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Abstract— Artificial microswimmers are prospective robotic 
agents especially in biomedical applications. A rotating magnet-
ic field can actuate a magnetized swimmer with a helical tail 
and enable propulsion. Such swimmers exhibit several modes of 
instability. Inside conduits, for example, hydrodynamic interac-
tions with the boundaries lead to helical paths for pusher-mode 
swimmers; in this mode the helical tail pushes a rotating mag-
netic head. State-of-the-art in controlled navigation of micro-
swimmers is based on aligning the swimmer orientation accord-
ing to a reference path, thereby requiring both swimmer orien-
tation and position to be known. Object-orientation is hard to 
track especially in in vivo scenarios which render orientation-
based methods practically unfeasible. Here, we show that the 
kinematics for a confined swimmer can be linearized by assum-
ing a low wobbling angle. This allows for a control law solely 
based on the swimmer position. The approach is demonstrated 
through experiments and two different numerical models: the 
first is based on the resistive force theory for a swimmer inside 
a swirling flow represented by a forced vortex and the second is 
a computational fluid dynamics model, which solves Stokes 
equations for a swimmer inside a circular channel. Helical 
pusher-mode trajectories are suppressed significantly for the 
straight path following problem. The error in real-life experi-
ments remains comparable to those in the state-of-the-art 
methods. 

Keywords—microswimmers, helical swimming, low Reynolds 
number, steering, control, stability 

I. INTRODUCTION 

Inspired by natural microorganisms such as Escherichia 
coli, artificial microswimmers have a great potential for tar-
geted drug delivery and minimally invasive surgery as well as 
micro and nanomanipulation. Helical microswimmers are 
typically actuated with a rotating magnetic field, which is 
compatible with medical procedures [1]. The swimmers can 
be manufactured with dimensions ranging from millimeters 
to nanometers in length [2], [3]. These swimmers are either 
made of magnetic material or magnetized by the attachment 
of a permanent magnet [2]–[4].  

Understanding the swimmer motion and achieving con-
trolled navigation are crucial for enabling practical applica-
tions. Several modes of instability are reported in the litera-
ture. For example, wobbling of magnetically rotated helical 
swimmers is demonstrated in [2], [5], [6] and investigated 
theoretically in [7] based on the resistive force theory. The 
Mason number (Ma), which represents the ratio of viscous to 
magnetic torques, is critical on the wobbling; as the Mason 
number decreases, i.e. the magnetic torque increases, wob-
bling angle of a helical swimmer increases [7]. The swim-
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mers act differently under confinement due to hydrodynamic 
interactions. In our previous work on the motion of artificial 
helical swimmers in circular channels [2], we observed that 
the swimmers tend to follow different trajectories based on 
whether the tail is pushing the magnetic head (pusher-mode) 
or pulling (puller-mode): The pushers follow helical trajecto-
ries close to the channel boundaries while the pullers follow a 
straight path close to the channel centerline. 

Controlled navigation of artificial swimmers has been ad-
dressed only recently. Earlier studies such as [3] and [8] show 
accurate in-plane control of helical swimmers in bulk fluid 
but they depend on open-loop algorithms due to challenges in 
visual feedback as stated in [9]. Xu et al. [9] are among the 
first to develop a closed loop control algorithm where they 
achieve planar path following based on the orientation error. 
Following this study, Oulmas et al. [10] realize the closed-
loop control by linearizing the swimmer dynamics through a 
chained formulation for tracking any 3-dimensional path with 
sub-millimetric accuracy. The authors demonstrate that the 
closed-loop control is robust enough to overcome disturb-
ances due to boundary effects down to 2.5 mm for a swimmer 
with a length of 14 mm and diameter of 1 mm [10]. A recent 
study by Leclerc et al. [11] demonstrates controlled naviga-
tion both inside and outside of a channel albeit with lower 
accuracy. 

Here, we use steering as a control mechanism to reduce 
wobbling and suppress helical pusher-mode trajectories. The 
third Helmholtz coil pair, orthogonal to other two pairs used 
for the rotating magnetic field, is used to modify the normal 
direction of the rotation plane of the magnetic field. The tilted 
rotation plane of the magnetic field imposes swimmer rota-
tion along the tilted normal which is exploited for controlled 
navigation. By assuming a low wobbling angle, it is possible 
to linearize the kinematic equations and obtain a control law 
based on the position and velocity of the swimmer. The nov-
elty of this approach is that it does not require the swimmer 
orientation to be known, which is a significant advantage in 
practical applications where even observing the position of 
the swimmer is challenging [1]. The tracking error is compa-
rable to those in recent studies. The performance is demon-
strated in simulations and experiments.  

II. METHODOLOGY 

A. Swimmer Dynamics 

Consider a swimmer inside a circular channel filled with 
a viscous fluid as shown in Fig. 1a. The swimmer has a 
cylindrical head with a length of Lh and diameter Dh. The 
pitch of the helical tail is λ, tail amplitude is B, the number 
of loops is n, filament thickness is dtail and the channel diam-
eter is Dch.  
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Control of helical microswimmers is approached as a 
path following problem as opposed to a trajectory following 
problem since the swimming velocity is limited by phenom-
ena such as step-out at high rotation frequencies and wob-
bling at low rotation frequencies. Here, we approach the 
problem as a radial path following problem and thus elimi-
nate the need for control in the main propulsion direction 
which is the long axis of the channel. 

The rotating magnetic field actuates the swimmer by im-
posing a magnetic torque on the swimmer: 

 m l τ m Q B   (1) 

where m is the magnetization vector of the swimmer, Ql is 
the rotation matrix from the lab frame (shown at Fig. 1a) to 
body frame of the swimmer and B is the total magnetic field 
in the lab frame. The driving magnetic field for propulsion, 
Bdrive, is generally provided by a pair of orthogonal Helm-
holtz coils and expressed as: 

    0 0 sin cos
T

drive B t t    B  (2) 

where B0 is the amplitude of the field, ω is the rotation rate 
of the field and t is time. Superscript “T” indicates transpose. 

According to the resistive force theory (RFT) [7], vis-
cous forces and torques (Fv and τv) on the swimmer are pro-
portional to linear and angular velocities (U and ) at low 
Reynolds number: 
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where RL, RR and RC are called the translation, rotation and 
coupling matrices. The elements of the matrices depend only 
on the swimmer geometry in bulk swimming conditions and 

can be evaluated analytically for slender filaments. In the 
case of hydrodynamic interactions, such as near-wall swim-
ming, the elements of the resistance matrix depend on the 
relative position and orientation of the swimmer with respect 
to solid boundaries. 

B. Kinematic Formulation and Control Law 

The objective of the control problem is to minimize the 
distance between the swimmer position p = [x y z]T and a 
reference path pref = [x yref zref]T, meaning that no control in 
x- direction is applied. The reference path is assumed con-
stant, e.g. yref = zref = 0, to show the stability of the algo-
rithm. 

We define the state vector, q = [ey ez]ʹ where ey = y - yref 
and ez = z- zref, and its time derivatives are: 
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These velocities depend on the orientation of the swim-
mer, represented by the angles θxy and θxz (refer to Fig. 1c). 
The steering directly adjusts these angles and thus changes 
the propulsion direction. Orientation angles can be manipu-
lated by the magnetic field B. The unit normal of the rotation 
plane of the magnetic field, ˆ

Be , points in -x direction with-

out steering, as shown at Fig. 1a. In the ideal case, the 
swimmer aligns its orientation in the propulsion direction, 

1ê , along ˆ
Be  and propels in this direction only such that the 

swimming velocity can be written as 1
ˆU U e . However, 

helical swimmers wobble both in free and confined swim-
ming conditions [2], [5], [6], [7]. The behavior is inherent to 
the swimmer geometry and it is characterized with the Ma-
son number (Ma), which is the ratio of hydrodynamic to 
magnetic torques. Due to the periodic nature of wobbling, it 
can be said that 1ê  remains along ˆ

Be  in average. Thus, we 

can rewrite Eq. (4) in the following form to include the con-
trol inputs: 
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where U is the velocity in the x- direction in the lab frame. 
Apparently, tan(.) brings non-linearity to the system, but can 
be approximated as tan(θ)~θ with error in approximation as 
low as 5% up to 20º. It was shown in Caldag et al. [2] that 
the orientation angles barely reach around 20º when Dch = 3 
mm, λ = 1 mm and n = 4 so this approximation is valid for 
in-channel experiments reported here. This linearization 
brings: 
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To drive the error to zero, error dynamics must satisfy: 

 0y zK K   q q   (7) 

for positive gains, K{y,z} > 0. Then according to (6), we have:  

 
Fig. 1. (a) The geometric setup, showing the channel, the swimmer, 

rotating magnetic field, field normal and propulsion direction. (b) Steer-
ing of the swimmer through tilting the normal of the magnetic field. (c) 

Representation of angles θxy and θxz. 



  

 { , } { , } { , } 0x y z y z y zU K e     (8) 

Thus, the control inputs are: 

 { , } { , }
{ , }

y z y z
x y z

K e

U


    (9) 

Steering is realized through an additional magnetic field, 
Bcontrol. Defining B (ωt) = Bdrive + Bcontrol, the control input is 
as following: 

    cos sin 0 0
T

control t t      B   (10) 

with coefficients α and β. ˆ
Be  for the tilted magnetic field can 

be evaluated from the cross product of a pair of orthogonal 
magnetic field vectors: 
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If β = 0 and α ≠ 0, ˆ
Be is tilted in z- direction only, as 

demonstrated at Fig. 1b. For a non-zero α, ˆ
Be  will be tilted 

in the y- direction as well. The magnitudes of the coeffi-
cients will adjust the scaling. This mechanism can be com-
bined with a simple feedback controller to move the swim-
mer towards pref : 

  control p ref B K p p   (12) 

where Kp is a 3x3 matrix that contains the proportional gains 
and time-dependent parts of the magnetic field. In this con-
figuration, matrix Kp will have the following form: 
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Therefore, the coefficients α and β in Eq. (10) can be ex-
pressed in terms of the position error and the gains, Kp,y and 
Kp,z as follows: 

 , ,,p y y p z zK e K e       (14) 

The relation between the tilting and the coefficients is: 

    arctan ,   arctanxy xz        (15) 

Rewriting Eq. (9), we obtain:  

 ,arctan( ) y y
xy p y y

K e
K e

U
      (16)  

Based on the tan(θ) ~ θ assumption, the relation between 
Kp,{y,z} and K{y,z} come out as:  
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Overall dynamics of the swimmer and control mecha-

nism are drawn as a block diagram in Fig. 2. The swimmer is 
continually tilted towards the reference path with no 
knowledge of swimmer orientation. This is advantageous 
especially considering the potential in vivo applications 
where even obtaining accurate swimmer position infor-
mation is challenging.  

For stability analysis, we define a Lyapunov function, V 
as:  

  2 21

2 y zV e e    (19) 

It is obvious that V = 0 for {ey, ez}={0,0} and V > 0 for 
all {ey, ez}-{0,0}. If we take the time derivative, assuming 
that yref and zref are constant in time: 

      y zV e y e z      (20) 

Here, the velocities y  and z  are the control inputs set 

via Bcontrol. In order to satisfy 0V    for all {ey, ez}-{0,0}, y  

and z  should have opposite signs with ey and ez, respective-
ly. In other words, the swimmer should be tilted upward 
when it is below the reference path and vice versa. The defi-
nitions of α and β in Eq. (14) alongside their effects on 1ê  

show that this is always the case. Since all Lyapunov stabil-
ity conditions are satisfied, {ey, ez}={0,0} is a stable equilib-
rium point. Even though this stability analysis is not com-
plete for time-varying pref, the results in Section III show 
that time-varying paths can be followed as well.  

Even though the proportional control is sufficient in most 
of the cases tested here (refer to Section III), integral and 
derivative control are incorporated in the experimental setup 
to see whether there would be any improvement in the per-
formance. Additional terms are introduced to Eq. (12) as the 
following:  
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Integral evaluation is carried out by trapezoidal method 
while the derivative of the error is approximated with a Sa-
vitzky-Golay filter that uses 10 previous datapoints. Matrices 
Ki and Kd have a form similar to Kp in Eq. (13) with the 
gains Ki,{y,z} and Kd,{y,z}. 

 
Fig. 2. Block diagram of swimmer kinematics and control. 



  

C. Numerical Models 

Steering control is validated with two different numerical 
models. The first one is based on the resistive force theory 
with the assumption that the swimmer has a thin helical tail 
as considered in [7]. Here, we use simplified expressions 
that fully match the ones provided in [7]. By employing Eq. 
(3), instantaneous linear and angular velocities are obtained 
at a given time using the magnetic torque, τm in Eq. (1) and 
the specified magnetic field B (other forces and torques, 
such as gravity and contact, are neglected). Velocities are 
used to compute the complete trajectories with kinematic 
equations: 

 
d

dt


p
U   (22) 

 ˆi
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e
Ω e  (23) 

where ˆie  for i=1, 2, 3 correspond to the unit vectors of the 
body coordinate frame. 

As the swimmer rotates inside the channel, it generates a 
swirling flow in the channel. We introduce a forced vortex 
through a swirl flow with angular velocity Γ to mimic the 
swimming inside a circular channel. The tangential velocity 
is decomposed into: 
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Drag forces due to these additional velocities are added 
in (3). Note that these velocities are in the lab frame, thus the 
additional drag forces should be evaluated locally and 
summed up. In order to do that, the velocities have to be 
expressed in the local coordinate frame. Defining s as the 
curvilinear coordinate index that represents the tail, Uf in the 
body frame at position s is: 

    b T
f l l ls  U Q W Q x x  (25) 

where xl represents the coordinates of a local position on the 
helical tail in body coordinates as a function of s and W 
represents the multiplications in Eq. (24) with W (2,3) = -Γ, 
W (3,2) = Γ and the rest are zeroes. The normal and tangen-
tial components of the differential force due to swirl are then 
evaluated as: 
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where t̂  is the unit vector in tangential direction on the heli-
cal tail, the superscript “b” indicates the body frame of the 
swimmer, ct and cn are the tangential and normal resistive 
coefficients, respectively: 

 
2

,     2
2 1

log
2

t n t

tail

c c c

d


 

 
 

 

  (27) 

where μ is the fluid viscosity. The elements of the resistance 
matrices in Eq. (3) were derived in a non-dimensional fash-

ion in [7]. Here, we use the simplified versions of those 
expressions which output exactly the same results with those 
in [7]. Defining: 
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The resistance matrices come out as following: 
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Note that the geometric parameters in these expressions were 
defined in Section II-A. 

Apart from this numerical model, the control algorithm is 
also tested with a CFD-based kinematic model that incorpo-
rates snapshot solutions to the Stokes equations to solve for 
instantaneous swimmer velocities which are then integrated 
to evaluate the swimmer position at the next time step by 
using Eqs. (22)-(23). The geometric setup is as shown in Fig. 
1a as in-channel swimming can be simulated exactly with 
the help of complete solutions to Stokes equations. As the 
magnetic field can be changed at each instant simulated, the 
response time of the control algorithm is as low as Δt = 
0.0016 seconds for the simulations reported here. Verifica-
tion of this model and finer details are out of the scope of 
this work and the reader is referred to [12] for further details.  

D. Experiment Setup 

The experiment setup consists of 3 pairs of orthogonally 
placed Helmholtz coils, as shown in Fig. 3. The helical mi-
croswimmer is produced with 3D printing and it is magnet-
ized by attaching a radially magnetized cylindrical magnet to 
its head. The swimmer is placed inside a glycerol-filled 



  

cylindrical channel for low Reynolds number swimming. 
Geometric properties of the swimmer are listed in Table I. 
Swimmer position is extracted from the images recorded in 
real-time with a digital camera placed above the setup. A 
mirror is placed next to the channel with 45-degree inclina-
tion and allows the extraction of 3D position information 
using Matlab’s Image Processing Toolbox (see Fig. 3). Fur-
ther details of the experiment setup can be found in [2].  

III. RESULTS 

Stabilizing the pusher-mode swimming in channels is a 
challenging and important task as the swimmers follow 
helical trajectories and crash into the walls occasionally. In 
this study, steering control is implemented to suppress heli-
cal trajectories in the pusher-mode. The algorithm is first 
tested in the RFT-based model presented in Section II. The 
swimmer geometry is as defined in [7] with n = 3. Initial 
position is set to p0 = [0 1 1]T and pref = [x 0 0]T. In accord-
ance with the calculations from our previous simulations for 
a confined swimmer, the Mason number, Ma, is set to 1 
[12]; the Mason number is defined as:  
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Swirling flow is the main cause of the helical trajectory 
of the swimmer. The strength of the forced vortex, Γ, is 
taken as π/10 such that it is significantly lower than the non-
dimensional rotation rate of the magnetic field, 2π, similar to 
the observed swirl rate in experiments. Trajectories under 
different control gains are displayed in Fig. 4. Control algo-
rithm significantly suppresses the helical path as the radius 
of the trajectory falls from around 5 mm to 0.27 mm and to 
0.05 mm for the highest gain value tested. Note that this 
improvement increases propulsion velocity as well, from 
0.08 mm/s without control to 0.35 mm/s and to 0.36 mm/s 

Table I. Geometric parameters of the swimmer used in ex-
periments. 

Geometric Parameter Value 

Dh [mm] 0.8 

Lh [mm] 1.5 

L [mm] 4 

λ [mm] 1 

dtail [mm] 0.2 

with the control in the loop. The control algorithm performs 
well in the kinematic model too where the complete Stokes 
equations are solved. Here, Dch = 3 mm and control gains are 
set to unity. Fig. 5a shows that the trajectory radius decreas-
es from around 0.71 mm to 0.05 mm, which is the threshold 
value for the algorithm to stop steering. As the change in the 
trajectory radius is much lower compared to the unbounded 
swimmer in the numerical model, the improvement in the 
propulsion velocity is negligible here. It is also possible to 
make the swimmer follow time-varying paths with this algo-
rithm as shown at Figs. 5b-c where pref = [x 0 0.2sin(1.5t)]ʹ. 
This would hint at potential 3D path following in complex 
environments. 

Next, we test the control algorithm experimentally. 
pref = [x 0 0]T for all cases with an error threshold of ±0.1 
mm (this is larger compared to the simulations in order to 
account for the error in position estimation of the swimmer) 
and Kp,y=Kp,z = 1 again. This value is concluded by testing 
different gain values (not shown). Rotation rate of the mag-
netic field is set to 10 Hz, B0~5 mT and |m|~6 x 10-4 A.m2. 
This configuration prevents step-out [5] while providing a 
strong propulsion to the swimmer. Note that gravitational 
effects are negligible at these rotation rates as the swirling 
flow lifts the swimmer, hence, there is no additional com-
pensation for gravity. Figs. 6a-b show the non-dimensional 
radial position (β) of the swimmer, defined as: 
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where r is the radial position of the swimmer on y-z plane, 
Rch = Dch / 2 and Rsw is the radius of the swimmer head. 
While the helical path is suppressed significantly in both 
cases, the swimmer reaches to the reference path within the 
threshold for Dch = 3 mm but fails in the 5.6-mm channel 
within the duration of the experiment. The length of the 
experiment setup alongside the channel axis is too short to 

 
Fig. 4. Swimmer trajectories in the numerical model with and without 
control. (a) shows the 3D trajectories while (b) shows y vs. x and (c) 

shows z vs. x. 

 
Fig. 3. Experimental setup showing the Helmholtz coils, digital camera 
and computer. An image captured from experiment recordings; coordi-

nate axes and angles θxy and θxz are shown at the right-hand side. 



  

show fully converged trajectories inside the wider channel 
but there is a significant decrease in β compared to the case 
without control. Noting that the same control gains are ap-
plied in both cases, it is natural that the algorithm performs 
worse for a wider channel where Ma and swirl rates are 
lower. While the swirling flow causes helical trajectories, it 
is beneficial in achieving quicker convergence to the refer-
ence path. The control input could not be increased further 
due to hardware limitations. There is also the issue of de-
layed response due to hardware and image processing. Here, 
the control input is updated at each rotation of the swimmer, 
corresponding to a response time of 0.1 s. The algorithm 
should perform better if these problems are overcome, as the 
numerical results indicate. 

We conduct additional experiments for Dch = 3 mm. P, 
PD, PI and PID control are tested as defined in Eq. (23). The 
change of β under these scenarios are shown in Fig. 6c (the 
trajectory with PD control is omitted as it is very similar to 
the trajectory with PID control). PI control increases the 
oscillations in the system while P, PD and PID control result 
in similar paths under optimal gain values. The reason for 
similar performance can be attributed to the limitations in 
suppression of the helical paths. P control appears to be 
sufficient in suppression to a degree while these additional 
inputs cannot contribute any further. Wobbling cannot be 
suppressed completely either, as shown in the simulation 
results in Figs. 4 and 5. As Ma number is finite, some 

wobbling will remain even if Ma is very high. Higher inte-
gral or derivative gains quickly destabilize the system be-
cause of the oscillatory nature of the trajectories. Higher P-
gain could improve the control performance but the increase 
in magnetic torque may trigger more wobbling, so it cannot 
be increased indefinitely.  

IV. CONCLUSION 

Reports on the locomotion of natural and artificial micro-
swimmers show several modes of instability. The helical 
swimmers exhibit wobbling in bulk that is inherent to their 
geometry and it cannot be overcome with geometric modifi-
cations and control algorithms, especially at low Mason 
numbers corresponding to high magnetic fields. Moreover, 
due to hydrodynamic interactions, helical trajectories are 
observed in confined swimming in the case of pusher-mode 
swimming. Here, a proportional control algorithm is demon-
strated on the suppression of helical pusher-mode trajecto-
ries. The method is based on steering of the swimmer by 
tilting the rotation plane of the driving magnetic field.  For 
misalignment angles less than 20o, there is no need to extract 
the swimmer orientation. At high Ma numbers, the swimmer 
can be controlled effectively with this approach. As the 
confinement increases the viscous effects, the proposed 
method is particularly useful in such scenarios. 

The extension of the framework to 3D path following 
and reduction in the response time of the control algorithm 
in experiments constitute the future work. This approach is 
expected to be adoptable for practical applications. 
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