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Abstract— In many classes of monitoring applications employ-
ing battery-limited sensor networks, periodic sampling of an area
with a given precision level is required. For such applications,
we provide mathematical programming formulations for deriving
the optimal trade-off curve between network lifetime and data
precision, and design a practical heuristic for near-optimal
operation. The properties of our models and the effectiveness of
our heuristic are demonstrated by computational experiments.
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I. I NTRODUCTION

Sensor telemetry is the use of sensors and two-way wireless
communications to gather information from products, people
and places with sufficient accuracy. Recently, sensor telemetry
is being developed for such diverse application areas as eco-
logical habitat monitoring, military surveillance and industrial
and commercial networked sensing [1].

In this paper, we focus on energy-efficient,periodic sam-
pling based sensor telemetry, and we assume that the monitor-
ing application periodically takes measurements from sample
points that are equally apart in a given region. The quality of
service (QoS) of the monitoring application depends on the
number of sample points from which the measurements are
taken, i.e., the precision level. In real-world applications, such
as agricultural or structural health monitoring, this relationship
between the application QoS and precision level is usually
nonlinear. A low precision level definitely results in a low
QoS because for a large portion of the region the ambient
conditions remain unknown. However, a high precision level
may result in over-sampling (and high energy consumption),
because the ambient conditions do not usually change within
short distances, e.g., the soil temperature on a farm. Thus, for
efficient operation, it is essential to choose precision levels
that do not result in under- or over-sampling.

In general, the sensor telemetry application can operate
satisfactorily for a range of precision levels. Thus, the network
is considered to be operational as long as data is collected
with sufficient precision. Even if a number of nodes exhaust
their batteries, the network may be able to continue to collect
and deliver useful data to the monitoring station, alas with
a lower precision. Therefore, in telemetry applications it is
important to quantify the amount of data that can be collected
starting with a given maximum initial precision level. In
this paper, we developprecision-lifetime curvesplotted for
different initial maximum precision levels for this purpose. A
precision-lifetime curve depicts the maximum possible amount
of data that can be collected by the network at each supported
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precision level. By examining these curves, the network man-
ager can select an initial precision level that would provide
an operation of the monitoring application with an acceptable
QoS for as long as possible.

The paper is organised as follows: In Section II, we briefly
discuss previous related work. In Section III, we introduce
the system model used in the formulation of the lifetime
optimisation problem. In Section IV, the derivation of the
maximum precision-lifetime curve is formulated as a mixed-
integer linear program. In Section V, we develop a fast
heuristic for energy-efficient sensor selection and routing that
yields a near-optimal precision-lifetime curve and that may
be implemented in practice. In Section VI, we report the
results of our computational experiments that demonstrate the
effectiveness of the methods introduced, and we conclude in
Section VII.

II. RELATED WORK

Our work is related to the connected sensor cover problem
[2]. In the connected sensor cover problem, a setS of N nodes
is deployed in a sensing field of areaA, and each sensor node
si has a sensing region denoted byAi. A query Q is made
for a regionAQ ⊆ A. Then, a set of sensor nodesS′ ⊆ S
is selected so thatAQ ⊆ ∪iAi, and any pair of nodes in
the connected sensor cover can communicate with each other
either directly or indirectly over a multi-hop communication
path. The minimum connected sensor cover problem finds
the set of sensors with the minimum number of nodes, such
that the two conditions above hold. The problem discussed in
this paper differs from the minimum connected sensor cover
problem in several aspects: First, we consider a sensor cover
with a grid structure, where each node has the same sensing
radius. Second, the best sensor cover is defined as the one that
maximises the network lifetime. Furthermore, not all selected
sensors sense, i.e., some of the selected nodes work as relay
nodes. Finally, we require all sensor nodes to be connected to
the monitoring station, but not necessarily to each other.

Our work is also related to the efforts on topology control
and energy-efficient routing in wireless ad hoc and sensor net-
works in [5], [6], and [7]. Previously in the literature, topology
control is investigated with the objective of providing end-to-
end traffic, i.e., a connected and power/energy efficient path.
Our work brings together application-specific requirements (in
the form of measurement precision), topology control and
routing. The closest model to ours is described in [5]; however,
in [5] the objective is to detect the occurrence of an event in
an energy-efficient manner rather than to continuously collect
the ambient conditions of an area.
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In our work, we do not only select the best set of sensors
to cover a region, but also determine the lifetime maximising
route between these sensors and the monitoring station. Life-
time maximising routing is previously considered in [3] and
[4], where the network is assumed to benot operational when
the first node in the network exhausts its battery. Unlike these
approaches, we consider the network to be operational as long
as data with acceptable precision is collected from the network.
Other network lifetime definitions are also proposed in the
literature. For instance, [8] develops a maximum node-life and
a maximum flow-life curve for a network with predetermined
required rates of flows between pairs of nodes. Also, [9]
investigates the rate allocation problem at the nodes of a
network in order to maximize the total bit volume delivered to
a monitoring station from the entire network over time while
assuring fairness among all nodes. The models in these last
two papers are similar in spirit to the models we develop in
Section IV.

III. SYSTEM MODEL

The sensor network is used to collect information from
the sensors distributed in a field in order to support various
(monitoring) applications. Each node in the sensor network
has the same sensing capability. The nodes can be deployed
in this field randomly or according to a predefined topology.
If the nodes are deployed randomly, we assume that the nodes
can determine their respective locations by using methods such
as those described in [1, Chapter 3].

Let U(K) be the utility gained from a query with precision
K. The precision of the query can be defined in various ways.
In general, the precision corresponds to the degree of how
good the data collected represents the ambient conditions in
the field. Specifically, we consider a monitoring application in
which it is desired to take measurements in a field at points
that are distributed as uniformly as possible, and the precision
K is defined as the number measurement points along a cross
section in eitherx− or y−direction. In other words, the desired
number of measurement points isK2 if the precision of the
query isK. We note that uniformly distributed measurements
obviate the need for additional information on the spatial
and temporal correlation among sensed data. Furthermore, we
assume that in-network data fusion is not performed, since
data fusion requires a priori statistical data to be kept for the
area of interest.

The objective is to maximise the aggregate utility gained
from the network over the network lifetime. Here, the network
lifetime is defined as the latest time instant a query with
an arbitrarily low (but pre-defined) precision level can be
satisfied. The response to each query consumes a part of the
limited node energy due to sensing, transmission and reception
operations. Clearly, as the precision level for a query increases,
the energy consumption in the network does also increase.

Assume that there areN sensor nodes in a field of
dimensionsI × I, and (xi, yi) denotes the coordinates of
sensor nodei, i = 1, . . . , N . Without loss of generality, the
monitoring station, denoted by the indexi = 0, is located at
the coordinates(0, 0). In a sample operation of the network,
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Fig. 1. Graphical representation of the parameters in the maximum precision-
lifetime problem.

the telemetry application requests from the monitoring station
to take measurements everyw = I/(K + 1) units along both
x− and y− directions of the field corresponding to a query
of precisionK. Assuming that the area monitored is a square
with one side lengthI, this forms a square grid lattice as
demonstrated in Figure 1. Each point on this grid represents
an ideal measurement pointfrom which data is to be gathered.
The location of thekth ideal measurement point is denoted by
(ak, bk), k = 1, . . . ,K2. However, if the nodes are randomly
deployed, we may not always be able to find sensor nodes
at these ideal positions. Therefore, upon receipt of the query,
the monitoring station selects the set of sensor nodes among a
number of candidate nodes. For each ideal measurement point
(ak, bk), the candidate nodes lie within a circle of radiusε∗w
centered at(ak, bk) whereε is the user defined tolerance level.
(See Figure 1.) In addition, by alternating between the sensor
nodes in close proximity of the ideal measurement points, we
can balance the energy consumption in the network and extend
the lifetime. Alternatively, we could always choose the closest
sensor nodes to the ideal measurement points; however, this
policy would quickly deplete the energy of such nodes, and
thus result in a shorter network lifetime.

The form of the utility functionU(K) depends on the
application and the user requirements. For example, if we are
just interested in whether a response from an arbitrary node
in the network can be received or not, thenU(K) = c, i.e.,
the utility gained from a query is the same for all precision
levels. In more practical cases,U(K) may increase with in-
creasing precision, since more and higher quality information
is obtained about the area. For instance, one may consider a
linear utility function of the formU(K) = a ·K + b. In other
more realistic cases,U(K) may have a more exotic form,
where the utility is low for low precision levels, with a rapid
increase in utility for a range of precision levels in the middle,
and so that the marginal utility starts decreasing beyond a
threshold precision level. In any case, the definition ofU(K)
is a subjective matter, and it is nearly impossible to figure out
an exact form of the utility function.

In our work, instead of guessing a utility function and
optimising the network operations according to this fictitious
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utility function, we consider a lexicographic optimisation, i.e.,
we assume thatU(K) À U(K − 1) À U(K − 2) . . .. There-
fore, in our lifetime optimisation problem, beginning with
an initial user-specifieddesiredprecision level, we maximise
the duration for which this precision level can be supported.
When a query at this desired precision level fails due to
the limited node energies, the next lower precision level that
can be supported is selected, and the duration for which this
precision level can be supported is maximised, and so on.
The optimisation procedure terminates when the supportable
precision level drops below a minimumacceptableprecision
level.

IV. L IFETIME MAXIMISATION PROBLEM

As discussed in the previous section, initially we would like
to maximise the timet1 to network partition given the user-
defined initial precisionK0, i.e., the time when the sensor
network fails to respond to a query for the first time because
one or several nodes do not have sufficient energy to sense
and/or to forward the packets to the monitoring station. At time
t1, we can declare that the network is dead, or we can decrease
the precision of the queries so thatK1 < K0 and continue to
collect data from the network until the next point in timet2
when one or more additional nodes drain up their energy, and
the network fails to respond to the queries at precisionK1.
Here, we adopt the second approach, i.e., we develop models
and algorithms to construct a “maximum precision-lifetime
curve”. A maximum precision-lifetime curve is defined by an
ordered set of pairsMPLC = {(tm,Km−1)|Km−1 is the
precision fortm−1 ≤ t ≤ tm, m = 1, . . . , M} so thatt0 = 0,
tm > tm−1, m = 1, . . . , M , K0 is the user defined initial
precision level, andKm < Km−1, m = 1, . . . , M − 1. The
length of the intervaltm−1 ≤ t ≤ tm is denoted byqm =
tm−tm−1, and the precision level decreases at eachdrop point
(tm,Km−1), m = 1, . . . , M , whereM is the number of drop
points on the precision-lifetime curve. Our objective in this
paper is to determine both the number of drop pointsM , and
the associated timest1, . . . , tM on the maximum precision-
lifetime curve as defined by our lexicographic network lifetime
maximisation problem defined in the previous section.

The maximum precision-lifetime curve allows the user to
decide when the network is dead based on the monitoring
application’s needs. For instance, if the precision level does not
decrease quickly from one drop point to the next one on the
maximum precision-lifetime curve, then the sensor network
may still be able to collect useful information. Clearly, such
an approach has advantages over declaring the network dead
at the time of first network partition as in [3]. In general, we
prefer collecting data at higher precisions sooner than later.
Alternatively, it is possible to collect data at lower precisions,
i.e., with fewer number of measurement points, from the start
and operate the network for a longer period of time. However,
such sparse data may not be useful. In other words, we assume
that the initial precisionK0 defined by the user reflects the
monitoring application’s needs, and our objective is to operate
the network at or close to this precision for as long as possible.

In order to generate the maximum precision-lifetime curve,
we follow a two-step approach. First, by solving a linear

program TTP-LP(M ) (Time-To-Partition-LP) we maximise
the timetM until the next network partition given the previous
(M − 1) drop points on the precision-lifetime curve and the
current precisionKM−1. The next drop point is determined
as (tM ,KM−1) and added toMPLC. At time tM , some
nodes in the network exhaust their energy so that the network
is no longer able to fulfill the queries at precisionKM−1.
Therefore, at timetM we set up and solve an integer program
MP-IP(M+1) (Maximum-Precision-IP) that determines the
maximum possible precisionKM for the remaining network
subject to the constraints imposed by the drop points that
have already been identified. Note that at time zero, we have
MPLC = {}, t0 = 0, andK0 is specified by the user.

For formulating TTP-LP(M ), assume that(M − 1) drop
points have already been determined on the maximum
precision-lifetime curve, i.e., we know the total amount of
sensor data for each measurement point that needs to be
routed to the monitoring station fortm−1 ≤ t ≤ tm, m =
1, . . . ,M − 1. We are currently at timetM−1 and need to
select(KM−1)2 sensor nodes out of a total ofN nodes in the
network so that these sensor nodes are in sensing regions. The
kth sensor node belongs to a set of candidate nodesSM

k , and
we allow the specific sensor node in the setSM

k to change
during tM−1 ≤ t ≤ tM . A precise definition of the sets
Sm

k , k = 1, . . . , (Km−1)2, m = 1, . . . , M will be given
later. The objective at timetM−1 is to select one sensor node
from each setSm

k , and to route the packets from these sensor
nodes such that the time to next network partition, i.e.,qM =
tM − tM−1, is maximised, andρ packets per measurement
point per unit time are forwarded to the monitoring station.
The main sources of energy consumption are the sensing,
transmission and receiving operations. LetEi, i = 1, . . . , N,
be the initial energy level of nodei at time t0 = 0, and letξ
ander be the constant amount of energy required for a single
sensing and receiving operation by any node, respectively.
The transmission energy depends on the distance between
two nodes, andeij , i = 1, . . . N, j = 0, . . . , N, denotes
the amount of energy consumed by nodei when sending a
unit size packet to nodej. The messages generated by the
(Km−1)2 sensor nodes are routed to the monitoring station
over multi-hop paths where the variablefkm

ij ≥ 0, k =
1, . . . ,Km−1, m = 1, . . . , M, i = 1, . . . , N, j = 0, . . . , N ,
denotes the number of packets generated by a sensor node
k ∈ Sm

k and transmitted from nodei to nodej during the
time periodtm−1 ≤ t ≤ tm. Finally, let Li, i = 1, . . . N, be
the residual energy of nodei at time tM .

Ideally, during a time intervaltm−1 ≤ t ≤ tm, we would
like to select(Km−1)2 sensor nodes in the network such that
they form a uniform grid in which the ideal sensor locations
are separated by a distancewKm−1 = 1

Km−1+1 in bothx− and
y−directions. (See Figure 1.) However, for reasons discussed
in detail in Section III, we only require that thekth sensor
node is located within a circle of radiusεwKm−1 around the
kth ideal sensor location. In order to impose these constraints
on the locations of the sensor nodes, we construct the sets
Sm

k = {i | dk(xi, yi) ≤ εwKm−1}, k = 1, . . . , (Km−1)2, m =
1, . . . ,M , wheredk(xi, yi) is the Euclidean distance of node
i from the kth ideal sensor location. We make sure that the
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Fig. 2. Network structure and transmission energies forN = 3, M = 1,
K0 = 1, S1

1 = {2}.

kth sensor node belongs to the setSm
k during the time interval

tm−1 ≤ t ≤ tm.
Network flow problems are among the types of linear

programs that can be solved most effectively [10]. Below,
we formulate the problem of maximising the timeqM until
the next network partition as a linear program TTP-LP(M )
in which the feasible region has the structure of amulti-
commodity circulation problemwith side constraints for en-
ergy consumption, i.e., a network flow problem in which
all nodes, including the monitoring station, have a net flow
of zero for each commodity. In our formulation, we have∑M

m=1(Km−1)2 commodities where a commodityCm
k rep-

resents data collected by the nodes in the setSm
k during the

time intervaltm−1 ≤ t ≤ tm. In addition, we define avirtual
nodei

′
for eachreal nodei 6= 0 that can only receive packets

from a real nodej 6= i, 1 ≤ j ≤ N . The set of all real
nodes (excluding the monitoring station) and the set of all
virtual nodes are denoted byV and V

′
, respectively. Also,

defineV = {0} ∪ V ∪ V
′
. Virtual nodes can only send data

to their associated real nodes, and they allow us to consider
the receiving energy as the transmission energy from a virtual
node to a real node. In order to ensure a net flow of zero
for each commodity at the monitoring station, the sensing
operations are represented by flows that originate from the
monitoring station. However, in this case the transmission
energy (equal to the sensing energy as defined below) is
charged to the real node receiving the flow. In addition, real
nodes can send data to the monitoring station in addition
to any virtual node other than their own associated virtual
node. Thus, we redefine the transmission energy matrixe as

follows: e
′
uv =





ξ u = 0, ∃k, m s.t. v ∈ Sm
k

er u = i
′
, v = i, i

′ ∈ V
′
, i ∈ V

eij i ∈ V, j ∈ {0} ∪ V
′
, j 6= i

′

∞ otherwise





.

An example for this network structure is given in Figure 2 for
N=3, M = 1, K0 = 1, S1

1 = {2}. For each arc, the energy
consumption for a unit flow through the arc is indicated in the
figure.

Then, the linear program TTP-LP(M ) below maximises the
time qM to the next network partition given that(M−1) drop
points already exist on the maximum precision-lifetime curve.

max qM (1)∑

i∈Sm
k

fkm
0i = ρ · qm k = 1, . . . , (Km−1)2,

m = 1, . . . ,M − 1 (2)

∑

i∈SM
k

fkM
0i = ρ · qM k = 1, . . . , (KM−1)2

(3)∑

j∈V
fkm

ij −
∑

j∈V
fkm

ji = 0 ∀i ∈ V, k = 1, . . . , (Km−1)2,

m = 1, . . . , M (4)

M∑
m=1

(Km−1)
2∑

k=1

e
′
0if

km
0i

+
M∑

m=1

(Km−1)
2∑

k=1

∑

j∈{0}∪V ′
e
′
ijf

km
ij

+
M∑

m=1

(Km−1)
2∑

k=1

e
′

i′ if
km
i′ i + Li = Ei ∀i ∈ V (5)

qM ≥ 0 (6)

fkm
ij ≥ 0 ∀i, j, k,m (7)

Li ≥ 0 ∀i (8)

The objective function (1) maximises the time to next
network partition. In general, there are many alternate flows
that attain the same precision-lifetime curve. Hence, in order
to find the maximum precision-lifetime curve, we allow TTP-
LP(M ) to optimise the flows that were previously obtained
by TTP-LP(m), m < M , so that the current objectiveqM

is maximised as long as the previously determined total
flow volumes into the monitoring station are satisfied for all
commoditiesCm

k , k = 1, . . . , (Km−1)2, m = 1, . . . , M − 1.
This is ensured by the constraints (2). Therefore, the set of
flows {fk1

ij } determined at timet0 = 0 by solving the model
TTP-LP(1) may be different than the set of flows{fk1

ij }
determined at timetM−1 by the model TTP-LP(M ); however,
the total flow delivered to the monitoring station from the set of
nodesS1

k, k = 1, . . . , (K0)2 is the same in both models. The
constraints (3) prescribe thatρ packets per unit time are sent
from each setSM

k , k = 1, . . . , (KM−1)2, to the monitoring
station forqM units of time. The net flow for any commodity at
any node, including the monitoring station, is zero as reflected
by the flow conservation constraints (4). The constraints (5)
relate the initial energy levelsEi at time t0 = 0 to the final
energy levelsLi at time tM = tM−1 + qM .

The next drop point(tM ,KM−1) is determined by solving
TTP-LP(M ) optimally, and at timet = tM the network is no
longer able to deliver sensor data to the monitoring station
at the current precision because one or several nodes exhaust
their total energy. So, at timetM we first have to determine the
maximum precisionKM ≤ KM−1 − 1 that can be supported
by the remaining network before we can maximiseqM+1 at
this precision. Alternatively, we can consider this problem
one of selecting the setsSM+1

k so thatKM is maximised.
Therefore, we define the setsSM+1

kµ
= {i | dkµ(xi, yi) ≤

εwµ}, kµ = 1, . . . , (µ)2, µ = 1, . . . , KM−1 − 1, and the
binary variableszµ, µ = 1, . . . ,KM−1 − 1. If zµ = 1, then
the setsSM+1

kµ
, kµ = 1, . . . , (µ)2, are selected for sensing

during tM ≤ t ≤ tM+1 wheretM+1 is still unknown. Then,
the mixed integer model MP-IP(M + 1) below maximises the
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precision for the remaining network at timetM .

max
KM−1−1∑

µ=1

µzµ (9)

KM−1−1∑
µ=1

zµ = 1 (10)

∑

i∈Sm
k

fkm
0i = ρ ∗ qm k = 1, . . . , (Km−1)2,

m = 1, . . . , M (11)∑

i∈SM+1
kµ

f
kµM+1
0i = ρ ∗ zµ kµ = 1, . . . , (µ)2,

µ = 1, . . . ,KM−1 − 1 (12)

Constraints similar to

(4)-(8) in TTP-LP(M ). (13)

In the model above, the constraint (10) ensures that ex-
actly one set of uniformly distributed measurement points is
selected, and the objective (9) maximizes the cardinality of
this set. The constraints (11) correspond to the constraints (2)
in the model TTP-LP(M ) and prescribe that the previously
determined total flow volumes into the monitoring station are
satisfied for all commoditiesCm

k , k = 1, . . . , (Km−1)2, m =
1, . . . ,M . If zµ = 1, then the setsSM+1

kµ
, kµ = 1, . . . , (µ)2

must be able to sense and forward the corresponding sensor
data to the monitoring station for at least one additional unit
of time becauseρ ∗ zµ = ρ in the constraints (12). In other
words, the precision level until the next drop point on the
maximum precision-lifetime curve is selected such that sensor
data can be routed to the monitoring station during the time
periodtM ≤ t ≤ tM +1. In addition, the model MP-IP(M +1)
has flow conservation and energy consumption constraints that
are similar to those in TTP-LP(M ) and are omitted here.

V. A L OW COMPLEXITY HEURISTIC

The optimal precision-lifetime curves provide the network
manager tactical information regarding the selection of the
initial precision level, and the lifetime of a particular network
satisfying the required quality of service. Unfortunately, deriv-
ing the optimal precision-lifetime curve may require solving
several linear and integer programs successively. Therefore,
effective heuristic approaches that can approximately realise
the optimal precision-lifetime curve are required. Below, we
discuss one such low computational complexity routing algo-
rithm for a given initial precision level.

Our precision-lifetime algorithm consists of two interrelated
parts: sensor selection and routing. The candidate sensor nodes
that can respond to a particular query with a required precision
KM−1 are given by the setsSM

k , k = 1, . . . , (KM−1)2. Thus,
one node from each setSM

k , k = 1, . . . , (KM−1)2, is selected
to respond to a query; effectively acting as the source of the
kth commodity in the network. In our algorithm, given the
current link metrics discussed later in this section, we first run
reverse Dijkstra’s algorithm [10] in order to find the shortest
paths from all nodes in the network to the sink node. Then,

from each setSM
k (excluding dead nodes) we select a sensor

node that has the shortest path to the sink among the nodes in
the setSM

k . For each commodity, we send one unit flow per
query over the calculated shortest paths. Note that some nodes
may need to route several commodities for a given query if
they belong to more than one shortest path. The link metrics
are updated and the shortest paths are re-calculated everytupd

time units. Eventually, at some timetM , the current precision
level cannot be supported any more, since some of the nodes
deplete their energies. Then, we setKM = KM−1 − 1, and
repeat the procedure at this precision level.

We define and update the link metrics in the shortest
path problems in a similar way to that in the fast greedy
heuristics discussed in [11]. The authors in [11] develop
greedy heuristics for the maximum data extraction problem
in energy-limited sensor networks. First, they present a multi-
commodity maximum flow formulation for their problem.
Then, they propose iterative algorithms based on the insights
obtained from the dual linear program similar in spirit to the
algorithms developed in [12].

In the discussion below, letlij be the cost of routing a unit
flow over the link between the nodesi and j. It is clear that
the link cost depends on the residual energy levels of nodesi
andj, as well as the transmission energy between these nodes
and the receiving and sensing energies. We use a link metric
defined as follows:

lij = eijb
i + ξbi + erb

j , (14)

where bi is a parameter which is a function of the residual
energy of nodei. Note that the second term in (14) is only
present if nodei is a sensor node that responds to a query.
Initially, bi is set tobi

0 = 1/Ei, and bi is updated each time
the shortest paths are to be re-calculated if nodei is currently
receiving or sending data. Letbi

k be the value ofbi after the
kth update. Then,

bi
k = bi

k−1exp(δβi), (15)

whereδ is a control parameter andβi = 1− Erem
i /Ei where

Erem
i is the residual energy of nodei at the time of the update.

Thus,bi is increased with each update, and the rate of increase
of bi increases over time becauseβi increases. Note that this
metric ensures that when all nodes have plenty of energy, the
path with the minimum total consumed energy is preferred,
whereas later it becomes more important to avoid nodes with
low residual energy. In addition, each time the precision level
is decreased we re-initialisebi = 1/Erem

i ∀i andEi = Erem
i ∀i

because a change of precision presents a significant change in
the network topology.

VI. COMPUTATIONAL EXPERIMENTS

In our numerical study, we have several objectives. First, we
would like to demonstrate how a precision-lifetime curve can
be employed for tactical decision making while choosing an
initial precision level given the QoS requirements of the moni-
toring application. Second, we need to show that our heuristics
exhibit a near-optimal and robust performance for a variety
of network topologies. Due to the extensive computational
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levels.

time required when solving the precision-lifetime optimisation
problem in Section IV for 2-dimensional networks with a large
number of nodes and a high initial precision level, we only
report results in 1-dimensional networks for largeK0. (See
Table II.) Clearly, a 1-dimensional network is a special case of
a 2-dimensional network in which the number of measurement
points is equal to the precision level, and the circular sensing
regions around the ideal measurement points are reduced to
intervals.

In all of our computational experiments, the initial energies
of the nodes are uniformly distributed between1.5 and 3.3.
Each time unit,ρ = 1000 packets per measurement point per
unit time are to be forwarded to the sink, and the node energies
are decremented per unit flow sensed, transmitted or received
according to the Crossbow specifications [13]. The parameters
δ and tupd in our heuristic are set to 0.1 and 15 time units,
respectively. The mathematical programs in Section IV are
modeled in ILOG OPL Studio 3.7.1 and solved by ILOG
CPLEX 9.1. The heuristic in Section V is coded in Visual
Basic.

Figure 3 depicts the trade-off between choosing different
precision levels for a network with 80 nodes in which the
nodes are distributed randomly on a line of length 10 meters
(m) emanating from the sink. The tolerance levelε for de-
termining the setsSm

k is assumed to be0.1. The network
can maintain the precision levels8, 6, 5, and 4 for a total
network lifetime of14, 579 time units for an initial precision
level K0 = 8 while the precision levels6, 5, 4 and 3 can be
supported for a total network lifetime of23, 274 time units if
the initial precision level is decreased toK0 = 6. In other
words, if the monitoring application can tolerate precision
levels down to3 sample points per query, then choosing a
slightly lower initial precision level provides a better network
lifetime. Also note that the total data gathered at precision
levels 5 and 4 are greater when we start collecting data
at K0 = 6. Thus, depending on the requirements of the
monitoring application, it may be more advantageous in the
long run to choose an initial precision level that is slightly
lower than the highest value desired.

In order to demonstrate the effectiveness of the heuristic
stated in Section V with different parameter settings, we
generate two sets of problem instances. In the first set, we
consider a 2-dimensional network in which the nodes are
deployed randomly in a square area of dimensions1m× 1m
and ε = 0.3. We randomly generate 10 problem instances

for each N = 250, 300, 350 with K0 = 3, and assume
that the application can tolerate precision levels down to 1
measurement per query. The defining characteristic of these
instances is that there is no power control in the network
because the transmission energy is constant between any two
pair of nodes in the network according to the Crossbow
specifications [13].

For each instance, we generate both the optimal and heuris-
tic precision-lifetime curves. In order to evaluate a precision-
lifetime curvePLC = {(t1,K0), (t2,K1), . . . , (tM ,KM−1)},
we use the functionf(PLC) =

∑M
m=1 2Km−1(tm − tm−1)

wheret0 = 0. This evaluation function assigns a much greater
weight to higher precision levels which is in line with our
lexicographic lifetime optimisation problem. In Table I, we
report statistics on the ratiofHeur/fOpt computed over 10
instances for eachN = 250, 300 and 350 wherefHeur

and fOpt denote the performance measures obtained for the
curves constructed by the heuristic and the optimal algorithm,
respectively. Clearly, the heuristic demonstrates an excellent
performance, and although we do not report detailed results
here, its computational time requirement is at least an order
of magnitude less than the optimal approach.

TABLE I

PERFORMANCE OF THE HEURISTIC COMPARED TO THE MAXIMUM

PRECISION-LIFETIME CURVE IN 2-DIMENSIONAL NETWORKS.

N 250 300 350
avg. 97.71% 97.37% 96.91%
min. 93.56% 94.12% 94.62%
max 100.00% 100.00% 98.79%

In the second set of problem instances, we consider a 1-
dimensional network in which the nodes are deployed ran-
domly on a line of length 10m andε = 0.1. Note that the trans-
mission energies are not constant throughout the network in
this case, andε is chosen much smaller. We randomly generate
10 problem instances for each combination ofN = 50, 75, 100
andK0 = 8, 7, 6, and assume that the application can tolerate
precision levels down to 4 measurements per query. The same
performance measure as above is used, and the results are
given in Table II. We note that the performance of the heuristic
is more sensitive to increasing node density than the initial
precision level. We also observe that the results are worse than
those in Table I. However, recall that in the optimal algorithm
we allow all flows from time zero on to be optimised for a set
of drop points on the maximum precision-lifetime curve. (See
Section IV.) Clearly, this is an ideal approach that is very hard
to match in a practical implementation. Therefore, the results
in Tables I-II are very promising.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we defined a new performance metric for the
maximum data collection problem in battery-limited sensor
networks. In this study, we focused on a data collection model
which requires the periodic sampling of a region and formu-
lated the maximum precision-lifetime problem as a series of
linear and mixed integer programs. The resulting maximum
precision-lifetime curve may be used by the network managers
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TABLE II

PERFORMANCE OF THE HEURISTIC COMPARED TO THE MAXIMUM PRECISION-LIFETIME CURVE IN 1-DIMENSIONAL NETWORKS.

N 50 75 100
K 6 7 8 6 7 8 6 7 8

avg. 90.81% 91.11% 91.03% 82.09% 81.42% 82.43% 79.22% 85.00% 85.34%
min. 76.56% 82.60% 75.48% 64.57% 64.57% 76.17% 66.10% 66.10% 76.15%
max. 100.00% 100.00% 100.00% 100.00% 92.93% 97.30% 90.27% 94.84% 96.40%

in calibrating the needs of the monitoring application accord-
ing to the network capabilities. In addition, we developed a
fast practical heuristic whose performance closely matches
the optimal precision-lifetime curve without resorting to the
solution of mathematical programs. As a future work, we will
consider the incorporation of more elaborate definitions of
data precision where we consider the spatial and temporal
correlation of the data.
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