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Abstract—In many classes of monitoring applications employ- precision level. By examining these curves, the network man-
ing battery-limited sensor networks, periodic sampling of an area ager can select an initial precision level that would provide

with a given precision level is required. For such applications, a5 gperation of the monitoring application with an acceptable
we provide mathematical programming formulations for deriving QoS for as long as possible

the optimal trade-off curve between network lifetime and data ; - ) )
precision, and design a practical heuristic for near-optimal ~ The paper is organised as follows: In Section I, we briefly
operation. The properties of our models and the effectiveness of discuss previous related work. In Section Ill, we introduce

our heuristic are demonstrated by computational experiments.  the system model used in the formulation of the lifetime
Keywords: sensor telemetry; sensor selection; routing; matRPtimisation problem. In Section 1V, the derivation of the

ematical programming; link metric; heuristic. maximum precision-lifetime curve is formulated as a mixed-
integer linear program. In Section V, we develop a fast
|. INTRODUCTION heuristic for energy-efficient sensor selection and routing that

Sensor telemetry is the use of sensors and two-way wirel ées'l?; 6|1 rr:]ea::;oguir:al rpr(iic:|3|orl1r-lllf§tm:ie ncu\;\lle vsndr tha:t Tﬁy
communications to gather information from products, peop g Implemente practice. >ectio , We Tepo e
ults of our computational experiments that demonstrate the

and places with sufficient accuracy. Recently, sensor telemert? .  th s roduced. and et
is being developed for such diverse application areas as e -ef[:, 'Ve(‘/‘lelss of the methods introduced, and we conclude in
logical habitat monitoring, military surveillance and industriaP®¢"°" V1

and commercial networked sensing [1].

In this paper, we focus on energy-efficiepgriodic sam- Il. RELATED WORK
pling based sensor telemetry, and we assume that the monitor- .
. . L Our work is related to the connected sensor cover problem
ing application periodically takes measurements from sam

g . . ; ; . In the connected sensor cover problem, a%ef N nodes
pomfts that are equally ap?” In & glven region. The quality is deployed in a sensing field of arela and each sensor node
service (QoS) of the monitoring application depends on tr;e has a sensing region denoted Hy. A query Q is made
number of sample points from which the measurements z%l’e :

taken, i.e., the precision level. In real-world applications sucﬁr a regionAdg C A. Then, a set of sensor nodés C 5
o P ) PP '~ IS selected so thatly C U;A4;, and any pair of nodes in

as agricultural or structural health monitoring, this relationshﬁgIe connected Sensor cover can communicate with each other
between the application QoS and precision level is usually . S - o
ther directly or indirectly over a multi-hop communication

nonlinear. A low precision level definitely results in a low - )
. ; . path. The minimum connected sensor cover problem finds
QoS because for a large portion of the region the ambi . L
e set of sensors with the minimum number of nodes, such

conditions remain unknown. However, a high precision lev Iat the two conditions above hold. The problem discussed in

may result in over-sampling (and high energy consumptloq is paper differs from the minimum connected sensor cover

because the ambient conditions do not usually change within ! o .
roblem in several aspects: First, we consider a sensor cover

short distances, e.g., the soil temperature on a farm. Thus, ?O{h a grid structure, where each node has the same sensing

efiicient operatlon., it is essential to choqse precision IeVe\r1\<':13dius. Second, the best sensor cover is defined as the one that
that do not result in under- or over-sampling.

L2 r?aximises the network lifetime. Furthermore, not all selected
In general, the sensor telemetry application can operate

. , - jensors sense, i.e., some of the selected nodes work as relay
satisfactorily for a range of precision levels. Thus, the networ . .
) : . . %des. Finally, we require all sensor nodes to be connected to
is considered to be operational as long as data is collec

with sufficient precision. Even if a number of nodes exhausﬁe monitoring station, but not necessarily to each other.

their batteries, the network may be able to continue to coIIecrtguern\grork_ ;ﬁi:zatrrec:ii?nd ti?, f,cﬁe?eﬁgt;doﬂotf zagiﬁrfs?;rt?;t—
and deliver useful data to the monitoring station, alas with ergy g ; .
works in [5], [6], and [7]. Previously in the literature, topology

a lower precision. Therefore, in telemetry applications it is b . , S - .

important to quantify the amount of data that can be collect&q nitrol IS myestlgated with the objective of prowdm_g_end-to-

starting with a given maximum initial precision level. Inend traffic, €., a connected iand. power/e.n_ergy efﬂment pth.

this paper, we developrecision-lifetime curvegplotted for Our work brings together apphcapgn-spemflc requirements (in
the form of measurement precision), topology control and

different initial maximum precision levels for this purpose. AF tina. The cl t model t rs is described in [51: however
precision-lifetime curve depicts the maximum possible amoufit 9. TN CIOSEST MOAETTo ours IS describe [51; however,

of data that can be collected by the network at each suppor{go[‘r’] the ob]e_c_tlve Is to detect the occurrence of an event in
an energy-efficient manner rather than to continuously collect

*Corresponding author: +90-216-483-9589 (tel), +90-216-483-9550 (faxthe ambient conditions of an area.



In our work, we do not only select the best set of sensors

to cover a region, but also determine the lifetime maximising

route between these sensors and the monitoring station. Life- o

time maximising routing is previously considered in [3] and 'ocw

[4], where the network is assumed to het operational when

the first node in the network exhausts its battery. Unlike these ode”
approaches, we consider the network to be operational as long

as data with acceptable precision is collected from the network. Senﬁ )
Other network lifetime definitions are also proposed in the radiue- cwly %
literature. For instance, [8] develops a maximum node-life and ‘
a maximum flow-life curve for a network with predetermined

required rates of flows between pairs of nodes. Also, [9] Monitoring
investigates the rate allocation problem at the nodes of a N 1.0y

network in order to maximize the total bit volume delivered to k=5 .
a monitoring station from the entire network over time whille_i 1 Graphical reoresentation of the parameters in the maximum brecision
assuring fairness among all nodes. The models in these I,ﬁ\gtm'e protﬁe'm_ P ' P ' mum precision-
two papers are similar in spirit to the models we develop in
Section IV.
the telemetry application requests from the monitoring station
to take measurements every= /(K + 1) units along both
x— and y— directions of the field corresponding to a query
The sensor network is used to collect information froraf precisionk. Assuming that the area monitored is a square
the sensors distributed in a field in order to support variowdith one side lengthl, this forms a square grid lattice as
(monitoring) applications. Each node in the sensor netwogemonstrated in Figure 1. Each point on this grid represents
has the same sensing capability. The nodes can be deployaibeal measurement poifitom which data is to be gathered.
in this field randomly or according to a predefined topologyrhe location of thekth ideal measurement point is denoted by
If the nodes are deployed randomly, we assume that the noges b,), k= 1,..., K. However, if the nodes are randomly
can determine their respective locations by using methods su@ployed, we may not always be able to find sensor nodes
as those described in [1, Chapter 3]. at these ideal positions. Therefore, upon receipt of the query,
Let U(K) be the utility gained from a query with precisionthe monitoring station selects the set of sensor nodes among a
K. The precision of the query can be defined in various waysumber of candidate nodes. For each ideal measurement point
In general, the precision corresponds to the degree of h@w,,b;), the candidate nodes lie within a circle of radiusw
good the data collected represents the ambient conditionscentered atay, by ) wheree is the user defined tolerance level.
the field. Specifically, we consider a monitoring application i(See Figure 1.) In addition, by alternating between the sensor
which it is desired to take measurements in a field at poimtedes in close proximity of the ideal measurement points, we
that are distributed as uniformly as possible, and the precisican balance the energy consumption in the network and extend
K is defined as the number measurement points along a cribsslifetime. Alternatively, we could always choose the closest
section in either:— or y—direction. In other words, the desiredsensor nodes to the ideal measurement points; however, this
number of measurement points i§? if the precision of the policy would quickly deplete the energy of such nodes, and
query isK. We note that uniformly distributed measurementshus result in a shorter network lifetime.
obviate the need for additional information on the spatial The form of the utility functionU(K) depends on the
and temporal correlation among sensed data. Furthermore,application and the user requirements. For example, if we are
assume that in-network data fusion is not performed, singest interested in whether a response from an arbitrary node
data fusion requires a priori statistical data to be kept for tie the network can be received or not, theliK) = ¢, i.e.,
area of interest. the utility gained from a query is the same for all precision
The objective is to maximise the aggregate utility gaindevels. In more practical case§,(K) may increase with in-
from the network over the network lifetime. Here, the networ&reasing precision, since more and higher quality information
lifetime is defined as the latest time instant a query witls obtained about the area. For instance, one may consider a
an arbitrarily low (but pre-defined) precision level can bgnear utility function of the formU(K) = a- K +b. In other
satisfied. The response to each query consumes a part ofrtiwe realistic cased/(K) may have a more exotic form,
limited node energy due to sensing, transmission and receptwinere the utility is low for low precision levels, with a rapid
operations. Clearly, as the precision level for a query increasggirease in utility for a range of precision levels in the middle,
the energy consumption in the network does also increaseand so that the marginal utility starts decreasing beyond a
Assume that there aréV sensor nodes in a field ofthreshold precision level. In any case, the definitiorUg#)
dimensions/ x I, and (x;,3;) denotes the coordinates ofis a subjective matter, and it is nearly impossible to figure out
sensor node, i = 1,..., N. Without loss of generality, the an exact form of the utility function.
monitoring station, denoted by the indéx= 0, is located at  In our work, instead of guessing a utility function and
the coordinateg0,0). In a sample operation of the networkoptimising the network operations according to this fictitious
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utility function, we consider a lexicographic optimisation, i.eprogram TTP-LP{/) (Time-To-Partition-LP) we maximise
we assume tha/ (K) > U(K — 1) > U(K —2).... There- the timet,, until the next network partition given the previous
fore, in our lifetime optimisation problem, beginning with(M — 1) drop points on the precision-lifetime curve and the
an initial user-specifiedlesiredprecision level, we maximise current precisionkK,; 1. The next drop point is determined
the duration for which this precision level can be supporteds (t5r, Kpr—1) and added toM PLC. At time t,;, some
When a query at this desired precision level fails due twdes in the network exhaust their energy so that the network
the limited node energies, the next lower precision level thist no longer able to fulfill the queries at precisidty, ;.
can be supported is selected, and the duration for which thiserefore, at timej; we set up and solve an integer program
precision level can be supported is maximised, and so diP-IP(AM/+1) (Maximum-Precision-IP) that determines the
The optimisation procedure terminates when the supportabd@ximum possible precisiok’;; for the remaining network
precision level drops below a minimuacceptableprecision subject to the constraints imposed by the drop points that
level. have already been identified. Note that at time zero, we have
MPLC = {}, to = 0, and K, is specified by the user.
IV. LIFETIME MAXIMISATION PROBLEM For formulating TTP-LP{/), assume that)M — 1) drop

As discussed in the previous section, initially we would lik@oints have already been determined on the maximum
to maximise the time; to network partition given the user-precision-lifetime curve, i.e., we know the total amount of
defined initial precisionkj, i.e., the time when the sensorsensor data for each measurement point that needs to be
network fails to respond to a query for the first time becauseuted to the monitoring station far,_; < ¢ < t,,, m =
one or several nodes do not have sufficient energy to sedse..,M — 1. We are currently at timé,;_; and need to
and/or to forward the packets to the monitoring station. At tingelect(K,_1)? sensor nodes out of a total 8f nodes in the
t1, we can declare that the network is dead, or we can decreastwork so that these sensor nodes are in sensing regions. The
the precision of the queries so thil, < K, and continue to kth sensor node belongs to a set of candidate né¢ésand
collect data from the network until the next point in time we allow the specific sensor node in the $gf to change
when one or more additional nodes drain up their energy, addring ty,—1 < t < tp. A precise definition of the sets
the network fails to respond to the queries at precision S, k& = 1,...,(K»—1)%, m = 1,...,M will be given
Here, we adopt the second approach, i.e., we develop modatsr. The objective at timey,_; is to select one sensor node
and algorithms to construct a “maximum precision-lifetimérom each setS;", and to route the packets from these sensor
curve”. A maximum precision-lifetime curve is defined by amodes such that the time to next network partition, ggs,=
ordered set of pairsMPLC = {(t,, Km—1)|Km—1 is the ty — ty—1, IS maximised, angp packets per measurement
precision fort,, 1 <t <t,, m=1,...,M} so thattg = 0, point per unit time are forwarded to the monitoring station.
tm > tm_1, m = 1,..., M, Ky is the user defined initial The main sources of energy consumption are the sensing,
precision level, andK,, < K,,_1, m = 1,...,M — 1. The transmission and receiving operations. gt i =1,..., N,
length of the interval,, ; <t < t,, is denoted byg,, = be the initial energy level of nodeat timet, = 0, and let¢
tn—tm—1, and the precision level decreases at edroip point ande, be the constant amount of energy required for a single
(tm;s Km—1), m=1,..., M, whereM is the number of drop sensing and receiving operation by any node, respectively.
points on the precision-lifetime curve. Our objective in thi¥he transmission energy depends on the distance between
paper is to determine both the number of drop poitsand two nodes, ande;;, ¢« = 1,...N, j = 0,..., N, denotes
the associated times, ...,t); on the maximum precision- the amount of energy consumed by nadeshen sending a
lifetime curve as defined by our lexicographic network lifetimenit size packet to nod¢. The messages generated by the
maximisation problem defined in the previous section. (K,,_1)? sensor nodes are routed to the monitoring station

The maximum precision-lifetime curve allows the user tover multi-hop paths where the variabﬁ;m >0, k =
decide when the network is dead based on the monitorihg .., K,,—1, m=1,....M, i=1,...,N, 7=0,...,N,
application’s needs. For instance, if the precision level does ritenotes the number of packets generated by a sensor node
decrease quickly from one drop point to the next one on thec S;* and transmitted from nodé to nodej during the
maximum precision-lifetime curve, then the sensor netwotkne periodt,,—; <t < t,,. Finally, letL,, i = 1,... N, be
may still be able to collect useful information. Clearly, suckhe residual energy of nodeat timety,.
an approach has advantages over declaring the network deadeally, during a time intervat,,_; < t < t,,, we would
at the time of first network partition as in [3]. In general, wdike to select(K,,_1)? sensor nodes in the network such that
prefer collecting data at higher precisions sooner than latdrey form a uniform grid in which the ideal sensor locations
Alternatively, it is possible to collect data at lower precisionsire separated by a distaneg,, , = ﬁ in bothz— and
i.e., with fewer number of measurement points, from the start-directions. (See Figure 1.) However, for reasons discussed
and operate the network for a longer period of time. Howeven detail in Section Ill, we only require that theth sensor
such sparse data may not be useful. In other words, we assurode is located within a circle of radiusvg,, , around the
that the initial precisionk, defined by the user reflects thekth ideal sensor location. In order to impose these constraints
monitoring application’s needs, and our objective is to operad@ the locations of the sensor nodes, we construct the sets
the network at or close to this precision for as long as possibl” = {i | dx(zi,yi) < ewk,, ,}, k=1,...,(Kpn_1)?, m=

In order to generate the maximum precision-lifetime curve, ..., M, whered(x;,y;) is the Euclidean distance of node
we follow a two-step approach. First, by solving a lineair from the kth ideal sensor location. We make sure that the
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m=1,..., M (4)
Fig. 2. Network structure and transmission energiesNoe 3, M = 1, M (K )2
KO = 1, Sl = {2} m—1 ,
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> > ek
m=1 k=1
2
kth sensor node belongs to the $&t during the time interval N i (Kij) Z o fhm
tme1 <t <tp. ijJig
Network flow problems are among the types of linear ™= F=1 Jse{ojuv
programs that can be solved most effectively [10]. Below, M (Km-1)*
we formulate the problem of maximising the tingg, until + » Y e, fi"+Li=E; VieV (5)
the next network partition as a linear program TTP-MB(  m=1 k=1
in which the feasible region has the structure ofmailti- am >0 (6)
commodity circglatio_n problenwvith side constraints _for en- f;cjm >0 Vi, jkm (7)
ergy consumption, i.e., a network flow problem in which Li>0 Vi ®)

all nodes, including the monitoring station, have a net flow
of zero for each commodity. In our formulation, we have The objective function (1) maximises the time to next

M 2 i i - "
Zm:1(f§m—1) ITomnaog't'ehs thre a c(:]mmod(;ky’,;" rer[: network partition. In general, there are many alternate flows
resents data collected by the nodes in the$etduring the ¢ ayain the same precision-lifetime curve. Hence, in order
to find the maximum precision-lifetime curve, we allow TTP-

time intervalt,,—; <t <t,,. In addition, we define airtual
node: for eachreal node: # 0 that can only receive packetsLP(M) to optimise the flows that were previously obtained

from a real nodej # 4, 1 < j < N. The set of all real \ ‘t1p ) pey 1 < M, so that the current objectivy,
nodes (excluding the monitoring station) and the set of maximised as long as the previously determined total

thyal nodes are denoged _bV and V', respectively. Also, flow volumes into the monitoring station are satisfied for all
defineV = {0} UV UV . Virtual nodes can only send dat ommoditiesC™. k — 1 (Kpmo1)?, m =1 M1
k > I m— 9 ) .

to their associated real nodes, and they allow us to consiqgfis js ensured by the constraints (2). Therefore, the set of
the receiving energy as the transmission energy from a VINtygins {fE1} determined at timé, = 0 by solving the model
node to a real node. In order to ensure a net flow of ze 7 ;

) L . _Iﬁ'P-LP(l) may be different than the set of rom{g‘fjl
for each commodity at the monitoring station, the Sens"’%termined at time,;_; by the model TTP-LPY/); however
operations are represented by flows that originate from t e total flow delivered to the monitoring station from the set of

monitoring station. However, in this case the transmissi%dessl k=1 (K0)? is the same in both models. The
A k> — PICECICEY .

energy (equal to the SENsing energy: as defined .t.)elow)c straints (3) prescribe thatpackets per unit time are sent
charged to the real node receiving the flow. In addition, re m each setSM_ k — 1 (Kx_1)?, to the monitoring
o o I Sok=1,..., _1)%,
tnodes CaT slendddata}[hto ttue nl?]nl_torlng statlon_ |tndad_d![t| tion forg,, units of time. The net flow for any commodity at
0 ;nyT\rl]'r ual no Z ?. erth in €Ir own associate t\'m ug y node, including the monitoring station, is zero as reflected
node. Thus, we re ge meu _eO r%?ﬂsrrr;:ssltoz gnbg??rlgy matas by the flow conservation constraints (4). The constraints (5)
G ‘.'.e v’ k cv relate the initial energy level&; at timety = 0 to the final
follows: e;w = - ?‘—;’ ,v B é’ ! v ’ ! ", . energy levelsL; at timety; = ty—1 + qar.
€ij étf\erW{sg 0puv, j#i The next drop pointty,, K1) is determined by solving
. I P TP-LP(M) optimally, and at time& = ¢, the network is no
An example for this network structure is given in Figure 2 fo onger éblc)a t(F)) deIivzler sensor data toMthe monitoring station

N=3, M =1, Ko = 1, S} = {2}. For each arc, the energy t th ¢ ision b | nod haust
consumption for a unit flow through the arc is indicated in th € current precision because one or several nodes exnhaus

figure their total energy. So, at timia, we first have to determine the
Then, the linear program TTP-LP{) below maximises the maximum precisioniy, < K- — 1 that can be supported

. ' - : by the remaining network before we can maximige,; at

time ¢, to the next network partition given th&d/ — 1) drop ' L . . ;

oints already exist on the maximum precision-lifetime curvézhIS precision. Alternatively, we can consider this problem

P one of selecting the setS;)’ ™ so that K, is maximised.

Therefore, we define the set§) ™" = {i|dy, (zi,y:) <

ew, b, ky = 1,...,(w)? p=1,....,Ky_1 — 1, and the

max gm (1) . .
o ) binary variablesz,,, n=1,..., Ky — 1. If 2z, =1, then
SN =pam k=1, (Kn1) the setsSé‘f“, k, = 1,...,(u)?, are selected for sensing
SHE duringty, <t < ta41 Wherety ;1 is still unknown. Then,

m=1,...,M —1 (2) the mixed integer model MP-IB{ + 1) below maximises the



precision for the remaining network at timeg;. from each setS} (excluding dead nodes) we select a sensor
node that has the shortest path to the sink among the nodes in

Knp—1—1 the setSM. For each commodity, we send one unit flow per
max Z 112, (9) query over the calculated shortest paths. Note that some nodes
=1 may need to route several commodities for a given query if
Ky—1—1 they belong to more than one shortest path. The link metrics
Z z, =1 (10) are updated and the shortest paths are re-calculated gygry
=1 time units. Eventually, at some timg,, the current precision
Z fé”” —prgm k=1, (Km1)’ level cannqt be supported any more, since some of the nodes
et g L ’ deplete their energies. Then, we 9€t; = Kj;_1 — 1, and
¥ repeat the procedure at this precision level.
m=1...,M (11) We define and update the link metrics in the shortest
Z fé“;M“ =pxz, k,=1,...,(0? path problems in a similar way to that in the fast greedy
iegh+ heuristics discussed in [11]. The authors in [11] develop
" greedy heuristics for the maximum data extraction problem
p=L... . Kny-1-1 (12) j, energy-limited sensor networks. First, they present a multi-
Constraints similar to commodity maximum flow formulation for their problem.
(4)-(8) in TTP-LP(). (13) Then, they propose iterative algorithms based on the insights

. obtained from the dual linear program similar in spirit to the
In the model above, the constraint (10) ensures that Sigorithms developed in [12].

actly one set of uniformly distributed measurement points is'|, the discussion below, léf; be the cost of routing a unit

selected, and the objective (9) maximizes the cardinality by over the link between the nodésand ;. It is clear that
_thls set. The constraints (11) corresp_ond to the constr_alnts R link cost depends on the residual energy levels of nodes
in the model TTP-LPY/) and prescribe that the previously,ng ; as well as the transmission energy between these nodes

determined total flow volumes into the monitoring station arg, 4 the receiving and sensing energies. We use a link metric
satisfied for all commoditie€", k= 1,..., (K;,-1)% m = defined as follows:

L...,M.If z, =1, then the sets5y "', &, = 1,..., () ‘ ‘ A
must be able to sense and forward the corresponding sensor lij = ejb" + &b + eV, (14)

data to the monitoring station for at least one additional unVi\}here bi is a parameter which is a function of the residual
of time because * z,, = p in the constraints (12). In other P

words, the precision level until the next drop point on thgpesrgztoi;c Eggz'igfesé:i:hfoégcﬁ :g;mo': délffo) ('as OSg
maximum precision-lifetime curve is selected such that sen ye p query.

data can be routed to the monitoring station during the timré't'a”y’ b* is set toby = 1/E;, and¥* is updated each time

periodty, < ¢ < ¢y +1. In addition, the model MP-IR( +1) the s.,h.ortest path; are to be re-calculated if rmrﬂ:ecurrently
. : . ggeiving or sending data. Lé}, be the value ob’ after the

has flow conservation and energy consumption constraints t ﬁ1 date. Then

are similar to those in TTP-LR{) and are omitted here. up ' '

k= bi_18xp(05"), (15)

V. A Low COMPLEXITY HEURISTIC . )
hered is a control parameter an@t =1 — E*"/E, where

The optima] pre.cision—lif.etime curves provide thg networtgrem is the residual energy of nodeat the time of the update.
manager tactical information regarding the selection of t s, b is increased with each update, and the rate of increase

initial precision level, and the lifetime of a particular networlbf bi increases over time becausé increases. Note that this

§at|sfy|ng the requwe.d.qua!ltylof Service. Unfortunqtely, de.r'vr'netric ensures that when all nodes have plenty of energy, the
ing the optimal precision-lifetime curve may require solvm%/

: X . ath with the minimum total consumed energy is preferred,
several linear and integer programs successively. Theref Mhereas later it becomes more important to avoid nodes with
effective heuristic approaches that can approximately realige

: o . W residual energy. In addition, each time the precision level
the optimal precision-lifetime curve are required. Below, wi

discuss one such low computational complexity routing al S decreased we re-initialige = 1/ "M Vi and E; = E°0 vi
: . L put plexity 9 al9%%cause a change of precision presents a significant change in
rithm for a given initial precision level.

AN . . . the network topology.
Our precision-lifetime algorithm consists of two mterrelated1 pology
parts: sensor selection and routing. The candidate sensor nodes

that can respond to a particular query with a required precision VI. COMPUTATIONAL EXPERIMENTS
K-y are given by the set§, k = 1,..., (Kp—1)%. Thus, In our numerical study, we have several objectives. First, we
one node from each 361;34, k=1,...,(Ka_1)? is selected would like to demonstrate how a precision-lifetime curve can

to respond to a query; effectively acting as the source of the employed for tactical decision making while choosing an
kth commodity in the network. In our algorithm, given thenitial precision level given the QoS requirements of the moni-
current link metrics discussed later in this section, we first ruaring application. Second, we need to show that our heuristics
reverse Dijkstra’s algorithm [10] in order to find the shortesixhibit a near-optimal and robust performance for a variety
paths from all nodes in the network to the sink node. Theaf network topologies. Due to the extensive computational



B for each N = 250, 300, 350 with Ky = 3, and assume
that the application can tolerate precision levels down to 1
measurement per query. The defining characteristic of these
instances is that there is no power control in the network
because the transmission energy is constant between any two
pair of nodes in the network according to the Crossbow
specifications [13].
For each instance, we generate both the optimal and heuris-
T tic precision-lifetime curves. In order to evaluate a precision-
IFei\?éIS.. Maximum precision-lifetime curves with different initial precisionc\tgtltrrsi Ctllizleffffcio:fggzégoi(tz%i\éill)’gf(m’—(lt(ﬂfn;[iﬁ:jf),
wherety = 0. This evaluation function assigns a much greater
weight to higher precision levels which is in line with our
time required when solving the precision-lifetime optimisatiotexicographic lifetime optimisation problem. In Table I, we
problem in Section IV for 2-dimensional networks with a largeeport statistics on the ratigHeu"/ fOP computed over 10
number of nodes and a high initial precision level, we onlinstances for eachV = 250, 300 and 350 wherefHeu
report results in 1-dimensional networks for larg@. (See and fOP' denote the performance measures obtained for the
Table II.) Clearly, a 1-dimensional network is a special case ofirves constructed by the heuristic and the optimal algorithm,
a 2-dimensional network in which the number of measuremeamispectively. Clearly, the heuristic demonstrates an excellent
points is equal to the precision level, and the circular sensipgrformance, and although we do not report detailed results
regions around the ideal measurement points are reducechéoe, its computational time requirement is at least an order
intervals. of magnitude less than the optimal approach.

In all of our computational experiments, the initial energies
of the nodes are uniformly distributed betwees and 3.3.
Each time unit,y = 1000 packets per measurement point per
unit time are to be forwarded to the sink, and the node energies
are decremented per unit flow sensed, transmitted or received [ N 250 300 350
according to the Crossbow specifications [13]. The parameters avg. | 97.71% | 97.37% | 96.91%

. L . . min. | 93.56% | 94.12% | 94.62%
d andtypqg in our heuristic are set to 0.1 and 15 time units, max | 100.00% | 100.00% | 98.79%
respectively. The mathematical programs in Section IV are
modeled in ILOG OPL Studio 3.7.1 and solved by ILOG
CPLEX 9.1. The heuristic in Section V is coded in Visual In the second set of problem instances, we consider a 1-
Basic. dimensional network in which the nodes are deployed ran-

Figure 3 depicts the trade-off between choosing differeAPmly on a line of length 10m and= 0.1. Note that the trans-
precision levels for a network with 80 nodes in which th@lission energies are not constant throughout the network in
nodes are distributed randomly on a line of length 10 metefys case, andis chosen much smaller. We randomly generate
(m) emanating from the sink. The tolerance levelor de- 10 problem instances for each combination\of= 50, 75, 100
termining the setsS;" is assumed to b@.1. The network andKo =8,7,6, and assume that the application can tolerate
can maintain the precision levek 6,5, and 4 for a total precision levels down to 4 measurements per query. The same
network lifetime of14, 579 time units for an initial precision Performance measure as above is used, and the results are
level K, = 8 while the precision levels, 5,4 and 3 can be given in Table Il. We note that the performance of the heuristic

supported for a total network lifetime @B, 274 time units if is more sensitive to increasing node density than the initial
the initial precision level is decreased &, = 6. In other precision level. We also observe that the results are worse than
words, if the monitoring application can tolerate precisiof10se in Table I. However, recall that in the optimal algorithm
levels down to3 sample points per query, then choosing #e allow all flows from time zero on to be optimised for a set
slightly lower initial precision level provides a better networl@f drop points on the maximum precision-lifetime curve. (See
lifetime. Also note that the total data gathered at precisiopection IV.) Clearly, this is an ideal approach that is very hard
levels 5 and 4 are greater when we start collecting dati0 match in a practical implementation. Therefore, the results
at K, = 6. Thus, depending on the requirements of th@ Tables I-Il are very promising.
monitoring application, it may be more advantageous in the
long run to choose an initial precision level that is slightly VII. CONCLUSIONS ANDFUTURE WORK
lower than the highest value desired. In this paper, we defined a new performance metric for the
In order to demonstrate the effectiveness of the heuristitaximum data collection problem in battery-limited sensor
stated in Section V with different parameter settings, weetworks. In this study, we focused on a data collection model
generate two sets of problem instances. In the first set, which requires the periodic sampling of a region and formu-
consider a 2-dimensional network in which the nodes al&ted the maximum precision-lifetime problem as a series of
deployed randomly in a square area of dimensibms< 1m linear and mixed integer programs. The resulting maximum
and e = 0.3. We randomly generate 10 problem instancgwecision-lifetime curve may be used by the network managers

Precision Level

TABLE |
PERFORMANCE OF THE HEURISTIC COMPARED TO THE MAXIMUM
PRECISIONLIFETIME CURVE IN 2-DIMENSIONAL NETWORKS.




TABLE I
PERFORMANCE OF THE HEURISTIC COMPARED TO THE MAXIMUM PRECISION.IFETIME CURVE IN 1-DIMENSIONAL NETWORKS.

N 50 75 100

K 6 7 8 6 7 8 6 7 8
avg. | 90.81% | 91.11% | 91.03% | 82.09% | 81.42% | 82.43% | 79.22% | 85.00% | 85.34%
min. | 76.56% | 82.60% | 75.48% | 64.57% | 64.57% | 76.17% | 66.10% | 66.10% | 76.15%
max. | 100.00% | 100.00% | 100.00% | 100.00% | 92.93% | 97.30% | 90.27% | 94.84% | 96.40%

in calibrating the needs of the monitoring application accord-
ing to the network capabilities. In addition, we developed a
fast practical heuristic whose performance closely matches
the optimal precision-lifetime curve without resorting to the
solution of mathematical programs. As a future work, we will
consider the incorporation of more elaborate definitions of
data precision where we consider the spatial and temporal
correlation of the data.
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