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A B S T R A C T

This paper presents a two-stage hierarchical location problem for systems where the lower level facilities act as
the first points contact for the customers while the upper level facilities act as suppliers of the lower level
facilities that either serve them or provide advanced services to customers. Furthermore, more recent and
realistic coverage constructs such as gradual and cooperative covering are included in our setting. Although our
problem can be applicable in various settings, the most fitting application is in wireless telecommunication
networks to determine the location of base stations and mobile switching centers. We have developed two
competing formulations for the problem, each of which involve nonlinear components that are difficult to deal
with. We then develop their respective linearizations and tested their performances. These formulations are
solved by commercial optimizers for a set of reasonably large problem instances and it is found that majority of
the problems can be solved within a maximum of 10% optimality gap within a short time.

1. Introduction

In this paper we present a two-level facility location and sizing
problem for maximizing expected demand coverage. At the lower level,
there are branches that are the first contact with the customers and it is
the proximity and the size of the branches that determine customers’
attraction and hence, the expected demand coverage. At the upper
level, there are centers, depending on a particular application, that
either serve the branches and/or provide advanced services to the
customers that the branches are not equipped to do. The problem is to
find the location and the size of these facilities to maximize the ex-
pected demand coverage while satisfying a budget constraint.

This problem belongs to the large class of problems known as
hierarchical location which has a long history and a sizable literature.
According to Narula’s (1984) classification, our model is a capacitated
“coherent” hierarchical location problem with “successively exclusive”
(i.e., non-nested) service with “referral” under covering objective. In
this problem, the services provided at the lower level (branches) and
the upper level (centers) are different, i.e., non-nested. Also, customers
do not go to the upper level facilities without going thorough a lower
level facility first, i.e., “referred”. Finally, we assume a coherent
structure; that is, customers who visit the same lower level facilities
also visit the same upper level facility, e.g., single-sourcing in dis-
tribution context. This structure is applicable to some systems where

the centers only serve or supply the branches and/or do provide ser-
vices to customers as well.

Although we utilize a terminology from retail setting, i.e., referring
to facilities as “branches” and “centers”, our problem can be applied in
a wide variety of settings. One of the most fitting application areas of
our model is in wireless telecommunication networks (Skorin-Kapov,
Skorin-Kapov, & Boljunčic, 2006). In these networks, base stations are
the first-contact points with the customers. The quality of transmission
and hence, customers’ service experience and eventual attraction de-
pends on their proximity to as well as the power of the base-stations.
Each base-station is connected to a mobile switching center via cable,
which connects the cellular system to the wired public phone and in-
ternet systems. Hence, while the size (as a proxy for power) and the
proximity of base stations (i.e., branches) to customers determine the
demand capture, the size of the mobile switching centers (i.e., centers)
makes sure that there is sufficient backbone capacity to satisfy the
transmission demand.

There are a number of other distinguishing features and assump-
tions of our problem. First, we consider gradual coverage rather than
binary coverage. That is, customers may be covered partially, which
indicates that some proportion of customers at a demand node prefer to
use the services while others do not. Second, we consider cooperative
coverage where customers are not necessarily captured by the closest
branch, but they may also be captured by some other branches that are
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further away but within the coverage distance. Both of these assump-
tions are well-justified in practice and have been around in the litera-
ture for some time (see for example, Berman, Drezner, & Krass, 2010
and Berman, Drezner, & Krass, 2018 2018 for further information). We
also consider the size of facilities as decisions and assume that there are
finite sizing options. Finally, we do not consider a “transportation cost”
that depends on the volume of shipments between the centers and the
branches, but rather we consider an “assignment cost” between them.
This is a restriction that needs to be overcome in the future, but as we
will see shortly, it is well-justified in a number of application areas. For
example, in the wireless telecommunication networks, the transmission
cost is essentially determined by the investment made for the cable
connection between the base station and a mobile switching center and
it is largely independent of the flow. An example solution of our pro-
blem is depicted in Fig. 1 where there are open branches that are as-
signed to some open centers. The coverage proportion of customer
nodes are also represented by intensity of the colors, which is from full-
coverage to no coverage.

There are many two-level hierarchical systems that satisfy the three
key assumptions we make and naturally fit into our setting. The first
assumption is the successively exclusive service, i.e., non-nested ser-
vice. In many systems, upper level facilities provide different service
than lower levels or they only serve the branches (which is also some
form of providing different service). Second assumption is the coherent
structure, which is also well-practiced in many public services where
countries are divided into regions, regions into counties, counties into
cities, etc. Coherent structure is also well-justified in many commercial
systems as “single-sourcing” is practiced quite widely. Finally, there
must either be a fixed assignment cost as in the wireless tele-
communication networks or zero such cost. In health care and educa-
tional systems, if and when, a customer is referred to the higher level
facility, the transportation cost is borne by the customer and hence, this
assumption is satisfied. In some commercial cases where the volume of
shipments is very small, such as banks and certain service systems,
transportation cost can be considered largely fixed, i.e., does not de-
pend on the volume, but only depends on the distance between the
facilities and the frequency of service, which also satisfy this assump-
tion. Hence, it is fair to conclude that, although the most fitting ap-
plication area is in telecommunication networks, our model can also be
applied to some public services such as non-nested health care systems

like blood collection/processing and medical testing systems, educa-
tional systems as well as to some service systems such as bank logistics
systems and select retail systems.

Although our work belongs to a class of hierarchical location pro-
blems due to its three particular assumptions, it is also related to multi-
level or multi-echelon facility location models. However, in great ma-
jority of these models the primary objective is usually some form of cost
minimization with fixed charges and variable transportation cost (see
for example, Ortiz-Astorquiza, Contreras, & Laporte (2018) for a recent
comprehensive review). Our setting is rather different from this lit-
erature as our objective is to maximize demand coverage in settings
where variable logistics costs are largely negligible, which brings our
work closer to the hierarchical location literature.

Today there exists a vast literature on hierarchical location models,
which can be traced back as early as to 1970s (see Narula, 1984 (1984)
for an earlier review). Those with some type of coverage objective have
been studied mostly in health care systems (see for example, Afshari &
Peng, 2014 and Güneş & Nickel, 2015 for reviews of such models), but
there are also growing number of papers in other application areas. The
more recent examples include facility location in banking (Min &
Melachrinoudis, 2001), design of geo-location systems for search and
rescue operations (Chan, Mahan, Chrissis, Drake, & Wang, 2008), re-
sponse center location to combat effects of some chemical, biological,
or nuclear accidents or attacks (Paul, Lunday, & Nurre, 2017), earth-
quake shelter location (Li, Zhao, Huang, & Hu, 2017), distribution
center location in disaster management (Li, Ramshani, & Huang, 2018),
court relocation (Teixeira, Bigotte, Repolho, & Antunes, 2019), and in
last-mile delivery system design (Chauhan, Unnikrishnan, & Figliozzi,
2019).

Most earlier works and those reviewed above assume binary cov-
ering and usually consider maximal coverage or set coverage type of
objectives (please see the comprehensive review papers by Şahin &
Süral (2007) and more recently, by Farahani, Hekmatfar, Fahimnia, &
Kazemzadeh (2014)). They also usually consider coverage at all levels,
whereas due to the particular application setting, we envision upper
level facilities as the centers that serve the lower level facilities that
actually interact with the customers directly. The main contribution of
our work is in considering gradual and cooperative coverage in such a
class of hierarchical location problems that existing models cannot
adequately address.

Towards this end we have developed two nonlinear integer models.
The models differ with respect to the decision variable sets they use.
One utilizes three variable sets with double indices while the other
utilizes two variable sets one with double and one with triple indices. In
both models, however, the major difficulty comes from the nonlinearity
of the objective function that involves the representation for gradual
and cooperative coverage of customers, which is quite tedious. We
linearize the models by adopting a special technique used by Morton,
Pan, and Saeger (2007), Salmerón (2012), and Karatas (2018). Non-
linear and linear integer models are solved by DICOPT and Gurobi,
respectively on large set of carefully designed test instances. Not sur-
prisingly, owing to the complexity of the nonlinear terms, the nonlinear
models could not be solved effectively. There is considerably more
success in solving the MILPs and although the difference is not sub-
stantial, the formulation with the double indexed variables performed
generally better. This was slightly surprising to us, as starting with
Geoffrion and Graves (1974) usually longer indexed formulations have
more success.

The rest of the paper is organized as follows: In the next section we
give a detailed explanation of the assumptions and model preliminaries.
Section 3 presents the four formulations; two nonlinear ones and their
linearizations. In Section 4, we explain the generation of the instances
for the numerical experiments and we report on the results of these
experiments. Section 5 concludes the paper with a few remarks.

Fig. 1. An exemplary solution for the two-level facility location problem. In the
figure, demand nodes, center locations, and branch locations are denoted by +,

, signs, respectively. Dotted straight lines represent center-branch assign-
ments.
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2. Assumptions and preliminaries

We consider a set of demand nodes i I , each endowed with a
weight i that reflects its relative importance or the maximum amount of
demand generated over a period of time at that node. There are finite sets
of candidate locations for the branches and the centers represented by
j J and k K , respectively. Adopting the discrete location framework,
we assume that all candidate locations and demand nodes are fixed and
known. In addition to the locations of facilities, the problem also con-
siders the selection of the sizes of these facilities. We assume that each
location can support a set of sizes for its facility. That is, there is a set of
branch sizes m Mj that can be opened at location j J , and similarly,
there is a set of center sizes n Nk that can be opened at location k K .

In our problem setting, there is a fixed budget B for installing and
operating the facilities. Each type of facility has an installation cost that
varies with respect to its size and location. We define bjm as the fixed
cost of installing a branch of sizem Mj at location j J and ckn as the
fixed cost of installing a center of size n Nk at location k K . We
assume that there is “single-assignment”, that is, a branch can be served
from only one center. We define a fixed assignment cost ajk to assign
branch j J to center k K . Note that this cost is independent of the
sizes or potential flow between facilities, but only depends on the lo-
cations. As mentioned before, this assumption is well-justified in the
design of cellular networks as well settings where the volume of the
shipment is not a major factor. Also in cases where the customer incurs
the transportation, this cost can be negligible or consists only of setting
up the connection.

Here we adopt a partial or gradual coverage that depends on the
distance between the demand nodes and the branch locations as well as
the sizes of the branches. In the binary coverage (also known as the
deterministic coverage) model, a demand node is assumed to be com-
pletely covered if the distance to its closest facility is less than a pre-
specified value. This model is especially desirable for analytic derivation,
but not always applicable to most real-world location-allocation pro-
blems (Berman et al., 2010 & Yang et al., Yang, He, Li, Chen, & Sun,
2015). For example, proximity to base stations and their sizes (as a proxy
for power) are major determinants of customer satisfaction, which es-
sentially determines their attraction and hence, the coverage. Similarly,
in retail settings, proximity of the branches as well as their size as a proxy
for variety are the main determinants for customers’ attraction.

In this study, we adopt the gradual coverage concept from Berman,
Krass, and Drezner (2003) where a demand can be fully covered, par-
tially covered, or not covered. Towards this end, let dij denote the
distance between demand node i I and a branch at j J . We consider
the demand of that node to be.

(i) fully covered by that branch if it lies within the minimum critical
distance d̄m of the branch with size m Mj, i.e. d d̄ij m,

(ii) not covered if the branch is not within the maximum critical dis-
tance d̄̄m, i.e. >d d̄̄ij m, or

(iii) partially covered if it lies between the distances d̄m and d̄̄m, i.e.
<d d d¯ ¯̄m ij m,

which is represented by a non-increasing function of distance dij de-
noted as f d i I j J m M( ) [0, 1], , ,m ij j. Hence, proportion of
demand at node i I covered by a branch at j J with size m Mj is
given by

= <p
d d

f d d d d i I j J m M
1, ¯ ,

( ), ¯ ¯̄ ,
0, otherwise

, , .ijm

ij m

m ij m ij m j

(1)

It is also expected that a branch’s coverage performance is positively
related to its size, i.e. larger stores attract more customers. Therefore,
we further assume that pijm is non-decreasing with increasing m for any
given distance.

Different from the traditional modeling assumption that a demand
can only be covered by a single (and generally the closest) facility, we
adopt the joint or cooperative coverage concept which allows demand
sharing, i.e. multiple branches contribute to the coverage of the same
demand node. Joint coverage concept is also well-founded in practice
(Berman et al., 2010 & Berman et al., 2018). Assuming independent
coverage performance for each branch, for a particular demand node
i I , we compute its overall coverage proportion Pi as

=P p1 (1 ).i
j J m M

ijm
j (2)

The overall coverage is based on the assumption that a customer at a
node can patronize a branch within its coverage radius with a certain
probability (i.e., coverage proportion) and the choice of branches are
independent of each other. Hence, for example if there are two facilities
which attract, lets say 50% of demand at a node, their combined cov-
erage would be 1-(1–0.5)(1–0.5) = 0.75.

As we have seen above, the major role the capacity of branches
plays is on the total expected demand coverage. However, the centers
must also be equipped with sufficient capacity to handle the demand at
the branches. In the current development, we have information on the
total demand covered but we have not made any specification about
how the demand is split among the branches. Instead, we use the
branch sizes as a proxy for the capacity requirement at the centers that
the branches are assigned to. Hence, a branch at j J with size m Mj
is assumed to have a capacity requirement of m from center it is con-
nected to and each open center must be assigned sufficient capacity to
satisfy those requirements. Finally, we also assume that a branch can be
serviced from predetermined subset K Kj of alternative center loca-
tions, which are presumably closer than some threshold distance. We
impose this requirement to ensure that branches can be served on a
timely manner, but if all centers can service branch j, then we can
simply set =K Kj .

3. Formulations

Based on the aforementioned assumptions we formulate two non-
linear integer models for the problem, each followed by their respective
linearizations. We first like to summarize the common notation before
moving to the formulations.
Indices and Sets

i I : Set of demand nodes,
j J : Set of candidate branch locations,
k K : Set of candidate center locations,
K Kj : Subset of centers that can serve branch j J ,
J Jk : Subset of branches that can be served by center k K ,
Mj: Set of branch size levels that can be installed at location

j J ,
Nk: Set of center size levels that can be installed at location

k K .

Parameters

i: Weight of demand point i I ,
B: Available budget,
ajk: Fixed cost of assigning branch j J to center k K ,
bjm: Cost of installing a branch of size m Mj at location j J ,
ckn: Cost of installing a center of size level n Nk at location

k K ,
m: Shipment requirement of a branch of size m M

j J
j,

Qn: Capacity of a center of size level n N
k K

k,

pijm: Proportion of demand covered at node i I by a branch of
size m Mj installed at location j J .
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3.1. An Integer Non-Linear Programming (INLP) Formulation

For the first formulation we define three sets of decision variables;
first two are for the location and sizing of the facilities and the third is
for the assignment of branches to centers. These definitions will be
followed by the first nonlinear formulation.

Decision Variables:

=x
m M j J1, if a branch of size is opened at location ,

0, otherwise,jm
j

=y n N k K1, if a center of size is opened at location ,
0, otherwise,kn

k

=z
j J k K1, if the branch at location is connected to the center at ,

0, otherwise.jk
j

=z p xmax [1 (1 )]INLP
i I

i
j J m M

ijm jm1
j (3a)

x j J
subject to

1,m M jmj (3b)

y k K1,
n N

kn
k (3c)

z x j J k K, ,jk
m M

jm j
j (3d)

z y j J k K, ,jk
n N

kn j
k (3e)

=x z j J,
m M

jm
k K

jk
j j (3f)

y z k K,
n N

kn
j J

jk
k k (3g)

x y j J,
m M

jm
k K n N

kn
j j k (3h)

+ +b x c y a z B
j J m M

jm jm
k K n N

kn kn
j J k K

jk jk
j k (3i)

z x Q y k K,
j J m M

m jk jm
n N

n kn
k j k (3j)

x j J m M{0, 1}, ,jm j (3k)

y k K n N{0, 1}, ,kn k (3l)

z j J k K{0, 1}, ,jk j (3m)

The objective function given by (3a) aims to maximize total expected
demand coverage. Constraint sets (3b) and (3c) ensure that an installed
facility is designed with a single size. Constraint sets (3d) and (3e)
guarantees that a branch can be assigned to a center only if both are
open. Constraint set (3f) is a technical constraint which ensures that
each open branch must be assigned to an open center and constraint set
(3g) ensures that each center is connected to at least one branch. The
latter constraint set essentially forces a center to be closed if there is no
assignment to it. It is actually a redundant constraint because at the
optimal solution no such center would be opened; nonetheless, it is a
valid inequality that may help speed up the solution method. Constraint
set (3h) ensures that if a branch is opened, then, a center than can serve
it must also be opened. Constraint (3i) is the budget constraint, which
restricts the installation and the assignment expenditures. Constraint
set (3j) is a nonlinear constraint which ensures that the installed ca-
pacity of a center satisfies the total demand of its connected branches.
Constraint sets (3k)–(3m) declare variable types.

3.2. Mixed integer linear programming (MILP) formulation

Owing to the difficulty of solving nonlinear integer models, we now
reformulate the problem as a mixed integer linear model. In our ori-
ginal formulation, the objective function (3a) and the constraint set (3j)
are nonlinear. Linearization of the constraint set is rather straightfor-
ward and will be given shortly. Linearization of the objective function
requires some elaboration and will be presented subsequently.

We linearize constraint (3j) by defining a new continuous decision
variable h j J k K m M[0, 1], , ,jkm j j and switching constraint
(3j) with constraints (4n) and (4o) in the MILP1 (see below). We further
improve the formulation by adding two valid inequalities (4p) and (4q),
which are not needed, but expected to speed up the solution. Note that
even though we define the new variable as a continuous one, it will take
the values of 0 or 1 in the optimal solution.

Next, we linearize the objective function (3a) by adopting a special
technique used by Morton et al. (2007), Salmerón (2012), Karatas
(2017, 2018). This technique creates a network-like structure by re-
presenting each candidate location as a node and the proportion of the
uncovered demand as arcs. It uses the fact that the final outcome is in-
dependent of the order of the multiplication in Eq. (2). The idea of this
technique can be simplified as follows: First, consider a particular
customer. This customer “visits” each node (a location) and depending
on whether a branch is opened or not and its size, a proportion of
customer demand goes uncovered. For example, the customer arrives at
the first node with 100% of its demand uncovered. If there is no branch
opened at that node, entire demand remains to be uncovered and
“survives” to go the next node. However, if a branch is opened at that
location, depending on its size a certain proportion of the demand may
be covered while the remaining proportion survives. The customer then
goes to the second node, and the process is repeated, and then to the
third, fourth, etc. When all the nodes are visited in this manner, we
would have the actual proportion of uncovered demand for a given
configuration of branch location and sizes.

Before the formal description of the linearization technique, we also
like to demonstrate it on a small example with one demand node and
three candidate branch locations. We further consider only one branch
size option for the branches. For simplicity, we do not represent center
locations because they have no impact on the coverage. Since we have a
single demand node and a single branch size option, we simplify the
notation by omitting i and m indices. In this example, the proportions of
the demand that can be covered by branches at location j {1, 2, 3} are
given as = =p p0.8, 0.31 2 , and =p 0.63 . Suppose that in the solution,
branches are opened at locations 1 and 3 but not at location 2 (i.e.,

= =x x 11 3 and =x 02 ) yielding a total of =1 (1 0.8)(1 0.6) 0.92
coverage for this demand node (see Fig. 2).

We now create a new network and define a few auxiliary variables
that will enable us to accurately reach at this coverage value. First, we
define a new set of parameters called the “scale factors”, i.e., the pro-
portion of demand not covered by a location depending on whether a
branch is opened or not. For example, if a branch is opened at location
1, then the scale factor of this location is found as = =+q p1 0.21 1 .
However, if no branch is opened at this location then the scale factor
is =q 11 , i.e., no demand is covered. Similarly, we can set

Fig. 2. An example problem with one demand node (denoted by a +sign), and
three candidate locations (denoted by circles). The two solid circles represent
locations with open branches.
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= = = =+ +q p q p1 0.7, 1 0.42 2 3 3 , and = =q q 12 3 . Next, we define
a new set of variables called the “transitory survival probabilities” with
negative and positive upper index to keep track of the overall propor-
tion of customer demand that is not covered by the set of locations that
are already “visited”. The network in Fig. 3 depicts the values of
transitory survival probabilities, scale factors, and the uncovered pro-
portion of demand for this problem. In the figure, + =+ 1(1,2) (1,2) re-
presents the transitory survival probability, i.e., proportion of demand
not covered by any facility yet (even the first facility). After the first
location is visited, the proportion of demand left uncovered is calcu-
lated as + = × + × =+ +q q 0.2 1 1 0 0.21 (1,2) 1 (1,2) . That is, when a
branch is opened at location 1, the overall proportion of demand not
covered by this location is 0.2. The uncovered portion becomes the
survival probability before the second location is visited, i.e.,

+ =+ 0.2(2,3) (2,3) . After the second location is considered, the survival
probability becomes + = × + × =+ +q q 0.7 0 1 0.2 0.22 (2,3) 2 (2,3) again,
which is expected because no branch is opened at location 2 and
the same proportion continues to be uncovered. Finally, we visit
the third location with + =+ 0.2(3,4) (3,4) . After the third location,
the total uncovered demand proportion is calculated as

= + = × + × =+ +q q 1 0 0.2 0.4 0.083 (3,4) 3 (3,4) , which leads to a total
coverage of = =1 1 0.08 0.92 for this demand node. In the figure,
each arc is associated with two parameters, the scale factors and the
transitory survival probabilities. Those arcs that are active are re-
presented by solid lines whereas the others are represented by dashed
lines. Note that the transitory survival probabilities may be nonzero
only on the active arcs (more on this shortly). Finally, we place the
locations in the order of the index in the network, but they could be
placed in any order.

There are two key issues to be considered for this technique to
produce the correct coverage proportions. First, there must be balance
equations going from one node to the other. After any node, the un-
covered demand proportion should be conveyed as it is or discounted
properly depending on whether a branch is opened there. As we will see
such balance equations can be written in a rather standard way, as they
are utilized above in the example. Second, at most one of the arcs be-
tween two consecutive nodes can be active and the model should find
the “correct” survival probabilities with negative or positive upper
index. We utilize the binary location decision variables for this purpose;

for example, if we add a constraint + x(2,3) 2, then we ensure that
=+ 0(2,3) because =x 02 . Due to the coverage maximization objective

such constraints together with the balance equations are sufficient to
set these probabilities the correct values. Hence, if a branch is not
opened at a location, the transition probability with negative upper
index will convey all of the uncovered proportion to the next node.
However, if a branch is opened there the transition probability with
positive upper index convey it all and will be discounted with the scale
factor for the next node. In the more general case when there are
multiple size options, we will use a generalized version of these in-
equalities where there are multiple transition probabilities with posi-
tive upper index, one for each size option. In the more general case too,
only one of those arcs will be active.

We now formally describe the technique. Consider a network
composed of +J| | 1 nodes ordered consecutively and M| |j number of
“positive-labelled” and one “negative-labeled” arcs between each
neighbor node pair +j j( , 1). Each node in the network denotes a
candidate branch location j J and the arcs represent the decisions of
opening a branch of certain size or not opening at all at that node. Fig. 4
illustrates this network which represents a flow for a single demand
node i. To implement the method described above to the more general
case, we add the following decision variables:

+
+
i j j m( , 1) : transitory survival probability with positive upper index of
demand node i between the jth and +j( 1)th candidate locations for
size level m,

+i j j( , 1): transitory survival probability with negative upper index of
demand node i between the jth and +j( 1)th candidate locations,

i: overall proportion of uncovered demand of demand node i. Note
that using the definition of Pi given in Eq. (2), this probability is
simply = P i I1 ,i i .

We also define the following parameters:

+qijm: Scale factor for the transitory survival probability of demand i if
a branch of size m is installed at the jth candidate location,

=+q p i I j J m M1 , , ,ijm ijm j,
qij : Scale factor for the transitory survival probability of demand i if
no branch is placed at the jth candidate location,

Fig. 3. Representation of the scaled transitory survival probability flows for an example problem. Positive and negative arcs are denoted by solid and dashed lines,
respectively. Each disk represents a candidate location.

Fig. 4. Representation of the scaled transitory survival probability flow between candidate locations for a single demand node i. Positive and negative arcs are
denoted by solid and dashed lines, respectively. Each disk represents a candidate location.
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=q i I j J1, ,ij .

Note that these variables and parameters are generalized versions of
those used in the example. Now they are defined for each demand node
and extended for multiple size options. If =x 1jm , then the survival
probability with positive upper index leaving node j is scaled down by

+qijm. If the candidate location corresponding to a node j does not have a
branch installed, the survival probability remains the same, i.e. scaled
by =q i I j J1, ,ij . In our MILP formulation, we ensure that a
transitory survival probability with positive upper index between con-
secutive nodes +j j( , 1) gets a positive value only if a branch of size
level m is installed at location j. On the other hand, the transitory
survival probability with negative upper index gets a positive value if
no branch is placed at j. Therefore, the total survival probability going
from one node to the other either decreases or remains unchanged. In
the MILP formulation, we compute the overall proportion of uncovered
demand of a demand node i by the variable i. Note that node +J| | 1 is a
pseudo location, it only represents the overall survival probability of a
demand node i.

The final linearized formulation can be written as follows:

=zmax [1 ]MILP
i I

i i1
(4a)

+ =+ i Isubject to 1,i
m M

i m(1,2) (1,2)
j (4b)

+ = +

…

+
+

+
+

+ + + +
+q q

i I j J

,

, {1, 2, , | | 1}

ij i j j
m M

ijm i j j m i j j
m M

i j j m( , 1) ( , 1) ( 1, 2) ( 1, 2)
j j

(4c)

+ =+
+

+
+q q i I,i J i J J

m M
i J m i J J m i,| | ,(| |,| | 1) ,| |, ,(| |,| | 1),

j (4d)

…+
+ x i I j J m M, , {1, 2, , | | 1},i j j m jm j( , 1) (4e)

x j J1,
m M

jm
j (4f)

y k K1,
n N

kn
k (4g)

z x j J k K, ,jk
m M

jm j
j (4h)

z y j J k K, ,jk
n N

kn j
k (4i)

=x z j J,
m M

jm
k K

jk
j j (4j)

y z k K,
n N

kn
j J

jk
k k (4k)

x y j J,
m M

jm
k K n N

kn
j j k (4l)

+ +b x c y a z B
j J m M

jm jm
k K n N

kn kn
j J k K

jk jk
j k (4m)

+x z h j J k K m M1 , , ,jm jk jkm j j (4n)

h Q y k K,
j J m M

m jkm
n N

n kn
k j k (4o)

x h j J k K m M, , ,jm jkm j j (4p)

z h j J k K m M, , ,jk jkm j j (4q)

x j J m M{0, 1}, ,jm j (4r)

y k K n N{0, 1}, ,kn k (4s)

z j J k K{0, 1}, ,jk j (4t)

h j J k K m M0 1, , ,jkm j j (4u)

+
+ i I j J m M0, , ,i j j m j( , 1) (4v)

+ i I j J0, ,i j j( , 1) (4w)

i I0,i (4x)

The objective function (4a) is equivalent to (3a) except it uses the
survival probabilities i. Constraint set (4b) initializes the survival
probability for each demand node i by setting their respective sums of
transitory survival probabilities with negative and positive upper index
to one. This is the first of the balance equations. Next, Constraint set
(4c) presents the balance equations for the subsequent nodes, where
total survival probability from one node to the other is adjusted for each
demand node i using the corresponding scale factors. Finally, Constraint
set (4d) calculates the overall coverage of demand node i by finding the
survival probability from node J| | to node +J| | 1. Constraint set (4e)
ensures that the transitory survival probabilities with positive upper
index are set to zero if no branch of the corresponding sizes are opened
at location j. In essence this constraint ensures that at most one of the
transitory probabilities may be positive. Constraint sets (4f)–(4m) are
carried over from the nonlinear formulation unchanged and the Con-
straint sets (4n)–(4q) are for the other linearization as explained earlier.
Finally, Constraint sets (4u)–(4x) declare variable definitions for the
additional decision variables.

3.3. Alternative INLP and MILP formulations

Here we present an alternative formulation that follows a more
direct approach. Instead of defining double-indexed variables for
branch location and sizing and assignment to the centers, we define one
triple-indexed variable to capture all those decisions. We continue to
use the previous notation to a large extent, but we define a new binary
variable which will allow us to discard the variables xjm and zjk used
above. The new variable is defined as.

=w
m M

j J and k K
1, if a branch of size is opened at location

connected to center
0, otherwise.

jkm

j

j

The alternative formulation is:

=z p wmax 1 (1 )INLP
i I

i
j J m M

ijm
k K

jkm2
j j (5a)

w j Jsubject to 1,
k K m M

jkm
j j (5b)

y k K1,
n N

kn
k (5c)

w y j J k K m M, , ,jkm
n N

kn j j
k (5d)

+ +a b w c y B( )
j J m M k K

jk jm jkm
k K n N

kn kn
j j k (5e)

w Q y k K,
j J m M

m jkm
n N

n kn
k j k (5f)

w j J k K m M{0, 1}, , ,jkm j j (5g)

y k K n N{0, 1}, ,kn k (5h)
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Note that this formulation is equivalent to the previous one. First, one
can recognize that the relationship =x wjm k K jkm holds for each j J
and m Mj. The objective function (5a), the single-size restrictions for
the branches and the centers (5b) and (5c), the budget constraint (5e)
and the capacity constraints (5f) are immediate adaptations from the
previous formulation. The new set of variables wjkm captures the joint
definitions of xjm and zjk and hence, eliminates the need for these
variables as well as the constraints (3f) and (3g), which are used to
identify branches that are connected to each center. As a result of this
definition, now the capacity constraints (5f) are linear. The new set of
variables is equivalent to the variables hjkm that was used in the line-
arization of the previous formulation. Here, however, this new set of
variables has to be defined as binary as opposed to continuous. Hence,
in contrast to the previous formulation we have a larger number of
binary variables, but may still reach at a stronger formulation that
needs to be tested to be seen.

We now develop the mixed integer linear formulation by adapting
the approach described in the previous section in a straightforward
way. The only novelty here is the Constraint set (6e), which is an
adaptation of the Constraint set (4e). The MILP is given as

=zmax [1 ]MILP
i I

i i2
(6a)

+ =+ i Isubject to 1,i
m M

i m(1,2) (1,2)
j (6b)

+ = +

…
+

+
+

+
+ + + +

+q q

i I j J

,

, {1, 2, , | | 1}
ij i j j m M ijm i j j m i j j m M i j j m( , 1) ( , 1) ( 1, 2) ( 1, 2)j j

(6c)

+ =+
+

+
+q q i I,i J i J J

m M
i J m i J J m i,| | ,(| |,| | 1) ,| |, ,(| |,| | 1),

j (6d)

…+
+ w i I j J m M, , {1, 2, , | | 1},i j j m

k K
jkm j( , 1)

j (6e)

w j J1,
k K m M

jkm
j j (6f)

y k K1,
n N

kn
k (6g)

w y j J k K m M, , ,jkm
n N

kn j j
k (6h)

y w k K,
n N

kn
j J m M

jkm j
k (6i)

+ +a b w c y B( )
j J m M k K

jk jm jkm
k K n N

kn kn
j j k (6j)

w Q y k K,
j J m M

m jkm
n N

n kn
k j k (6k)

w j J m M k K{0, 1}, , ,jmk j j (6l)

y k K n N{0, 1}, ,kn k (6m)

+
+ i I j J m M0, , ,i j j m j( , 1) (6n)

+ i I j J0, ,i j j( , 1) (6o)

i I0,i (6p)

4. Numerical results and discussion

In this section we test the performance of the MILP formulations in
terms of computation time and solution quality. For this purpose, we
first generate three data sets each consisting of instances with different
sizes. Each instance is then solved with the two MILP formulations for

optimality gaps of zero and 0.10. We denote our formulations as fol-
lows:

MILP1(0%) MILP formulation (4a)–(4x) as defined in Section 3.2 and
solved with optimality gap zero,

MILP1(10%) MILP formulation (4a)–(4x) solved with optimality gap
0.10,

MILP2(0%) Alternative MILP reformulation (6a)–(6p)as defined in
Section 3.3 and solved with optimality gap zero, and

MILP2(10%) Alternative MILP reformulation (6a)–(6p) solved with
optimality gap 0.10.

4.1. Coverage function

There exist several empirical models in the literature to represent
the gradual coverage. Some of them include exponential model (Chen,
Li, He, Sun, & Chen, 2010; Yang et al., 2015; Karatas & Onggo, 2019),
polynomial model (Liu & Towsley, 2004), Fermi-type model (Fewell &
Ozols, 2011; Karatas, 2017), Elfes model (Kumar & Lobiyal, 2013), and
cubic model (Xing et al., 2009). In this paper, we adopt the Fermi-type
coverage function to serve as an example in the development of our
numerical experiments, but our models can run on any model. Using
the Fermi function, the coverage proportion of a demand node i by a
branch of size m located at j is calculated as

= <
+

f d
d d
d d d( )

1, ¯ ,
, ¯ ¯̄ ,

0, otherwise.
m ij

ij m

m ij m
1

1 10 dij dm m dm[( ¯ )/( ¯ ) 1]/

(7)

where is a “sensitivity” parameter that describes the “tailing”
character of the function and m represents the range at which the
coverage proportion is 0.5 for branch size m. Fig. 5(a) illustrates
example coverage performances for four different size facilities
computed by (1) with Fermi function parameters
d d¯ {1, 2, 5, 7}, ¯̄ {8, 12, 16, 20}, {6.5, 9, 12.5, 15.5}m m m , and

= 0.5. Note that the coverage function is non-increasing in distance
and non-decreasing in branch size level. Fig. 5(b) depicts an example of
cooperative coverage of two branches computed by Eq. (2) and Fermi
function (7).

4.2. Experiment settings

We benchmark the performance of all formulations on three data
sets of different sizes, i.e. small, medium, and large. For each data set,
we choose two alternatives for I| | and J| | and three alternatives for
budget B. Next, we design a full factorial experiment with 12 combi-
nations (also referred as “case”) per data set. For each combination, we
generate and solve 10 random instances, yielding a total of 360 in-
stances. In each instance, we generate demand and candidate locations
(for branches and centers) uniformly on a two-dimensional square re-
gion of size ×s s. We determine demand weights randomly from a
uniform distribution between 0 and 1. The cost figures are also ran-
domly drawn from various uniform distributions at each location, but
the facility opening costs are scaled for different size options with fixed
factors. Specific values of all sets of sizes, parameters, and coverage
functions are summarized in Table 1. We determine subsets Kj and Jk by
further restricting the possible center-branch assignments by imposing
a distance threshold denoted by dmin. We assume that an assignment is
only possible if the distance between branch j and center k d, jk, is less
than dmin. We formally define these two subsets as

=K k K d d j J{ | },j jk min , and =J j J d d k K{ | },k jk min .
All models are implemented in General Algebraic Modeling System

(GAMS©) and solved by GUROBI 5.0. The experiments are run on a PC
with Intel(R) Core(TM) i7-8750H CPU@2.2 Ghz and 16 GB memory
running on Microsoft Windows 10 64-Bit operating system. In all runs,
we first “fix” the optimality gap to zero and maximum computational
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time to one hour. It means that, a MILP run stops if a feasible solution is
proven to be within 0.0% of the optimal objective value or the time
limit is reached. We then solve MILP1 and MILP2 formulations for
optimality gaps set to 0.10 while keeping the one hour time limit.

4.3. Results

Our experiments aim to compare the performance of all formula-
tions proposed in this paper in terms of (i) the total number of instances
solved to optimality, (ii) CPU times of the solved instances, and (iii) the
optimality gaps of the unsolved instances. For each data set and pro-
blem size, Table 2 shows the total number of instances solved to

optimality within the one hour computing time limit, the average
computing time (in seconds) among solved instances, and the average
of the optimality gaps reported by the solver among unsolved instances
when optimality gap is set to zero (for MILP1(0%) and MILP2(0%)),
and all instances when optimality gap is set to 10% (for MILP1(10%)
and MILP2(10%)). The row after each data set reports the overall
average values for each performance metric. For each pair of MILP
formulation (grouped with respect to the optimality gap setting) the
largest number of instances solved, the smallest computing time, and
the optimality gap are indicated in bold.

Fig. 5. (a) Coverage performance for 4 different size branches, (b) Individual and overall coverage performance of two branches.

Table 1
Experiment setup for each instance set.

Set 1: Small Cases Set 2: Medium Cases Set 3: Large Cases

Problem size I| | {25, 50} I| | {100, 200} I| | {400, 800}
J| | {20, 40} J| | {50, 100} J| | {200, 400}

=K| | 20 =K| | 50 =K| | 200
=M| | 2 =M| | 3 =M| | 4
=N| | 2 =N| | 3 =N| | 4

Values of fixed parameters =
=B J

J
{1000, 1500, 2000}, | | 20
{2000, 2500, 3000}, | | 40

=
=B J

J
{2000, 3500, 5000}, | | 50
{3000, 5000, 7000}, | | 100

=
=B J

J
{5000, 7500, 10000}, | | 200
{7500, 12500, 17500}, | | 400

= =
={ m

m
100, 1
200, 2m =

=
=
=

m
m
m

100, 1
200, 2
400, 3

m =

=
=
=
=

m
m
m
m

100, 1
200, 2
400, 3
800, 4

m

Qn = =
={ n

n
200, 1
400, 2 Qn=

=
=
=

n
n

n

400, 1
800, 2
1200, 3 =

=
=
=
=

Q

n
n
n
n

800, 1
1600, 2
3200, 3
6400, 4

n

=d 20min =d 30min =d 40min
=s 100 =s 125 =s 150

Values of random parameters =
× =b

U j J m
b j J m

[30, 60], , 1
1.75 , , 2jm

j1

=
× =

× =
b

U j J m
b j J m

b j J m

[30, 60], , 1
1.75 , , 2
3 , , 3

jm j

j

1

1

=
× =

× =
× =

b

U j J m
b j J m

b j J m
b j J m

[30, 60], , 1
1.75 , , 2
3.2 , , 3
4.4 , , 4

jm
j

j

j

1

1

1

=
× =c U k K n

c k K n
[50, 100], , 1

1.5 , , 2kn
k1

=
× =

× =
c

U k K n
c k K n

c k K n

[75, 125], , 1
1.5 , , 2
2 , , 3

kn k
k

1
1

=
× =

× =
× =

c

U k K n
c k K n

c k K n
c k K n

[100, 150], , 1
1.5 , , 2
2 , , 3
2.75 , , 4

kn
k

k
k

1
1

1

=a d j J k K5 , ,jk jk =a d j J k K5 , ,jk jk =a d j J k K5 , ,jk jk

U i I[0, 1],i U i I[0, 1],i U i I[0, 1],i

Coverage Function Parameters d̄ {2, 3}m d̄ {2, 3, 4}m d̄ {2, 3, 4, 5}m

d̄̄ {10, 12}m d̄̄ {8, 10, 12}m d̄̄ {8, 10, 12, 14}m

= +d d( ¯ ¯̄ )/2m m m = +d d( ¯ ¯̄ )/2m m m = +d d( ¯ ¯̄ )/2m m m
= 0.5 = 0.5 = 0.5
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4.3.1. Results for Set 1:
For Set 1, Table 2 shows that, both MILP1(0%) and MILP2(0%) are

capable of solving all small size instances to optimality in less than a
second. Similarly, MILP1(10%) and MILP2(10%) can also solve all in-
stances in less than a second with average reported gaps of 4%. In this
group of runs, the minimum and maximum gaps for MILP1(10%) are
2% (Case 1–3) and 6.65% (Case 1–11), and for MILP2(10%) these va-
lues are 0.75% (Case 1–3) and 5.94% (Case 1–5). We like to clarify that
MILP1(10%) and MILP2(10%) stops the solution process as soon as the
provable optimality gap drops to or below 10%, but for those runs we

reported the actual optimality gap, i.e., the gap with respect to the
actual optimal solution (or the best upper bound found from any other
formulation, when the optimal solution is not available). For this set of
runs, we conclude that, both formulations have similar performances
both in terms of solution time and quality.

4.3.2. Results for Set 2:
We now turn our attention to the results obtained on Set 2. Table 2

reveals that when optimality gap is set to zero, both MILP formulations
can still solve all instances to optimality. On the other hand, having an

Table 2
Numerical results for all three data sets (10 instances per row).

∗ average among solved instances
∗∗ average among unsolved instances for MILP1(0%) and MILP2(0%), and all instances for MILP1(10%) and MILP2(10%)
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average CPU time of 28 s, MILP1(0%) is outperformed by MILP2(0%)
which has an average CPU time of 16 s. Similarly, MILP1(10%) and
MILP2(10%) can solve all instances within a few seconds.

Additionally, average gap for MILP2(10%) formulation is slightly
better than that of MILP1(10%). Specifically, MILP1(10%) ends up with
an approximate average gap of 7% (varying between 3.44% and
8.60%), while this value is approximately 5.5% (varying between
4.32% and 6.99%) for the MILP2(10%). Hence, it is fair to conclude
that, in general, MILP2 is a slightly stronger formulation than MILP1 on
these set of instances. At this point, we highlight the trade-off between
the computational effort and solution quality. For example, in Instance
2–12, a decision maker can improve the computing time from 122 to 3 s
for MILP1 or from 80 to 4 s for MILP2 at the cost of a 7% deterioration
in solution quality.

4.3.3. Results for Set 3:
Regarding larger instances in Set 3, Table 2 reveals that none of the

MILPs can be solved within one hour when optimality gap is set to zero
except two instances out of 10 instances of Case 3–1 by MILP1. The
average gaps are reported as 8.04% and 8.10% for MILP1(0%) and
MILP2(0%), respectively. For MILP1(0%), the minimum and maximum
average gaps are 3.71% (Case 3–1) and 13.25% (Case 3–11), and for
MILP2(0%), these values are 2.77% (Case 3–1) and 18.10% (Case
3–12). When solving both MILPs with an optimality gap of 0.10, MILP2
performs slightly better in terms of number of instances solved, i.e. the
total number of instances solved is 78 out of 120 for MILP1(10%) and
80 out of 120 for MILP2(10%). Among solved instances, MILP1(10%) is
only slightly faster than MILP2(10%), with average computing times of
914 and 1017 s, respectively. In terms of the gaps reported by the
solver, both MILP1(10%) and MILP2(10%) end up with an approximate
average gap of 11%. For MILP1(10%), the minimum and maximum
average gaps are 9.07% (Case 3–3) and 12.94% (Case 3–12), and for
MILP2(10%), these values are 8.21% (Case 3–3) and 18.11% (Instance
3–12).

4.3.4. Summary
The performance of all formulations are presented in Figs. 6(a), (b),

(c) for Sets 1, 2, and 3, respectively. The figures depict the percentage of
instances solved within the one hour time limit (on the y-axis) within
computing time (on the x-axis; logarithmic). Fig. 6(a) shows that
MILP2(0%) performs consistently better than MILP1(0%) for the most
part of the Set 1 runs. However, their rankings switch towards the right
end of the figure. A similar behaviour is observed for MILP2(10%) and
MILP1(10%). Note that, the differences in computing times for small
size problems are very small and can be measured by milliseconds. In
Fig. 6(b), we observe the dominance of MILP2(0%) over MILP1(0%)
and MILP1(10%) over MILP2(10%). Specifically, both MILP1(0%) and
MILP2(0%) are capable of solving all of the medium size instances.
MILP1(10%) and MILP2(10%) can solve all instances in less than 4.23
and 5.11 s, respectively. Since none of the zero gap MILP2(0%) for-
mulations were able to solve the large instances within the time limit,
Fig. 6(c) only shows the performances of the MILP1(0%), MILP1(10%),
and MILP2(10%). In this last figure, MILP1(10%) outperforms
MILP2(10%) significantly.

Figs. 7(top) and (bottom) display the average and individual com-
puting times of the MILP formulations for all instances. Solid lines with
and represent average quantities over the 10 trials. and re-

present CPU times for individual instances for zero and 0.10 gap set-
tings and top bottom dotted lines represent the maximum and
minimum CPU times observed among 10 instances for each case, re-
spectively.

After these extensive numerical experiments on different size pro-
blem instances, we can conclude that MILP1 formulation leads to
higher quality solutions and shorter computation times compared to
MILP2 in general. To measure the effect of optimality gap on the per-
formance of the formulations, we have also carried out all experiments

with an optimality gap setting of 0.10. In those experiments we ob-
served that computation times can be decreased significantly at the cost
of a deterioration (approximately 3% for small, 4% for medium, and
10–14% for large instances) in the solution quality.

4.4. Solution characteristics

We now present some of the characteristics of the optimal (or near-
optimal) solutions. Here, we would like to comment only on the results
we obtained from MILP1(0%) as all the others show similar patterns.
Some of these results are summarized in Table 3, which reports the
average weighted demand coverage (objective function value zMILP1),
percentage of demand nodes not covered, partially covered, and fully
covered, the number of branches and centers opened of each size, and the
percentage of budget allocated to branches, centers, and assignments.

In each of the sets one notices that there are four subsets of cases
classified according to their sizes. Each subset is further differentiated
along three budget levels. As expected, the total coverage as well as the
other measures of coverage (partially and full covered demand node
percentages) all improve with the increasing budget. Similarly, the
average number of branches opened also increases with the budget. We
observe that there is a tendency to open more of the larger branches in
small and medium cases, but the results are mixed for large instances.
Fig. 8 (top) also reports on the average number of branches opened and
the proportion of the total demand covered (another measure of cov-
erage). The figure reports the average proportion of demand coverage
as well as that of each instance. The small circles represent values ob-
tained in individual replications, while red solid line depicts average
values. Dashed lines represent the minimum and maximum demand
coverage ratios observed among 10 replications for each case. From the
figure, we can see that there is a large variation in our instances; some
has total demand coverage of less than 10% (e.g., Case 1–7) while some
others may have over 80% (e.g., Case 3–6). Similarly one can also see
that there is a large variation on the number of branches opened in
across different cases. On average, we can see that the number of
branches opened is 10.4 for small instances, 20.3 for medium instances,
and 46.4 for large instances. Recall that the number of alternatives for
these sets are 20 and 40 for small, 50 and 100 for medium, and 200 and
400 for the large instances.

In our problem, the main function of centers is to provide the
backbone capacity for the branches. Therefore, the number of open
centers in our instances follow the pattern of branches to some extent,
i.e., as the budgets increase so does the average number of centers
opened. What we have observed differently, however, in our instances
centers with the smaller sizes are generally opened more often than the
large sizes (can also be observed in Fig. 8 (bottom)). This result might
appear somewhat counter intuitive as the economies of scale in the
center installation cost should favor opening larger centers rather than
smaller ones. The main drivers of this result are the rather dispersed
nature of branch locations and the presence of the assignment costs. In
the cooperative coverage setting there is diminishing returns for each
additional nearby branch opened (see Eq. (2)). Therefore, the model
favors a more evenly dispersed branch location strategy to maximize
the total coverage. To decide center locations to serve these branches,
the model basically trade-offs center installation costs with the branch-
center assignment costs. In the resolution of this trade-off it turns out
that smaller centers are favored more than the larger ones. However, if
the assignment costs get smaller we would observe that the model fa-
vors fewer but larger centers. In the extreme case where the assignment
costs are negligible, the model would open the minimum number of
centers needed to serve the branches. In terms of the budget use, al-
though we see some variation, we observe that a major share goes to
the branches, followed by centers and then by assignment costs.
Roughly speaking, in all instances, about 40–50% of the budget goes to
branch opening, about 25–35% goes to center opening, and about
20–30% goes to assignment costs.
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Fig. 6. Performance profile of each formulation for (a) Small size, (b) Medium size, and (c) Large size data sets.

Fig. 7. Average and individual CPU times of the MILP1(0%) and MILP1(10%) [top] and MILP2(0%) and MILP2(10%) [bottom] for all test instances.
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5. Conclusion

In this paper we present a two-level hierarchical facility location
and sizing problem for maximizing expected proportion of demand
covered. The lower level of facilities represent branches that act as first
points of contact for the customers. The upper level facilities, on the
other hand, represent centers that act as service suppliers to the bran-
ches at the lower level. The demand nodes are covered (satisfied) only

by the lower level facilities and the proportion of a demand node
covered depends on the proximity and the size of branches. We adopt
the gradual and cooperative covering concepts from the location lit-
erature. We present two nonlinear formulations for the problem and
develop their linearizations. Overall, our numerical experiments in-
dicate that the MILP formulations constitute a powerful portfolio of
location selection techniques, enabling the user to select the most ap-
propriate balance of coverage maximization and computational speed

Table 3
Solution characteristics for MILP1(0%) (10 instances per row).
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for a variety of problems instances.
This work lends itself to a number of extensions. Firstly, the problem

can benefit from specialized solution approaches. Although the com-
mercial optimizers can solve some reasonably sized problems, if an
application calls for larger sizes to be solved, they may be inadequate.
Secondly, this work can be extended to include the presence of com-
peting stores, which would necessitate a “capture” maximization of the
problem. Finally, the model can also be extended to consider a profit
maximizing objective also in the presence of important flow-based
transportation costs. Such a formulation would require total demand
covered at each specific branch and it would be a fruitful area to extend
the research in that direction to better model many retail settings.
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