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Abstract. Alterations in protein and gene expression levels are often used as features to predictive
models such as clinical outcome prediction. A common strategy to combine signals on individual
proteins is to integrate alterations with biological knowledge. In this work, we propose a novel
patient representation where we integrate the expression levels of proteins with the biological net-
works. Patient representation with PRER (Pairwise Relative Expressions with Random walks)
operates in the neighborhood of a protein and aims to capture the dysregulation patterns in pro-
tein abundance for proteins that are known to interact. This neighborhood of the source protein
is derived using a biased random-walk strategy on the network. Specifically, PRER computes a
feature vector for a patient by comparing the protein expression level of the source protein with
other proteins’ levels in its neighborhood. We test PRER’s performance through a survival predic-
tion task in 10 different cancers using random forest survival models. PRER representation yields
a statistically significant predictive performance in 8 out of 10 cancer types when compared to
a representation based on individual protein expression. We also identify the set of proteins that
are important not because of alteration of its expression values but due to the alteration in their
pairwise relative expression values. The set of identified relations provides a valuable collection of
biomarkers with high prognostic value. PRER representation can be used for other complex diseases
and prediction tasks that use molecular expression profiles as input. PRER is freely available at:
https://github.com/hikuru/PRER

Keywords: Cancer, Patient representation, Expression, Protein-protein interaction network, Sur-
vival prediction

1 Introduction

With the advances in the sequencing technologies, large scale molecular profiling of patients has become
possible. The comprehensive profiling of cancer patients, along with the available patient clinical data,
presents an opportunity to gain deeper insights into cancer and develop prediction tools for diagnostic,
prognostic, and therapeutic purposes. Machine learning has been an instrumental tool for realizing this
aim. In these studies, patients are often represented with their molecular data, such as gene expression
profiles encoded as numerical feature vectors. For example, Yuan et al. [1] assess the utility of different
types of molecular alterations for survival prediction. While using miRNA, protein, or mRNA expression,
they use the expression values of these entities as input. Others follow a similar approach for different
clinical outcome prediction tasks [2, 3, 4].

Molecular entities such as genes and proteins interact to carry out their functional roles in the cell, and
phenotypes arise from these functional interactions. Based on this basic principle, alternative approaches,
where the patient molecular profiles are integrated with the prior knowledge of molecular interactions,
have been proposed (reviewed in [5] and [6]). A network of interactions helps to aggregate the signals
attached to a single gene or a protein in a biologically principled way. Integration of the expression
profiles of genes and their interactions are used in multiple studies [7, 8, 9, 10]. Chuang et al. [7] first
identify discriminant and highly altered subnetworks of interactions using gene expression data and use
the activity summaries of genes on these subnetworks as features for metastasis prediction. By assessing
the association of pathways and transcription factors with overall survival as opposed to individual
genes, Crijns et al. [9] identify signaling pathways and transcription factors that contribute to the clinical
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outcome of ovarian cancer. Taylor et al. [8] integrate a PPI network with a co-expression profile and
report that the genes with dysregulated neighbors in that PPI network are potential prognostic markers.
NetBank [11] uses gene expressions and the prior knowledge network to rank the genes in their relevance to
the outcome of pancreatic cancer. All of these studies aggregate the alterations in a subnetwork, pathway,
or network by summing or diffusing them in the network without the relative expression changes.

There is a limited number of studies that use the pairwise comparisons of molecular alterations instead
of aggregation. Geman et al. report a method that uses the pairwise ranks of mRNA expression levels
for classifying gene expression profiles in tumor identification, disease detection, and treatment response.
Magen et al. use pairwise combinations of expression dysregulations to predict survival-related gene pairs.
These methods, however, do not make use of the prior knowledge available in biological networks.

In this work, we combine the pairwise rank idea with the idea of integrating with biological networks.
Pairwise Rank Expressions with Random walks (PRER) is a novel molecular representation method where
only pairwise ranks in the known neighborhood of the proteins in the PPI are considered. The proposed
model considers the relative expression of a protein within its neighborhood on the PPI network. For a
given protein, its neighborhood is defined based on a biased random walk search on the PPI network.
PRER also allows interpretability. The pairwise relationships of interacting neighborhood molecules offer
a direct interpretation of molecular dysregulation patterns in the context of a known biological network.
We also present methods to analyze which pairs become predictive due to their relations instead of their
expression levels.

We use PRER for survival prediction in different cancer types. Survival prediction is conducted with
PRER features calculated on protein expressions and input a random forest survival model. PRER yields
a significant improvement in 8 of the 10 cancer types when compared to the representation of patients with
their protein expression features. Additionally, PRER unveils predictive features concerning the known
PPIs. In this regard, proteins that are deemed important solely with respect to their interactions are
further investigated considering their higher prognostic potential within the known biological interactions.

2 Methods

PRER constructs a vector-based patient representation to be used in subsequent prediction tasks by
integrating the patients’ molecular expression profiles and the PPI network. The molecular expressions
can be the mRNA expressions or protein expressions. Since not all protein expressions are reflected as
changes at the protein expression level, in this work, we choose to use protein expression data as input
to PRER.

Let G = (V,E) be the given PPI network, where V is the set of vertices representing the proteins,
and E is the set of edges that exist between proteins if known to interact. Let U ⊂ V be the proteins for
which protein expression values are available for all patients in the data set. The nodes with the protein
expression data, U , constitute the source proteins, and we will denote the number of such proteins with
m. Given G, U , and patient expression data over U , the output of PRER for a patient k is a feature
vector, x(k) ∈ Rs, that contains the pairwise comparisons encoded with 1 and -1’s. Here, s denotes the
size of the pairwise comparisons, which will be clarified in the following sections. Below we detail the
steps of PRER.

Step 1. Obtaining a Protein’s Neighborhood on the Protein Interaction Network: For each
source protein in U , we first define a neighborhood, Nu, which is the set of proteins that are proximal to
the source protein u on G. To obtain the neighborhood of a node in the graph, a set of random walks is
generated. For every source node u ∈ U , we sample neighbors of the source node with a strategy similar
to the one in the node2vec [14] algorithm. A random walk with a fixed length of l starting at source node
u is generated based on the following distribution:

P (ci = x | ci−1 = v) =

{
πvx

Z if if(v, x) ε E
0 otherwise

(1)

Here, ci denotes ith node in the walk and c0 = u. Z is the normalization constant. P (ci = x | ci−1 = v)
is the transition probability on edge (v, x), where the current node is v, the next node to visit is x, and
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Fig. 1: Illustration to show how the PRER representation is obtained for a single source node, node B. The
nodes in the graph are proteins, edges exist if they interact in the PPI network. First, several random walks
are generated that starts at node B as in [14]. These random walks are stored in WB and used to define the
neighborhood of B, NB . Only the most frequently visited nodes are included in the set of neighbors of B. Then,
the pairwise comparison of the neighborhood proteins in terms of their protein expression quantities is used to
form a representation of the patient for node B and its neighborhood. The figure shows the features generated for
a single protein. This procedure is repeated for all source proteins, and the resulting vectors are concatenated.

the previous node is t. The transition probability depends on the function π, and it is defined as:

πvx = αpq(t, x) ∗ wvx (2)

, where wvx is the edge weight between nodes v and x. However, in this work, we use an unweighted PPI
network and, thus, we set wvx = 1. αpq(t, x) is the random walk bias which is defined by equation 3 based
on the parameters p and q and the shortest path distance between nodes t and x, dtx

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

(3)

This bias controls the different search strategies to sample the next visited nodes. We use two different
search methods: depth-first sampling (DFS) and breadth-first sampling (BFS), as in [14]. BFS samples
the nodes from the nearby nodes, whereas DFS samples the nodes sequentially by gradually increasing
the distance from a source node. p and q parameters control the connection between BFS and DFS
approaches. With a high q value, sampled nodes in the random walk are aligned to BFS and get a local
view over the source node. Small q value aligns random walk to DFS so that a global view of the network
is explored. p controls the chance of revisiting the nodes. A high value of p decreases the probability of
sampling of the already visited nodes while a small value of p aligns random walk to return the source
node.

This biased random walk strategy has two further parameters: (i) walk length l and (ii) the number of
random walks r. We select these parameters based on the parameter sensitivity analysis at node2vec [14].
The parameters p and q are used as p = 0.25, q = 0.25 in our random walk generation. When p = 1, q = 1
uniform random walks are generated without any bias as stated in Grover and Leskovec. A small q value
is used to bias the random walks to capture the global view of the network, while a small p value is used
to capture the community around the source node u. With the given values, random walks are inclined
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to see the communities inside the network. By using fixed-length (l = 100) random walks, we sample a
neighborhood for a given source node, u. To be consistent and to decrease the variance, multiple random
walks per source node are applied so that different neighborhoods are sampled for each node. We sampled
random walks 18 times and these are stored in WB (see Figure 1). The frequency of nodes in the multiple
neighborhoods are calculated, and the nodes that are involved in more than one random walk are selected
as the neighborhod genes.

Step 2. Feature Representation based on Pairwise Rank of Neighborhood Genes: At the
end of step one, we arrive at the neighborhood of the protein i, which we denote as Ni. Some neighbors
lack measurements, and we define the subset of neighbor proteins with accompanying measurements as
Mi =∈ Ni ∩ U . Next, for a protein i, we generate pairwise rank features with every protein i ∈ Mi as
follows.

Let X
(k)
i and X

(k)
j denote the expression quantities for protein i and j for patient k. Protein i is

the source protein, and protein j is a protein in the neighborhood of i. The pairwise rank expression
representations (PRER) for this patient is defined as:

X
(k)
i,j =

{
1 if X(k)

i > X
(k)
j

−1 otherwise
(4)

X
(k)
i,j = 1 indicates that the molecule i is more upregulated with respect to molecule j for this patient,

whereas X
(k)
i,j = −1 indicates otherwise. For every i in U and for every j in Mi, we define a pairwise rank

order for the protein pair. If the protein i’s phosphorylated state or states are measured, their comparison
with i is also included. This representation constitutes a nonlinear interaction feature mapping among
original features that aims to capture expression dysregulations among proteins that are interacting.

2.1 Survival Prediction

Problem Description and the Survival Model: We apply the PRER representation for the survival
prediction problem. For each cancer type, the data is of the form, D = {x(i),S(i), δ(i)}ni=1; n is the
number of patients. For each patient, x is the derived features from protein expression data, S is the
overall survival time, and δ denotes censoring. We use random survival forests for the problem. Random
Survival Forest(RSF)[15] is a non-parametric method and has been shown to perform well in survival
prediction. It is an ensemble method wherein the base learner is a tree, and each tree is grown on a
randomly drawn bootstrap sample. Furthermore, in growing a tree, at each node of the tree, a randomly
selected subset of features is chosen as the candidate features for splitting. The node is split with the
feature among the candidate features that maximizes survival difference between child nodes. We used
the default values for the rfsrc package [15], where the number of trees is 1000, the number of random
splits to consider for each candidate splitting variable is set to 10, and the default splitting rule for a
node implements log-rank splitting [16, 17].

Molecular and Clinical Data: We test the method on ten different cancer types: ovarian adenocarci-
noma (OV), breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM), head and neck squa-
mous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), bladder urothelial carcinoma (BLCA), colon adenocarcinoma
(COAD), uterine corpus endometrial carcinoma (UCEC). For each cancer type, the number of patients
is given at Supplementary Table 1. We obtained The Cancer Genome Atlas protein expression data and
patient survival data from USCS Cancer Browser (https://genome-cancer.ucsc.edu) (April 11,
2017). The protein expression is quantified by reverse-phase protein array (RPPA). The features in RPPA
data are the expression values of multiple proteins and some phosphorylated versions of proteins. For ex-
ample, RPPA data include STAT3 and STAT3PY705, where STAT3 is Signal Transducer And Activator
Of Transcription 3 protein, and STAT3PY705 is the phosphorylation of STAT3 at tyrosine 705 residue.
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Protein-Protein Interaction Network: We obtained the protein-protein interaction (PPI) network
from the InBio Map platform (April 11, 2017). InBio Map specifies a confidence score for each edge,
representing the support of the interaction in the literature. The interactions that have lower than 0.1
confidence cut-off are eliminated from the network. The final network used in this study includes 17.653
proteins and 625.641 interactions between those proteins.

3 Results and Discussion

To understand if PRER representation captures the molecular expression profiles better than the indi-
vidual protein expression values, we use these representations for survival prediction task and build two
survival prediction models for the 10 cancer types. In these two models, only the feature representations
differ. In the first one, we use the protein expression values as input, which is the typical approach taken
in survival prediction. In contrast, in the second one, we use the proposed PRER representation.

In all the models trained, we randomly split the samples into train and test groups: 80% as the training
set and 20% as the test set. We train 100 such models in 100 test runs. In each of these models, we perform
a univariate feature selection based on the hazard ratio of the Cox model [18]. We use the p-values of
the likelihood ratio test to quantify the significance of hazard ratio, and features with p-value ≤ 0.05 are
retained for model training. Finally, the models are evaluated by the Concordance-Index (C-index) [19]
on the test data. The pipeline of the model training and evaluation is summarized in Figure 2a.

pa
tie

nt
s

protein expression
survival 

time

+

censoring

+

D ATA

Randomly Split

80% 20% 

Train Test

Filter features with 
Univariate Cox 

screening
(p-value ≤ 0.05)

Build 
Random Survival 

Forest model 

Evaluate 
RSF model

Concordance
index

Repeat 100 times

Generate PRER

(a) (b)

Fig. 2: (a) The pipeline for survival prediction. The step that involves generating PRER is skipped when the
experiment is run with the alternative method of individual expression values. (b) Comparison of RSF model
performances that are trained with individual proteins and pairwise ranking representations for different cancer
types. The distribution is over 100 models trained that have different random train and test splits. The perfor-
mances of the models that use the individual expression values as features (Individual) and PRER representation
as features (PRER) are compared in each case.

3.1 Survival Prediction Performance of PRER

Figure 2b compares the distribution of C-indices for 100 models trained with two feature representations
for the 10 different cancer types. In 8 of 10 cancer types, PRER representation yields significant im-
provements (Wilcoxon signed-rank test, (p-value < 0.05)), in one case, the results are promising (BLCA,
p-value= 0.09) . The C-index quantiles of 100 bootstrap results and corresponding p-values are listed in
Supplementary Table 2. The best improvements are found in UCEC, BRCA, KIRC and OV.
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3.2 Predictive PRER Features

We seek to determine the features which are ranked as significant in the RSF models trained with
PRER features. Note that in these models, pairs of proteins constitute the features. The importance of a
particular feature is quantified by the performance difference between the models trained with the original
feature vector and the case where the feature vector values are permuted [20]. A significant difference
indicates a feature whose absence degrades the model performance. As there are 100 models trained on
the repeatedly split data, we calculate the overall feature importance scores over these models as the sum
of the scores. We show the normalized feature importance scores for ovarian cancer (OV) in Figure 3a.
The feature importance scores for other cancer types are available in Supplementary Figures 1-9).
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Fig. 3: (a) The variable importance of significant pairwise ranking representations for ovarian cancer. (b) Nodes
represent proteins that appear in the top 50 pairwise ranking representations for ovarian cancer; each edges
indicate that two proteins participate in a pairwise rank order feature together. For cases where the expression
value pertains to the phosphorylated state of the protein, the ids include the phosphosite’s residue position and
the amino acid type of the phosphosite.

As shown in Figure 3a, some proteins repeatedly show up as partners in the list of important genes.
To analyze these relationships, we form a network where the nodes represent proteins that participate
in the top 50 PRER features. Edges are formed when a given protein pair is found to be partners in a
PRER feature. Figure 3b demonstrates that some proteins emerge as important in many pairs. Several
studies support these genes to ovarian cancer. Epidermal growth factor receptor protein (EGFR) and
its phosphorylated state EGFRPY1173 are among the top features in PRER representation. EGFR is a
receptor protein that receives and transmits signals from the environment to the cell and is the target
of drugs in therapies for many cancer types, including ovarian cancer [21, 22]. Marozkina et al. provide
results that changes in expression of EGFR may lead to ovarian carcinoma. Others [24, 25, 26] also claim
that up-regulation of EGFR expression promotes ovarian cancer. Interestingly, Li et al. and Ilekis et al.
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demonstrate that the levels of EGFR and androgen receptor (AR), which constitute the top feature of
PRER in Figure 3a, are interacted in ovarian cancer.

Cancer Top Rank PRER Protein Pair

BLCA NCADHERIN-SRCPY416
BRCA DVL3-P38MAPK
COAD MRE11-HER3PY1298
GBM NF2-EGFR
HNSC ECADHERIN-PAXILLIN
KIRC 4EBP1T37T46-AR
LUAD XRCC1-CYCLINB1
LUSC PAXILLIN-YAP
OV EGFR-AR
UCEC EIF4E-AKT

Table 1: The top PRER feature in each cancer type. The relative expression level of this feature is found to
be important in the RSF model. The gene symbols of the corresponding gene are listed. The letter P after the
gene symbol indicates that this is the phosphorylated version of the protein. The type of the phosphosite and its
residue number are provided.

Another important protein that participates in important features is Caveolin-1 (CAV1). CAV1 takes
on critical roles in cell survival, cell proliferation, cell migration and programmed cell death [28]. An
earlier study by Wiechen et al. report that CAV1 is dysregulated among ovarian cancer patients based
on microarray expression data. Others also report that CAV1 is reported to be dysregulated in different
cancer types and its role in chemotherapy resistance [30, 31].
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Fig. 4: Kaplan-Meier plots for a) KIRC and b) LUAD based on overall survival. Number at risk denotes the
number of patients at risk at a given time, and p-value is calculated with the log-rank test.

We list the top-ranked PRER pairs for each cancer in Table 1. We provide the Kaplan-Meier (KM)
plots of the top feature for KIRC and UCEC based on overall survival in Figure 4. Based on only one
feature, the patients can be grouped into groups that differ significantly in their survival distributions.
We provide the KM plots of top-ranked features for the other cancers in Supplementary Figure 19.

We should note that many of the proteins that are reported in the RPPA assay in the TCGA study are
selected due to their relevance to cancer. Thus, these important genes are likely to exhibit the individual
importance of PRER partners. Therefore, we suggest an alternative way to exclusively analyze those
features which emerge as important in the next section.
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3.3 Proteins that Emerge as Important only in the PRER Representation

Since many of the proteins that are in the protein expression data are cancer-related, it is not surprising
that they are found to be relevant to cancer. However, proteins that emerge as important in the PRER
representation but are not highly ranked in the models trained with individual protein expression values
would be interesting. These sets of proteins will reveal proteins whose relative expression states to their
neighbors are important as opposed to the expression level being up or down-regulated. To identify these
proteins, we first assign a feature importance score to each protein in the PRER representation. As the
features are pairs of proteins in the PRER models, we calculate the feature importance of a protein by
averaging the importance of the PRER feature importance in which this protein contributes. Let fi,j
denotes the feature importance score of the protein pair i and j. We calculate the individual feature
importance score for molecule i as follows:

si =
1

‖Ni‖
∑
jεNi

fi,j (5)

where Ni is the set of all pairwise ranking representations that include molecule i. si represents the average
importance of molecule i concerning the expression levels of other proteins in its neighborhood. We get
the rank order of each protein based on si, and a lower rank indicates that the protein is important. Let
rp be the protein’s rank in the models with PRER representation and let rq be the rank order in the
models trained with individual protein expressions. To find the proteins whose ranks are low in the models
trained with protein expression but are highly ranked in the PRER models, we measure the differences
of feature ranks, rq − rp. Table 2 lists the top 10 proteins in each cancer based on this rq − rp difference.
We provide the full list of the ranks and differences in Supplementary Table 3. A large positive difference
points to those proteins for which the relative expression relations of this protein to other proteins in its
neighborhood carry prognostic value as opposed to its expression value.

BLCA BRCA COAD GBM HNSC

SRCPY416 YB1PS102 RAD50 EGFR YAP
YB1 STAT5ALPHA MRE11 PI3KP110ALPHA STATHMIN

JNKPT183Y185 CKIT NF2 P38PT180Y182 SMAD4
YB1PS102 CYCLINB1 MTORPS2448 PDK1PS241 LKB1

RAD51 CHK2PT68 TUBERIN NFKBP65PS536 NCADHERIN
NCADHERIN PTEN NCADHERIN PRAS40PT246 PDK1PS241
STATHMIN YAPPS127 MIG6 PTEN P38MAPK

XRCC1 YB1 JNKPT183Y185 MRE11 P27
NF2 EEF2 PI3KP110ALPHA ERALPHAPS118 PKCDELTAPS664

TUBERIN P53 HER3PY1298 NOTCH1 PKCALPHAPS657

KIRC LUAD LUSC OV UCEC

SMAD1 XRCC1 YAP EGFR ASNS
DJ1 YB1 P38PT180Y182 PRAS40PT246 PRAS40PT246
NF2 ASNS P70S6K YB1 STATHMIN

KU80 STAT3PY705 LKB1 RAD51 P27PT157
STAT3PY705 YAPPS127 RAD50 PCADHERIN RAD51
4EBP1PS65 PTEN XRCC1 HER3 MIG6

GSK3ALPHABETA YAP MTOR PKCALPHAPS657 PCADHERIN
EEF2K EGFR SMAD4 SMAD3 P90RSKPT359S363

PR PEA15 ERALPHAPS118 CIAP SMAD4
STATHMIN STATHMIN BIM EIF4E YB1PS102

Table 2: Top-10 rank differentiated features in each cancer with PRER.

We analyze a subset of the proteins in Table 2. The relevance of the relative expressions of proteins
for survival is not reported. Some proteins that are known to be cancer drivers and perturbed in cancers
such as PTEN or EGFR do not rank high in the model wherein the protein expression data is used
as input, but in PRER models, they emerge as important. For example, EGFR is ranked as the 16th

most important feature for ovarian cancer in the models trained with PRER, while it is ranked as the
least significant one in the models trained with individual expressions only. Similarly, for GBM, EGFR is
ranked as the least significant protein in individual expression models, while it is ranked as the 5th most
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significant feature in PRER. Thus, the PRER models actually highlight that the dysregulation of EGFR
expression with respect to its neighbors is an important feature. Below we mention other interesting
observations in Table 2.

STAT3PY705 (STAT3 phosphorylation at tyrosine 705), phosphorylated state of STAT3 (Signal
Transducer and Activator of Transcription 3) protein, and STAT5ALPHA (Signal Transducer And Ac-
tivator Of Transcription 5A) also appear in multiple cancer types. While we observe STAT3PY705 as
significant in KIRC and LUAD, STAT5ALPHA appears in BRCA in Table 2. Activation in the STAT
family is reported, especially for STAT3 and STAT5, in several cancer cell lines including head and neck,
breast, kidney, ovarian and colorectal[32, 33, 34, 35].

YAPPS127 and YAP proteins, which are encoded with the YAP1 (Yes-associated protein 1) gene,
found important in BRCA, HNSC, LUAD, and LUSC cancer types in Table 2. YAP1 is involved in the
Hippo signaling pathway that is associated with the growth, development and repair of the cells, and
influences the survival of multiple cancers [36]. Poma et al. reports that 17 genes (out of 32) in the Hippo
pathway have effects on survival in more than 20 different cancer types and conclude that YAP1 is relevant
to the survival of head and neck carcinoma, hepatocellular, lung adenocarcinoma, gastric, pancreatic and
colorectal cancers. Further, other studies also suggest that survival for different cancer types is associated
with the expression level of YAP1 and its differential expression is considered as a biomarker for bladder
urothelial carcinoma (BLCA) [38], breast invasive carcinoma (BRCA) [39, 40, 41, 42], ovarian serous
cystadenocarcinoma (OV) [43, 44].

The upregulation of STATHMIN is linked with poor survival for primary HNSC [45], and Kouzu et al.
suggest that it may be used for the prognosis and a therapeutic target for oral squamous-cell carcinoma,
which is the most common type of HNSC. Likewise, the upregulation of STATHMIN is significantly
correlated with several cancer types such as LUAD [47], gastric cancer [48, 49], UCEC [50], OV [51] and
BRCA [52, 53, 54].

YB1 and its phosphorylated state YB1PS102 show correlation with many genes that have functions
such as resistance to drugs, transcription and translation of cancerous cells [55]. Although the down-
regulation of YB1 is found to be correlated with the reduction in progression, development of cell and
programmed cell death at various cancer cells such as breast, colon, lung, prostate and pediatric glioblas-
toma by some studies [56, 57], there are studies [58, 59, 60, 61, 62] showing the association between
overexpression of YB1 and different cancer types such as breast, colorectal, glioblastoma, lung, liver,
ovarian cancers.

4 Conclusion and Future Work

Accurate prediction of clinical outcomes such as survival success remains to be a challenge for cancer
patients. If achieved, it can guide the decision-making process for choosing optimal treatment and surveil-
lance strategies among alternative options. Typically, clinical or pathological features such as the age of
the patient, tumor stage, or grade are employed to predict the clinical outcomes. With the advent of
high-throughput technologies, molecular descriptions of the tumors for a large number of patients across
many cancer types have become available. However, it remains a significant challenge to use this data
due to the high level of genomic heterogeneity among patients. In this study, we propose a novel patient
representation method, PRER, based on molecular expression patterns on PPI. PRER is based on a
pairwise comparison of the expression values of a protein with the other proteins in its neighborhood. In
this way, the relative expression level patterns with respect to the proteins in their neighborhood can be
captured.

We showcase PRER in the task of survival prediction for ten different cancer types. PRER with
Random Survival Forest (RSF) model achieves significant improvements compared to the models with
individual expression values in 8 of the 10 cancer types. We also suggest ways to delineate the importance
of proteins not through their individual up or down-regulation patterns, but their relative expressions
compared to their neighbors. Such an analysis can provide fundamental mechanistic insights into the
studied diseases.

One limitation of the current study is that we use a generic protein expression network, disregarding
whether the protein is expressed in the given cancer type tissue. We can improve the survival models with
tissue-specific PPI networks. Additionally, since we aim to assess the PRER representation power, we
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only use features related to expression. The survival model can be further improved with clinical features
such as age, duration of the follow-up, and cancer stage. PRER representation can be used with other
data types, such as mRNA expression. However, we should note that the number of features increases
quadratically with the size of the original features. In this case, a more stringent feature filtering step or
a regularized prediction model will be helpful.
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[26] I. Skirnisdóttir, B. Sorbe, and T. Seidal, “The growth factor receptors her-2/neu and egfr, their
relationship, and their effects on the prognosis in early stage (figo i-ii) epithelial ovarian carcinoma,”
International Journal of Gynecological Cancer, vol. 11, no. 2, pp. 119–129, 2001.

[27] A. J. Li, D. R. Scoles, K. U. Armstrong, and B. Y. Karlan, “Androgen receptor cytosine-adenine-
guanine repeat polymorphisms modulate egfr signaling in epithelial ovarian carcinomas,” Gynecologic
oncology, vol. 109, no. 2, pp. 220–225, 2008.

[28] C. Boscher and I. R. Nabi, “Caveolin-1: role in cell signaling,” in Caveolins and Caveolae. Springer,
2012, pp. 29–50.

[29] K. Wiechen, L. Diatchenko, A. Agoulnik, K. M. Scharff, H. Schober, K. Arlt, B. Zhumabayeva, P. D.
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