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Abstract—This paper deals with the development of a machine
vision based pose estimation system for industrial robots and
improving accuracy of the estimated pose using Long Short Term
Memory (LSTM) neural networks. To this end, a target object
trackable with a monocular camera with ± 90° in all directions
was designed and fitted with fiducial markers. The designed
placement of these fiducial markers guarantees the detection of at
least two non-planar markers thus preventing ambiguities in pose
estimation. Moreover, a LSTM network is proposed in order to
improve the accuracy obtained from the Levenberg-Marquardt
(LM) based pose estimation algorithm during trajectory tracking
of the robot’s end effector. The proposed method utilizes a LSTM
network to extract dynamic features from the pose estimated
by the LM algorithm and then feeding it to a regression layer
to estimate the correct pose. The effectiveness of the proposed
method is validated by an experimental study performed using
a KUKA KR240 R2900 ultra robot while following sixteen
distinct trajectories based on ISO 9238. The obtained results
show that the proposed method significantly improves the pose
estimation accuracy and precision of the vision based system
during trajectory tracking of industrial robots’ end effector.

Index Terms—Machine Vision, Pose Estimation, Trajectory
Tracking, Industrial Robots, Machine Learning, LSTM

I. INTRODUCTION

Robots are expected to be the standard for use in machining
processes in the coming years due to their high degree
of automation, large working space and lower prices when
compared with conventional CNC machines. However, due
to their relatively lower accuracies and stiffness, they are
not being used in high precision applications. Based on the
aerospace process specifications, the required accuracy for
robotic manufacturing is around ±0.20 mm, but the accuracies
obtained in reality are around 1 mm [1]. Therefore, the robot’s
relatively low accuracy is the main obstacle in their usage in
high precision manufacturing.

In literature there exist many works for increasing the accu-
racy of industrial robots through utilization of secondary high
accuracy encoders installed at each joint, static calibration or
dynamic pose correction [2], [3]. However, installation of these
encoders is very expensive and not always feasible, moreover
the static calibration methods do not consider disturbances
acting on the robots due to interactions with their environment.
Hence, continuous tool path tracking and dynamic pose cor-
rection in real time become necessary for industrial robots to
achieve the desired accuracies. This can be achieved by visual
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servoing, which utilizes visual feedback and various control
strategies to correct the pose of the robot’s end effector in
real time [4], [5]. Visual servoing assumes the availability of
a highly precise visual sensor in its feedback loop and many
works in literature utilize laser trackers or photogrammetry
sensors for use [6]–[9]. However, all these works in literature
utilizing visual servoing rely on the availability of a highly
accurate external measurement system such as a laser or
dynamic photogrammetry tracker, however these trackers are
sometimes even more expensive than the industrial robot itself.
Therefore, many works in literature have used an alternative
and relatively cheaper approach which is the monocular cam-
era based systems. In the work by Nissler et al. [10], the
authors proposed the usage of planar AprilTag markers and
attached it to the end effector of the robot. Then, through the
usage of optimization techniques they were able to reduce the
positioning errors to less than 10 mm. However, they do not
consider the rank deficiency problem when using only planar
targets and the obtained accuracies were not evaluated during
trajectory tracking. Claes et al. [11] proposed a method based
on structured light where a monocular camera was attached
to the end effector of a robot and the structured light was
projected on the workpiece. In their application they evaluated
it only for robot positioning and achieved an accuracy of 3
mm, without performing any trajectory tracking. Besides these,
Liu et al. [12] proposed two data fusion approaches based
on Kalman filter (KF) and multi sensor optimal information
algorithms (MOIFA) to fuse position data obtained from a four
camera based photogrammetry system and orientation data
acquired from a digital inclinometer. Their work was validated
on a KP 5 Arc Kuka robot’s end effector moving to seventy six
points in a one meter cube space and staying there for seven
seconds. However, they did not perform trajectory tracking
and did not report orientation errors.

From these works in literature it is observed that, in general,
either the kinematics/dynamics of the industrial robot must be
known in the proposed eye in hand approaches, or in the case
of KF type methods, the process and measurement noise along
with a linear dynamic process model are assumed to be known.
However, it is well known that industrial robotic systems
and camera based pose estimation are nonlinear processes.
In order to overcome these shortcomings, some work has
been done using extended Kalman filter (EKF) [13], [14], and
adaptive Kalman filter (AKF) [15] to estimate the pose of



industrial robots. However, EKF depends on the availability of
an accurate dynamic process model, which is hard to obtain,
and the proposed AKF by G. E. D’Errico [16] does not take
into account the time varying process and measurement noise
due to robots’ various trajectories and speeds during operation;
thus effectively decreasing their usefulness. In such cases
data driven modeling techniques have been found to be more
effective since the acquired data already contains all kinds
of uncertainties, sensor errors and sensor noise. Moreover,
machine learning provides some of the most effective data
based modeling techniques [17]–[20].

In this work, an eye to hand camera based pose estimation
system is developed for industrial robots through which a
target object trackable with a monocular camera with ± 90° in
all directions is designed. The designed camera target (CT) is
fitted with fiducial markers where their placement guarantees
the detection of at least two non-planar markers from a
single frame, thus preventing ambiguities in pose estimation.
Moreover, a Long Short Term Memory (LSTM) type recurrent
neural network (RNN) [21] is proposed for improving the pose
estimated by the Levenberg Marquardt (LM) based algorithm
[22]. The proposed method uses a LSTM network to extract
dynamic features from the estimated pose and then feeding
it to a fully connected regression layer to estimate the correct
pose, where the ground truth for training the proposed network
is obtained from a laser tracker. Using the proposed method,
one can train all the camera based systems using a single laser
tracker in a factory where several industrial robots are required
to perform the same task, instead of purchasing a laser tracker
for each robot.

The rest of the paper is structured as follows: The experi-
mental setup is presented in Section II where the construction
of the camera target, coordinate systems, transformations, and
the unknowns are described. In Section III, a method for
improving pose estimation using LSTM is presented. The
effectiveness of the proposed approach is validated by an
experimental study in Section IV, followed by a reasoned
conclusion in Section V.

II. EXPERIMENTAL SETUP

A. Construction of the Camera Target for Pose Estimation

The experimental setup used in this work consisted of a
KR240 R2900 ultra KUKA robot, a Leica AT960 laser tracker
and a Basler acA2040-120um camera as shown in Figure 1.
The pose of the KUKA KR240-2900 robot’s end effector is
tracked in real time using the Leica AT960 laser tracker with
an accuracy of ±10 micrometers through the usage of T-MAC
probe rigidly attached to the end effector. In order to estimate
the pose of the end effector from the camera, a target object
with markers was designed and rigidly fixed to the end effector
of the robot. Design and distribution of markers on a target
is crucial for the proper estimation of the camera’s pose from
images. That is because pose estimation algorithms rely on
knowing the exact location of markers in the image plane.
Therefore, it is essential to design targets that can be tracked
accurately in real time in a robust manner. To this end, this

work proposes the usage of fiducial markers. These markers
can be generated from ArUco library which is used for the
creation of markers that can be detected and decoded in real
time. The patterns known as ArUco markers are small 2D
barcodes often used in augmented reality and robotics [23].

Fig. 1: Experimental Setup.

The target object to be tracked by the camera was con-
structed using 3D printing to hold 40 ArUco markers on it.
The camera target (CT) was designed to have 5 faces and
each to hold 8 markers. Four of the markers are planar and
the other four are placed at 60° with the horizontal axis to
produce nonplanar markers. This is because extensive works in
literature have shown that points extracted from a single plane
may result in ambiguities in pose estimation algorithms. It has
been proven that if points extracted from at least two distinct
non-parallel planes are used for pose estimation, then they can
provide a unique solution. The overall size of the target object
is 250 × 234 × 250 mm with a weight of 500 gr. The size
of each marker was chosen to be 30 mm2. The target object
was made to be modular and only its base is permanently
mounted on the robot. The 40 markers were chosen from
ArUco’s 4×4×100 library and they were fixed to the holes in
the constructed target object. The 5 sides of the target object
along with the used markers and their ID’s are shown in Figure
2. Through the usage of this camera target, the locations of
all the markers can be obtained in the object frame from the
CAD model and thus they can be used for pose estimation.

Fig. 2: (a) Front, (b) Left, (c) Right, (d) Bottom and (e) Top views of ArUco markers
placed on the target to be tracked.



B. Robot, Laser and Camera Frames Transformations

In order to evaluate the accuracy and precision of the vision
based pose estimation, the coordinates of the laser tracker and
the camera system were transformed into a fixed base (FB)
frame. The FB frame was defined by moving the robot’s end
effector to a point in world frame and then defining it as the
origin. The overall transformation between the coordinates of
the targets’ and trackers’ frames are given in Figure 3. Then
a common target object’s pose such as the laser target (LT )
was calculated in the FB frame from the Laser and Camera
frames as given in (1)-(3). This way the pose of the common
target in FB as obtained from the camera can be compared
with the measurement’s of the same target in FB as obtained
from the laser tracker.

CTLT = CTCT
CTTLT (1)

{FBTLT }C = FBTC
CTLT (2)

{FBTLT }L = FBTL
LTLT (3)

where CTTLT is the fixed rigid body transformation between
the laser target and the camera target frames, LTLT and CTCT

are provided by the measurements from the laser tracker and
the camera based pose estimation, respectively.

Fig. 3: Coordinate system transformations, where ATB is a transformation representing
B in A and OA denotes origin of frame A. C,L,R,CT, LT, S and FB denote
Camera, Laser, Robot, Camera Target, Laser Target, Spindle and Fixed Base frames.

III. IMPROVED POSE ESTIMATION USING LSTM

This work proposes to improve the pose estimation accuracy
of vision based systems by utilizing supervised machine learn-
ing algorithms. This way existing camera based systems can
be made to provide better accuracies when trained using the
ground truth pose (X,Y, Z, α, β, γ) such as the one provided
by a laser tracker. In order to formulate this problem under a
machine learning framework, the inputs and ground truth of
the system needs to be determined properly. The ground truth
in pose estimation problem can obtained through the highly
accurate laser tracker systems. As for inputs, the estimated
pose (X̂, Ŷ , Ẑ, α̂, β̂, γ̂) provided by the vision system can be

obtained through standard pose estimation algorithms in liter-
ature such as the Levenberg Marquardt (LM) based algorithm
[22]. As for the supervised learning algorithm, there exist
several architectures through which dynamic systems can be
modeled. One such algorithm is the LSTM which is proved to
provide robust models for dynamic systems. LSTM networks
were initially developed for sequence data such as word
and sentence prediction, however in this work they will be
modified to work with time varying data. Since the problem of
pose estimation is a continuous and time dependent regression
problem, this work proposes to use a LSTM to extract the
dynamics from the data followed by a single feed forward
neural network to provide the corrected pose. The proposed
network’s architecture is illustrated in Figure 4 where 6 inputs
provided by the LM based algorithm are fed into the LSTM
network. Therefore, the input contains 6 elements for each
time frame and is denoted by Xt. They are then concatenated
with the previous state vectors of a chosen size and passed
through multiple gates. These gates are input (Rt), output (Ot),
and forget (Ft) gates each with individual activation functions
of either sigmoid (σ) or tanh, which are defined as:

Rt = σ(Wr[St−1, Xt]) (4)

Ft = σ(Wf [St−1, Xt]) (5)

Ot = σ(Wo[St−1, Xt]) (6)

where Wr, Wf and Wo are the weight matrices associated
with the input, forget, and output gates.

These gates are neural networks which can learn what
information to keep or throw away during the training of the
LSTM network. They determine the amount of information
to add or throw away from the cell state, thus allowing only
relevant data to pass through and reducing the effects of short-
term memory problems seen in simple RNN networks. The
cell/memory state (Ct) acts as the memory of the network,
thus information seen during the earlier time steps can make
it through to the latest time steps. The cell/memory state is
defined as:

Ct = Ft � Ct−1 +Rt � C̃t (7)

where Ct−1 is the previous cell/memory state, � denotes ele-
ment wise product and C̃t is another gate with the associated
weight matrix Wc and is defined as:

C̃t = tanh(Wc[St−1, Xt]) (8)

After data passes through these gates and the relevant
information is extracted, the state vector (St) can then be
calculated from the output gate (Ot) and the cell state (Ct)
as follows:

St = Ot � tanh(Ct) (9)

The number of states in the state vector is user defined
and depends on the complexity of the problem at hand. After
the states are obtained, they are passed through a single layer
neural network with linear activation function so as to obtain
the estimated pose of the target in current frame as follows:

P̂St =WSt +B (10)



where, W and B are the weight matrix and the bias vector
associated with the fully connected layer.

Afterwards, the Euclidean norm of the error between the
estimated pose P̂S

i

t and the ground truth pose provided by
the laser tracker (PSi

t) is defined as the cost function as:

CF =
1

N

N∑
i

||PSi
t − P̂S

i

t||2 (11)

The number of states used for the LSTM as well as the
number of units used in the fully connected layer are given
in the experimental results section. The proposed method was
coded in TensorFlow [24] software and optimized using Adam
optimizer [25].

Fig. 4: The proposed LSTM neural network architecture for improving vision based pose
estimation.

IV. EXPERIMENTAL RESULTS

A. Detection of the Camera Target

The realization of real time pose estimation is done in
LabVIEW [26] software. The Basler ac2040-120um camera is
connected to LabVIEW and the images can be acquired from
120 Hz with 2048×1536 pixels upto 1220 Hz with 160×120
pixels. The acquired images are then fed into the python
node in which marker detection is performed using ArUco
marker detection algorithm and the pose estimation is done
through the Levenberg Marquardt optimization algorithm. In
the experiments, the image size was set to 640 × 480 pixels
and were acquired at 375 Hz. The marker detection algorithm
can work at 1000 Hz, the pose estimation at 1000 Hz and
the proposed LSTM network operates at 1000 Hz for a single
frame as well. Since all these algorithms are required to run
in series, the total processing time is 0.003 seconds or about
333 Hz for a single frame1. The detected corners of the
markers as well as the estimated pose of the object are shown
in Figure 5. From these images it is clear that the designed

1Tested on a workstation with Intel Xeon E5-1650 CPU @ 3.5GHz and 16
GB RAM.

target object enables detection of multiple non-planar markers
from any view, thus preventing rank deficiency in the pose
estimation algorithm. Moreover, the camera is able to detect
the markers with a viewing angle of ±90° from all sides.

Fig. 5: (a) - (d) Samples showing marker detection (detected corners are in red) and
estimated pose (red, green, blue coordinate axes) of the target object with respect to the
camera frame.

B. Pose Estimation Improved with LSTM

The accuracy and precision of the camera system was
evaluated during trajectory tracking of a KUKA KR240 R2900
ultra’s end effector based on ISO 9238. The ISO 9238 is
typically used for evaluating the accuracy and repeatability of
industrial robots through following a set trajectory for a num-
ber of times. Based on this standard, the robot’s end effector
is required to move to five specific points in its workspace
and repeat it multiple times with or without performing any
changes in the orientation of the robot’s end effector. In
order to evaluate the effectiveness of the constructed camera
based pose estimation system and the proposed LSTM neural
network in detail, in this work, 16 distinct trajectories were
defined for the robot’s end effector to follow while changing its
orientation continuously around all of its three axes. Moreover,
each trajectory contained five specific points at which the robot
was stopped for 5 seconds as per the ISO 9238 guidelines.
These 16 trajectories based on the ISO 9238 were relatively
slow and took 105.9 minutes to complete.

Initially the LM based algorithm was implemented. After-
wards, the proposed machine learning architecture composed
of a LSTM followed by a fully connected layer was used to
improve the pose estimated by the LM based pose estimation
algorithm as discussed in Section III. The proposed network
was trained and validated three times in order to evaluate the
robustness of the proposed method. For this purpose, initially
the network was trained using 30% of the data and validated on
the rest, then it was trained with 50% and validated on the rest
and finally it was trained using 70% of the data and validated



on the remaining 30%. The training was performed using 2000
mini batches for 20000 iterations using 40 states for LSTM
and 24 nodes at the fully connected layer. The absolute errors
for position & orientation and their standard deviation for the
ISO 9238 tracking are tabulated in Tables I to III. The errors
given in these tables denoted as EX , EY , EZ , ERoll, EPitch,
and EY aw are the absolute errors between the estimated and
ground truth pose provided by the laser tracker. We should note
that ISO 9238 is a very challenging dataset for vision based
pose estimation in that the distance between the camera and
the target may increase a lot, in turn degrading the accuracy of
the estimated pose. This is especially the case in this work due
to the large working space covered (1140 × 610 × 945 mm
along the X , Y , and Z axes, respectively) by the robot in
the conducted experiment, as seen from Figure 6. Moreover,
due to the viewing angle restrictions the camera was placed 1
meter away from the closest point of the work space. Based on
these, the distance between the camera and the target changed
from 1 meters to 3 meters during the 16 trajectories followed
by the robot, thus in turn made the position errors relatively
high.

Figures 6 and 7 show the position and orientation trajecto-
ries of the laser target as tracked by the laser tracker in blue.
The yellow trajectories from left to right are the ones estimated
by the camera system using LM based pose estimation only
and pose estimated by LM as input to the LSTM. These images
are for training the proposed method with 70% of the data.
Moreover, the results obtained for the validation set (30%
of the data) for each individual axes are shown in Figure 8
for position tracking. As for orientation trajectories around
X, Y and Z axes, hereby denoted as Roll, Pitch and Yaw,
respectively, they are shown in Figure 9. As seen from the
errors tabulated in Tables I to III, the proposed method is able
to reduce the position tracking errors at least by 1.3, 1.2, and
2.23 times and upto 1.8, 1.6, and 2.94 times for X, Y, and
Z axes, respectively when compared with the pure LM based
algorithm using 30% and 70% of the data for training the
models. This is in addition to reducing the standard deviation
of the position errors by upto 1.41, 1.49, and 2.3 times for
X, Y, and Z axes, respectively. Furthermore, the orientation
tracking errors were reduced by at least 2.45, 2.04, and 2.67
times and upto 2.93, 2.42, and 3.14 times for Roll, Pitch and
Yaw axes, respectively. Moreover, the standard deviation of
orientation errors were reduced by upto 1.4 and 1.72 times
for the Pitch and Yaw axes while providing similar results for
the Roll axis.

From these results, it is seen that the proposed method is
able to improve the position and orientation tracking accu-
racies even when 30% of the data is used for training the
proposed network, thus proving its robustness.

Fig. 6: Position tracking results based on ISO 9238.

Fig. 7: Orientation tracking results based on ISO 9238.

Fig. 8: Laser vs LM vs LM with LSTM for position tracking, validated on the 30% of
the dataset.

Fig. 9: Laser vs LM vs LM with LSTM for orientation tracking, validated on the 30%
of the dataset.



TABLE I: Pose tracking errors during trajectory tracking based on ISO 9238, trained
with 30% of the dataset and validated on the rest.

Training Size 30% of the Dataset

Error for the Validation Set
(70% of the Dataset) EX (mm) EY (mm) EZ (mm) ERoll (°) EPitch (°) EY aw (°)

LM 9.84 (9.86) 7.30 (6.61) 16.44 (14.07) 0.93 (0.33) 1.02 (0.89) 1.15 (0.72)
LM with LSTM 7.52 (8.83) 6.10 (5.77) 7.34 (6.97) 0.38 (0.40) 0.50 (0.62) 0.43 (0.47)

The ( ) beside the errors contain their standard deviation.

TABLE II: Pose tracking errors during trajectory tracking based on ISO 9238, trained
with 50% of the dataset and validated on the rest.

Training Size 50% of the Dataset

Error for the Validation Set
(50% of the Dataset) EX (mm) EY (mm) EZ (mm) ERoll (°) EPitch (°) EY aw (°)

LM 9.85 (9.87) 7.35 (6.62) 16.23 (13.60) 0.92 (0.32) 1.01 (0.88) 1.14 (0.71)
LM with LSTM 6.30 (7.36) 4.76 (4.97) 6.10 (6.43) 0.36 (0.40) 0.40 (0.43) 0.39 (0.38)

The ( ) beside the errors contain their standard deviation.

TABLE III: Pose tracking errors during trajectory tracking based on ISO 9238, trained
with 70% of the dataset and validated on the rest.

Training Size 70% of the Dataset

Error for the Validation Set
(30% of the Dataset) EX (mm) EY (mm) EZ (mm) ERoll (°) EPitch (°) EY aw (°)

LM 10.11 (10.20) 7.39 (6.78) 15.79 (13.69) 0.91 (0.33) 1.04 (0.87) 1.10 (0.67)
LM with LSTM 5.56 (7.21) 4.60 (4.54) 5.37 (5.94) 0.31 (0.35) 0.43 (0.62) 0.35 (0.39)

The ( ) beside the errors contain their standard deviation.

V. CONCLUSION

In this work a machine vision based pose estimation system
was developed for industrial robots. Initially a camera target
was designed and fitted with markers so as to guarantee
the visibility of at least two non planar markers from any
viewing angle within ± 90° in all directions of the camera’s
view. Moreover, a Long Short Term Memory (LSTM) network
followed by a fully connected layer was proposed to increase
the accuracy and precision of the vision based pose estimation
using a laser tracker’s data as the target values where the pose
estimated by Levenberg-Marquardt (LM) was utilized at the
input of the LSTM network.

The proposed method was validated by tracking an indus-
trial robot’s end effector for 16 distinct trajectories based
on ISO 9238. The trajectories were followed by a KUKA
KR240 R2900 ultra robot and the ground truth data was
provided by the Leica AT960 laser tracker. As shown from the
experimental results, the proposed method was able to reduce
the position tracking errors by upto 1.8, 1.6, and 2.94 times
for X, Y, and Z axes, respectively when compared with the
pure LM based algorithm. This is in addition to reducing the
standard deviation of the position errors by upto 1.41, 1.49,
and 2.3 times for X, Y, and Z axes, respectively. As for the
orientation tracking errors, the proposed method was able to
reduce these errors by upto 2.93, 2.42, and 3.14 times for
Roll, Pitch and Yaw axes, respectively. All the while reducing
the standard deviation of these errors by upto 1.4 and 1.72
times for the Pitch and Yaw axes while providing similar
results for the Roll axis. Therefore, the proposed method is
able to significantly increase the accuracy and precision of the
standard LM based pose estimation algorithm during trajectory
tracking of industrial robots’ end effector.

As a future work, the improved pose estimation results can
be utilized in a position based visual servoing (PBVS) scheme
to increase task accuracies of various robotic manufacturing
processes such as machining.
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