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Abstract. We continue the study in [2] in the setting of weighted
pluripotential theory arising from polynomials associated to a con-
vex body P in (R+)d. Our goal is to establish a large deviation
principle in this setting specifying the rate function in terms of
P−pluripotential-theoretic notions. As an important preliminary
step, we first give an existence proof for the solution of a Monge-
Ampère equation in an appropriate finite energy class. This is
achieved using a variational approach.
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1. Introduction

As in [2], we fix a convex body P ⊂ (R+)d and we define the loga-
rithmic indicator function

(1.1) HP (z) := sup
J∈P

log |zJ | := sup
(j1,...,jd)∈P

log[|z1|j1 · · · |zd|jd ].
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We assume throughout that

(1.2) Σ ⊂ kP for some k ∈ Z+

where

Σ := {(x1, ..., xd) ∈ Rd : 0 ≤ xi ≤ 1,
d∑
j=1

xi ≤ 1}.

Then

HP (z) ≥ 1

k
max
j=1,...,d

log+ |zj|

where log+ |zj| = max[0, log |zj|]. We define

LP = LP (Cd) := {u ∈ PSH(Cd) : u(z)−HP (z) = O(1), |z| → ∞},
and

LP,+ = LP,+(Cd) = {u ∈ LP (Cd) : u(z) ≥ HP (z) + Cu}.
These are generalizations of the classical Lelong classes when P = Σ.
We define the finite-dimensional polynomial spaces

Poly(nP ) := {p(z) =
∑

J∈nP∩(Z+)d

cJz
J : cJ ∈ C}

for n = 1, 2, ... where zJ = zj11 · · · z
jd
d for J = (j1, ..., jd). For p ∈

Poly(nP ), n ≥ 1 we have 1
n

log |p| ∈ LP ; also each u ∈ LP,+(Cd) is

locally bounded in Cd. For P = Σ, we write Poly(nP ) = Pn.
Given a compact set K ⊂ Cd, one can define various pluripotential-

theoretic notions associated to K related to LP and the polynomial
spaces Poly(nP ). Our goal in this paper is to prove some probabilistic
properties of random point processes on K utilizing these notions and
their weighted counterparts. We require an existence proof for the solu-
tion of a Monge-Ampère equation in an appropriate finite energy class;
this is done in Theorem 2.8 using a variational approach and is of in-
terest on its own. The third section recalls appropriate definitions and
properties in P−pluripotential theory, mostly following [2]. As in [2],
our spaces Poly(nP ) do not necessarily arise as holomorphic sections of
tensor powers of a line bundle. Subsection 3.3 includes a standard ele-
mentary probabilistic result on almost sure convergence of probability
measures associated to random arrays on K to a P−pluripotential-
theoretic equilibrium measure. Section 4 sets up the machinery for the
more subtle large deviation principle (LDP), Theorem 5.1, for which
we provide two proofs (analogous to those in [9]). As in [9], the first
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proof was inspired by [6] and the second proof was utilized by Berman
in [5]. The reader will find far-reaching applications and interpretations
of LDP’s in the appropriate settings of holomorphic line bundles over a
compact, complex manifold in [5]. In particular, the case where P is a
convex integral polytope (vertices in Zd) which is the moment polytope
for a toric manifold (P is Delzant) is covered in [5].

2. Monge-Ampère and P−pluripotential theory

2.1. Monge-Ampère equations with prescribed singularity. In
this section, (X,ω) is a compact Kähler manifold of dimension d.

2.1.1. Quasi-plurisubharmonic functions. A function u : X → R ∪
{−∞} is called quasi-plurisubharmonic (quasi-psh) if locally u = ρ+ϕ,
where ϕ is plurisubharmonic and ρ is smooth.

We let PSH(X,ω) denote the set of ω-psh functions, i.e. quasi-psh
functions u such that ωu := ω + ddcu ≥ 0 in the sense of currents on
X.

Given u, v ∈ PSH(X,ω) we say that u is more singular than v (and
we write u ≺ v) if u ≤ v+C on X, for some constant C. We say that u
has the same singularity as v (and we write u ' v) if u ≺ v and v ≺ u.

Given φ ∈ PSH(X,ω), we let PSH(X,ω, φ) denote the set of ω-psh
functions u which are more singular than φ.

2.1.2. Nonpluripolar Monge-Ampère measure. For bounded ω-psh func-
tions u1, ..., ud, the Monge-Ampère product (ω+ddcu1)∧...∧(ω+ddcud)
is well-defined as a positive Radon measure on X (see [14], [3]). For
general ω-psh functions u1, ..., ud, the sequence of positive measures

1∩{uj>−k}(ω + ddc max(u1,−k)) ∧ ... ∧ (ω + ddc max(ud,−k))

is non-decreasing in k and the limiting measure, which is called the
nonpluripolar product of ωu1 , ..., ωud , is denoted by

ωu1 ∧ ... ∧ ωud .

When u1 = ... = ud = u we write ωdu := ωu ∧ ... ∧ ωu. Note that by
definition

∫
X
ωu1 ∧ ... ∧ ωud ≤

∫
X
ωd.

It was proved in [20, Theorem 1.2] and [11, Theorem 1.1] that the
total mass of nonpluripolar Monge-Ampère products is decreasing with
respect to singularity type. More precisely,



4 T. BAYRAKTAR, T. BLOOM, N. LEVENBERG, AND C.H. LU

Theorem 2.1. Let ω1, ..., ωd be Kähler forms on X. If uj ≤ vj, j =
1, ..., d, are ωj-psh functions then∫
X

(ω1 + ddcu1)∧ ...∧ (ωd + ddcud) ≤
∫
X

(ω1 + ddcv1)∧ ...∧ (ωd + ddcvd).

As noted above, for a general ω-psh function u we have the estimate∫
X
ωdu ≤

∫
X
ωd. Following [15] we let E(X,ω) denote the set of all ω-psh

functions with maximal total mass, i.e.

E(X,ω) :=

{
u ∈ PSH(X,ω) :

∫
X

ωdu =

∫
X

ωd
}
.

Given φ ∈ PSH(X,ω), we define

E(X,ω, φ) :=

{
u ∈ PSH(X,ω, φ) :

∫
X

ωdu =

∫
X

ωdφ

}
.

Proposition 2.2. Let φ ∈ PSH(X,ω). The following are equivalent :

(1) E(X,ω, φ) ∩ E(X,ω) 6= ∅;
(2) φ ∈ E(X,ω);
(3) E(X,ω, φ) ⊂ E(X,ω).

Proof. We first prove (1) =⇒ (2). If u ∈ E(X,ω, φ) ∩ E(X,ω) then∫
X
ωdu =

∫
X
ωd. On the other hand, since u is more singular than φ,

Theorem 2.1 ensures that∫
X

ωd =

∫
X

ωdu ≤
∫
X

ωdφ ≤
∫
X

ωd,

hence equality holds, proving that φ ∈ E(X,ω).
Now we prove (2) =⇒ (3). If φ ∈ E(X,ω) and u ∈ E(X,ω, φ) then∫

X

ωdu =

∫
X

ωdφ =

∫
X

ωd,

hence u ∈ E(X,ω).
Finally (3) =⇒ (1) is obvious. �

Proposition 2.3. Assume that φj ∈ PSH(X,ωj), j = 1, ..., d with∫
X

(ωj + ddcφj)
d > 0. If uj ∈ E(X,ωj, φj), j = 1, ..., d, then∫

X

(ω1 +ddcu1)∧ ...∧ (ωd +ddcud) =

∫
X

(ω1 +ddcφ1)∧ ...∧ (ωd +ddcφd).

Proof. Theorem 2.1 gives one inequality. The other one follows from
[11, Proposition 3.1 and Theorem 3.14]. �
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2.1.3. Model potentials. For a function f : X → R ∪ {−∞}, we let f ∗

denote its uppersemicontinuous (usc) regularization, i.e.

f ∗(x) := lim sup
X3y→x

f(y).

Given φ ∈ PSH(X,ω), following J. Ross and D. Witt Nyström [18],
we define

Pω[φ] :=

(
lim
t→+∞

Pω(min(φ+ t, 0))

)∗
.

Here, for a function f , Pω(f) is defined as

Pω(f) := (x 7→ sup{u(x) : u ∈ PSH(X,ω), u ≤ f})∗ .

It was shown in [11, Theorem 3.8] that the nonpluripolar Monge-Ampère
measure of Pω[φ] is dominated by Lebesgue measure:

(2.1) (ω + ddcPω[φ])d ≤ 1{Pω [φ]=0}ω
d ≤ ωd.

This fact plays a crucial role in solving the complex Monge-Ampère
equation. For the reader’s convenience, we note that in the notation of
[11] (on the left)

P[ω,φ](0) = Pω[φ].

Definition 2.4. A function φ ∈ PSH(X,ω) is called a model potential
if
∫
X
ωdφ > 0 and Pω[φ] = φ. A function u ∈ PSH(X,ω) has model

type singularity if u has the same singularity as Pω[u]; i.e., u−Pω[u] is
bounded on X.

There are plenty of model potentials. If ϕ ∈ PSH(X,ω) with∫
X
ωdϕ > 0 then, by [11, Theorem 3.12], Pω[ϕ] is a model potential.

In particular, if
∫
X
ωdϕ =

∫
X
ωd (i.e. ϕ ∈ E(X,ω)) then Pω[ϕ] = 0.

We will use the following property of model potentials proved in [11,
Theorem 3.12]: if φ is a model potential then

(2.2) u ∈ PSH(X,ω, φ) =⇒ u− sup
X
u ≤ φ.

In the sequel we always assume that φ has model type singularity
and small unbounded locus; i.e., φ is locally bounded outside a closed
complete pluripolar set, allowing us to use the variational approach of
[7] as explained in [11].
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2.1.4. The variational approach. We call a measure which puts no mass
on pluripolar sets a nonpluripolar measure. For a positive nonpluripolar
measure µ on X we let Lµ denote the following linear functional on
PSH(X,ω, φ):

Lµ(u) :=

∫
X

(u− φ)dµ.

For u ∈ PSH(X,ω) with u ' φ, we define the Monge-Ampère energy

(2.3) Eφ(u) :=
1

(d+ 1)

d∑
k=0

∫
X

(u− φ)ωku ∧ ωd−kφ .

It was shown in [11, Theorem 4.10] (by adapting the arguments of [7])
that Eφ is non-decreasing and concave along affine curves, giving rise
to its trivial extension to PSH(X,ω, φ).

We define

(2.4) E1(X,ω, φ) := {u ∈ PSH(X,ω, φ) : Eφ(u) > −∞}.
The following criterion was proved in [11, Theorem 4.13]:

Proposition 2.5. Let u ∈ PSH(X,ω, φ). Then u ∈ E1(X,ω, φ) iff
u ∈ E(X,ω, φ) and

∫
X

(u− φ)ωdu > −∞.

Lemma 2.6. If E is pluripolar then there exists u ∈ E1(X,ω, φ) such
that E ⊂ {u = −∞}.

Proof. Without loss of generality we can assume that φ is a model
potential. Then (2.1) gives

∫
X
|φ|ωdφ = 0. It follows from [7, Corollary

2.11] that there exists v ∈ E1(X,ω, 0), v ≤ 0, such that E ⊂ {v =
−∞}. Set u := Pω(min(v, φ)). Then E ⊂ {u = −∞} and we claim
that u ∈ E1(X,ω, φ). For each j ∈ N we set vj := max(v,−j) and
uj := Pω(min(vj, φ)). Then uj decreases to u and uj ' φ. Using [11,
Theorem 4.10 and Lemma 4.15] it suffices to check that {

∫
X
|uj−φ|ωduj}

is uniformly bounded. It follows from [11, Lemma 3.7] that∫
X

|uj − φ|ωduj ≤
∫
X

|uj|ωduj ≤
∫
X

|vj|ωdvj +

∫
X

|φ|ωdφ

=

∫
X

|vj|ωdvj .

The fact that
∫
X
|vj|ωdvj is uniformly bounded follows from [15, Corol-

lary 2.4] since v ∈ E1(X,ω, 0). This concludes the proof. �
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Lemma 2.7. Assume that E1(X,ω, φ) ⊂ L1(X,µ). Then, for each
C > 0, Lµ is bounded on

EC := {u ∈ PSH(X,ω, φ) : sup
X
u ≤ 0 and Eφ(u) ≥ −C}.

Proof. By concavity of Eφ the set EC is convex. We now show that EC
is compact in the L1(X,ωd) topology. Let {uj} be a sequence in EC .
We claim that {supX uj} is bounded. Indeed, by [11, Theorem 4.10]

Eφ(uj) ≤
∫
X

(uj − φ)ωdφ

≤ (sup
X
uj)

∫
X

ωdφ +

∫
X

(uj − sup
X
uj − φ)ωdφ.

It follows from (2.2) that uj − supX uj ≤ Pω[φ] ≤ φ + C0, where C0 is
a constant. The boundedness of {supX uj} then follows from that of
{Eφ(uj)} and the above estimate. This proves the claim.

A subsequence of {uj}, still denoted by {uj}, converges in L1(X,ωd)
to u ∈ PSH(X,ω) with supX u ≤ 0. Since uj − supX uj ≤ φ + C0, we
have u − supX u ≤ φ + C0. This proves that u ∈ PSH(X,ω, φ). The
upper semicontinuity of Eφ (see [11, Proposition 4.19]) ensures that
Eφ(u) ≥ −C, hence u ∈ EC . This proves that EC is compact in the
L1(X,ωd) topology.

The result then follows from [7, Proposition 3.4]. �

The goal of this section is to prove the following result:

Theorem 2.8. Assume that µ is a nonpluripolar positive measure on
X such that µ(X) =

∫
X
ωdφ. The following are equivalent

(1) µ has finite energy, i.e., Lµ is finite on E1(X,ω, φ);
(2) there exists u ∈ E1(X,ω, φ) such that ωdu = µ;
(3) there exists a unique u ∈ E1(X,ω, φ) such that

Fµ(u) = max
v∈E1(X,ω,φ)

Fµ(v) < +∞

where Fµ = Eφ − Lµ.

Remark 2.9. It was shown in [11, Theorem 4.28] that a unique (nor-
malized) solution u in E(X,ω, φ) always exists (without the finite en-
ergy assumption on µ). But that proof does not give a solution in
E1(X,ω, φ). Below, we will follow the proof of [11, Theorem 4.28] and
use the finite energy condition, E1(X,ω, φ) ⊂ L1(X,µ), to prove that
u belongs to E1(X,ω, φ).
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Lemma 2.10. Assume that E1(X,ω, φ) ⊂ L1(X,µ). Then there exists
a positive constant C such that, for all u ∈ E1(X,ω, φ) with supX u = 0,

(2.5) Lµ(u) ≥ −C(1 + |Eφ(u)|1/2).

The proof below uses ideas in [15, 7].

Proof. Since φ has model type singularity, it follows from [11, Theorem
4.10] that Eφ − EPω [φ] is bounded. Without loss of generality we can
assume in this proof that φ = Pω[φ]. Fix u ∈ E1(X,ω, φ) such that
supX u = 0 and |Eφ(u)| > 1. Then, by [11, Theorem 3.12], u ≤ φ. Set
a = |Eφ(u)|−1/2 ∈ (0, 1), and v := au + (1 − a)φ ∈ E1(X,ω, φ). We
estimate Eφ(v) as follows

(d+ 1)Eφ(v) = a
d∑

k=0

∫
X

(u− φ)ωkv ∧ ωd−kφ

= a
d∑

k=0

∫
X

(u− φ)(aωu + (1− a)ωφ)k ∧ ωd−kφ

≥ C(d)a

∫
X

(u− φ)ωdφ + C(d)a2

d∑
k=0

∫
X

(u− φ)ωku ∧ ωdφ,

where C(d) is a positive constant which only depends on d. It follows
from φ = Pω[φ] and [11, Theorem 3.8] that ωdφ ≤ ωd (recall (2.1)). This
together with [14, Proposition 2.7] give∫

X

(u− φ)ωdφ ≥ −C1,

for a uniform constant C1. Therefore,

(d+ 1)Eφ(v) ≥ −C1C(d)a+ C2a
2Eφ(u) ≥ −C3.

It thus follows from Lemma 2.7 that Lµ(v) ≥ −C4 for a uniform con-
stant C4 > 0. Thus ∫

X

(u− φ)dµ ≥ −C4/a,

which gives (2.5). �

We are now ready to prove Theorem 2.8.
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Proof of Theorem 2.8. Without loss of generality we can assume that
φ is a model potential. We first prove (1) =⇒ (2). We write µ = fν,
where ν is a nonpluripolar positive measure satisfying, for all Borel
subsets B ⊂ X,

ν(B) ≤ ACapφ(B),

for some positive constant A, and 0 ≤ f ∈ L1(X, ν) (cf., [11, Lemma
4.26]). Here Capφ is defined as

Capφ(B) := sup

{∫
B

ωdu : u ∈ PSH(X,ω), φ− 1 ≤ u ≤ φ

}
.

Set, for k ∈ N, µk := ck min(f, k)ν where ck > 0 is chosen so that
µk(X) =

∫
X
ωdφ; this is needed in order to solve the Monge-Ampère

equation in the class E1(X,ω, φ). For k large enough, 1 ≤ ck ≤ 2 and
ck → 1 as k → +∞. It follows from [11, Theorem 4.25] that there exists
uj ∈ E1(X,ω, φ), supX uj = 0, such that ωduj = µj; by [11, Theorem

3.12], uj ≤ φ. A subsequence of {uj} which, by abuse of notation, will
be denoted by {uj}, converges in L1(X,µ) to u ∈ PSH(X,ω) with
u ≤ φ. Define vk := (supj≥k uj)

∗. Then vk ↘ u and supX vk = 0. It
follows from (2.5) and [11, Theorem 4.10] that

|Eφ(uj)| ≤
∫
X

|uj − φ|ωduj ≤ 2

∫
X

|uj − φ|dµ

≤ 2C(1 + |Eφ(uj)|1/2).

Therefore {|Eφ(uj)|} is bounded, hence so is {|Eφ(vj)|} since Eφ is non-
decreasing. It then follows from [11, Lemma 4.15] that u ∈ E1(X,ω, φ).

Now, repeating the arguments of [11, Theorem 4.28] we can show
that ωdu = µ, finishing the proof of (1) =⇒ (2).

We next prove (2) =⇒ (3). Assume that µ = ωdu for some u ∈
E1(X,ω, φ). For all v ∈ E1(X,ω, φ), by [11, Theorem 4.10] and Propo-
sition 2.5 we have

Lµ(v) =

∫
X

(v − φ)ωdu

=

∫
X

(v − u)ωdu +

∫
X

(u− φ)ωdu

≥ Eφ(v)− Eφ(u) +

∫
X

(u− φ)ωdu > −∞.
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Hence Lµ is finite on E1(X,ω, φ). Now, for all v ∈ E1(X,ω, φ), by [11,
Theorem 4.10] we have

Fµ(v)− Fµ(u) = Eφ(v)− Eφ(u)−
∫
X

(v − u)ωdu ≤ 0.

This gives (3). Finally, (3) =⇒ (1) is obvious. �

2.2. Monge-Ampère equations on Cd with prescribed growth.
As in the introduction we let P be a convex body contained in (R+)d

and fix r > 0 such that P ⊂ rΣ. We assume (1.2); i.e., Σ ⊂ kP for
some k ∈ Z+. This ensures that HP in (1.1) is locally bounded on Cd

(and of course HP ∈ L+
P (Cd)). Let u ∈ LP (Cd) and define

(2.6) ũ(z) := u(z)− r

2
log(1 + |z|2), z ∈ Cd.

Consider the projective space Pd equipped with the Kähler metric ω :=
rωFS, where

ωFS = ddc
1

2
log(1 + |z|2)

on Cd. Then ũ is bounded from above on Cd. It thus can be extended
to Pd as a function in PSH(Pd, ω).

For a plurisubharmonic function u on Cd, we let (ddcu)d denotes its
nonpluripolar Monge-Ampère measure; i.e., (ddcu)d is the increasing
limit of the sequence of measures 1{u>−k}(dd

c max(u,−k))d. Then

ωdũ = (ω + ddcũ)d = (ddcu)d on Cd.

If u ∈ LP (Cd) then∫
Cd

(ddcu)d ≤
∫
Cd

(ddcHP )d = d!V ol(P ) =: γd = γd(P )

(cf., equation (2.4) in [2]). We define

EP (Cd) :=

{
u ∈ LP (Cd) :

∫
Cd

(ddcu)d = γd

}
.

By the construction in (2.6) we have that H̃P ∈ PSH(Pd, ω). We define

Φ̃P := Pω[H̃P ].

The key point here, which follows from [12, Theorem 7.2], is that H̃P

has model type singularity (recall Definition 2.4) and hence the same
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singularity as Φ̃P . Defining ΦP on Cd using (2.6); i.e., for z ∈ Cd,

ΦP (z) = Φ̃P (z) +
r

2
log(1 + |z|2),

we thus have ΦP ∈ LP,+(Cd). The advantage of using ΦP is that,
by (2.1), (ddcΦP )d ≤ ωd on Cd. Note that LP,+(Cd) ⊂ EP (Cd). For
u, v ∈ L+

P (Cd) we define

(2.7) Ev(u) :=
1

(d+ 1)

d∑
j=0

∫
Cd

(u− v)(ddcu)j ∧ (ddcv)d−j.

The corresponding global energy (see (2.3)) is defined as

Eṽ(ũ) :=
1

(d+ 1)

d∑
j=0

∫
Pd

(ũ− ṽ)(ω + ddcũ)j ∧ (ω + ddcṽ)d−j.

Then Ev is non-decreasing and concave along affine curves in LP,+(Cd).
We extend Ev to LP (Cd) in an obvious way. Note that Ev may take
the value −∞. We define

E1
P (Cd) := {u ∈ LP (Cd) : EHP (u) > −∞}.

We observe that in the above definition we can replace EHP by EΦP ,
since for u ∈ LP,+(Cd), by the cocycle property (cf. Proposition 3.3
[2]),

EHP (u)− EHP (ΦP ) = EΦP (u).

We thus have the following important identification (see (2.4)):

(2.8) u ∈ E1
P (Cd)⇐⇒ ũ ∈ E1(Pd, ω, Φ̃P ).

We then have the following local version of Proposition 2.5:

Proposition 2.11. Let u ∈ LP (Cd). Then u ∈ E1
P (Cd) iff u ∈ EP (Cd)

and
∫
Cd(u − HP )(ddcu)d > −∞. In particular, if supp(ddcu)d is com-

pact, u ∈ E1
P (Cd) iff

∫
Cd(dd

cu)d = γd and
∫
Cd u(ddcu)d > −∞.

Proof. Since H̃P ' Φ̃P ,∫
Pd

(ũ− H̃P )ωdũ > −∞ iff

∫
Pd

(ũ− Φ̃P )ωdũ > −∞

where ũ ∈ PSH(Pd, ω) and u are related by (2.6). Moreover, ΦP ∈
LP,+(Cd) implies u ≤ ΦP + c so that ũ ∈ PSH(Pd, ω, Φ̃P ). But∫

Pd
(ũ− H̃P )ωdũ =

∫
Cd

(u−HP )(ddcu)d
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and the result follows from (2.8) by applying Proposition 2.5 to ũ.
For the last statement, note that for general u ∈ LP (Cd) we may
have

∫
Cd HP (ddcu)d = +∞, but if (ddcu)d has compact support then∫

Cd HP (ddcu)d is finite. �

Note that Theorem 2.1 and Proposition 2.3 give the following result:

Theorem 2.12. Let u1, ..., ud be functions in EP (Cd). Then∫
Cd
ddcu1 ∧ ... ∧ ddcud = γd.

For u1, ..., un ∈ LP,+(Cd) Theorem 2.12 was proved in [1, Proposition
2.7].

Having the correspondence (2.8) we can state a local version of The-
orem 2.8; this will be used in the sequel. Let MP (Cd) denote the set
of all positive Borel measures µ on Cd with µ(Cd) = d!V ol(P ) = γd.

Theorem 2.13. Assume that µ ∈MP (Cd) is a positive nonpluripolar
Borel measure. The following are equivalent

(1) E1
P (Cd) ⊂ L1(Cd, µ);

(2) there exists u ∈ E1
P (Cd) such that (ddcu)d = µ;

(3) there exists u ∈ E1
P (Cd) such that

Fµ(u) = max
v∈E1P (Cd)

Fµ(v) < +∞.

A priori the functional Fµ is defined for u ∈ E1
P (Cd) by

Fµ,ΦP (u) := EΦP (u)−
∫
Cd

(u− ΦP )dµ.

However, using this notation, since

Fµ,ΦP (u)−Fµ,HP (u) = Fµ,ΦP (HP ),

in statement (3) of Theorem 2.13 we can take either of the two defini-
tions Fµ,ΦP or Fµ,HP for Fµ.

Remark 2.14. If µ has compact support in Cd then
∫
Cd ΦPdµ and∫

Cd HPdµ are finite. Therefore, the functional Fµ can be replaced by

u 7→ EHP (u)−
∫
Cd
udµ.
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Using the remark, for µ ∈ MP (Cd) with compact support, it is
natural to define the Legendre-type transform of EHP :

(2.9) E∗(µ) := sup
u∈E1P (Cd)

[EHP (u)−
∫
Cd
udµ].

This functional, which will appear in the rate function for our LDP, will
be given a more concrete interpretation using P−pluripotential theory
in section 4; cf., equation (4.18).

Finally, for future use, we record the following consequence of Lemma
2.6 and the correspondence (2.8).

Lemma 2.15. If E ⊂ Cd is pluripolar then there exists u ∈ E1
P (Cd)

such that E ⊂ {u = −∞}.

3. P−pluripotential theory notions

Given E ⊂ Cd, the P−extremal function of E is

V ∗P,E(z) := lim sup
ζ→z

VP,E(ζ)

where

VP,E(z) := sup{u(z) : u ∈ LP (Cd), u ≤ 0 on E}.
For K ⊂ Cd compact, w : K → R+ is an admissible weight function on
K if w ≥ 0 is an uppersemicontinuous function with {z ∈ K : w(z) > 0}
nonpluripolar. Setting Q := − logw, we write Q ∈ A(K) and define
the weighted P−extremal function

V ∗P,K,Q(z) := lim sup
ζ→z

VP,K,Q(ζ)

where

VP,K,Q(z) := sup{u(z) : u ∈ LP (Cd), u ≤ Q on K}.

If Q = 0 we write VP,K,Q = VP,K , consistent with the previous notation.
For P = Σ,

VΣ,K,Q(z) = VK,Q(z) := sup{u(z) : u ∈ L(Cd), u ≤ Q on K}

is the usual weighed extremal function as in Appendix B of [19].
We write (omitting the dependence on P )

µK,Q := (ddcV ∗P,K,Q)d and µK := (ddcV ∗P,K)d



14 T. BAYRAKTAR, T. BLOOM, N. LEVENBERG, AND C.H. LU

for the Monge-Ampère measures of V ∗P,K,Q and V ∗P,K (the latter if K is
not pluripolar). Proposition 2.5 of [2] states that

supp(µK,Q) ⊂ {z ∈ K : V ∗P,K,Q(z) ≥ Q(z)}
and V ∗P,K,Q = Q q.e. on supp(µK,Q), i.e., off of a pluripolar set.

3.1. Energy. We recall some results and definitions from [2]. For
u, v ∈ LP,+(Cd), we define the mutual energy

E(u, v) :=

∫
Cd

(u− v)
d∑
j=0

(ddcu)j ∧ (ddcv)d−j.

For simplicity, when v = HP , we denote the associated (normalized)
energy functional by E:

E(u) := EHP (u) =
1

d+ 1

d∑
j=0

∫
Cd

(u−HP )ddcuj ∧ (ddcHP )d−j

(recall (2.7)).
For u, u′, v ∈ LP,+(Cd), and for 0 ≤ t ≤ 1, we define

f(t) := E(u+ t(u′ − u), v),

From Proposition 3.1 in [2], f ′(t) exists for 0 ≤ t ≤ 1 and

f ′(t) = (d+ 1)

∫
Cd

(u′ − u)(ddc(u+ t(u′ − u)))d

Hence, taking v = HP , we have, for F (t) := E(u+ t(u′ − u)), that

F ′(t) =

∫
Cd

(u′ − u)(ddc(u+ t(u′ − u)))d.

Thus F ′(0) =
∫
Cd(u

′ − u)(ddcu)d and we write

(3.1) < E ′(u), u′ − u >:=

∫
(u′ − u)(ddcu)d.

We need some applications of a global domination principle. The fol-
lowing version, sufficient for our purposes, follows from [11], Corollary
3.10 (see also Corollary A.2 of [8]).

Proposition 3.1. Let u ∈ LP (Cd) and v ∈ EP (Cd) with u ≤ v a.e.
(ddcv)d. Then u ≤ v in Cd.

This will be used to prove an approximation result, Proposition 3.3,
which itself will be essential in the sequel. First we need a lemma.
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Lemma 3.2. Assume that ϕ ≤ u, v ≤ HP are functions in E1
P (Cd).

Then for all t > 0,∫
{u≤HP−2t}

(HP − u)(ddcv)d ≤ 2d+1

∫
{ϕ≤HP−t}

(HP − ϕ)(ddcϕ)d.

In particular, the left hand side converges to 0 as t → +∞ uniformly
in u, v.

Proof. For s > 0, we have the following inclusions of sets:

(u ≤ HP − 2s) ⊂
(
ϕ ≤ v +HP

2
− s
)
⊂ (ϕ ≤ HP − s).

We first note that the left hand side in the lemma is equal to

(3.2)

∫
{u≤HP−2t}

(HP − u)(ddcv)d

= 2t

∫
{u≤HP−2t}

(ddcv)d +

∫ ∞
2t

(∫
{u≤HP−s}

(ddcv)d
)
ds.

We claim that, for all s > 0,

(3.3)

∫
{u≤HP−2s}

(ddcv)d ≤ 2d
∫
{ϕ≤HP−s}

(ddcϕ)d.

Indeed, the comparison principle ([11, Corollary 3.6]) and the inclusions
of sets above give∫
{u≤HP−2s}

(ddcv)d ≤
∫
{ϕ≤ v+HP

2
−s}

(ddcv)d ≤ 2d
∫
{ϕ≤ v+HP

2
−s}

(
ddc

v +HP

2

)d
≤ 2d

∫
{ϕ≤ v+HP

2
−s}

(ddcϕ)d ≤ 2d
∫
{ϕ≤HP−s}

(ddcϕ)d.

The claim is proved. Using (3.3) and (3.2) we obtain∫
{u≤HP−2t}

(HP − u)(ddcv)d

≤ 2d+1t

∫
{ϕ≤HP−t}

(ddcϕ)d + 2d+1

∫ +∞

t

(∫
{ϕ≤HP−s}

(ddcϕ)d
)
ds

= 2d+1

∫
{ϕ≤HP−t}

(HP − ϕ)(ddcϕ)d.

�
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Proposition 3.3. Let u ∈ E1
P (Cd) with (ddcu)d = µ having support in

a nonpluripolar compact set K so that
∫
K
udµ > −∞ from Proposition

2.11. Let {Qj} be a sequence of continuous functions on K decreasing
to u on K. Then uj := V ∗P,K,Qj ↓ u on Cd and µj := (ddcuj)

d is

supported in K. In particular, µj → µ = (ddcu)d weak-*. Moreover,

(3.4) lim
j→∞

∫
K

Qjdµj = lim
j→∞

∫
K

Qjdµ =

∫
K

udµ > −∞.

Proof. We can assume {Qj} are defined and decreasing to u on the
closure of a bounded open neighborhood Ω of K. By adding a negative
constant we can assume that Q1 ≤ 0 on Ω. Since {Qj} is decreasing,
so is the sequence {uj}. Moreover, by [4, Proposition 5.1] uj ≤ Qj on
K \ Ej where Ej is pluripolar. But u is a competitor in the definition
of VP,K,Qj so that u ≤ uj on Cd. Thus ũ := limj→∞ uj ≥ u everywhere

and ũ ≤ u on K \E, where E := ∪jEj is a pluripolar set. Since (ddcu)d

put no mass on pluripolar sets,∫
{u<ũ}

(ddcu)d ≤
∫
E∪(Cd\K)

(ddcu)d = 0.

It thus follows from Proposition 3.1 that ũ ≤ u, hence ũ = u on Cd.
The second equality in (3.4) follows from the monotone convergence

theorem. It remains to prove that

lim
j→∞

∫
K

(−Qj)dµj =

∫
K

(−u)dµ.

For each k fixed and j ≥ k we have∫
K

(−Qj)dµj ≥
∫
K

(−Qk)dµj =

∫
Ω

(−Qk)dµj,

hence lim infj→∞
∫
K

(−Qj)dµj ≥
∫
K

(−Qk)dµ since Ω is open and µj, µ
are supported on K. Letting k → +∞ we arrive at

lim inf
j→∞

∫
K

(−Qj)dµj ≥
∫
K

(−u)dµ.

It remains to prove that

lim sup
j→∞

∫
K

(−Qj)dµj ≤
∫
K

(−u)dµ.

The sequence {uj} is not necessarily uniformly bounded below on K.
However, using the facts that Qj ≥ u and HP is continuous in Cd, it
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suffices to prove that

(3.5) lim sup
j→∞

∫
K

(HP − u)(ddcuj)
d ≤

∫
K

(HP − u)(ddcu)d.

To verify (3.5), we use Lemma 3.2.
By adding a negative constant we can assume that uj ≤ HP . For a

function v and for t > 0 we define vt := max(v,HP − t). Note that for
each t the sequence {utj} is locally uniformly bounded below. Define

a(t) := 2d+1

∫
{u≤HP−t/2}

(HP − u)(ddcu)d.

Since u ∈ E1
P (Cd), from Proposition 2.11 we have a(t)→ 0 as t→ +∞.

By Lemma 3.2 we have

(3.6) sup
j≥1

∫
{u≤HP−t}

(HP − u)(ddcuj)
d ≤ a(t).

By the plurifine property of non-pluripolar Monge-Ampère measures
[10, Proposition 1.4] and (3.6) we have∫

K

(HP − u)(ddcuj)
d ≤

∫
K∩{u>HP−t}

(HP − u)(ddcuj)
d + a(t)

=

∫
K∩{u>HP−t}

(HP − ut)(ddcutj)d + a(t)

≤
∫
K

(HP − ut)(ddcutj)d + a(t).

Since HP is bounded in Ω, it follows from [16, Theorem 4.26] that
the sequence of positive Radon measures (HP − ut)(ddcutj)d converges

weakly on Ω to (HP − ut)(ddcut)d. Since K is compact it then follows
that

lim sup
j

∫
K

(HP − u)(ddcuj)
d ≤

∫
K

(HP − ut)(ddcut)d + a(t).

We finally let t→ +∞ to conclude the proof in the following manner:∫
K

(HP − ut)(ddcut)d ≤
∫
K∩{u>HP−t}

(HP − ut)(ddcut)d + a(t)

≤
∫
K

(HP − u)(ddcu)d + a(t),
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where in the first estimate we have used {u ≤ HP − t} = {ut ≤ HP − t}
and Lemma 3.2 and in the last estimate we use again the plurifine
property. �

We now give an alternate description of the Legendre-type transform
E∗ from (2.9) which will be related to the the rate function in a large
deviation principle. Given K ⊂ Cd compact, we let MP (K) denote
the space of positive measures on K of total mass γd and we let C(K)
denote the set of continuous, real-valued functions on K.

Proposition 3.4. Let K be a nonpluripolar compact set and µ ∈
MP (K). Then

E∗(µ) = sup
v∈C(K)

[E(V ∗P,K,v)−
∫
K

vdµ].

Proof. We first treat the case when E∗(µ) = +∞. By Theorem 2.13
there exists u ∈ E1

P (Cd) such that
∫
K
udµ = −∞. We take a decreasing

sequence Qj ∈ C(K) such that Qj ↓ u on K and set uj := V ∗P,K,Qj .

Then {uj} are decreasing; since u ∈ E1
P (Cd) and E is non-decreasing,

{E(uj)} is uniformly bounded and we obtain

E(V ∗P,K,Qj)−
∫
K

Qjdµ→ +∞,

proving the proposition in this case.
Assume now thatE∗(µ) < +∞. Theorem 2.13 ensures that

∫
Cd udµ >

−∞ for all u ∈ E1
P (Cd). By Lemma 2.15, µ puts no mass on pluripolar

sets. From monotonicity of E and the definition of E∗ in (2.9) we have

E∗(µ) ≥ sup
v∈C(K)

[E(V ∗P,K,v)−
∫
K

vdµ].

Here we have used that

V ∗P,K,v ≤ v q.e. on K for v ∈ C(K).

For the reverse inequality, fix u ∈ E1
P (Cd). Let {Qj} be a sequence of

continuous functions on K decreasing to u on K and set uj := V ∗P,K,Qj .
Given ε > 0, we can choose j sufficiently large so that, by monotone
convergence, ∫

K

Qjdµ ≤
∫
K

udµ+ ε;
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and, by monotonicity of E,

E(V ∗P,K,Qj) ≥ E(u).

Hence

E(V ∗P,K,Qj)−
∫
K

Qjdµ ≥ E(u)−
∫
K

udµ− ε

so that

sup
v∈C(K)

[E(V ∗P,K,v)−
∫
K

vdµ] ≥ E∗(µ)

and equality holds.
�

3.2. Transfinite diameter. Let dn = dn(P ) denote the dimension of
the vector space Poly(nP ). We write

Poly(nP ) = span{e1, ..., edn}

where {ej(z) := zα(j)}j=1,...,dn are the standard basis monomials. Given
ζ1, ..., ζdn ∈ Cd, let

(3.7) V DM(ζ1, ..., ζdn) := det[ei(ζj)]i,j=1,...,dn

= det

 e1(ζ1) e1(ζ2) . . . e1(ζdn)
...

...
. . .

...
edn(ζ1) edn(ζ2) . . . edn(ζdn)


and for K ⊂ Cd compact let

Vn = Vn(K) := max
ζ1,...,ζdn∈K

|V DM(ζ1, ..., ζdn)|.

It was shown in [2] that

(3.8) δ(K) := δ(K,P ) := lim
n→∞

V 1/ln
n

exists where

ln :=
dn∑
j=1

deg(ej) =
dn∑
j=1

|α(j)|

is the sum of the degrees of the basis monomials for Poly(nP ). We
call δ(K) the P−transfinite diameter of K. More generally, for w an
admissible weight function on K and ζ1, ..., ζdn ∈ K, let

(3.9) V DMQ
n (ζ1, ..., ζdn) := V DM(ζ1, ..., ζdn)w(ζ1)n · · ·w(ζdn)n
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= det

 e1(ζ1) e1(ζ2) . . . e1(ζdn)
...

...
. . .

...
edn(ζ1) edn(ζ2) . . . edn(ζdn)

 · w(ζ1)n · · ·w(ζdn)n

be a weighted Vandermonde determinant. Let

Wn(K) := max
ζ1,...,ζdn∈K

|V DMQ
n (ζ1, ..., ζdn)|.

An n−th weighted P−Fekete set for K and w is a set of dn points
ζ1, ..., ζdn ∈ K with the property that

|V DMQ
n (ζ1, ..., ζdn)| = Wn(K).

The limit

δQ(K) := δQ(K,P ) := lim
n→∞

Wn(K)1/ln

exists and is called the weighted P−transfinite diameter. The following
was proved in [2].

Theorem 3.5. [Asymptotic Weighted P−Fekete Measures] Let
K ⊂ Cd be compact with admissible weight w. For each n, take points

z
(n)
1 , z

(n)
2 , · · · , z(n)

dn
∈ K for which

(3.10) lim
n→∞

[
|V DMQ

n (z
(n)
1 , · · · , z(n)

dn
)|
] 1
ln = δQ(K)

(asymptotically weighted P−Fekete arrays) and let µn := 1
dn

∑dn
j=1 δz(n)j

.

Then

µn →
1

γd
µK,Q weak− ∗.

Another ingredient we will use is a Rumely-type relation between
transfinite diameter and energy of V ∗P,K,Q from [2].

Theorem 3.6. Let K ⊂ Cd be compact and w = e−Q with Q ∈ C(K).
Then

(3.11) log δQ(K) =
−1

γddA
E(V ∗P,K,Q, HP ) =

−(d+ 1)

γddA
E(V ∗P,K,Q).

Here A = A(P, d) was defined in [2]; we recall the definition. For P = Σ
so that Poly(nΣ) = Pn, we have

dn(Σ) =

(
d+ n

d

)
= 0(nd/d!) and ln(Σ) =

d

d+ 1
ndn(Σ).



CONVEX BODIES 21

For a convex body P ⊂ (R+)d, define fn(d) by writing

ln = fn(d)
nd

d+ 1
dn = fn(d)

ln(Σ)

dn(Σ)
dn.

Then the ratio ln/dn divided by ln(Σ)/dn(Σ) has a limit; i.e.,

(3.12) lim
n→∞

fn(d) =: A = A(P, d).

3.3. Bernstein-Markov. For K ⊂ Cd compact, w = e−Q an admissi-
ble weight function on K, and ν a finite measure on K, we say that the
triple (K, ν,Q) satisfies a weighted Bernstein-Markov property if for all
pn ∈ Pn,

(3.13) ||wnpn||K ≤Mn||wnpn||L2(ν) with lim sup
n→∞

M1/n
n = 1.

Here, ||wnpn||K := supz∈K |w(z)npn(z)| and

||wnpn||2L2(ν) :=

∫
K

|pn(z)|2w(z)2ndν(z).

Following [1], given P ⊂ (R+)d a convex body, we say that a finite
measure ν with support in a compact set K is a Bernstein-Markov
measure for the triple (P,K,Q) if (3.13) holds for all pn ∈ Poly(nP ).

For any P there exists A = A(P ) > 0 with Poly(nP ) ⊂ PAn for
all n. Thus if (K, ν,Q) satisfies a weighted Bernstein-Markov property,
then ν is a Bernstein-Markov measure for (P,K, Q̃) where Q̃ = AQ. In
particular, if ν is a strong Bernstein-Markov measure for K; i.e., if ν
is a weighted Bernstein-Markov measure for any Q ∈ C(K), then for
any such Q, ν is a Bernstein-Markov measure for the triple (P,K,Q).
Strong Bernstein-Markov measures exist for any nonpluripolar compact
set; cf., Corollary 3.8 of [9]. The paragraph following this corollary gives
a sufficient mass-density type condition for a measure to be a strong
Bernstein-Markov measure.

Given P , for ν a finite measure on K and Q ∈ A(K), define
(3.14)

Zn := Zn(P,K,Q, ν) :=

∫
K

· · ·
∫
K

|V DMQ
n (z1, ..., zdn)|2dν(z1) · · · dν(zdn).

The main consequence of using a Bernstein-Markov measure for (P,K,Q)
is the following:
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Proposition 3.7. Let K ⊂ Cd be a compact set and let Q ∈ A(K). If
ν is a Bernstein-Markov measure for (P,K,Q) then

(3.15) lim
k→∞

Z
1

2ln
n = δQ(K).

Proof. That lim supk→∞ Z
1

2ln
n ≤ δQ(K) is clear. Observing from (3.7)

and (3.9) that, fixing all variables but zj,

zj → V DMQ
n (z1, ..., zj, ..., zdn) = w(zj)

npn(zj)

for some pn ∈ Poly(nP ), to show lim infk→∞ Z
1

2ln
n ≥ δQ(K) one starts

with an n−th weighted P−Fekete set for K and w and repeatedly
applies the weighted Bernstein-Markov property. �

RecallMP (K) is the space of positive measures on K with total mass
γd. With the weak-* topology, this is a separable, complete metrizable
space. A neighborhood basis of µ ∈MP (K) can be given by sets

(3.16) G(µ, k, ε) := {σ ∈MP (K) : |
∫
K

(Rez)α(Imz)β(dµ− dσ)| < ε

for 0 ≤ |α|+ |β| ≤ k}
where Rez = (Rez1, ...,Rezn) and Imz = (Imz1, ..., Imzn).

Given ν as in Proposition 3.7, we define a probability measure Probn
on Kdn via, for a Borel set A ⊂ Kdn ,

(3.17) Probn(A) :=
1

Zn
·
∫
A

|V DMQ
n (z1, ..., zdn)|2 · dν(z1) · · · dν(zdn).

We immediately obtain the following:

Corollary 3.8. Let ν be a Bernstein-Markov measure for (P,K,Q).
Given η > 0, define
(3.18)
An,η := {(z1, ..., zdn) ∈ Kdn : |V DMQ

n (z1, ..., zdn)|2 ≥ (δQ(K)− η)2ln}.

Then there exists n∗ = n∗(η) such that for all n > n∗,

Probn(Kdn \ An,η) ≤
(

1− η

2δQ(K)

)2ln

.

Remark 3.9. Corollary 3.8 was proved in [9], Corollary 3.2, for ν a
probability measure but an obvious modification works for ν(K) <∞.
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Using (3.17), we get an induced probability measure P on the infinite

product space of arrays χ := {X = {x(n)
j }n=1,2,...; j=1,...,dn : x

(n)
j ∈ K}:

(χ,P) :=
∞∏
n=1

(Kdn , P robn).

Corollary 3.10. Let ν be a Bernstein-Markov measure for (P,K,Q).

For P-a.e. array X = {x(n)
j } ∈ χ,

νn :=
1

dn

dn∑
j=1

δ
x
(n)
j
→ 1

γd
µK,Q weak-*.

Proof. From Theorem 3.5 it suffices to verify for P-a.e. array X =

{x(n)
j }

(3.19) lim inf
n→∞

(
|V DMQ

n (x
(n)
1 , ..., x

(n)
dn

)|
) 1
ln = δQ(K).

Given η > 0, the condition that for a given array X = {x(n)
j } we have

lim inf
n→∞

(
|V DMQ

n (x
(n)
1 , ..., x

(n)
dn

)|
) 1
ln ≤ δQ(K)− η

means that (x
(n)
1 , ..., x

(n)
dn

) ∈ Kdn \ An,η for infinitely many n. Setting

En := {X ∈ χ : (x
(n)
1 , ..., x

(n)
dn

) ∈ Kdn \ An,η},

we have

P(En) ≤ Probn(Kdn \ An,η) ≤ (1− η

2δQ(K)
)2ln

and
∑∞

n=1 P(En) < +∞. By the Borel-Cantelli lemma,

P(lim sup
n→∞

En) = P(
∞⋂
n=1

∞⋃
k≥n

Ek) = 0.

Thus, with probability one, only finitely many En occur, and (3.19)
follows. �

The main goal in the rest of the paper is to verify a stronger proba-
bilistic result – a large deviation principle – and to explain this result
in P−pluripotential-theoretic terms.
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4. Relation between E∗ and J, JQ functionals.

We define some functionals onMP (K) using L2−type notions which
act as a replacement for an energy functional on measures. Then we
show these functionals J(µ) and J(µ) defined using a “lim sup” and
a “lim inf” coincide (see Definitions 4.1 and 4.2); this is the essence
of our first proof of the large deviation principle, Theorem 5.1. Using
Proposition 3.4, we relate this functional with E∗ from (2.9).

Fix a nonpluripolar compact set K and a strong Bernstein-Markov
measure ν on K. For simplicity, we normalize so that ν is a probability
measure. Recall then for any Q ∈ C(K), ν is a Bernstein-Markov
measure for the triple (P,K,Q). Given G ⊂ MP (K) open, for each
s = 1, 2, ... we set

(4.1) G̃s := {a = (a1, ..., as) ∈ Ks :
γd
s

s∑
j=1

δaj ∈ G}.

Define, for n = 1, 2, ...,

Jn(G) := [

∫
G̃dn

|V DMn(a)|2dν(a)]1/2ln .

Definition 4.1. For µ ∈MP (K) we define

J(µ) := inf
G3µ

J(G) where J(G) := lim sup
n→∞

Jn(G);

J(µ) := inf
G3µ

J(G) where J(G) := lim inf
n→∞

Jn(G).

The infima are taken over all neighborhoods G of the measure µ in
MP (K). A priori, J, J depend on ν. These functionals are nonnegative
but can take the value zero. Intuitively, we are taking a “limit” of L2(ν)
averages of discrete, equally weighted approximants γd

s

∑s
j=1 δaj of µ.

An “L∞” version of J, J was introduced in [8] where Jn(G) is replaced
by

(4.2) Wn(G) := sup
a∈G̃dn

|V DMn(a)|1/ln ≥ Jn(G).

The weighted versions of these functionals are defined for Q ∈ A(K)
using

(4.3) JQn (G) := [

∫
G̃dn

|V DMQ
n (a)|2dν(a)]1/2ln .
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Definition 4.2. For µ ∈MP (K) we define

J
Q

(µ) := inf
G3µ

J
Q

(G) where J
Q

(G) := lim sup
n→∞

JQn (G);

JQ(µ) := inf
G3µ

JQ(G) where JQ(G) := lim inf
n→∞

JQn (G).

The uppersemicontinuity of J, J
Q
, J and JQ on MP (K) (with the

weak-* topology) follows as in Lemma 3.1 of [8]. Set

bd = bd(P ) :=
d+ 1

Adγd
.

Proposition 4.3. Fix Q ∈ C(K). Then

(1) J
Q

(µ) ≤ δQ(K);

(2) J(µ) = J
Q

(µ) · (e
∫
K Qdµ)bd;

(3) log J(µ) ≤ infv∈C(K)[log δv(K) + bd
∫
K
vdµ];

(4) log J
Q

(µ) ≤ infv∈C(K)[log δv(K) + bd
∫
K
vdµ]− bd

∫
K
Qdµ.

Properties (1)-(4) also hold for the functionals J, JQ.

Proof. Property (1) follows from

JQn (G) ≤ sup
a∈G̃dn

|V DMQ
n (a)|1/ln ≤ sup

a∈Kdn

|V DMQ
n (a)|1/ln .

The proofs of Corollary 3.4, Proposition 3.5 and Proposition 3.6 of
[8] work mutatis mutandis to verify (2), (3) and (4). The relevant
estimation, replacing the corresponding one which is two lines above
equation (3.2) in [8], is, given ε > 0, for a ∈ G̃dn ,

|V DMQ
n (a)|e

ndn
γd

(−ε−
∫
K Qdµ) ≤ |V DMn(a)|(4.4)

≤ |V DMQ
n (a)|e

ndn
γd

(ε+
∫
K Qdµ)

.

To see this, we first recall that

|V DMn(a)| = |V DMQ
n (a)|en

∑dn
j=1Q(aj).

For µ ∈ MP (K), Q ∈ C(K), ε > 0, there exists a neighborhood G of
µ in MP (K) with

−ε <
∫
K

Qdµ− γd
dn

dn∑
j=1

Q(aj) < ε
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for a ∈ G̃dn . Plugging this double inequality into the previous equality
we get (4.4). Moreover, from (3.12),

(4.5) lim
n→∞

ndn
ln

=
d+ 1

Ad
= bdγd

so that ndn
γd
� lnbd as n → ∞. Taking ln−the roots in (4.4) accounts

for the factor of bd in (2), (3) and (4). �

Remark 4.4. The corresponding W,WQ,W ,W
Q

functionals, defined

using (4.2), clearly dominate their “J” counterparts; e.g., W
Q ≥ J

Q
.

Note that formula (3.11) can be rewritten:

(4.6) log δQ(K) = −bdE(V ∗P,K,Q).

Thus the upper bound in Proposition 4.3 (3) becomes

(4.7) log J(µ) ≤ −bd sup
v∈C(K)

[E(V ∗P,K,v)−
∫
K

vdµ] = −bdE∗(µ).

For the rest of section 4 and section 5, we will always assume Q ∈
C(K). Theorem 4.5 shows that the inequalities in (3) and (4) are equal-

ities, and that the J, J
Q

functionals coincide with their J, JQ counter-
parts. The key step in the proof of Theorem 4.5 is to verify this for
J
v
(µK,v) and Jv(µK,v).

Theorem 4.5. Let K ⊂ Cd be a nonpluripolar compact set and let ν
satisfy a strong Bernstein-Markov property. Fix Q ∈ C(K). Then for
any µ ∈MP (K),

(4.8) log J(µ) = log J(µ) = inf
v∈C(K)

[log δv(K) + bd

∫
K

vdµ]

and
(4.9)

log J
Q

(µ) = log JQ(µ) = inf
v∈C(K)

[log δv(K) + bd

∫
K

vdµ]− bd
∫
K

Qdµ.

Proof. It suffices to prove (4.8) since (4.9) follows from (2) of Proposi-
tion 4.3. We have the upper bound

log J(µ) ≤ inf
v∈C(K)

[log δv(K) + bd

∫
K

vdµ]

from (3); for the lower bound, we consider different cases.
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Case I: µ = µK,v for some v ∈ C(K).

We verify that

(4.10) log J(µK,v) = log J(µK,v) = log δv(K) + bd

∫
K

vdµK,v

which proves (4.8) in this case.

To prove (4.10), we use the definition of J(µK,v) and Corollary 3.8.
Fix a neighborhood G of µK,v. For η > 0, define An,η as in (3.18) with
Q = v. Set

(4.11) ηn := max

(
δv(K)− nZ

1/2ln
n

n+ 1
,
Z

1/2ln
n

n+ 1

)
.

By Proposition 3.7, ηn → 0. We claim that we have the inclusion

(4.12) An,ηn ⊂ G̃dn for all n large enough.

We prove (4.12) by contradiction: if false, there is a sequence {nj}
with nj ↑ ∞ and xj = (xj1, ..., x

j
dnj

) ∈ Anj ,ηnj \ G̃dnj
. However µj :=

γd
dnj

∑dnj
i=1 δxji

6∈ G for j sufficiently large contradicts Theorem 3.5 since

xj ∈ Anj ,ηj and ηj ↓ 0 imply µj → µK,v weak-*.
Next, a direct computation using (4.11) shows that, for all n large

enough,

(4.13) Probn(Kdn \ An,ηn) ≤ (δv(K)− ηn)2ln

Zn
≤ (

n

n+ 1
)2ln ≤ n

n+ 1

(recall ν is a probability measure). Hence

1

Zn

∫
G̃dn

|V DM v
n(z1, ..., zdn)|2 · dν(z1) · · · dν(zdn)

≥ 1

Zn

∫
An,ηn

|V DM v
n(z1, ..., zdn)|2 · dν(z1) · · · dν(zdn)

≥ 1

n+ 1
.

Since P ⊂ rΣ and Σ ⊂ kP for some k ∈ Z+, ln = 0(nd+1) and we
have 1

2ln
log(n + 1) → 0. Since ν satisfies a strong Bernstein-Markov

property and v ∈ C(K), using Proposition 3.7 and the above estimate
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we conclude that

lim inf
n→∞

1

2ln
log

∫
G̃dn

|V DM v
n(z1, ..., zdn)|2dν(z1) · · · dν(zdn)

≥ log δv(K).

Taking the infimum over all neighborhoods G of µK,v we obtain

log Jv(µK,v) ≥ log δv(K).

From (1) Proposition 4.3, log J
v
(µK,v) ≤ log δv(K); thus we have

(4.14) log Jv(µK,v) = log J
v
(µK,v) = log δv(K).

Using (2) of Proposition 4.3 with µ = µK,v we obtain (4.10).

Case II: µ ∈MP (K) with the property that E∗(µ) <∞.

From Theorem 2.13 and Proposition 2.11 there exists u ∈ LP (Cd) –
indeed, u ∈ E1

P (Cd) – with µ = (ddcu)d and
∫
K
udµ > −∞. However,

since u is only usc on K, µ is not necessarily of the form µK,v for some
v ∈ C(K). Taking a sequence of continuous functions {Qj} ⊂ C(K)
with Qj ↓ u on K, by Proposition 3.3 the weighted extremal functions
V ∗P,K,Qj decrease to u on Cd;

µj := (ddcV ∗P,K,Qj)
d → µ = (ddcu)d weak-∗;

and

(4.15) lim
j→∞

∫
K

Qjdµj = lim
j→∞

∫
K

Qjdµ =

∫
K

udµ.

From the previous case we have

log J(µj) = log J(µj) = log δQj(K) + bd

∫
K

Qjdµj.

Using uppersemicontinuity of the functional µ→ J(µ),

lim sup
j→∞

J(µj) = lim sup
j→∞

J(µj) ≤ J(µ).

Since Qj ↓ u on K,

(4.16) lim sup
j→∞

log δQj(K) = lim
j→∞

log δQj(K).

Therefore

M := lim
j→∞

log J(µj) = lim
j→∞

(
log δQj(K) + bd

∫
K

Qjdµj
)
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exists and is less than or equal to log J(µ). We want to show that

(4.17) inf
v

[log δv(K) + bd

∫
K

vdµ] ≤M.

Given ε > 0, by (4.15) for j ≥ j0(ε),∫
K

Qjdµj ≥
∫
K

Qjdµ− ε and log J(µj) < M + ε.

Hence for such j,

inf
v

[log δv(K) + bd

∫
K

vdµ] ≤ log δQj(K) + bd

∫
K

Qjdµ

≤ log δQj(K) + bd

∫
K

Qjdµj + bdε = log J(µj) + bdε < M + (bd + 1)ε,

yielding (4.17). This finishes the proof in Case II.

Case III: µ ∈M(K) with the property that E∗(µ) = +∞.

It follows from Proposition 3.4 and Theorem 3.6 that the right-hand
side of (4.8) is −∞, finishing the proof.

�

Remark 4.6. From now on, we simply use the notation J, JQ without
the overline or underline. Using Proposition 3.4 and Theorem 3.6, we
have

log J(µ) = inf
Q∈C(K)

[log δQ(K) + bd

∫
K

Qdµ]

= − sup
Q∈C(K)

[− log δQ(K)− bd
∫
K

Qdµ]

= − sup
Q∈C(K)

[bdE(V ∗P,K,Q)−bd
∫
K

Qdµ] = −bd sup
Q∈C(K)

[E(V ∗P,K,Q)−
∫
K

Qdµ]

(recall (4.6)) which one can compare with

E∗(µ) = sup
Q∈C(K)

[E(V ∗P,K,Q)−
∫
K

Qdµ]

from Proposition 3.4 to conclude

(4.18) log J(µ) = −bdE∗(µ).

In particular, J, JQ are independent of the choice of strong Bernstein-
Markov measure for K.

Following the idea in Proposition 4.3 of [9], we observe the following:
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Proposition 4.7. Let K ⊂ Cd be a nonpluripolar compact set and let
ν satisfy a strong Bernstein-Markov property. Fix Q ∈ C(K). The
measure µK,Q is the unique maximizer of the functional µ → JQ(µ)
over µ ∈MP (K); i.e.,

(4.19) JQ(µK,Q) = δQ(K) (and J(µK) = δ(K)).

Proof. The fact that µK,Q maximizes JQ (and µK maximizes J) follows
from (4.10), (4.14) and Proposition 4.3.

Assume now that µ ∈MP (K) maximizes JQ. From Remark 4.4 and
the definitions of the functionals, for any neighborhood G ⊂ MP (K)
of µ,

J
Q

(µ) ≤ W
Q

(µ) ≤ sup{lim sup
n→∞

|V DMQ
n (a(n))|1/ln} ≤ δQ(K)

where the supremum is taken over all arrays {a(n)}n=1,2,... of dn−tuples

a(n) in K whose normalized counting measures µn := 1
dn

∑dn
j=1 δa(n)j

lies

in G. Since J
Q

(µ) = δQ(K) there is an asymptotic weighted Fekete

array {a(n)} as in (3.10). Theorem 3.5 yields that µn := 1
dn

∑dn
j=1 δa(n)j

converges weak-* to µK,Q, hence µK,Q ∈ G. Since this is true for each
neighborhood G ⊂MP (K) of µ, we must have µ = µK,Q. �

5. Large deviation.

As in the previous section, we fix K ⊂ Cd a nonpluripolar compact
set; Q ∈ C(K); and a measure ν on K satisfying a strong Bernstein-
Markov property. For x1, ..., xdn ∈ K, we get a discrete measure
γd
dn

∑dn
j=1 δxj ∈MP (K). Define jn : Kdn →MP (K) via

jn(x1, ..., xdn) :=
γd
dn

dn∑
j=1

δxj .

From (3.17), σn := (jn)∗(Probn) is a probability measure on MP (K):
for a Borel set B ⊂MP (K),

(5.1) σn(B) =
1

Zn

∫
B̃dn

|V DMQ
n (x1, ..., xdn)|2dν(x1) · · · dν(xdn)
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where B̃dn := {a = (a1, ..., adn) ∈ Kdn : γd
dn

∑dn
j=1 δaj ∈ B}(recall (4.1)).

Here, Zn := Zn(P,K,Q, ν). Note that

(5.2) σn(B)1/2ln =
1

Z
1/2ln
n

· JQn (B).

For future use, suppose we have a function F : R → R and a function
v ∈ C(K). We write, for µ ∈MP (K),

< v, µ >:=

∫
K

vdµ

and then

(5.3)

∫
MP (K)

F (< v, µ >)dσn(µ) :=

1

Zn

∫
K

· · ·
∫
K

|V DMQ
n (x1, ..., xdn)|2F

(
γd
dn

dn∑
j=1

v(xj)

)
dν(x1) · · · dν(xdn).

With this notation, we offer two proofs of our LDP, Theorem 5.1. We
state the result; define LDP in Definition 5.2; and then proceed with
the proofs. This closely follows the exposition in section 5 of [9].

Theorem 5.1. The sequence {σn = (jn)∗(Probn)} of probability mea-
sures on MP (K) satisfies a large deviation principle with speed 2ln
and good rate function I := IK,Q where, for µ ∈MP (K),

I(µ) := log JQ(µK,Q)− log JQ(µ).

This means that I : MP (K) → [0,∞] is a lowersemicontinuous
mapping such that the sublevel sets {µ ∈ MP (K) : I(µ) ≤ α} are
compact in the weak-* topology onMP (K) for all α ≥ 0 (I is “good”)
satisfying (5.4) and (5.5):

Definition 5.2. The sequence {µk} of probability measures onMP (K)
satisfies a large deviation principle (LDP) with good rate function
I and speed 2ln if for all measurable sets Γ ⊂MP (K),

(5.4) − inf
µ∈Γ0
I(µ) ≤ lim inf

n→∞

1

2ln
log µn(Γ) and

(5.5) lim sup
n→∞

1

2ln
log µn(Γ) ≤ − inf

µ∈Γ
I(µ).
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In the setting of MP (K), to prove a LDP it suffices to work with a
base for the weak-* topology. The following is a special case of a basic
general existence result for a LDP given in Theorem 4.1.11 in [13].

Proposition 5.3. Let {σε} be a family of probability measures on
MP (K). Let B be a base for the topology of MP (K). For µ ∈MP (K)
let

I(µ) := − inf
{G∈B:µ∈G}

(
lim inf
ε→0

ε log σε(G)
)
.

Suppose for all µ ∈MP (K),

I(µ) = − inf
{G∈B:µ∈G}

(
lim sup
ε→0

ε log σε(G)
)
.

Then {σε} satisfies a LDP with rate function I(µ) and speed 1/ε.

There is a converse to Proposition 5.3, Theorem 4.1.18 in [13]. For
MP (K), it reads as follows:

Proposition 5.4. Let {σε} be a family of probability measures on
MP (K). Suppose that {σε} satisfies a LDP with rate function I(µ)
and speed 1/ε. Then for any base B for the topology of MP (K) and
any µ ∈MP (K)

I(µ) := − inf
{G∈B:µ∈G}

(
lim inf
ε→0

ε log σε(G)
)

= − inf
{G∈B:µ∈G}

(
lim sup
ε→0

ε log σε(G)
)
.

Remark 5.5. Assuming Theorem 5.1, this shows that, starting with
a strong Bernstein-Markov measure ν and the corresponding sequence
of probability measures {σn} on MP (K) in (5.1), the existence of an
LDP with rate function I(µ) and speed 2ln implies that necessarily

(5.6) I(µ) = log JQ(µK,Q)− log JQ(µ).

Uniqueness of the rate function is basic (cf., Lemma 4.1.4 of [13]).

We turn to the first proof of Theorem 5.1, using Theorem 4.5, which
gives a pluripotential theoretic description of the rate functional.

Proof. As a base B for the topology of MP (K), we can take the sets
from (3.16) or simply all open sets. For {σε}, we take the sequence of
probability measures {σn} onMP (K) and we take ε = 1

2ln
. For G ∈ B,

from (5.2),
1

2ln
log σn(G) = log JQn (G)− 1

2ln
logZn.
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From Proposition 3.7, and (4.14) with v = Q,

lim
n→∞

1

2ln
logZn = log δQ(K) = log JQ(µK,Q);

and by Theorem 4.5,

inf
G3µ

lim sup
n→∞

log JQn (G) = inf
G3µ

lim inf
n→∞

log JQn (G) = log JQ(µ).

Thus by Proposition 5.3 {σn} satisfies an LDP with rate function

I(µ) := log JQ(µK,Q)− log JQ(µ)

and speed 2ln. This rate function is good sinceMP (K) is compact. �

Remark 5.6. From Proposition 4.7, µK,Q is the unique maximizer of
the functional

µ→ log JQ(µ)

over all µ ∈MP (K). Thus

IK,Q(µ) ≥ 0 with IK,Q(µ) = 0 ⇐⇒ µ = µK,Q.

To summarize, IK,Q is a good rate function with unique minimizer µK,Q.
Using the relations

log J(µ) = −bd sup
Q∈C(K)

[E(V ∗P,K,Q)−
∫
K

Qdµ]

J(µ) = JQ(µ) · (e
∫
K Qdµ)bd , and JQ(µK,Q) = δQ(K)

(the latter from (4.19)), we have

I(µ) := log δQ(K)− log JQ(µ)

= log δQ(K)− log J(µ) + bd

∫
K

Qdµ

= bd sup
Q∈C(K)

[E(V ∗P,K,Q)−
∫
K

Qdµ] + log δQ(K) + bd

∫
K

Qdµ

= bd sup
v∈C(K)

[E(V ∗P,K,v)−
∫
K

vdµ]− bd[E(V ∗P,K,Q)−
∫
K

Qdµ]

from (4.6).

The second proof of our LDP follows from Corollary 4.6.14 in [13],
which is a general version of the Gärtner-Ellis theorem. This approach
was originally brought to our attention by S. Boucksom and was also
utilized by R. Berman in [5]. We state the version of the [13] result for
an appropriate family of probability measures.
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Proposition 5.7. Let C(K)∗ be the topological dual of C(K), and let
{σε} be a family of probability measures onMP (K) ⊂ C(K)∗ (equipped
with the weak-* topology). Suppose for each λ ∈ C(K), the limit

Λ(λ) := lim
ε→0

ε log

∫
C(K)∗

eλ(x)/εdσε(x)

exists as a finite real number and assume Λ is Gâteaux differentiable;
i.e., for each λ, θ ∈ C(K), the function f(t) := Λ(λ+tθ) is differentiable
at t = 0. Then {σε} satisfies an LDP in C(K)∗ with the convex, good
rate function Λ∗.

Here

Λ∗(x) := sup
λ∈C(K)

(
< λ, x > −Λ(λ)

)
,

is the Legendre transform of Λ. The upper bound (5.5) in the LDP
holds with rate function Λ∗ under the assumption that the limit Λ(λ)
exists and is finite; the Gâteaux differentiability of Λ is needed for the
lower bound (5.4). To verify this property in our setting, we must recall
a result from [2].

Proposition 5.8. For Q ∈ A(K) and u ∈ C(K), let

F (t) := E(V ∗P,K,Q+tu)

for t ∈ R. Then F is differentiable and

F ′(t) =

∫
Cd
u(ddcV ∗P,K,Q+tu)

d.

In [2] it was assumed that u ∈ C2(K) but the result is true with the
weaker assumption u ∈ C(K) (cf., Theorem 11.11 in [16] due to Lu and
Nguyen [17], see also [11, Proposition 4.20]).

We proceed with the second proof of Theorem 5.1. For simplicity,
we normalize so that γd = 1 to fit the setting of Proposition 5.7 (so
members of MP (K) are probability measures).

Proof. We show that for each v ∈ C(K),

Λ(v) := lim
n→∞

1

2ln
log

∫
C(K)∗

e2ln<v,µ>dσn(µ)
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exists as a finite real number. First, since σn is a measure on MP (K),
the integral can be taken over MP (K). Consider

1

2ln
log

∫
MP (K)

e2ln<v,µ>dσn(µ).

By (5.3), this is equal to

1

2ln
log

1

Zn
·
∫
Kdn

|V DM
Q− ln

ndn
v

n (x1, ..., xdn)|2dν(x1) · · · dν(xdn).

From (4.5), with γd = 1, ln
ndn
→ 1

bd
; hence for any ε > 0,

1

bd + ε
v ≤ ln

ndn
v ≤ 1

bd − ε
v on K

for n sufficiently large. Recall that

Zn =

∫
Kdn

|V DMQ
n (x1, ..., xdn))|2dν(x1) · · · dν(xdn).

Define

Z̃n :=

∫
Kdn

|V DMQ−v/bd
n (x1, ..., xdn)|2dν(x1) · · · dν(xdn).

Then we have

lim
n→∞

Z̃
1

2ln
n = δQ−v/bd(K) and lim

n→∞
Z

1
2ln
n = δQ(K)

from (3.15) in Proposition 3.7 and the assumption that (K, ν, Q̃) satis-
fies the weighted Bernstein-Markov property for all Q̃ ∈ C(K). Thus

(5.7) Λ(v) = lim
n→∞

1

2ln
log

Z̃n
Zn

= log
δQ−v/bd(K)

δQ(K)
.

Define now, for v, v′ ∈ C(K),

f(t) := E(V ∗P,K,Q−(v+tv′)).

Proposition 5.8 shows that Λ is Gâteaux differentiable and Proposition
5.7 gives that Λ∗ is a rate function on C(K)∗.

Since each σn has support inMP (K), it follows from (5.4) and (5.5)
in Definition 5.2 of an LDP with Γ ⊂ C(K)∗ that for µ ∈ C(K)∗ \
MP (K), Λ∗(µ) = +∞. By Lemma 4.1.5 (b) of [13], the restriction of
Λ∗ toMP (K) is a rate function. SinceMP (K) is compact, it is a good
rate function. Being a Legendre transform, Λ∗ is convex.
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To compute Λ∗, we have, using (5.7) and (3.11),

Λ∗(µ) = sup
v∈C(K)

(∫
K

vdµ− log
δQ−v/bd(K)

δQ(K)

)
= sup

v∈C(K)

(∫
K

vdµ− bd[E(V ∗P,K,Q)− E(V ∗P,K,Q−v/bd ])
)
.

Thus

Λ∗(µ) + bdE(V ∗P,K,Q) = sup
v∈C(K)

(∫
K

vdµ+ bdE(V ∗P,K,Q−v/bd)
)

= sup
u∈C(K)

(
bdE(V ∗P,K,Q+u)− bd

∫
K

udµ
)

(taking u = −v/bd).

Rearranging and replacing u in the supremum by v = u+Q,

Λ∗(µ) = sup
u∈C(K)

(
bdE(V ∗P,K,Q+u)− bd

∫
K

udµ
)
− bdE(V ∗P,K,Q)

= bd
[

sup
v∈C(K)

E(V ∗P,K,v)−
∫
K

vdµ
]
− bd

[
E(V ∗P,K,Q)−

∫
K

Qdµ
]

which agrees with the formula in Remark 5.6 (since µ is a probability
measure).

�

Remark 5.9. Thus the rate function can be expressed in several equiv-
alent ways:

I(µ) = Λ∗(µ) = log JQ(µK,Q)− log JQ(µ)

= bd
[

sup
v∈C(K)

E(V ∗P,K,v)−
∫
K

vdµ
]
− bd

[
E(V ∗P,K,Q)−

∫
K

Qdµ
]

= bdE
∗(µ)− bd

[
E(V ∗P,K,Q)−

∫
K

Qdµ
]

which generalizes the result equating (5.3), (5.10) and (5.11) in [9] for
the case P = Σ and bd = 1. Note in the last equality we are using the
slightly different notion of E∗ in (2.9) and Proposition 3.4 than that
used in [9].
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