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ABSTRACT 

 

UPTAKE, TRANSPORT AND SEED DEPOSITION OF ZINC IN WHEAT AND 

MAIZE UNDER VARIED ZINC AND NITROGEN SUPPLY 

 

RAHEELA REHMAN 

Molecular Biology, Genetics and Bioengineering, PhD Dissertation, November 2019 

Supervised by: Prof. Dr. Levent Ozturk 

 

Keywords: agronomy, biofortification, maize, nitrogen, wheat, zinc 

Chronic zinc (Zn) deficiency is a major health issue affecting over two billion people, 

caused by heavy reliance on staple crops (i.e. wheat, rice and maize) which are inherently 

low in Zn. This project was devoted to reveal the individual and combined effects of 

genetic and agronomic Zn biofortification in wheat and maize. The first part focused on 

understanding the mechanisms involved in differences in uptake and translocation of 

foliar-applied Zn among wheat and maize species. It was shown that wheat has a greater 

capacity of leaf uptake and translocation of foliar-applied Zn compared to maize. The 

second part investigated the effect of nitrogen (N) supply on uptake and accumulation of 

Zn in maize and wheat. Improving N supply significantly enhanced the shoot 

accumulation as well as leaf uptake of Zn from foliar Zn sprays in wheat and maize. The 

third part studied the effectiveness of Zn fertilizers in the form of soil, foliar and soil + 

foliar for improving growth, grain yield and nutrients uptake by genetically biofortified 

HarvestPlus wheat genotypes. It was demonstrated that the genetically biofortified 

genotypes have higher capacity to uptake, utilize and translocate Zn from soil and/or 

foliar applications as compared to conventional cultivars. These results conclude that the 

most sustainable way of tackling human Zn deficiency would be to improve grain Zn 

concentration of cereal crops by unifying genetic and agronomic biofortification 

strategies.  
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ÖZET 

 

FARKLI ÇİNKO VE AZOT UYGULAMALARI ALTINDA YETİŞEN BUĞDAY VE 

MISIRDA ÇİNKONUN ALIMI, TAŞINMASI VE TANEDE BİRİKİMİ 

 

RAHEELA REHMAN 

Moleküler Biyoloji, Genetik ve Biyomühendislik, Doktora Tezi, Aralık 2019 

Tez danışmanı: Prof. Dr. Levent Öztürk 

 

Anahtar sözcükler: agronomik, azot, biyofortifikasyon, buğday, çinko, mısır 

Kronik çinko (Zn) eksikliği iki milyardan fazla insanı etkileyen önemli bir sağlık 

sorunudur ve temelinde Zn bakımından fakir tahıllara (buğday, pirinç ve mısır) olan 

bağımlılık yatmaktadır. Bu proje, buğday ve mısırda genetik ve agronomik Zn 

biyofortifikasyonunun bireysel ve kombine etkilerini ortaya çıkarmak için yürütülmüştür. 

Birinci bölüm, buğday ve mısır türleri arasında yapraktan uygulanan Zn'nun alımı ve 

taşınmasındaki farklılıkta rol oynayan mekanizmaların anlaşılmasına odaklanmıştır. 

Yapraktan uygulanan Zn’nun alımı ve taşınması bakımından, buğdayın mısırdan üstün 

olduğu gösterilmiştir. İkinci bölümde farklı azot (N) uygulamalarının mısır ve buğdayın 

Zn alımı ve birikimine etkisi araştırılmıştır. Buğday ve mısıra uygulanan N arttıkça yeşil 

aksamda daha fazla Zn birikmiş ve yapraktan uygulanan Zn’nun alımı önemli oranda 

artmıştır. Üçüncü bölümde, genetik olarak biyofortifiye edilmiş HarvestPlus 

genotiplerinin büyüme, tane verimi ve besin alımını iyileştirmek üzere toprak, yaprak ve 

toprak + yaprak formunda uygulanan Zn gübrelemesinin etkinliği incelemiştir. 

Biyofortifiye edilmiş genotiplerinin konvansiyonel çeşitlere göre toprak ve/veya yaprağa 

uygulanan Zn’yu daha etkin bir şekilde alma, kullanma ve taşıma kapasitesine sahip 

olduğu gösterilmiştir. İnsanda Zn eksikliği ile başa çıkmak üzere kullanılabilecek en 

sürdürülebilir yöntemin tahılların tane Zn konsantrasyonunu arttırmak üzere genetik ve 

agronomik biyofortifikasyon stratejilerinin birleştirilmesi olduğu sonucuna varılmıştır.  
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(A) GENERAL INTRODUCTION 

 

 

 

 

A.1. Functions of Zinc and Zinc-deficiency Related Health Problems 

 

 

 

Zinc (Zn) deficiency is one of the most important malnutrition problems affecting 

over one-third of the world’s population (Velu et al., 2014; FAO et al., 2015). Zinc 

deficiency is more prevalent in the developing world (Hess SY, 2017 ) with percentage 

of individuals at risk being highest in the South East Asia (33%), followed by Sub Saharan 

Africa (28%), South Asia (27%), Latin America and the Caribbean (25%) (Wuehler et 

al., 2005). In Pakistan, unfortunately, more than 50% of the total population is suffering 

from micronutrient deficiencies with Zn and Fe deficiency being the most common. The 

National Nutrition Survey (NNS) report indicated that 37% of 0 to 5-years old children 

and 48% of pregnant women in Pakistan are Zn deficient (Bhutta et al., 2011).  

The importance of Zn as a micronutrient is well known for both humans and plants 

(Cakmak et al., 1996) where it is practically found in all tissue types and with a variety 

of metabolic functions. Numerous proteins which are directly involved in structural and 

regulatory functions in the human body has Zn as a foremost component/element 

(Andreini and Bertini, 2012, Andreini et al., 2011, Krezel & Maret, 2016). Zn is necessary 

for cellular functions such as cell growth and division, and it plays a vital role in a wide 

range of biochemical processes within the cell such as carbohydrates catabolism. It has a 

crucial role in the proper working of the immune (defensive) system in the body and is 

important for wound healing. Furthermore, Zn is important for reproductive health and 

fertility in both males and females because it has a critical role in balancing levels of 

reproductive hormone including testosterone, estrogen and progesterone. Therefore, low 

Zn in the body can cause infertility in both men and women (Frassinetti et al., 2006). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hess%20SY%5BAuthor%5D&cauthor=true&cauthor_uid=28118744
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Optimal Zn level in the body is essential for appropriate physical performance, 

energy level, and body configuration because it is required for the proper functioning of 

red and white blood cells and mainly concentrated in body organs like kidneys, bones, 

liver, and pancreas (Kaur et al., 2014). Zn deficiency in humans leads to many critical 

health problems especially related to the immune system. An adequate level of Zn in the 

body enhances the immune system and hence, prevents many infectious diseases like 

diarrhea and pneumonia as well as different types of cancers. Recently, researchers 

related Zn deficiency to various kinds of cancers such as breast, ovaries, colon, lungs, and 

skin cancer. This deficiency can lead to the accumulation of cholesterol and 

inflammation, which results to increase the heart diseases risk. It is also required for the 

proper functioning of insulin and potentially can prevent diabetes (Alam and Kelleher, 

2012, Vidyavati et al., 2016, Liu et al., 2017).  

The symptoms of Zn deficiency in humans include stunted growth, reduced brain 

development, mental disability, and increased vulnerability to many infectious diseases 

such as pneumonia and diarrhea (Black et al., 2008; Gibson, 2012; Krebs et al., 2014; 

Terrin et al., 2015). 

The recommended dietary allowance for Zn generally depends on gender, age and 

special conditions like pregnancy and lactation period. According to International Zinc 

Nutrition Consultative Group (IZiNCG) the recommended dietary allowance (RDA) of 

Zn for adults varies between 9 and 19 mg per day (Gibson et al., 2010). However, the 

average daily Zn intake of individuals consuming wheat as a major food is estimated to 

be about 3.2 mg per day, resulting in severe Zn deficiency and related diseases (Cakmak 

and Kutman, 2017). Zinc deficiency is especially more dangerous for children under 5 

years of age due to higher demand to meet rapid growth and development (Wessells & 

Brown, 2012). It has been reported that annually, around half a million children in the 

world die because of the diseases related to Zn deficiency. Similarly, pregnant women 

require high relatively high amount of Zn and a higher miscarriage rate was recorded in 

Zn deficient pregnant women (Black et al., 2008; Krebs et al., 2014; Vidyavati et al., 

2016). 

Humans can take up Zn both from animals and plants-based products as a part of 

their natural diet. Meat-based foods which include beef, pork, lamb, dairy products, 

chicken and some seafood particularly oysters are considered as a good source of Zn 
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(Rangan and Samman, 2007). Legumes, whole grains and other plant-based food contain 

Zn but lower than animal-based food. Cereals (e.g. wheat, rice, and maize) are considered 

as inherently low in Zn (Cakmak et al., 2010a). Moreover, bioavailability of Zn in cereals 

and legumes is compromised by the existence of high levels of anti-nutrients, mainly in 

the form of phytate and phenolic compounds (Gibson et al., 2010).  

 

 

 

A.2. Agronomic Biofortification: Instant Solution to Zn Deficiency Problem 

 

 

 

Zinc biofortification is an approach using multiple strategies to improve the 

nutritional quality of food by deliberately increasing the Zn concentration in food and 

provide a public health benefit to reduce Zn deficiency related diseases in humans (White 

and Broadely, 2011). Genetic manipulations of the plant genome through the integrated 

approaches of  conventional breeding or genetic engineering to increase the Zn 

concentration in edible plant parts is called “genetic biofortification”, whereas the 

“agronomic biofortification” is the use of soil and/or foliar fertilizer application strategies 

to enhance the food Zn concentrations (Bouis and Welch, 2010; Velu et al., 2012; Bouis 

and Saltzman, 2017). Both, genetic and agronomic biofortification are very useful 

approaches to enhance Zn in food and combat Zn deficiency in vast human populations 

(Graham et al., 1999, 2001, 2007; White and Broadley, 2005, 2009; Cakmak, 2008; 

Khoshgoftarmanesh et al., 2009; Bouis and Welch, 2010). However, agronomic 

biofortification has proved to be an immediate and thus faster solution compared to long-

term genetic biofortification (Cakmak, 2008a; Velu et al., 2014; Cakmak et al., 2010 a; 

Chen et al., 2017). Moreover, genetically biofortified genotypes (i) may not able to 

express their full potential to uptake, utilize and accumulate Zn from soils in Zn deficient 

areas of the world and (ii) can result in extensive depletion of Zn in such areas in the long 

term. It has been reported that more than 50% of the total soils in the world used for cereal 

cultivation is Zn deficient or Zn is not bio-available to plants due to the distinct chemical 

or physical properties of soils (Graham & Welch, 1996; Cakmak, 2008a; White and 

Broadley, 2011; Cakmak and Kutman, 2017). 

According to the Food and Agriculture Organization (FAO), maize, rice, and 

wheat in combination provide more than half (51%) of the caloric requirement of the 

https://www.frontiersin.org/articles/10.3389/fpls.2018.00677/full#B9
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world population (FAO et al., 2015). These cereals are not only inherently low in Zn but 

also, they are high in phytates which bind the minerals including Zn making it unavailable 

for absorption in human digestive track (Gibson et al., 2010). Moreover, part of Zn is also 

lost during the grain processing practices (Cakmak et al., 2010b). Agronomic 

biofortification or fertilizer use strategy provides an instant solution to the problem by 

applying Zn fertilizer to the soil and plant as a foliar spray (Cakmak, 2008 b).  

At first, the use of Zn fertilizers aimed to cure and mitigate visible Zn deficiency 

symptoms to increase the ultimate yield. No emphasis was given to human Zn 

requirements or increasing Zn concentration in crops and food. In 2008, International 

HarvestPlus (www.harvestplus.org) program and its sub-projects HarvestZinc 

(www.harvestzinc.org) were launched with the objectives of improving the nutritional 

quality of food crops especially cereals (wheat, rice, and maize) for targeted countries. 

Numerous soil and foliar Zn treatments were tested on a variety of cereal crops at multiple 

locations in 12 different countries. The results showed that soil Zn treatment is essential 

for proper crop stand, plant vigor, and yield enhancement but it does not have significant 

effect on grain Zn concentrations In contrast, foliar Zn application has a positive impact 

on increasing the grain Zn concentration in cereals particularly in wheat (Cakmak and 

Kutman, 2017). 

Various field experiments under the HarvestZinc project on cereals (wheat, rice, 

and maize) revealed a differential response of wheat, rice and maize for the foliar 

application of Zn fertilizer (Cakmak and Kutman, 2017). Wheat is very responsive to the 

foliar application of zinc fertilizer as compared to rice and maize. In average, wheat has 

shown 83% increases in grain Zn with foliar Zn fertilization whereas the effect was much 

less in rice (27%) and particularly maize (9%) (Cakmak and Kutman, 2017). 

 

 

 

A.3. Questions addressed in this project 

 

 

 

The first step was to investigate the physiological reasons of differential response 

of maize and wheat to foliar Zn fertilizer application. In Chapter I, a series of experiments 

are described which were performed to test different hypotheses of poor response of 
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maize plants to foliar Zn application as compared to wheat. For a better understanding of 

Zn uptake and translocation, very sensitive and selective techniques involving stable Zn 

isotopes and Zn-specific fluorescent dyes were used. 

Chapter II concentrates on the characterization of biofortified HarvestPlus 

(www.harvestplus.com) wheat genotypes developed through long-term conventional 

breeding activities under the HarvestPlus program in Pakistan and India. Experiments 

were conducted to study root uptake, shoot translocation, foliar absorption, re-

mobilization and seed deposition of Zn in 12 biofortified genotypes developed for the 

targeted areas of Pakistan and India.  

Chapter III involves a study on the effects of increased nitrogen (N) nutrition on 

root uptake and shoot accumulation of zinc in maize and wheat plants. Experiments were 

also conducted to illustrate how the increase in N nutrition affects the leaf uptake of Zn 

from foliar Zn application in these plant species. 

 

  



6 
 

 

 

 

 

 

 

 (B) GENERAL MATERIALS AND METHODS 

 

 

 

 

In all experiments, wheat and maize plants were grown in soil or solution culture 

in growth facilities described below: 

 

 

 

B.1. Plant Growth Facilities 

 

 

 

Experiments describe in this thesis were conducted in either green house or in 

growth chambers. 

 

 

 

B.1.1. Greenhouse 

 

 

 

The experiments conducted in greenhouse were under natural daylight in summer 

or with supplemented light in winters depending upon the day length. The geographic 

coordinates of the greenhouse are 40o 53' 24.5'' N and 029o 22' 46.7'' E. The greenhouse 

is equipped with a heating system and an evaporative cooling system, which keep the 

temperature inside the greenhouse in the range of 15-25°C depending on the season and 

day time.  

 

 

 

B.1.2. Growth Chamber 

 

 

Few of the experiments describe in Chapters I and III were carried out in a growth 

chamber under controlled climatic conditions (light/dark periods: 16/8 h; temperature 
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(light/dark): 22°C/18°C; relative humidity (light/dark): 60%/70%; photosynthetic flux 

density: 400 μmol m-2 s-1).  

 

 

 

B.2. Soil Culture 

 

 

 

The soil used in all experiments was transported from a Zn-deficient location 

(Eskişehir) in Central Anatolia, Turkey. This experimental soil was calcareous (18% 

CaCO3), alkaline (pH 8.04), organic matter (1.5%), Zn deficient (DTPA-Zn: 0.13 mg kg-

1 soil) with clay-loam texture. Seeds were sown in plastic pots containing 3 kg of soil. 

Before potting, the soil was mixed homogeneously with the following nutrients (in mg 

per kg of soil): 100 P in the form of KH2PO4, 30 S in the form of K2SO4, 5 Fe in the form 

of sequestrene. Additionally, different rates of N and Zn were used in the form of Ca 

(NO3)2.4H2O and ZnSO4.7H2O respectively, depending on the experimental design 

(individual rates are provided in respecting chapters). The pots were watered twice a day 

with deionized water to ensure the soil was kept at 60-80% water holding capacity. 

 

 

 

B.3. Solution Culture 

 

 

 

Seeds were germinated in perlite moistened with a saturated CaSO4 solution for 5 

days at room temperature. Then, seedlings were transferred to 3-L pots containing a 

nutrient solution with the following composition: 0.2 mM KH2PO4, 1.7 mM K2SO4, 1 

mM MgSO4.7H2O, 0.1 mM KCl, 100 μM Fe-EDTA, 1 μM H3BO3, 1 μM MnSO4.H2O, 

0.2 μM CuSO4.5H2O 0.2 μM NiCl2.6H2O, 0.14 μM (NH4)6Mo7O24.4H2O. Zinc in the 

form of ZnSO4.7H2O, and N in the form of Ca (NO3)2.4H2O, were supplied according 

to the respective experimental treatment plan. Lower N pots were supplemented with 

CaSO4.2H2O to compensate the missing Ca. Nutrient solutions were well aerated 

continuously and replaced after every three days. 
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B.4. Harvest 

 

 

 

Plant age at the time of harvest differed according to the designed experiment and 

is explained in respective chapters. Green plant shoots harvested before maturity were 

washed with DI H2O right after harvesting and placed in labelled paper bags. Roots and 

the application leaves were sequentially washed in DI H2O, 10 mM CaCl2 and 10 mM 

EDTA. All harvested plant samples were dried at 60°C in oven until complete dryness. 

Grains from the plants harvested at full maturity were threshed using a laboratory 

thresher. Dried samples were weighed at room temperature for biomass and yield 

determination.  

 

 

 

B.5. Elemental Analysis 

 

 

 

Dried shoot and root samples were ground to fine powder with an agate vibrating 

cup mill (Pulverisette 9; Fritsch GmbH; Germany). For mineral nutrients analysis (other 

than N), 200 mg (±5) ground plant sample (shoot or root) was subjected to acid-digestion 

in closed vessel microwave system (MarsExpress; CEM Corp., Matthews, NC, USA) in 

the presence of 2 ml of 30% H2O2 and 5 ml of 65% HNO3. For grain samples, 6-12 whole 

grains of equivalent weight were used in acid-digestion. 

Following digestion, the total sample volume was topped up to 20 ml by DI water 

and filtered through quantitative filter paper. Concentrations of mineral nutrients were 

determined by inductively coupled plasma optical emission spectrometry (ICP-OES) 

(Vista-Pro Axial, Varian Pty Ltd, Mulgrave, Australia). The N concentrations in samples 

were determined by using LECO TruSpec C/N Analyzer (Leco Corp., St Joseph, MI, 

USA). Measurements were checked by using certified standard reference materials 

obtained from the National Institute of Standards and Technology (Gaithersburg, MD, 

USA).  
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B.6. Calculations 

 

 

 

The elemental concentrations other than N in the samples were calculated by 

multiplying the values measured by ICP-OES with the dilution factor, which is calculated 

for each sample separately by dividing the total sample volume by the dry weight of the 

digested sample. For calculating the elemental contents for a given plant part, the 

calculated elemental concentrations were multiplied by the measured total dry weight of 

the concerned plant part. Similarly, the grain elemental yield, i.e. the total amounts of 

elements of interest deposited in the grains, were determined by multiplying the grain 

yield by the grain elemental concentrations.  

 

 

 

B.7. Statistical Analysis 

 

 

 

All experiments had factorial designs and 4-6 replicates in each treatment group. 

The Statistix 10 software was used for statistical analysis. The significance of the effects 

of treatments and their interactions on the reported traits was evaluated by analysis of 

variance (ANOVA). Then, Tukey’s honestly significant difference (HSD) test (p < 0.05) 

was used to determine significant differences between means. 
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CHAPTER 1 

 

 

ABSORPTION AND MOBILIZATION OF ZINC IN MAIZE AND WHEAT 

DURING EARLY VEGETATIVE STAGE AS EFFECTED BY VARIED ZINC 

SUPPLY IN SOIL 

 

 

 

 

1.1. Introduction 

 

 

 

Micronutrient malnutrition particularly zinc (Zn) deficiency is highly prevalent 

worldwide, affecting about two billion people, especially children and women. Zinc 

deficiency in humans causes various health problems (Cakmak, 2000) including 

retardation in physical growth and brain development, reduced immunity against 

infectious diseases and poor birth outcomes in pregnant women (Black et al., 2008; 

Gibson, 2012; Krebsetal., 2014; Terrin et al., 2015).  

The application of plant nutrients in the form of spray to the foliage is an important 

agricultural practice to correct nutrient deficiencies particularly when soil conditions limit 

the availability of nutrients or to meet the internal plant demands according to its 

developmental stage (Fernández and Brown, 2013). Soil Zn application was found 

effective in increasing yield and yield components, however, to increase the Zn 

concentration in grains, foliar Zn applications were found more effective, particularly in 

wheat (Cakmak et al., 2010). The effectiveness of foliar treatments varies for different 

plant species depending upon the plant characteristics as well as environmental factors 

which influence the uptake and translocation of applied fertilizer (Fernández et al., 2013).  

The effect of Zn fertilizer application on crop yield and grain Zn concentration 

depends upon many factors such as crop variety and methods of Zn fertilizer application. 

For example, maize was more sensitive to Zn deficiency than wheat, and foliar Zn 
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application increased Zn concentration of wheat but not much in maize (Wang et al., 

2012). In previous activities of the international HarvestZinc project 

(www.harvestzinc.org), one of the interesting results were the poor response of maize to 

foliar Zn application (Cakmak and Kutman, 2017). Rice and particularly wheat crops 

responded to foliar Zn fertilization positively and significantly in terms of increases in 

grain Zn concentrations whereas the response of maize was very low and insignificant 

(Zhou et al., 2012; Phattarakul et al., 2012; Cakmak and Kutman, 2017). All these studies 

reported the lower response of maize to foliar Zn application, however, none of these 

studies focused on revealing the mechanisms involved in differential responses of wheat 

and maize to foliar Zn applications. Therefore, there is a dire need of experimentation to 

investigate the differences in uptake and translocation mechanisms of foliarly applied Zn 

in maize and wheat. 

The effectiveness of foliar application of any nutrient depends upon the absorption 

and penetration into leaves and translocation of the absorbed nutrients to other plants parts 

such as sink organs (Fernández and Brown, 2013). The reason behind the poor response 

of maize to foliar Zn could be inefficient absorption and/or translocation capacity of 

maize as compared to wheat. Another possible reason can be the “dilution effect”. Dry 

matter production as well as grain yield and thousand grain weight are much higher in 

maize compared to wheat. Consequently, absorbed Zn is diluted within higher biomass 

resulting in less deposition of Zn in the maize grain. Moreover, a lower Zn concentration 

in maize grains can be related with lower protein content as compared to wheat grain. Zn 

is an important component of grain proteins which is considered as a sink for Zn 

(Cakmak, 2009). Low protein content of maize grain could be among the reasons for low 

Zn accumulation in the maize grain compared to wheat. 

Due to high sensitivity and ease of sample preparation and handling, use of stable 

isotopes to trace the movement of mineral elements in plants is an efficient technique 

(Wang et al., 2011). The uptake and translocation of metals can also be measured using 

radioactive isotopes (Page et al., 2006). Many studies have shown the use of stable and 

radioactive Zn isotopes (68Zn and 65Zn) as a tracer to study Zn transport in rice and wheat 

(Wu et al, 2010; Haslett et al., 2001, Yilmaz et al., 2017). Stable 70Zn isotope was also 

used to trace the movement of Zn from culture medium to wheat grain (Wang et al., 2011). 

Similarly, use of Zinpyr-1 and fluorescence microcopy is another useful addition to the 
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tools available for studying Zn localization and homeostasis in plant tissues (Sinclair et 

al., 2007). Zinpyr-1 is membrane-permeable staining dye which is very selective for Zn 

over other biological metals, therefore very useful for binding intracellular Zn (Burdette 

et al., 2001). 

This study involves a series of experiments to test the different hypotheses for 

poor response of maize plants to foliar Zn application as compared to wheat. The first 

experiment was conducted to assess the changes in uptake and translocation of foliar-

applied Zn in young wheat and maize plants cultured in soil with low or adequate Zn 

supply. Foliar Zn was applied on the older leaves of plants by dipping in fertilizer solution 

and young shoots were analyzed for the translocation of absorbed Zn from foliar 

application.  

The second experiment was aimed to reveal the differences in leaf absorption and 

translocation of foliar-applied Zn in maize and wheat plants cultured in nutrient solution 

with low or adequate Zn supply. In order to trace the movement of foliar-applied Zn 

within the plant tissues, stable isotope 70Zn was included in the foliar application solution. 

Second experiment was consisted of two sub experiments 2-A and 2-B to overcome the 

“dilution effect” due to biomass differences among maize and wheat. In 2-A, different 

aged maize and wheat plants were subjected to same volume of fertilizer solution 

application, while in 2-B same age plants were treated with different volume of fertilizer 

solution (for example maize was applied double volume of fertilizer solution compared 

to wheat in 2-B experiment).  

In the third experiment, results from the first and second experiments were 

confirmed by fluoresce microscopy and using a Zn-responsive fluorescent dye ‘Zinpyr’. 

The fluoresce microscopic images provides a visual demonstration of Zn localization in 

maize and wheat leaves after foliar Zn application.  
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1.2. Experiment 1: Absorption and Translocation of Foliar Zinc (as ZnSO4.7H2O) 

in Maize and Wheat during early vegetative stage 

 

 

 

1.2.1. Materials and Methods 

 

 

 

Plants were grown in marginal Zn (0.5 mg kg-1) and sufficient (2 mg kg-1 Zn) Zn 

levels in soil under greenhouse conditions. Preparation of soils and planting method is 

described in “General Material and Methodology”. When the plants were two weeks old, 

the oldest leaves of wheat and second oldest leaf of maize plants were dipped into 

solutions containing Zn (0.2 % ZnSO4.7H2O + 0.02 % Tween-20) for 10-15 seconds twice 

a day for four days. The surfactant Tween-20 was added in the application solution to 

facilitate leaf penetration and absorption of foliar-applied Zn. Plants were harvested 24 h 

after the final leaf treatment. Maize and wheat plants were harvested in two fractions 

namely F-I (upper portion of the plant including stem and young leaves) and F-II 

(application leaf and the stem parts below). Plants were dried in the oven and their dry 

weight were determined. Only uncontaminated young plant shoot (fraction-I) was 

analyzed for Zn concentration.  

Zn concentrations were measured by ICP-OES after digesting the ground leaf 

samples in a closed vessel microwave digestion system in the presence of concentrated 

HNO3 and H2O2 (details of the procedure are described in the “General Material and 

Methodology” section) 
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Figure 1.1: Immersion of second oldest leaf of maize 

plant in fertilizer solution (0.2 % ZnSO4.7H2O + 0.02 

% Tween-20) for 10-15 seconds at room temperature. 

 

 

 

 

1.2.2. Results 

 

 

Adequate soil Zn supply increased the shoot biomass in both maize ad wheat, 

however this effect was not statistically significant. The results showed that soil Zn 

treatment was effective in increasing the shoot Zn concentration significantly in both 

maize and wheat. Shoot Zn concentration of the plants grown in adequate soil Zn was 

about two-folds of the low-Zn plants (Table 1.1).  

In maize, under low and adequate soil Zn supply shoot Zn concentration increased 

with foliar Zn treatment however, the effect was not significant. In case of wheat, with 

low or adequate soil-Zn supply, foliar Zn treatments significantly increased leaf Zn 

concentrations compared to their respective control (i.e. no foliar treatment) (Table 1.1). 

Moreover, wheat showed higher extent of increase in Zn concentration as compared to 

maize plants. Wheat plants absorbed and translocated more Zn from the treatment leaf 
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compared to maize, particularly when grown under low Zn conditions. There was no 

significant effect of foliar treatments on plant biomass production (Table 1.1). 

Analysis of variance showed that Zn concentration was significantly (p<0.01) 

affected by soil Zn level as well as foliar Zn application (Table 1.2). Young shoot Zn 

concentrations were significantly (p<0.01) higher in wheat as compared to that of maize. 

Crop species interacted with soil Zn and foliar Zn significantly but the interaction among 

all other variables had no significant effects on shoot Zn concentration (Table 1.2).  

 

Table 1.1: Effect of foliar Zn application to oldest leaf on shoot Zn concentration and 

shoot biomass in maize and wheat grown under low (0.5 mg kg-1) and adequate Zn supply 

(2.0 mg kg-1) in soil. 

 

 

Table 1.2: Analysis of variance (ANOVA) for Zn concentration in young shoots. 

 

Source of variation DF      SS      MS      F      P 

Species (Maize, Wheat)    1 1280.43 1280.43 555.34 <0.0001 

Soil Zn level              1 1430.59 1430.59 620.47 <0.0001 

Foliar Zn     1  167.99  167.99  72.86 <0.0001 

Species x soil Zn      1   82.88   82.88  35.95 <0.0001 

Species x foliar Zn     1 29.15   29.15  12.64 0.0016 

Soil x foliar Zn          1    4.59    4.59   1.99 0.1711 

Species x soil x foliar Zn     1    2.41    2.41   1.04 0.3169 

Error               24   55.34    2.31   

Total 31 3053.38    

No Foliar Zn 397 ± 57 A 12.9 ± 1.2 F

With Foliar Zn 363 ± 91 A 15.8 ± 0.9 F

No Foliar Zn 463 ± 27 A 23.3 ± 2.5 DE

With Foliar Zn 463 ± 27 A 25.7 ± 1.8 CD

No Foliar Zn 112 ± 24 B 19.9 ± 1.4 E

With Foliar Zn 125 ± 11 B 27.7 ± 1.4 C

No Foliar Zn 127 ± 17 B 37.8 ± 1.2 B

With Foliar Zn 117 ± 6 B
43.0

±
1.1 A

*Low Zn: 0.5 mg Zn / kg  and Adequate Zn: 0.5 mg Zn / kg of soil supplied as ZnSO4.7H2O

**"No foliar Zn" plants were treated with Tween-20 (0.02%, w/v) only, whereas "With foliar Zn" plants 

were treated with 0.2 % ZnSO4.7H2O + 0.02 % Tween-20 (w/v). See Materials and Methods section for 

treatment details. 

Zn Concentration

(mg kg
-1

)
Plants Foliar treatments**

Maize

Low Zn

Adequate Zn

Soil Zn 

supply*

Low Zn

Adequate Zn

Wheat

Biomass

(mg plant
-1

)



16 
 

 

 

 

 

1.3. Experiment 2-A and 2-B: Absorption and Translocation of Foliar-applied Zinc 

(70Zn) in Maize and Wheat grown with low or adequate Zn supply 

 

 

 

1.3.1. Materials and Methods 

 

 

Experiments 2-A and 2-B were designed to understand how maize and wheat 

species differ from each other in terms of leaf uptake and translocation of foliar-applied 

Zn to shoot and root. The movement of Zn from the point of application on the leaf to 

younger parts of the shoot and root was investigated by using the stable isotope 70Zn. To 

overcome the possible “concentration” and “dilution” effects two separate nutrient 

solution culture experiments (i.e. Experiment 2-A and 2-B) were conducted sequentially.  

In Experiment 2-A, considering the fact that maize grows faster and produces 

more biomass compared to wheat, the interspecies difference in biomass production at 

the time of foliar Zn application was compensated by using younger maize plants. For 

this, wheat was sown nine days earlier than maize. Cultivars of maize (Zea mays L. cv. 

Shemal) and wheat (Triticum aestivum L. cv. Tahirova) were grown in nutrient solution 

supplied with low (10-2 µM) and adequate (1 µM) Zn in the form of ZnSO4
.7H2O. 

Composition of the nutrient solution, planting and growth conditions were described in 

the “General Material and Methodology” section. When maize plants were 9 days old, 

and wheat plants were 18 days old, the second leaf of each species was treated with a 

solution of 70Zn (Trace Sciences International Corp., Canada) at an equivalent rate of 

0.05% ZnSO4
.7H2O along with the non-ionic surfactant Plantacare (0.02 %, w/v). Each 

leaf was applied with a total of 50 µl (20 x 2.5 µl = 50µl) of application solution on the 

abaxial surface using a fixed-volume (i.e., 2.5 µL) microliter pipet. Twenty droplets of 

2.5 µL were placed on the middle part of the application leaf with about 2 mm distance 

from each other (see illustrations below). 

In Experiment 2-B, the effect of varied biomass production between the two 

species was compensated by using twice the volume of foliar application solution on 

maize plants compared to wheat. Maize (Zea mays L. cv. Shemal) and wheat (Triticum 



17 
 

aestivum L. cv. Tahirova) plants were grown in nutrient solution as described above with 

low (10-2 µM) and adequate (1 µM) Zn supply in the form of ZnSO4.7H2O. When both 

maize and wheat plants were 18 days old, 70Zn at an equivalent rate of 0.05% 

ZnSO4.7H2O mixed with Plantacare (0.02 % w/v) was applied on abaxial surface of the 

second leaf. Considering the “dilution factor”, maize plants with larger biomass were 

applied with 60 µl (24 x 2.5 µl), whereas the wheat plants with smaller biomass received 

30 µl (12 x 2.5 µl) of the application solution. 

 

 

Fig 1.2. Application of 50µl (20 x 2.5 µl= 50µl) of 70Zn at an equivalent rate of 

0.05% ZnSO4
.7H2O mixed with Plantacare® (0.02 % w/v) on 2nd leaf of 9-days 

old maize and 18-days old wheat plants grown in nutrient medium solution. 

 

In both Experiments 2-A and 2-B, plants were misted every two hours with DI-

H2O to extend the contact duration of the leaf with application solution. Following 36 

hours after foliar application, plants were harvested in three fractions viz. application leaf, 

remaining shoot and root. Root and shoot fractions were washed with DI-H2O whereas 

the application leaves were sequentially washed in DI-H2O, 10 mM CaCl2 and 10 mM 

EDTA solution for three min to remove the residual 70Zn on the leaf surface. The 

harvested plant parts were dried at 60oC until a constant weight grain for determination 

of biomass. Dried samples were ground and digested in a closed vessel microwave 
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digestion system in the presence of concentrated HNO3 and analyzed by inductively 

coupled plasma mass spectrometry (ICP-MS) for determination of 70Zn. 

In both Experiments 2-A and 2-B, each treatment consisted of four independent 

(pots) replicates. The 70Zn contents per plant (e.g., total amounts of 70Zn) were calculated 

by multiplying the shoot and root dry weights by the shoot and root 70Zn concentrations 

respectively. The significance of the effects of treatments and their interactions on the 

reported traits were evaluated by analysis of variance (ANOVA). Significant differences 

among means were determined by Tukey’s HSD test at the 5% level (P ≤ 0.05).  

 

 

 

1.3.2. Results 

 

 

 

1.3.2.1. Experiment 2-A 

 

 

In Experiment 2-A, there was a significant increase in shoot, root and total 

biomass production with adequate supply of Zn in nutrient solution in 18 days old wheat 

plants (Table 1.3) whereas, shoot, root, and total biomass was not affected significantly 

in 9 days old maize plants. Similarly, shoot:root ratio was increased significantly with 

adequate Zn supply in wheat but not in maize. Foliar 70Zn treatment had no significant 

effect on biomass production or shoot:root ratio in low and adequate Zn maize and wheat 

plants (Table 1.3).  

70Zn concentrations in shoot and root increased significantly in response to the 

foliar applied 70Zn solution in low (10-8 M) and adequate Zn (10-6 M) maize and wheat 

plants (Table 1.4). The magnitude of increase varied between the plant species and with 

Zn supply in nutrient solution. The results showed that wheat performed better in uptake 

of leaf-applied Zn as compared to maize. Generally, under both low (10-8 M) or adequate 

Zn supply (10-6 M), 70Zn concentrations in shoot, root and application leaf increased more 

dramatic in wheat compared to maize (Table 1.4).  

In low Zn maize, shoot dry weight increased 7.9 % with foliar 70Zn from the 

control plants as compared to 9.8 % in adequate Zn plants. Root dry weight decreased by 
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2.8 % in low Zn plants but increased by 4.32% in adequate Zn with 70Zn treatment. Total 

biomass was increased 4.5% in low Zn and 7.4% in adequate Zn. Shoot: root ratio also 

increased by 13.6% and 5% in low and adequate Zn treated maize plants respectively. 

However, these differences were not statistically significant. In case of wheat, foliar 70Zn 

application resulted in 5.9% and 11.8% decreases in shoot dry weights under low and 

adequate Zn supply respectively. Root dry weight in low Zn plants was also reduced by 

1.4% however, it increased in adequate Zn plants. Total biomass was reduced by 3.5% 

and 5.7% in low and adequate Zn supplied wheat respectively. Shoot:root ratio was also 

decreased in wheat, but all these effects were statistically non-significant (Table 1.3).  

Relative change in 70Zn concentration was calculated as percent increase in 70Zn 

concentration (in shoot, root and application leaf) with foliar 70Zn application as 

compared to non-treated control plants. In maize shoot and root 70Zn concentration were 

doubled in adequate Zn plants whereas, there was 4.5 and 5.2 foldincrease in low Zn 

plants respectively (Table 1.4). In case of wheat, shoot and root 70Zn concentration were 

increased around 5-fold in adequate Zn conditions. Shoot 70Zn concentration was 

increased by 6.2 folds whereas, root showed a marked increase of 27 folds under low Zn 

conditions in wheat.  Analysis of application leaf showed that 70Zn concentration was 

increased significantly with foliar application of 70Zn in both maize and wheat under low 

and adequate Zn supply, but 70Zn concentration was three folds higher in low Zn maize 

and wheat application leaves as compared to adequate Zn plant application leaves (Table 

1.4). Generally, the results showed that low Zn maize and wheat plants tended to absorb 

and translocate more 70Zn from foliar spray as compared to adequate Zn plants. Under 

low Zn supply, the major portion of absorbed Zn was translocated to roots in wheat as 

compared to shoots (Table 1.4). 

Similarly, shoot and root 70Zn content was increased in maize as well as in wheat, 

but with a significantly higher rate in wheat particularly under low Zn conditions (Table 

1.5). Relative change in total 70Zn contents (root, shoot, application leaf) were higher in 

low Zn plants as compared to adequate Zn plants. Under low Zn supply, maize shoot and 

root 70Zn contents were increased by five folds, whereas the wheat shoot and root contents 

were increased up to seven and 27 folds respectively (Table 1.5).  At adequate Zn supply, 

shoot and root 70Zn content were doubled in maize and increased five times in wheat. In 

low Zn-supplied wheat, root 70Zn content was found markedly higher, indicating higher 
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translocation rate of absorbed Zn towards roots under low Zn supply (Table 1.5). Overall, 

total 70Zn contents of wheat were 4.4 and 3 times higher as compared to that of maize 

under low and adequate Zn conditions respectively. 

Total Zn concentration (including 64Zn, 66Zn, 67Zn, 68Zn and 70Zn) was 

significantly affected with the Zn supply in nutrient medium solution (Table 1.6). Both 

maize and wheat plants showed significant increase in total Zn concentration with 

adequate supply of Zn in nutrient solution as ZnSO4.7H2O. Foliar 70Zn application had 

no significant effect on total Zn concentration of maize and wheat shoots and root, 

however, increased significantly in application leaves particularly due to higher 70Zn 

uptake (Table 1.6).  



21 
 

 

 

 

 

 

 
Table 1.3. Dry matter production of 9-days-old maize and 18-days-old wheat plants grown in nutrient solution with low (10-8 M) and adequate 

Zn (10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 305 ± 11 ab 143 ± 3 ab 448 ± 13 bc 2.13 ± 0.06 b 236 ± 60 cd 125 ± 9 abc 339 ± 27 d 1.92 ± 0.62 b

With foliar 
70

Zn 329 ± 7 a 139 ± 23 ab 468 ± 23 ab 2.42 ± 0.48 ab 211 ± 8 d 123 ± 13 abc 325 ± 21 d 1.73 ± 0.20 b

Relative change (%)

Adequate Zn No foliar 
70

Zn 297 ± 8 ab 139 ± 8 ab 474 ± 14 ab 2.14 ± 0.12 bc 308 ± 10 ab 107 ± 4 c 437 ± 9 bc 2.87 ± 0.16 a

With foliar 
70

Zn 326 ± 4 ab 145 ± 1 a 509 ± 6 a 2.24 ± 0.02 ab 271 ± 23 bc 118 ± 7 bc 411 ± 28 c 2.30 ± 0.18 a

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

Root

(mg plant
-1

) (mg plant
-1

) 

Treatments

Zn supply in 

nutrient 

solution*

Foliar treatments**

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, wheras "With foliar 
70

Zn plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, w/v). See Materials and Methods 

section for treatment details. 

Biomass

Shoot : RootShoot TotalShoot : RootTotalRootShoot 

-19.9

-9.89

9.81

-1.3913.6

4.67

-2.80

4.32

Maize Wheat

9.76

7.88 -5.93

-11.8

-3.49

-5.757.38

4.46
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Table 1.4. 70Zn concentration in 9-days-old maize and 18-days-old wheat plants grown in nutrient solution with low (10-8 M) and adequate Zn 

(10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 120 ± 23 e 160 ± 24 de 124 ± 28 d 50.1 ± 8.6 e 61.2 ± 3.9 e 76.6 ± 13.6 d

With foliar 
70

Zn 665 ± 43 c 988 ± 74 b 67433 ± 5248 c 364 ± 75 d 1750 ± 64 a 137556 ± 5124 b

Relative change (%)

Adequate Zn No foliar 
70

Zn 442 ± 33 d 442 ± 21 c 450 ± 22 d 174 ± 10 e 317 ± 15 cd 206 ± 19 d

With foliar 
70

Zn 871 ± 75 b 886 ± 104 b 69855 ± 5332 c 1136 ± 123 a 1871 ± 209 a 153752 ± 14846 a

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

Root

15428

623

552

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, wheras "With foliar 
70

Zn plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, 

w/v). See Materials and Methods section for treatment details. 

Treatments

Zn supply in 

nutrient 

solution*

Foliar treatments**
Maize

Shoot 

Wheat

70
Zn Concentration in Plant Tissue

455

97 100

519 54418 2757

490

Application leafShoot RootApplication leaf

(µg kg 
-1

)

74475

179385
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Table 1.5. 70Zn contents in 9-days-old maize and 18-days-old wheat plants grown in nutrient solution with low (10-8 M) and adequate Zn (10-6 M) 

supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 31.9 ± 5.1 de 22.9 ± 3.5 cd 4.69 ± 0.95 c 59.4 ± 7.2 c 8.00 ± 1.07 e 7.63 ± 0.53 d 1.90 ± 0.31 c 17.5 ± 0.7 c

With foliar 
70

Zn 193 ± 17 b 137 ± 21 b 2592 ± 105 b 2922 ± 92 b 64.3 ± 12.3 d 215 ± 25 a 3467 ± 303 a 3746 ± 321 a

Relative change (%) 704 2713 182627 21275

Adequate Zn No foliar 
70

Zn 115 ± 11 c 61.5 ± 2.5 c 16.6 ± 1.1 c 193.3 ± 13.8 c 49.9 ± 2.6 de 34.0 ± 2.3 cd 4.44 ± 0.44 c 88.3 ± 2.0 c

With foliar 
70

Zn 250 ± 20 a 129 ± 15 b 2678 ± 100 b 3056 ± 125 b 283.6 ± 48.8 a 221 ± 37 a 3429 ± 179 a 3934 ± 137 a

Relative change (%) 468 551 77147 4353

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

(ng/tissue/plant)

Treatments 70
Zn content per tissue (ng/tissue/plant)

Zn supply in 

nutrient 

solution*

Foliar treatments**
Maize Wheat

Shoot Root Application leaf Total Shoot Root Application leaf Total

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, wheras "With foliar 
70

Zn plants were treated with 0.05% of 70Zn dissolved in Plantacare (0.02%, w/v). See Materials and Methods section 

for treatment details. 

507

117 109

500 55139

15985 1481

4819
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Table 1.6. Total Zn concentration (all isotopes including 64Zn, 66Zn, 67Zn, 68Zn and 70Zn) in 9-days-old maize and 18-days-old wheat plants grown 

in nutrient solution with low (10-8 M) and adequate Zn (10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 15.9 ± 1.4 cd 26.7 ± 3.6 c 17.6 ± 1.9 fg 7.84 ± 1.29 de 11.7 ± 0.7 d 10.9 ± 1.1 g

With foliar 
70

Zn 23.0 ± 4.1 bc 25.6 ± 3.1 c 90.6 ± 9.4 d 7.09 ± 0.55 e 12.9 ± 0.5 d 155 ± 5 b

Relative change (%)

Adequate Zn No foliar 
70

Zn 70.7 ± 1.6 a 72.4 ± 3.8 a 70.7 ± 2.8 e 28.0 ± 1.4 b 52.8 ± 2.8 b 31.2 ± 1.4 f

With foliar 
70

Zn 63.4 ± 8.5 a 71.3 ± 7.8 a 132 ± 8 c 28.5 ± 0.8 b 52.8 ± 4.0 b 186 ± 16 a

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, wheras "With foliar 
70

Zn plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, 

w/v). See Materials and Methods section for treatment details. 

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

Total Zn Concentration in Plant Tissue

WheatMaize

Shoot Root Root Application leaf

(mg kg
-1

)

187

-9.56

1.85

10.0

-0.15

1320

498-1.58

44.9

-10.3

416-4.47

Treatments

Zn supply in 

nutrient 

solution*

Foliar treatments**
Application leaf Shoot
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Table 1.7. Total Zn contents (all isotopes including 64Zn, 66Zn, 67Zn, 68Zn and 70Zn) in 9-days-old maize and 18-days-old wheat plants grown in 

nutrient solution with low (10-8 M) and adequate Zn (10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

 
 

  

Low Zn No foliar 
70

Zn 4.25 ± 0.47 c 3.83 ± 0.54 c 0.67 ± 0.08 e 8.75 ± 0.44 d 1.49 ± 0.49 d 1.46 ± 0.08 d 0.27 ± 0.02 e 3.21 ± 0.52 e

With foliar 
70

Zn 6.70 ± 1.28 bc 3.55 ± 0.65 c 3.48 ± 0.22 c 13.7 ± 1.1 c 1.26 ± 0.16 d 1.57 ± 0.10 d 3.90 ± 0.35 bc 6.74 ± 0.39 d

Relative change (%)

Adequate Zn No foliar 
70

Zn 18.4 ± 0.8 a 10.1 ± 0.4 a 2.62 ± 0.16 d 31.1 ± 1.3 a 8.01 ± 0.37 b 5.67 ± 0.41 b 0.67 ± 0.04 e 14.4 ± 0.2 c

With foliar 
70

Zn 18.2 ± 2.4 a 10.3 ± 1.1 a 5.08 ± 0.37 a 33.6 ± 3.1 a 7.09 ± 0.67 b 6.21 ± 0.45 b 4.16 ± 0.17 b 17.5 ± 0.6 b

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

(µg/tissue/plant)

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

Shoot 

Treatments

Zn supply in 

nutrient 

solution*

Foliar treatments**

Total Zn content per tissue (µg/tissue/plant)

Wheat

TotalApplication leafRootShoot 

Maize

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, wheras "With foliar 
70

Zn plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, w/v). See Materials and Methods section 

for treatment details. 

110

21.65209.49-11.58.08

TotalApplication leafRoot

93.92.64-1.15

57.57 13457.89-15.256.9420-7.36
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Table 1.8. Relative distribution of absorbed 70Zn in shoot, root and application leaf of maize and wheat plants grown in nutrient solution with low 

(10-8 M) and adequate Zn (10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

 
 

Low Zn No foliar 
70

Zn 53.6 ± 4.1 b 38.5 ± 4.9 a 7.92 ± 1.43 d 45.5 ± 4.3 c 43.6 ± 3.9 a 10.9 ± 2.1 c

With foliar 
70

Zn 6.62 ± 0.6 de 4.71 ± 0.81 c 88.7 ± 1.2 b 1.74 ± 0.44 e 5.72 ± 0.18 c 92.5 ± 0.3 a

Adequate Zn No foliar 
70

Zn 59.5 ± 1.2 a 31.9 ± 1.1 b 8.62 ± 0.40 cd 56.5 ± 2.6 ab 38.5 ± 2.6 a 5.02 ± 0.40 e

With foliar 
70

Zn 8.17 ± 0.41 c 4.20 ± 0.39 c 87.62 ± 0.79 b 7.23 ± 1.34 de 5.64 ± 1.04 c 87.1 ± 1.8 b

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

Maize Wheat

Zn
70

 distribution per tissue (%)

RootShootApplication leafRootShoot Application leaf

Treatments

Zn supply in 

nutrient 

solution*

Foliar treatments**

(%)

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, wheras "With foliar 
70

Zn plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, 

w/v). See Materials and Methods section for treatment details. 
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Similarly, total Zn contents were improved significantly with adequate Zn supply 

in maize and wheat plants (Table 1.7).  Foliar applied 70 Zn had no significant effect on 

total Zn contents of shoots and roots in both low and adequate supplied plants. Total Zn 

contents of application leaf were increased in maize and wheat under both low and 

adequate Zn supply and consequently total Zn contents per plant (including application 

leaf) were increased significantly with foliar 70Zn application (Table 1.7). 

Evidently, most of the Zn taken up by the application leaf was retained (i.e. > 

87%) in the application leaf in both plant species (Table 1.8). In low-Zn supplied wheat, 

Zn taken up by the application leaf was preferentially translocated to the root as compared 

to the shoot tissue (Table 1.8). Conversely, in low-Zn supplied maize, a larger portion of 

Zn was retained in the shoot compared to root. In adequate Zn plants, a significantly 

higher ratio of Zn was distributed in shoots than in roots irrespective of the plant species. 

For example, in maize with adequate-Zn supply, shoot tissue maintained 8.17% of the Zn 

taken up by the application leaf while the root maintained only 4.2%. The same figures 

for wheat shoot and root were 7.23% and 5.64% respectively (Table 1.8). 

Leaf relative Zn uptake was calculated by the ratio of total 70Zn in the whole plant 

biomass (including shoot, root and application leaf) to that of total 70Zn applied on the 

application leaf. Leaf relative Zn uptake ranged from 12.9% in low Zn-supplied maize to 

17.1% in adequate Zn-supplied wheat (Table 1.9) and was significantly (p<0.05) higher 

in wheat than maize at both low and adequate Zn supply. Both maize and wheat had higher 

leaf relative Zn uptake when grown with adequate Zn, however this effect was non-

significant (Table 1.9). 

Table 1.9 Leaf relative Zn uptake in maize and wheat plants grown in 

nutrient solution with low (10-8 M) or adequate Zn (10-6 M) supply. 

 

 

Treatments

Low Zn 12.9 ± 0.4 b 16.5 ± 1.4 a

Adequate Zn 13.4 ± 0.5 b 17.1 ± 0.6 a

*Low Zn: 10
-8

 M Zn, Adequate Zn: 10
-6

 M Zn supplied as ZnSO4

Statistical letters show the comparison between the species

70
Zn Uptake ratio (%)

WheatMaize

(%)

Zn supply in nutrient 

solution*
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1.3.2.2. Experiment 2-B 

 

 

 

Experiment 2-B investigated response to foliar Zn application in maize and wheat 

plants sown at the same time and cultured for 20 days. There was a significant difference 

in biomass production among maize and wheat and with low and adequate Zn supply 

(Table 1.10). As expected, maize produced significantly higher biomass compared to 

wheat. Adequate Zn supply significantly affected the shoot:root and total biomass 

production in twenty days old maize plants, whereas this effect was non-significant in 

wheat (Table 1.10). Foliar Zn application resulted in enhanced biomass production in 

both low and adequate Zn maize and wheat plants, however, the increase was statistically 

non-significant (Table 1.10).  

The large differences in biomass at the time of foliar application was compensated 

by doubling the foliar fertilizer rate (i.e. doubling the volume applied) in maize compared 

to wheat. Result showed maize and wheat were able to absorb and translocate the foliar 

70Zn significantly, but the magnitude of Zn uptake and translocation was significantly 

higher in wheat as compared to maize (in the same way as in experiment 2-A). 

70Zn concentration in low-Zn maize shoots and roots were increased by 4.5 and 

6.7 folds with foliar application respectively (Table 1.11). Adequate Zn-maize shoot 70Zn 

concentration was doubled whereas root showed 2.4 folds increase compared to the non-

treated control plants. In case of low-Zn wheat, there was 7.8-folds and 16.3-folds 

increase in shoot and root 70Zn concentration respectively whereas, at adequate Zn supply, 

the increase was only up to three folds. The 70Zn concentration in roots were found higher 

than shoot in both plant species particularly in low-Zn wheat roots (Table 1.11). 

Generally, wheat showed two times higher 70Zn concentration in shoot and root under 

low and adequate Zn supply.  The amount of 70Zn absorbed and translocated by wheat 

was not affected by the applying 50% less volume of fertilizer solution compared to maize 

(Table 1.11). 

Similarly, shoot and root 70Zn content increased in maize as well as in wheat, but 

with a higher rate in wheat particularly under low Zn conditions (Table 1.12). Relative 

change in total 70Zn contents (root, shoot, application leaf) were higher in low Zn maize 
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and wheat plants as compared to adequate Zn plants. Under low Zn supply, maize shoot 

and root 70Zn contents were increased by 5.7 and 6.5 folds respectively, whereas the wheat 

shoot and root contents increased up to 9.6 and 18.7 folds respectively (Table 1.12).  At 

adequate Zn supply, maize shoot 70Zn content were doubled while root showed more than 

three times increase as compared to non treated contro plants. Adequate Zn wheat plants 

also showed three times increase in shoot and root 70Zn contents.  In low Zn-supplied 

wheat, root 70Zn content was strikingly higher, same as experiment 2-A, indicating higher 

translocation rate of absorbed Zn towards roots under low Zn supply (Table 1.12). 

Overall, total 70Zn contents were improved 4.4 times higher in wheat compared to that of 

maize under low Zn conditions and 3 folds higher under adequate Zn condition. 

Total Zn (including 64Zn, 66Zn, 67Zn, 68Zn and 70Zn) concentration and contents 

were significantly affected with the Zn supply in nutrient medium solution (Table 1.13, 

Table 1.14). Both maize and wheat plants showed significant increase in total Zn 

concentration and contents with adequate supply of Zn in nutrient solution as 

ZnSO4.7H2O. Foliar 70Zn application improved the total Zn concentration and contents 

in all plant parts however the effect was only significant in application leaves mainly due 

to higher 70Zn uptake (Table 1.13, Table 1.14).  
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Table 1.10. Biomass production of 20-days-old maize and wheat plants grown in nutrient solution with low (10-8 M) and adequate Zn (10-6 M) 

supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

 

  

Low Zn No foliar 
70

Zn 281 ± 51 b 202 ± 28 c 483 ± 78 b 1.39 ± 0.11 b 76.6 ± 15.7 c 73.1 ± 15.1 d 150 ± 30 c 1.05 ± 0.07 c

With foliar 
70

Zn 279 ± 28 b 198 ± 8 c 477 ± 35 b 1.41 ± 0.11 b 86.9 ± 12.3 c 74.4 ± 10.8 d 161 ± 22 c 1.17 ± 0.10 bc

Relative change (%)

Adequate Zn No foliar 
70

Zn 541 ± 11 a 294 ± 18 b 835 ± 7 a 1.85 ± 0.1 a 92.0 ± 7.0 c 69.8 ± 6.6 d 162 ± 13 c 1.32 ± 0.09 b

With foliar 
70

Zn 578 ± 50 a 344 ± 28 a 922 ± 69 a 1.68 ± 0.1 a 110 ± 5 c 81.9 ± 3.1 d 192 ± 8 c 1.34 ± 0.02 b

Relative change (%)

Treatments

Zn supply in 

nutrient solution*
Foliar treatments**

Biomass

(mg plant
-1

) 

Total Shoot : Root

Maize

Shoot Root TotalRoot

(mg plant
-1

) 

-0.61

6.85 17.0

-1.86 -1.13

10.4

1.50

-8.81

13.4

19.4

1.83

17.3

7.76

18.5

Shoot : Root

Wheat

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

Shoot 

11.7

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, whereas "With foliar 
70

Zn" plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, w/v). See 

Materials and Methods section for treatment details. 

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

1.52



31 
 

 

 

 

 

 

 
Table 1.11. 70Zn concentration in 20-days-old maize and wheat plants grown in nutrient solution with low (10-8 M) and adequate Zn (10-6 M) 

supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 61.0 ± 1.5 f 87.5 ± 7.9 ef 60.9 ± 8.1 d 71.4 ± 13.7 ef 72.0 ± 9.6 f 69.6 ± 9.9 d

With foliar 
70

Zn 336 ± 61 cd 678 ± 42 c 24321 ± 4064 c 632 ± 116 b 1246 ± 109 b 47489 ± 4231 b

Relative change (%)

Adequate Zn No foliar 
70

Zn 209 ± 10 de 207 ± 18 e 149 ± 10 d 283 ± 28 d 382 ± 22 d 241 ± 19 d

With foliar 
70

Zn 435 ± 44 c 713 ± 31 c 24074 ± 4361 c 1135 ± 90 a 1442 ± 74 a 57707 ± 9930 a

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

Shoot Root Application leaf

Zn supply in 

nutrient solution*
Foliar treatments**

Root Application leaf

Treatments

450 675 39818 785 1630

23809

68120

27716023245108 301

Wheat

70
Zn Concentration in Plant Tissue

Maize

(µg kg 
-1

)

Shoot

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, whereas "With foliar 
70

Zn" plants were treated with 0.05% of 
70

Zn dissolved in 

Plantacare (0.02%, w/v). See Materials and Methods section for treatment details. 
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Table 1.12. 70Zn contents in 20-days-old maize and wheat plants grown in nutrient solution with low (10-8 M) and adequate Zn (10-6 M) supply. 

Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 13.4 ± 2.7 e 17.8 ± 3.7 e 3.41 ± 0.56 c 34.5 ± 8.64 d 4.91 ± 0.66 e 4.72 ± 0.52 e 0.95 ± 0.11 c 10.9 ± 1.7 d

With foliar 
70

Zn 75.9 ± 10 bc 134 ± 8 b 1237 ± 194 a 1448 ± 202 ab 52.5 ± 10 cd 92.9 ± 17 c 685 ± 101 b 831 ± 112 b

Relative change (%)

Adequate Zn No foliar 
70

Zn 103 ± 5.7 b 60.6 ± 5.1 d 7.5 ± 0.4 c 171 ± 6.2 d 22.4 ± 3.5 de 26.8 ± 4.1 e 3.2 ± 0.5 c 52.3 ± 7.9 d

With foliar 
70

Zn 231 ± 43 a 245 ± 18 a 1216 ± 156 a 1692 ± 128 a 105 ± 7 b 118 ± 8 b 1002 ± 174 a 1225 ± 179 b

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

Treatments

Zn supply in 

nutrient solution*
Foliar treatments**

70
Zn content per tissue (ng/tissue/plant)

Maize Wheat

TotalApplication leafRootShoot TotalApplication leafRoot

(ng/tissue/plant)

576 656 36231 4095 968 1867 72037 7517

22403168634136889216157304125

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, whereas "With foliar 
70

Zn" plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, w/v). See Materials 

and Methods section for treatment details. 

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

Shoot 
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Table 1.13. Total Zn concentration (all isotopes including 64Zn, 66Zn, 67Zn, 68Zn and 70Zn) in 20-days-old maize and wheat plants grown in nutrient 

solution with low (10-8 M) and adequate Zn (10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 

 

  

Low Zn No foliar 
70

Zn 9.06 ± 0.2 d 14.0 ± 1.2 c 8.66 ± 0.32 f 10.1 ± 1.79 d 12.4 ± 0.14 c 9.72 ± 1.75 ef

With foliar 
70

Zn 10.0 ± 0.7 d 14.5 ± 0.7 c 34.2 ± 5 cd 11.0 ± 1 d 13.5 ± 0 c 58.6 ± 5 b

Relative change (%)

Adequate Zn No foliar 
70

Zn 34.9 ± 1.4 c 31.5 ± 2.5 b 22.7 ± 1.7 de 41.2 ± 2.7 a 48.2 ± 9.1 a 34.7 ± 2.4 cd

With foliar 
70

Zn 36.4 ± 2.6 bc 33.3 ± 6.2 b 43.6 ± 4.8 c 40.6 ± 2.4 ab 47.0 ± 4.2 a 92.6 ± 13.1 a

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

(mg kg
-1

)

Application leaf

Treatments

Zn supply in 

nutrient solution*
Foliar treatments**

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, whereas "With foliar 
70

Zn" plants were treated with 0.05% of 
70

Zn dissolved in 

Plantacare (0.02%, w/v). See Materials and Methods section for treatment details. 

Wheat

Total Zn Concentration in Plant Tissue

Shoot RootApplication leafRootShoot 

Maize

10.2

4.55

3.04

5.66

295

91.9

8.99

-1.52

8.58

-2.61

504

167

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O
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Table 1.14. Total Zn contents (all isotopes including 64Zn, 66Zn, 67Zn, 68Zn and 70Zn) in 20-days-old maize and wheat plants grown in nutrient 

solution with low (10-8 M) and adequate Zn (10-6 M) supply. Foliar treatments were applied 36 hours before harvesting the plant tissues. 
 

 

  

Application leaf

Low Zn No foliar 
70

Zn 1.98 ± 0.37 de 2.84 ± 0.50 b 0.59 ± 0.08 de 5.42 ± 0.84 d 0.72 ± 0.07 e 0.99 ± 0.10 c 0.13 ± 0.02 f 1.84 ± 0.09 e

With foliar 
70

Zn 2.27 ± 0.14 d 2.87 ± 0.22 b 1.74 ± 0.24 b 6.88 ± 0.58 d 0.80 ± 0.15 e 1.00 ± 0.12 c 0.85 ± 0.13 cd 2.65 ± 0.33 e

Relative change (%)

Adequate Zn No foliar 
70

Zn 17.1 ± 0.8 b 9.25 ± 0.76 a 1.14 ± 0.09 c 27.5 ± 0.7 b 3.25 ± 0.31 cd 3.35 ± 0.60 b 0.45 ± 0.06 ef 7.05 ± 0.66 d

With foliar 
70

Zn 19.2 ± 1.4 a 10.2 ± 0.3 a 2.22 ± 0.25 a 31.6 ± 1.3 a 3.76 ± 0.35 c 3.85 ± 0.42 b 1.61 ± 0.23 b 9.22 ± 0.57 c

Relative change (%)

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

(µg/tissue/plant)

Treatments

Zn supply in 

nutrient solution*
Foliar treatments**

RootShoot Shoot Root Total

Wheat

Total Zn content per tissue (µg/tissue/plant)

Maize

TotalApplication leaf

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, whereas "With foliar 
70

Zn" plants were treated with 0.05% of 
70

Zn dissolved in Plantacare (0.02%, w/v). See Materials 

and Methods section for treatment details. 

14.5 1951.02

30.6

44

25514.912.0 10.2 94.7 14.8 15.6

11.527.1 0.71 542
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Table 1.15. Relative distribution of absorbed 70Zn in shoot, root and application leaf of 20-days-old maize and wheat plants grown in nutrient 

solution with low (10-8 M) or adequate Zn (10-6 M) supply. 

 

 

Low Zn No foliar 
70

Zn 38.7 ± 3.0 c 51.4 ± 3.3 a 9.92 ± 0.84 c 46.3 ± 3.4 b 44.7 ± 3.4 b 9.00 ± 0.99 cd

With foliar 
70

Zn 5.30 ± 0.88 e 9.37 ± 1.06 e 85.33 ± 1.82 a 6.96 ± 1.16 e 11.15 ± 1.11 de 82.42 ± 1.86 a

Adequate Zn No foliar 
70

Zn 60.1 ± 2.4 a 35.5 ± 2.5 c 4.40 ± 0.42 d 42.8 ± 0.8 bc 51.1 ± 0.1 a 6.05 ± 0.71 cd

With foliar 
70

Zn 13.7 ± 3.0 d 14.6 ± 2.1 d 71.7 ± 4.1 b 8.67 ± 1.13 de 9.77 ± 1.35 de 81.6 ± 2.4 a

Statistical letters show the comparison among the organs between the species, e.g., Maize shoot is compared with Wheat shoot, and so on.

(%)

Treatments

Zn supply in 

nutrient solution*
Foliar treatments**

70
Zn distribution per tissue (%)

WheatMaize

ShootApplication leafRootShoot Root Application leaf

*Low Zn: 10
-8

 M Zn and Adequate Zn: 10
-6

 M Zn supplied as ZnSO4.7H2O

**"No foliar 
70

Zn" plants were treated with Plantacare (0.02%, w/v) only, whereas "With foliar 
70

Zn" plants were treated with 0.05% of 
70

Zn dissolved in 

Plantacare (0.02%, w/v). See Materials and Methods section for treatment details. 
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Clearly, most of the Zn taken up by leaf after the foliar Zn application was retained 

in the application leaf in both maize and wheat ranging from 71.7% to 85.3% in low and 

adequate-Zn supplied maize respectively (Table 1.15). As a consequence, the lowest (i.e., 

5.30% in shoot of low-Zn maize) and highest (i.e., 14.6% in root of adequate-Zn) Zn 

translocation rates from the application leaf towards shoot and root were recorded in low- 

and adequate-Zn supplied maize plants respectively (Table 1.15). The absorbed Zn was 

evidently distributed to the root than the shoot tissue in both species, particularly when 

supplied with low Zn. For example, in low-Zn supplied wheat, roots received almost 

double the amount of Zn compared to shoot (Table 1.15). 

The uptake ratio of leaf-applied Zn ranged from 10.6% in low Zn-supplied maize 

to 17.9% in adequate Zn-supplied wheat (Table 1.16). Leaf Zn uptake rate was higher in 

wheat than maize in both low and adequate Zn supplied plants. Both maize and wheat 

had higher Zn uptake when grown with adequate Zn, however this effect was significant 

(p<0.05) in wheat but not maize (Table 1.16). The relative absorption of leaf-applied 70Zn 

was 10.6 % and 12.2% in 20-days-old low Zn maize and wheat plants respectively. At 

adequate Zn supply, the relative absorption of 70Zn applied on maize second leaf was 

12.4%. while significantly higher in wheat i-e 17.9 % (Table 1.16).  

 

Table 1.16. Relative absorption of leaf-applied 70Zn in 20-

days-old maize and wheat plants grown in nutrient solution 

with low (10-8 M) or adequate Zn (10-6 M) supply. 

 

 

 

 

 

 

Treatments

Low Zn 10.6 ± 1.5 b 12.2 ± 1.6 b

Adequate Zn 12.4 ± 0.9 b 17.9 ± 2.6 a

*Low Zn: 10
-8

 M Zn, Adequate Zn: 10
-6

 M Zn supplied as ZnSO4

Statistical letters show the comparison between the species

Zn supply in nutrient 

solution*

70
Zn Uptake ratio (%)

WheatMaize

(%)
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1.4. Experiment 3: Studying leaf Uptake of Zinc by using a Zinc-responsive 

fluorescent dye ‘Zinpyr’ in Maize and Wheat 

 

 

 

1.4.1. Material and Methods 

 

 

This experiment was performed to visualize Zn localization and mobilization in 

maize and wheat leaf tissues using the fluorescent dye ‘Zinpyr-1’ and a fluorescence 

microscopy. 

Maize (Zea mays L. cv. Shemal) and wheat (Triticum aestivum L. cv. Tahirova) 

were grown in low Zn soil (0.5 mg Kg-1) under greenhouse conditions. Planting 

procedures and soil nutrients composition (other than Zn) described in the “General 

Material and Methodology” section was followed. 

When the plants were 13 days old, the first leaf of each wheat plant and second 

leaf of maize plants were dipped in 0.25% ZnSO4 mixed with Tween-20 as a surfactant 

(0.02 % w/v) for twice a day, and it was repeated for four consecutive days. The plants 

were allowed to grow in green house for another week after the last treatment.  

Three leaves from each plant were used for staining and visualization. The 

application leaf, the second younger leaf after application leaf and the 3rd younger leaf. 

For microscopic studies, a transverse leaf sections of ~0.1 mm were cut by scalpel and 

washed with running water first and then with Saline solution (0.9% NaCl) twice. Leaf 

sections were then transferred into 10 µM Zinpyr solution prepared in 0.9 % NaCl from 

a 2 mM Zinpyr stock solution prepared in dimethyl sulphoxide (DMSO) and incubated at 

room temperature for 2 h in darkness. Leaf sections were washed again in saline solution 

and mounted on microscopy slides. Images were taken by using a fluorescent microscope 

on 10X magnification. Filter S484/15 and S517/30 were used for excitation and emission 

(NIB) respectively for visualization of Zinpyr fluorescence and the ZnSO4 treated plants 

were compared with the control plants. 
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1.4.2. Results 

 

 

 

We have compared the intensity of Zinpyr fluorescence under florescence 

microscope in the maize and wheat leaf sections following the Zn fertilizer application. 

In both maize and wheat plants, Zinpyr fluorescence showed an enhanced accumulation 

of Zn localized in the Zn treated leaf cross section particularly in xylem and phloem 

tissues as compared to non-Zn treated control plants (Fig 1.3, 1.4). Although the 2nd and 

3rd younger leaves from treated plants showed less fluorescence intensity compared to 

treatment leaf itself but still the fluorescence was much higher than the non-Zn treated 

control plants in both maize and wheat (Fig 1.3, 1.4). This provides an evidence that 

foliarly applied Zn was absorbed and translocated to the younger shoots. The intensity of 

Zinpyr fluorescence continued to decrease from the application leaf to the 2nd and 3rd 

younger leaves in maize and wheat indicating the upward translocation/remobilization of 

absorbed Zn to the younger plant parts (Fig 1.3, 1.4). 
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Fig 1.3. Microscopic images (10X) of maize leaf cross sections (a) application leaf, 

(c) 2nd younger leaf and (e) 3rd younger leaf of untreated control plant in comparison 

with the cross section of (b) application leaf, (d) 2nd younger leaf and (f) 3rd younger 

leaf of treated plant with 0.25% ZnSO4 .7H2O and exposed to 10 µM zinpyr for 2 h. 

 

Zinpyr florescence provided a visual evidence of the fact that wheat can absorb and 

translocate the leaf applied Zn with a significantly higher rate than maize. A comparison 

of maize and wheat treatment leaf cross section (Fig 1.5 a) shows a higher intensity of 

Zinpyr fluorescence in wheat leaf than maize leaf representing more absorption of leaf 

applied Zn. 
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Fig 1.4. Microscopic images (10X) of wheat leaf cross section (a) application leaf, 

(c) 2nd younger leaf and (e) 3rd younger leaf of untreated control plant in 

comparison with the cross section of (b) application leaf, (d) 2nd younger leaf and 

(f) 3rd younger leaf of treated plant with 0.25% ZnSO4 .7H2O and exposed to 10 

µM zinpyr for 2 h. 

 

Evidently there is a translocation of absorbed Zn to the younger plan parts in both plant 

species, however, wheat remobilize and transfer the absorbed Zn more efficiently to the 

younger parts than maize (1.5) It appears that one of the plausible reasons for the poor 

response of maize plants to foliar Zn spray regarding the grain Zn accumulation might be 

related to lower Zn penetration and absorption through leaf cells. 
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Fig 1.5 Microscopic images (10X) cross section of (a) maize application leaf (b) wheat 

application leaf (c) maize 2nd younger leaf (d) wheat 2nd younger leaf (e) maize 3rd 

younger leaf (f) wheat 3rd younger leaf. Zinpyr inflorescence intensity indicates the 

translocation/remobilization of absorbed Zn from foliar fertilizer application. 

 

 

 

 

1.5. Discussion 

 

 

 

In the present studies, foliar application of Zn fertilizer was found effective in 

increasing Zn concentration of root and shoot tissues in wheat plants but not much 

effective in maize (Table 1.1, 1.4) suggesting wheat is more capable of uptake and 

translocation of foliar Zn to the developing shoots and roots as compared to maize. Wang 
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et al., 2012 reported similar results where foliar Zn spray increased the Zn concentration 

up to 89% in wheat compared to only 37% in maize (Wang et al., 2012). Cakmak and 

Kutman (2017) reported that in international HarvestZinc project (www.harvestzinc.org) 

several soil and foliar fertilizer application were studied on cereal crops under field 

conditions for the past 8 years in 12 different countries. Foliar Zn fertilization was found 

significantly effective in wheat but not in maize. Similar results were reported by Zhou 

et al.,2012, wherein data from four different locations in Turkey showed that wheat was 

most responsive to foliar Zn spray in terms of increased grain Zn (up to 83%), rice showed 

intermediate response (up to 27%) whereas maize appeared to be less responsive (9%), 

however, the reasons remained unclear (Cakmak and Kutman, 2017).  

In present studies, main question was to elucidate the physiological factors behind 

the poor response maize plant to foliar Zn application as compared to wheat. Maize and 

wheat responded in different ways in terms of effectiveness of foliar Zn application (Table 

1.3, 14, 1.5, 1.9). Previous studies reported number of factors influencing the performance 

of foliar nutrient sprays (Fernández et al., 2013). These may include the physicochemical 

properties of the fertilizer formulation, the environmental conditions under which foliar 

fertilizers are applied and most importantly characteristics of the target plant. In 

experiment 2-A maize and wheat plants were grown under same controlled environment 

and supplied with same fertilizer formulation with exact calculated volume. Therefore, 

the resulting different behavior is attributed to plant species specifically. The efficiency 

of the leaf applied nutrients in plant species is a complex process, consisting of series of 

steps including foliar adsorption, cuticular penetration, diffusion into apoplastic and 

symplastic spaces, phloem loading into vascular veins and remobilization from 

application leaf into other actively growing parts of the plants (Du et al., 2014; Alshaal 

and El-Ramady, 2017).  

The possible physiological barriers reducing the rate of uptake and translocation 

of foliar-applied Zn in maize is provided in the following paragraphs. 

 

 

 

 

 

 

http://www.harvestzinc.org/
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1.5.1. Leaf uptake of foliar-applied Zn 

 

 

In the present studies, in all experiments (including soil and nutrient culture) 

wheat absorbed significantly higher amount of leaf applied Zn as compared to maize 

(Table1.9, 1.16). Rate of Zn uptake by maize plants did not increase even when the maize 

plants were supplied with double volume of fertilizer solution (in experiment 2-B) as 

compared to wheat (Table 1.12, 1.13, 1.16, 1.17). Based on the results from all the 

experiments reported in this chapter, different response among maize and wheat to foliar 

Zn application is attributed mainly to less uptake capacity of maize. Current studies 

confirmed that the reason for poor response of maize plant to foliar applied Zn is limited 

uptake capacity of maize compared to wheat.  

In experiment 2-A, maize was able to uptake 12.9% and 13.4% of applied Zn 

solution compared to 16.5% and 17.1% in wheat at low and adequate Zn condition 

respectively (Table 1.9). In experiment 2-B, maize could only absorb 10.6% and 12.4% 

while wheat absorbed 12.2% and 17.9 % at low and adequate Zn condition respectively 

(Table 1.16). Uptake rate was enhanced in both maize and wheat, at adequate Zn supply, 

but still the difference between both species remained same. Uptake capacity of foliar Zn 

is influenced by several factors including leaf shape, leaf chemistry, and physical 

attributes like cuticle composition, surface wax architecture, the presence of leaf 

trichomes, stomatal density, leaf surface architecture, leaf apoplastic space and/or leaf 

age. All of these factors interact to alter the absorption and translocation of foliar-applied 

nutrient and ultimately the plant response (Fernández et al., 2013, Du et al., 2014). In 

foliar application of nutrients, the leaf cuticle is the first obstacle in nutrient absorption 

(Kannan, 1990). Therefore, use of surfactants/adjuvants can increase penetration of many 

substances through the waxy cuticle layer on leaf surface (Stock and Holloway, 1993).  

In current studies difference in uptake rate of foliar Zn between maize and wheat 

is attributed to different plant characteristics and leaf physiology of both species as the 

plants were grown under same experimental conditions and were supplied with same 

fertilizer formulation. There are number of factors influencing the uptake rate e.g. 

structure and thickness of lipid rich protecting cuticle layer on the leaf surface mainly 

influence the penetration of leaf applied nutrients (Fernández and Brown, 2013, Du et al., 

2015). The heterogeneity in plant cuticle structure exists among the species and even 
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within different plant organs in same species (Fernández et al., 2017).  The ultra-structure 

of the leaf cuticle of three different plant species were compared in which wheat leaf 

cuticle was found much thinner (∼40 nm) than those of the poplar (Populus bolleana, 

∼300 nm) and chiefly the pear leaf cuticle (∼800 nm) (Fernández et al., 2016). In another 

study by Ristic and Jenks, maize genotypes were studied for epidermis outer cell wall and 

cuticle thickness in abaxial and adaxial leaf surface. Transmission electron microscopy 

showed variation among genotypes however cuticle layer thickness was found ∼100 nm 

on maize leaf surface (Ristic and Jenks, 2002). Thus, cuticle layer on maize leaf surface 

being much thicker and consequently less permeable for penetration appeared to be the 

first barrier to reduce the penetration rate of foliar applied Zn fertilizer. 

In addition to cuticle, the epidermis of plants contains specialized cells including 

stomata or trichomes that may influence foliar nutrient uptake. Many studies have shown 

that a high density of stomata (such as in the case of abaxial surface) significantly increase 

the rate of foliar uptake, mainly under the conditions which favor the stomatal opening. 

(Schlegel and Schönherr, 2002; Fernàndez et al., 2005; Schlegel et al., 2006; Du et al., 

2014). Liao et al., 2005 reported the stomatal density in different wheat genotypes ranging 

between 43-52 mm-2. In another study Zheng at al., 2013 examined the effect of high 

temperature on stomatal density and reported the maize SD ranging between 56-77 mm-

2 under ambient temperature. Based on these reports, less Zn uptake by maize in current 

studies cannot be explained with the stomatal density per the unit area of leaf as both 

species have more or less same number of stomata. However, stomatal size and 

functionality also affect the solutes penetration and may vary with species and cultivars 

as well as with growth conditions of the plants (Liao et al., 2005, Zhao et al., 2015). There 

was a significant increase in foliar uptake through the open stomata compared to the 

uptake via cuticle (Eichert et al.,2008).  

In present study, the increased uptake of Zn from foliar spray in wheat can be 

better explained with the presence density of trichomes on wheat leaf surface and other 

aerial organs. Trichomes are the leaf hair like appendages extending from the epidermis 

and mostly they are not connected to the vascular system of the plant (Schilmiller et al., 

2008). Fernández et al., 2017 compared the adaxial and abaxial leaf surface of orange, 

olive, maize and wheat by SEM. Wheat adaxial surface (upper leaf surface) appeared 

rough because of presence of dense trichomes. Maize adaxial surface was found to have 
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very few trichomes compared to wheat (Fernández et al., 2017). Current results 

suggesting higher Zn uptake by wheat leaves having more trichomes compared to maize 

coincides with some previous studies. For example Schlegel and Schönherr (2001, 2002) 

reported the uptake of CaCl2 by leaves of several species and apple fruits of different 

developmental stages when trichomes were present in the epidermis. Furthermore, 

function of trichomes to absorb water and nutrients in some species of Bromeliaceae was 

also reported in some studies (Pierce et al. 2001; Papini et al. 2010). Presence of 

trichomes on leaf surface had increased the uptake of leaf-applied nutrients. Trichomes 

have role to facilitate the foliar nutrient uptake due to lower cuticle thickness over the 

trichomes, and also the occurrence of cracks and discontinuities in the trichome base. 

Trichomes density also increase the surface area for absorption of foliar-applied fertilizer 

(Fernández et al., 2014 a).  

Thus, foliar-applied nutrients to wheat leaves may penetrate via the cuticle 

(including the occurrence of cuticular cracks and imperfections), and also through 

stomata and trichomes (Fernández et al., 2014 a). The reported studies provide evidence 

that wheat leaf surface have more permeable cuticle layer and more trichomes than maize 

leaf consequently capable of more absorption of foliar-applied solution than maize. More 

Zn uptake rate in wheat compared to maize was also confirmed by microscopic images 

with high zinpyr fluorescence indicating high Zn accumulation in wheat treatment leaf 

(Fig 1.5).  

In present studies, low Zn supplied wheat plants in experiment 2-B showed less 

uptake of foliar applied Zn as compared to adequate Zn supplied wheat plants (Table 

1.16). The reduced absorption rate of the wheat plants grown with low Zn plants is better 

explained with poor nutritional status of the low Zn wheat leaf. However, in experiment 

2-A the uptake rate of low Zn-wheat plants reached almost equal to that of adequate Zn 

plants where 50ul of fertilizer solution was applied (Table 1.9). Hence, confirming that 

efficacy of the foliar nutrient formulation can be improved with better coverage of the 

applied formulation (Fernandez and Eichert T, 2009). Overall low uptake rate by low Zn-

maize and wheat plants in all experiments is because of poor nutritional status of the 

application leaf which influences the absorption rate of leaf-applied solutions. Nutrient 

deficiency induces the structural and functional changes of leaf surfaces, which may 

influence the penetration process depending on the severity of the deficiency and nutrients 

https://link.springer.com/article/10.1007/s11104-014-2052-6#CR52
https://link.springer.com/article/10.1007/s11104-014-2052-6#CR53
https://link.springer.com/article/10.1007/s11104-014-2052-6#CR48
https://link.springer.com/article/10.1007/s11104-014-2052-6#CR47
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concerned (Brian, 2008). For examples, boron and zinc deficiencies can cause 

malformation of leaf surface structure (e.g. stomata size) which directly affect the 

absorption of foliar applied solutions (Marschner, 1995). Apart from the limited leaf 

expansion, reduced stomata density and stomata aperture is also associated with Zn 

deficiency in plants. The stomata density on both sides of the leaf decreased under Zn 

deficiency conditions (Shi and Cai, 2009) which could result in decreased nutrient uptake 

through leaf surfaces.  

 

 

 

1.5.2. Translocation of absorbed Zn to other plant parts 

 

 

As in present studies, leaf applied 70Zn was translocated to root and shoot of the 

plants in both maize and wheat, but major portion of absorbed Zn remained in the 

application leaf (Table 1.8, 1.15) even after 36 h of treatment. Although, generally both 

experiments (2-A and 2-B) suggest that under adequate Zn supply wheat and maize 

distribute the absorbed Zn to roots and shoots with almost an equal ratio. However, under 

low Zn supply, major portion of absorbed Zn was transported to roots as compared to 

shoots. This is probably due to large demand for root growth under low Zn supply. Under 

Zn deficient condition, roots grow longer and more efficiently compared to the Zn 

sufficient conditions.  

In the experiment 2-A, less translocation from the application leaf is observed as 

compares 2-B which can be explained easily with the developmental stage of the 

application leaf. In experiment 2-A when relatively younger plants were treated, on 

average 89.2% portion of absorbed Zn remained inside the application leaf as compared 

to 80.6% in experiment 2-B where relatively older plants were subjected to foliar Zn 

treatment. Previous studies reported that developmental stage of the application leaf is an 

important factor influencing the movement of nutrients (Turgeon, 2006).  Immature or 

young leaves are sink organs that are entirely dependent upon imported assimilate from 

the older developed leaves. Hence, the young developing leaves are physiologically 

incapable of exporting nutrients (even if they absorb from the foliar spray) until they have 

matured. Similarly, once the leaf has reached full maturity, it become incapable of 
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exporting nutrients to the sink organs (Koontz and Biddulph, 1957; Fernández and 

Brown, 2013).  

In current studies, the plant Zn status was found to influence the movement of Zn 

within the leaf tissue, Zn is more easily mobilized in Zn-sufficient leaves than in Zn-

deficient leaves. Other authors also reported that the Zn status of the plant have impact 

upon the subsequent redistribution of the foliar-absorbed Zn (Longnecker and Robson, 

1993; Du et al, 2015). 

In experiment 3, microscopic images also confirmed the translocation of absorbed 

Zn towards younger leaves in both maize and wheat plants tissues (Fig 1.3, 1.4). 

Comparison of maize and wheat leaves (Fig1.5) suggests better translocation in wheat 

plants compared to maize. Although the complete knowledge of all the factors influencing 

the translocation of absorbed Zn is not available, application leaf characteristics e.g. leaf 

age and leaf apoplastic composition seems to have obvious role in nutrient translocation 

to the sink organs (Fernández et al., 2013). After penetrating through cuticle layer and/or 

diffusing through the stomata or trichomes, leaf apoplastic space can act as another barrier 

for the applied Zn. Apoplastic composition in leaf varies from specie to specie and can 

play the role in hindering the remobilization of absorbed Zn to the other plant organs 

(Fernández and Brown, 2013). Several studies reported that leaf apoplast may restrict the 

mobility of elements supplied as cations such as Zn by accumulating cations and repelling 

anions (Speer and Kaiser, 1991; Sattelmacher, 2001; White and Broadley, 2011). The 

composition of apoplastic spaces with high abundance of negative charges reduce the 

movement of Zn+2 and therefore, limit the Zn translocation to other plant organs from the 

application leaf. In relation to phloem mobility, Zn is classified as intermediate or 

conditionally mobile (Fernández and Brown, 2013) and it takes 1-2 days for 50 % 

absorption as compared to N, P, K which are considered as highly mobile nutrients and 

take ½-10 h for 50% nutrient absorption (Alshaal and El-Ramady, 2017). Being 

conditionally mobile nutrient, Zn is reported to have a relatively small remobilization out 

of the application leaf to the sink organ.  
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1.5.3. Dilution effect 

 

 

Large increases in yield causes the considerable decreases in the concentrations 

of essential nutrients such as Zn and this is called dilution effect (Cakmak and Kutman, 

2017). Generally maize plants produce significantly big biomass and grain yield, it was 

hypothesized that low Zn concentration in maize grain is due to the dilution effect of 

nutrients. In present studies, dilution effect was minimized by applying double volume of 

Zn solution on maize (2-B) plants as compared to wheat or by growing the wheat plants 

earlier than maize (2-A), so that they are equal in biomass. In both situations, maize 

absorption was significantly less than wheat (Table 1.9, 1.16) regardless of more volume 

of solution supplied or managing to equalize the biomass by using younger maize plants. 

The results suggested that poor response of maize plants to foliar Zn application is not 

specifically because of dilution effect but maize plant literally absorb less Zn from foliar 

spray. 

 

 

 

1.6. Conclusion 

 

 

It can be concluded that the main reason for poor response of maize is low 

absorption or penetration rate of foliar-applied Zn than wheat. Plant species have a 

considerable effect on the uptake and translocation of foliar-applied Zn. Zn absorption 

and translocation capacity of wheat is significantly higher than maize specially when 

grown in Zn-sufficient medium. In maize, the Zn absorption rate was not increased 

despite of supplying double volume of foliar Zn fertilizer to leaf. This difference in uptake 

rate of leaf- applied Zn is related with different morphology and physiological 

characteristics of both plant species. Although, the plant Zn nutritional status affect the 

initial absorption and penetration of foliar applied Zn in wheat and also influence the 

subsequent redistribution of Zn within the plants. One of the reasons for the poor response 

of maize plants to foliar Zn spray regarding the grain Zn accumulation is related to lower 

Zn uptake through leaf cells and translocation to other plant parts. The results advance 

our understanding of the factors that influence the efficacy of foliar zinc fertilizers in 

maize and wheat crops. Further investigation is needed to better understand and get the 

insights about the factors that can increase the efficacy of foliar Zn in cereal crops 

especially in maize.   
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CHAPTER 2 

 

 

UPTAKE OF ZN BY WHEAT AND MAIZE DURING AS AFFECTED BY N 

RATE 

 

 

 

 

2.1. Introduction 

 

 

 

Zinc deficiency is a major health challenge, caused due to high dependence on 

food containing less bioavailable Zn such as cereals (wheat, rice and maize). Cereals are 

considered as not only inherently low in Zn concentration, but also with less 

bioavailability of Zn (Graham et al., 2001; Cakmak et al., 2010). Therefore, it is the need 

of time to increase the Zn concentrations in wheat and maize grains as well as in the edible 

portions of other staple crops. Food supplementation, food fortification and food 

diversification are some applicable interventions to reduce the widespread Zn deficiency 

problems. These strategies are being applied in some countries with positive results, but 

these are costly and out of the reach of the people living in rural areas of developing 

countries. People living below the poverty line are unable to afford expensive fortified 

food or supplements (Pfeiffer & McClafferty, 2007; Stein et al., 2014). The most effective 

strategy for reducing the global malnutrition problem is the biofortification, that is 

biologically increasing the micronutrients in edible parts of staple food. 

Agronomic biofortification along with breeding for high Zn contents and 

bioavailability in staple foods is considered as the most suitable and cost-effective 

approach (White & Broadley, 2005; Cakmak, 2008; Cakmak et al., 2010). Adequate 

nitrogen nutrition increases wheat grain yield as well as improves the nutritional quality 

of wheat grains by enhancing the uptake and accumulation of Zn in grain (Shi et al., 
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2010). Kutman et al. 2011 harvested nearly 80% of the shoot Zn within wheat grain by 

increasing the N supply, suggesting that N nutrition is important in uptake and 

remobilization of Zn. Nitrogen has a crucial role in Zn uptake and its accumulation in 

grain, therefore, a special consideration should be given to N while biofortifying food 

with Zn and Fe (Erenoglu et al., 2011). Nitrogen nutrition influence the molecular and 

physiological mechanism involve in uptake and remobilization of Zn (Cakmak et al., 

2010). Increased N supply enhance the levels of metal-chelating nitrogenous contributes 

and hence, facilitates the Zn and Fe uptake and transport to the grain (Kutman et al. 2011). 

Zinc and proteins are closely linked in biological systems as Zn is an important 

part of a large number of structural, regulatory and functional proteins. Nearly 10% of the 

all proteins in human body contains Zn as an integral part (Krezel & Maret, 2016). Many 

previous studies in literature suggested that proteins are a sink for Zn. A high positive 

correlation between the grain proteins and grain Zn concentration is reported by previous 

studies (Morgounov et al., 2007; Peleg et al., 2008) suggesting that the protein contents 

in grain may contribute to the Zn accumulation by increasing the sink strength of the grain 

for Zn.  

In cereal grains, major portion of Zn is believed to be confined in the form of 

protein-Zn-phytate complexes (Lott et al., 1995). The Zn concentration within a grain Is 

not uniform but vary depending upon the part of the grain. For example, aleurone layer 

in wheat grain contains up to 150 mg kg-1 Zn whereas endosperm holds only 15 mg kg-1 

Zn (Sramkova et al., 2009). The embryo and aleurone layer of wheat grains are rich in 

proteins and Zn whereas, endosperm appears low in protein and phytate as well as low in 

Zn (Welch & Graham, 1999). High accumulation of Zn in embryo and aleurone portions 

of seeds were shown with the help of a Zn-staining method by Ozturk et al. (2006). 

Moreover, Ozturk et al. 2009 also reported that wheat grains rich in protein accumulate 

higher Zn contents than low protein wheat grains. Thus, the available literature suggests 

that there is a close relationship between N and Zn and higher proteins or N contents 

facilitates the Zn uptake and accumulation in grain (Peleg et al., 2008; Kutman et al., 

2010) 

Studying the effect of N fertilization on uptake and accumulation of Zn in maize 

and wheat shoot grown at different Zn level in growth medium will help to understand 

the physiological relationship between N and Zn in these crops. Moreover, considering 
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the fact that maize is very sensitive to Zn deficiency, any influence of N fertilization to 

improving Zn nutrition of maize will be beneficial for yield as well as nutritional quality 

of grains (Elias & Manthey, 2005). 

In the study presented in this chapter, the following questions were addressed: 

i. How does increasing soil N fertilization affect the shoot Zn concentrations in 

maize and wheat when grown at low or adequate availability? 

ii. How does increasing N helps to uptake/absorb Zn from soil in maize and wheat? 

iii. How does increasing N nutrition helps to uptake/absorbs and translocate Zn from 

foliar Zn spray in maize and wheat? 

 

 

 

 

2.1. Experiment (I) Absorption and Translocation of Zinc (ZnSO4.7H2O) in Maize 

and Wheat at vegetative growth stage as affected by low and adequate soil N 

supply 

 

 

 

2.1.1. Materials and Methods 

 

 

This experiment was conducted to assess the changes in Zn uptake from soil by 

maize and wheat plants at low or adequate supply of N. Maize (Zea mays L. cv. Shemal) 

and wheat (Triticum aestivum L. cv. Tahirova) were grown in plastic pots under 

greenhouse conditions (Details are described in “General Material and Methods” 

Section). Zinc in the form ZnSO4.7H2O was supplied at the rate of 2 mg kg-1 in all pots. 

Nitrogen was supplied as Ca [NO3]2.4H2O mixed in the soil at the time of sowing. Two 

N levels viz: low and adequate were established (N1: 100 mg N kg-1, N2: 200 mg N kg-

1).  After germination, 8 seedling per pot were maintained and plants were allowed to 

grow under normal conditions in greenhouse. Pots were irrigated with DI-water every day 

and randomized every two weeks for uniform exposure to possible climatic variations. 
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Plants were harvested at two different developmental stages for elemental 

analysis. Half of the plants (4 plants per pot) were harvested at 50 days after germination 

and remaining were harvested at 78 days. Harvested shoot samples were washed with DI 

water, dried in oven and analyzed for shoot dry matter, Zn and N concentration as 

described in “General Materials and Methods Section”. 

 

 

 

2.1.2. Results 

 

 

Low N plants showed the deficiency symptoms e.g. chlorosis in lower leaves and 

suppressed growth particularly in maize plants. At young age wheat did not show any 

symptoms of Zn or N deficiency. N deficiency symptom were observed at later stage of 

plant development in wheat. At the age of 11 weeks old, clear biomass reduction and Zn 

and N deficiency symptoms were visible in maize plants (Fig 2.1). Wheat also showed 

the chlorosis at low N plants. The positive effect of adequate N supply on the shoot growth 

and development of plants was also observed in this experiment. Plants were sampled for 

elemental analysis at the two developmental stages i.e. seven weeks and eleven weeks 

old.  

 

 

 

2.1.2.1. Analysis of plants harvested at the age of seven weeks 

 

 

Shoot biomass of maize and wheat plants were not affected significantly by soil 

N level, at the age of seven weeks (Table 2.1). As expected, N concentration was 

significantly (p<0.001) improved with adequate N supply in both maize and wheat plants. 

The maize and wheat plants grown with adequate N supply had greater concentrations of 

Zn in the shoot as compared to the plants grown with low N supply (Table 2.1). However, 

this effect was not statistically significant for maize. Results showed N nutrition improved 

the soil root Zn absorption both crops particularly in wheat. Analysis of variance 

(ANOVA) revealed that interaction between crops and soil N level effected the N 

concentration significantly (p<0.05) but it did not affect the dry matter production or Zn 

concentration (Table 2.1). 
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Table 2.1: Shoot dry matter (g plant-1), leaf N concentration (%) and shoot Zn 

concentration (mg kg-1) in 50 days old maize and wheat plants grown with low 

(100 mg kg-1) and adequate (200 mg kg-1) N supply under greenhouse 

conditions. The soil was supplied with 2 mg kg-1 Zn in the form of ZnSO4.7H2O. 

The data represents the mean of 4 replicates 

 

 

Dry matter HSD 0.05 (Soil N, Crop, Soil N x Crop) = NS, 0.06***, N.S 

N Concentration HSD 0.05 (Soil N, Crop, Soil N x Crop) = 0.15***, 0.15***, 

0.29* 

Zn Concentration HSD 0.05 (Soil N, Crop, Soil N X Crop) = 0.90***, 0.90***, N.S 

 

 

 

2.1.2.2. Analysis of eleven weeks old plants 

 

 

Shoot biomass was increased with increased N rate in 11 weeks old maize and 

wheat plants however, the effect was not significant for wheat (Table 2.2 Fig 2.1). 

Analysis of variation showed a significant (p<0.001) effect of soil N and its interaction 

with crop on dry matter production. Low N maize plants showed sever Zn and N 

deficiency symptoms. However, adequate N supply reduced the Zn deficiency symptoms 

(Fig 2.1). Nitrogen concentration increased significantly (p<0.001) at adequate N supply 

in both maize and wheat plants (Table 2.2).  

N supply in also affected the Zn concentration significantly (p<0.001) in both 

maize and wheat plants. The plants grown with adequate N supply had significantly 

greater concentrations of Zn in the shoot as compared to the plants grown with low N 

application (Table 2.2).  

Soil N level

(mg kg
-1

)

Maize 100 0.97 ± 0.05 a 3.01 ± 0.13 d 7.73 ± 0.72 c

Maize 200 0.97 ± 0.09 a 3.76 ± 0.19 c 8.38 ± 0.67 c

Wheat 100 0.57 ± 0.02 b 4.48 ± 0.11 b 15.9 ± 1.0 b

Wheat 200 0.63 ± 0.03 b 4.87 ± 0.10 a 18.0 ± 0.8 a

(%) (mg kg
-1

)
Crop

(g plant
-1

)

ZnNDry matter
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Fig 2.1: Effect of low (100 mg kg-1) and adequate (200 mg kg-1) soil N applications on 

growth of 11-weeks-old maize (Zea mays L. cv. Shemal) and wheat (Triticum aestivum 

L. cv. Tahirova) plants. The soil was supplied with 2 mg kg-1 Zn in the form of 

ZnSO4.7H2O.   

 

 

Table 2.2: Shoot dry matter (g plant-1), leaf N concentration (%) and shoot Zn 

concentration (mg kg-1) in 79 days old maize and wheat plants grown with low (100 

mg kg-1) and adequate (200 mg kg-1) N supply under greenhouse conditions. The 

soil was supplied with 2 mg kg-1 Zn in the form of ZnSO4.7H2O. The data represents 

the mean of 4 replicates. 

 

 

Dry matter HSD 0.05 (Soil N, Crop, Soil N x Crop) = 0.67***, 0.67***, 1.32** 

N Conc. HSD 0.05 (Soil N, Crop, Soil N x Crop) = 0.19***, 0.19***, N.S 

Zn Conc. HSD 0.05 (Soil N, Crop, Soil N x Crop) =0.75***, 0.75***, 1.45* 

 

  

 

100 mg kg-1 N 200 mg kg-1 N 100 mg kg-1 N 200 mg kg-1 N 

Soil N level

(mg kg
-1

)

Maize 100 2.89 ± 0.48 b 1.0 ± 0.1 c 5.2 ± 0.1 c

Maize 200 4.51 ± 0.34 a 1.8 ± 0.2 b 6.6 ± 0.3 b

Wheat 100 1.88 ± 0.06 b 1.8 ± 0.3 b 7.6 ± 0.9 b

Wheat 200 2.21 ± 0.12 b 2.8 ± 0.1 a 12.7 ± 0.8 a

Crop
Dry matter N Zn

(g plant
-1

) (%) (mg kg
-1

)
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N nutrition increased the shoot Zn concenntration significantly in both maize and 

wheat plants (Table 2.2). Wheat plants had significantly (p<0.001) higher Zn 

concentration as compared to maize. Adequate N grown wheat plants showed the highest 

Zn concentration in shoots. Interaction between soil N level and crop also significantly 

(p<0.05) affected the shoot Zn concentration (Table 2.2).   

 

 

 

 

2.2. EXPERIMENT II: Absorption and Mobilization of Zinc (ZnSO4.7H2O) from 

foliar Zn application in Maize and Wheat at vegetative growth stage as affected by 

variable soil N supply 

 

 

 

2.2.1. Materials and Methods 

 

 

This experiment was performed to assess the Zn uptake from foliar Zn treatment 

by maize and wheat plants grown at variable soil N supply.  

Maize (Zea mays L. cv. Shemal) and wheat (Triticum aestivum L. cv. Tahirova) 

were grown in marginal (0.5 mg Zn kg-1) soil Zn levels (supplied as ZnSO4.7H2O) under 

greenhouse conditions (Details are described in “General Material and Methods” 

Section). Initially N (as Ca [NO3]2.4H2O) was mixed in the soil at the time of sowing at 

three different rates viz: low (N1: 25 mg N kg-1 soil), medium (N2: 50 mg N kg-1 soil) and 

adequate N (N3: 100 mg N kg-1 soil). After germination, 9 seedlings in each wheat pot 

and 6 in each maize pot were maintained and plants were allowed to grow under normal 

conditions in greenhouse.  

When the maize plants were at the 4-leaf stage, and wheat plants at 3-leaf stage, 

the foliar Zn was applied. The control group of pots containing maize and wheat plants 

were not sprayed with Zn, while the treatment group was sprayed with a 0.25% (w/v) 

ZnSO4.7H2O solution containing 0.02% Tween-20® as surfactant. The soil was covered 

with towel papers to avoid soil contamination. Fertilizer solution was sprayed with the 

help of hand sprayer. The foliar applications were repeated after two days and for three 
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times. At the end of the spraying period, maize plants were at 5 leaf stage and wheat at 4 

leaf stage. Plants were allowed to grow in greenhouse condition until to produce new 

younger uncontaminated fresh leaves.  

Three days after the final spray, plants were supplied with another N dose with 

same ratio (as in beginning) to avoid sever N deficiency. Finally, three N levels were 

achieved as low (N1: 50 mg kg-1), medium (N2: 100 mg kg-1) and adequate N (N3: 200 

mg kg-1).   

Ten days after the final spray, maize and wheat plants developed new younger 

uncontaminated leaves which were harvested separately. Overall maize and wheat plants 

were harvested in three fractions viz  

Fraction I: Young (un-sprayed) leaves 

Fraction II: Remaining plant parts (sprayed) 

 Fraction I was analyzed for Zn concentrations and N concentration. Fraction II (sprayed 

plant portion) was used to determine dry weight of plants. 

 

 

 

2.2.2. Results 

 

 

Table 2.3 illustrates the dry matter production (mg plant-1) and leaf N 

concentration (%) in younger leaves grown at low (50 mg N kg-1 soil), medium (100 mg 

N kg-1 soil) or high (200 mg N kg-1 soil) N under low Zn supply in greenhouse. Low N 

maize plants developed N deficiency symptoms, for example, chlorosis and necrosis on 

older leaves, however, wheat plants did not show N deficiency symptoms (Fig 2.2, 2.3). 

A visible biomass reduction can easily be observed in low N maize but not in wheat (Fig 

2.2, 2.3).   
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Fig 2.2 Maize (Zea mays L. cv. Shemal) grown at low (50 mg N kg-1 soil), 

adequate (100 mg N kg-1 soil) or high (200 mg N kg-1 soil) N supply on a 

Zn-deficient soil and supplied with foliar Zn treatment of 0.25% 

ZnSO4.7H2O was applied 

 

 

Fig 2.3: Wheat (Triticum aestivum L. cv. Tahirova) grown at low (50 mg N kg-

1 soil), adequate (100 mg N kg-1 soil) or high (200 mg N kg-1 soil) N supply on 

a Zn-deficient soil and supplied with foliar Zn treatment of 0.25% ZnSO4.7H2O 

was applied. 

 

Biomass was increased significantly in maize with increasing the N supply in the 

soil. Foliar Zn application at low N supply had no effect on biomass (Table 2.3). Foliar 
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Zn application at high N supply increased the plant growth and hence the dry matter was 

increased significantly (Table 2.3, Fig 2.2). In wheat plants, however, this effect was not 

statistically significant. In maize, the shoot biomass of the high N plants without any foliar 

spray was 37% higher compared to that of the low N plants. Whereas, in wheat, shoot 

biomass of the high N plants with no foliar Zn treatment were 15% higher than those of 

low N plants (which is not statistically significant). This indicates that the low N treatment 

of 50 mg kg-1 of soil was already enough to support the growth of the wheat plants at the 

early vegetative stage.  After foliar Zn application, biomass of high N maize plants was 

73.8% higher than that of low N plants. However, in wheat the 20% increase in biomass 

production with foliar Zn was recorded (Table 2.3).  

As expected, N concentration in younger leaves of maize and wheat plants were 

increased with increasing the soil N supply (Table 2.3). The medium N supply showed 

the intermediate values between low and high N supply. The differences were obvious 

and significant if the concentrations are compared among low and high N plants. The only 

exception was the reduced N concentrations in high soil N plants with foliar Zn spray 

probably due to increased biomass production and resulting dilution effect. Analysis of 

variance showed significant effect of plant species (maize and wheat), soil N supply and 

the foliar Zn supply on the dry matter production and N concentration. The interaction 

among all these variables had significant effect on dry matter production but not on N 

concentration of young leaves (Table 2.3).  
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Table 2.3: Effect of foliar Zn treatment of 0.25% ZnSO4.7H2O on the dry matter 

production and leaf N concentration of Maize (Zea mays L. cv. Shemal) and 

wheat (Triticum aestivum L. cv. Tahirova) grown at low (50 mg N kg-1 soil), 

adequate (100 mg N kg-1 soil) or high (200 mg N kg-1 soil) N supply on a Zn-

deficient calcareous soil supplied with 0.5 mg Zn kg-1 soil. 

 

 

 

Dry matter HSD 0.05 (Crop, Soil N, Foliar Zn application, Soil N x Crop x 

foliar Zn application) = 0.03***, 0.03***, 0.03***, 0.11*** 

N Conc. HSD 0.05 (Crop, Soil N, Foliar Zn application, Soil N x Crop x foliar 

Zn application) = 0.13***, 0.20***, 0.13***, N.S 

 

Newly grown young uncontaminated leaves were analyzed separately and Table 

2.4 illustrate the effect of soil N on root and leaf Zn absorption in maize and wheat plants 

at vegetative growth stage grown at variable N levels supplied with low Zn supply in soil.  

As expected, shoot Zn concentrations were increased with the application of foliar 

ZnSO4 in both maize and wheat plants grown at low, medium and high N levels (Table 

2.4). The increase in shoot Zn concentration as a result of foliar Zn application is 

significant in wheat but not in maize confirming the results presented in “Chapter 1”.  

 

Soil N Foliar

(mg kg
-1

)  Application

None 0.89 ± 0.04 d 3.24 ± 0.25 fg

ZnSO4 0.88 ± 0.06 d 2.93 ± 0.33 g

None 1.08 ± 0.05 c 3.87 ± 0.21 de

ZnSO4 1.15 ± 0.07 bc 3.39 ± 0.23 efg

None 1.22 ± 0.06 b 4.53 ± 0.07 c

ZnSO4 1.53 ± 0.04 a 3.50 ± 0.12 ef

None 0.26 ± 0.02 e 4.39 ± 0.27 cd

ZnSO4 0.25 ± 0.03 e 4.77 ± 0.18 bc

None 0.25 ± 0.02 e 5.29 ± 0.36 ab

ZnSO4 0.27 ± 0.02 e 5.35 ± 0.19 a

None 0.30 ± 0.05 e 5.53 ± 0.11 a

ZnSO4 0.30 ± 0.01 e 5.40 ± 0.23 a

50

100

200

50

100

200

Wheat

Maize

Plant
Shoot Biomass 

(g plant
-1

)

Leaf N

(%)
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Table 2.4: Effect of foliar Zn treatment of 0.25% ZnSO4.7H2O on the Zn 

concentration (mg kg-1) and Zn contents (µg plant-1) of young new leaves of 

Maize (Zea mays L. cv. Shemal) and wheat (Triticum aestivum L. cv. Tahirova) 

grown at low (50 mg N kg-1 soil), adequate (100 mg N kg-1 soil) or high (200 mg 

N kg-1 soil) N supply on a Zn-deficient calcareous soil supplied with 0.5 mg Zn 

kg-1 soil. 

 

 
 

Zn Conc. HSD 0.05 (Crop, Soil N, Foliar Zn application, Soil N x Crop 

x foliar Zn application) = 1.18***, N.S, 1.18***, 4.99*** 

Zn Contents. HSD 0.05 (Crop, Soil N, Foliar Zn application, Soil N x 

Crop x foliar Zn application) = 0.09***, 0.13***, 0.09***, 0.38*** 

 

Results showed that increasing N supply had a negative effect on shoot Zn 

concentrations in maize. In case of wheat, shoot Zn concentrations increased with 

increasing the soil N rate (Table 2.4). However, the shoot Zn contents were increased 

significantly with improving N status of the plants due to enhanced plant growth and more 

biomass production. In wheat plants, without foliar Zn application, the shoot Zn 

Soil N Foliar

(mg kg
-1

)  Application

None 9.72 ± 1.66 cd 0.68 ± 0.15 ef

ZnSO4 11.4 ± 0.84 cd 1.28 ± 0.10 bc

None 7.44 ± 0.31 d 0.65 ± 0.02 ef

ZnSO4 10.6 ± 0.56 cd 1.72 ± 0.05 b

None 8.23 ± 0.80 d 0.67 ± 0.15 ef

ZnSO4 9.37 ± 0.59 d 2.38 ± 0.22 a

None 10.3 ± 0.16 cd 0.48 ± 0.05 f

ZnSO4 31.4 ± 3.87 a 1.40 ± 0.05 bc

None 11.6 ± 1.75 cd 0.50 ± 0.05 f

ZnSO4 27.5 ± 3.77 ab 1.42 ± 0.13 bc

None 14.9 ± 1.70 c 0.91 ± 0.23 ef

ZnSO4 24.6 ± 1.34 b 1.53 ± 0.05 bc

Zn contents

(µg plant
-1

)

Zn Concentration

(mg kg
-1

)

50

100

200

Maize

Wheat

Plant

50

100

200
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concentrations increased with increasing N rates, however, the effect was not statistically 

significant (Table 2.4). With foliar spray, at low soil N plants, the Zn concentrations 

increased significantly compared to high N plants, however, contents were not increased 

much (Table 2.4).   

 

 

 

2.3. Discussion 

 

 

Nitrogen nutrition had a significant positive affect on Zn uptake from soil and 

foliar Zn application in both maize and wheat plants. Supplying adequate N in the soil, 

increased the shoot growth and biomass of the plants in both experiments reported in this 

study. In maize Zn deficiency symptoms were overcome by supplying adequate N rate, 

explaining that root uptake and utilization of Zn was improved with adequate N supply 

(Fig 2.1).  

In experiment-I, at adequate Zn supply in soil, increasing the N nutrition increased 

the shoot Zn concentrations highly significantly in both maize and wheat plants (Table 

2.1, 2.2). Although the effect was more significant in wheat compared to maize. At 

vegetative stage in both maize and wheat, increasing N supply was helpful in increasing 

the shoot biomass as well as the shoot Zn concentration when there is sufficient amount 

of Zn available in the soil (Table 2.2). The results found in current studies are with 

agreement to the many previous studies cited in literature (Cakmak et al., 2010b; Kutman 

et al., 2010; Erenoglu et al., 2011; Singh et al., 2018). Kutman et al., 2010 showed that 

Zn concentration in wheat shoot and grains were increased due to increased supply of N 

either in soil or foliar providing the sufficient availability of Zn in soil.  Erenoglu et al., 

2011 demonstrated the three-fold increase Zn root uptake by improving N nutrition by 

using radioactive isotope 65Zn.  

In experiment 2 where plants were grown on low soil Zn, biomass was increased 

with increasing N supply in the soil particularly in maize (Table 2.3). At high N 

application, foliar Zn application resulted in significant increase in shoot biomass (Table 

2.3). Nitrogen nutrition was not effective in increasing the shoot Zn concentration, 

however, shoot Zn contents were increased significantly (Table 2.4). With increasing N 

supply in growth medium and applying foliar Zn, increased biomass of the plants resulted 
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in dilution of Zn in young leaves. In case of low soil N supply, foliar Zn treatment was 

highly effective in increasing the Zn concentration compared to high N supply, however, 

Zn contents were higher at high N supply (Table 2.4). Increased Zn contents explained 

the enhanced utilization of Zn in terms of biomass production. It is also well known that 

high N availability facilitates the remobilization and activity of Zn in plant tissues by 

increasing the level of Zn chelating compounds (Singh et al., 2018). Similar results were 

reported by Kutma et al., 2010 in durum wheat that under deficient Zn supply I growth 

medium N nutrition was not helpful in enhancing the shoot Zn concentration, however, 

shoot Z contents were greatly improved indicating the increased activity ad metabolism 

of Zn for biomass production. 

There was a strong positive relation between Zn concentration and N was 

observed in both experiments in maize and wheat crops. It is hence suggested that Zn and 

N are closely linked to improve the Zn uptake and utilization when there is enough 

amount of these nutrients available in soil or in the form of foliar. These results are well 

supported with previous finding (Cakmak et al., 2010b; Kutman et al., 2010; Erenoglu et 

al., 2011; Habib et al., 2012; Singh et al., 2018).  

 Experiment 1 suggested that increased N nutrition enhance the Zn uptake from 

soil and helps in translocation to the young plant tissues in both wheat and maize but more 

efficiently in wheat. Root uptake is increased due to better plant growth caused by 

adequate N supply in the soil. Nitrogen also increased the transporter proteins responsible 

for uptake and translocation of Zn from root to young leaves (Waters et al., 2006; Haydon 

& Cobbett, 2007). Experiment II suggested that increasing soil N at deficient soil Zn does 

not increase the shoot Zn concentration but increase the shoot Zn contents. Nitrogen 

nutrition has a positive effect on the concentration of chelating compounds (Wirén et al., 

1999; Haydon & Cobbett, 2007). High N supply has a positive effect on overall 

nitrogenous compounds including the Zn and other metal chelators and transporters 

(Kutman et al.,2010).  Nitrogen nutrition is helpful to absorb the Zn from root as well as 

from leaf-applied foliar spray. Therefore, improving N applications, could be a very 

helpful tool for agronomic biofortification of Zn in cereal crops. 
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2.4. Conclusions 

 

 

Micronutrient deficiencies particularly Zn and Fe also called as “hidden hunger” 

is a serious health problem increasing with an alarming rate in developing countries where 

population relay on cereal crops for staple food (Bouis, 2003). Agriculture strategies offer 

a workable and cost-effective solution to the problem by increasing the Zn contents in 

staple food like cereal crops through breeding or fertilization or combining both 

approaches (Cakmak, 2008). Improving nitrogen nutrition has proven very beneficial not 

only to increase the grain yield but also enhance the nutritional quality of the cereal grains 

by increasing the Zn and Fe concentrations (Kutman et al., 2010). Improved N application 

increase the protein contents of the plants which involve in Zn uptake from root and leaf 

(in case of foliar applied Zn) and its transport toward sink. Maize and wheat absorb and 

accumulate more Zn in shoot in the presence of high soil N, provided the adequate 

availability of Zn in the soil. Under Zn deficient conditions, increased N helps to utilize 

the available Zn to increase biomass production. Giving a careful consideration to N 

nutrition as a part of agronomic biofortification of cereal crops may provide a better 

solution to food security and hidden hunger problems worldwide. 
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CHAPTER 3 

 

 

CHARACTERIZATION OF BIOFORTIFIED HARVESTPLUS WHEAT 

GENOTYPES FOR ROOT UPTAKE, SHOOT TRANSLOCATION, FOLIAR 

ABSORPTION, RE-MOBILIZATION AND SEED DEPOSITION OF ZINC 

 

 

 

 

3.1. Introduction 

 

 

 

Chronic micronutrient deficiencies, particularly Zn and Fe, also known as “hidden 

hunger”, is a major public health problem, affecting over two billion people worldwide 

particularly women and children in developing countries (Akhtar, 2013). More than 60% 

of the population living in developing countries is at the risk of low dietary Zn intake 

(Brown et al., 2001). The process of increasing the density of mineral elements and 

vitamins in a crop by using the multiple strategies of agronomy, plant breeding, or 

transgenic techniques is called as biofortification (White and Broadely, 2011; Bouis and 

Saltzman, 2017). If the individuals are provided with biofortified staple food to consume 

on regular basis, considerable improvements can be generated in public health and 

nutrition (Bouis et al., 2011b; Signorell et al., 2015). Genetic as well as agronomic 

biofortification, are both considered as a reasonable solution to prevalent Zn deficiency 

problem in the human population of developing world (Pfeiffer and McClafferty, 2007). 

Soil or foliar application of active Zn fertilizer to increase the Zn concentration of 

the edible part of food crops is agronomic biofortification. The effectiveness of Zn 

fertilizer depends on the application with accurate rate, the right time and appropriate 

plant stage. (Cakmak, 2008; Chattha et al., 2017). However, genetic biofortification is the 

development of staple food crops, by using plant breeding techniques, with the capacity 

to accumulate higher level of micronutrients in edible plant portions, reduce the levels of 

anti-nutrients and elevate the levels of substances that help to increase the nutrient 
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absorption (Bouis, 2003; Welch and Graham, 2004; Bouis et al., 2011). Genetic 

biofortification is thought to provide a sustainable and cost-effective solution to the global 

Zn deficiency problem by developing new crop cultivars with comparatively higher 

accumulating ability of Zn in grains (Welch and Graham, 2004; Cakmak, 2008; Bouis et 

al., 2011; Meenakshi et al.,2010; Stein, 2010). It is done by exploring the natural available 

variation in the germplasm for the particular desired trait and utilize it for developing new 

genotypes by using plant breeding techniques (Cakmak, 2008; Velu et al., 2014).  

Wheat is a primary staple food in South Asia (Northern India and Pakistan) used 

to make traditional breads (e.g. chappati or roti) to be consumed almost in every meal and 

in every household (Baloch et al., 2015). Despite the heavy consumption (>390 g per 

capita per day) of wheat, more than 26% of the population living in South Asia is 

diagnosed as Zn deficient. As described in previous chapter, cereals like wheat, maize 

and rice are inherently low in micronutrients, therefore, cereal-based foods do not provide 

enough Zn to meet the individual’s daily Zn requirement. Human Zn deficiency in this 

region is also associated with noticeable Zn deficiency in soils as cereals are cultivated 

on severely Zn deficient soils (Asher, & Hynes, 1992; Welch & Graham, 2004; Cakmak, 

2008; Cakmak et al., 2010; Zou et al., 2012; Velu et al., 2012; Cakmak, 2014; Cakmak 

and Kutman, 2017). Therefore, the South Asian agro-ecological zone including India and 

Pakistan was identified as potential target areas for adoption and commercialization of 

biofortified wheat. HarvestPlus program (www.harvestplus.org) along with collaboration 

with public and private partners took initiatives to develop the biofortified high-Zn wheat 

cultivars for the target areas (Bouis and Welch, 2010).  

As a part of HarvestPlus program, “Biofortification Breeding Research”, at 

International Maize and Wheat Improvement Center (CIMMYT), is taking lead role in 

development, evaluation, seed production and adoption of biofortified genotypes in 

partnership with numerous breeding programs at national level and private seed 

production groups in India and Pakistan (www.cimmyt.org). Initially breeding targets for 

the mentioned countries was to increase the Zn concentration by 10-12 mg kg-1 in wheat 

grain over the baseline (HarvestPlus Brief, 2006; Bouis and Welch, 2010; Bouis and 

Saltzman, 2017). The mean value for Zn concentration of popular varieties currently 

cultivated in the region is considered as baseline. 
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In order to develop a high-Zn cultivar, the first thing breeders need is the 

availability of sufficient genetic variation in germplasm for increased Zn concentration in 

the grain (Cakmak., 2008). To explore the genetic variation, plant breeders screen the 

available genetic resources like wheat accessions, promising lines, landraces in the 

primary gene pool and wild relatives and progenitors in secondary gene pool. If the 

germplasm screening results in useful genetic variation, the genes governing high Zn 

accumulation are transferred to the modern high yielding cultivars by crossing, back 

crossing or by using other plant breeding techniques (Cakmak et al., 2000; Velu et al., 

2014; Velu and Singh, 2012). 

The plant breeding targets for the previous 50 years were to increase the wheat 

production to overcome hunger and to feed the rapidly increasing world population. With 

the objective of genetic gain, semi dwarf, high yielding and disease resistant plants were 

selected over the years (Tilman et al., 2002; Ortiz et al., 2007; Trethowan et al., 2007; 

Davis, 2009; Curtis & Halford, 2014; Velu and Singh, 2013). Unfortunately, nutritional 

measures like micronutrient and protein concentrations were largely disregarded. As a 

result, modern varieties of staple crops are commonly high-yielding and disease-resistant 

but not much nutritious (Cakmak, 2008). Therefore, improved cultivated wheats show a 

narrow genetic variation for Zn concentration (Oury et al., 2006) as compared to wild and 

primitive wheat species (Garvin et al., 2006; Fan et al., 2008; Davis, 2009; Shewry et al., 

2016).  

Germplasm including more than 3000 bread and durum wheat accessions, 

tetraploid and diploid wild relatives and progenitors of wheat were collected from 

CIMMYT gene bank and were evaluated for Fe and Zn concentration (Monasterio and 

Graham, 2000, Ortiz-Monasterio et al., 2007). Wild emmer (Triticum turgidum ssp. 

Dicoccoides), einkorn wheat (Triticum monococcum), wild goat grass (Aegilops tauschii) 

and wheat landraces showed substantial genetic variation for increased Zn in grain 

(Cakmak et al. 1999; Cakmak et al., 2000; Monasterio and Graham, 2000; Cakmak et al., 

2004 a,b; Ortiz-Monasterio et al., 2007; Peleg et al. 2008; ; Cakmak et al. 2010b). Among 

all the germplasm evaluated so far wild emmer wheat proved to have the highest Zn 

concentrations (14 to 190 mg Zn kg-1) which is subsequently used by “Wheat wide crosses 

unit” of CIMMYT to develop the synthetic hexaploid wheat (Triticum Turgidum ssp. 

Dicoccon x Aegilops tauschii). Plant breeders at CIMMYT have transferred the genes 
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responsible for increased Zn from the reported high Zn sources like synthetics, 

diploid/tetraploid wild progenitors and landraces, to high yielding elite wheat 

backgrounds (Ortiz-Monasterio et al., 2007) 

With the several years of research efforts at CIMMYT, numerous high yielding, 

disease resistant Zn biofortified advance lines have been developed with significantly 

increased capacity of Zn accumulation in grains (HarvestPlus, 2010). These genotypes 

absorb greater quantities of Zn from soil and/or have capacity to remobilize greater 

quantities of Zn from shoots into grains (Distelfeld et al., 2007). These CIMMYT-derived 

wheat lines were tested in target environments under HarvestPlus Yield Trial (HPYT) 

and resulted with a set of lines with 75-150% increased grain Zn compared to check 

cultivars. These candidate lines called “best bets” also claim to possess high yield 

potential, disease resistance, adoption and essential end use quality traits (Velu et al., 

2012; Velu and Singh, 2012; Velu and Singh, 2013).  

With the collaboration of HarvestPlus and National Wheat breeding Program, 

Pakistani breeders developed and released the first high Zn wheat variety “Zincol-2016” 

by using traditional breeding techniques (http://www.harvestplus.org/node/1647). 

Zincol-2016 is nutritious, high yielding, well adapted to Pakistani environment and 

contains 37 mg kg-1 Zn in grain (+12 mg/kg) compared to the popular cultivated varieties 

in Pakistan (PARC, 2017; Baloch et al., 2018). Similarly, in India several biofortified 

wheat varieties by using CIMMYT-derived lines were released which out yielded the 

conventionally growing varieties and at the same time had higher Zn concentration. “Zinc 

Shakti” is a new Indian Zn-biofortified variety with 40% higher Zn concentration released 

to the farmers in India (CIMMYT, 2017).  

Although plant breeding and genetic biofortification are powerful approaches, 

they have some limitations which need special attentions (White and Broadley, 2011; 

Cakmak and Kutman, 2017). Definitely, the newly developed biofortified genotypes are 

highly dependent on plant-available soil Zn pool to absorb and accumulate more Zn in 

grains (Cakmak, 2008). It is already mentioned that most of the world’s cereal cultivated 

soils including several South Asian countries are severely Zn deficient. Other factors like 

soil texture, high pH, low organic matter and reduced water supply also limit the Zn 

absorption by plant roots (Graham et al., 1992; Marschner, 1993; Cakmak et al., 1996; 

Alloway, 2009; Rengel, 2015). Under these adverse soil and climatic conditions with poor 

http://www.cimmyt.org/farmers-in-pakistan-benefit-from-new-zinc-enriched-high-yielding-wheat/
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bio-available Zn in rhizosphere, improved biofortified genotypes may not be able to 

express their full potential in terms of absorption of Zn from soil and accumulation in 

grain. To be able to achieve the targets of providing sufficient Zn to fulfil daily human 

Zn requirement, the biofortified lines should be able to extract and accumulate significant 

level of Zn in grain (up to 40-60 mg kg−1) which seems impractical without Zn fertilizers 

(Cakmak, 2008; White and Broadley, 2011; Edward et al., 2016; Cakmak and Kutman, 

2017; Chen et al., 2017). Hence, to support the long-term breeding efforts of genetic 

biofortification, soil and/or foliar Zn fertilizer applications are a complementary approach 

(Edward et al., 2016).  

Zinc efficiency (ZE) is an important agronomic character and is generally defined 

as the ratio of grain yield or straw dry-matter yield produced under Zn deficient conditions 

to that of under Zn fertilization (Cakmak et al., 1996). Zinc efficient wheat genotypes are 

supposed to yield better on Zn-deficient soil (Singh et al., 2005). However, grain Zn 

accumulation is influenced by several factors including genetic capacity of a genotype to 

extract Zn from soil, higher leaf absorption from foliar Zn fertilizers, translocation and 

remobilization at the time of grain filling (Waters et al. 2009; Kutman et al. 2012; Yilmaz 

et al., 2017). Therefore, it is crucial to maintain a sufficient level of plant-available Zn in 

soil or instantly available large Zn pool in vegetative organs (foliar Zn) during seed-filling 

or both (Cakmak and Kutman, 2017).  

Foliar Zn application is a proven tool to enhance grain Zn concentration. It is 

particularly useful when the soil conditions limit Zn availability for root absorption. 

Application of foliar Zn at the right plant development stage and rate can increase grain 

Zn concentration up to 83% in cereals like wheat (Zhou et al., 2012; Phattarakul et al., 

2012; Cakmak and Kutman, 2017). 

Flag leaves play an important role in synthesis and translocation of photo 

assimilates in the crop plants, therefore, directly affect the grain yield. Similarly, flag 

leaves are considered to be responsible for micronutrients (Fe and Zn) storage and 

remobilization to the grain at the time of grain filling. To investigate the contribution of 

flag leaf in mineral accumulation and remobilization to the grain, at early milk stage flag 

leaves were harvested and analyzed separately to know the elemental concentration and 

contents in flag leaf.  

https://www.frontiersin.org/articles/10.3389/fpls.2018.00677/full#B9
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The objective of current study was to evaluate performance of the high-Zn 

Harvestplus-biofortified wheat genotypes (www.harvestplus.com) in comparison to a 

non-biofortified conventionally grown varieties as check under deficient and adequate 

soil Zn conditions. Ten genotypes developed by HarvestPlus Program in India and 

Pakistan were obtained along with two conventionally grown varieties. These biofortified 

lines were developed through long-term breeding activities under the HarvestPlus 

program in Pakistan and India, therefore, characterization of these genotypes for root 

uptake, shoot translocation, foliar absorption, re-mobilization and seed deposition of Zn 

can be helpful in adoption of these candidate lines as a cultivar.  

There were three main questions addressed during these experiments 

 How HP-biofortified genotypes differ from each other and from the check 

varieties in terms of soil Zn absorption and translocation capacity under deficient 

as well as adequate soil Zn conditions? 

 How HP-biofortified genotypes differ from each other and from the check 

varieties in terms of Zn absorption and translocation capacity from foliar Zn 

sprays under deficient as well as adequate soil Zn conditions? 

 Understand whether the higher grain Zn accumulation in the HP-biofortified 

genotypes is due to a higher root uptake from the growth medium or a greater 

root-to-shoot translocation capacity. 

 

To answer the first two questions, the wheat genotypes were grown in green house 

with several soil and foliar Zn treatments (Experiment A) until maturity. To answer the 

third question, a time course depletion experiment (Experiment B) was conducted where 

genotypes were grown in nutrient solution medium. 

  

 

 

 

 

 

http://www.harvestplus.com/
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3.2. Experiment A: Soil and/or foliar uptake and seed deposition of zinc in several 

HarvestPlus-Biofortified wheat genotypes grown in greenhouse conditions 

 

 

 

3.2.1. Materials and Methods 

 

 

 

3.2.1.1. Seed source 

 

 

Seeds of 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) 

and two conventionally grown wheat cultivars (Triticum aestivum L.) were kindly 

provided by Dr. Hari Ram and Dr. Abdul Rashid from HarvestPlus Program in India and 

Pakistan respectively. Five genotypes obtained from Pakistan (NR-421, NR-435, NR-

457, NR-488, NR-489) and five from India (HPBW-01, HPBW-02, HPPAU-05, HPPAU-

07, HPPAU-10) are assumed to accumulate more Zn in the grain and agronomically 

superior than the traditional cultivars grown in India and Pakistan. The popular varieties 

from Pakistan (Faisalabad-2008) and India (HD-2967) were used as the experimental 

checks (Table 3.1).  

Table 3.1: List of the biofortified genotypes 

obtained from HarvestPlus Biofortification 

Program  

 

 
*Locally cultivated popular 

cultivars used as experimental 

checks. 

 

 

 

3.2.1.2. Growth Conditions 

 

 

Pakistan India

Faisalabad 2008* HD-2967*

NR-421 HPBW-01

NR-435 HPBW-02

NR-457 HPPAU-05

NR-488 HPPAU-07

NR-489 HPPAU-10
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First part of the experiment was carried out to investigate the differences among 

the HP-biofortified lines in term of their capacity of Zn uptake from soil supplied with 

low or adequate Zn. The experiment had a factorial design with four independent (pot) 

replicates with total of 96 pots. The soil was prepared as described in “General 

Materials and Methods”. Initial N rate was 250 mg N kg-1 soil, additional N was 

supplied at tillering, booting and early milk stages each at a rate of 50 mg N kg-1 soil 

as Ca (NO3)2.4H2O. Low and adequate Zn levels were established by adding 0.5 mg 

kg-1 Zn (low Zn supply) and 5 mg.kg-1 Zn (adequate Zn supply) to the soil respectively 

in the form of ZnSO4.7H2O. Initially 14 seeds were sown in each pot and the resulting 

seedlings were thinned to 10 per pot at the three-leaf stage. Plants were grown in a 

computer-controlled greenhouse (details described in General Materials and 

Methods”). Pots were irrigated with DI-water every day and randomized every two 

weeks for uniform exposure to possible climatic variations.  

 

 

 

3.2.1.3. Foliar Fertilizer application 

 

 

In the second part of the experiment, Zn uptake capacity of HP-biofortified lines 

from foliar sprays was tested in second set of plants grown in identical condition (both 

set of plants were grown simultaneously as described above). At booting (i.e. before 

anthesis) and early milk stages (i.e. after anthesis) plants were sprayed with a solution of 

0.4% ZnSO4.7H2O and 0.02% Tween-20. The soil surface was covered with paper towel 

before foliar sprays to avoid soil contamination. 

 

 

 

3.2.1.4. Harvesting and analysis 

 

 

Plants from the first set of the experiment were sampled for shoot mineral analysis 

at the early booting and early milk stages (three plants from each pot were harvested at 

each stage). The same number of plants were also harvested from second duplicate set in 

order to keep the uniform plant density in all pots. At the early milk stage shoot sampling, 
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flag leaves from each plant were sampled separately in order to investigate the elemental 

concentration in flag leaves contributing to grain yield and grain mineral accumulation. 

Shoots and flag leaves sampled separately were washed with DI water, dried, weighed 

and analyzed for mineral concentrations as described in “General Materials and 

Methods”. At full maturity, spikes and straw were harvested separately. Straw samples 

were weighed to determine straw biomass. Spikes were threshed with a laboratory 

thresher; grains were washed with DI-water and oven-dried before mineral analysis. Zinc 

concentration and contents in grains were measured and calculated as described in 

“General Materials and Methods” section.  

 

 

 

 

 

3.2.2. Results 

 

 

 

3.2.2.1 Biomass, Zn concentration and contents at booting stage 

 

 

Mean values of biomass production shoot Zn concentration and contents at early 

booting stage of 12 genotypes grown at low and adequate soil Zn is presented in Table 

3.2. Analysis of variance showed that varied soil Zn treatment (i.e. low or adequate) had 

no significant effect on shoot biomass production of wheat genotypes at the booting stage. 

However, there was a significant (P<0.001) genotypic variation in shoot biomass of the 

genotypes used in this study.  

 

At adequate soil Zn, HPPAU-05 produced the maximum (1.25 g plant-1) and the 

Indian Check cultivar (HD-2967) produced minimum (0.86 g plant-1) shoot biomass, 

whereas at low Zn, NR-421 produced the lowest shoot biomass (0.92 g plant-1) (Table 

3.2). The ANOVA indicated that soil Zn and genotype interaction was statistically 

insignificant (Table 3.2).  
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Table 3.2: Shoot biomass, Zn concentration and content at booting stage in 10 CIMMYT-based 

biofortified wheat genotypes (Triticum aestivum L.) and two conventionally-grown wheat cultivar 

(Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low (0.5 mg kg-1) or 

adequate (5 mg kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 soil). 

 

 
 
Shoot biomass HSD 0.05 (Soil Zn, Genotype, Soil Zn X Genotype) = NS, 0.19***, N.S 

Zn concentration HSD 0.05 (Soil Zn, Genotype, Soil Zn X Genotype) = 1.49***, 6.21***, N.S 

Zn content HSD 0.05 (Soil Zn, Genotype, Soil Zn X Genotype) = 2.09***, 8.67***, 13.7* 

 

As expected, there was a significant (p<0.001) effect of soil Zn fertilization on 

shoot Zn concentration of all the genotypes (Table 3.2). The mean shoot Zn concentration 

of wheat genotypes at low Zn supply was 14.1 mg kg-1 with maximum concentration in 

NR-421 (17.2 mg kg-1) and minimum in HPPAU-05 (12.1 mg kg-1). The mean Zn 

concentration at adequate soil Zn was 45.2 mg kg-1 with highest Zn concentration in 

HPBW-02 (49.5 mg kg-1) and lowest in the check variety, Faisalabad 2008 (38.4 mg kg-

1). Analysis of variance showed a significant (p<0.001) genotypic variation for shoot Zn 

concentration at booting stage. Almost all biofortified genotypes when grown at adequate 

soil Zn, exhibited more shoot Zn concentration as compared to the check varieties 

Faisalabad-2008 (38.4 mg kg-1) and HD-2967 (42.5 mg kg-1) indicating an enhanced 

capacity of root uptake and/or shoot translocation of Zn. Among the biofortified lines, 

maximum shoot Zn concentration was recorded in HPBW-02 (49.5 mg kg-1) and 

Faisalabad 2008 1.04 abc 1.09 abc 13.8 c 38.4 b 14.4 c 42.1 ab

NR-421 0.92 c 0.99 abc 17.2 c 49.2 a 16.0 c 48.8 ab

NR-435 0.97 abc 1.11 abc 14.6 c 44.7 ab 14.1 c 49.6 ab

NR-457 0.95 bc 0.98 abc 15.2 c 48.8 a 14.4 c 47.8 ab

NR-488 0.95 bc 0.99 abc 14.4 c 47.1 ab 13.7 c 46.5 ab

NR-489 0.94 c 1.01 abc 14.3 c 40.3 ab 13.4 c 40.6 ab

HD-2967 0.95 bc 0.86 c 13.3 c 42.5 ab 12.7 c 36.4 b

HPBW-01 0.99 abc 1.11 abc 14.4 c 49.0 a 14.2 c 53.3 a

HPBW-02 1.01 abc 1.06 abc 13.7 c 49.5 a 13.8 c 52.6 a

HPPAU-05 1.23 abc 1.25 a 12.1 c 42.5 ab 14.9 c 53.1 a

HPPAU-07 1.12 abc 0.95 bc 13.3 c 43.2 ab 14.8 c 40.8 ab

HPPAU-10 1.03 abc 1.00 abc 13.4 c 46.8 ab 13.8 c 46.6 ab

Mean 1.01 A 1.03 A 14.1 B 45.2 A 14.2 B 46.5 A

Genotypes
Shoot Biomass (g plant

-1
) Zn concentration (mg kg

-1
) Zn content (µg plant

-1
)

Low Zn Adequate Zn Low Zn Adequate Zn Low Zn Adequate Zn
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minimum in NR-489 (40.3 mg kg-1) under adequate Zn supply. Soil Zn and genotype 

interaction on shoot Zn concentration was not significant (Table 3.2).  

At the booting stage, mean shoot Zn content at low Zn was 14.2 µg plant-1 and 

increased significantly (p<0.001) to 46.5 µg plant-1 with adequate Zn application.  At low 

soil Zn, the Indian check cultivar (HD-2967) produced lowest (12.7 µg plant-1) Zn 

contents and Pakistani genotype (NR-421) produced highest (16.0 µg plant-1). At 

adequate soil Zn maximum shoot Zn contents were found in genotype HPBW-01 (53.3 µg 

plant-1) and minimum in Indian check cultivar HD-2967 (36.4 µg plant-1). There was a 

significant genotypic variation (p<0.001) observed among the 12 genotypes tested. 

Contrary to shoot biomass and Zn concentration, soil Zn supply significantly interacted 

with shoot Zn content of genotypes (p<0.05) (Table 3.2). 

 

 

 

3.2.2.2. Biomass, Zn concentration and contents at early milk stage 

 

 

Table 3.3 presents the mean values of the dry matter produced in whole plant shoot 

(except flag leaf) g plant-1 and the flag leaves separately harvested at the early milk stage. 

At early milk stage, ANOVA indicated that soil Zn had a statistically significant (p<0.01) 

effect on whole plant biomass production. The mean value of all the genotypes grown at 

low soil Zn was recorded as 3.43 mg kg-1 whereas the mean for the genotypes grown at 

adequate soil Zn was 3.67 mg kg-1. Soil Zn had no significant effect on dry weight of 

individual flag leaves. No significant genotypic variation or soil Zn x genotype interaction 

was observed for dry matter produced by whole plant; however, genotypes differed 

significantly in terms of flag leaf biomass. Maximum flag leaf dry matter (0.19 mg plant-

1) was produced by HPBW-01 and minimum (0.10 mg plant-1) by HPPAU-07 (Table 3.3).  

Soil Zn application had a significant effect (p<0.001) on shoot Zn concentration 

of all the genotypes (Table 3.4). The mean shoot Zn concentration grown at low soil Zn 

(8.03 mg kg-1) was significantly increased adequate soil Zn (31.7 mg kg-1). Flag leaf Zn 

concentration was also significantly affected by soil Zn with mean value (13.3 mg kg-1) 

under low Zn and (32.5 mg kg-1) at adequate soil Zn conditions (Table 2.4). There was a 

significant genotypic variation (p<0.001) for Zn concentration in plant shoot (without 

flag leaf). At low soil Zn supply, minimum Zn concentration was found in HPPAU-07 
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(6.29 mg kg-1) while maximum in NR-488 (9.14 mg kg-1).  Under adequate soil Zn supply, 

lowest Zn concentration was measured in Faisalabad-2008 (25.7 mg kg-1) while highest 

in NR-488 (36.2 mg kg-1). However, for flag leaf Zn concentration, genotypic variation 

was not statistically significant (Table 3.4). Analysis of variance (ANOVA) revealed a 

significant interaction between soil Zn and genotypes for Zn concentration of whole plant 

shoot (p<0.05) as well as for flag leaf (p<0.01) (Table 3.4).  

 As expected, soil Zn had a significant effect (P<0.001) on Zn contents in plant 

shoot (without flag leaf), in flag leaf and hence, overall Zn contents of plants (Table 3.5). 

The mean value of Zn contents of shoot (without flag leaf) was 27.5 µg plant-1 at low soil 

Zn and 116 µg plant-1 at adequate soil Zn supply. Similarly, flag leaf Zn contents 

increased from 1.89 µg plant-1 at low Zn to 4.43 µg plant-1 at adequate Zn supply. Overall 

Zn contents were also increased significantly (p<0.001) with the mean value of 29.4 µg 

plant-1 at low Zn and 121 µg plant-1 at adequate Zn supply. At low Zn supply in soil, 

minimum total shoot Zn contents were found in HPPAU-07 (24.1 µg plant-1) and 

maximum in HPPAU-10 (33.0 µg plant-1). At adequate soil Zn, all biofortified genotypes 

produced more Zn contents compared to check variety Faisalabad-2008. Faisalabad-2008 

produced lowest (87.6 µg plant-1) Zn contents whereas, HPBW-01 produced highest (140 

µg plant-1). Analysis of variance showed that genotypic variation for Zn content was also 

significant (P<0.01) for plant shoot, flag leaf and total plant contents. However, 

interaction between soil Zn and genotypes had a significant (P<0.05) effect on Zn 

contents in plant shoot and whole plant but not in flag leaf (Table 3.5). 
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Table 3.3: Shoot biomass plant shoot (without flag leaf), in flag leaf and total shoot biomass at 

early milk stage in 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and 

two conventionally-grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-

2967) grown with low (0.5 mg kg-1) or adequate (5 mg kg-1) Zn supply in Zn-deficient soil (DTPA-

Zn: 0.13 mg kg-1 soil). 

 

 
 

Shoot (without flag leaf) biomass HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = 0.16**, 

N.S, N.S 

Flag leaf dry matter HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = N.S, 0.05**, N.S 

Total shoot biomass HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = 0.08***, N.S, N.S 

 

 

 

 

 

 

 

 

 

 

 

 

Genotypes Shoot (without flag leaf) 

Faisalabad 

2008
3.50 a 3.19 a 0.14 ab 0.11 b 3.65 a 3.30 a

NR-421 3.25 a 3.54 a 0.13 ab 0.16 ab 3.38 a 3.69 a

NR-435 3.32 a 3.54 a 0.14 ab 0.11 b 3.45 a 3.65 a

NR-457 3.40 a 3.60 a 0.14 ab 0.13 ab 3.54 a 3.73 a

NR-488 3.10 a 3.51 a 0.12 ab 0.14 ab 3.22 a 3.65 a

NR-489 3.26 a 3.29 a 0.19 a 0.15 ab 3.44 a 3.44 a

HD-2967 3.23 a 3.37 a 0.11 ab 0.13 ab 3.34 a 3.50 a

HPBW-01 3.09 a 3.78 a 0.19 a 0.17 ab 3.28 a 3.95 a

HPBW-02 3.08 a 3.48 a 0.13 ab 0.16 ab 3.21 a 3.64 a

HPPAU-05 3.57 a 3.96 a 0.11 b 0.12 ab 3.67 a 4.08 a

HPPAU-07 3.40 a 3.60 a 0.15 ab 0.10 b 3.56 a 3.71 a

HPPAU-10 3.27 a 3.58 a 0.15 ab 0.16 ab 3.43 a 3.74 a

Mean 3.29 B 3.54 A 0.14 A 0.14 A 3.43 B 3.67 A

Shoot Biomass (g plant
-1

)		

Flag leaf Total 

Low Zn Adequate Zn Low Zn Adequate Zn Low Zn Adequate Zn
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Table 3.4 Shoot Zn concentration (without flag leaf) and in flag leaf separately at early milk stage 

in 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and two 

conventionally-grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) 

grown with low (0.5 mg kg-1) or adequate (5 mg kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 

0.13 mg kg-1 soil). 

 

 
 

 

Shoot (without flag leaf) Zn Concentration HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) 

= 1.01***, 4.21***, 6.66* 

Flag leaf Zn Concentration HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = 0.89***, N.S, 

5.84** 

 

  

Genotypes

Low Zn Adequate Zn Low Zn Adequate Zn

Faisalabad 

2008
7.12 d 25.7 c 13.3 c 31.2 ab

NR-421 9.09 d 31.2 abc 16.2 c 33.0 ab

NR-435 7.58 d 29.0 bc 12.4 c 31.3 ab

NR-457 7.89 d 29.4 abc 14.1 c 30.3 b

NR-488 9.14 d 36.2 a 13.7 c 32.9 ab

NR-489 7.85 d 33.7 ab 15.1 c 30.8 ab

HD-2967 8.27 d 31.8 abc 14.1 c 36.4 a

HPBW-01 8.05 d 33.9 ab 12.1 c 32.7 ab

HPBW-02 8.18 d 35.0 ab 12.7 c 31.9 ab

HPPAU-05 7.79 d 32.1 ab 11.8 c 31.2 ab

HPPAU-07 6.29 d 28.5 bc 12.2 c 35.8 ab

HPPAU-10 9.12 d 33.4 ab 12.5 c 33.0 ab

Mean 8.03 B 31.7 A 13.3 B 32.5 A

Zn Concentration (mg kg-1)		

Flag leafShoot without flag leaf



78 
 

Table 3.5: Zinc contents in shoot (without flag leaf), flag leaf and total at early milk stage in 10 

CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and two conventionally-

grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low 

(0.5 mg kg-1) or adequate (5 mg kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 

soil).  

 

 
 

Plant (without flag leaf) Zn contents HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = 

5.50***, 22.8**, 36.1* 

 

Flag leaf Zn contents HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = 0.30***, 1.26**, N. 

S 

Total Zn contents HSD 0.05 (Soil Zn, Genotypes, Soil Zn X Genotypes) = 5.67***, 6.98**, 9.86* 

 

 

 

 

 

 

 

 

Genotypes

Low Zn Adequate Zn Low Zn Adequate Zn Low Zn Adequate Zn

Faisalabad 

2008
26.0 c 84 b 1.93 d-g 3.39 b-f 27.9 c 87.6 b

NR-421 30.8 c 115 ab 2.13 d-g 5.15 ab 32.9 c 120 ab

NR-435 26.1 c 106 ab 1.69 fg 3.40 b-f 27.8 c 109 ab

NR-457 28.0 c 110 ab 1.99 d-g 3.92 a-d 30.0 c 114 ab

NR-488 29.5 c 132 a 1.70 fg 4.56 a-c 31.2 c 137 a

NR-489 27.0 c 113 ab 2.80 c-g 4.72 a-c 29.8 c 118 ab

HD-2967 27.5 c 111 ab 1.53 fg 4.82 ab 29.1 c 116 ab

HPBW-01 26.6 c 135 a 2.26 d-g 5.39 a 28.8 c 140 a

HPBW-02 26.5 c 128 a 1.65 fg 5.07 ab 28.1 c 133 a

HPPAU-05 28.4 c 132 a 1.25 g 3.84 a-d 29.6 c 136 a

HPPAU-07 22.3 c 106 ab 1.84 f-g 3.71 a-e 24.1 c 109 ab

HPPAU-10 31.1 c 125 a 1.92 d-g 5.22 ab 33.0 c 130 a

Mean 27.5 B 116 A 1.89 B 4.43 A 29.4 B 121 A

Flag leaf Total Shoot without flag leaf

Zn Contents (µg plant
-1

)		
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3.2.3.3. Yield, Zn concentration, and other parameters at physiological maturity 

 

Grain Yield  

Soil and foliar Zn fertilization had significant positive effect on grain yield plant-

1 (Table 3.6). The mean values of all genotypes grown at low soil Zn without foliar spray 

was 2.6 g plant-1 which increased significantly to 2.96 g plant-1 with foliar spray. At 

adequate soil Zn, mean value without foliar was recorded as 3.07 g plant-1 and with foliar 

as Zn 3.17 g plant-1. Grain yield (g plant-1) was increased in all biofortified genotypes 

with adequate soil Zn application (the effect was statistically non-significant) with the 

exception of one Pakistani genotype (NR-457). Soil Zn application had no effect on grain 

yield of check cultivar Faisalabad-2008 (Table 3.6). Foliar Zn application had a 

significant effect (p<0.01) in increasing yield plant-1 average of all genotypes including 

check cultivars. Analysis of variance indicates a significant (p<0.05) genotypic variation 

in grain yield plant-1 for soil Zn application (Table 3.10). Highest grain yield (3.69 g plant-

1) was observed in HPPAU-07 (Soil + Foliar Zn application) whereas lowest yield (2.18 

g plant-1) was recorded in NR-488 grown at low soil Zn with no foliar treatment (Table 

3.6). Interaction of soil Zn with other sources of variation had no significant effect on 

grain yield (Table 3.10).   

Grain Zn Concentration 

As expected, soil Zn application, foliar Zn application and soil + foliar Zn 

application had a significant (p<0.001) positive effect on grain Zn concentrations (Table 

3.10). The mean value of grain Zn concentration of all the genotypes grown at low soil 

Zn was 15.7 mg kg-1 which significantly (p<0.001) increased to 46.8 mg kg-1 (198%) at 

adequate soil Zn, to 51.5 mg kg-1 (228%) with foliar Zn and to 70.4 mg kg-1 (348%) with 

soil + foliar Zn application (Table 3.6).   

There was a significant (p<0.001) genotypic variation for grain Zn concentration 

with soil or foliar or both (soil + foliar) Zn application (Table 3.10). With low Zn supply 

in soil, without foliar application, the Indian check cultivar HD-2967 was found with the 

highest grain Zn concentration (19.2 mg kg-1), HPPAU-07 with lowest grain Zn (12.0 mg 

kg-1) whereas the Pakistani check variety Faisalabad-2008 had 14.5 mg kg-1. At adequate 

soil Zn, maximum grain Zn concentration was observed in HPBW-01 (57.2 mg kg-1) and 

minimum in NR-457 (39.2 mg kg-1). With foliar Zn application (0.04% ZnSO4.7H2O) at 

booting and early milk stage, there was a significant increase in grain Zn concentration 
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of all the genotypes including the check cultivars (Table 3.6). Generally, all the 

biofortified genotypes responded to foliar Zn and soil + foliar Zn application better than 

check varieties. Pakistani check (Faisalabad-2008) had lowest grain Zn concentration 

(57.2 mg kg-1) among all genotypes with soil + foliar Zn application. HPBW-01 showed 

maximum grain Zn concentration i.e., 70.7 mg kg-1 with foliar Zn application and 93.7 

mg kg-1 with soil + foliar Zn application (Table 3.6). The interaction between soil Zn and 

genotypes had significant effect (p<0.05) on grain Zn concentration. The interaction 

between foliar Zn application genotypes also had significant (p<0.001) effect on grain 

Zn concentration (Table 3.10). 

Grain Zn Contents 

 

 Grain Zn contents of all the genotypes tested were significantly (p<0.001) 

affected by soil, foliar and soil + foliar Zn application (Table 3.10). At low soil Zn with 

no foliar application, the mean value for Zn contents 40.5 µg plant-1 with minimum in 

HPPAU-07 (28.7 µg plant-1) and maximum in NR-457 (50.8 µg plant-1). Pakistani check 

cultivar (Faisalabad-2008) gave higher Zn contents than three Pakistani biofortified 

genotypes, while Indian check cultivar (HD-2967) was better than all Indian biofortified 

genotypes when grown on low Zn soil skipping the foliar application (Table 3.7). 

However, with adequate soil Zn application, all the Pakistani HP-biofortified genotypes 

except NR-457 were able to absorb more Zn from soil and showed the higher grain Zn 

contents than the check variety (Faisalabad-2008). Similarly, all Indian HP-biofortified 

genotypes showed higher Zn contents than the check cultivar (HD-2967) except HPPAU-

07. The mean value for grain Zn contents grown at adequate soil Zn without foliar was 

142 µg plant-1 with lowest in NR-457 (115 µg plant-1) and highest in HPBW-01 (177 µg 

plant-1). Generally, there was 3.5 folds increase in grain Zn contents with the application 

of soil Zn compared to the low Zn application (Table 3.7).  

Foliar Zn application on low soil Zn plants showed a significant increase (3.7 

folds) in grain Zn contents with an average of 150 µg plant-1. Maximum contents were 

found in HPBW-02 (208 µg plant-1) and minimum in the check cultivar HD-2967 (109 

µg plant-1). With soil + foliar Zn application, grain Zn contents increased up to 5.4 folds 

compared to control with a mean value of 220 µg plant-1. Genotype HPBW-02 showed 

the maximum grain Zn contents (291 µg plant-1) whereas NR-489 produced minimum 

(189 µg plant-1). Check variety Faisalabad-2008 had the lowest Zn contents (185 µg plant-
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1) among all genotypes (Table 3.7) and the India check cultivar had lowest Zn contents 

(205 µg plant-1) among all the Indian HP-biofortified genotypes. 

 Harvest plus biofortified genotype “HPBW-01” performed best in terms of Zn 

contents when grown on adequate soil Zn, whereas, HPBW-02 showed highest Zn 

contents with foliar application or soil + foliar application. At low soil Zn conditions, 

without foliar application, NR-457 showed highest Zn contents (Table 3.7).  

Interaction of soil and foliar Zn application had a significant (p<0.001) effect on 

grain Zn contents, however, interaction of soil Zn with other variables had non-significant 

effect (Table 3.10). Analysis of variance revealed the significant genotypic variation 

(p<0.001) for grain Zn contents. Moreover, interaction of genotypes with foliar Zn also 

had a significant (p<0.001) affect (Table 3.10).  

 

Other yield components 

 

Straw yield of the genotypes was significantly affected by soil Zn and foliar Zn 

application (p<0.001). Mean value for the straw yield of all genotypes grown at low Zn 

soil without foliar application was 5.3 g plant-1 which increased significantly to 5.82 g 

plant-1 with foliar Zn. At adequate soil Zn mean value was observed 5.98 g plant-1 which 

increased to 6.29 g plant-1, however, this affect was not statistically significant (Table 3.7). 

Maximum straw yield (7.02 g plant-1) was produced by adequate soil Zn genotype 

HPPAU-07 whereas minimum (4.29 g plant-1) was observed in low soil Zn NR-489. A 

significant genotypic variation was also revealed by the ANOVA, however, interaction 

of any of the variables had no significant effect on straw yield (Table 3.10).  

 Soil Zn and soil + foliar Zn application had a significant positive effect on mean 

values of number of spikes per plant (Table 3.8). Mean at low Zn soil without foliar 

application was recorded 2.01 spikes plant -1 which increased significantly to 2.26 spikes 

plant -1 at adequate soil Zn. With soil + foliar application, the mean increased significantly 

to 2.41 spikes plant -1 (Table 3.8). Analysis of variance indicated significant (p<0.001) 

genotypic variation as well (Table 3.10). Soil Zn, foliar Zn and genotypes interacted 

significantly (p<0.01) to increase the number of spikes plant-1 (Table 3.10).  

 Soil Zn application reduced the thousand grain weight (TGW) significantly 

(p<0.05) (Table 3.10), however, no significant effect was observed on mean values 
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(Table 3.8). Foliar Zn treatment also had no significant effect. Analysis of variance 

indicates that there was a significant (p<0.001) genotypic variation for TGW but, no 

significant interaction among variables were observed (Table 3.8, Table 3.10) 

 Grain yield spike-1 and number of grain spike-1 were increased with soil, foliar and 

soil + foliar Zn application (Table 3.9), however, this effect was statistically insignificant. 

A significant (p<0.001) genotypic variation was observed for both of these traits. None 

of the variable interaction showed significant effect on grain yield spike-1 or number of 

grain spike-1 (Table 3.10).   



83 
 

Table 3.6: Grain yield and grain Zn concentration in 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and two 

conventionally-grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low (0.5 mg kg-1) or adequate (5 mg 

kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 soil) with and without foliar spray (0.4% ZnSO4.7H2O + 0.02% Tween-20) at 

booting and early milk stage 

 

 

Faisalabad 2008 2.85 ab 3.33 ab 2.85 ab 3.25 ab 14.5 k 44.0 f-j 45.4 f-j 57.2 c-j

NR-421 2.85 ab 3.09 ab 3.22 ab 3.53 ab 15.9 k 45.5 f-j 44.3 f-j 58.2 c-j

NR-435 2.61 ab 3.18 ab 3.32 ab 3.26 ab 14.4 k 45.7 f-j 43.5 g-j 62.8 c-f

NR-457 3.22 ab 3.33 ab 2.95 ab 3.10 ab 15.8 k 44.2 f-j 39.2 j 60.7 c-h

NR-488 2.18 b 2.53 ab 2.84 ab 2.75 ab 17.4 k 66.4 b-e 55.2 c-j 83.2 ab

NR-489 2.54 ab 2.57 ab 3.22 ab 2.87 ab 15.2 k 53.5 c-j 43.7 f-j 65.9 b-e

HD-2967 2.47 ab 2.54 ab 3.12 ab 3.15 ab 19.2 k 42.8 h-j 42.8 h-j 65.4 b-e

HPBW-01 2.45 ab 2.52 ab 3.18 ab 2.74 ab 16.9 k 70.7 b-d 57.2 C-j 93.7 a

HPBW-02 2.63 ab 3.39 ab 2.77 ab 3.53 ab 15.6 k 62.4 c-g 51.6 d-j 82.5 ab

HPPAU-05 2.49 ab 2.94 ab 2.93 ab 2.99 ab 13.3 k 48.5 e-j 48.5 e-j 83.1 ab

HPPAU-07 2.42 ab 3.27 ab 3.20 ab 3.69 a 12.0 k 44.1 f-j 40.7 ij 59.2 c-i

HPPAU-10 2.54 ab 2.81 ab 3.26 ab 3.20 ab 18.1 k 50.6 e-j 49.0 e-j 72.0 bc

Mean 2.60 B 2.96 A 3.07 A 3.17 A 15.7 D 51.5 B 46.8 C 70.4 A

Grain Yield (g plant
-1

) Zn Concentration (mg kg
-1

)

Genotypes
Low Zn Adequate Zn Low Zn Adequate Zn

 - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar
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Table 3.7: Straw yield and grain Zn contents in 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and two conventionally-

grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low (0.5 mg kg-1) or adequate (5 mg kg-1) Zn supply 

in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 soil) with and without foliar spray (0.4% ZnSO4.7H2O + 0.02% Tween-20) at booting and early milk 

stage. 

 

 

Faisalabad 2008 5.51 a-d 6.38 a-c 6.00 a-d 6.15 a-d 41.2 i-k 146 e-h 128 gh 185 b-g

NR-421 5.61 a-d 6.30 a-c 6.19 a-d 6.68 ab 45.1 i-k 140 f-h 142 f-h 205 b-f

NR-435 5.31 a-d 6.21 a-c 6.22 a-d 6.60 a-c 36.4 jk 145 e-h 142 f-h 205 b-f

NR-457 6.22 a-d 6.25 a-c 5.82 a-d 6.03 a-d 50.8 i-k 145 e-h 115 g-i 189 b-g

NR-488 4.69 cd 5.32 a-d 5.75 a-d 6.29 a-c 37.9 jk 164 d-h 157 d-h 229 a-d

NR-489 5.03 b-d 4.29 d 5.91 a-d 5.78 a-d 38.7 jk 139 f-h 141 f-h 189 b-g

HD-2967 5.56 a-d 5.32 a-d 5.87 a-d 6.56 a-c 47.3 i-k 109 h-j 134 f-h 205 b-f

HPBW-01 5.03 b-d 5.16 a-d 6.47 a-c 5.72 a-d 40.8 i-k 176 c-h 177 c-h 257 ab

HPBW-02 5.17 a-d 6.13 a-d 5.19 a-d 6.63 ab 40.9 i-k 208 b-f 143 f-h 291 a

HPPAU-05 5.18 a-d 5.87 a-d 5.66 a-d 5.77 a-d 33.3 k 140 f-h 141 f-h 245 a-c

HPPAU-07 5.06 b-d 6.45 a-c 6.58 a-c 7.02 a 28.7 k 142 f-h 129 gh 218 a-e

HPPAU-10 5.28 a-d 6.09 a-d 6.06 a-d 6.29 a-c 45.1 i-k 141 f-h 159 d-h 223 a-d

Mean 5.30 C 5.82 B 5.98 AB 6.29 A 40.5 C 150 B 142 B 220 A

 + Foliar

Straw Yield (g plant
-1

) Zn Contents (µg seed
-1

 )

Genotypes
Low Zn Adequate Zn Low Zn Adequate Zn

 - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar  - Foliar
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Table 3.8: Number of spikes per plant and TGW grain weight in 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) 

and two conventionally-grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low (0.5 mg kg-1) or 

adequate (5 mg kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 soil) with and without foliar spray (0.4% ZnSO4.7H2O + 

0.02% Tween-20) at booting and early milk stage. 

 

  

Faisalabad 2008 2.06 b-d 2.31 b-d 2.44 bc 2.06 b-d 43.5 a-i 43.6 a-i 44.9 a-i 43.8 a-i

NR-421 2.06 b-d 2.19 b-d 2.56 b 2.50 bc 42.7 a-j 41.7 a-k 39.1 g-k 40.3 d-k

NR-435 1.94 b-d 2.25 b-d 2.50 bc 2.56 b 45.0 a-i 45.3 a-i 43.8 a-i 43.3 a-i

NR-457 2.31 b-d 2.44 bc 2.25 bcd 2.00 b-d 44.2 a-i 42.9 a-j 41.4 c-k 42.0 b-k

NR-488 1.31 d 1.50 cd 1.81 bcd 1.63 b-d 46.5 a-e 43.9 a-i 43.2 a-i 46.3 a-f

NR-489 2.13 b-d 2.01 b-d 1.94 bcd 2.31 b-d 41.9 a-k 43.1 a-i 42.1 b-k 40.4 e-k

HD-2967 2.13 b-d 2.25 b-d 2.19 bcd 3.69 a 43.5 a-i 42.3 b-k 40.8 e-j 42.0 b-k

HPBW-01 1.81 b-d 1.69 b-d 1.81 bcd 2.06 b-d 45.5 a-i 46.9 a-d 44.5 a-i 43.9 a-i

HPBW-02 1.94 b-d 1.94 b-d 1.69 bcd 2.25 b-d 47.4 a-c 46.4 a-e 45.0 a-i 44.7 a-i

HPPAU-05 1.94 b-d 2.19 b-d 2.25 bcd 2.44 bc 44.2 a-i 48.3 ab 48.4 ab 49.1 a

HPPAU-07 2.00 b-d 2.31 b-d 2.67 ab 2.50 bc 38.7 h-k 35.8 k 36.5 jk 38.4 i-k

HPPAU-10 2.13 b-d 2.56 bc 2.69 ab 2.56 b 38.5 h-k 40.0 e-k 40.2 d-k 39.6 f-k

Mean 2.01 C 2.15 BC 2.26 AB 2.41 A 43.5 A 43.3 A 42.5 A 42.8 A

No. of spikes plant
-1 TGW  (g)

Genotypes
Low Zn Adequate Zn Low Zn Adequate Zn

 - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar
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Table 3.9: Grain yield spike-1 and no. of grains spike-1 in 10 CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and two 

conventionally-grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low (0.5 mg kg-1) or adequate (5 mg 

kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 soil) with and without foliar spray (0.4% ZnSO4.7H2O + 0.02% Tween-20) at 

booting and early milk stage 

 

 

Faisalabad 2008 1.38 ab 1.45 ab 1.20 ab 1.58 ab 31.8 ab 33.5 ab 26.7 ab 36.1 ab

NR-421 1.40 ab 1.42 ab 1.26 ab 1.43 ab 32.8 ab 34.1 ab 32.3 ab 35.7 ab

NR-435 1.32 ab 1.42 ab 1.32 ab 1.27 ab 29.3 ab 31.3 ab 30.3 ab 29.6 ab

NR-457 1.41 ab 1.37 ab 1.31 ab 1.56 ab 31.8 ab 31.9 ab 31.7 ab 37.2 ab

NR-488 1.70 ab 1.73 a 1.59 a 1.79 a 36.4 ab 39.3 a 36.9 ab 38.1 a

NR-489 1.21 ab 1.27 ab 1.68 a 1.26 ab 28.9 ab 29.5 ab 39.8 a 31.2 ab

HD-2967 1.16 ab 1.12 ab 1.44 ab 0.93 b 26.8 ab 26.8 ab 35.5 ab 22.3 b

HPBW-01 1.34 ab 1.48 ab 1.74 a 1.41 ab 29.7 ab 31.7 ab 39.4 a 32.4 ab

HPBW-02 1.38 ab 1.74 a 1.68 a 1.57 ab 29.3 ab 37.6 ab 37.5 ab 35.2 ab

HPPAU-05 1.29 ab 1.37 ab 1.30 ab 1.22 ab 29.2 ab 28.4 ab 27.2 ab 25.1 ab

HPPAU-07 1.24 ab 1.41 ab 1.22 ab 1.49 ab 32.1 ab 39.3 a 33.7 ab 38.7 a

HPPAU-10 1.20 ab 1.19 ab 1.23 ab 1.25 ab 31.2 ab 29.9 ab 30.9 ab 32.4 ab

Mean 1.34 A 1.41 A 1.41 A 1.40 A 30.8 A 32.8 A 33.5 A 32.8 A

Grain yield (g spike
-1

) No. of grains spike
-1

Genotypes
Low Zn Adequate Zn Low Zn Adequate Zn

 - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar  - Foliar  + Foliar
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Table 3.10: Analysis of variance (ANOVA) of the effects of genotypes, foliar and soil 

applications of Zn on the grain yield, grain Zn concentration, straw dry weight, grain Zn contents, 

no. of spikes per plant, TGW, grain yield per spike and number of grains per spike in 10 

CIMMYT-based biofortified wheat genotypes (Triticum aestivum L.) and two conventionally-

grown wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008 and HD-2967) grown with low 

(0.5 mg kg-1) or adequate (5 mg kg-1) Zn supply in Zn-deficient soil (DTPA-Zn: 0.13 mg kg-1 soil) 

with and without foliar spray (0.4% ZnSO4.7H2O) at booting and early milk stage. 

 

 
 

 

Source of 

Variation MS      F.Pr MS      F.Pr MS      F.Pr MS      F.Pr

Soil Zn (A)             1 5.56241 <0.001 29750.5 <0.001 15.76 <0.001 357075 <0.001

Foliar Zn (B)        1 2.47067 0.0015 42364.1 <0.001 8.24 <0.001 419497 <0.001

Genotypes (C)        11 0.61287 0.0048 741.6 <0.001 1.52 <0.001 3722 <0.001

A X B 1 0.78541 0.0701 1800.8 <0.001 0.48 0.3178 11781 <0.001

A X C 11 0.29163 0.2684 92.4 0.0349 0.82 0.0715 1049 0.1501

B X C 11 0.33075 0.1779 243.3 <0.001 0.86 0.0569 2324 <0.001

A X B X C 11 0.0569 0.994 42 0.5446 0.39 0.6262 436 0.8188

Exp. Error                  144 0.23591 46.8 0.47 715

Source of 

Variation MS      F.Pr MS      F.Pr MS      F.Pr MS      F.Pr

Soil Zn (A)             1 3.07547 <0.001 26.107 0.0366 0.0675 0.2726 92.269 0.0886

Foliar Zn (B)        1 1.06505 0.0076 0.5 0.7707 0.05333 0.3293 21.267 0.4118

Genotypes (C)        11 1.28161 <0.001 131.16 <0.001 0.34756 <0.001 147.673 <0.001

A X B 1 0.00047 0.9547 2.168 0.5442 0.09188 0.2009 82.819 0.1065

A X C 11 0.26354 0.0561 8.989 0.1259 0.02841 0.894 27.101 0.5775

B X C 11 0.22176 0.1271 2.674 0.9271 0.09515 0.0767 57.382 0.0543

A X B X C 11 0.36308 0.0066 8.884 0.1322 0.0921 0.0896 44.273 0.174

Exp. Error                  144 0.14505 5.866 0.05566 31.387

 DF
Grain yield Grain Zn Conc. Straw Yield Grain Zn Content

 DF
No. of spikes plant

-1 1000 grain wt Grain yield spike
-1

No. of grains spike
-1
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Fig 3.1: Effect of low soil Zn (control), adequate soil Zn (Soil Zn), foliar spray (Foliar 

Zn) and adequate soil Zn with foliar spray (soil + foliar) on mean values of (a) grain yield, 

(b) grain Zn concentration, (c) grain Zn content, (d) straw yield, (e) number of spike plant-

1, (f) number of grains plant-1 in 11 CIMMYT-based biofortified wheat genotypes 

(Triticum aestivum L.) and one conventionally-grown wheat cultivar (Triticum aestivum 

L., cv. Faisalabad-2008). 

 

Grain yield (g plant-1), on average, was increased with soil Zn and soil + foliar Zn, 

however, foliar Zn sprays alone also increased the grain yield significantly (Fig 3.1 a). 

Grain Zn concentration (mg kg-1) was increased significantly with all the Zn treatments 

applied, however, soil + foliar Zn application were very effective in increasing the grain 

Zn concentration up to considerable high levels (Fig 3.1 b). Mean Zn contents in grains 

were increased at a higher rate with soil + foliar Zn application as compared to soil or 

foliar Zn application alone (Fig 3.1 c). Similarly, straw yield and number of spikes per 
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plants (Fig 3.1 d, e) were more influenced with the soil and soil + foliar Zn application, 

although foliar Zn application alone also increased these traits significantly as compared 

to control (low soil Zn treatment). The combination of soil and foliar Zn application had 

a positive effect on grain yield and other yield components except the number of grains 

per spike (Fig 3.1). It seems number of grains per spike were reduced with foliar Zn 

sprays, as soil Zn application alone increased the number of grains per spike significantly 

(Fig 3.1 f).  

Correlation matrix show a positive significant correlation between grain yield (g 

plant-1) and grain Zn concentration mg kg-1 (Table 3.11). Grain yield (g plant-1) had a 

positive correlation with all the agronomic and micro nutrients trait except the TGW (g). 

Grain Zn concentration (mg kg-1) was increased with straw yield as well and it also has a 

strong positive correlation with the grain Zn contents. (Table 3.11) 

Table 3.11: Correlation matrix for different agronomic and micronutrient traits 

 

 

Significant at *=p<0.05, ** = p<0.01, *** = p<0.001 

 

0.18* 0.51*** 0.46*** 0.82*** 0.35*** -0.26 0.46***

0.92*** 0.14 0.26*** 0.10 0.14 0.04

0.28*** 0.52*** 0.21** 0.04 0.19**

0.53*** -0.59 -0.30 -0.46

0.15* -0.23 0.24***

0.18** 0.89***

-0.27

TKW (g)
No. grain 

spike
-1

Grain yield (g plant
-1

)

Zn 

conentration 

(mg kg
-1

)

Zn content 

(µg plant
-1

)

No. spikes 

plant
-1

Straw yield 

(g plant
-1

)

Grain yield 

spike
-1

 (g)

Straw yield (g plant
-1

)

Grain yield spike
-1

TKW (g)

Characters

Zn conentration (mg kg
-1

)

Zn Content (µg plant
-1

)

No. spikes plant
-1
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Fig 3.2: Relationship between grain yield (g plant-1) and grain Zn concentration (mg kg-

1) of 12 genotypes grown at (a) low Zn soil (b) low soil Zn with foliar spray (c) adequate 

Zn soil (d) adequate soil Zn with foliar spray 

 

Scatterplot between grain yield (g plant-1) and grain Zn Concentration (mg kg-1) 

of the biofortified genotypes tested under different soil and foliar Zn applications is given 

in Fig 3.2. Under low Zn soil without foliar Zn fertilization (Fig 3.2, a) HP-biofortified 

genotypes and the local checks were not able to deliver the grain Zn above 20 mg kg-1 

and grain yield was also below 3 g plant-1 except one genotype. With foliar Zn spray (Fig 

3.2, b) grain Zn concentration is increased significantly with an increase in grain yield 

also. Adequate soil Zn treatment (Fig 3.2, c) increased the yield significantly, however, 

soil + foliar Zn application (Fig 3.2, d) were found effective for both grain yield and grain 

Zn concentration.    
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3.3. Experiment-B: Studying the root uptake and root-to-shoot translocation of Zn 

in HP-Biofortified Pakistani wheat cultivars by time-course depletion experiment 

 

 

 

A short-term nutrient solution culture experiment was conducted by using HP biofortified 

Pakistani genotypes. The objective of this experiment was to assess the differences in the 

root Zn uptake capacity of the biofortified genotypes. Because of non-availability of seeds 

of Indian genotypes, this experiment was only conducted for Pakistani lines.  

 

 

 

3.3.1. Materials and Methods 

 

 

The following HP-biofortified genotypes from Pakistan were used in the 

experiment: Faisalabad 2008 (check variety), NR-421, NR-435, NR-457, NR-488 and 

NR-489. 

Seeds were germinated in perlite moistened with a saturated CaSO4 solution for 5 

days at room temperature. Twenty-five seedlings per pot were transferred to 3 L pots 

containing a standard nutrient solution (details are described in “General Material and 

Methods” section). Plants were supplied with either low (10-8 M) or adequate Zn (10-6 M) 

in the form of ZnSO4.7H2O. Nutrient solutions were continuously aerated and refreshed 

every 3–4 days. When the plants were 18 days old, they were transferred to five times 

diluted nutrient solution containing 2 x 10-6 M Zn as ZnSO4.7H2O.  

For calculation of the root Zn uptake from the nutrient solution, 10 mL of solution 

was sampled at two-time points (i.e. 0 h and 4.5 h) from all pots and analysed for Zn by 

ICP-OES. Throughout the experiment, the volume of solution in the pots was kept 

constant by adding DI water to compensate the evaporative loss. At the end of the uptake 

period, root and shoot of the plants were harvested separately. To remove the non-

absorbed Zn on the root surface and non-chelated apoplastic Zn in root tissue, roots were 
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rinsed in DI water, incubated in 1 mM CaCl2 and 1 mM Na EDTA for 3 min each and 

finally rinsed again with DI water. Root and shoot samples were dried and analysed by 

ICP-OES according to the procedure mentioned in “General Material and Methods” 

section. 

 

3.3.2. Results 

 

 

Shoot, root dry weight, total biomass and root to shoot ratio of the 18 days old 

plants are given in the Table 3.12. Results shows that applying adequate Zn in the nutrient 

medium solution increased the shoot dry weight but reduced the root weight. Mean value 

for shoot biomass at low Zn was 81.7 mg plants-1 which increased significantly to 93.6 

mg plants-1 with adequate Zn supply (Table 3.12). At low Zn supply mean value for root 

dry weight was significantly higher 37.9 mg plants-1 compared to the adequate Zn plants 

35.1 mg plants-1. However, overall biomass production as well as shoot:root ratio was 

increased significantly at adequate Zn supply. Analysis of variance revealed the 

significant (p<0.001) genotypic variation for shoot, root, total biomass and shoot:root 

ratio (Table 3.12). Genotype NR-489 and check variety Faisalabad-2008 produced 

significantly higher biomass as compared to other genotypes under both low and adequate 

Zn supply (Table 3.12).  

Zinc efficiency of root, shoot and biomass were calculated as percentage of 

biomass production at low Zn to the biomass production at adequate Zn. There were no 

significant differences among genotypes for shoot and total biomass efficiency (Table 

3.13), however, there was a significant variation (P<0.05) among the genotypes for root 

Zn efficiency (Table 3.13). NR-489 being most efficient (125.8%) compared to the check 

variety Faisalabad-2008 (95.6 %) (Table 3.13). 

Cumulative uptake and uptake rate of additional Zn (2x10-6 M supplied as 

ZnSO4
.7H2O) by 25 plants with time course (h-1) is given in the Table 3.14. Cumulative 

uptake (µmol Zn 25 plants-1) was significantly (p<0.01) higher in low Zn supply plants 

compared to that of adequate Zn (Table 3.14). There was a significant (p<0.001) 

genotypic variation for cumulative uptake µmol Zn 25 plants-1. Uptake rate (µmol Zn 25 

h-1plants-25) was also significantly (p<0.01) higher in low Zn supplied plants compared 
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to that of adequate Zn. Genotypes differ significantly (p<0.001) for uptake rate (µmol Zn 

25 h-1plants-25) with low Zn NR-489 being most efficient with highest uptake rate.  

Table 3.12. Biomass production of 18-days-old five CIMMYT-based biofortified wheat 

genotypes (Triticum aestivum L.) and one conventionally-grown wheat cultivar (Triticum 

aestivum L., cv. Faisalabad-2008) grown with low (10-8 M) or adequate (10-6 M) Zn supply in 

greenhouse. Additional Zn (2x10-6 M) was supplied as ZnSO4.7H2O 5 hours before the 

harvesting. 

 

 

Shoot dry weight HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient 

solution X Genotypes) = 4.22***, 10.9***, N.S 

Root dry weight HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient 

solution X Genotypes) = 1.95**, 5.01***, 8.22* 

Total biomass HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient solution 

X Genotypes) = 5.24**, 13.5***, N.S 

Root:Shoot ratio HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient 

solution X Genotypes) = 0.14***, 0.35***, 0.58** 

 

Cumulative Zn uptake per gram of root dry weight were significantly (p<0.01) 

high in low Zn plants with maximum observed in low Zn NR-421. A significant 

(p<0.001) genotypic variation was found for cumulative uptake and uptake rate. The 

uptake rates (µmol Zn h-1 g-1 dw) were significantly (p<0.05) high in plants grown at low 

Zn supply in 

nutrient solution
Genotypes

Low Zn Faisalabad-2008 103.0 ± 11.3 abc 40.2 ± 3.5 ab 143 ± 13 ab 2.57 ± 0.27 bc

NR-421 77.5 ± 4.2 ef 36.4 ± 2.9 abc 114 ± 6 de 2.14 ± 0.18 cd

NR-435 77.2 ± 3.5 ef 36.3 ± 1.4 abc 113 ± 3 de 2.13 ± 0.14 cd

NR-457 74.4 ± 7.8 ef 36.3 ± 6.9 abc 111 ± 9 de 2.13 ± 0.57 cd

NR-488 61.0 ± 3.8 f 35.0 ± 2.9 bc 96 ± 7 e 1.75 ± 0.06 d

NR-489 96.8 ± 7.0 bcd 43.4 ± 3.9 a 140 ± 8 abc 2.24 ± 0.27 cd

Mean B A B B

Adequate Zn Faisalabad-2008 119.9 ± 8.2 a 42.1 ± 3.3 ab 162 ± 11 a 2.85 ± 0.08 ab

NR-421 87.1 ± 6.8 cde 36.6 ± 3.0 abc 124 ± 10 bcd 2.38 ± 0.04 bc

NR-435 81.7 ± 6.2 cde 31.3 ± 2.2 c 113 ± 8 de 2.61 ± 0.04 bc

NR-457 86.1 ± 7.9 cde 34.2 ± 2.0 bc 120 ± 10 cd 2.52 ± 0.11 bc

NR-488 72.8 ± 3.9 ef 31.5 ± 2.5 c 104 ± 6 de 2.31 ± 0.10 bcd

NR-489 113.9 ± 10.6 ab 34.6 ± 2.3 bc 148 ± 11 a 3.30 ± 0.34 a

Mean A B A A

119.6

2.7

2.2

93.6

81.7 37.9

35.1 128.6

shoot:root ratio

Dry matter production (mg plant
-1

)

Shoot Root Biomass
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Zn compared to that of adequate Zn. The genotypic (p<0.001) variation was also 

significant. NR-421 can be considered as most efficient genotype with highest uptake rate 

at low Zn supply (Table 3.14). 

 

Table 3.13. Zn efficiency of root shoot and biomass (root+shoot) of 18-days-old 

plants of HP biofortified wheat genotypes grown in nutrient solution with low 

(10-8 M) or adequate Zn (10-6 M) supply in greenhouse. Additional Zn (2x10-6 M) 

was supplied as ZnSO4.7H2O 5 hours before the harvesting. 

 

 
 

Root Zn efficiency HSD 0.05 (Genotype) = 26.0* 

Shoot Zn efficiency HSD 0.05 (Genotype) = N.S 

Total biomass Zn efficiency HSD 0.05 (Genotype) = N.S. 

 

Zinc concentration in root and shoot of 18 days old plants supplied with additional 

Zn (2x10-6 M supplied as ZnSO4
.7H2O) in nutrient solution 5 hours before harvesting is 

provided in Table 3.15. Shoot and root Zn concentrations were affected significantly 

(p<0.01) with the Zn supply in nutrient solution, however, there was a genotypic variation 

(p<0.05) only for shoot Zn concentration. Under low Zn supply mean value for shoot Zn 

concentration was 35.4 mg kg-1 which increased significantly to 43.4. mg kg-1 at adequate 

Zn conditions (Table 3.15). Interestingly root Zn concentration in low Zn supply plants 

was significantly higher than that of adequate Zn plants. Mean values of all genotypes 

were 119 mg kg-1 and 102 mg kg-1 at low and adequate Zn conditions respectively. 

However, root Zn concentration of the check variety Faisalabad-2008 was lowest among 

all genotypes at low Zn conditions (Table 3.15). These results suggest that there was no 

difference in Zn absorption and root to shoot translocation among biofortified genotypes 

and check cultivar in a given period of time.  

Genotypes

Faisalabad-2008 95.6 ± 3.4 b 86.2 ± 10.6 a 89 ± 8 a

NR-421 99.4 ± 3.6 b 89.2 ± 6.1 a 92 ± 4 a

NR-435 116.1 ± 8.7 ab 95.2 ± 12.5 a 101 ± 11 a

NR-457 106.1 ± 19.4 ab 86.7 ± 9.7 a 92 ± 3 a

NR-488 111.7 ± 14.2 ab 84.0 ± 5.6 a 92 ± 8 a

NR-489 125.8 ± 11.2 a 85.6 ± 10.1 a 95 ± 11 a

Zn efficiency (%)

Root Shoot Biomass
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Table 3.14. Cumulative uptake and uptake rate of Zn (2x10-6 M additional Zn supplied as ZnSO4.7H2O) to 18-days-old 

plants of HP biofortified wheat genotypes grown in nutrient solution with low (10-8 M) or adequate Zn (10-6 M) supply in 

greenhouse. Additional Zn (2x10-6 M) was supplied as ZnSO4.7H2O 5 hours before the harvesting. 

 

 

Cumulative uptake (µmol Zn 25 plants-1) HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient solution X 

Genotypes) = 0.63**, 0.25***, 1.04* 

Uptake rate (µmol Zn h-1 25 plants-1) HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient solution X 

Genotypes) = 0.14 **, 0.05***, 0.23* 

Cumulative uptake (µmol Zn g-1 root dw) HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient solution X 

Genotypes) = 0.70**, 0.27***, N.S 

Uptake rate (µmol Zn h-1 g-1 root dw) HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply in nutrient solution X 

Genotypes) = 1.15*, 0.17***, N.S   

Genotypes

Low Zn Faisalabad-2008 2.67 ± 0.20 abc 0.59 ± 0.04 abc 2.68 ± 0.42 abc 0.60 ± 0.09 abcd

NR-421 3.06 ± 0.47 a 0.68 ± 0.10 a 3.36 ± 0.49 a 0.75 ± 0.11 a

NR-435 2.84 ± 0.16 ab 0.63 ± 0.04 ab 3.14 ± 0.23 ab 0.70 ± 0.05 a

NR-457 2.47 ± 0.42 abcd 0.55 ± 0.09 abcd 2.36 ± 0.38 abcde 0.72 ± 0.19 ab

NR-488 2.46 ± 0.13 abcd 0.55 ± 0.03 abcd 2.82 ± 0.12 abc 0.63 ± 0.03 abc

NR-489 3.16 ± 0.55 a 0.70 ± 0.12 a 2.90 ± 0.29 abc 0.64 ± 0.06 abc

Adequate Zn Faisalabad-2008 2.28 ± 0.48 abcde 0.51 ± 0.11 abcde 2.16 ± 0.38 bcde 0.48 ± 0.09 abcde

NR-421 1.76 ± 0.49 cdef 0.39 ± 0.11 cdef 1.95 ± 0.67 cde 0.43 ± 0.15 bcde

NR-435 1.99 ± 0.72 cdef 0.44 ± 0.16 bcde 2.56 ± 0.95 abcd 0.57 ± 0.21 abcd

NR-457 1.56 ± 0.44 def 0.35 ± 0.10 def 1.81 ± 0.43 cde 0.40 ± 0.09 cde

NR-488 1.00 ± 0.20 f 0.22 ± 0.05 f 1.27 ± 0.18 e 0.28 ± 0.04 e

NR-489 1.24 ± 0.36 ef 0.28 ± 0.08 ef 1.43 ± 0.43 de 0.32 ± 0.09 de

Zn supply in 

nutrient solution

Uptake rate 

(µmol Zn h
-1

 g
-1

 root dw) (µmol Zn  g
-1

 root dw) (µmol Zn h
-1

 25 plants
-1

)(µmol Zn 25 plants
-1

)

Cumulative uptake Uptake rate Cumulative uptake
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Table 3.15. Shoot and root Zn concentration of 18-days-old five CIMMYT-based 

biofortified wheat genotypes (Triticum aestivum L.) and one conventionally-grown 

wheat cultivar (Triticum aestivum L., cv. Faisalabad-2008) grown with low ((10-8 M) 

or adequate (10-6 M) Zn supply in greenhouse. Additional Zn (2x10-6 M) was supplied 

as ZnSO4.7H2O 5 hours before the harvesting. 

 

 

Shoot Zn concentration HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn 

supply in nutrient solution X Genotypes) = 5.13 **, 13.2 *, N.S  

Root Zn concentration HSD 0.05 (Zn supply in nutrient solution, Genotypes, Zn supply 

in nutrient solution X Genotypes) = 10.9 **, N.S, N.S 

 

  

Zn Supply Genotype

Faisalabad-2008 36.6 ± 4.6 ab 89.4 ± 7 b

NR-421 39.1 ± 0.8 ab 126 ± 26 ab

NR-435 42.6 ± 1.6 ab 126 ± 17 ab

NR-457 33.9 ± 15.7 ab 117 ± 26 ab

NR-488 33.8 ± 15.5 ab 120 ± 17 ab

NR-489 26.3 ± 10.2 b 137 ± 17 a

Mean B A

Faisalabad-2008 35.4 ± 16.5 ab 107 ± 6 ab

NR-421 46.5 ± 2.6 ab 103 ± 19 ab

NR-435 51.6 ± 5.8 a 107 ± 31 ab

NR-457 46.9 ± 1.4 ab 103 ± 17 ab

NR-488 44.7 ± 2.7 ab 91.7 ± 9 ab

NR-489 35.0 ± 2.1 ab 100 ± 14 ab

Mean A B

11935.4

10243.4

Zn concentration (mg kg
-1

)

Adequate 

Low

Shoot Root



97 
 

 

 

 

 

3.4. Discussion 

 

 

 

This study demonstrated the effectiveness of Zn fertilizer in the form of soil, foliar 

and soil + foliar applications for improving growth, yield and nutrients uptake by Harvest 

Plus- Biofortified wheat genotypes. Adding ZnSO4 fertilizer to the Zn deficient soil 

increased the grain yield, straw biomass, Zn concentration and contents in shoot and 

grains, number of spikes per plant and number of grains per spike in wheat biofortified 

lines (Table 3.6, 3.7, 3.8, 3.9). Grain yield increases caused by soil Zn application alone 

and in combination with soil + foliar Zn were recorded as 18% and 22%, respectively 

(Fig 3.1). Numerous studies reported the application of Zn fertilizer to soil helped to 

correct the Zn deficiency symptoms and to increase the crop yield (Yilmaz et al., 1997; 

Cakmak, 2008b; Abid et al., 2013; Zhao et al., 2014). Razvi et al. (2005) reported 

significantly higher grain yield, straw yield, harvest index and dry matter production at 

harvest by the application of Zn, over the rest of the treatments. Likewise, Khan et al. 

(2007) reported an increase in the number of tillers, spike m-2, spike length, plant height 

and 1000 grain weight of wheat significantly, in an experiment on wheat and rice using 

two levels of zinc (5 & 10 kg ha-1) over control.  

In present study, interestingly 13.8% increases in grain yield were recorded with 

foliar Zn application alone (Table 3.6, Fig 3.1). These results are contradictory with many 

previous studies where foliar Zn spraying did not affect yield traits of wheat. Numerous 

previous studies reported that grain yield was less dependent on foliar Zn supply (Cakmak 

et al., 2010 a,b; Wang et al., 2012; Zhang et al., 2012b; Zou et al., 2012; Zhao et al., 

2014, Xia et al., 2018). One study reported that foliar Zn spraying increased grain yield 

under drought conditions (Karim et al., 2012). Increases in wheat grain yield with foliar 

Zn alone was reported in only one location in Pakistan out of seven countries probably 

due to calcareous nature of Pakistani soil which reduces the Zn availability to roots (Ram 

et al.,2016).  

A significantly positive correlation was observed between the grain yield and 

grain Zn concentration in present study (Table 3.11). Graham et al., (1999), Welch and 
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Graham (2004) and Velu et al., (2012) also reported that there was no negative association 

of grain Zn with grain yield in wheat. Few reports in literature revealed slightly negative 

correlation between Zn and grain yield in wheat (Zhao et al., 2009; Gomez Becerra et al., 

2010, Gomez-Coronado et al. 2016). Some previous studies have shown that wheat grain 

Zn concentrations are negatively correlated with grain yields because of the “dilution” 

effect (Zhao et al., 2009; Velu et al., 2014). However, agronomic management 

approaches (e.g., fertilization) have not been given careful consideration in these studies 

(Chen et al., 2017).  

In this study, all the three treatments; adequate soil Zn, foliar Zn and soil + foliar 

Zn, were found effective in significantly increasing the grain Zn concentrations in HP-

biofortified (Fig 3.1). Among different wheat genotypes tested, grain Zn concentrations 

varied with different soil and/or foliar treatment. On average (including checks), Zn 

spraying increased grain Zn concentrations by 36 mg kg−1 (more than 2 folds) compared 

with low Zn application. Increases caused by adequate soil Zn application alone were 

only 31 mg kg−1 (2 folds) whereas soil + foliar Zn application increased 54.6 mg kg−1 (3.5 

folds) (Fig 3.2).  

Many studies in literature reported that foliar Zn supply alone significantly 

increased grain Zn accumulation in wheat and rice crops (Jiang et al. 2007; Cakmak et 

al., 2010a; Wang et al., 2012; Phattarakul et al. 2012; Xue et al. 2012; Zhang et al., 

2012b, Mabesa et al. 2013; Ram et al., 2017; Xia et al., 2018). In current studies, on 

average of all genotypes, foliar fertilizer application increased the Zn concentration up to 

36 mg kg-1. Experiments conducted in seven countries (China, India, Kazakhstan, 

Mexico, Pakistan, Turkey and Zambia) covering 23 sites over 3 years by using 10 

different wheat cultivars showed that 83.5% increase (more than 10 mg·kg−1) in grain Zn 

was achieved by foliar Zn spraying alone (Zou et al., 2012). There was a positive 

correlation between Zn concentration in grain with foliar Zn rates (Zhang et al., 2012b), 

which shows that Zn translocation to grain is not the limiting factor in wheat. Several 

studies reported that Zn concentrations in wheat grains were largely influenced by 

genotype, environment and genotype x environment interaction (Gomez-Becerra et al., 

2010; Joshi et al., 2010; Murphy et al., 2011).  

Although it is worth pointing out that foliar Zn spraying represents an effective 

way to grain Zn biofortification of wheat, however, plant development stage at the time 
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of foliar Zn application is also important in term of grain Zn accumulation. Considerable 

increases in grain Zn concentration usually happen when Zn is sprayed to plants before 

and/or right after anthesis (i.e., just prior to heading and at early milk stages, respectively) 

(Ram et al., 2016). In present study HP-biofortified genotypes were sprayed with Zn 

fertilizer at booting stage and early milk stage which gave the highly significant increases 

in grain Zn concentration. Other studies also reported that magnitude of increase in grain 

Zn concentration with foliar Zn application depends largely on the growth stage of crop 

plants at which foliar Zn application is applied (Cakmak et al. 2010a; Phattarakul et al. 

2012; Mabesa et al. 2013; Boonchuay et al. 2013; Stomph et al. 2014). 

Present study presents the significantly positive effect of soil Zn application on 

the grain Zn accumulation (Table 3.6). These results are in accordance with some studies 

which showed the effectiveness of soil Zn fertilization on grain Zn accumulation. 

Maqsood et al. 2009 reported 51.7 to 69.9% increase in grain Zn concentration by soil 

application of Zn (6 mg Zn kg–1) in several wheat genotypes in comparison with local 

check. Similarly, soil Zn fertilization at the rate of 9 mg kg-1 enhanced the grain yield and 

grain Zn concentration by 29% and 95% respectively (Hussain et al. 2012). However, in 

some studies, soil application had no effect on significantly increasing the grain Zn 

(Phattarakul et al. 2009; Zou et al., 2012; Rehman et al., 2018). In agreement to the 

literature, soil + foliar Zn fertilization was very effective in the present study in increasing 

grain yield and grain Zn concentration as well. Grain Zn concentration was improved up 

to 80% with soil + foliar application of Zn (Bharti et al. 2013). Many other studies also 

reported the significantly increases in grain Zn concentration and grain yield by the 

combined application of soil + foliar Zn (Cakmak et al. 2010b; Zhou et al., 2012; 

Phattarakul et al., 2012; Rehman et al., 2018).  

Genotypes differ from each other in grain yield, grain Zn concentration and even 

response of soil and foliar Zn application. In current studies of testing different HP-

biofortified genotypes with soil and foliar Zn resulted in significantly different response 

and significantly higher genotypic variation (Table 3.10). Indian check cultivar “HD-

2967” showed the highest grain Zn concentration under low soil Zn condition without 

foliar fertilization among all the HP biofortified lines. HP-biofortified genotype “HPBW-

01” performed best among all the genotypes in response to soil, foliar and soil + foliar 

fertilizer applications. Therefore, “HPBW-01” can be considered as the best genotype in 
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terms of Zn absorption from soil and/or foliar fertilizer applications and efficiently 

translocating it in grain for deposition. With soil Zn application alone, grain Zn 

concentration in “HPBW-01” increased to 57 mg kg-1, with foliar Zn application alone 

increased to 70 mg kg-1 and with soil + foliar fertilizer further increased to 93.7 mg kg-1.  

It means cultivation of HPBW-01 on adequate soil Zn or with soil fertilizer alone on 

deficient soil Zn can provide the recommended Zn supply. Previous studies in literature 

also showed wide variation for grain Zn concentration among wheat genotypes (Oury et 

al., 2006; Zhao et al., 2009; Masood et al., 2009; Velu et al., 2011; Badakhshan et al., 

2013; GomezCoronado et al. 2016; Khokhar et al., 2018). Results presented in this study 

confirm that cultivars obviously differ in grain yields, yield components, grain Zn 

concentrations, response to fertilizer applications and other nutritional traits. 

There are different biofortification targets of Zn level in wheat grains to meet the 

Zn requirement by human body, set by different group of scientists and organization. 

HarvestPlus program (http://www.harvestplus.org; Hao et al., 2015) set the target 

concentration of Zn in wheat grain as 38 mg kg−1. Other studies reported that the target 

value for wheat grain Zn concentration was set to be 38–50 mg kg−1 for biofortification 

(Allen et al., 2006; Ortiz-Monasterio et al., 2007; Pfeiffer and McClafferty, 2007; Tang 

et al., 2008; Wang et al., 2012; Hao et al., 2015). Results in current studies show that the 

target value was completely achieved in all biofortified lines as well as in check cultivars 

with soil, foliar and soil + foliar application of Zn fertilizer. It seems that biofortified 

genotypes are not able to achieve these targets without the application of Zn fertilizers 

under deficient soil Zn conditions. Maximum grain Zn concentrations achieved was 19.2 

mg kg-1 by the Indian check variety “HD-2967” under Zn deficient conditions in this 

study without soil or foliar Zn. Therefore, the results presented in current research 

confirmed that foliar Zn spraying alone or with soil Zn is necessary to enhance both grain 

yield and grain Zn concentrations.  

The variation in grain Zn concentration of HP biofortified genotypes cannot be 

explained by the differences in root Zn uptake at seedling stage. Although the results in 

current study (experiment B) confirmed that HP-biofortified genotypes are efficient in 

absorbing and translocating the absorbed Zn to shoot compared to check variety in a given 

time period. But it is difficult to correlate the higher root uptake and shoot concentration 

with the grain Zn accumulation.  Because there are several key factors affecting grain Zn 
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accumulations other than root absorption at vegetative stage. Higher absorption by the 

plant roots during a limited time (4.5 h in this study) cannot justify the high grain Zn 

accumulation. Previously similar experiments result clearly reported that root Zn uptake 

capacity of genotypes and shoot accumulation of Zn during early growth stage has no 

relation to the grain Zn accumulation (Yilmaz et al., 2017) 

 The uptake experiment in present study indicates a very efficient system of 

root absorption and translocation of Zn deficient biofortified genotypes as compared to 

the local check variety. Although genotypic variation has a primary influence in grain Zn 

concentrations, other environmental factors like soil water content and precipitation has 

also important role in grain Zn accumulation (Gomez-Coronado et al., 2016). A large 

magnitude of variation is reported in different fields or pot experimental studies. 

Cultivating different wheat cultivars are always considered as a major source of variation 

for the grain yield and grain Zn accumulation (Masood et al., 2009, GomezCoronado et 

al. 2016; Khokhar et al., 2018). The variation found in grain Zn increases caused by soil, 

foliar, or soil + foliar Zn application were also wide in different experiments. Therefore, 

it is complex to develop a most effective Zn biofortification strategy for the cereal crops 

like wheat. All factors including cultivars, soil and other environmental conditions, and 

artificial managements (e.g., fertilization and foliar application times) should be 

considered and managed in a proper way. In areas of the world where cereals are grown 

on Zn deficient soils, Gomez-Coronado et al. (2016, 2017) suggested that selecting the 

efficient cultivars for Zn absorption and grain accumulation capacity combined with 

appropriate soil and foliar Zn applications could be a best strategy for the Zn 

biofortification.  

 

 

 

 

3.5. Conclusion 

 

 

 

The current research confirms that HP-biofortified high Zn wheat genotypes have 

capacity to absorb, utilize and translocate Zn from soil and/or foliar Zn fertilizers more 

efficiently as compared to the conventionally grown check cultivars. These genotypes 

were developed by long-term breeding activities at CIMMYT as a part of HarvestPlus 
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biofortification program and released in the target countries (India and Pakistan). Plant 

breeders have transferred the genes responsible for increased Zn from the reported high 

Zn sources like synthetics, diploid/tetraploid wild progenitors and landraces, to high 

yielding elite wheat backgrounds. However, a fertilizer strategy along with high Zn wheat 

genotype cultivation is necessary to be able to achieve the grain Zn concentrations 

according to the preset target levels specially in Zn deficient soils.  Although these lines 

are good absorber and have more capacity to extract Zn from soil, but these genotypes 

cannot represent their full genetic potential in terms of grain Zn accumulation in Zn 

deficient calcareous soils. Under Zn deficient conditions, HP-biofortified lines grown 

without any additional Zn fertilizer do not provide the sufficient grain Zn to fulfil daily 

Zn requirement by human body. In current study the strategy of foliar Zn spraying along 

with soil Zn application was found very effective to biofortify wheat with Zn as well as 

to increase the grain yield. There was a significant genotypic variation among the 

genotypes, however, all the genotypes were able to achieve the grain Zn targets with the 

soil and/or foliar Zn application. 

In south Asian countries like India and Pakistan where soils are calcareous and Zn 

deficient, the strategy of growing genetically biofortified wheat cultivars with an added 

application of Zn in soil and foliar form is the best approach to improve yield and grain 

Zn accumulation. Under such a scenario, the targets for biofortification will be rapidly 

achieved by combining agronomic and genetic strategies and hence to overcome the 

malnutrition problem.  
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C. GENERAL DISCUSSION AND CONCLUSION 

 

 

 

 Pregnant and lactating women require more Zn which is not fulfilled with cereal 

based diet as cereals are genetically low in Zn and other micronutrients (Cakmak et al., 

2008; Bouis, 2003).  

Cereals (Wheat, maize and rice) are the most important source of the world’s total 

food. According to Food and Agriculture Organization (FAO, 2015) more than 51% daily 

caloric requirement is provided by the combination of wheat, maize and rice. Rice alone 

is a major part of the diet for more than half the world’s population. In many parts of the 

world especially in Latin America, Africa, Southern Europe and some Asian countries, 

maize is consumed as food grain. Wheat is a primary staple food in South Asia (Northern 

India and Pakistan) used to make traditional breads called chappati or roti which is 

important part of almost every meal and in every house (Baloch et al., 2015). The average 

wheat consumption in South Asia is around 400g per person per day. More than 26% of 

the population living in region consuming wheat as staple food is diagnosed as Zn 

deficient. Cereals like wheat, maize and rice are inherently low in micronutrients, 

therefore, cereal-based foods do not provide enough Zn to meet the individual’s daily Zn 

requirement.  

Agriculture strategies offer a practical and cost-effective solution to the problem 

by increasing the Zn concentration in staple food like cereal crops through breeding 

(genetic biofortification) or fertilization (agronomic biofortification) or combining both 

approaches. Agronomic biofortification provides an instant solution to the problem by 

applying Zn fertilizer to the soil and/or to plant as a foliar spray. Knowledge about root 

and leaf absorption of Zn, its re-translocation and grain deposition in wheat and maize is 

crucial to improve the nutritional value of cereal crops and to efficiently address 

malnutrition problem. Previous studies including the results from International 

HarvestZinc project (www.harvestzinc.org) reported that wheat responded to foliar Zn 

fertilization very positively and significantly in terms of increases in grain Zn as 
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compared to maize, however, reasons remained unknown. Studies reported in first chapter 

were aimed elucidating the physiological reasons behind the different responses of wheat 

and maize to foliar Zn fertilizers. A series of experiments were conducted on wheat and 

maize under controlled environmental conditions in soil and nutrient solution with varied 

supply of Zn. Modern and sensitive Zn tracing and visualizing techniques were used like 

stable isotope of 70Zn and Zn fluorescence dye “Zinpyre”. Maize plants showed 

significantly less uptake of foliar applied Zn compared to wheat plants regardless the age 

of plants and/or the volume of fertilizer solution.  

Human Zn deficiency in this region is also associated with noticeable Zn 

deficiency in soils as cereals are cultivated on severely Zn deficient soils (Asher, & 

Hynes, 1992; Welch & Graham, 2004; Cakmak, 2008; Cakmak et al., 2010; Zou et al., 

2012; Velu et al., 2012; Cakmak, 2014; Cakmak and Kutman, 2017). Therefore, the South 

Asian agro-ecological zone including India and Pakistan was identified as potential target 

areas for adoption and commercialization of biofortified wheat. HarvestPlus program 

(www.harvestplus.org) along with collaboration with public and private partners took 

initiatives to develop the biofortified high-Zn wheat cultivars for the target areas (Bouis 

and Welch, 2010).  

The Harvest plus wheat genotypes used in this study were developed through long 

term breeding activities at CIMMYT as a part of genetic biofortification program. The 

objective of HarvestPlus Biofortification Program is to increase the Zn concentrations in 

the edible portions of staple food crops through plant breeding. There is very promising 

progress in this program and numerous Zn biofortified cereal genotypes were developed 

and released in many target areas of developing countries. Although genetic 

biofortification is a cost-effective and widely accepted strategy, however, achieving 

sufficiently high Zn concentrations in grains to be able to effect human nutrition is 

directly related to the available Zn in soils to the plant roots (Cakmak 2008). Therefore, 

in regions of the world where low Zn solubility in soils is a problem, high Zn genotypes 

may also depend on application of Zn-containing fertilizers, e.g., agronomic 

biofortification (White and Broadley 2005; Cakmak 2008; Alloway 2009). Soils in south 

Asian countries like India and Pakistan are calcareous and Zn deficient. Insufficient 

precipitations and lack of proper irrigation resulting in low moisture is another limitation 

reducing the Zn availability to plant roots. Under these adverse soil and environmental 



105 
 

conditions, cultivating the genetically improved high Zn cultivars may not be able to 

achieve the set targets of increased Zn in grain (+12 mg kg-1) without the synergistic 

fertilizer strategy. Several studies reported that agronomic biofortification provides a fast 

and effective solution to increase Zn concentration in several grain crops, mainly in wheat 

and rice (Cakmak et al. 2010b; Phattarakul et al. 2012; Zou et al. 2012).  

Because in plant systems, there is a similar mechanism of absorption of heavy 

metals and accumulation in grains, if genetically biofortified wheat cultivars are grown 

on heavy metal contaminated soils (e.g. Cadmium and Lead) they can accumulate higher 

amount of these toxic metals in grains. This is another important concern regarding the 

use of genetically biofortified wheat genotypes. However, studies have shown that adding 

Zn fertilizers in heavy metal contaminated soil can reduce the uptake and accumulation 

of heavy metals. As these metals compete with Zn for uptake, if there is more available 

Zn pool in the rhizosphere, plants can uptake more Zn instead of Cd or Pb (Qaswar et al., 

2017; Ishfaq et al., 2018).  

Here, based on the current results, we propose a strategy to improve the grain Zn 

nutritional quality while ensuring high yields and protecting the soil and environment at 

the same time. At least three factors should be managed for a nutritious and profitable 

wheat production by farmers: (i) adoption/cultivation of genetically improved biofortified 

wheat cultivars with high yield, high grain Zn concentration and bioavailability, low anti 

nutrients like phytate and high resistance to biotic and abiotic stresses; (ii) maintaining 

the adequate Zn and N levels in the soil by adding soil Zn and N fertilizers, respectively. 

Improving soil N not only increases the grain yield but also the nutritional value of cereal 

crops. Soil Zn applications increase the biologically available Zn pool to the plant roots 

even in high-pH and low-organic matter soils, while at the same time reducing heavy 

metal accumulation (e.g. Cd and Pb) in grains; (iii) enhancing the Zn pool in plant foliage 

by foliar Zn applications at the time of booting and early milk stages. Foliar Zn 

application is proved to be an efficient and economical way to increase the leaf Zn uptake 

and its subsequent re-translocation to grains. Foliar Zn sprays can be applied in 

combination with soil Zn application depending upon the deficiency condition and set 

targets. 

  



106 
 

 

 

 

 

 

 

 

D. REFERENCES 

 

 

 

 

Abid, M., Ahmed, N., Qayyum, M. F., Shaaban, M. & Rashid, A. (2013). Residual and 

cumulative effect of fertilizer zinc applied in wheat–cotton production system 

in an irrigated aridisol. Plant, Soil & Environment, 69, 505–510.  

Agricultural Statistics of Pakistan. Ministry of National Food Security and Research, 

Government of Pakistan, Islamabad. 2016.  

Akhtar, S. (2013). Zinc status in South Asian populations—An update. J. Health 

Popul. Nutr. ;31: 139–149. 

Alam, S., Kelleher, S. L. (2012). Cellular Mechanisms of Zinc Dysregulation: A 

Perspective on Zinc Homeostasis as an Etiological Factor in the Development 

and Progression of Breast Cancer, Nutrients; 4 :875-903. 

Allen, L., de Benoist, B., Dary, O., Hurrell, R. (2006). Guidelines on Food Fortification 

with Micronutrients. Geneva: WHO. 

Alloway, B. J., (2009). Soil factors associated with zinc deficiency in crops and 

humans. Environ. Geochem. Health 31, 537-548. 

Alshaal, T., El-Ramady, H. (2017). Foliar Application: from Plant Nutrition to 

Biofortification. The Environment, Biodiversity & Soil Security 1: 71- 83. 

Andreini, C., Bertini, I. (2012). A bioinformatics view of zinc enzymes. Journal of 

Inorganic Biochemistry, 111, 150–156.  

Andreini, C., Bertini, I.; Cavallaro, G. (2011). Minimal functional sites allow a 

classification of zinc sites in proteins. PLoS ONE, 6, 26325. 



107 
 

Badakhshan, H. M., Mohammadzadeh, N., Zakeri, H. Reza, M. (2013). Genetic 

Variability Analysis of Grains Fe, Zn and Beta-carotene Concentration of 

Prevalent Wheat Varieties in Iran. International Journal of Agriculture Crop 

sciences. 6. 57-62. 

Baloch, Q. B., Mujahid, Y. M, Noreen, S., Makhdum, M. I. (2018). Biofortified high 

zinc wheat: the traditional staple dietary food to address malnutrition in 

Pakistan. International Journal of Endorsing Health Science Research; 6-1. 

Baloch, Q. B., Makhdum M. I., Mujahid, Y.M., Noreen, S. (2015). Biofortification: 

High zinc wheat programme – The potential agricultural options for alleviating 

malnutrition in Pakistan. International Journal of Food and Allied Sciences. 1. 

36. 

Berg, J. M., Shi, Y. (1996). The galvanization of biology: A growing appreciation for 

the roles of zinc. Science; 271, 1081–1085. 

Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P. C., Shankhdhar, S. C. (2013). 

Effect of different zinc levels on activity of superoxide dismutases & acid 

phosphatases and organic acid exudation on wheat genotypes. Physiol. Mol. 

Biol. Plants. 20 (1): 41–48. 

Bhutta, Z., Soofi, S., Zaidi, S., Habib, A., Hussain, M. (2011). Pakistan National 

Nutrition Survey, 2011. 

Black, R. E., Lindsay, H. A., Bhutta, Z. A., Caulfeld, L. E., de Onnis, M., Ezzati, M. 

et al. (2008). Maternal and child undernutrition: global and regional exposures 

and health consequences. Lancet, 371, 243–260. 

Boonchuay, P., Cakmak, I., Rerkasem, B. & Prom–U–Thai, C. (2013). Effect of 

different growth stages on seed zinc concentration and its impact on seedling 

vigor in rice. Journal of Soil Science & Plant Nutrition, 59, 180–188. 

Bouis, H. E., Saltzman, A. (2017). Improving nutrition through biofortification: A 

review of evidence from HarvestPlus, 2003 through 2016. Global Food 

Security,12 (2017) 49–58. 



108 
 

Bouis, H. E., Welch, R. M. (2010). Biofortification–a sustainable agricultural strategy 

for reducing micronutrient malnutrition in the global South. Crop Sci. 50, S20– 

S32. 

Bouis, H. E. (2003). Micronutrient fortification of plants through plant breeding: can 

it improve nutrition in man at low cost? Proceedings of the 

Nutrition Society, 62, 403–411. 

Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., Pfeiffer, W. H., (2011). 

Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. 

Bull. 32 (Suppl. 1), S31–S40. 

Brian, J. A. (2008). Micronutrients and crop production: An introduction. In 

Micronutrient deficiencies in global crop production Ed. Springer 1-39. 

Brown, K. H., Wuehler, S. E., Peerson, J. M. (2001). The importance of zinc in human 

nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr 

Bull 22:113–125.  

Cakmak, I. (2000). Tansley Review No. 111. Possible roles of zinc in protecting plant 

cells from damage by reactive oxygen species. New Phytologist 146: 185–205. 

Cakmak, I. (2008a). Enrichment of cereal grains with zinc: Agronomic or genetic 

biofortification? Plant and Soil. 302: 1–17. 

Cakmak, I. (2009). Enrichment of fertilizers with zinc: An excellent investment for 

humanity and crop production in India. Journal of Trace Elements in Medicine 

and Biology 23: 281-289. 

Cakmak, I., Cakmak, O., Eker, S., Ozdemir, A., Watanabe, N., Braun, H. (1999). 

Expression of high zinc efficiency of Aegilops tauschii and Triticum 

monococcum in synthetic hexaploid wheats. Plant Soil 215: 203-209. 

Cakmak, I., Kutman, U. B. (2017) Agronomic biofortification of cereals with zinc-a 

review. Eur. J. Soil Sci. in press. 



109 
 

Cakmak, I., Yilmaz, A., Ekiz, H., Torun, B., Erenoglu, B., Braun, H. J. (1996). Zinc 

deficiency as a critical nutritional problem in wheat production in Central 

Anatolia. Plant and Soil 180: 165–172. 

Cakmak, I. (2000). Role of zinc in protecting plant cells from reactive oxygen species. 

New Phytol. 146, 185–205. 

Cakmak, I. (2008b). Zinc deficiency in wheat in Turkey. In: Micronutrient 

Deficiencies in Global Crop Production (ed. B.J. Alloway), Springer Science 

+ Business Media, Dordrec. 181–200 

Cakmak, I. (2014). Agronomic Biofortification. Biofortification Progress Briefs. 

August 2014 (www.harvestplus.org). 

Cakmak, I., Engels, C. (1999). “Role of mineral nutrients in photosynthesis and yield 

formation,” in Mineral Nutrition of Crops: Mechanisms and Implications, ed. 

Z. Rengel (New York, NY: The Haworth Press), 14–168. 

Cakmak, I., Kalayci, M., Ekiz, H., Braun, H. J., Kilinc, Y., and Yilmaz, A. (1999). 

Zinc deficiency as a practical problem in plant and human nutrition in Turkey: 

a NATO-science for stability project. Field Crops Res. 60, 175–188. 

Cakmak, I., Kalayci, M., Kaya, Y., Torun, A. A., Aydin, N., Wang, Y. et al. (2010a) 

Biofortification and localization of zinc in wheat grain. Journal of Agricultural 

& Food Chemistry: 58, 9092–9102. 

Cakmak, I., Pfeiffer, W. H. & McClafferty, B. (2010b). Biofortification of durum 

wheat with zinc and iron. Cereal Chemistry, 87, 10–20. 

Chattha, M. U., Hassan, M.U., Khan, I., Chattha, M.B., Mahmood, A., Chattha, M.U., 

Nawaz, M., Subhani, M. N., Kharal, M., Khan, S. (2017). Biofortification of 

wheat cultivars to combat zinc deficiency. Front Plant Sci. ;14(8):281.  

Chen, X.-P., Zhang, Y.-Q., Tong, Y.-P., Xue, Y.-F., Liu, D.Y., Zhang, W., Deng, Y., 

Meng, Q.-F., Yue, S.-C., Yan, P.; et al. (2017). Harvesting more grain zinc of 

wheat for human health. Sci. Rep. 7-7016. 

http://www.harvestplus.org/


110 
 

Curtis, T., Halford, N. G. (2014). Food security: the challenge of increasing 

wheat yield and the importance of not compromising food safety. Annals 

of Applied Biology, 164, 354–372. 

Davis, D.R. (2009) Declining fruit and vegetable nutrient composition: what is the 

evidence? Hort. Science, 44, 15–19. 

Distelfeld, A., Cakmak, I., Peleg Z., Ozturk, L., Yazici, A. M., Budak, H., Saranga, Y., 

Fahima, T. (2007). Multiple QTL-effects of wheat Gpc-Bl locus on grain 

protein and micronutrient concentrations. Physiol Plant 129:635. 

Du, Y., Kopittke, P. M., Noller, B. N., James, S. A., Harris, H. H., Xu, Z. P., Li P, 

Mulligan D R, Huang L. (2015) In situ analysis of foliar zinc absorption and 

short-distance movement in fresh and hydrated leaves of tomato and citrus 

using synchrotron-based X-ray fluorescence microscopy. Annals of Botany 

115: 41–53. 

Du, Y., Li, P., Mulligan. D.,  Huang. L. (2014). Foliar zinc uptake processes and 

critical factors influencing foliar Zn efficacy. Biointerface Research in Applied 

Chemistry 4: 754-766. 

Edward, J. M., Joy, W.A., Zia, M. H., et al. Valuing increased zinc (Zn) fertiliser-use 

in Pakistan (2016) Plant and Soil. 

Erenoglu, E. B., Kutman, U. B., Ceylan, Y., Yildiz, B., and Cakmak, I. (2011). 

Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation 

and remobilization of zinc (65Zn) in wheat. New Phytol. 189, 438–448.  

Eichert, T., Kurtz, A., Steiner, U., Goldbach, H. E. (2008). Size exclusion limits and 

lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes 

and water-suspended nanoparticles. Physiol. Plant. 134: 151–160. 

Fan, M. S., Zhao, F. J., Fairweather-Tait, S.J., Poulton, P.R., Sunham, S.J. & McGrath, 

S.P. (2008). Evidence of decreasing mineral density in wheat grain over the 

last 160 years. Journal of Trace Elements in Medicine & Biology, 22, 315–324. 



111 
 

FAO, IFAD and WFP. (2015). The State of Food Insecurity in the World 2015. 

Meeting the 2015 international hunger targets: taking stock of uneven 

progress. Rome, FAO. 

Fernández, V., Brown., P. H. (2013). From plant surface to plant metabolism: the 

uncertain fate of foliar-applied nutrients. Front. Plant Sci. 4:289. 

Fernández, V., Delgado, P. G., Graça, J., Sara, Santos. S., Gil, L. (2016). Cuticle 

structure in relation to chemical composition: re-assessing the prevailing 

model. Front. Plant Sci. 7:427. 

Fernàndez, V, Ebert., G, Winkelmann, G. (2005). The use of microbial siderophores 

for foliar iron application studies. Plant Soil 272: 245-252. 

Fernandez, V., Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: 

Current state of knowledge and perspectives of foliar fertilization. Crit Rev 

Plant Sci 28:36-68. 

Fernández, V., Guzmán P, Peirce, C. A., McBeath, T. M., Khayet, M.,  McLaughlin, 

M. J., (2014a). Effect of wheat phosphorus status on leaf surface properties and 

permeability to foliar-applied phosphorus. Plant and Soil 384, 7–20.  

Fernández, V., Sotiropoulos, T., Brown, P. H. (2013). Foliar Fertilisation: Principles 

and Practices. Paris: International Fertilizer Industry Association (IFA): Paris, 

France. 

Fernández, V., Héctor, B., Peguero-Pina., Javier, J., Eustaquio, P. Domingo, S. K, Gil, 

Goldbach, L., Thomas H. E. (2017). Physico-chemical properties of plant 

cuticles and their functional and ecological significance. Journal of 

Experimental Botany. in press.  

Frassinetti, S. 1., Bronzetti, G. Caltavuturo, L. Cini, M., Croce, C. D. (2006). The role 

of zinc in life: a review. J Environ Pathol Toxicol Oncol.  25(3):597-610. 

Garvin, D. F., Welch, R. M., Finley, J. W. (2006). Historical shifts in the seed mineral 

micronutrient concentrations of US hard red winter wheat germplasm. Journal 

of the Science of Food & Agriculture, 86, 2213–2220. 

https://www.ncbi.nlm.nih.gov/pubmed/17073562


112 
 

Gibson, R. S. (2012). Zinc defciency and human health: etiology, health consequences, 

and future solutions. Plant and Soil, 361, 291–299. 

Gibson, R. S., Bailey, K. B., Gibbs, M. , Ferguson, E.L. (2010). A review of phytate, 

iron, zinc and calcium concentrations in plant–based complementary foods 

used in low-income countries and implications for bioavailability. Food & 

Nutrition Bulletin 31, S134–S146. 

Gomez-Becerra, H. F., Yazici A, Ozturk L., Budak H, Peleg Z, Morgounov A, Fahima 

T, Saranga Y, Cakmak I. (2010). Genetic variation and environmental stability 

of grain mineral nutrient concentrations in Triticum dicoccoides under five 

environments. Euphytica 171:39- 52. 

Gomez-Coronado, F., Poblaciones, M. J., Almeida, A. S., Cakmak, I. (2016). Zinc (Zn) 

concentration of bread wheat grown under Mediterranean conditions as 

affected by genotype and soil/foliar Zn application. Plant and Soil 401:331–

346. 

Graham, R. D., Welch, R. M. (1996). Breeding for staple-food crops with high 

micronutrient density: Working Papers on Agricultural Strategies for 

Micronutrients, No. 3. Interna- tional Food Policy Institute, Washington DC. 

Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., 

Bonierbale, M., de Haan, S., Burgos,G.,Thiele,G.,Liria,R.,Meisner, C. A., 

Beebe, S. E., Potts, M. J., Kadian, M., Hobbs, P. R., Gupta, R. K., and 

Twomlow, S. (2007). Nutritious subsistence food systems. Adv. Agron. 92, 1–

74. 

Graham, R. D.,Welch, R. M., and Bouis, H. E. (2001). Addressing micronutrient 

malnutrition through enhancing the nutritional quality of staple foods: 

principles, perspectives and knowledge gaps. Adv. Agron. 70, 77–142.  

Graham, R., Senadhira, D., Beebe, S., Iglesias, C., and Monasterio, I. (1999). Breeding 

for micronutrient density in edible portions of staple food crops: conventional 

approaches. Field Crops Res. 60, 57–80.  



113 
 

Graham, R.D., Asher, J.S., Hynes, S.C. (1992). Selection of zinc-efficient cereal 

genotypes for soils of low zinc status. Plant Soil, 146: 241-250. 

Hao, Y. F., Zhang, Y., and He, Z. H. (2015). Progress in zinc biofortification of 

crops. Chin. Bull. Life Sci. 27, 1047–1054. 

HarvestPlus Brief, (2006). Breeding Crops for Better Nutrition. Washington, DC, USA 

HarvestPlus, (2010). Disseminating Orange-fleshed Sweet Potato: Findings From a 

HarvestPlus Project in Mozambique and Uganda. HarvestPlus, Washington, 

DC. 

Haslett, B. R., Reid, R. J., Renge, Z. (2001). Zinc mobility in wheat: uptake and 

distribution of zinc applied to leaves or roots. Annals of Botany 87: 379-386. 

Haynes, R. J., Goh, K. M. (1977). Review on physiological pathways of foliar 

absorption. Sci Hortic-Amsterdam 7: 291-302. 

CIMMYT Pakistan, (www.cimmyt.org/farmers-in-pakistan-benefit-from-new-zinc-

enriched-high-yielding-wheat/) 

Habib, M. (2012). Effect of supplementary nutrition with Fe, Zn chelates and urea on 

wheat quality and quantity. Afr. J. Biotechnol.11, 2661–2665. 

Hussain, S., Maqsood, M. A., Rengel, Z., Khan, M. K. (2012). Mineral bioavailability 

in grains of Pakistani bread wheat declines from old to current cultivars. 

Euphytica 186:153–163.  

Haydon, M. J., Cobbett, C. S. (2007). Transporters of ligands for essential metal ions 

in plants. New Phytologist 174(3), 499-506.  

Impa, S. M., Morete, M. J., Ismail, A. M., Schulin, R., Johnson-Beebout, S. E. (2013). 

Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) 

genotypes selected for Zn deficiency tolerance and high grain Zn. J. Exp. 

Bot. 64: 2739–2751. 



114 
 

Ishfaq, M., A. Kiran, A. Khaliq, S.A. Cheema, I.A. Alaraidh, N. Hirotsu, A. Wakeel, 

(2018). Zinc biofortified wheat cultivar lessens graincadmium accumulation 

under cadmium contaminated conditions. Int. J. Agric. Biol. 

Jiang, W., Struik, P. C., Lingna, J., van, Keulen, H. Ming., Z. Stomph, T. J. (2007). 

Uptake and distribution of root-applied or foliar-applied 65Zn after flowering 

in aerobic rice. Ann. Appl. Biol., 150, 383–391. 

Jian, X. L., Chang, L., Wang, J. X. (2005). Stomatal density and gas exchange in six 

wheat cultivars. Cereal Research Communications 33, 4.  

Joshi, A. K., Crossa, I., Arun, B., Chand, R., Trethowan, R., Vargas, M., 

OrtizMonasterio, I. (2010). Genotype environment interaction for zinc and iron 

concentration of wheat grain in eastern Gangetic plains of India. Field Crops 

Res. 116, 268-277 

Kannan, S. (1990). Role of foliar fertilization in plant nutrition. In: Baligar VC, 

Duncan RR, eds. Crops as enhancers of nutrient use. San Diego, CA, USA: 

Academic Press: 313-348. 

Kannan, S. (2010). Foliar fertilization for sustainable crop production. Sustain. Agric. 

Rev. 4: 371–402. 

Karim, M. R., Zhang, Y. Q., Zhao, R. R., Chen, X. P., Zhang, F. S., Zou, C. Q. (2012). 

Alleviation of drought stress in winter wheat by late foliar application of zinc, 

boron, and manganese. J. Plant Nutr. Soil Sci. 175:142–151. 

Kaur, K., Gupta, R., Saraf, S. A., Saraf, S. K. (2014). Zinc: The Metal of Life, 

Comprehensive Reviews in Food Science and Food Safety Vol.13.  

Khan, R., Gurmani, A.R., Khan, M. S.  Gurmani, A. H. (2007). Effect of zinc 

application on rice yield under rice wheat system. Pakistan J. Biol. Sci., 10: 

235–239. 

Krezel, A., Maret, W. (2016). The biological inorganic chemistry of zinc 

ions. Archives of Biochemistry & Biophysics. 611, 3–19. 



115 
 

Khokhar, J. S., Sareen, S., Tyagi, B. S., Singh, G., Wilson, L., King I. P., et al. 

(2018).Variation in grain Zn concentration, and the grain ionome, in field-

grown Indian wheat. PLoS One 13:0192026. 10.1371/journal.pone.0192026.  

Khoshgoftarmanesh, A. H., A. Sadrarhami, H. R. Sharifi, D. Afiuni, and R. Schulin. 

(2009). Selecting Zinc-Efficient Wheat Genotypes with High Grain Yield 

Using a Stress Tolerance Index, Agronomy Journal 101 (6), 1409-1416. 

Koontz, H., Biddulph, O. (1957). Factors affecting absorption and translocation of 

foliar applied phosphorus. Plant Physiol 32: 463–470. 

Krebs, N. F., Miller, L. V. Hambridge, K. M.  (2014). Zinc deficiency in infants and 

children: a review of its complex and synergistic interactions. Paediatrics & 

International Child Health 34, 279–288. 

Krężel, A., Maret, W. (2016). The biological inorganic chemistry of zinc 

ions. Archives of biochemistry and biophysics, 611, 3-19. 

Kutman, U. B., Kutman, B. Y., Ceylan, Y., Ova, E. A. & Cakmak, I. (2012). 

Contributions of root uptake and remobilization to grain zinc accumulation in 

wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant 

and Soil, 361, 177–187. 

Kutman, U. B., Yildiz, B., Cakmak, I. (2011). Improved nitrogen status enhances zinc 

and iron concentrations both in the whole grain and the endosperm fraction of 

wheat. Journal of Cereal Science 53, 118–125. 

Liao, J. X., Chang, J., Wang, G. X. (2005). Stomatal density and gas exchange in six 

wheat cultivars. Cereal Research Communications 33: 719-726. 

Liu, C. M., Liang, D., Jin, J., Li, D. J., Zhang, Y. C., Gao, Y. U. He, Y. T. (2017). 

Research progress on the relationship between zinc deficiency, related 

microRNAs, and esophageal carcinoma, Thoracic Cancer (8): 549–557. 

Longnecker, N. E., Robson, A. D. (1993). Distribution and transport of zinc in plants. 

In: AD Robson. ed. Zinc in soils and plants: Dordrecht, The Netherlands: 

Springer 79–91. 



116 
 

Lott, J. N. A., Greenwood, J. S., & Batten, G. D. (1995). Mechanisms and regulation 

of mineral nutrient storage during seed development. In J. Kigel & G. Galili 

(Eds.) Seed development and germination (pp. 215-235). New York: Marcel 

Dekker. 

Mabesa, R. L., Impa, S. M., Grewal, D., Johnson-Beebout, S. E. (2013). Contrasting 

grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to 

foliar Zn application. Field Crops Res.149: 223–233. 

Marschner, H. (1995). Mineral nutrition of higher plants. 2nd ed.; UK: Academic 

Press: London. 

Morgounov, A., Gomes-Becerra, H. F., Abugalieva, A., Dzhunusova, M., 

Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., Cakmak, I. 

(2007). Iron and zinc grain density in common wheat in Central Asia. 

Euphytica 155(1-2), 193-203.  

Marschner, H. (1993). Zinc uptake from soils. In: Zinc in Soils and Plants (ed. A.D. 

Robson), pp. 59–77. Kluwer Academic Publishers, Dordrecht. 

Matthew, A. Jenks. (2002). Leaf cuticle and water loss in maize lines differing in 

dehydration avoidance Zoran Ristic1J. Plant Physiol. 159. 645 –651. 

Maxfield, L., Crane J. S. (2018). Zinc Deficiency. In: StatPearls [Internet]. Treasure 

Island (FL): StatPearls Publishing; 2018 Jan-. Available from: 

https://www.ncbi.nlm.nih.gov/books/NBK493231/. 

Meenakshi, J. V., Johnson, N. L., Manyong, V. M., Degroote, H., Javelosa, J., 

Yanggen, D. R., Naher, F., Gonzalez, C., García, J., Meng, E. (2010). How 

cost-effective is biofortification in combating micronutrient malnutrition? An 

ex ante assessment. World Dev. 38, 64–75. 

Monasterio, I., Graham, R.D., (2000). Breeding for trace minerals in wheat. Food Nutr. 

Bull. 21, 393-396. 

Murphy, K. M., Hoagland, L. A., Yan, L., Colley, M., and Jones, S. S. (2011). 

Genotype × environment interactions for mineral concentration in grain of 

https://www.ncbi.nlm.nih.gov/books/NBK493231/


117 
 

organically grown spring wheat. Agron. J. 103, 1734–1741. doi: 

10.2134/agronj2011.0097 

NARC [WWW Document]. Pakistan Agric. Res. Counc URL. 

http://www.parc.gov.pk/ index.php/en/about-narc/12-news-events/news/1151-

improve-nutrition-andpublic-health-by-developing-biofortified-food-crops-at-

narc (accessed 5.6.17). 

Noack, S. R., McBeath, T. M., McLaughlin, M. J. (2010). Potential for foliar 

phosphorus fertilisation of dryland cereal crops: a review. Crop Pasture 

Sci. 61: 659–669. 

Ortiz-Monasterio, I., Cardenas, M.E. Cakmak, I. (2015). Zinc biofortification in wheat 

through foliar fertilization combined with pesticides. 4th International Zinc 

Symposium: Improving Crop Production and Human Health, Sao Paulo  

Ortiz-Monasterio, I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., Pena, 

R.J. (2007). Enhancing the mineral and vitamin content of wheat and maize 

through plant breeding. J. Cereal Sci. 46, 293-307. 

Oury, F. X., Leenhardt, F., Rémésy, C., Chanliaud, E., Duperrier, B., Balfouriera, F., 

Charmet, G., (2006). Genetic variability and stability of grain magnesium, zinc 

and iron concentration in bread wheat. Eur. J. Agron. 25, 177-185. 

Page, V., Weisskopf, L., Feller, U. (2006). Heavy metals in white lupin: uptake, root-

to-shoot transfer and redistribution within the plant. New Phytologist 171: 329–

341. 

Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Ozkan, H., Braun, 

H-J., Sayers, Z., & Cakmak, I. (2006). Concentration and localization of zinc 

during seed development and germination in wheat. Physiologia Plantarum 

128(1), 144–152. doi:10.1111/j.1399-3054.2006.00737.x 

Ozturk, L., Altintas, G., Erdem, H., Gokmen, O. O., Yazici, A., and Cakmak, I. (2009). 

“Localization of iron, zinc, and protein in seeds of spelt (Triticum aestivum 

ssp. Spelta) genotypes with low and high protein concentration,” in 

http://www.parc.gov.pk/


118 
 

Proceedings of the International Plant Nutrition Colloquium XVI, Department 

of Plant Sciences, Davis, CA. 

Papini, A., Tani, G., Di, Falco, P., Brighigna, L. (2010). The ultrastructure of the 

development of Tillandsia (Bromeliaceae) trichome. Flora 205(2):94–100 

Pfeiffer, W. H. McClafferty, B. (2007). HarvestPlus: Breeding crops for better 

nutrition. Crop Sci., 47, 88–105. 

Phattarakul, N., Rerkasem, B., Li, L.J., Wu, L.H., Zou, C.Q., Ram, H. et al. (2012). 

Biofortification of rice grain with zinc through zinc fertilization in different 

countries. Plant and Soil, 361, 131–141. 

Pierce, S., Maxwell, K., Griffiths, H., Winter, K. (2001). Hydrophobic trichome layers 

and epicuticular wax powders in Bromeliaceae. Am J Bot 88(8):1371–1389. 

Qaswar, M., Hussain S.,  Renge Z. (2017) Zinc fertilisation increases grain zinc and 

reduces grain lead and cadmium concentrations more in zinc-biofortified than 

standard wheat cultivar Sci. Total Environ., 605 :454-460 

Ram, H., Rashid, A., Zhang, W., Duarte, A.P., Phattarakul, N., Simunji, S. et al. 

(2016). Biofortification of wheat, rice and common bean by applying foliar 

zinc fertilizer along with pesticides in seven countries. Plant and Soil, 403, 

389–401. 

Rangan, A. M., Samman, S. (2007). Zinc Intake and Its Dietary Sources: Results of 

the 2007 Australian National Children’s Nutrition and Physical Activity 

Survey, Nutrients (4): 611-624. 

Razvi, M.R., A.S. Halepyati, B.T. Pujari and B.G. Koppalkar, (2005). Influence of 

graded levels of fertilizers applied to green manure and wheat on biomass 

production of sun hemp and grain yield of wheat under irrigation. Karnataka 

J. Agric. Sci., 18: 4–7.  

Rehman, A., Farooq, M., Ahmad, N., Al-Sadi., Hashmi A. A., Nadeem, K., Ullah, F., 

Aman. (2018). Characterizing Bread Wheat Genotypes of Pakistani Origin for 



119 
 

Grain Zinc Biofortification Potential. Journal of the Science of Food and 

Agriculture. 98. 10.1002/jsfa.9010. 

Rengel, Z. (2015) Availability of Mn, Zn and Fe in the rhizosphere. Journal 

of Soil Science & Plant Nutrition 15, 397–409. 

Ristic, Z., Jenks, M. A. (2002). Leaf cuticle and water loss in maize lines differing in 

dehydration avoidance. J Plant Physiol 159:645–651. 

Sargent, J. A., Blankman, G. E. (1962). Studies on foliar penetration: I. factors 

controlling the entry of 2, 4 - dichlorophenoxyacetic acid. Journal of 

Experimental Botany 13: 348-368. 

Sattelmacher, B. (2001). The apoplast and its significance for plant mineral 

nutrition. New Phytol. 149, 167–192. 

Schilmiller, A .L., Last, R. L., Pichersky, E. (2008). Harnessing plant trichome 

biochemistry for the production of useful compounds. The Plant Journal 54: 

702-711 

Schlegel, T. K., Schönherr, J. (2001). Selective permeability of cuticles over stomata 

and trichomes to calcium chloride. Int Symp Foliar Nutr Perenn Fruit Plants 

594:91–96.  

Schlegel, T. K., Schönherr, J. (2002a). Selective permeability of cuticles over stomata 

and trichomes to calcium chloride. Acta Hort. (ISHS) 594: 91-96. 

Schlegel, T. K., Schönherr, J. (2002b). Stage of development affects penetration of 

calcium chloride into apple fruits. J Plant Nutr Soil Sci 165:738–745. 

Schlegel, T. K., Schonherr, J., Schreiber, L. (2006). Rates of foliar penetration of 

chelated Fe (III): Role of light, stomata, species, and leaf age. J Agr Food Chem 

54:6809-6813. 

Shewry, P.R., Pellny, T.K., Lovegrove, A. (2016). Is modern wheat bad for health? 

Nature Plants, 2, 1–3. 



120 
 

Shi, G. R., Cai, Q.S. (2009). Photosynthetic and anatomic responses of peanut leaves 

to zinc stress. Biol. Plant 53: 391-394. 

Signorell, C., Moretti, D., Zeder, C., et al. (2015). Evaluation of zinc bioavailability in 

humans from foliar zinc biofortified wheat and from intrinsic vs. extrinsic Zn 

labels in biofortified wheat. European J Nutrition & Food Safety; 5:863–4. 

Sinclair, S. A., Sherson, S. M., Jarvis, R., Camakaris, J. Cobbett, C. S. (2007). The use 

of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in 

Arabidopsis roots. New Phytologist 174: 39–45. 

Singh, B., Natesan, S., Singh, B., Usha, K. (2005). Improving zinc efficiency of cereals 

under zinc deficiency. Current Science,88(1), 36-44.  

Speer, M., Kaiser, W. M. (1991). Ion relations of symplastic and apoplastic space in 

leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant 

Physiol 97: 990–997. 

Šramková, Z., Gregová, E., and Šturdik, E. (2009). Chemical composition and 

nutritional quality of wheat grain. Acta Chim. Slovaca 2, 115–138. 

Stein, A. J. (2014). Rethinking the measurement of undernutrition in a broader health 

context: Should we look at possible causes or actual effects? Global Food 

Security 3(3):193-9  

Stein, A. J. (2010). Global impacts of human mineral malnutrition. Plant Soil 335, 

133–154.  

Stock, D., Holloway, P. J. (1993). Possible mechanisms for surfactant-induced foliar 

uptake of agrochemicals. Pesticide Science 38: 165-177. 

Stomph, T. J., Jiang, W., Van, D. P., Struik, P. C. (2014). Zinc allocation and re-

allocation in rice. Front Plant Sci. ; 5: 8. 

Singh. R., Timsina, B. N., Lind, Y., Cagno, O. C., Koen, J. S. (2018). Zinc and Iron 

Concentration as Affected by Nitrogen Fertilization and Their Localization in 

Wheat Grain. Frontiers in Plant Science. 9.  



121 
 

Tang, J. W., Zou, C. Q., He, Z. H., Shi, R. L., Ivan, O. M., Qu, Y. Y., et al. (2008). 

Mineral element distributions in milling fractions of Chinese wheats. J. Cereal 

Sci. 48, 821–828. 

Terrin, G., Canani, R.B., di Chiara, M., Pietravalle, A., Aleamdri, V., Conte, F. et al 

(2015). Zinc in early life: a key element in the fetus and preterm neonate. 

Nutrients, 7, 10427–10446. 

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. & Polasky, S. (2002). Review 

article: agricultural sustainability and intensive production practices. Nature, 

418, 671–677. 

Trethowan, R. M., Reynolds, M. P., Ortiz-Monasterio, I., Ortiz, R. (2007). The genetic 

basis of Green Revolution in wheat production. Plant Breed Rev. 28, 39-58. 

Turgeon, R. (2006). Phloem loading: how leaves gain their 

independence. Bioscience 56: 15–24.  

Velu, G., Ortiz-Monasterio, Ivan, Cakmak, I, Hao, Y. Singh, Ravi. (2014). 

Biofortification strategies to increase grain zinc and iron concentrations in 

wheat. Journal of Cereal Science. 59.  

Velu, G., Singh, R.P., (2012). Biofortified wheat to alleviate micronutrient 

malnutrition globally. In: Betancourt, A.I., Gaitan, H.F. (Eds.), Micronutrients: 

Sources Properties and Health Effects. Nova Science Publishers, New York, 

pp. 117–135. 

Velu, G., Singh, R.P., (2013). Biofortified Wheat: sustainable agricultural approach to 

mitigate micronutrient malnutrition. In: Abstract of the International Hidden 

Congress, March 6-9, Stuttgart, Germany. 

Velu, G., Singh, R.P., Huerta-Espino, J., Peña-Bautista, R.J., Arun, B., Mahendru 

Singh, A., Yaqub Mujahid, M., Sohu, V.S., Mavi, G.S., Crossa, J., Alvarado, 

G., Joshi, A.K., Pfeiffer, W.H. (2012) Performance of biofortified spring wheat 

genotypes in target environments for grain zinc and iron concentrations. Field 

Crops Res. 137, 261-267. 



122 
 

Vidyavati, S. D., Sneha. A, Katti, S.M. (2016). Zinc: The Importance in Human Life, 

International J. of Healthcare and Biomedical Research, 04(04): 18-20. 

Wang J, Mao H, Zhao H, Huang D, Wang Z (2012) Different increases in maize and 

wheat grain zinc concentrations caused by soil and foliar applications of zinc 

in Loess Plateau, China. Field Crops Research 135: 89–96. 

Waters, B. M., Chu, H-H., DiDonato, R. J., Roberts L. A., Eisley, R. B., Lahner B., 

Salt, D. E., Walker, E. L. (2006). Mutations in Arabidopsis Yellow Stripe-Like1 

and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading 

of metal ions in seeds. Plant Physiology 141(4), 1446-1458.  

Wang, Y. X., Specht, A., Hort, W. J. (2011). Stable isotope labelling and zinc 

distribution in grains studied by laser ablation ICP-MS in an ear culture system 

reveals zinc transport barrier durig grain filling in wheat. New phytologist 189: 

428-437. 

Waters, B.M., Uauy, C., Dubcovsky, J.  Grusak, M.A. (2009). Wheat (Triticum 

aestivum) proteins regulate the translocation of iron, zinc, and nitrogen 

compounds from vegetative tissues to grain. Journal of Experimental Botany, 

60, 4263–4274. 

Welch, R. M.; Graham, R. D. (2004). Breeding for micronutrients in staple food crops 

from a human nutrition perspective. J. Exp. Bot., 55, 353–364. 

White, P. J., Broadley, M. R. (2011). Physiological limits to zinc biofortification of 

edible crops.Front. Plant Sci.2:80. 

White, P. J., and Broadley, M. R. (2005). Biofortifying crops with essential mineral 

elements. Trends Plant Sci. 10, 586–593. 

White, P. J., and Broadley, M. R. (2009). Biofortification of crops with seven mineral 

elements often lacking in human diets – iron, zinc, copper, calcium, 

magnesium, selenium and iodine. New Phytol. 182, 49–84. 

Wu, C. Y., Lu, L. L., Yang, X. E., Feng, Y., Wei, Y., Hao, H. L., et al. (2010). Uptake, 

translocation, and remobilization of zinc absorbed at different growth stages 



123 
 

by rice genotypes of different Zn densities. J. Agric. Food Chem.58: 6767–

6773. 

Wirén, N., Klair, S., Bansal, S., Briat, J. F., Khodr, H., Shioiri, T., Leigh, R. A., & 

Hider, R. C. (1999). Nicotianamine chelates both Fe-III and Fe-II. Implications 

for metal transport in plants. Plant Physiology 119(3), 1107–1114.  

Wuehler, S. E. Peerson, J. M. Brown, K. H. (2005). Use of National Food Balance 

Data to Estimate the Adequacy of Zinc in National Food Supplies: 

Methodology and Regional Estimates. Public Health Nutr. 8, 812–819. 

Xia, H., Xue, Y., Liu, D., Kong, W., Xue, Y., Tang, Y., Li, J., Li, D., … Mei, P. (2018). 

Rational Application of Fertilizer Nitrogen to Soil in Combination with Foliar 

Zn Spraying Improved Zn Nutritional Quality of Wheat Grains. Frontiers in 

plant science 9, 677.  

Xia. H, Xue, Y., Liu, D., Kong, W., Xue Y., Tang Y., Li J, Li, D., Mei, P. (2018). 

Rational Application of Fertilizer Nitrogen to Soil in Combination with Foliar 

Zn Spraying Improved Zn Nutritional Quality of Wheat Grains, Front. Plant 

Sci., 24.  

Xue, Y. F., Yue, S. C., Zhang, Y. Q., Cui, Z. L., Chen, X. P., Yang, F. C., et al. (2012). 

Grain and shoot zinc accumulation in winter wheat affected by nitrogen 

management. Plant Soil 361, 153–163.  

Yilmaz, O., Kazar, G. A., Cakmak. I., Ozturk, L. (2017). Differences in grain zinc are 

not correlated with root uptake and grain translocation of zinc in wild emmer 

and durum wheat genotypes. Plant Soil 411:69–79. 

Zhang, Y.Q., Sun, Y.X., Ye, Y.L., Karim, M. R., Xue, Y.F., Yan P., Meng Q.F., Cui, 

Z. L., Cakmak, I., Zhang F.S., et al. (2012). Zinc biofortification of wheat 

through fertilizer applications in different locations of China. Field Crops 

Res.125:1–7 

Zhang, Y. Q., Sun, Y. X., Ye, Y. L., Rezaul, K. M., Xue, Y. F., Yan, P., et al. (2012b). 

Zinc biofortification of wheat through fertilizer applications in different 

locations of China. Field Crops Res. 125, 1–7. 



124 
 

Zhao, W., Yonglin, S., Kjelgren, R., Liu, X. (2015). Response of stomatal density and 

bound gas exchange in leaves of maize to soil water deficit. Acta Physiol Plant 

37:1704. 

Zhao, A. Q., Tian, X. H., Cao, Y. X., Lu, X. C., Liu, T. (2014). Comparison of soil and 

foliar zinc application for enhancing grain zinc content of wheat when grown 

on potentially zinc-deficient calcareous soils. J. Sci. Food Agric. 94, 2016–

2022.  

Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P. et al. 

(2009). Variation in mineral micronutrient concentrations in grain of wheat 

lines of diverse origin. Journal of Cereal Science, 49, 290–295. 

Zheng, Y.P., Xu M., Hou R.X., Shen R.C., Qiu S. & Ouyang Z. (2013). Effects of 

experimental warming on stomatal traits in leaves of maize (Zea may L.). 

Ecology and Evolution 3, 3095–3111. 

Zhou, C.Q., Zhang, Y.Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R.Z. et al. (2012). 

Biofortification of wheat with zinc through zinc fertilization in seven countries. 

Plant and Soil, 361, 119–130. 

Zou, C., Zhang, Y., Rashid, A., Ram, H., Savasli, E., Arisoy, R., et al. (2012). 

Biofortification of wheat with zinc through zinc fertilization in seven countries. 

Plant Soil; 361(1-2):119-30. 


