in Algorithm
5, the load balancing method randomly selects a device between the CPU and the
GPU to answer the query, regardless of the current status of the devices. Algorithm
6 was prepared in order to increase the performance on this deficiency detected in
Algorithm 1.

Figure 6.3 Algorithm-Based Method

6.1.3 Algorithm 2 Based Method

As seen in Algorithm 6 in Appendix 9, Algorithm 6 selects the device to be sent
to answer the query according to the query type in case the usage percentages of
the devices are equal. As seen in Table 7.1, the GPU gives faster results for Query
Type 1 and 2, while the CPU gives faster results for Query Type 3. As a result, as
seen in Figure 7.2, when Algorithm 2 is used for the same data set, a performance
increase has been achieved compared to Algorithm 1.

6.1.4 Machine Learning Based Method

In this project, a dynamic load balancing model (Section 4.4.3) that can calculate
by taking into account the current loads of the devices is used.

A queue structure has been created for CPU and GPU. When the query arrives,
many parameters, in other words, the current state of the system is controlled by

42

the machine learning model. The machine learning model decides to send the query
to the device where it will be answered as quickly as possible.

Multiple Linear Regression (Section 4.3.2.1) method was used as a machine learning
algorithm. At the beginning of the study, a single regression model was used. The
prediction array includes information of both CPU and GPU devices. Data that
includes state information of both CPU and GPU were collected by running the
database with random based method and with algorithm 1 and algorithm 2 methods.

Secondly, two regression models have been used for each devices, CPU and GPU.
Data was collected for each CPU and GPU by running the database with random
based method and with algorithm 1 and algorithm 2 methods. The collected data
for CPU includes cpu usage(%), cpu temperature (C) and query type (1,2 or 3).
Also, the collected data for GPU includes gpu usage (%), gpu temperature (C) and
query type (1,2 or 3).

The first method had a 0.55 R2 score. Total response time for the scenario measured
as 450 seconds as an average of multiple runs. The second method’s CPU model
had a 0.99 R2 score and the GPU model had a 0.82 R2 score. Total response time
for the scenario measured as 350 seconds as an average of multiple runs. The second
method that has a higher R2 score and lower total response time has been chosen.

For both of the methods, the data has been split and built regression model using all
the predictors, P-value has been checked for each of them to find which predictors
are contributing to the model and which are not and interpret the result. The alpha
value was 0.05 while checking the P-values.

In method 2, before deciding on the device to which the query will be sent, the
machine learning model checks the following parameters for CPU,

• x1 = cpu_util = CPU usage

• x2 = cpu_temp = CPU temperature

• x3 =

 1 if the query type is equal to 2
0 otherwise

• x4 =

 1 if the query type is equal to 1
0 otherwise

If both of the x3 and x4 are equal to 0, it means that the query type is 3.

also the machine learning model checks the following parameters for GPU,

• x′
1 = gpu_util = GPU usage

43

• x′
2 = gpu_temp = GPU temperature

• x′
3 =

 1 if the query type is equal to 2
0 otherwise

• x′
4 =

 1 if the query type is equal to 1
0 otherwise

If both of the x′
3 and x′

4 are equal to 0, it means that the query type is 3.

These multiple regression coefficients obtained from training data are used in prac-
tice as follows: By using current CPU parameters, model’s coefficients (b1, b2, b3, b4)
and intercept (b0), predicted CPU query response time is calculated as follows:

(6.1) yCP U = b0 +(b1 ∗x1)+(b2 ∗x2)+(b3 ∗x3)+(b4 ∗x4)

By using current CPU parameters, model’s coefficients (b′1, b′2, b′3, b′4) and intercept
(b′0), predicted GPU query response time is calculated as follows:

(6.2) yGP U = b′0 +(b′1 ∗x′
1)+(b′2 ∗x′

2)+(b′3 ∗x′
3)+(b′4 ∗x′

4)

Then these times are compared and the query is sent to the device with less estimated
query response time. The load balancer adds the current query that has been decided
to send to the queue.

44

7. IMPLEMENTATION RESULTS

Average query response times for two devices and three query types are given in
Table 7.1. The bloom filter is not used in query type 1 queries, because the query
type 1 is a query that returns an entire column. As seen in Table 7.1, GPU does
this operation almost 2 times faster. In query type 2 and 3, the bloom filter is used.
In query type 2, still, GPU is faster than CPU but this time difference is not as
much as the query type 1. In query type 3, which is a complex query, CPU does
the operation faster than GPU.

CPU GPU
Query Type 1 3.45 1.61
Query Type 2 1.71 1.29
Query Type 3 0.80 1.33

Table 7.1 Average query response times for each query types and both devices

Bloom filter effect

%5 %10 %15 %20 %25
Random 452.54 452.54 452.54 452.54 452.54
Algorithm 1 454.12 457.80 454.91 456.00 454.70
Algorithm 2 437.15 442.37 443.99 442.51 440.09
Machine Learning 350.4 350.4 350.4 350.4 350.4

Table 7.2 Scenario results for all load balancing models with 1 user

In Table 7.2, the results of running the scenario 5 times with different τ threshold
values of two algorithm methods are shown. The results shown in the figure are the
average values of 5 results. In addition, the random method and machine learning
method are also included in the figure. Since the τ value does not affect the operation
of these methods, the performance of these methods is constant at each τ value.

45

0

50

100

150

200

250

300

350

400

450

500

Random Based

0

50

100

150

200

250

300

350

400

450

500

Random Based Algorithm 1 Algorithm 2 Machine Learning

5% 10% 15% 20% 25%

Figure 7.1 Scenario results for all load balancing models with 1 user

300

350

400

450

500

550

5% 10% 15% 20% 25%

Random Based Algorithm 1 Algorithm 2 Machine Learning

Figure 7.2 Scenario results for all load balancing models with 1 user

46

As it is shown in Table 7.2, Figure 7.1 and Figure 7.2, Algorithm 2 performed
better than Algorithm 1 at all tau values. This is because when CPU & GPU usage
percentages are equal, query type 1 queries are assigned to the GPU and query
type 3 queries are assigned to the CPU. On the other hand, because Algorithm
5 does not use the preliminary information according to the devices and makes
random assignments in case of an equality of usage percentages, in some cases there
have been worse results than the random method. Table 7.3 shows the numbers of
decisions of Algorithm 1. These are the average numbers of multiple runs.

%5 %10 %15 %20 %25
GPU 88.3 92.5 102.3 94 97.6
CPU 113 111.5 114 115.3 115
Random 98 100 83.6 90.6 87.3
Dev 0 0 0 0 0

Table 7.3 The numbers of the decisions of Algorithm 1

%5 %10 %15 %20 %25
Random 449.71 449.71 449.71 449.71 449.71
Algorithm 427.27 423.23 420.31 419.92 411.25
Algorithm 2 409.76 424.47 406.31 403.14 400.26
Machine Learning 372.37 372.37 372.37 372.37 372.37

Table 7.4 Scenario results for all load balancing models with 2 users at the same
time

47

0

50

100

150

200

250

300

350

400

450

500

Random Based Algorithm 1 Algorithm 2 Machine Learning

5% 10% 15% 20% 25%

Figure 7.3 Scenario results for all load balancing models with 2 users at the same
time

48

300

350

400

450

500

550

600

5% 10% 15% 20% 25%

Random Based Algorithm 1 Algorithm 2 Machine Learning

Figure 7.4 Scenario results for all load balancing models with 2 users at the same
time

The Algorithm 2 method that is the second faster after the machine learning method,
sends an average of 19 of query type 1 queries to the CPU and 24 to the GPU, where
machine learning method sends an 0 of query type 1 queries to the CPU and 43 to
GPU. Also, it sends an average of 53 of query type 2 queries to the CPU and 46 to
the GPU, where the machine learning method sends an 0 of query type 2 queries to
the CPU and 99 to GPU. Last, it sends an average of 93.2 of query type 3 queries
to the CPU and 64.8 to the GPU, where the machine learning method sends a 158
of query type 3 queries to the CPU and 0 to GPU. Following Figure 7.5 shows the
results for each tau threshold values.

49

1
6

2
7

5
0

4
9

9
1

6
7

1
4

2
9

5
6

4
3

8
7

7
1

1
6

2
7

5
5

4
4

9
4

6
4

1
7

2
6

5
4

4
5

9
6

6
2

1
5

2
8

5
0

4
9

9
8

6
0

0

4
3

0

9
9

1
5

8

0

C
P

U
G

P
U

C
P

U
G

P
U

C
P

U
G

P
U

Q
U

E
R

Y
 T

Y
P

E
 1

Q
U

E
R

Y
 T

Y
P

E
 2

Q
U

E
R

Y
 T

Y
P

E
 3

NUMBER OF QUERY

A
lg

o
ri

th
m

 2
 %

5
A

lg
o

ri
th

m
 2

 %
1

0
A

lg
o

ri
th

m
 2

 %
1

5
A

lg
o

ri
th

m
 2

 %
2

0
A

lg
o

ri
th

m
 2

 %
2

5
M

ac
h

in
e

Le
ar

n
in

g

Figure 7.5 Number of query for each device and each query type comparison
between Algorithm 2 and Machine Learning methods

50

It has been shown that the proposed Multiple Linear Regression Machine Learning
method has superior performance compared to the other three methods in terms of
total scenario response time.

Multiple Linear Regression Machine Learning method is %22 faster than the Ran-
dom method, %24 faster than the Algorithm 1 method and %20 faster than the
Algorithm 2 method in the case of 1 user tests. In case of 2 users at the same time,
the proposed method is %17 faster than the random method, %12 faster than the
Algorithm 1 method and %9 faster than the Algorithm 2 method.

51

8. CONCLUSION

In this thesis, it has been shown that the proposed Multiple Linear Regression Ma-
chine Learning method is able to learn heterogeneous database management systems
dynamics, query and user profiles. Performance has been improved by progressing
learning from multiple runs with different algorithms in order to deal with dynamic
query and user profiles. It has been shown that the proposed method has superior
performance compared to the other described methods in terms of total scenario
response time. Multiple Linear Regression Machine Learning method is %24 faster
than the Random method, %28 faster than the Algorithm 1 method and %20 faster
than the Algorithm 2 method in case of 1 user tests. In case of 2 users at the same
time, proposed method is %17 faster than the random method, %12 faster than the
Algorithm 1 method and %9 faster than the Algorithm 2 method.

52

9. FUTURE WORK

The work in this thesis is a part of a project. FPGA hardware and it’s query
answering algorithms and also a probabilistic differential privacy for the analysis
results are planned to be added to this work. When this addition is completed,
DOLAP database system will be answer queries on CPU, GPU or FPGA with
providing a probabilistic differential privacy guarantee of the analysis results when
necessary. These features will make DOLAP unique in the literature.

53

BIBLIOGRAPHY

Appuswamy, R., Karpathiotakis, M., Porobic, D., & Ailamaki, A. (2017). The case
for heterogeneous htap.

bbc (2020). The history of machine learning. https://www.bbc.com/timelines/
zypd97h. Last Accessed: November 2019.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable er-
rors.Commun.ACM, 13(7):422–426.

Conn, S. S. (2005). Oltp and olap data integration: a review of feasible implemen-
tation methods and architectures for real time data analysis. In Proceedings.
IEEE SoutheastCon, 2005., (pp. 515–520).

Firesmith, D. (2017). Multi-core processor. software engineering institute. carnegie
mellon university. https://insights.sei.cmu.edu/sei_blog/2017/08/
multicore-processing.html. Last Accessed: October 2019.

Foote, K. D. (2017). A brief history of database management. https://www
.dataversity.net/brief-history-database-management/. Last Accessed:
November 2019.

Gomez, C., Shami, A., & Wang, X. (2018). Machine learning aided scheme for load
balancing in dense iot networks. Sensors, 18.

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. (2013). Data man-
agement in cloud environments: NoSQL and NewSQL data stores. Journal of
Cloud Computing: Advances, Systems and Applications, 2 (1), 22.

Intel. Intel pentium processor. britannica. https://www.britannica.com/
technology/Pentium. Last Accessed: October 2019.

Intel (2020a). Intel 4004 website. http://www.intel4004.com/. Last Accessed:
October 2019.

Intel (2020b). The story of the intel R© 4004. https://www.intel.com.tr/content/
www/tr/tr/history/museum-story-of-intel-4004.html. Last Accessed:
October 2019.

Kaggle (2017). Chicago taxi rides. https://www.kaggle.com/chicago/chicago
-taxi-rides-2016. Last Accessed: September 2019.

Kaur, E. & Er.Nishi (2014). A survey on cuda.
Kinetica (2020). Kinetica web page. https://www.kinetica.com/. Last Accessed:

May 2020.
Kirk, D. B. & mei W. Hwu., W. (2010). Programming Massively Parallel Processors.

A Hands-on Approach. 1st ed.
Lazzareschi, C. (1990). Database best seller. https://www.latimes.com/

archives/la-xpm-1990-12-15-fi-5823-story.html. Last Accessed: Octo-
ber 2019.

Li, M., Zhang, J., Wan, J., Ren, Y., Zhou, L., Wu, B., Yang, R., & Wang, J. (2019).
“Distributed machine learning load balancing strategy in cloud computing
services,” Wireless Networks.

Linderman, M. D. (2009). A Programming Model and Processor Architecture for
Heterogeneous Multi-core Computers.

MAPD, O. (2020). “accelerated analytics platform,” omnisci. https://www
.omnisci.com/. Last Accessed: May 2020.

54

https://www.bbc.com/timelines/zypd97h
https://www.bbc.com/timelines/zypd97h
https://insights.sei.cmu.edu/sei_blog/2017/08/multicore-processing.html
https://insights.sei.cmu.edu/sei_blog/2017/08/multicore-processing.html
https://www.dataversity.net/brief-history-database-management/
https://www.dataversity.net/brief-history-database-management/
https://www.britannica.com/technology/Pentium
https://www.britannica.com/technology/Pentium
http://www.intel4004.com/
https://www.intel.com.tr/content/www/tr/tr/history/museum-story-of-intel-4004.html
https://www.intel.com.tr/content/www/tr/tr/history/museum-story-of-intel-4004.html
https://www.kaggle.com/chicago/chicago-taxi-rides-2016
https://www.kaggle.com/chicago/chicago-taxi-rides-2016
https://www.kinetica.com/
https://www.latimes.com/archives/la-xpm-1990-12-15-fi-5823-story.html
https://www.latimes.com/archives/la-xpm-1990-12-15-fi-5823-story.html
https://www.omnisci.com/
https://www.omnisci.com/

Nvidia (2010). Audi and nvidia. https://nvidianews.nvidia.com/news/
nvidia-and-audi-marry-silicon-valley-technology-with-german
-engineering. Last Accessed: October 2019.

Nvidia (2017). Audi a8 and nvidia. https://blogs.nvidia.com/blog/2017/07/
11/audi-2018-a8-nvidia-barcelona/. Last Accessed: October 2019.

Nvidia (2020). Opencl. nvidia. https://developer.nvidia.com/opencl. Last
Accessed: October 2019.

O’Connor, J. J. & Robertson, E. F. (2016). "Pierre-Simon Laplace". School of
Mathematics and Statistics, University of St Andrews, Scotland.

Olena (2018). The gpu evolution. https://medium.com/altumea/a-brief
-history-of-gpu-47d98d6a0f8a. Last Accessed: October 2019.

Oracle (2007). Oracle. http://www.oracle.com/us/corporate/profit/p27anniv
-timeline-151918.pdf. Last Accessed: October 2019.

Praveen, S., Chandra, U., & Wani, A. A. (2017). A literature review on evolving
database. International Journal of Computer Applications, 162, 35–41.

Rajesh, L., Bagan, K. B., K, T., & M, M. (2019). Load balancing in heterogeneous
network using machine learning technique. International Journal of Innovative
Technology and Exploring Engineering(IJITEE).

Rouse, M. (2013). Multi-core processor. https://searchdatacenter.techtarget
.com/definition/multi-core-processor. Last Accessed: October 2019.

Rouse, M. (2019a). Dbms. https://searchsqlserver.techtarget.com/
definition/database-management-system. Last Accessed: October 2019.

Rouse, M. (2019b). Parallel processing. https://searchdatacenter.techtarget
.com/definition/parallel-processing. Last Accessed: October 2019.

Sanders, J. & Kandrot., E. (2010). Cuda by Example. An Introduction To General-
Purpose Programming. 1st ed. Boston: Addison-Wesley Professional.

Shi, X., Kindratenko, V., & Yang, C. (2013). Modern Accelerator Technologies for
Geographic Information Science. Springer US.

Universiy, O. (2020). Dbms history, oxford. "database, n". OED Online. Oxford
University Press. (Subscription required). Last Accessed: October 2019.

Warehouse, D. (2020). Oltp vs. olap. http://www.datawarehouse4u.info/OLTP
-vs-OLAP. Last Accessed: October 2019.

Wikipedia (2020). Gpu cuda history. https://en.wikipedia.org/wiki/CUDA. Last
Accessed: October 2019.

Zheng, X. (2018). Database as a service - current issues and its future. CoRR,
abs/1804.00465.

55

https://nvidianews.nvidia.com/news/nvidia-and-audi-marry-silicon-valley-technology-with-german-engineering
https://nvidianews.nvidia.com/news/nvidia-and-audi-marry-silicon-valley-technology-with-german-engineering
https://nvidianews.nvidia.com/news/nvidia-and-audi-marry-silicon-valley-technology-with-german-engineering
https://blogs.nvidia.com/blog/2017/07/11/audi-2018-a8-nvidia-barcelona/
https://blogs.nvidia.com/blog/2017/07/11/audi-2018-a8-nvidia-barcelona/
https://developer.nvidia.com/opencl
https://medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a
https://medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a
http://www.oracle.com/us/corporate/profit/p27anniv-timeline-151918.pdf
http://www.oracle.com/us/corporate/profit/p27anniv-timeline-151918.pdf
https://searchdatacenter.techtarget.com/definition/multi-core-processor
https://searchdatacenter.techtarget.com/definition/multi-core-processor
https://searchsqlserver.techtarget.com/definition/database-management-system
https://searchsqlserver.techtarget.com/definition/database-management-system
https://searchdatacenter.techtarget.com/definition/parallel-processing
https://searchdatacenter.techtarget.com/definition/parallel-processing
http://www.datawarehouse4u.info/OLTP-vs-OLAP
http://www.datawarehouse4u.info/OLTP-vs-OLAP
https://en.wikipedia.org/wiki/CUDA

Data Uploading Algorithm

Algorithm 1: DOLAP: Data Upload from File
number_of_row = total_row_number;
number_of_column = file_column_number;
bloom_filter = new Bloom_Filter[number_of_row/BLOCK_SIZE];
CMSs = new CMS[number_of_row/BLOCK_SIZE];
for (d = 0; d <number_of_row) do

for (l = 0; l <number_of_column) in parallel do
bloom_filter[d/BLOCK_SIZE].add(value);
CMSs[d/BLOCK_SIZE].add(value);
block[d/BLOCK_SIZE][d%BLOCK_SIZE] = value;

CPU Algorithms

Algorithm 2: DOLAP: scan(Reporting a column)
parameters: Database object address(db), target_column_num,
time_column_num, block_number, column_number
char** result;
total_element = column_number∗BLOCK_SIZE*2;
per_thread = total_element/max_threads;
group_per_thread = block_number/max_threads;

parallel_part{
tid = get_thread_num;
first_group = group_per_thread∗tid
last_group = first_group+group_per_thread
result_index = first_group ∗ BLOCK_SIZE ∗2
for b = first_group; b < last_group; b++ do

target_block_index = b∗column_number + target_column_num;
time_block_index = b∗column_number + time_column_num;
strcpy(result[result_index], db->[target_block_index]->bring_value());
strcpy(result[result_index+1], db->[time_block_index]->bring_value());

} return result

56

Algorithm 3: DOLAP: scan_with_dependency
parameters: Database object address(db), target_column_num,
time_column_num, block_number, column_number, query_value,
query_column_num
char** result;
total_element = column_number∗BLOCK_SIZE*2;
per_thread = total_element/max_threads;
group_per_thread = block_number/max_threads;

parallel_part{
tid = get_thread_num;
first_group = group_per_thread∗tid
last_group = first_group+group_per_thread
result_index = first_group ∗ BLOCK_SIZE ∗2
for b = first_group; b < last_group; b++ do

target_block_index = b∗column_number + target_column_num;
time_block_index = b∗column_number + time_column_num;
query_block_index = b∗column_number + query_column_number;
answer = db->[query_block_index]->bring_value();
if answer = query_value then

strcpy(result[result_index], db->[target_block_index]->bring_value());
strcpy(result[result_index+1],
db->[time_block_index]->bring_value());

} return result

57

Algorithm 4: DOLAP: scan_with_dependency_with_bloom_filter
Bloom Filter
parameters: Database object address(db), target_column_num,
time_column_num, block_number, column_number, query_value,
query_column_num
char** result;
total_element = column_number∗BLOCK_SIZE*2;
per_thread = total_element/max_threads;
group_per_thread = block_number/max_threads;

parallel_part{
tid = get_thread_num;
first_group = group_per_thread∗tid
last_group = first_group+group_per_thread
result_index = first_group ∗ BLOCK_SIZE ∗2
if db->[query_block_index]->filter_query(query_value) then

for b = first_group; b < last_group; b++ do
target_block_index = b∗column_number + target_column_num;
time_block_index = b∗column_number + time_column_num;
query_block_index = b∗column_number + query_column_number;
answer = db->[query_block_index]->bring_value();
if answer = query_value then

strcpy(result[result_index],
db->[target_block_index]->bring_value());
strcpy(result[result_index+1],
db->[time_block_index]->bring_value());

} return result

58

Algorithm 5: Algorithm Based Load Balancing
Result: GPU veya CPU
dev = deviceWithLeastAvgExecTime()
cpu_util = getCPUUsage()
gpu_util = getGPUUsage()
τ (Device Utilization difference threshold)
if cpu_util−gpu_util> τ then

decision = GPU
else if gpu_util−cpu_util> τ then

decision = CPU.
else if gpu_util = cpu_util then

decision = random(CPU, GPU)
else

decision = dev
end

Algorithm 6: Algorithm 2 Based Load Balancing
Result: GPU veya CPU
dev = deviceWithLeastAvgExecTime()
cpu_util = getCPUUsage()
gpu_util = getGPUUsage()
τ (Device Utilization difference threshold)
if cpu_util−gpu_util> τ then

decision = GPU
else if gpu_util−cpu_util> τ then

decision = CPU.
else if gpu_util = cpu_util then

if query_type = 1 then
decision = GPU

else
decision = CPU

end
else

decision = dev
end

59

