
A HIGH PERFORMANCE CPU-GPU DATABASE FOR
STREAMING DATA ANALYSIS

by
ANES ABDENNEBI

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
August 2020

A HIGH PERFORMANCE CPU-GPU DATABASE FOR
STREAMING DATA ANALYSIS

Approved by:

Asst. Prof. Kamer Kaya .
(Thesis Supervisor)

Asst. Prof. Erdinç Öztürk .

Assoc. Prof. Tolga Ayav .

Date of Approval: August 31, 2020

Anes Abdennebi 2020 c©

All Rights Reserved

ABSTRACT

A HIGH PERFORMANCE CPU-GPU DATABASE FOR STREAMING DATA
ANALYSIS

ANES ABDENNEBI

Computer Science and Engineering, Master’s Thesis, 2020

Thesis Supervisor: Asst Prof. Kamer Kaya

Keywords: OLAP Databases, CPU, GPU, Big Data, Bloom Filter

The outstanding spread of database management system architectures in the last
decade, plus the increasing growth, volume, and velocity of the data, which is known
nowadays as “Big Data”, are continuously urging researchers, businessmen and com-
panies to build robust and scalable database management systems (DBMS) and
improve them in a way they adjust smoothly with the evolution of data.

On the other hand, there is a tendency to support the conventional processing units
(PUs), which are the Central Processing Units (CPUs), with additional computing
power like the emerging Graphical Processing Units (GPUs). The research com-
munity has accepted the potential of vigorous computing power for data-intensive
applications. Several research studies were conducted in the last years that ended
up in building remarkable DBMSs by integrating GPUs and using them accord-
ing to different workload distribution algorithms and query optimization protocols.
Thus, we try to address a new approach by building a hybrid columnar-based high-
performance database management system calling it DOLAP which adopts the On-
line Analytical Processing (OLAP) infrastructure. Distinctively from previous hy-
brid DBMSs, our database, DOLAP, depends on Bloom filters while performing
different operations on data (ingesting, checking, modifying, and deleting). We im-
plement this probabilistic data structure in DOLAP to prevent unnecessary memory
accesses while checking the database’s data records. This method is proved to be
useful by reducing the total running times by 35%. Moreover, since there exist two
main PUs with different characteristics, the CPU and GPU, a workload distribu-
tion model that effectively decides the query’s executing unit at a time T should

iv

be defined to improve the efficiency of our system. Therefore, we suggested 3 load
balancing models, the Random-based, Algorithm-based and the Improved Algorithm-
based models. We run our tests on the Chicago Taxi Driver dataset taken from Kag-
gle and among the 3 load balancing models, the improved algorithm-based model
demonstrates its effectiveness in well distributing the query load between the CPUs
and GPUs where it outperforms the other models in nearly all the test runs.

v

ÖZET

AKIŞ VERİ ANALİZİ İÇİN YÜKSEK BAŞARIMLI CPU-GPU VERİTABANI
YÖNETİM SİSTEMLERİ

ANES ABDENNEBI

Bilgisayar Mühendisliği, Yüksek Lisans Tezi, 2020

Tez Danışmanı: Dr. Öğr. Üyesi Kamer Kaya

Anahtar Kelimeler: OLAP veritabanları, CPU, GPU, Büyük Veri, Bloom Filre

Günümüzde Büyük Veri olarak bilinen verilerin artan hacmi ve hızı, araştırmacıları,
analistleri ve şirketleri veritabanı yönetim sistemlerini sağlam, ölçeklenebilir, ve veri
ile sorunsuz bir şekilde uyum sağlayabilecek şekilde oluşturmaya teşvik etmektedir.

Öte yandan, Merkezi İşlem Birimleri olan geleneksel işlem birimlerini (PU), Grafik
İşlem Birimleri gibi ek bilgi işlem gücüyle destekleme eğilimi vardır. Araştırmacılar,
veri yoğunluklu uygulamalar için güçlü bilgi işlem gücünün potansiyelini kabul et-
mektedirler. Son yıllarda, GPU’ları eldeki sisteme entegre ederek ve bunları farklı
iş yükü dağıtım algoritmalarına ve sorgu optimizasyon protokollerine göre kulla-
narak dikkat çekici DBMS’lerin oluşturulmasına neden olan çeşitli araştırma çalış-
maları yapılmaktadır. Bu nedenle, Çevrimiçi Analitik İşleme altyapısını benimseyen
DOLAP adını verdiğimiz, hibrit, sütun tabanlı yüksek performanslı bir veritabanı
yönetim sistemi oluşturarak yeni bir yaklaşımı ele almaya çalışıyoruz. Önceki hibrit
DBMS’lerden farklı olarak, veritabanımız DOLAP, veriler üzerinde farklı işlemler
gerçekleştirirken (alma, kontrol etme, değiştirme ve silme) Bloom filtreleri kullan-
maktadır.

Veritabanının veri kayıtlarını kontrol ederken gereksiz bellek erişimlerini önlemek
için bu olasılıklı veri yapısını DOLAP’ta uygulamaktayız. Yaptığımız deneylerde,
toplam çalışma süresini %35 azaltarak kullanışlı olduğunu kanıtladık. CPU ve GPU
olmak üzere farklı özelliklere sahip iki ana PU üzerinde sistemimizin verimliliğini
artırmak amacıyla, sorgunun yürütme birimine etkin bir şekilde karar veren bir iş
yükü dağıtım modeli tanımladık. Rastgele tabanlı, Algoritma tabanlı ve Geliştirilmiş

vi

Algoritma tabanlı modeller olmak üzere 3 yük iş dağıtım modeli önerdik.

Testlerimizi Kaggle’dan alınan Chicago Taxi Driver veri kümesi üzerinde gerçek-
leştirdik, Bu deneylerde 3 yük dengeleme modeli arasında, iyileştirilmiş algoritma
tabanlı model, sorgu yükünü CPU’lar ve GPU’lar arasında iyi bir şekilde dağıt-
madaki etkinliğini kanıtlamakta ve neredeyse tümünde diğer modellerden daha iyi
performans göstermektedir.

vii

ACKNOWLEDGEMENTS

This work is supported by TÜBİTAK project number 118E044.
I offer my sincere thanks and appreciations to my family, to Manel who supported me
during my studies for the past two years, to my professor Kamer hoca for supporting
me all the time and guiding me through, to Barış bey from IT for being so helpful
with the technical problems that we have faced.
I also offer my special thanks to my teammate Anıl who worked hard and offer his
time to reach several achievements in this project.

viii

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

1. INTRODUCTION . 1

2. BACKGROUND AND NOTATION . 4
2.1. The Processing Units . 4
2.2. Graphical Processing Units (GPU) . 4
2.3. Bloom Filter . 7

2.3.1. Parameters . 8
2.4. Grafana . 9
2.5. OLAP . 9

2.5.1. OLAP in DOLAP . 10
2.6. Database Management Systems . 10

3. DOLAP STRUCTURE . 11
3.1. Ingesting Data to DOLAP . 12
3.2. Bloom filter in DOLAP . 13

4. QUERY PROCESSING . 14
4.1. The simple DOLAP query . 14
4.2. Lucene Query . 15
4.3. Querying Algorithms . 16

5. THE LOAD BALANCER . 19
5.1. Background . 19
5.2. Load Balancing in DOLAP . 20
5.3. Random-based Load Balancing . 22
5.4. Algorithm-based Load Balancing . 22
5.5. Optimized Algorithm-Based Load Balancing . 23
5.6. The Data Manager. 24

ix

5.6.1. Bottleneck spots. 24

6. EXPERIMENTS & RESULTS . 26
6.1. The Dataset . 26
6.2. Implementation . 27
6.3. Performance Metrics . 27
6.4. Results related to the usage of Bloom filter . 28
6.5. Discussion. 39

7. CONCLUSION . 40

BIBLIOGRAPHY. 42

x

LIST OF TABLES

Table 6.1. Comparing the queries running times, in seconds, of the Load
Balancer Models with and without using Bloom filters 36

Table 6.2. Minimum and maximum response times in seconds of CPU and
GPU queries of Lucene queries using the Bloom filter 37

Table 6.3. CPU and GPU usage statistics (in %) for each load balancing
model . 37

Table 6.4. Overhead types and percentages according to query types for
the GPU rounded to the whole integer . 39

xi

LIST OF FIGURES

Figure 2.1. The GPU architecture illustration . 5
Figure 2.2. The GPU different memory levels . 6
Figure 2.3. A toy BF with m= 11 and k = 3. Three items are inserted to

the BF; the hash function outputs for x1 are 0,5 and 6. For x2, they
are 2,4 and 9 and for x3, they are 1,7 and 8. Two extra items are
queried; x4 with hash positions 0, 3 and 4 and x5 with hash positions
4, 7 and 9. 7

Figure 2.4. A Grafana dashboard . 9
Figure 2.5. A DBMS abstract schema . 10

Figure 3.1. The data holding scheme for DOLAP . 11
Figure 3.2. A Bloom filter for each block. 13

Figure 4.1. Illustration of a database column getting queried by a simple
query . 14

Figure 4.2. Illustration of a database row getting queried by a lucene query 15

Figure 5.1. The Load Balancer integration in DOLAP . 21

Figure 6.1. Comparing five runs of the total 25 runs of the random-based
model (times in seconds). 28

Figure 6.2. Comparing five runs of the first Algorithm-based model with
different threshold values (times in seconds) . 29

Figure 6.3. Comparing five runs of the second Algorithm-based model
with different threshold values (times in seconds) . 30

Figure 6.4. Dispersion boxes that shows ranges, quartiles, and interquar-
tile of the query set’s running times under each 5 runs for the random-
based model. 30

Figure 6.5. Dispersion boxes that shows ranges, quartiles, and interquar-
tile of the query set’s running times under each threshold value for
the first algorithm-based model . 31

xii

Figure 6.6. Dispersion boxes that shows ranges, quartiles, and interquar-
tile of the query set’s running times under each threshold value for
the improved algorithm-based model . 31

Figure 6.7. The average running times, in seconds, of each load balancing
model launched by 1 user . 32

Figure 6.8. The average running times, in seconds, of each load balanc-
ing model launched by 2 users. As noticed, by comparing Fig. 6.7
and Fig. 6.8, the random-based model’s performance is still bad, the
gap between the latter and the other 2 models widens as the num-
ber of concurrent users rise. On the other hand, the 2nd Algorithm-
based model outperforms the first Algorithm-based model in almost
all threshold values which demonstrates the benefit of our proposed
load balancing model, the second algorithm-based model. 33

Figure 6.9. Comparing the load balancing models without using Bloom
filters in matter of the total running time in seconds of the query set
(300 query) . 33

Figure 6.10. Comparing the load balancing models using Bloom filters in
matter of the total running time in seconds of the query set (300 query) 34

Figure 6.11. Comparing the Random-based load balancer model’s total
running time of the query set in seconds, with and without using
the Bloom filters averaged on each 5 runs . 35

Figure 6.12. Comparing the 1stAlgorithm-based load balancer model’s total
running time of the query set in seconds, with and without using the
Bloom filters averaged on each threshold value . 35

Figure 6.13. Comparing the Improved Algorithm-based load balancer
model’s total running time of the query set in seconds, with and
without using the Bloom filters averaged on each threshold value 36

Figure 6.14. Average CPU usage percentages (running 300 queries) when
answering the queries scenario for all load balancing models 38

Figure 6.15. Average GPU usage percentages (running 300 queries) when
answering the queries scenario for all load balancing models 38

xiii

1. INTRODUCTION

The world is witnessing data explosion in several technological fields, especially on
the streaming data for which the flow speed is so fast, and the data volume is enor-
mous. For example, in Internet-of-Things (IoT), the data is exchanged and widely
expanded between smart devices, vehicles, sensors, beacons, and other millions or
even billions of devices across networks. Other fields where it shows the massive
volume and great velocity of data are recommendation systems, social networks,
stock markets, business transactions, and data analytics in Artificial Intelligence
(AI). All these fields have a centric and challenging problem which is analyzing the
streaming data in a fast and most efficient way. Successful businesses or accurate
scientific research have to possess the requirements to cope with the speed and the
continuously changing data to be able to extract data reports, customer behav-
iors, market tendencies, and even feed well-pre-processed data to Machine Learning
models for various data and business-related purposes. Consequently, processing
this fast and voluminous data faces two main challenges, finding the proper scalable
data management framework and choosing a suitable, powerful and efficient system
that handles the considerable workload of data analysis.

Concerning the data management infrastructure, the burden has become heavier on
the relational database management systems (DBMS) in handling fast and volumi-
nous streaming data, a non-relational database management system has become a
strong candidate for dealing with terabytes or more of data records in a fast pace.
Here, non-relational database management systems are advantageous over the rela-
tional one because of the scalability property. The relational DBMS failed to keep
up with the horizontal growth rate of data size where the non-relational DBMS
does, additionally, the latter can cope with the unstructured data like social media
originated data, satellite imagery, data generated from collaboration software and
phone recordings, sensor data gathered from traffic, temperature or weather, and
the list is still wide open since it is expanding massively.

Distributed solutions may not be a perfect choice here because of the communica-
tion overhead that increases latencies while responding to the queries of the users.

1

Therefore, we focus on building a centralized solution and build a hybrid database
management system called DOLAP. By hybrid, we mean introducing a columnar
structure for the database management system for analytic queries inspired from
the Online Analytical Processing (OLTP) and using the combination of CPU (cen-
tral processing unit) and GPU (graphical processing unit). With sufficient storage
capacity, we create a powerful centralized data analysis system which is cheaper
compared to previously developed tools and efficient in delivering accurate readings
and statistics about the data under the scope. Moreover, since this system is a
hybrid one (using both CPU & GPU in parallel), there should be a well-established
workload balancing between different processing units to guarantee that the query
load is equally distributed between the CPU and GPU. Thus, we propose a random
model, an algorithm-based model, and an improved version of it to achieve the best
performance. Supporting the CPUs with the intensive computation capacity of the
GPUs does not necessarily mean that GPUs will run queries faster than the CPUs.
There is a substantial drawback represented in the communication overhead between
the host and device. Whenever a user sends a query to get executed on the GPUs,
the system moves the selected data columns to the GPU’s memory and that costs
a critical amount of time, therefore, the proposed load balancing model should be
adaptive to this important spot.

Another substantial part of this system is the space-efficient data structure called
Bloom filter which is a compact structure that tells whether an item e belongs to a
set S or not. The role of the Bloom filter in DOLAP is to minimize the number of
memory accesses whenever a query is executed, so one may check the existence of
a record in the database by checking its existence first if it does exist then the data
will be retrieved from the database.
Our database management system is built based on the OLAP (Online Analytical
Processing) architecture using a columnar structure -introduced in the 3rd chapter-
which makes this system a strong element in the big data world. Other hybrid
systems that made it out to the market like Kinetica (Kinetica, 2018) based on the
OLAP architecture which uses both CPU and GPU power for analyzing datasets
and running SQL queries. Another tool that runs SQL queries is SQream (SQream,
2014) designed to analyze streaming data in seconds using the GPU computation
power to give faster data analyzing times. Another GPU-optimized database is
BlazingSQL (BlazingDB, 2015) which is an open-source SQL engine that provides
a python library to create database tables and run SQL queries on raw data. Nev-
ertheless, our designed DOLAP is intended to use smart load balancing methods to
evenly distribute the workload on the CPUs and GPUs. Additionally, it has a query
optimization part which improves the system’s performance. Moreover, DOLAP

2

uses data sketches like the Bloom filter membership queries. DOLAP has the op-
tion of integrating data sketches into any part of its system, in query answering and
optimization, in Load Balancing and data manager modules.

In the next section, we will give a brief background about the processing units (GPU
& CPU), the Bloom filter data structure, and its integration in our system, plus the
used data visualization tool Grafana. In the third chapter, we will introduce the
DOLAP structure, next in Chapter 4, we introduce the query structure that we will
be testing our system with, in addition to the query types that we chose to use
during the querying processing of DOLAP. Chapter 5 is about the load balancer
and the proposed models, schemes, and algorithms while in the 6th chapter, all the
tests, and results are introduced with a thorough study and comparisons between
different models and setups.

3

2. BACKGROUND AND NOTATION

2.1 The Processing Units

As stated previously, DOLAP is built to benefit from both CPU and GPU archi-
tectures simultaneously, since the CPU cannot stand up to the high requirements
posed by the expected huge number of queries to be answered. The graphical pro-
cessing units are used to increase the performance of DOLAP and handle multiple
concurrent users.

2.2 Graphical Processing Units (GPU)

A GPU is an accelerator that can perform rapid and intensive operations and re-
duces the burden on the central processing unit by performing heavy tasks. More-
over, GPUs are heavily used for training deep learning tools for AI applications and
applying operations on high volume streaming data.
Even though GPUs are designed to perform basic computing tasks, they are more
suitable for data-parallelism which best suits our requirements in building our
database management system DOLAP. Thus, a platform is needed to facilitate the
usage of GPU, and the recent most robust one is the Compute Unified Device Archi-
tecture (CUDA), CUDA allows developers to program the GPUs using C or C++
programming languages with additional keywords to be added to distinguish be-
tween the functions destined to be running on CPU and the ones to run on GPU.
Here, we introduce the main terminology spots of CUDA which are mainly used
during the development of DOLAP:

4

• Kernel: is a function written in host (CPU side) and ran on the device (GPU).
It runs on multiple device threads.

• Thread: is the essence entity that runs a kernel, with its own memory space
and registers.

• Block: it groups the threads into one memory space to run parallel tasks for
better data mapping.

• Streaming Multiprocessor (SM): is the unit forming the whole GPU structure,
each SM contains blocks of threads and warps.

• Warp: it is a group of threads in a block, generally 32 threads in recent
implementations. A warp is run by a streaming multiprocessor, and the latter
can run several warps at a time.

• Grid: the grid is highest container that groups many thread blocks in dimen-
sions up to 3.

Figure 2.1 The GPU architecture illustration

DOLAP is a hybrid database management system, it runs the incoming queries on
both host and device. Therefore, the GPU should also have the database either fully

5

or partially transferred to its memory if it fits, and the main memory is managed
by the host. Hence, while DOLAP is running and receiving queries, some will
be executed on host and others on the device. Sending the queries to the device
requires also sending the related data blocks to the GPU’s memory so the kernels
would operate on those copies. However, the communication bus between the host
and device form a shortcoming because of the low bandwidth rate. We tried to
minimize the data transfers between CPU and GPU through some data management
procedures which involve copying the data once and keeping the pointer preserved
within the GPU’s memory as long as it is still being used frequently, and delete it
once it considered a cold data.

Figure 2.2 The GPU different memory levels

Figure 2.2 shows the hierarchy of the GPU’s memory starting from the streaming
multiprocessors’ L1 cache memory and ending with the GPU memory. Here the
GPU cache memory, L1 & L2, and the GPU memory are relatively smaller than
the ones in CPU, however, their bandwidths are higher. It is important to notice
that the L1 caches associated with each SM are not coherent which means that two
different SMs may write on the same memory address without noticing the changes
made by each other immediately.

6

2.3 Bloom Filter

The Bloom filter is a space-efficient data structure that answers elements mem-
bership queries. It was first introduced by (Bloom, 1970). A Bloom filter uses a
bit vector bf[.] of size m and k hash functions. Each hash function takes an el-
ement e from the universal set U as an input and outputs a location in the bit
vector. That is hi : U → {0, . . . ,m− 1} for all 1 ≤ i ≤ k. A BF has two main op-
erations; insertion & query. Initially, all bits are set to 0. To insert an item x,
the bit positions h1(x),h2(x), . . . ,hk(x) are computed and the corresponding bits,
bf[h1(x)],bf[h2(x)], . . . ,bf[hk(x)] are set to 1. To query an item’s existence, the
hash functions h1(x),h2(x), . . . ,hk(x) are computed again. If all the corresponding
bits for these positions are 1 BF returns true. Otherwise, it returns false.

Figure 2.3 A toy BF with m = 11 and k = 3. Three items are inserted to the BF;
the hash function outputs for x1 are 0,5 and 6. For x2, they are 2,4 and 9 and for
x3, they are 1,7 and 8. Two extra items are queried; x4 with hash positions 0, 3
and 4 and x5 with hash positions 4, 7 and 9.

A toy BF with m= 11 bit vectors and k = 3 hash functions is shown in Figure 2.3.
To query an item, the corresponding bit positions are checked; for x4, these bits are
bf[0],bf[3] and bf[4]. Since bf[3] is 0, x4 /∈ S. For x5, although all the corresponding
bits are 1, this is a false positive response (due to a hash collusion at bf[8]). Querying
the item x3 would return "true" after checking that the bits in positions 1,7 and 8
are all set to 1 and therefore, x3 is not in the filter.

7

One of the main metrics to evaluate the effectiveness of a BF is the false positive
probability which can give information about how accurate the BF is. Assuming the
hash functions uniformly distributes the items to their range, the probability having
a given bit equal to 0 is

(2.1) p=
(

1− 1
m

)kn

≈ e−kn/m

where m is the vector size, n is the number unique items in the stream, and k is the
number of hash functions used. Starting with p, the false positive probability is

(2.2) ε= (1−p)k ≈
(
1− e−kn/m

)k
.

2.3.1 Parameters

To ensure that the filter performs in the best manner in DOLAP, we tuned the
filter’s parameters (k, m, and n) so we obtained the best number of hash functions
k and filter’s size m. The method followed to achieve the definitive best parameters
of the Bloom filters is based on selecting the optimal number of hash functions with
the most convenient bit-vector size such that we should avoid high number of hash
functions which can make our Bloom filter slow, besides, the bit-vector size should
not be too small to avoid increasing the false positive probability. Therefore, we
used the mathematical Equation 2.3 that links k, m, and n:

(2.3) k = (m/n)× ln(2)

We wrote a C++ code to make several trials on the Bloom filter’s size and its
optimal hash functions number, it was trial and error approach. We try several
values of k and m, we compare the error estimates of each run then we picked
the best parameters that return the least false positive probability. Similarly, we
can also retrieve the best m and k values according to a predefined false positive
probability.

8

2.4 Grafana

Grafana is a visualization and data analysis tool. It provides the possibility of
connecting time-series databases to a graphical user interface to display statisti-
cal graphs and tables. Moreover, it provides the service of querying the database
through an Adhoc filter variable (Grafana, 2014). Figure 2.4 is a screenshot of the
used Grafana dashboard while querying DOLAP. Different dashboards might be
used to query the database after connecting to a datasource which is provided by
DOLAP.

Figure 2.4 A Grafana dashboard

2.5 OLAP

OLAP is an acronym for Online Analytical Processing (OLAP, 1993) , and the ben-
efit of this technology is what it provides for business-related data analysis, discov-
ering trends and insights from data resulted from users transactions, and designing
sophisticated data modelings. OLAP is a part of a wider category of Business Intel-
ligence where it allows the analysis of multidimensional data that is gathered from
several resources like databases. It groups them in a way that it facilitates extracting
readings, behaviors, building business models, adapting to new customers’ changes
in actions, business performance evaluating and financial reporting.

9

2.5.1 OLAP in DOLAP

DOLAP is a hybrid database management system which allows users to ingest
datasets and query them in various ways. Moreover, it also gives the option of
running ad-hoc queries on the database in a multi-dimensional fashion which is
based on the OLAP structure. This method allows the system to build insights out
of the users’ queries, extracting the hot and cold data, allows for Machine Learning
models to be built and trained upon the data collected from users’ interaction with
DOLAP.

2.6 Database Management Systems

A database management system (DBMS) is a software having functions that form
an interface that eases the interactions between the users and the database includ-
ing ingesting, modifying, deleting, and defining data. In other words, the DBMS
should contain all means of data manipulation and organization. The DBMS should
function in a way that it receives the command directly from the administrator and
direct them to the system to perform the desired functions. There are various
database management systems, in-memory database management systems, cloud-
based, NoSQL, and columnar DBMS.

Figure 2.5 A DBMS abstract schema

10

3. DOLAP STRUCTURE

In our high-performance database management system, getting the searched records
from DOLAP in the fastest execution time is one of the aims of this project. There-
fore, one of the aspects that was focused on is the data placement in the memory.
Figure 3.1 illustrates the organization of the database records into blocks where
vertically these blocks form a column of the same type, and horizontally it forms a
logical block group which refers to one record block in the database. This scheme
provides a spatial locality between the blocks of different columns residing in a close
storage location in the memory, thus, using this scheme would guarantee returning
data of one record faster than other data placement schemes.

Figure 3.1 The data holding scheme for DOLAP

11

3.1 Ingesting Data to DOLAP

Loading the data into DOLAP occurs in parallel by benefiting from the multi-core
architecture of the CPU where each core is responsible for one column at a time.
First of all, the number of records that will be inserted into one block should be
defined. After that, each CPU core will start ingesting the data into the blocks in
parallel, in other words, all the cores (the number of cores depends on the number
of the columns) will be inserting records to data blocks in parallel. For example,
assume that there are 20 columns then in one iteration, there are 20 blocks getting
filled in parallel. Algorithm 1 shows the steps of the ingesting process. This method
of ingesting allows later on a smooth Bloom filter checking. Whenever a query
comes to the database, and before accessing it, the corresponding Bloom filter of
each block will be queried first to check the membership of the searched value(s). If
the filter’s answer was negative then there is no need for the query to be executed.
However, if the value(s) does exist in the Bloom filter belonging to its block then
the query will proceed on to retrieve the matching results. It is substantial to note
that the positive answers of the Bloom filters might be false positives which means
that the value(s) do not exist in the block(s) but still returning a positive answer
about their existence.

The next section shows the scheme of a data block and its Bloom filter such that
accessing a specific Bloom filter should pass through the corresponding block.

Algorithm 1: Ingesting data to DOLAP
Num_Block_Groups = number_of_total_groups;
Num_records = BLOCK_SIZE;
database = database_address;
record = array[Num_records];
for (d = 0; d <Num_Block_Groups) in parallel do

for (l = 0; l <Num_records) do
record[l] = VALUE;

for (i = 0; i <Num_records) do
database.block[d][i].insert(record[i]);
database.block[d][i].bloom_filter.insert(record[i]);

12

3.2 Bloom filter in DOLAP

As stated previously, the Bloom filter is used to reduce the burden on the memory
and exclude unnecessary accesses. Therefore, we implemented it in our database
management system in a way that each block has its Bloom filter so while running
a query, the blocks records won’t be accessed unless the corresponding Bloom filters
return positive responses. Figure 3.2 demonstrates the designed structure of the data
block and its filter. Still, there is a possibility that a block is accessed but returns
nothing as a result of the query, and it may happen due to the probabilistic property
of the Bloom filter structure. One possible solution for reducing this possibility is by
increasing the filter’s size. However, it presents another bottleneck that manifests
in the additional use of memory which is an undesirable trade-off in this case.

Figure 3.2 A Bloom filter for each block

13

4. QUERY PROCESSING

The users of DOLAP would be interacting with our DBMS through a visualization
tool which is Grafana in this project. Therefore, and for performance measuring
purposes, we have set two main query types, Simple query & Lucene query. The
users, for different purposes, may run either of these query types, they may want to
display a whole database column or extract specific records that match the entered
query. Examples of these queries will be given in the next sub-sections.

4.1 The simple DOLAP query

This type was the first one to be tested by us while implementing the DOLAP
querying system, and we used it frequently for testing purposes, like stress testing.
The simple query returns all the records of a specified column. For example, if
the taxi_id column is requested then all taxi ids will be recovered and returned to
Grafana to display it.

Figure 4.1 Illustration of a database column getting queried by a simple query

14

4.2 Lucene Query

Lucene query is more dedicated to user’s needs, each user would request different
data records from DOLAP at any time t for various purposes. Here, the query is
collected from the visualization tool as a JSON file where the target columns and
the entered values are forwarded to the C wrappers to run the intended functions
either on the host or the device.

Figure 4.2 Illustration of a database row getting queried by a lucene query

Figures 4.1 and 4.2 show the way each query type perform when called by a user,
however, it is substantial to note that in a Lucene query, there might be more than
1 result, it varies between 0 to the number of the database’s rows. For the Lucene
queries, we specified two sub-types for testing purposes, namely query type 2 &
query type 3 where the simple query is labeled as query type 1. This division of
query types is chosen for the sake of showing performance differences on both host
and device. Equation 4.1 is an example of a Lucene query including only one column,
fare, which represents a query of type 2.

(4.1) fare= 7

Where Equation 4.2 is an example of a more complicated query that asks for a list
of drivers who got paid 7$ and tipped with 2$ where the payment was in cash.

(4.2)
(fare= 7)∧ (tips= 2)∧ (extras= 0)

∧ (payment_method= Cash)

15

4.3 Querying Algorithms

Here, we present the simplest query response algorithms used to retrieve results
from DOLAP for each query type varying from 1 to 3.

Algorithm 2: Algorithm of the simple query
Result: Results array
Num_Block_Groups = number_of_total_groups
Num_records = BLOCK_SIZE (ex: 1024)
col_num = total number of columns
target_col_num = the column to be queried
database = database_address
result_array = Initialize a new array
for (d = 0; d <Num_Block_Groups) in parallel do

target_block_index = d × col_num + target_col_num
for (l = 0; l <Num_records) do

result_array[i] = database[target_block_index].getLine(i)
end

end

Algorithm 3: Algorithm of the query of type 2
Result: Results array
Num_Block_Groups = number_of_total_groups
Num_records = BLOCK_SIZE (ex: 1024)
col_num = total number of columns
target_col_num = the column to be queried
database = database_address
result_array = Initialize a new array
Value = the value to be searched
In parallel, each thread will be responsible for a group of blocks, so each thread
has a starting and ending group
start_group
end_group
for (b = start_group; b <end_group) in parallel do

for (l = 0; l <Num_records) do
returned_value = database[filter_block_index].getLine(i)
if Value == returned_value then

result_array[l] = returned_value
end
Update start_group for each thread
Update end_group for each thread

end

To retrieve a whole column from DOLAP, Algorithm 2 uses k threads where each
16

thread is responsible for getting the data records from several blocks in parallel. The
number of total logical groups and the block size are defined, these values depend
on the size of the database and the number of the used threads in processing the
query.

Algorithm 3 shows how a Lucene query of type 2 is executed on DOLAP. Since
our database management system’s structure divides the columns into blocks, and
each row is a logical group of blocks, and no matter what is the maximum number
of threads used in answering the query, we assigned a thread to a group of blocks
belonging to one column (since it is a type 2 query) to assure the parallelism and
fast response times.

Algorithm 4: Algorithm of the query of type 2 with Bloom filter
Result: Results array
Num_Block_Groups = number_of_total_groups
Num_records = BLOCK_SIZE (ex: 1024)
col_num = total number of columns
target_col_num = the column to be queried
database = database_address
result_array = Initialize a new array
Value = the value to be searched
In parallel, each thread will be responsible for a group of blocks, so each thread
has a starting and ending group
start_group
end_group
for (b = start_group; b <end_group) in parallel do

if database[filter_block_index].BF.query(Value) == true then
for (l = 0; l <Num_records) do

returned_value = database[filter_block_index].getLine(i)
if Value == returned_value then

result_array[l] = returned_value
end

end
Update start_group for each thread
Update end_group for each thread

end
end

17

Algorithm 5: Algorithm of the query of type 3 with Bloom filter
Result: Results array
Nd = how many columns are queried
Num_Block_Groups = number_of_total_groups
Num_records = BLOCK_SIZE (ex: 1024)
col_num = total number of columns
target_col_num = the column to be queried
database = database_address
result_array = Initialize a new array
Value = the value to be searched
In parallel, each thread will be responsible for a group of blocks, so each thread
has a starting and ending group (start_group & end_group)
for (b = start_group; b <end_group) in parallel do

if the Nd Bloom filters return positive answers then
for (l = 0; l <Num_records) do

returned_record = get the record having all the queried columns
if dependency values match the returned record then

result_array[l] = returned_record
end

end
Update start_group for each thread
Update end_group for each thread

end
end

Furthermore, since we are integrating Bloom filters in DOLAP, we built a Bloom
filter version for queries of the second type. The main difference between Algorithms
4 and 3 is performing the Bloom filter check before accessing the database records.
Based on the filter’s answer, it will be decided to either enter the corresponding data
block or not. We apply the checking process on all data blocks forming the column
under querying.

Algorithm 5 represents the function responsible for executing Lucene queries of type
3. The query may contain 2, 3 columns or more. The algorithm should detect the
number of queried columns, the block number, and the block size. Then each thread
will process n blocks but before that, the Bloom filters linked with the data blocks
are checked for the existence of the searched values. If at least one of these Bloom
filters return a negative answer then the threads move to the next bunch of blocks
(move to next iteration of the outer loop). Otherwise, the returned records are
checked against the entered values and if a match is found then it will be put in the
result array.

18

5. THE LOAD BALANCER

5.1 Background

Load balancing is a process of distributing the workload among the executing units
in case of a central system which may include several CPUs and GPU boards or
in case of a distributed system, it redistributes the load among the processes on
different machines connected through a network. The aim of implementing a load
balancing module is to improve the performance of a parallel system by distributing
the workload intelligently.
In centric or distributed systems, there are two main types of load balancers; static
& dynamic. The static type defines the method of sending the work to executing
units before the run of the system, it may collect information about the system state
during the run to update the load balancing method, however, the update occurs
manually before running the system again.
On the other hand, the dynamic load balancer distributes the load at runtime, more-
over, it can update its model dynamically while the system is running based on the
information collected during the system’s work.
Several works have been conducted in the load balancing field, in heterogeneous
databases like the work introduced in (Ilic, Pratas, Trancoso & Sousa, 2011), also,
Omnidb is such an example of query processing on parallel CPU/GPU databases
(Zhang, He, He & Lu, 2013) as well as (Breß & Saake, 2013), (Fang, He, Lu, Yang,
Govindaraju, Luo & Sander, 2007) and (Breí, Beier, Rauhe, Sattler, Schallehn &
Saake, 2013). There are database management systems that process queries depend-
ing only on the GPU processing power like (He, Lu, Yang, Fang, Govindaraju, Luo
& Sander, 2009) and (Root & Mostak, 2016)

19

5.2 Load Balancing in DOLAP

One of the serious aspects of this work is the workload distribution between the
CPUs and GPUs. We do not want the work to be a heavy burden on one of the
main processing units (CPU & GPU). The aim is to distribute the incoming queries
according to the current situation of the host and device plus other criteria. Since the
load balancer is a substantial requirement in the structure of DOLAP several models
are proposed to investigate the best load balancing that provides better performance
in a matter of fast query responding time and equally distributed workload on the
host and the device.

Algorithms and methods to be designed and implemented in this part will be imple-
mented in a way that will only work on a CPU-centric system in the first stage. In
the beginning, a comprehensive performance analysis will be made by running all
processes on the DBMS on the CPU (software). As a result of performance analysis,
process-intensive and/or parallelizable basic function blocks will be defined and their
performance-oriented optimized implementations will be made on GPU and CPU.
The result of the performance analysis to be done for CPU and GPU in DOLAP
of each functional building block will be kept in a table. The analysis of workloads
that will occur while the DBMS is working will be dynamically performed by the
CPU, and process-intensive tasks will be distributed to both CPU and GPU. During
the task distribution, besides the values in this formed table, other processing loads
running on all hardware will be taken into consideration.

The load balancing technique is to distribute the workload among the computing
hardware on the server to provide parallelization, reduce power consumption, reduce
response time, and increase performance and efficiency. With a successful load
distribution, the response time of the users can be reduced by keeping the waiting
time to a minimum. Two of the work distribution models used today are static
and dynamic load balancing models. In this project, a dynamic load distribution
model that takes into account the current loads of the devices is used. This model
is summarized in Figure 5.1 A queue structure has been created for both CPU and
GPU. When the query comes, many parameters summarizing the current state of
the system are collected and processed instantly by the load balancing model to
distribute the workload.

We use NVIDIA GV100 as the main GPU to be used on the system. These GPUs
support the unified memory feature that will facilitate data exchange between GPUs
during data management in the project. However, it is not sure that the DOLAP

20

will depend on unified memory in the GPU section due to the high costs paid while
running the kernels, therefore, the normal approach of exchanging data between the
host and the device will be used.

Figure 5.1 The Load Balancer integration in DOLAP

We are proposing 3 load balancing models that are heavily tested with more than a
single user to check the total running time of the queries coming from either a single
user or more.

21

5.3 Random-based Load Balancing

First, we introduced the Random-based model which does not take into consideration
any information about the current state of the CPUs and the GPUs which includes
the expected running time of the query according to its type, the current load on
the CPUs and the load on the GPUs. Despite the possible overload on either of
the main processing units, this model may decide to run the query on the busy one.
On the other hand, and due to the randomness property of this model, for different
test runs, this model may perform better than other models. A thorough study is
introduced in Chapter 8.

5.4 Algorithm-based Load Balancing

This model is more sophisticated than the Random-Based model because it takes
into account the query type, the loads on the host, and the device and according to
the current state. A decision is made to distribute the load between the executing
units.

Algorithm 6: Algorithm-Based Load Balancer
Result: GPU or CPU
dev = device_With_Least_Avg_ExecTime()
cpu_utilization = get_CPU_Usage()
gpu_utilization = get_GPU_Usage()
τ (Device Utilization difference threshold)

if CPU_utilization - GPU_utilization > τ then
decision = GPU

else if GPU_utilization - CPU_utilization > τ then
decision = CPU

else if (CPU_utilization == GPU_utilization) then
decision = random(CPU, GPU)

else
decision = dev

end

22

5.5 Optimized Algorithm-Based Load Balancing

Starting from the partially randomly taken decision in Algorithm 6 when both CPU
and GPU utilization is equal, an optimized version of this algorithm is proposed to
cover this shortcoming based on the average running times of query types. Whenever
both utilization percentages are equal, the load balancer would check the query type
first, if it is of type 1 then it will assign it to the faster-executing unit which the
GPUs. If the query type is either 2 or 3 then the query will be assigned to the host
which is faster than the GPU in this case. The results of this load balancing model
are introduced in the results chapter.

Algorithm 7: Optimized Algorithm-Based Load Balancer
Result: GPU or CPU
dev = device_With_Least_Avg_ExecTime()
cpu_utilization = get_CPU_Usage()
gpu_utilization = get_GPU_Usage()
τ (Device Utilization difference threshold)

if CPU_utilization - GPU_utilization > τ then
decision = GPU

else if GPU_utilization - CPU_utilization > τ then
decision = CPU

else if (CPU_utilization == GPU_utilization) then
if query_type == 1 then

decision = GPU

else if query_type == 2 or query_type == 3 then
decision = CPU

end

else
decision = dev

end

23

In both Algorithms 6 & 7, there is a threshold τ and it represents the maximum
difference in percentage between the CPUs and GPUs. At each time when a deci-
sion needs to be made in the load balancer model, the CPUs’ and GPUs’ average
usages are retrieved using a script through predefined C++ libraries. Then we check
whether the difference between percentages exceeds the threshold τ . If it does, then
a switch in executing units will occur which means if the host was the last executing
unit then switch to device and vice versa. Yet, the comparison between the CPUs’
& GPUs’ utilization percentages is not fair since both, the host and device’s com-
puting capabilities are different. For example, a 75% CPU usage is not on a par with
75% of GPU usage, still, in this situation, we can follow the optimized algorithm
to achieve a decision. However, in an edge example, assuming both percentages are
90% in this case, it would be an ignorant decision from the load balancer model if
it assigns the next query to the CPUs for two reasons:

1.1 The device may have more idle threads and thread blocks to execute the query.

1.2 The host is also busy with other side tasks like receiving the queries and
making the decision through the load balancer, therefore, it is better to lower
the load on the CPUs for a while.

5.6 The Data Manager

Since DOLAP handles a significant amount of data transfers, updates, and retrieving
between the cores of the CPU or withing the GPUs and between the host and the
device, it forms a challenge because there is a huge overhead that DOLAP is paying
repetitively on each query run and for each user. Therefore, by building this model,
we try to minimize the data transmission overhead to achieve better performance.

5.6.1 Bottleneck spots

Since we are working on a time-series database, there is a timeseries column in
the data source that we are receiving data from, and for displaying purposes on
Grafana, this column is queried and attached to the results set on each query run
which causes around 0.3 seconds additional time. Additionally, while answering the

24

queries, different data blocks are checked for different columns at each time, and
some blocks might be queried frequently. Nevertheless, they keep getting queried
and the results are retrieved at each run, this is an undesirable behavior that we
want to avoid in our management system. Therefore, we built the data manager
model in a way that it preserves the most queried columns aside. Thus, multiple
queries that require one or all of these columns would find the data of these columns
ready by only passing their preserved pointers. Meanwhile, an update process is
kept running to check the demand frequency of the kept columns. If other columns
have an increasing access frequency compared to the current ones then the least
frequent column among the k preserved ones is deleted from memory and the new
one is stored for further use. Following this method, we believe that we reduce the
burden on the memory. Moreover, we avoid the bottleneck of adding unnecessary
data copying overhead to the query response time.

25

6. EXPERIMENTS & RESULTS

All the experiments in this work are performed on a single machine running on 64
bit Ubuntu 18.04.03 LTS equipped with 1 TB RAM and a dual-socket Intel Xeon
Gold 6152 clocked at 3.70 GHz where each socket has 44 cores (88 in total). For the
multicore implementations, we used OpenMP and all the codes are compiled with
g++ enabling the -O3 optimization flag. We also used Python 3 as an intermediary
between DOLAP and the visualization tool Grafana v6.0. Concerning the GPU
implementations, we used CUDA 7.5 on an NVIDIA Quadro GV 100 with 80 Stream-
ing Multiprocessors and 163840 maximum threads in total and 32GB memory. We
organized the experiments based on Bloom filters and the Load Balancer previously
proposed models plus the number of users, in our case, we made experiments up
to 2 concurrent users. The experiments are divided into 4 main sections: a) 1 user
without Bloom filter, b) 1 user with Bloom filter, c) 2 users without Bloom filter,
d) 2 users with Bloom filter. Each section of these has sub-sections concerning the
load balancer models and the different given values of τ .

6.1 The Dataset

We chose a dataset from Kaggle collected from the taxicabs of Chicago, Illinois,
called Chicago Taxi Rides 2016 Kaggle (2016) It includes taxi trips from 2015 to
2016 and it has 20 columns of different data types. Some trips durations are rounded
up. Some of the rows for some columns are empty due to either non-recorded data
about that trip or it was hidden for privacy purposes. The taxi IDs are long and
unique keys of 128 character string however it was replaced by at most 4 digits also
for privacy matters.

26

6.2 Implementation

We implemented our system, DOLAP, using C++ in the functions and kernels side,
while we used python to call the wrapped C++ functions and kernel and run the
users’ queries, for communication between Grafana and python codes, we used JSON
scripts.
We run our tests on a query set of 300 different queries of all 3 types on both host
and device. For algorithm-based load balancing models and each threshold value,
we run the test 5 times and took the average, whereas for the random-based model,
we run the test 25 times and we took the average since this model is independent of
the threshold value’s effect.

6.3 Performance Metrics

To assess our new database management system, we settled several metrics to eval-
uate it and check its capability of providing fast responses and its ability to host
parallel users. Since we are testing DOLAP with a query set of 300 queries of differ-
ent types with 1 and 2 users, we want to measure the total running time of the whole
set in seconds. Moreover, we want to prove that DOLAP can handle many concur-
rent users at a time, therefore, we measure the average CPU and GPU utilization
in percentages.

27

6.4 Results related to the usage of Bloom filter

Figure 6.1 Comparing five runs of the total 25 runs of the random-based model
(times in seconds)

As Figure 6.1 shows, Random-based model performs better than the other threshold
values in any run when τ = 5% while the 3rd, 4th and 5th runs show spikes in the
running times when τ = 10%, the threshold values here do not have any impact on
the resulting total running time of the query set because the random-based model
does not take into account the threshold value while making the execution device
decision. The performance of the Random-based model might be bad as same as
it may show better performance than the first and second Algorithm-based models
due to its randomness property. It does not take into consideration the current
state of the host and the device, therefore, it may tend to send the type 3 queries
to the host which is the fastest executing unit, and forward the type 2 queries to
the device which is faster in responding than the host. However, this is still not
a trustful method of load balancing since it is not based on information from the
current system’s state.

In the 1st Algorithm-based model, despite that it checks only the excess of the
threshold between the CPU and GPU utilization, it still has a random part where
it assigns the query randomly to either the host or the device which explains the
unstable performance as shown in Figure 6.2. As a result, we cannot decide whether
it is the most suitable model for DOLAP’s load balancer or not.

28

Figure 6.2 Comparing five runs of the first Algorithm-based model with different
threshold values (times in seconds)

We can consider the 2nd Algorithm-based load balancing model as the most stable
and well-performing model because it takes into account each query type’s running
time, the fastest executing unit (CPU or GPU), and both CPU & GPU utilization
percentages. Therefore, and as the Figure 6.3 demonstrates a steady performance
and in total, it gives running times less than the other two models which prove the
usefulness of our proposed algorithm.
The thresholds 5% and 10% show the best performances among other τ values and
the reason behind that is the likelihood of exceeding the utilization threshold is
higher when it is between 5% and 10% than the other τ values. This claim is
supported also by the results in Table 6.3

29

Figure 6.3 Comparing five runs of the second Algorithm-based model with different
threshold values (times in seconds)

Figure 6.4 Dispersion boxes that shows ranges, quartiles, and interquartile of the
query set’s running times under each 5 runs for the random-based model

30

Figure 6.5 Dispersion boxes that shows ranges, quartiles, and interquartile of the
query set’s running times under each threshold value for the first algorithm-based

model

Figure 6.6 Dispersion boxes that shows ranges, quartiles, and interquartile of the
query set’s running times under each threshold value for the improved

algorithm-based model

31

Figure 6.7 The average running times, in seconds, of each load balancing model
launched by 1 user

The second Algorithm-based load balancer model gives better performance than the
other models in each threshold value which is due to the thorough checking of the
system’s state at each decision making phase, while the first Algorithm-based model
shows a bad performance compared to the Random-based model. However, both
models give unstable execution times where sometimes are high and sometimes low
and near the second Algorithm-based model running times. Figure 6.7 demonstrates
these interpretations.

32

Figure 6.8 The average running times, in seconds, of each load balancing model
launched by 2 users. As noticed, by comparing Fig. 6.7 and Fig. 6.8, the random-
based model’s performance is still bad, the gap between the latter and the other
2 models widens as the number of concurrent users rise. On the other hand, the
2nd Algorithm-based model outperforms the first Algorithm-based model in almost
all threshold values which demonstrates the benefit of our proposed load balancing
model, the second algorithm-based model.

Figure 6.9 Comparing the load balancing models without using Bloom filters in
matter of the total running time in seconds of the query set (300 query)

33

Figure 6.10 Comparing the load balancing models using Bloom filters in matter of
the total running time in seconds of the query set (300 query)

The steady performance and full awareness of the system’s state at each time a
load balancer decision is made is what makes the second Algorithm-based model
more desirable to be adapted in DOLAP. Unlike the other two models in Figure 6.9,
they show ups and downs especially when the utilization threshold exceeds 20%.
Moreover, we can notice the difference in these models before and after using the
Bloom filters when comparing it with Figure 6.10. In the latter, again the ups
and downs in performance of the random-based and 1st algorithm-based models are
detectable, however, here the 2nd Algorithm-based is in overall performing better
than the other models while using the Bloom filters.

34

Figure 6.11 Comparing the Random-based load balancer model’s total running
time of the query set in seconds, with and without using the Bloom filters

averaged on each 5 runs

Figure 6.12 Comparing the 1stAlgorithm-based load balancer model’s total
running time of the query set in seconds, with and without using the Bloom filters

averaged on each threshold value

35

Figure 6.13 Comparing the Improved Algorithm-based load balancer model’s total
running time of the query set in seconds, with and without using the Bloom filters

averaged on each threshold value

Figures 6.11, 6.12, and 6.13 clearly show the difference of using the Bloom filter
in the load balancing models. As it is noticeable, Bloom filter improves the total
running time of the query set under execution. The ameliorations vary from 10% to
29% for the Random-based and 1st Algorithm-based models, and between 21% and
35% for the 2nd Algorithm-based model.

Table 6.1 Comparing the queries running times, in seconds, of the Load Balancer
Models with and without using Bloom filters

Mode Query type 2 Query type 3
CPU GPU CPU GPU

Without Bloom filter 1.545 1.100 2.732 1.182
With Bloom filter 1.834 1.335 0.960 1.431

Despite that the average execution times of the second type query on CPU and GPU,
plus the running time of query type 3 on GPU without using Bloom filters is better
than the ones with Bloom filters. Still, the presence of Bloom filters in DOLAP
achieves improvements since it may cause additional overhead in some queries but
it also may respond faster by preventing the unnecessary access to blocks in which
the search items aren’t there. Table 6.2 supports this by showing the minimum
running times of Lucene queries of type 2 and 3 which are less than the average
running times without depending on Bloom filters.

36

Table 6.2 Minimum and maximum response times in seconds of CPU and GPU
queries of Lucene queries using the Bloom filter

MaxCPU MinCPU MaxGPU MinGPU
Query type 2 3.773 1.354 3.172 0.957
Query type 3 2.355 0.648 3.082 1.007

Table 6.2 shows the minimum and maximum CPU and GPU query running time
respectively for both query type 2 and 3. The reason of displaying such measure-
ments is to show the effect of using Bloom filters while querying, for example, the
minimum CPU query running time for query type 2 using the Bloom filter is less
than the average query running time of the same type without using Bloom filter
(see Table 6.1). The same goes for the GPU in query type 2, the minimum running
time is 0.967s while the average without using Bloom filter is 1.1s. Therefore, the
same can be noticed in query type 3 which demonstrates the effect of using Bloom
filters on the queries’ running times.

Table 6.3 CPU and GPU usage statistics (in %) for each load balancing model

Random 1st Algorithm 2st Algorithm
Avg CPU Util 3.052 2.402 2.387
Avg GPU Util 2.087 0.662 0.654
Max CPU Usage 28.2 19.7 19.0
Max GPU Usage 49.0 17.0 16.0
Min CPU Usage 0.7 0.0 0.0
Min GPU Usage 0.0 0.0 0.0

Table 6.3 points to an important side of this work, which is the capability of hosting
and answering multiple users’ queries in parallel, the 3 load balancing models have
CPU and GPU average utilization percentages ranging from 0.6% to 3% and these
numbers are taken from tests with 2 parallel users which means that DOLAP can
take up to 40 users in parallel with a single GPU board, of course, after taking into
account the heat of the CPUs and GPUs and their maximum allowed utilization
percentages.

37

Figure 6.14 Average CPU usage percentages (running 300 queries) when answering
the queries scenario for all load balancing models

Figure 6.15 Average GPU usage percentages (running 300 queries) when answering
the queries scenario for all load balancing models

38

6.5 Discussion

We have stated that there are several overhead spots where additional time is aggre-
gated in the query execution time, especially in the CPU and GPU C++ wrapping
functions, since the query order comes from a user interface connected to a python
script which in turn, calls either a CPU or GPU wrapping function in the C++
part. Moreover, there is the intrinsic issue of the communication between the host
and the device. At each query running on the GPU side, the data columns under
investigation will be copied from the CPU to the GPU’s memory. Then the results
will be copied from the device to the host so it can be returned to Grafana (the
visualization tool) and displayed as readable statistics.
This process has two additional times added to the total running time of a query on
GPU. The first one is when data is copied to the device’s memory, while the second is
when the results are copied back. Moving to the host side, there is no such overhead
because the data is already there and the C++ function will operate on it without
the need to move them from the RAM to anywhere. The only overhead paid here is
when the C++ wrappers are being called to run the executing function. Table 6.4
shows the overheads paid at both CPU and GPU sides and their whereabouts.

Table 6.4 Overhead types and percentages according to query types for the GPU
rounded to the whole integer

Overhead Type Query type 2 Query type 3
Memory Allocation 29-30% 23-26%
Memory Copying 1% 1%
Results Recovering 17-21% 16-17%
Calling wrapped functions 20-26% 20-26%

Table 6.4 shows the percentages of overheads experienced on the GPU side due
to the implicated communication cost that should be paid at each GPU wrapped
function call. There are 4 main spots that aggregate to the total query’s execution
time which are memory allocation, memory copying from the host to the device and
inversely, plus the results sending back to Grafana and the waiting time of calling
the wrapping functions of the executing functions in the C++ part. The percentages
displayed in the table refer to the ratios of how much these overheads is to the total
query’s execution time.
The first 3 overheads in Table 6.4 do not exist in the CPU side, however, the 4th

one does impact the query’s running time and it is similar to the cost paid for the
GPU side. It varies between 20% and 26%.

39

7. CONCLUSION

In this thesis, we proposed a hybrid database management system that uses both
CPUs and GPUs with a novel mechanism of workload balancing between these pro-
cessing units. We introduced two main types of queries, simple and Lucene queries,
and two sub-types of Lucene queries, type 1 and 2, and for answering them, We
designed CPU functions and GPU kernels responding in seconds and milliseconds.
Moreover, distributing the load between the CPUs and GPUs formed a challenge and
for that we suggested 3 load balancing models written in C++, the Random-based, 1st
Algorithm-based and 2nd Algorithm-based models. The random one showed a bad
performance compared to the other models which is logical because the randomness
ignores the system’s state, While the first proposed algorithm showed a slight im-
provement compared to the random model, however, there was a randomness spot
that gave it a disadvantage, therefore, we could do better in the second algorithm
that demonstrates a good stable performance since it looks over the whole current
system’s state. There was up to 20% improvement introduced by the second algo-
rithm compared to the first algorithm and the random models which confirms our
predictions about the advantage of the second algorithm. Another dimension of the
presented improvement in this work was due to the use of Bloom filters probabilistic
data structures, we tested our functions and kernels with and without Bloom filters
and as expected, there was a refinement of the total running times of the query
set. The percentage of enhancement reached 33.3% when using Bloom filters while
answering the queries. This side of the work was not implemented by the previ-
ous GPU-based or hybrid databases like Kinetica, SQream, or BlazingSQL in which
we believe that our work has an advantage against the other ones. The tests were
conducted by 1 and 2 users separately to prove the capability of DOLAP to answer
several concurrent users in milliseconds where the average CPU and GPU utilization
didn’t exceed 3% and 2% respectively when running 2 users in parallel. This work is
open for more improvements and complementary additions, there still a window for
a new load balancing algorithm proposal that outperforms ours, moreover, concern-
ing the used Bloom filter, there might be some modifications that would be brought
to it in a way that it enhances the filter’s performance, by either reducing its false

40

positive probability and therefore reduces the number of faulty query responses or
by implementing a better hash function that gives better response times. Addition-
ally, this project depended on only a single GPU board, by forming a network of
GPU boards with acceptable communication bandwidth and network architecture,
the DOLAP system would have a tremendous capability of responding to a bigger
number of simultaneous users instantly.
Improvement spots also include the mechanisms of how to run multiple queries sent
by a user in parallel, therefore, a queue should be constructed to enqueue queries
that cannot be handled immediately, this way, the database management system
would be able to manage several parallel users with instant query sets.

41

BIBLIOGRAPHY

BlazingDB (2015). Blazingsql. https://blazingsql.com/. Accessed: 2020-07-20.
Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13 (7), 422–426.
Breí, S., Beier, F., Rauhe, H., Sattler, K.-U., Schallehn, E., & Saake, G. (2013). Ef-

ficient co-processor utilization in database query processing. Inf. Syst., 38 (8),
1084–1096.

Breß, S. & Saake, G. (2013). Why it is time for a hype: A hybrid query processing
engine for efficient gpu coprocessing in dbms. Proc. VLDB Endow., 6 (12),
1398–1403.

Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N. K., Luo, Q., & Sander, P. V.
(2007). Gpuqp: Query co-processing using graphics processors. In Proceed-
ings of the 2007 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’07, (pp. 1061–1063)., New York, NY, USA. Association for
Computing Machinery.

Grafana (2014). Grafana visualization tool. https://grafana.com/docs/grafana/
latest/getting-started/what-is-grafana/. Accessed: 2020-08-01.

He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N. K., Luo, Q., & Sander, P. V.
(2009). Relational query coprocessing on graphics processors. ACM Trans.
Database Syst., 34 (4).

Ilic, A., Pratas, F., Trancoso, P., & Sousa, L. (2011). High-Performance Computing
on Heterogeneous Systems: Database Queries on CPU and GPU, volume 20,
(pp. 222).

Kaggle (2016). Chicago taxi rides. https://www.kaggle.com/chicago/chicago
-taxi-rides-2016. Accessed: 2019-08-01.

Kinetica (2018). Kinetica gpu-database. https://www.kinetica.com/. Accessed:
2020-08-02.

OLAP (1993). Online analytical processing. https://olap.com/. Accessed: 2020-
07-21.

Root, C. & Mostak, T. (2016). Mapd: A gpu-powered big data analytics and
visualization platform. In ACM SIGGRAPH 2016 Talks, SIGGRAPH ’16,
New York, NY, USA. Association for Computing Machinery.

SQream (2014). Sqream data warehouse. https://sqream.com/. Accessed: 2020-
07-20.

Zhang, S., He, J., He, B., & Lu, M. (2013). Omnidb: Towards portable and effi-
cient query processing on parallel cpu/gpu architectures. Proc. VLDB Endow.,
6 (12), 1374–1377.

42

https://blazingsql.com/
https://grafana.com/docs/grafana/latest/getting-started/what-is-grafana/
https://grafana.com/docs/grafana/latest/getting-started/what-is-grafana/
https://www.kaggle.com/chicago/chicago-taxi-rides-2016
https://www.kaggle.com/chicago/chicago-taxi-rides-2016
https://www.kinetica.com/
https://olap.com/
https://sqream.com/

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND NOTATION
	The Processing Units
	Graphical Processing Units (GPU)
	Bloom Filter
	Parameters

	Grafana
	OLAP
	OLAP in DOLAP

	Database Management Systems

	DOLAP STRUCTURE
	Ingesting Data to DOLAP
	Bloom filter in DOLAP

	QUERY PROCESSING
	The simple DOLAP query
	Lucene Query
	Querying Algorithms

	THE LOAD BALANCER
	Background
	Load Balancing in DOLAP
	Random-based Load Balancing
	Algorithm-based Load Balancing
	Optimized Algorithm-Based Load Balancing
	The Data Manager
	Bottleneck spots

	EXPERIMENTS & RESULTS
	The Dataset
	Implementation
	Performance Metrics
	Results related to the usage of Bloom filter
	Discussion

	CONCLUSION
	BIBLIOGRAPHY

