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ABSTRACT 

 

 

 

BIDIRECTIONAL COMMON-PATH FOR 8-to-24 GHz LOW NOISE SiGe BiCMOS 

T/R MODULE CORE-CHIP 

 

 

 

CAN ÇALIŞKAN 

 

ELECTRONICS ENGINEERING, PH.D. DISSERTATION, JULY 2019 

 

Dissertation Supervisor: Prof. Yaşar GÜRBÜZ 

 

 

Keywords: Transceiver, Bidirectional control, Wideband, Noise figure, BiCMOS 

integrated circuits. 

 

 

This thesis is based on the design of an 8-to-24 GHz low noise SiGe BiCMOS 

Transmitter/Receiver (T/R) Module core-chip in a small area by bidirectional common-

path. The next-generation phased array systems require multi-functionality and multi-

band operation to form multi-purpose integrated circuits. Wide bandwidth becomes a 

requirement for the system in various applications, such as electronic warfare, due to 

leading cheaper and lighter system solutions. Although III-V technologies can satisfy the 

high-frequency specifications, they are expensive and have a large area. The silicon-based 

technologies promise high integration capability with low cost, but they sacrifice from 

the performance to result in desired bandwidth. The presented dissertation targets system 

and circuit level solutions on the described content. The wideband core-chip utilized a 

bidirectional common path to surpass the bandwidth limitations. The bidirectionality 

enhances the bandwidth, noise, gain and area of the transceiver by the removal of the 

repetitive blocks in the unidirectional common chain. This approach allows succeeding 

desired bandwidth and compactness without sacrificing from the other high-frequency 

parameters. The realized core-chip has 31.5 and 32 dB midband gain for the receiver and 

transmitter respectively, with a + 2.1 dB /GHz of positive slope. Its RMS phase and 

amplitude errors are lower than 5.60 and 0.8 dB, respectively for 4-bit of resolution. The 

receiver noise figure is lower than 5 dB for the defined bandwidth while dissipating 112 

mW of power in a 5.5 mm2 area. The presented results verify the advantage of the favored 

architecture and might replace the III-V based counterparts.  



v 

 

ÖZET 

 

 

 

8-ile-24 GHz DÜŞÜK GÜRÜLTÜLÜ SiGe BiCMOS V/A MODÜLÜ ÇEKİRDEK 

ÇİPİ İÇİN İKİ YÖNLÜ ORTAK-HAT 

 

 

 

CAN ÇALIŞKAN 

 

ELEKTRONİK MÜHENSLİĞİ DOKTORA TEZİ, TEMMUZ 2019 

 

Tez Danışmanı: Prof. Dr. Yaşar GÜRBÜZ 

 

 

Anahtar Kelimeler: Alıcı/verici, İki-yönlü kontrol, Geniş bant, Gürültü figürü, BiCMOS 

entegre devreleri. 

 

 

Bu doktora tezi 8-24 GHz arasında çalışan düşük gürültülü SiGe BiCMOS Verici/Alıcı 

(V/A) modülü çekirdek çipinin iki yönlü ortak hat kullanımıyla küçük alanda 

gerçeklenmesine dayanmaktadır. Yeni nesil faz dizili sistemleri çok amaçlı entegre 

devreler elde etme amacıyla çok fonksiyonluluk ve farklı bantlarda çalışmaya uyumluluk 

aramaktadır. Geniş bant aralığı, elektronik harp gibi birçok farklı uygulamada daha ucuz 

ve hafif çözümler önerebildiği için, aranan bir özelliktir. III-V temelli teknolojiler 

istenilen özellikleri sağlayabilse de maliyetleri yüksek, alanları da büyüktür. Silikon 

temelli teknolojiler yüksek entegrasyon becerisini düşük maliyetle gösterebilmesinin yanı 

sıra, istenilen bant aralığını yakalayabilmek için performansından feragat etmektedir. Bu 

doktora tezi belirtilen kapsamlarda sistem ve devre seviyesi çözümler içermektedir. 

Gerçeklenen geniş bantlı çekirdek çipi, iki-yönlü ortak hat kullanarak bant aralığını 

limitini aşmıştır. İki-yönlü sinyal akışı alıcı/vericinin bant genişliğini, gürültüsünü, 

kazancını ve alanını, tek-yönlü ortak hattındaki tekrarlı alt blok kullanımını engelleyerek, 

iyileştirmektedir. Belirtilen yaklaşım hedeflenen bant aralığı ve küçük alana, diğer 

özelliklerinden feragat etmeden başarabilmiştir. Gerçeklenen çekirdek çipi, alıcı/verici 

hatları için sırasıyla 31.5 dB ve 32 dB’lik bant ortası kazanca, +2.1 dB/GHz’lik pozitif 

eğimle erişmiştir. 4-bitlik çözünürlüğe sahip çipin RMS faz/genlik hatası sırasıyla 5.60 ve 

0.8 dB’dir. 5.5 mm2’lik alanda 112 mW güç tüketen çipin alıcı gürültü faktörü bant 

boyunca 5 dB’den düşüktür. Gösterilen sonuçlar, tercih edilen mimarinin üstünlüğünü 

onaylamakta olup, III-V benzerlerinin yerini alabileceğini doğrulamaktadır.  
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1. INTRODUCTION 

 

 

 

The basic concept of Radio Detection and Ranging (RADAR) was presented as an 

invention named “Telemobiloscop” in 1904 by Christian Hulsmeyer, but they had started 

to be widely used as a system during the early years of the World War II. Throughout the 

years the technology had improved and extended its market beyond military applications, 

such as the automotive industry, and weather monitoring. Smaller and cheaper RADAR 

systems can be implemented by the help of improvements in the semiconductor industry, 

which can lead to a broadened market size (Neuchter 2000). 

 

 

 Phased Array RADARs 

 

 

The recent generation RADAR systems are introduced for both commercial and 

military applications where the phased arrays are one of the basic concepts of them. 

Compared to single antenna element-based structures, phased arrays utilize several 

antenna elements that can be controlled properly. Figure 1. 1 demonstrates a basic view 

of an array-based system. If the phase of each radiating element can be controlled 

properly, the main beam can be steered from its initial direction electronically. Hence, 

they can conclude different processes in a short period, which leads to higher data rate, 

higher tracking-scanning capability and higher functionality (Kopp 2005). 

 

Coherent addition of signals can result in a higher Signal-to-Noise (SNR) ratio for 

the receiver chain because the noise generated by each element is uncorrelated with the 

others. A similar mechanism works for the transmitter chain too; each element is 

controlled to steer the beam, while the signal flow is in the reverse direction. The output 

power of each element (Pt) is going to add up for the transmitter chain, hence the total  
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Figure 1. 1 A phased array example with several elements. 

𝑅𝑀𝐴𝑋 = √
𝑁3𝑃𝑡𝐺2𝜆2𝜎

(4𝜋)3𝑃𝑚𝑖𝑛

4
                                                                                                   (1) 

 

output power of the phased array will be “N*Pt”; “N” represents the number of elements 

that exist in the system (Jeon et al. 2005). The maximum RADAR range, RMAX in (1), is 

one of the basic parameters of the system. It defines the maximum distance between the 

system and an object with a cross-sectional area of σ; Pmin defines the minimum detectable 

signal, G stands for transmitting antenna gain and λ is the wavelength of the operating 

frequency (Balanis 2005). As shown in (1), the range of the system can be improved by 

increasing the transmitting power. However, this results in higher power dissipation and 

higher heating rate per element. N is as significant as the other parameters to improve the 

RMAX. The system performance can be improved by implementing thousands of on-chip 

T/R modules. This enables multi-functional phased array systems that are lighter, and 

cheaper compared to earlier generations of RADAR systems. 

 

The phased array systems are categorized considering their feeding and 

beamforming mechanisms. Fig.1 represents an active phased array, where each element 

has its amplification, phase, and amplitude control. Passive phased array systems depend 

on amplification after adding signals of each element. Therefore, passive phased array 

systems include a single amplification stage, where phase control is done for each chain 

before the signal formation. Compared to passive ones, active phased arrays have better 

sensitivity due to including an amplification stage before the phase controlling unit and 

signal formation. Similarly, the output power of a passive phased array is lower compared 
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to active counterpart, due to including lossy elements after the transmitter amplifier. 

 

Phase control can be preferred to be done in Intermediate Frequency (IF) to avoid 

possible high loss of the block in radio frequency (RF), with the expense of increased 

area. Additionally, mixers and Analog-to-Digital Converters (ADC) can be utilized in a 

digital beamformer to vary the phase. However, each element should include the 

mentioned blocks which result in increased power consumption. The summation of all 

signals before the mixer is named as an All-RF approach, which is suitable for the on-

chip application due to having the capability of achieving high RF performance in a small 

area with a low cost (Çalışkan 2014). Therefore, the T/R modules become one of the most 

essential blocks for an All-RF based approach because of determining the main RF 

performances of a phased array system.  

 

 

 T/R Module 

 

 

The basic features of a T/R module vary regarding the feeding mechanism of the 

phased array system. In an All-RF based system, the T/R modules include the Low Noise 

Amplifier (LNA), Power Amplifier (PA), Single-Pole-Double-Throw (SPDT) switch, 

Phase Shifter (PS) and Attenuator. LNA is the main amplification block of the receiver 

(RX), and it is usually preferred as the first block of the chain; it determines the sensitivity 

of RX by introducing low noise to the system. According to Friis’ noise equation 

presented in (2), a high gain level enables suppression of the noise generated by the 

incoming blocks. Therefore, succeeding a low noise factor (F) with a high gain is a crucial 

target for the LNA.  PA is the essential amplification block of the transmitter chain (TX). 

It mainly controls the gain and output power of the chain. Even if they are the main 

amplification blocks of the specified chains, the expectations from PA are different than 

LNA because of the aims of the TX, such as output power, linearity, and efficiency. SPDT 

is the block that is responsible for selecting the appropriate signal path of the module 

while guaranteeing low path loss and high isolation between chains. PS is the  

 

𝐹𝑇 = 𝐹1 +
𝐹2−1

𝐺1
+

𝐹3−1

𝐺1𝐺2
+ ⋯ +

𝐹𝑁−1

𝐺1𝐺2⋯𝐺𝑁−1
                                                (2) 
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Figure 1. 2 Various T/R module architectures; (a) the separated architecture, (b) the 

combined path, (c) the bidirectional common-chain. 

 

phase controlling block of the module; its performance is critical for the system since the 

beam steering is established by varying the phase. Additionally, its gain and dynamic 

range should be coherent with the remaining sub-blocks. The attenuator can be utilized 

for different purposes such as beam formation, amplitude adjustment, dynamic range 

improvements and/or gain error correction that is caused by the PS at various phase states. 

Some modules may include Variable Gain Amplifier (VGA) instead of an Attenuator or 

introduce additional amplification blocks considering the loss of passive components. 

The main idea is to maximize the RF performance of the module and boost the system 

features without sacrificing the compactness, which is a trade-off for the T/R modules. 

Hence, different module architectures exist regarding various system expectations as 

presented in Figure 1. 2. 

 

The RX and TX of a module may require different features, which results in 

various sub-block requirements. Hence, the transceiver chains can be separated from each 

other as presented in Figure 1. 2 (a), and it is named as the separated architecture. The 

duplication of blocks contradicts with the compactness and concludes with increased 

power consumption, although high RX and TX performances can be achieved. SPDT 

switches can are introduced as a signal path controller, which can result in architecture as 

Figure 1. 2 (b). It combines the common blocks of RX and TX. Generally, the common-

path or so-called Common-Chain (CC) is consisting of PS, Attenuator, SPDT, and an 

amplifier. The number of blocks and their features can differ regarding the performance 
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specifications of the system. As the RF expectations increase, more complex solutions 

might be required for the blocks in CC. When the total number of blocks and compactness 

is considered, the approach in Figure 1. 2 (c) is more complicated. It promises a superior 

performance by utilizing the bidirectionality. As a drawback, it requires new design 

approaches to satisfy both bidirectionality properties in CC and the system expectations 

(Bentini et al 2014). Besides its complexity, lower power and smaller T/R modules might 

be achieved by favoring the bidirectional architecture. 

 

 

1.2.1. Technologies Preferred for T/R Modules 

 

The technology for on-chip T/R modules can be various because of the strict system 

requirements. When the RF features are decided to be the primary metric, III-V based 

semiconductor devices promise the best performance compared to Si-based devices. 

However, the designs with III-V technologies may consume a large area. Moreover, they 

have a low yield. Hence, the T/R modules that are designed by utilizing the III-V devices, 

might oppose the compactness and low-cost specifications of the system, besides of their 

superior RF performances. For instance, new generation phased arrays may require up to 

106 modules, where the number of elements might be limited to 105 at most when III-V 

technologies are preferred (Jeon et al. 2005). However high performance can still be 

required, especially for military applications. The GaN technology is trying to pass the 

area limits of GaAs by taking advantage of their high-power capabilities. They can 

eliminate the need for the limiter and additional isolator circuitries in GaAs due to being 

more resistant to higher power inputs. As a result, GaN technology may promise about 

%40 area reduction in the front-end part of the system (Rebeiz et al 2017). 

 

The improvements in Si-based technologies lead them to be a candidate for the T/R 

modules, not because of their high performance, but for their high integration capability 

and low cost, which may broaden the phased array market towards commercial 

applications. The T/R modules with Silicon technology can include RF, analog, digital, 

control circuitries and bias networks in a single die with low power consumption. This 

leads to reduced power, area, and cost of the system, dramatically. However, their RF 

performance is not as good as the III-V counterparts; i.e. limited breakdown voltages, so 

low output power for the Silicon. The recent enhancements in SiGe BiCMOS 
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Table 1. 1 Comparison of III-V and Si-Based technologies 

 (Ommic 

2018) 

(Northropgrumman 

2015) 

(Ums-gaas 

2018) 

(Ommic 

2018) 

(IHP 2018) (IHP 2018)  

Foundry Ommic Northrop 

Grumman 

UMS Ommic IHP IHP 

Technology GaN GaN GaN GaAs SiGe 

BiCMOS 

SiGe 

BiCMOS 

Emitter Width 

(Gate Length) [µm] 

0.1 0.2 0.25 0.125 0.25 0.13 

Collector-Emitter 

(Drain -Source) 

Breakdown Voltage 

(V) 

25 28 > 100 6 2.2 1.65 

β  - - - - 150 900 

Gm [mS /mm] 650 350 300 700 - - 

ft [GHz] 110 60 30 150 110 230 

fmax [GHz] 160 200 - 250 180 340 

 

technology enabled its Heterojunction Bipolar Transistor (HBTs) have similar small-

signal RF performances compared to III-V devices, without sacrificing high integration 

capability and low area consumption.  

 

Table 1. 1 compares the basic features of various integrated circuit (IC) 

technologies. The foundries in the provided tables are not related to each other. III-V 

based technologies have higher breakdown voltage levels compared to Si-based 

counterparts, which results in higher output power levels. Similarly, lower noise levels 

can be achieved by utilizing III-V devices due to having higher carrier mobility. It should 

be noted that different III-V devices exist that are dedicated to specific applications; the 

III-V devices that can exceed 300 GHz of transition frequency (ft) are not included in the 

presented table for brevity. 

 

 

1.2.2. Trends in T/R Modules 

 

The recent trends in T/R modules can be classified into two groups; the 

technological enhancements and the architectural improvements. When the system 

requirements are considered, the next generation expectations from T/R modules depend 

on higher performance and more functionality in a small area with a low cost. In this 

chapter, the recent trends in T/R modules are going to summarized regarding the 

mentioned contents.  
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Figure 1. 3 Block diagram of a T/R module with multiple technologies. 

 

The enhancements in the IC technology updated both phased array system 

expectations and sub-block level requirements, which created different ways to improve 

the system performance. In the new generation of T/R modules, the superior feature of 

each technology is used to catch the targets instead of attempting to achieve all system 

metrics from a single technology. GaN promises the best noise, gain and output power 

features among others. Hence the front-end part, which is composed of LNA, PA, and 

SPDT, is devised to be designed by GaN in next-generation T/R modules. When the front-

end section is excluded from the module, the remaining part is responsible for the rest of 

the RF performances and signal formation. This part is called “core-chip” and it can be 

designed by GaAs technology, because of promising an adequate level of RF 

performance. In other meaning, GaN and GaAs technology are planned to be utilized 

together to form a new T/R module generation, as presented in Figure 1. 3 (Bentini et al 

2014).  Despite that, the improved performance of Si-based devices, especially HBTs, 

reflects them as being a significant candidate for the core-chip concept because of their 

high integration capability. Figure 1. 4 (a) and (b) demonstrates the integration of GaAs-

based front-end and SiGe BiCMOS based core-chip, while Figure 1. 4 (c) shows a 768-

element phased array at X-Band that utilized the described integration (Rebeiz et al 2017). 

This work validates that SiGe and CMOS technologies can be preferred more in new 

generation T/R modules. 

 

Besides the technological improvements, improving the resolution of the T/R 

module is one of the trends for the next-generation systems. The directivity and 
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Figure 1. 4 a) Block diagram of core-chip and RF front-end b) SiGe and GaAs chips in 

the phased array c) X-Band 768-element phased array (Rebeiz et al 2017). 

 

accurate control of the antenna beam are critical parameters for the system because they 

are defining the detecting and tracking capability of the module. As the phase resolution 

of the system is improved, higher beam directivity and lower side-lobe levels can be 

observed. Similarly, high attenuator resolution is required to have more control over the 

side-lobe levels. This can be achieved by increasing the number of elements in the system, 

without improving the resolution. However, it would result in an increased area, weight 

and cost of the system. Hence, an enhanced resolution is a trend in the next generation of 

modules not only for the sake of higher performance but also to decrease the cost of the 

system (Mailloux 2005). As a drawback of improved resolution for PS and Attenuator, 

their loss contribution on the core-chip would be higher. This dramatically lowers the 

remaining performance of the system, such as gain, sensitivity, and transmitting power. 

 

Treating each chain of the module separately is one of the approaches that is 

preferred in the next generation of the modules, to overcome the drawbacks of the high 

phase and amplitude resolution. The phase range of PS is defined as 3600 because of the 

periodic behavior of a sinusoidal signal. However, the attenuation range is decided 

through various specifications. The range of the attenuator might be chosen to correct the 

amplitude error of the PS while it can be also determined by considering beam tapering. 

So, its range is not as solid as PS. The increased attenuation range means better beam 

tapering. However, the attenuator loss gets high as the range increased. This deteriorates 

the sensitivity of the RX. Therefore, some T/R modules prefer to divide the attenuator 

into sub-sections. They add the high attenuation bit only to the TX chain to improve the 

RX features (McQuiddy 1991). The new generation modules may also prefer including 

the high attenuation bits at the RX instead of TX. Within this way, the RX can still operate  
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Figure 1. 5 Common-path based core-chip example with separated attenuator range 

(Bentini et al 2014). 

 

at high input signal levels, without being saturated when the high attenuation bit is 

activated. However, the NF of the core-chip might be higher because of this approach. 

The side-effects of the attenuator on RX can be suppressed if the core-chip is cascaded 

with III-V based front-ends. Besides, it can be told that the range of the attenuator is 

chosen based on the application. The range and the least significant bit (LSB) of the 

attenuator are generally defined through binary decimals, but they can be updated 

regarding the system specifications. Figure 1. 5 presents a common-path based core-chip 

example, which divided the attenuator into several sub-sections considering the 

specifications of each chain. An additional attenuation block is placed in CC to tolerate 

the unexpected errors (Bentini et al 2014). Besides the mentioned updates, the amplifiers 

in CC do not only compensate for the loss of the path anymore but also add further 

features such as enhancing the dynamic range or caring the gain flatness to improve the 

system performance further. However, the described specifications make the 

amplification blocks more complex due to including contradictory parameters. As a 

result, the core-chip and the CC become more complicated in the new generation phased 

array systems. 

 

The next-generation phased array systems tend to satisfy the multiple functionality 

requirement at a wide frequency range. The goal is to have a single chip that is valid for 

all applications. This will reduce the total cost due to not requiring additional chipsets for 

various frequency bands. The systems are desired to generate independent multiple beams 

at various frequencies, simultaneously (Jeon et al. 2005). Additionally, wideband 
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performance is also expected for single beam operations or satellite communications, 

which will decrease unnecessary repetition of designs for different bands (Sayginer 

2016). Similarly, it is also a requirement of electronic measure and countermeasure 

systems; the new generation phased arrays should detect and track multiple objects at the 

same time, while “hiding” becomes another parameter for the system. For that purpose, 

frequency and/or beam hopping features are expected to be included in the system as a 

method for anti-jamming; changing the frequency of operation to a new band can cause 

a problem for the detection mechanism. The jammer should detect the object by 

transmitting high power with the highest directivity from a far range. However, if the 

object decides to change its operating frequency to a new band, the jammer should re-

search the object, which will reduce its detection range. Additionally, the object can be 

hidden from the jammers due to higher path loss at higher frequency (Saarnisaari 2017). 

Therefore, multi-band operation can be named as one of the major targets of the new 

generation of T/R modules. When the integration capabilities of IC technologies are 

considered, the SiGe and CMOS can be preferred for RF and digital beamforming phased 

arrays, which can broaden their market towards commercial applications. However, Si-

based technologies have limited bandwidth due to including passive structures with low 

Q-factors. Hence, multi-band operation is remaining as a major challenge for silicon 

technologies.  

 

 

 Positively Sloped X-Band Core-Chip 

 

 

As a member of Prof. Yaşar Gürbüz’s SÜMER group, I was involved in a 

transceiver project and designed a positively sloped 6-bit T/R module core-chip for X-

Band phased array applications by utilizing IHP Microelectronics’ 0.25 µm SiGe 

BiCMOS technology. The core-chip favored an unidirectional common-chain, where the 

signal direction is determined by proper switching between RX and TX chains. It includes 

active equalizer amplifiers to tolerate the high loss by introducing a linearly increasing 

gain over the defined frequency range. 6-bit phase and amplitude resolutions are achieved 

by utilizing vector-sum type PS, T-and-π type attenuator, respectively. The X-Band core-

chip is submitted to the journal of “Transactions on Circuits and Systems: Regular 

Papers” and it is under revision. In this section the core-chip, its sub-blocks, and the  
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Figure 1. 6 The block diagram and the top-view of the measured positively sloped X-

Band 6-bit core-chip. 

 
Figure 1. 7 (a) The block diagram of the SPDT switch. (b) The block diagram of the 

SCU with a basic amplifier. 

 

measurement results are presented; the block-diagram and top view of the core-chip are 

presented in Figure 1. 6; it covers 18.61 (4.465 x 4.169) mm2 of area.    

 

 

1.3.1. The Sub-Blocks of the Positively Sloped X-Band Core-Chip 

 

The measured X-Band SiGe BiCMOS core-chip aimed high phase resolution which 

might have side-effects such as low gain, narrow bandwidth, high NF, and limited 

dynamic range. The high resolution also leads to a negatively sloped loss, which results 

in sharp gain drops and limits the 3-dB BW of the system. Hence, each of the sub-block 

in the core-chip is designed by considering their gain characteristics. 

 

The SPDT switches are responsible for determining the signal direction of the 

design. The series-shunt topology is preferred shown in Figure 1. 7 (a), due to its  
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Figure 1. 8 The schematics of (a) the amplifier at the input of the TX, (b) the amplifiers 

at the outputs of RX and TX. 

 

simplicity, compactness and zero-power consumption. The signal is controlled by 

switching the isolated-NMOS (iNMOS) transistors on-and-off properly, where the device 

sizes are decided by considering the loss of the signal path (Ozeren et al 2016). Different 

than the conventional approach, small-sized devices are preferred to minimize the 

capacitive parasitic effects.  

 

The core-chip is designed considering a half-duplex system. Therefore, some of the 

amplification stages might be unused, when a chain is selected; i.e. TX amplifiers will 

still dissipate power even if the RX chain is chosen. To prevent unnecessary power 

consumption, the control bits of the SPDT switches are synchronized with supply 

controller units (SCU). They are composed of buffer networks and connected to the bias 

nodes of an amplification stage. Figure 1. 7 (b) presents a basic block diagram of an SCU 

utilized within an amplification stage. 

 

The core-chip includes multiple amplification stages to succeed in the desired level 

of gain and output power. Each signal path includes two separate amplifiers, which are 

placed at the input and output of the chain; i.e. an LNA and a high dynamic range 

amplifier for the RX chain. The amplifiers utilized in the inputs of the RX and TX chains, 

preferred single-stage amplification, while two-stage cascode amplifier topology is 

favored for the output amplifiers, to achieve the desired gain. The cascode topology is 

favored in all amplifiers, because of its high stability. The LNA includes a bypass mode 

to improve its dynamic range (Turkmen 2018). The schematic view of the TX input 

amplifier and output amplifiers are shown in Figure 1. 8.  
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Figure 1. 9 The block diagrams of (a) π-type attenuator bit, (b) T-type attenuator bit, (c) 

PS, (d) the EQ_Amp and Slope_Amp. 

 

The amplitude of the core-chip is controlled by the T-and-π type attenuator sections 

as in Figure 1. 9 (a) and (b), where the networks are switched by HBTs. The bits include 

phase compensation inductors (Davulcu 2016), to tolerate the phase error between 

attenuation steps. An additional bit (7th bit - 0.25 dB) is added to the attenuator for tuning 

purposes. The phase control of the core-chip is done by an active phase shifter. It 

generates four orthonormal reference vectors (I± and Q±) by utilizing a transformer and 

second-order polyphase filter. They are cascaded with four VGAs to control the 

amplitude of the I/Q vectors as shown in Figure 1. 9 (c) (Cetindogan 2017). The phase 

and amplitude of the core-chip can be controlled both by parallel pads and an integrated 

SPI controller. 

 

The described sub-blocks have negatively sloped gain characteristics, which limits 

the operating bandwidth of the system. Therefore, two separate amplifiers are introduced 

to the CC of the X-Band core-chip to tolerate the gain fall; one of the amplifiers 

(EQ_Amp) is responsible to balance the gain drop of the sub-blocks, where the second 

amplifier (Slope_Amp) determines the final gain characteristic. The difference between  
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Figure 1. 10 The measured S-parameters of the X-Band core-chip for RX and TX. 

 

these amplifiers is their gain slopes. The amplifiers combine cascode amplifier topology 

with a filter network as in Figure 1. 9 (d), to succeed a positively sloped gain in a compact 

area. The EQ_Amp is accepted as a letter in “Transactions on Circuits and Systems II: 

Express Briefs”. The detailed information about the EQ_Amp can be founded in (Çalışkan 

2019). The remaining non-linear gain-slope behavior is neutralized by the passive 

equalizers that are designed for each chain specifically.  

 

 

1.3.2. The Measurements of the Positively Sloped X-Band Core-Chip 

 

The gain and impedance matching performances are summarized in Figure 1. 10. 

The core-chip has 22-and-23.35 dB of peak gains with + 3.7 dB/GHz and + 3.35 dB/GHz 

of slopes achieved for RX and TX chains, respectively. Additionally, the core-chip 

presented a linear gain characteristic between 6-to-12.5 GHz with an adequate level of  
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Figure 1. 11 The measured (a) OP1dB of the TX, (b) NF of the RX. 

 
Figure 1. 12 The measured (a) phase states, (b) attenuation states, (c) optional 

attenuation bit, and (d) RMS phae and amplitude errors of the core-chip. 

 

impedance termination throughout the defined bandwidth. The RX has a measured NF of 

12.8 dB, while the TX has 13.4 dBm of output-referred compression point (OP1dB) as 

shown in Figure 1. 11. 

 

The core-chip has a 6-bit of phase and amplitude resolution, and it states are shown 

in Figure 1. 12 (a) and (b). The performance of the optional 7th bit of the attenuator is 

shown in Figure 1. 12 (c). The root-mean-square (RMS) phase and amplitude errors of 

the core-chip are 2.60 and 0.25 dB, respectively, which are presented in Figure 1. 12 (d). 

During small-signal operation, the X-Band core-chip dissipates 411 and 400 mW of 

power during RX and TX modes, respectively. To the best of my knowledge, the 

presented work is the first SiGe BiCMOS core-chip that achieved a positively sloped high 

gain with a 6-bit phase and amplitude resolution. Among similar works in literature,  
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Table 1. 2 Comparison of X-Band core-chip with similar works 

*Multifunctional Chip. † Power dissipation at OP1dB point. 

 

the X-band core-chip has the highest functionality and high RF performance without 

sacrificing from power consumption. The performance of the described positively sloped 

X-Band core chip is summarized in Table 1. 2. 

 

The X-Band core-chip achieved remarkable performances among Si-based designs, 

but it covers close to 19 mm2 of area. Additionally, the RX NF is measured as 12.8 dB 

minimum, although it achieved more than 20 dB of gain for both chains. As mentioned, 

the GaN and GaAs technologies promise high output power, while smaller area and lower 

power consumption can be achieved by Si-based designs. Moreover, small-signal gains 

of the amplifiers are close to each other regardless of the technology. However, III-V 

devices conclude with lower RX noise figure (NF), even they utilized a similar CC to the 

Si-based modules. This leads to cascading SiGe based core-chips with an III-V based 

front-end blocks to satisfy the requirements. Besides its drawbacks and single band of 

operation, the X-Band core-chip achieved remarkable RF performance among the other 

SiGe core-chips. The designed X-Band core-chips’ RF performance, its weaknesses, and 

technological limitations become motivation sources of the presented dissertation. 

 (Heijni

ngen 

2006) * 

(M/A-

COM 

2010) 

(Sim et 

al 

2015) 

(Gharib

doust et 

al 2012) 

(Sim et 

al 

2013) * 

(Jeong 

et al 

2013) 

(Caro

si et 
al 

2009) 

(Cao 

et al 

2017) 

(Lohmi

ller et 
al 

2017) 

(Liu et 

al 

2016) 

This 

Work 

Tech. 

0.25 

µm 

GaAs 

GaAs 
0.13 

µm 

CMOS 

0.18 

µm 

CMOS 

0.13 

µm 

CMOS 

0.25 

µm 

SiGe 

0.25 

µm 

SiGe 

0.25 

µm 

SiGe 

0.25 

µm 

SiGe 

0.13 

µm 

SiGe 

0.25 

µm  

SiGe 

Freq. 

[GHz] 

8.5 -

11.5 

8.5 - 

11 
9 - 10 8.5 - 10 8.5 - 

10.5 
8 - 11 9 - 

10.5 
8 - 10 8 - 12 9 - 11 8 - 12 

RX/TX  

Gain [dB] 

27 

/ - 

21 

/ 19 

9 

/ 12 

12 

/ 12 

3.5 

/3.5 

20 

/ 30 

17 

/ 17 

11 

/ 15 

17.7 

/ 17.8 

25 

/ 22 

21.95 

/ 23.35 

Gain Slope 

[dB/GHz] 
Flat ± 1 Flat ± 2 - 1.5  - 8 ± 4 ± 1 ± 1 -4 

+ 3.7 / 

+ 3.35 

# of bits 

PS/Att. 
6 / 5 6 / 5 6 / 5 6 / 5 6 / 5 5 / 5 5 / 5 3 / - 6 / 6 5 / - 6 / 7 

RMS 

Phase 

/Amp. 

Error 

[0/dB] 

50 / - 1.50     

/ 0.3 

2.30      

/ 0.4 

2.30          

/ 0.25 

2.30      

/ 0.3 

2.30       

/ 1.5 

2.30    

/ 1 

2.30     

/ 3 

2.30     

/ 0.25 

2.30     

/ - 

2.60    

/ 0.25 

RX / TX 

OP1dB 

[dBm] 

13 / 19 
17.5     

/ 23.5 
- / 11 

11         

/ 11.5 

6.5         

/ 6.5 

- / 18 -        

/ 12 

-14      

/ 13 

-3       

/ 13 

6          

/ 28 

11.7    

/ 13.4 

RX NF 

[dB] 
2.5 5.2 - 8.5 7.5 9 10 3.5 9.8 3 12.8 

RX / TX 

DC Power 

Diss. [mW] 

- 2100 800       

/ 800 

670        

/ 640 

150        

/ 150 

1500     

/ 1500 

800     

/ 800 

25        

/ 150 

330       

/ 790 

352        

/4128† 

411     

/ 400  

Area 

[mm2] 
20 - 2.8 12.8 1.2 8.4 15.99 12 9 15.6 18.61 



17 

 

 

 

 The Challenges and Limitations of the SiGe Core-Chip 

 

 

The next-generation phased array systems expect better RF performances without 

sacrificing the basic requirements such as the integration capability, area, and cost. 

Recently, different core-chips are presented for various applications, but they have 

sacrificed from some of these parameters. For instance, some core-chips with high phase 

and amplitude resolution have sacrificed NF and output power. Additionally, they 

concluded with higher power consumption and a large area. The Si-based core-chips can 

follow the recent trends in phased array core-chips to some extent. However, their BW is 

limited, even the NF, output power and total area are sacrificed. It is because of the 

increased complexity of the chains and technological limitations. The operating 

frequency of both HBT and CMOS transistors can be improved throughout the years. 

However, their breakdown voltages are going to be reduced, which will reflect as lower 

output power for the core-chip. Additionally, the on-chip inductors in silicon have low 

Q-factor due to having a conductive substrate. This is another restriction for the operating 

bandwidth of Si-based designs. Moreover, the bandwidth of the III-V technologies is 

wider, because of their high quality factor (Q-factor) of the passive devices, which results 

in low loss and wide operational bandwidth. Moreover, the area of the Si-based core-

chips might not shrink much after the technological enhancements due to being mainly 

defined by the size of the inductors (Hansen 2003). In summary, achieving a multi-band 

core-chip with a low NF in a small area is remaining as a significant challenge for the Si-

based technologies to reach the next generation trends in phased array systems. 
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2. 8-to-24 GHz LOW NOISE SiGe BiCMOS BIDIRECTIONAL CORE-CHIP 

 

 

 

In this thesis, a wideband SiGe BiCMOS T/R module core-chip design is realized. 

It is aiming to surpass the bandwidth limitations of the next generation phased array 

systems by utilizing a bidirectional common-path. The preferred architecture, its sub-

block measurements, and post-layout simulations are explained throughout this chapter. 

 

The T/R module core-chip architecture that targets 8-to-24 band of operational 

bandwidth in 0.13 µm SiGe BiCMOS technology, is presented in Figure 2. 1. The core-

chip aimed low NF, a positively sloped high gain and low power consumption in a 

compact area by favoring a bidirectional signal path. The goal is to achieve similar RF 

performances with III-V counterparts from the X-to-K band. The unidirectional approach 

may require several sub-blocks in CC that can increase power consumption, total area 

and especially the dependency on frequency. Hence, the bidirectional signal path is 

preferred to reduce the mentioned parameters at the expense of the raised complexity. 

The core-chip is consuming 112 mW of power and achieved about 31.5 dB and 32 dB of 

midband gain for RX and TX, respectively. If a conventional core-chip is planned to be 

cascaded with III-V based RF front-ends, the system may suffer from a high negative 

slope. Therefore, the realized multi-band core-chip targeted a + 2.1 dB/GHz gain slope 

throughout the defined bandwidth, to conclude with a flat gain for the system. Within this 

way, the 3-dB gain-bandwidth the phased array system would be improved. The design 

has lower than 5 dB NF for RX while targeting 4-bit of resolution. The attenuation range 

is 30 dB. 6 ± 2.5  dBm of output-referred compression point (OP1dB) is obtained from 

the TX throughout the BW. Higher output power levels might be achieved by sacrificing 

the BW. The core-chip depends on a half-duplex system. Therefore, the design includes 

proper switching and power supply circuitries that enable on-off states regarding the 

selected chain in a 5.5 mm2 area.  
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Figure 2. 1 Block diagram of the 8-to-24 GHz SiGe BiCMOS T/R module core-chip. 

Table 2. 1 Comparison of Wideband T/R modules with various technologies 

 (Bentini 

2014) 

(Jeong 

2018) * 

(Sim et al 

2015) 

(Sim et al 

2013)* 

(Cho et al 

2014) * 

(Sayginer 

et al 2016) 

This Work 

Technology 0.18 µm 

GaAs 

0.25 µm 

GaAs 

0.13 µm 

CMOS 

0.13 µm 

CMOS 

0.13 µm 

CMOS 

0.13 µm 

SiGe 

0.13 µm 

SiGe 

Architecture Common -

Path 

Bidirect. Bidirect. Bidirect. Bidirect. Receiver 

Only 

Bidirect. 

Freq. [GHz] 6 - 18 6 - 18 9 - 10 8.5 - 10.5 8 - 16 2 - 16 8 - 24 

# of channels 1 1 4 1 1 2 / 4 / 8 1 

RX/TX Gain 

[dB] (avg.) 

21 / 18 11 12 / 9   3.5 / 3.5 -1 /-1 9 31.5 / 32 

Phase Range 3600 255 psec.** 3600 3600 198. 4 psec** 3600 3600 

Att. Range 

[dB] 

> 40 23.75 31 31 31.5 - 30 

Phase & Att. 

Resolution (bit) 

4 / 5 8 / 7 6 / 5 6 / 5 7 / 6 5 / - 4 / 4 

RMS phase / 

att. Error 

130 / 0.8 1.7 psec / 1 2.30 / 0.4 4.30 / 0.3 1.56 psec / - < 8.50 / 1  5.60 / 0.8 

NF @ RX [dB] 8 18 - 7.5 - 11.9 < 5 

OP1dB @ TX 

[dBm] 

17 16.5 11 6.5 - -7 6 

Power con. (W) - / 1.25  1.6 0.8 0.15 0.28 0.25 0.112 

Area [mm2] 25.8 20 11 1.2 3.9 5 5.5 
*: Multifunctional chip, instead of Core-Chip. **: Utilized TTD, not PS. 

 

Table 2. 1 compares some wideband and bidirectional core-chip examples in the 

literature, with the realized wideband design. (Jeong et al 2018) and (Cho et al 2014) are 

bidirectional designs. However, they do not include RF front-end blocks, such as LNA, 

PA (or Medium Power Amplifier - MPA for the core-chip) and SPDT. Moreover, they 

include True Time Delay (TTD) instead of PS. (Sayginer 2016) presents a programmable 

phased array receiver that can generate multiple beams, simultaneously. (Sim et al 2015) 

and (Sim et al 2013) are utilizing a bidirectional signal path. However, both designs are 

suffering from narrow bandwidth. The core-chip in this dissertation aimed to exceed the 

presented frequency and performance limitations of the Si-based technology. The design 

targets various metrics that are contradicting each other. Hence, the wideband core-chip 

is realized by considering a priority list. The area and power consumption are sacrificed 

for some blocks to success the desired band of operation, gain, and NF.  
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The wideband core-chip includes an SPDT switch that selects the appropriate signal 

path, as in Figure 2.1. The switch is designed by considering the compactness and 

wideband expectations of the core-chip. Additionally, it should provide an adequate level 

of isolation between LNA and MPA, to block any possible signal leakage. The front-end 

blocks should be turned on-and-off coherently with the SPDT, to prevent unnecessary 

power dissipation in the half-duplex core-chip. Similarly, the signal direction of the CC 

should be updated regarding the control signal of the SPDT. The described control 

mechanism is enabled by integrated supply control units (SCU) that are introduced to 

each of the amplifiers. 

 

The Bidirectional Amplifier (BDA) is one of the crucial blocks of the presented 

wideband core-chip, due to providing amplification in a bidirectional way. It decreases 

the number of blocks in the core-chip and tolerates the loss of the CC. Moreover, it is 

responsible for the design’s positively sloped gain. The BDA achieved these targets with 

low power consumption in a compact area. 

 

LNA and MPA are the two front-end amplification blocks of the core-chip. LNA is 

the amplifier that dominates the gain and NF of the RX, while the MPA determines the 

gain and output power of the TX. The prior aim of both amplifiers is to have a wide BW. 

The MPA has similar specifications with the LNA except for the output power, which 

should not differ much over the frequency. The impedance at the output terminal affects 

the maximum output power of an amplifier. However, the impedance for maximum 

output power may not be 50 Ω, which creates a trade-off between proper impedance 

matching and output power. Additionally, the SiGe-based MPA cannot reach the output 

power levels of a GaN PA, due to its breakdown limitations. The TX of the core-chip can 

be cascaded with an III-V based PA to satisfy the system requirements. Hence, the MPA 

is designed by considering its compatibility with a GaN PA. 

 

The amplitude and phase control of the wideband core-chip is enabled by the 

attenuator and PS, respectively. They are in the CC of the core-chip. Hence, they should 

be compatible with the bidirectional signal path as the BDA. The wideband core-chip has 

a 4-bit of amplitude and phase resolution. The control of those blocks is enabled by the 

help of integrated digital circuitries. The results show that the core-chip can target for 

higher resolution. 
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Figure 2. 2 An antenna pattern representation including the effect of beam squint 

(Garakoui et al 2011). 

 

The design includes a phase shifter, which has a narrow instantaneous bandwidth. 

Some applications that target multi-band of operation, such as modules for jamming, 

utilize TTD block instead of a PS, due to the phenomena called “beam squint”. The 

variation of the antenna beam direction as the frequency changes is called beam squint, 

which is limiting the bandwidth of the system as demonstrated in Figure 2. 2 (Garakoui 

et al 2011). The phased arrays that are targeting narrowband applications can utilize PS 

in their system. A wideband PS might be required for a narrowband system that is aiming 

to operate at a wide frequency range (Chu et al 2011). The TTD elements can provide a 

wide instantaneous bandwidth where the design of a wideband PS would not support the 

defined condition. Ideally, the PS has a constant phase characteristic over the frequency. 

On the other hand, TTD elements introduce constant time delay versus frequency. 

Therefore, they have a low beam squint during beam steering, which enables wideband 

arrays (ChoJeong et al 2014). This reflects a delay specification instead of phase for some 

core-chip application, as shown in Table 2.1.  

 

Si-based technologies have some difficulties with implementing TTD, due to 

including multiple switches and limited Q-factor of the passives. Additionally, 

transmission line-based TTDs can consume large areas and have limited delay range. The 

artificial transmission lines can succeed in higher delay ranges at the expense of limited 

bandwidth. However, the applications such as jammers require high TTD resolution, 

delay range and output power as presented in (Jeong et al 2018). The III-V technology 

can provide passives with high Q-factor and lower switching losses that can conclude a 

high delay ranged wideband TTD elements, with the expense of cost and area. Therefore, 

the wideband core-chip depends on the phase shift instead of the time delay. Besides, the 

core-chip blocks are designed by considering their group delay (GD) flatness, and relative 
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time delay variations to demonstrate its compatibility with the time-delay systems.  

 

This thesis realized an X-to-K band T/R module core-chip in SiGe BiCMOS 

technology that can be utilized in wideband phased array applications. To the best of my 

knowledge, multi-band T/R module core-chip that covers X, Ku and K band in SiGe 

BiCMOS technology has not been reported in the literature. It presents close to 30 dB of 

midband gain for both RX and TX, 4-bit phase and amplitude resolution for both chains 

and maximum 5 dB RX NF with a 16 GHz of bandwidth, which is not demonstrated in 

SiGe technology before. Additionally, the core-chip is consuming 112 mW of power in a 

5.5 mm2 area. Therefore, it can lead to cheaper and more compact phased array systems. 

 

 

 Passive Components in the Core-Chip 

 

 

The wideband core-chip is designed by regarding 8-to-24 GHz of bandwidth. This 

is equal to 100% of fractional BW when the 16 GHz is selected as the center frequency. 

The extremely wide bandwidth expectation requires new passive component design 

approaches to validate the ideal schematic design results. The technology offers seven 

(five thin and two thick) metal layers, and a Metal-Insulator-Metal (MIM) capacitor with 

a high quality factor (Q-factor). MIM capacitor’s bottom connection is at Metal 5 for a 

lower shunt parasitic capacitance, where the upper metal is contacted by Top Metal-1. It 

is modeled by the technology provider. The process features are introduced to the 

electromagnetic (EM) simulators and the lumped components, except resistors, are 

simulated with the surrounding components (inductors, ground layers, etc.) for 

verification and higher accuracy. The DC blocking capacitors are critical for the sub-

blocks. They might act as an RF component at the lower end of the bandwidth if small 

values are preferred. At the same time, large DC blocking capacitors’ shunt parasitic 

would affect the high-frequency behavior of the core-chip dramatically. To avoid the 

mentioned problems, the small-sized series matching capacitors are utilized to prevent 

any unnecessary addition of DC blocking capacitors. This concern is also addressed in 

the following sections. 

 

The two top metal layers are dedicated to inductors, which are custom-designed in 
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SONNET and ADS Momentum. The area of a block (also the core-chip) is mainly 

determined by the sizes and the number of the inductors. Therefore, their values, layouts, 

and box sizes are as significant as their Q-factor. It should be noted that adequate 

separation between inductors is required, to prevent mutual coupling between them. This 

limits the smallest area that can be achieved from a single block. Similarly, the floorplan 

of the core-chip should be done by considering the coupling between blocks. Therefore, 

the compactness of the sub-blocks and core-chip is limited.  

 

 The Q-factor of an inductor defines the loss of the component, which can 

emphasize both capacitive and resistive effects. The top metal layers of the technology 

provide higher conductivity and lower shunt parasitic, due to being thick and being away 

from the substrate. Figure 2. 3 (a) demonstrates a 1 nH of an inductor that is designed in 

SONNET. The top metal width is chosen as 10 µm to minimize the resistive parasitic 

effects, while the distance between metals is selected as 5 µm to have small fringe 

capacitance between metal layers. The box size is determined by preferring 40 µm 

distance from the inductor sides, which is 0.066 mm2. As shown in Figure 2. 4 (a) the 

presented design has about 1 nH inductance, but it varies at about 0.4 nH between 8 GHz 

and 24 GHz. This is a significant problem for the wide bandwidth target. The inductors 

should provide a flat response to achieve the desired performance from the blocks. Hence, 

the top metal width can be reduced to minimize the substrate coupling, which is also 

going to shrink the box size. For that purpose, the top metal thickness can be decreased 

to 2 µm, the minimum value the technology can provide. This concludes with a high 

series parasitic resistance, so increased loss.  

 

The realized wideband core-chip considers different inductor designs to both 

enhance their flatness over frequency and shrink their size. Figure 2. 3 (b) demonstrates 

one of the approaches that can be applied to shrink the size of the inductor. The inductor 

utilized two top metal layers for a spiral design and connect them in a parallel manner to 

decrease its parasitic resistance. The described method can give rise to smaller inductors 

by minimizing the drawbacks of the 2 µm metal thickness. After EM simulations, the 

inductance variation between 8-to-24 GHz is founded as 0.3 nH, even if the parallel top 

metals introduce shunt and mutual fringe capacitance. Additionally, the total box size is 

63% lower than the initial case, as shown in Figure 2. 3 (a). As a third method, the top  
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Figure 2. 3 Three different inductor designs; a) single top metal with 10 µm thickness b) 

two top metals parallelly connected c) two top metals serially connected. 

 
Figure 2. 4 Comparison of different inductor designs; a) Inductance variation and total 

box size variation b) Q-factor comparison of three inductors. 

 

metals can be connected in series to form a smaller inductor, as presented in Figure 2. 3 

(c). Compared to a parallelly connected case, the metal thickness is doubled to balance 

the increased series parasitic resistance. Serially connecting the top metals resulted in an 

improved Q-factor and inductance flatness, which is 0.24 nH. Moreover, when the case 

(1) is considered, the serially connected top metals concluded in about 75% smaller box 

size. The Q-factors of the three inductors are shown in Figure 2. 4 (b). 

 

Inductors may have different purposes and their specifications may vary. So the 

utilization of two top metal layers in series or parallel would not be the best cases. For 
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Figure 2. 5 The cross-section of the guided microstrip transmission line. 

 

instance, the inductors that are series to the signal path can require high Q-factor with low 

series resistance. Therefore, the blocks of core-chip include inductors as small as possible 

by using two described approaches, if they do not contradict with the block specifications. 

 

The transmission lines utilized in the core-chip should be also considered carefully 

since their effect would change the frequency behavior of the design. To avoid any 

interference from nearby components or blocks, the guided microstrip lines are preferred 

throughout the design, as shown in Figure 2. 5. The ground layers are placed 20 µm away 

from the signal line, which is at Top Metal 2; a large gap to consider the line as a coplanar 

waveguide. Normally, the return path of a microstrip line is preferred to be away from 

the RF line, to decrease the shunt parasitic capacitance. However, the wideband core-chip 

has a compact area and includes several bias networks, digital controls, and electrostatic 

discharge (ESD) protection lines. Therefore, preferring Metal-1 as the microstrip 

transmission line’s return path would result in routing problems. Additionally, the ground 

distribution is a significant concern of the core-chip. Any parasitic at ground terminations 

would affect the high-frequency performance dramatically. As a result, it would be 

beneficial to dedicate multiple metal layers for ground terminations. Regarding the 

mentioned concerns, Metal-1 and Metal-2 are dedicated to bias networks, their routings, 

digital control, and ESD protection lines’ routing, while Metal-3, 4 and 5 are utilized for 

uniform ground distribution. Top Metal 1 and Top Metal 2 are used for grounding too, 

but these layers also include RF lines, capacitors, and inductors, which prevent uniform 

ground distribution. As a drawback, the gap between the RF line and its return path 

becomes smaller, which concludes with an increased capacitive effect. 
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 Single-Pole-Double-Throw (SPDT) Switch 

 

 

The wideband core-chip presented in this dissertation has a bidirectional CC that is 

connected to the front-end blocks by the Single-Pole-Double-Throw (SPDT) switch. An 

ideal SPDT switch should have almost zero insertion loss on the selected signal direction 

while isolating the unused path from the remaining parts with no power consumption.  

 

Various switch designs are presented in the literature that are targeting the basic 

switch features. The series-shunt topology is one of the most common architecture in 

SPDT designs, mainly due to its simplicity and compactness (Dinc et al 2012). Besides 

its advantages, it has high loss and limited isolation due to the imperfect nature of the 

NMOS devices in SiGe technology. The design can be improved by adding LC tank 

circuitries to the transistors that resonate at the frequency of interest. They present lower 

loss and higher isolation at the expense of increased area (Ozeren et al 2016). The quarter-

wavelength (λ/4) transmission lines can also be introduced to succeed in high-

performance switch design. In this approach, one of the λ/4 transmission lines is 

grounded, when one signal path is selected. This creates an almost ideal open circuit at 

the other end of the transmission line, which results in high isolation for the SPDT. The 

isolation and the insertion loss of those kinds of SPDTs are limited by the open-and-short 

terminations of the transmission lines (so the transistors). The disadvantage of this 

approach is a consequence of its nature; its highly dependent on the frequency of interest. 

Moreover, it might cover large areas if the design targets low center frequency (Davulcu 

et al 2017). Therefore, this topology is usually favored at higher frequencies, such as the 

W-or-D band. The active switch designs can also be candidates for the wideband core-

chips, as presented in (Comeau et al 2006). It utilizes two common-collector amplifiers, 

while the signal path is controlled by turning the amplifiers on and off. The loss of the 

described SPDT design is lower than the passive topologies, due to utilizing amplifiers 

with the expense of increased power consumption and reduced dynamic range. When the 

performances of the mentioned architectures are considered, the series-shunt topology is 

chosen to be utilized in the wideband core-chip design, due to promising a wide 

bandwidth, flat insertion loss and almost-zero power dissipation in a compact area. The  
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Figure 2. 6 (a) The block diagram of the SPDT. (b) The cross-section of the iNMOS. 

 

block diagram of the designed series-shunt topology is presented in Figure 2. 6. 

 

The series-shunt topology is based on switching the transistors according to the 

selected signal path. When the transistors M1 and M3 are turned on, the signal at Port-1 

can be transferred to the Port-3. At the same time, M2 and M4 should be turned off to 

prevent any signal leakage to ground and the Port-2; M3 grounds any possible signal 

leakage that is introduced from Port-2. The insertion loss and the isolation of the topology 

are determined through the on-and-off channel resistances of the transistors and the 

substrate conductivity. The SPDT switch is designed by utilizing isolated-NMOS 

(iNMOS) devices, where the channel is formed inside a p-well that is newly formed. It is 

isolated from the p-well of the substrate by an n-well boundary. The possibility of RF 

signal leakage to the p-well substrate is reduced by forming the device inside an n-well 

pool. The cross-section of the described transistor can be seen in Figure 2. 6 (b). The n-

well is connected to a high voltage as a reverse bias to the pn-diodes. For similar purposes, 

the body and the gate terminals of the device are connected by a 10 kΩ resistance (R1), 

which is defined as the “floating gate and body technique” (Dinc et al 2012). 

 

 In the conventional design approach, the sizes of the iNMOS devices are chosen 

to minimize the insertion loss of the switch. However, the transistors parasitic 

capacitances also become larger as their sizes increased. Hence, the loss of the SPDT 

starts to be dominated by the parasitic capacitance of the large transistor. Moreover, its 

loss starts to be dependent on frequency, which concludes with a negative slope. This is 

a major problem for an SPDT switch that aims wide bandwidth. As a solution, the device 

sizes might be favored as small for a low on-and-off mode parasitic capacitances. Within 

the described way, the SPDT’s insertion loss will be less variant over the frequency. So  
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Figure 2. 7 (a) The post-layout S-parameters, (b) The top view of the SPDT switch. 

 

the designed switch’s loss is sacrificed (increased resistance) to conclude with a flat 

response and almost constant terminal impedance over the defined BW. The inductors in 

the SPDT, LM, are utilized to resonate the parasitic capacitance of the transistors and 

properly match the impedance of all ports. It should be noted that LM also brings a 

frequency dependency. Hence, it is designed by considering the trade-off between the 

impedance termination and the frequency dependency. 

 

Figure 2. 7 (a) presents the post-layout S-parameter simulation results of the SPDT 

switch. It has 2 dB of flat loss with more than 32 dB of isolation. These results confirm 

that the design is appropriate for the wideband core-chip. Any variation in on-and-off 

mode parasitic values of iNMOS devices is going to affect the loss, its slope, and isolation 

of the switch. The output-referred compression point (OP1dB) of the switch is simulated 

as + 15.27 dBm. Figure 2. 7 (b) demonstrates the top view of the SPDT switch, which is 

ready for the fabrication. The “Port-3” is terminated with 50 Ω to simplify the 

measurements. Additionally, the iNMOS devices are controlled by integrated inverters, 

to decrease the number of required pads. When the pads and DC blocking capacitors are 

excluded, the SPDT switch has an area of 0.18 mm2. The DC blocking capacitors are 

removed during the integration to the wideband core-chip.  

 

 

 The Bidirectional Amplifier (BDA) 

 

 

The bidirectional amplifier (BDA) is one of the significant blocks of the wideband  



29 

 

 
Figure 2. 8 Various methods for bidirectionality in an amplifier; (a) switching between 

two amplifiers, (b) single amplifier with four switches, (c) Common IMN topology, (d) 

Common IMN with a single amplifier, (e) the distributed BDA. 

 

core-chip. The drawbacks of the other blocks, such as negative gain slope, high loss, and 

NF, is suppressed by the BDA. Moreover, the BW expectations of the core-chip are 

realized, without sacrificing from low power dissipation, and compactness of the block. 

 

The BDA architectures can be categorized into five groups as in Figure 2. 8, 

regarding the bidirectionality formation. The architecture in Figure 2. 8 (a) utilizes two 

separate amplifiers to form a BDA. Two SPDT switches are utilized to determine the 

signal direction with the expense of increased area, power consumption and limited 

bandwidth (Cho et al 2013). The number of amplifiers can be reduced to one as in Figure 

2. 8 (b), to conclude with a smaller area and lower power consumption. However, the 

design might still suffer from low gain and high NF, due to an increased number of single-

pole-single-throw (SPST) switches. Some of the designs favor common impedance 

matching networks (IMN) as in Figure 2. 8 (c), to improve compactness, gain and NF 

features. They mainly depend on quarter-wavelength (λ/4) transmission lines, which 

dominates the BDA area. Therefore, they are preferable for higher frequencies (Kumar et 

al 2017). Although common IMNs can be introduced to a single amplification stage, 

which has a proper supply switching mechanism shown in Figure 2. 8 (d), they have a 

narrow band of operation (Yang et al 2004). 
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Figure 2. 9 a) Schematic of the BDA. b) Signal flow of the BDA during forward-mode. 

c) The small-signal model of Q1. 

 

The distributed networks as in Figure 2. 8 (e) are one of the most preferred 

topologies for the BDAs, and notable performances have been presented in the literature. 

Alizadeh demonstrated a 2-to-12 GHz distributed BDA implemented in 180 nm CMOS 

technology. The design has 10 dB gain while dissipating 380 mW of power in 1.89 mm2 

area (Alizadeh et al 2019). Cho achieved 17 GHz of bandwidth with 10 dB gain, a 

maximum of 6.5 dB NF in 0.81 mm2 of an area by utilizing 130 nm CMOS technology 

(Cho et al 2013). The mentioned works have a common feature; they have flat gain. The 

wideband core-chip target wide operation bandwidth while including multiple sub-

blocks. Therefore, cascading multiple sub-blocks might conclude with a complicated non-

linear and/or negatively sloped gain characteristic (Çalışkan et al 2019), which contradicts 

with the expectations. The BDA that is integrated into the core-chip, should have low 

output power and group delay (GD) variation over the frequency. Within these metrics, 

it might be compatible with a wideband radar system. Because of the described concerns, 

a common IMN network without λ/4 lines favored for the presented BDA. 
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2.3.1. The BDA Design Procedure 

 

The BDA should be capable of operating in both signal directions with high 

stability. High isolation between terminals can be obtained by preferring the cascode 

topology, due to reduced Miller capacitance (Çalışkan et al 2019). However, the noise 

and power dissipation are sacrificed compared to common-emitter based amplifier. As 

shown in Figure 2. 9 (a), the BDA is composed of two cascode amplifiers that are 

connected back-to-front. When a signal path is selected, one of the amplification stages 

is turned on while the other one turned off. Figure 2. 9 (b) summarizes the schematic view 

during the forward-mode. 

 

Wide bandwidth, positively sloped gain, low power dissipation, and small area are 

some of the expected features of the BDA. These contradicting specifications forced each 

part of the design has multiple functionalities. The LC-type network is introduced as the 

output matching networks of the amplifier for proper impedance termination. At the same 

time, it works as a band-reject filter for the forward-mode. The attenuation of the filter is 

high at the lower end of the bandwidth, which guides the amplifier to have a positively 

sloped gain. The values of the reactive components (LN, CN, and RN) are determined by 

the resonance frequency (ω0) that is chosen as 10 GHz. 

 

The design procedure depends on a significant assumption; the amplification stage 

should have high on-and-off mode output impedances. Within this way, their effect on 

the filter can be neglected. The conventional noise-and-power matching technique utilizes 

the largely-sized high-performance (HPR) HBT devices, which produce in having low 

and highly reactive amplifier terminations. Therefore, a conventional amplifier might 

conclude with limited BW and high-power dissipation. In the realized BDA, the size of 

the HBTs is favored as small as possible with the expense of reduced gain. An emitter 

degeneration inductor is not utilized to tolerate the gain drop. The mentioned approach 

results with high input (Zπ) and output (Zrev) impedances for the cascode stage. For the 

determined bias conditions, the input-output impedances of a single cascode stage are 6 

kΩ and 1 MΩ, respectively (extracted from DC simulations and process documentation). 

The supply voltages of the amplifiers are determined through the breakdown level of the 

HPR HBTs, while the base bias of the Q1 is selected for a peak ft around 250 GHz. 

 



32 

 

The input impedance of the Q1 can be simplified to a shunt LC for the forward-

mode of operation, because of neglecting the effect of Zπ. Assuming high Zπ and Zrev 

simplifies the small-signal model of the forward mode Q1 as in Figure 2. 9 (c). As shown, 

the band-reject filter is converted to a π-type network, where LC is utilized as an RF-choke 

inductor for the bias of Q1. The component values of the band-reject filter are already 

determined for a 10 GHz of ω0 (900 pH of LN and 280 fF of CN), where LC can be 

calculated from the following impedance transformations;   

 

𝐿𝐶 =  
𝑅𝑡𝑜𝑡𝑎𝑙

𝜔𝑜𝑄𝑙𝑒𝑓𝑡
; 𝐿𝑁 =  

𝑅𝑁

𝜔𝑜𝑄𝑟𝑖𝑔ℎ𝑡
                                 (3)  

𝐶𝑁,1 =  
𝑄𝑙𝑒𝑓𝑡

𝜔𝑜𝑅𝐼𝑁𝑇
;  𝐶𝑁,2 =  

𝑄𝑟𝑖𝑔ℎ𝑡

𝜔𝑜𝑅𝐼𝑁𝑇
                                                                        (4) 

where    

𝑄𝑟𝑖𝑔ℎ𝑡 = √
𝑅𝑁

𝑅𝐼𝑁𝑇
− 1 ; 𝑄𝑙𝑒𝑓𝑡 = √

𝑅𝑡𝑜𝑡𝑎𝑙

𝑅𝐼𝑁𝑇
− 1                                                                (5)        

 

Qright can be calculated to extract the RINT impedance. Later, RINT will be utilized to find 

Qleft and LC, respectively. For the mentioned steps, RN can be assumed as 100 Ω; higher 

values are going to result with improved gain with the expense of declined bandwidth as 

will be explained. Within the provided component values, LC can be founded as 773 pH. 

 

The BDA should provide a wideband matching performance. Hence, Ztotal should 

also be analyzed to observe the effect of each component on bandwidth. The equation (6) 

presents the impedance of the filter (Zfilter) when a high Zrev is assumed. As presented, the 

real part of the Zfilter is mainly determined by the RN. Zfilter is in parallel with the amplifier’s 

input impedance (Zin), which makes Ztotal more complicated. To simplify the calculations, 

LN is neglected at this step of the calculations due to acting as a high impedance node. 

Assuming high LN reduces (6) into “RN -(j/ωCN)” and Ztotal can be founded as in (7). 

 

The ℜ(Ztotal) is mainly determined by RN, which is multiplied with a frequency 

 

𝑍𝑓𝑖𝑙𝑡𝑒𝑟 ≅
𝜔2𝑅𝑁𝐿𝑁

2

𝑅𝑁
2 +(𝜔𝐿𝑁)2

+ 𝑗
(𝜔𝐿𝑁)2−(𝑅𝑁)2(𝜔2𝐶𝑁𝐿𝑁−1)

[𝑅𝑁
2 +(𝜔𝐿𝑁)2](𝜔𝐶𝑁)

                                                        (6) 

𝑍𝑡𝑜𝑡𝑎𝑙 ≅
𝑅𝑁(𝜔2𝐿𝐶𝐶𝑁)2

(𝜔𝐶𝑁𝑅𝑁)2+(𝜔2𝐿𝐶𝐶𝑁−1)2
+  𝑗

𝜔3𝐿𝐶𝐶𝑁(𝑅𝑁
2 𝐶𝑁−𝐿𝐶)+(𝜔𝐿𝐶)

(𝜔𝐶𝑁𝑅𝑁)2+(𝜔2𝐿𝐶𝐶𝑁−1)2
                                 (7) 
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Figure 2. 10 The effects of (a) RN, (b) LN on Zotal. (c) Top-view of the BDA. 

 

dependent term. Therefore, Ztotal has a circle-like behavior on the Smith Chart, which can 

be seen in Figure 2. 10 (a) and (b). Moreover, ℑ(Ztotal) includes a ωLC term, which causes 

(7) always have a positive imaginary part. It can be suppressed by using the DC blocking 

capacitor, CM, also as a matching component. The described design procedure validates 

wideband 50 Ω termination, where the radius of the circle is mainly determined by RN. 

 

It should be noted that neglecting a component might appear significant calculation 

and simulation variations. Because the component might have a negligible impact on one 

band of operation while having a dramatic impact on the remaining part of the band. 

Therefore, further simplifications on provided equations are not feasible. Figure 2. 10 (a) 

presents calculated Ztotal with and without neglecting LN for RN values of 100 Ω, 75 Ω and 

50 Ω. As shown, neglecting LN resulted in a shifted Ztotal, even if it has approximately the 

same 50 Ω surrounding circle radius. Beyond this, the calculations are validated with the 

simulations, which included HBT models of the technology and ideal lumped 

components. 

 

Considering the trade-off between impedance termination and gain, RN is preferred 

as 100 Ω. A 50 Ω of RN might appear a better return loss for BDA with the expense of 

reduced gain. As shown in Figure 2. 10 (a) the radius of the Ztotal circle shrinks as RN 

decrease. Figure 2. 10 (b) demonstrates the effect of the LN on Ztotal, while other 

components remained the same. As shown, LN should be selected as high as possible for 

a wideband of operation. The inductance of a spiral inductor can be controlled through 

various parameters, such as the number of turns or inner radius. However, those 

parameters also increase the inductor’s shunt parasitic capacitance, which deteriorates the 
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self-resonance frequency. Therefore, a lower LN value (900 pH) is favored for the BDA 

design by sacrificing from the impedance termination. The input-output impedances for 

both forward-and-reverse modes of operations should be approximately the same, due to 

assuming a high Zrev. Additionally, a series base inductor (Lb) is used to tolerate the 

capacitive effects of the cascode amplifier.  

 

An SCU circuit is designed for the BDA, as for the X-Band core-chip in section 1. 

3. 1; the block diagram of the SCU is shown in Figure 1. 7 (b). It is composed of buffers, 

which are designed by considering the current level of the bias points. Three buffer 

networks are required for a single cascode stage (six buffers in total). The design of these 

buffers is critical because the cascode transistors might exceed their breakdown limits 

during the switching if the order of the biases is not organized. To prevent that problem, 

the buffers are designed in a way that the “Vbias1” will be provided firstly, which is 

followed by “Vbias2” and “Vcc”. When the signal direction is reversed, the biases are 

powered down in the reversed order. The current flows from the supply voltages of the 

buffers to the terminals of the cascode stages. The control signal, which determines the 

signal direction, is connected to the gate of six separate buffers (so SCU). The BDA in 

Figure 2. 10 (c) has 0.42 (0.62 x 0.68) mm2 of area, including pads. During small-signal 

operations, the design dissipates 13.8 mW of power from 3.3 V of the supply voltage. 

 

 

2.3.2. The Measurement Results of the BDA 

 

R&S ZVA67 vector network analyzer is utilized for measuring the S-parameters of 

the fabricated BDA. The simulation-measurement comparison for S-parameters are 

presented in Figure 2. 11 (a); only forward-mode simulations are provided for brevity. 

The measurements are highly coherent with the simulations and they demonstrate almost 

the same behavior for both signal directions. The BDA has a measured 11.2 dB peak gain 

at about 21 GHz, with an adequate level of impedance termination throughout the BW. It 

succeeds a + 0.58 dB/BW of gain slope between 8-to-24 GHz. The block demonstrates 

maximum - 45 dB of S12 in the frequency of interest, which guarantees the adequate 

isolation between signal paths and stability of the BDA. The gain of the BDA can be 

improved by sacrificing from power consumption. As shown in Figure 2. 11 (b), the block 

can have a gain level up to 12.4 dB with the expense of increased power dissipation  
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Figure 2. 11 (a) Simulated and measured S-parameters of the BDA. (b) Measured 

forward-mode gain for various collector currents, GD and NF of the BDA. (c) The 

OP1dB and OIP3 of the BDA for the defined frequency range. 

 

and decline gain slope (+ 0.36 dB/BW). The gain drop after 21 GHz is because of non-

ideal transmission lines and lumped components. This effect can be reduced by preferring 

a lower metal for the return path of the microstrip line. Although the wideband core-chip 

includes a phase shifter, the sub-blocks are designed by considering their group delay. 

The BDA has a mean 41 psec. of group delay with ± 9.1 psec. variation, which confirms 

that the design is valid for wideband systems. 

 

Agilent E4448A spectrum analyzer and 346CK01 noise source are used to measure 

the BDA’s NF performance, which is shown in Figure 2. 11 (b). As a result of having a 

positively sloped gain, the NF is decreasing as the frequency increase. It is measured as 

6 dB at 24 GHz. The gain-drop around 10 GHz, which is a consequence of selected ω0, 

resulted in a sudden peak in NF. It should be noted that the BDA is favored to tolerate the 

gain loss inside the core-chip. Within that way, NF will be still dominated by the LNA.  
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Figure 2. 12 (a) 5.60 and 100 of phase shift, 0.975 psec. and 1.95 psec. of time delays 

obtained from BDA including their gain error. (b) BDA with 0.5 dB and 1 dB of gain 

steps, including their phase and group delay difference. 

 

Hence, the NF varies between 6-to-10 dB over the frequency might not deteriorate the 

NF of the receiver chain dramatically. Additionally, the NF of the BDA can be improved 

by designing inductors (especially Lb) with higher Q-factor. 

 

The output power measurements of the BDA are done by the same spectrum 

analyzer and Agilent’s E8257D analog signal generator. The BDA should have low 

output power variation over the frequency for its adaptability to wideband systems. Figure 

2. 11 (c) summarizes the output-referred 1-dB compression point (OP1dB) and output-

referred third-order intercept point (OIP3) features of the BDA. For OIP3 measurements 

Agilent’s E8267D vector signal generator is used. It can generate a two-tone signal until 

20 GHz. The measurements demonstrated that the BDA succeeds -2.38 ± 1.32 dBm of 

OP1dB. The current flow increases 7.8 mA at the compression point of 16 GHz. 

Moreover, it achieved a mean + 6 dBm of OIP3 when 40 MHz separated two-tone signals 

are applied. 

 

The wideband core-chip includes multiple BDA stages, due to the high loss of the 

CC. The added BDAs can be also utilized as a phase (or delay) and amplitude controllers. 

For that purpose, the block can be updated to include a current steering mechanism, which 

can change the collector current accordingly. Although the presented BDA does not 

include that functionality, the measured BDA’s current level can still be steered through 

its supply voltage. Figure 2. 12 (a) demonstrates the generated various attenuation, phase 
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and delay steps of the measured BDA. The PS and attenuator of the core-chip targets 

22.50 and 2 dB of step size, respectively. Therefore, the BDA steps can be determined to 

improve the resolution or correct the errors of the core-chip. As an advantage of the 

preferred design procedure, the terminal impedances have negligible variations as the 

collector current changes.  

 

The BDA’s phase, gain, and delay can be controlled through its supply voltages. 

For a 100 of a phase shift, ± 70 of variation over the frequency is observed. Therefore, 

controlling BDA for a high phase shift may not be feasible. Although some fluctuations 

observed for the 100 of phase shift, the BDA has a more tolerable performance for 5.60 of 

phase shift. It should be noted that the BDA is designed by considering low GD variation 

which contradicts with the flat phase shift expectation. Consequently, the generated phase 

shifts have a certain level of slope over frequency. In other meaning, the block might have 

high GD variation, if a flat phase shift is obtained. Therefore, the measured BDA can 

control time delay more accurately, as presented in Figure 2. 12 (a); 0.975 psec. and 1.95 

psec. of time delays are obtained, which are equivalent to 5.60 and 11.250 of phase shift 

at 16 GHz. As shown, the measured BDA is more appropriate to be utilized as a time 

delay unit. Similarly, the current level of the BDA is varied to obtain 0.5 dB and 1 dB of 

gain controls. As shown in Figure 2. 12 (b), the BDA can generate almost flat attenuation 

steps over 8-to-24 GHz. Additionally, it has a low GD error between different amplitude 

states, which confirm its usage as an additional amplitude controller inside the core-chip.  

 

 

2.3.3. The Comparison of the BDA with Similar Works in Literature 

 

Various BDAs have been designed for different purposes; i.e. amplifier, switch. 

Table 2. 2 compares the presented BDA with similar works in literature. The provided 

references in Table 2. 2 are designed by utilizing 130 nm technology. When the gain level 

is considered, (Cho et al 2013) has a similar performance with the expense of increased 

area and power dissipation. (Sim et al 2013) demonstrated the smallest BDA in literature, 

but it has a low and flat gain with a 9 GHz of BW. Additionally, it consumes 68 mW of 

power. (Cho et al 2016) and (Song et al 2016) are designed as a switch and a 

combiner/divider respectively, but they utilized bidirectional distributed amplifier 

topology as (Cho et al 2013) and (Sim et al 2013). Series and shunt iNMOS devices are  
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Table 2. 2 Comparison of the BDA with similar works in the literature 

 Tech. 

[130nm] 

Freq. 

[GHz] 

RL 

[dB] 

Gain 

[dB] * 

Slope 

[dB/BW] 

Iso. 

[dB] 

OP1dB 

[dBm] 

IIP3 

[dBm] 

NF 

[dB] 

GD 

Flat.[psec] 

PDC 

[mW] 

Area 

[mm2] 

(Cho 

et al 

2013) 

CMOS 5-20 >10 11 Flat - 6 5 6.5 ± 25 68 0.82 

(Sim 

et al 

2013) 

CMOS 5.5-14 >10 6.2 Flat - +7.4⸙ - 6.3⸙⸙ - 43 0.23 

(Cho 

et al 

2016) † 

SiGe 2-22 >9 6 + 0.2 37 
-1.2/ 

-7.5 

-1.2/ 

-3.2 
- ± 21 25 1.04 

(Song 

et al 

2016) 

†† 

SiGe 2-22 >7 9.6 Flat >18 3.4 - - - 100 1.3 

This 

Work 
SiGe 7-30 >9 11.16 + 0.58 45 -2.5 - 3.6 6 ± 9.1 13.8 0.42 

*max. Gain ** min. NF ⸙between 8.5-10.5 GHz †DPDT Switch ††Divider/Combiner. 

 

added to (Cho et al 2016) for generating a Double-Pole-Double- Throw (DPDT) switch 

from a BDA. The design might have comparable gain when the transistors are excluded, 

but its OP1dB is not flat. Although (Song et al 2016) demonstrated better OP1dB 

performance compared to (Cho et al 2016), it is consuming 0.1 W of power; about 7 times 

higher than the presented BDA. Among the mentioned works, the measured BDA 

achieved the best gain-BW performance without sacrificing its compactness and power 

dissipation. Moreover, it can still have an adequate level of performance on other RF 

features such as NF and GD features, which is crucial for wideband RF systems. The 

presented BDA is in minor revision as a letter in “Transactions on Circuits and Systems 

II: Express Briefs”, which is called “A Switchless SiGe BiCMOS Bidirectional Amplifier 

for Wideband Radar Applications”. 

 

 

2.3.4. Updates for the BDA 

 

The performance metrics of the BDA is extracted by considering the requirements 

of the specified core-chip. However, the block has multiple contradictory expectations. 

Hence, a performance priority list is generated; bidirectionality, bandwidth, positively 

sloped gain, compactness, and low power dissipation. During the design procedure, some 

of the specifications were sacrificed due to non-ideal effects. The power consumption can 

be categorized as one of them. It was close to 7.5 mW in ideal-simulations and the current 

level is increased to tolerate the loss of the passive components. Likewise, the gain is 

sacrificed for an improved impedance termination. If the ω0 of the filter is favored at a 

lower frequency, the gain might have a more-linearly increasing characteristic. However,  
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Figure 2. 13 The difference between two BDA version in terms of (a) S21, and (b) 

impedance matching performance. 

 

the new ω0 may require larger inductors, which might have high variations over the 

frequency and declined return loss performance. This might have significant effects on 

the core-chip, because of the BDAs effect on nearby blocks; the attenuator and PS are 

designed by considering an ideal 50 Ω. Therefore, their performance would vary over 

frequency when they are cascaded with a low-ω0 BDA. Figure 2. 13 compares simulated 

the gain and matching performances of the presented BDA (BDA-1) and a new BDA that 

has a lower ω0 (BDA-2). As shown, BDA-2 has an improved gain characteristic at X-

Band with a deteriorated return loss; BDA-2 is also ready for fabrication, but only BDA-

1 is fabricated as a prototype. In the core-chip, multiple BDAs are utilized; BDA-1 and 

BDA-2 are combined regarding the phase and amplitude performance of the core-chip, 

as will be mentioned in section 2. 6. 

 

 

 Attenuator 

 

 

The amplitude control of the wideband core-chip is enabled by the attenuator in the 

CC. The beam sharpness control, side-lobes suppression, better null-points, and 

corrections for the amplitude errors of the PS are enabled by the attenuator (Davulcu et 

al 2016). These mentioned capabilities caused the attenuator to be a crucial block for a 

transceiver. 
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An ideal attenuator should vary the amplitude of the incoming signal without 

changing the phase component. The RMS phase and gain error values are two parameters 

that demonstrate the resolution performance of the block; (8) presents the RMS phase and 

gain error calculations for an N-bit Attenuator as a function of frequency, f. ∆ϕ stands for 

the phase difference compared to the reference state. The ∆G symbolizes the 

gain/amplitude variation between each attenuation state. For an N-bit attenuator, 2N 

attenuation states exist. The LSB is 2 dB for the designed 4-bit digital step attenuator and 

the range is chosen as 30 dB. The RMS amplitude error of an attenuator should be lower 

than its LSB/2, to obtain 2N phase states properly. If the RMS amplitude error is between 

LSB/2 and LSB, some of the gain states will not able to be generated. However, it can 

still be counted as an N-bit attenuator, until RMS error does not exceed LSB. For 

example, the RMS amplitude error of a 4-bit attenuator should be lower than 1 dB to 

generate 16 phase states and the block will lose some of its states if its RMS amplitude 

error is higher than 1 dB. 

 

The VGA is one of the topologies that is preferred for the amplitude control of the 

core-chip. It can provide gain, which is the main advantage compared to passive 

attenuators. The current steering methodology is a generally preferred method for a VGA, 

in which the collector current of a cascode amplifier is steered by additional transistors. 

When these transistors are turned on, the current of the amplifier decreases and the desired 

gain drop can be achieved. As a drawback, the VGAs might have high phase variation at 

different gain states, which contradicts with the ideal amplitude controller expectations. 

In addition to being unidirectional, the VGAs have limited dynamic range and high-power 

dissipation compared to attenuators. Moreover, they are unidirectional. The mentioned 

concerns limit the application areas of the VGAs, especially for wideband systems 

(Dogan et al 2008, Ku et al 2010).  

 

The resistive-type passive attenuators are one of the generally preferred topologies 

due to their simplicity and wideband behavior. Different attenuator architectures can be 

 

𝑅𝑀𝑆 𝑃ℎ𝑎𝑠𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑓) = √∑ (∆𝜙𝑛(𝑓))
2𝑁

𝑛=1

𝑁
     ;    

𝑅𝑀𝑆 𝐺𝑎𝑖𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑓) = √∑ (∆𝐺𝑛(𝑓))
2𝑁

𝑛=1

𝑁
                                                               (8) 
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Figure 2. 14 Schematic view of a) T-type, b) π-type, c) Bridged T-type attenuators. 

 

implemented by changing the order of the resistors, but the T-type and π-type attenuators 

provide reciprocal behavior as presented in Figure 2. 14 (a) and (b), respectively. Figure 

2. 14 (c) demonstrates the bridged T-type attenuator, where the iNMOS transistors change 

the attenuation state (Ku et al 2010). A similar switching mechanism can be applied to 

the π-type network, which can provide higher attenuation steps due to including two 

ground termination. Besides the bridged T-type (or so-called switched path attenuators), 

distributed attenuators are also presented as an approach however they include quarter 

wavelength transmission lines, which can occupy a large area in core-chip (Min et al 

2010). In the scope of this dissertation, a 4-bit 30 dB range digital step attenuator is 

designed by preferring Figure 2. 14 (c). The T-type networks are preferred for the 

attenuator design because of their compact area and bidirectional behavior. 

 

 

2.4.1. The Design Procedure of the Attenuator 

 

A fixed attenuation level of a T-type network is determined by the resistors R1, R2 

and the desired load impedance ZL as shown in (9) and (10). When M1 is on and M2 is 

off, the signal will flow through an equivalent resistance of M1 and the resistor for a high 

off-mode M2 impedance. A higher attenuation is going to be observed for the reversed 

case because the signal is going to see a ground termination. The values of the resistances 

are also chosen considering the input impedance presented in (9) when an on- 

 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 20 log ([
𝑅1

𝑍𝐿
+ 1] [1 +

𝑅1

𝑅2//(𝑅1+𝑍𝐿)
])                                        (9) 

 

𝑍𝐿 =  𝑍𝐿 + [2𝑅1//𝑅𝑂𝑁]                                                                                             (10) 
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Figure 2. 15 Comparison of an ideal and a bridged T-type 4-dB attenuators. 

 

mode resistance of M1 is assumed as RON; off-mode resistance of M2 is neglected due to 

its high value. The required R1 and R2 resistances for a 4-dB attenuator bit are calculated 

as 11.31 Ω and 104.8 Ω respectively, for ideal switch cases. Figure 2. 15 compares an 

ideal 4-dB and bridged-T type attenuator bits which utilize large iNMOS devices by 

preferring the calculated R1 and R2 values. As can be seen, an ideal 4 dB attenuator is 

coherent with the calculations, but a deviation is observed for the 4 dB bridged-T type 

attenuator. This is a consequence of the transistor’s parasitic effects; finite off-mode 

resistance and large capacitive effects. The desired attenuation level decreased, due to 

increased insertion loss. Moreover, the attenuation level is highly dependent on 

frequency, which is a consequence of preferring large iNMOS devices. The resistive type 

passive attenuators deliver wide BW, where the dependence on frequency is mainly 

contributed by the parasitic capacitance of the iNMOS devices. The attenuator in T/R 

module core-chip should have 4-bit of operation through 8-to-24 GHz, therefore the 

parasitic effects should be minimized. The size of the switching devices in each attenuator 

bit is chosen considering their capacitive effects. This results in high on-and-off 

resistances for the transistors. As a drawback, the loss of each attenuation bit is high 

compared to the conventional approach. 

 

In addition to its attenuation behavior, the phase difference is also another 

significant metric for the attenuator. When the losses of the attenuator bits are decreased 

by preferring larger iNMOS sizes, a certain amount of phase variation can be observed. 

This can be tolerated by some methodologies, such as the addition of a shunt inductance 

between each port. However, those approaches may increase the frequency dependency  
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Figure 2. 16 The schematic views of the a) single T-type attenuator, b) 4-and-8 dB 

attenuation section, c) 2-and-16 dB attenuation section. 

 

and area. The attenuator in the wideband core-chip has small transistors, which provided 

low phase variation. Therefore, no methodologies for phase compensation is applied. 

 

The attenuator is divided into two sections to realize a core chip with a lower NF, 

as shown in Figure 2. 16. The bits utilized small devices for low amplitude and phase 

variation over frequency. This concluded with a design dominated by the on-resistance 

of the iNMOS devices and attenuation resistance (Ratt). As a drawback, the attenuator 

sections are matched to a high impedance node during the reference mode. Although the 

first section, which cascades 4-and-8 dB of attenuation bits (Att-1), has an adequate level 

of impedance matching, the second section suffers from the described problem. 

Therefore, the schematic view of 2-and-16 dB (Att-2) of attenuators is updated as shown 

in Figure 2. 16 (c). As presented, the design does not include any series iNMOS device 

and Ratt for 2 dB of attenuation, to lower the impedance during the reference mode. The 

Att-2 has an inductor (LPC) to compensate for the shunt capacitance effects of the 

transistors. The series inductors in both sections (LM) are utilized for matching purposes. 

The gate and body-floating techniques are utilized for all the iNMOS devices in the 

attenuator. The transistors are controlled through the inverters to simplify the 

measurements. Each attenuator section has DC blocking capacitors, which are going to 

be de-embedded during measurements. Their sizes are selected as 5 pF to have an almost 

ideal RF-short at 8 GHz, even it has a high shunt parasitic effect around 24 GHz. 

 

The measurements and experiences from the technology demonstrated that the on-

and-off mode parasitic of iNMOS devices can vary highly, which can limit the 

performance of the attenuator. For instance, an attenuation stage can achieve up to 12 dB 

of attenuation even it was designed for 20 dB. When device sizes are considered, the 

possible on mode parasitic resistive effects (Rpar) is calculated and added to the terminals 
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Figure 2. 17 Rpar is added to the device ports. The schematic in (a) is converted to (b). 

 
Figure 2. 18 (a) Top view of the attenuator. (b) The dimensions of the sections 

excluding pads. (c) Impedance terminations and S21 of the sections. 

Table 2. 3 The component values of the attenuator bits with and without Rpar. 

 Without Rpar With Rpar 

 M1 (µm) M2 (µm) Ratt (Ω) M1 (µm) M2 (µm) Ratt (Ω) 

2 dB 2.6 3 10 - 3.1 - 

4 dB 6.15  6.15 10  7.2 7.2 10 

8 dB 9.4 9.4 30 20 20 21 

16 dB 21 21 40 24 24 20 

 

of iNMOS devices regarding its size, as in Figure 2. 17. Table 2. 3 presents the component 

values of each section before and after including the parasitic. When the effect of Rpar is 

included, larger device sizes are required to achieve the desired attenuation. 

 

 

2.4.2. The Post-Layout Simulation Results  

 

The attenuation sections are designed separately and EM simulations for each 

section. Figure 2. 18 (a) and (b) demonstrates the layout view of the designed attenuator 

sections. When the pads are excluded, the 4-bit attenuator is going to cover about 0.18 

mm2 of area. As in the BDA, similar design procedures are followed for transmission 

lines and inductors. Figure 2. 18 (c) presents the EM simulated S11 and S21 of the  
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Figure 2. 19 The attenuation and phase differences of each individual bit. 

 

designed attenuation sections including Rpar. Only the S11 behavior is presented for 

brevity, due to reciprocal behavior of the designs. As mentioned previously, the Att-2 has 

larger iNMOS devices, which concluded with increased loss and deteriorated matching 

performance. However, it can still perform at an acceptable level. 

 

The post-layout performances of each attenuation bit are presented in Figure 2. 19 

for a 50 Ω termination. The performances of each major bit are shown with (“Par”) and 

without the Rpar (“NoPar”), to present the effect of Rpar on Att-1 and Att-2. As shown, 

Rpar has minor effects on 2 dB and 4 dB attenuators due to utilizing small device sizes. 

When Rpar is neglected, the 8 dB and 16 dB of steps might result in 10 dB and 21 dB, 

respectively. At this point, it is not fully possible how will the Rpar is going to vary, but 

the device sizes are chosen to prevent decreased attenuation range. Therefore, higher 

attenuation levels can be measured for all bits, which can be tolerated by sizing down the 

iNMOS devices or by changing the control voltage accordingly during measurements. 

Compared to the attenuation states, the phase differences of the bits do not vary highly 

with Rpar, because of including a resistive parasitic. 

 

Figure 2. 20 (a) and (b) demonstrate the 16-relative attenuation, phase states and 

time delay states respectively, while their RMS errors are shown in Figure 2. 20 (c); they 

are generated by including the effect of Rpar. The design consists of two separate sections. 

Therefore, the 16 different states are generated by extrapolation. The presented results 

show that the attenuator can have a 4-bit of operation with a lower than 0.5 dB RMS 

attenuation error and a maximum 1.80 of RMS phase error, which verifies the block’s  
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Figure 2. 20 The 16 a) attenuation states, b) relative phase and time delay states, and c) 

calculated RMS amplitude, phase and delay errors of the 4-bit attenuator. 

 

compatibility to the wideband core-chip. The relative phase shifts of the attenuator are 

converted to time delays. As shown in Figure 2. 20, the maximum RMS delay error of 

the attenuator is 0.4 psec. at 8 GHz; 1.94 psec. is equivalent to 5.60 of phase shift at 8 

GHz. This result confirms that the presented attenuator can also be introduced to a timed-

array system, as the BDA. The design is submitted for fabrication on December’18, and 

the shipment will be done on September’19. 

 

 

 Phase Shifter 

 

 

The beam steering mechanism of a radar system is enabled by the PS in the core-

chip, as mentioned in section 1.1. The main purpose of an ideal PS is to vary the phase of 

the incoming signal without changing its magnitude. Various phase controlling methods 
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can be categorized into two groups; analog and digital phase shifters. The analog phase 

shifters can produce several phases for a defined phase range. The digital phase shifters 

generate phase states considering a dedicated step-size. In other meaning, the step-size of 

a binary-step PS is calculated by dividing 3600 to 2N, where “N” stands for the number of 

the bits. For a 4-bit PS, 16 different phase states exist with a 22.50 of step size (also LSB). 

The RMS phase and amplitude errors are also basic metrics for the PS. 

 

 The core-chip targets 4-bit of phase resolution for a wide frequency range, which 

is challenging due to the technological limits. III-V based technologies have passives with 

high-Q factors. As a result, they can realize wideband low loss PS circuits with high 

resolution. Active PSs in III-V technologies, which are not common, are generally 

preferred to shrink the total area of the passive PS without sacrificing the resolution. In 

silicon technology, the passive PSs suffer from high substrate coupling, therefore they are 

highly lossy and have limited bandwidth. The active PS topologies, especially vector sum 

type PS (VSPS), are utilized to overcome the bandwidth and resolution limits in Si-based 

technologies with the expense of increased complexity, power consumption, noise and 

reduced dynamic range (Koh et al 2010).  

 

The vector sum type PS is not appropriate for the wideband core-chip design, 

because it is unidirectional. Additional switch networks can be utilized to generate a 

bidirectional VSPS, as applied for the amplifiers in Figure 2. 8 (a) or (b). However, this 

approach might end increased area, power consumption and possibly increased insertion 

loss. Hence, the desired resolution is planned to be achieved by passive structures. If all 

the bits are designed for a dedicated center frequency, the RMS phase error would be 

minimal only at a single point. This would result in a low RMS phase error for a limited 

bandwidth; the RMS phase error would have sharp rising at other frequencies (Çalışkan 

et al 2014).  

 

 The filter type PS is one of the best candidates for the wideband core-chip among 

other passive examples. The switched line method suffers from a large area and high 

amplitude error, while the return loss of the load-line method will vary at different phase 

states (Sarkas et al 2010). Low-Pass (LP) and High-Pass (HP) networks can be utilized 

to succeed in an expected phase difference (Morton et al 2008), as shown in Figure 2. 21. 

HP and LP networks should be designed for + ϕ and - ϕ of phase difference respectively,  
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Figure 2. 21 Schematic view of a HP-LP type PS. 

𝐿𝑃 =  
𝑍𝐿

𝜔 𝑡𝑎𝑛(
𝜙

2
)
 ; 𝐶𝑆 =  

1

𝜔 𝑍𝐿 sin(𝜙)
 ;  

𝐿𝑆 =  
𝑍𝐿𝑠𝑖𝑛(𝜙)

𝜔
 ; 𝐶𝑃 =  

𝑡𝑎𝑛(
𝜙

2
)

𝜔𝑍𝐿
                                                                                      (11) 

 

to conclude with a phase difference of 2ϕ. (11) demonstrates the expressions for the 

desired phase difference. It is obtained through the impedance calculations and the half-

circuit model (Çalışkan et al 2014). ZL stands for load impedance and ω is representing 

the angular frequency. The HP π-network has two inductors, which includes three 

inductors for a single PS bit. However, it can be converted to a T-type network by basic 

impedance transformation, to decrease the number inductors into two. A bypass path can 

be preferred as a filter, which might shrink the total area of the bit. Additionally, High-

Pass (HP) and Low-Pass (LP) filters have similar phase behavior, which leads to a flat 

phase difference over frequency. 

 

 

2.5.1. The Design Procedure of the PS 

 

2.5.1.1. The Design of the Major Bits 

 

The main target of the PS is to achieve a wideband 4-bit phase resolution, where 

the area is sacrificed for the desired performance. Instead of the HP-LP designs, the all-

pass networks are favored to match the 16 GHz of bandwidth. The all-pass filter networks 

and their components’ values are provided in Figure 2. 22. The required component 

values for HP-LP networks might not be feasible for some cases such as 22.50; i.e. 20 fF 

of CP, and 5 nH of LP 22.50 of phase difference. Therefore, a second-order filter network  
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Figure 2. 22 (a) The block diagram of the filter networks with their component values. 

(b) The top view of the transformer.  

 

is favored for the 900 phase shift (Liu et al 2016), while a center-taped transformer is 

preferred for the 1800 of phase shift. These designs might result in an increased area, a 

price to pay for high RF features. 

 

The RC poly-phase filters can also be an appropriate topology for the 3rd bit. The 

active phase shifters cascade transformer and poly-phase filters to generate accurate 

inphase-and-quadrature (I/Q) phase vectors. However, the order of the RC-filters should 

be increased for a 16 GHz of bandwidth, with the expense of an increased insertion loss. 

Alternatively, multiple transformers can be utilized to generate 900 of phase difference 

with the expense of increased area (Frye et al 2003). Considering the possible drawbacks 

of RC poly-phase filters and transformers, the all-pass filter networks are favored for the 

900 of phase shift, as done for 1st and 2nd bits. 

 

The transformers are favored for active PS designs due to their simplicity and 

almost flat 1800 phase difference. For a transformer, the mutual inductance between coils 

(M) and coupling between windings (km) can be told as the two major metrics. Its insertion 

loss and impedance terminations highly dependent on these parameters (Long et al 2000). 

Different transformer architectures exist where each of them is designed by considering 

the capabilities of the implemented IC technology; i.e. the number of metals, and distance 

between top metal and substrate. Overlay type transformer can be a candidate for the PS, 

due to including two thick top metal layers in the implemented technology. However, one 

of the coils should be implemented in Top-Metal1 in the overlay method. This concludes 

an increased shunt capacitive effect and deteriorated bandwidth. The Rabjohn type  
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𝑓𝑝𝑘 =  
𝑅

2𝜋𝐿𝑃√1−𝑘𝑚
2

                              (12) 

 

transformer enhances the bandwidth by utilizing the Top-Metal 2 layer only. In the 

preferred technology, the distance between two Top-Metal 2 layers should be more than 

2 µm, while the gap between top metals is about 2.8 µm. This results in a higher km, for 

the Rabjohn transformers compared to the Overlay type. As a result of its advantages at 

the frequency band of interest, the Rabjohn transformer is preferred as the balanced-

unbalanced (balun) network for the PS with a 2:3 coil ratio. Figure 2. 22 (b) presents the 

3D view of the designed transformer.  

 

The impedance termination of the transformer can be determined by the primary 

coil as in (12) (Long et al 2000); fpk stands for the frequency of interest, and R is the. LP 

is behaving as a series inductor when one of its ports is grounded and the secondary coil 

is neglected. The inductance of the primary coil should be 860 pH for a 50 Ω matching 

around 20 GHz, where the imaginary part is neutralized by adding a series capacitor. The 

secondary coil is designed by considering the 2:3 ratio, and km. Additional shunt 

capacitors are added to the secondary coil ports for impedance matching. It should be 

noted that the transformer design requires iterative EM simulations, because of the high 

mutual coupling. Thanks to the symmetricity of the Rabjohn architecture, the physical 

and electrical centers of the secondary coil are almost the same. However, the turns of the 

coils caused a certain level of distance between the electrical center point and the nearest 

ground layer. The mentioned parasitic effect deteriorates balun performance dramatically. 

Hence, the balun layout is updated in a way that the center point is at the outer most ring. 

This method minimized the effect of the ground parasitic of the transformer.  

 

 

2.5.1.2. The Switching Networks 

 

The balun and filter networks presented in the previous section should be switched 

between each other accordingly, to end up with the desired phase difference. However, 

multiple switching network might conclude a high loss for the PS. Passive SPDT switches 

can be introduced between each bit, due to its simplicity and providing an adequate level 

of isolation between filters. When the loss of a passive SiGe BiCMOS SPDT switch is  
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Figure 2. 23 The block diagram of (a) SPDT, (b) DPDT switches in PS. 

 

considered, the insertion loss of a 4-bit PS would be higher than 15 dB, excluding the loss 

of the filters. This would affect the system performance dramatically and burden the 

amplifiers with a higher gain. As mentioned in section 2.2, the LC-resonator type or λ/4 

line-based SPDT switches can be preferred. However, they offer low loss for limited 

bandwidth in a large area (Davulcu et al 2017). Even if high insertion loss might be 

observed from the series-shunt SPDT switch, it is favored in PS design due to its 

simplicity, compact area, and zero power consumption. The SPDT switch designed for 

the PS is presented in Figure 2. 23 (a). 

 

 A 4-bit PS with eight SPDT switches would constitute a highly lossy sub-block. 

Hence, passive DPDT switches are decided to be utilized between filters. When two 

series-shunt type SPDT switches are cascaded with each other, the transmission line 

between filter networks is going to observe two series iNMOS devices. This ends up with 

a high loss for the PS, which can be lowered by preferring a DPDT switch as in Figure 2. 

23 (b). The DPDT switch guarantees isolation by two shunt transistors on the signal path. 

The signal path formation for the DPDT is similar to the SPDT. For instance, the RF 

signal at Port2 can be transferred to Port3 by turning transistors T1, T5 and T8 on, while 

keeping remaining ones off. As mentioned in sections 2. 2 and 2. 4, the sizes of the devices 

are chosen to minimize its capacitive parasitic. Each signal path has two shunt and a series 

of a transistor. Therefore, the sizes of the shunt devices are selected as 20 µm, while series 

ones have a width of 30 µm. A 2-to-8 decoder is introduced for each DPDTs in the PS to 

simplify the control of the phase states. Similarly, the SPDTs are controlled through 1-bit 

of operation by a buffer network. 



52 

 

 
Figure 2. 24 The block diagram of the PS’s (a) Stage-1, (b) Stage-2, (c) top-view. 

 

2.5.1.3. The Order of the Bits 

 

The insertion loss of the PS would exceed 15 dB, due to including multiple switches 

and highly lossy inductors. Therefore, the PS is divided into two separate sections for 

superior CC features as done for the attenuator. The first section (“PS Stage-1”) is 

composed of 22.50 and 450 of phase shifting filters (1st and 2nd bits), while the Balun and 

3rd bit are cascaded to form the second section (“PS Stage-2”). The matching networks 

(LC-tank circuit) added to the ports of both sections for a proper 50 Ω termination. Figure 

2. 24 (a) and (b) presents the block diagram of the PS sections, while the layout view is 

shown in Figure 2. 24 (c). In total, the designed PS sections cover a 0.36 mm2 area. 

 

 

2.5.2. The Post-Layout Simulation Results 

 

The EM simulations are done for both PS stages. Similar to the attenuator, Rpar 

resistances that are scaled considering the iNMOS device size, are added to the PS. The 

design depends on reactive components. Therefore introducing parasitic resistances has 

a minor impact on the block’s performance, compared to their effect on the attenuator. 

Figure 2. 25 summarizes the S-parameters of the PS stages. The insertion losses of the 

switches are close to 2 dB, which results in at least 6 dB of additional loss per stage. When 

the lossy reactive components considered, the insertion loss of the PS stages becomes 

about 10 dB at 16 GHz, as shown in Figure 2. 25 (a). Both PS sections have adequate 

impedance matching performance throughout the defined bandwidth. 
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Figure 2. 25 The simulated (a) S21, and (b) S11-S22 of the PS stages.   

 
Figure 2. 26 The simulated major phase states and their amplitude errors (a) for Stage-1, 

and (b) for Stage-2, with (Par) and without (NoPar) the parasitic resistance.  

 

Figure 2. 26 presents the post-layout simulation results of major PS phase states, 

including their amplitude errors. PS Stage-1 features demonstrated in Figure 2. 26 (a), 

while Figure 2. 26 (b) summarizes the obtained phase shifts from PS Stage-2. The stages 

are simulated with (“Par”) and without (“NoPar”) Rpar, to show its effect on PS stages 

clearly. The RMS phase error of the PS is attempted to be lowered by preferring multiple 

center frequencies such as 12 GHz, 16 GHz, and 20 GHz. The 1st bit is tolerated with the 

increasing phase shift behavior of the 2nd bit, as can be seen from Figure 2. 26 (a). The 

center frequency is favored about 16 GHz for the 3rd bit, while the phase variation is 

minimized to ± 3.50. The 4th bit has ± 0.50 of variation over frequency, thanks to the 

balun topology. As a drawback, PS Stage-2 has higher amplitude errors compared to the 

PS Stage-1. Moreover, the Rpar resistance has a minor impact on the performance of the 

PS bits, as shown in the related figures.  
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Figure 2. 27 The simulated (a) 16 phase states, and (b) Calculated RMS phase and 

amplitude errors of the PS.  

 

 The PS stages are designed independently because they are also included in the 

core-chip separately. Hence, each PS stage can generate 4 phase states; i.e. 00 (reference 

state), 22.50, 450, and 67.50 for Stage-1. The missing states are extrapolated by summing 

the existing ones, which are simulated with an ideal 50 Ω termination. Figure 2. 27 (a) 

presents the 16 separate phase states of the PS stages, while Figure 2. 27 (b) demonstrates 

their calculated RMS phase and amplitude errors with and without Rpar. As shown, they 

are lower than 40 and 1.5 dB, which verifies that the design is compatible with the core-

chip expectations. If a single center frequency was selected for all the filter networks, the 

PS would have a sharp phase error rising for the remaining parts of the band. As a result 

of preferring multiple center frequencies, the RMS phase error bandwidth is extended 

over the frequency. Moreover, a new bit might be added to the PS, due to having an RMS 

phase error lower than 5.60. 

 

 

 The Common-Chain (CC) of the Core-Chip 

 

 

The common-chain (CC) is one of the most critical parts of the wideband core-chip, 

due to including BDA, attenuator, and PS, as in Figure 2. 28 (a). Each sub-block in the 

CC presented an adequate level of performance in a compact area. However, cascading 

them with each other to form CC is a crucial step in the core-chip design. An improper 

CC formation might result in degraded RF performances compared to the expectations  
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Figure 2. 28 (a) The block diagram of the CC. (b) The view of the CC. 

 

from the sub-blocks. Figure 2. 28 (b) presents the layout view of the CC, that is submitted 

for fabrication in February 2019; the shipment time might be around November 2019. 

The chain covers 3.88 (1.98 x 1.96) mm2 of an area (including pads) while dissipating 

about 55 mW of power during small-signal operation. In this section, the design procedure 

and the post-layout simulations of the CC are presented. 

 

 

2.6.1. The Design Considerations of the CC 

 

The insertion losses of the PS and attenuator are sacrificed to reach the desired 

bandwidth. Multiple BDAs are decided to be utilized in the CC, to tolerate the side-effects 

of the attenuator and PS. The BDA dissipates lower than 14 mW. Although additional 

BDAs would not be a burden for the CC, the area is sacrificed for improved performance. 

The average loss per PS and the attenuator section is close to 7 dB. Considering this, the 

number of the BDA in the CC is increased to four to suppress the lossy blocks’ noise and 

to achieve the expected gain. 

 

The PS and attenuator sections are simulated with an ideal 50 Ω terminations, which 

are replaced with non-ideal BDA impedances. Although the BDA’s measured return loss 

performance is higher than 10 dB, its input-output impedances are varying over 

frequency. Because of the mentioned concern, the attenuator and PS’s performances 

fluctuate. The PS and attenuator could be designed  
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Figure 2. 29 The effect of various BDA-1 and BDA-2 combinations on (a) Forward-

Mode S21, and (b) Forward-Mode NF. 

 

regarding the BDA impedances if the core-chip expects a single band of operation. 

Unfortunately, this method does not apply to the multi-band design, due to not having a 

constant impedance from the BDA. The best way to avoid possible performance 

degradation from the attenuator and the PS is to terminate them with a BDA that has a 

better return loss. The non-linear gain behavior at 10 GHz for BDA-1 in section 2. 3 

creates a trade-off between gain and phase/amplitude control for the CC. Figure 2. 29 (a) 

and (b) demonstrates the gain and NF performances of the CC for different BDA 

combinations during the forward-mode of operation. If four BDA-1s are favored in the 

CC, the gain drop at 10 GHz reaches close to 3 dB. This can be corrected by BDA-2 but 

the peak gain shifts around 1.5 GHz to lower frequencies. Hence, a combination of BDA-

1 and BDA-2 is decided to be utilized in the CC. Introducing two BDA-1 and two BDA-

2 into the CC results in an acceptable S21. However, this might lead to a poor amplitude 

and phase resolution scenario, due to terminating the related sections with the BDA-2. 

Therefore, cascading three BDA-1 and one BDA-2 with the remaining sub-blocks is 

preferred. Within this combination, the gain drop at 10 GHz is lowered down to 1.5 dB. 

A similar statement can be done for NF of the CC shown in Figure 2. 29 (b). It should be 

noted that the high NF of the CC is going to be suppressed by the LNA. 

 

The order of the BDAs and attenuator/PS sections are a critical milestone for the 

CC. The attenuator sections are sensitive to the impedance variations, due to having lower 

return losses. Therefore, two BDA-1s are placed in between the attenuator sections, where 
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BDA-2 is placed in between the PS sections. The output of the LNA would saturate the 

first BDA in the CC. Hence, a lossy block (Att-1) is placed before the BDA-1. The PS 

stages are not favored for this purpose, due to their high loss (so high noise for the RX). 

The signal direction is enabled through the SCU units integrated to each of the BDAs, as 

stated in section 2. 3. 

 

The floorplan of the CC is done by considering the compactness of the layout. The 

CC is going to be functional for both signal directions, while the measured BDA presents 

high isolation between forward-and-reverse mode of operations. However, the input of 

the CC is the output of the LNA and SPDT. When the power levels are considered, the 

distance between RF lines should be analyzed carefully because of having a compact area. 

The transmission lines of the left-most BDA-1 are close to the reverse-mode BDA-2. This 

can cause an oscillation problem for high RF power levels. For that purpose, deep-trench-

isolation (DTI) layers are introduced between BDA-1 and BDA-2, to improve the 

isolation between amplifiers. 

 

Each block that is submitted for fabrication includes two 5 pF of DC blocking 

capacitors. As mentioned, they have dramatic impacts on higher frequencies due to severe 

shunt parasitic capacitance. This problem is a consequence of the wide bandwidth 

expectation. The CC does not require additional DC isolation between blocks, because 

the PS and attenuator sections will be cascaded with the BDAs. The BDAs have series 

DC blocking capacitors that are also utilized as matching components. Removal of the 

unnecessary capacitors would improve the CC performance; the CC terminals are still 

isolated from DC.   

 

 

2.6.2. The Post-Layout Simulation Results 

 

Figure 2. 30 demonstrates the post-layout S-parameter simulations of the CC for 

both signal directions; the reference states of the attenuator and the PS are used during 

simulations. The EM simulation of the CC would give unphysical results or conclude 

with failure, due to its complex nature. Hence, the post-layout extractions and EM models 

of the blocks and transmission lines between blocks are introduced to the simulator 

separately, instead of simulating the whole CC. As shown in Figure 2. 30 (a), the CC  
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Figure 2. 30 (a) The forward-and-reverse mode S21 and NF performances of the CC. 

(b) The impedance matching performances of the CC for both signal directions. 

 

presents almost identical gain and NF characteristics for both signal directions. The path 

has a 17.91 dB of peak gain at about 21 GHz, with a + 2.71 dB/GHz of a gain slope. 

 

The compactness of the core-chip is one of the most significant targets, which also 

leads to a dense CC. Hence, the floorplan of CC is done by neglecting the symmetricity 

of the layout. The transmission lines added between blocks caused a performance 

variation between forward-and-reverse mode operations, especially after 20 GHz. The 

same performance for both signal directions could be achieved by sacrificing from the 

compactness. Figure 2. 30 (b) presents the CC’s impedance matching for both signal 

directions. Independent from the unsymmetrical layout, the terminations of the CC vary 

due to having different blocks in the input-and-output terminals, which are the Att-1 and 

the BDA-1, respectively. Normally, the S11 of the forward-mode and the S22 of the 

reverse-mode of CC should be identical because they belong to the same block, Att-1. 

The variation on the defined term is a consequence of BDA-1's forward-reverse mode 

difference. This also affects the amplitude and phase controls of the CC, as will be 

explained. 

 

Figure 2. 31 and Figure 2. 32 demonstrate a comparison of the simulated major 

attenuation and phase difference states of the CC. As mentioned before, the terminations 

of the blocks vary over frequency. This caused notable fluctuations, which are minimized 

with proper BDA-1 and BDA-2 ordering. 4-and-8 dB of attenuations in Figure 2. 31 are 
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Figure 2. 31 Comparing the block level and the CC forward-reverse mode performances 

of (a) 2-and-4 dB, (b) 8-and-16 dB attenuations. 

 
Figure 2. 32 Comparing the block level and the CC forward-reverse mode performances 

of (a) 22.50-and-44.50, (b) 900-and-1800 phase differences. 

 

obtained from Att-1, which is the reason for observing similar variations. A similar 

statement can be done for Att-2 (2-and-16 dB). The variations differ for forward and 

reverse modes after 16 GHz, due to the unsymmetrical layout. Figure 2 .32 presents the 

major phase states of the CC. The fluctuations in phase states are smaller compared to the 

attenuation states, due to providing better impedance terminations. 

 

Figure 2. 33 and Figure 2. 34 show the phase and attenuation states of the CC 

including their RMS phase and amplitude errors, respectively. The CC succeeds in 

achieving 4-bit of phase and amplitude control with a positively sloped gain and low 

power dissipation in a compact area. Its RMS errors are simulated lower than 5.60 and 0.8 
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Figure 2. 33 (a) The relative phase states of the CC during forward mode. (b) The RMS 

phase and amplitude errors obtained during phase control of the CC for both signal 

direction, compared with block level performance. 

 
Figure 2. 34 (a) The relative attenuation states of the CC during forward mode. (b) The 

RMS phase and amplitude errors obtained during amplitude control of the CC for both 

signal direction, compared with block level performance. 

 

dB during phase and amplitude controls, respectively. The NF of the CC is going to be 

suppressed by the LNA. The simulation results confirm that the CC has an adequate level 

of performance for additional phase and attenuation bits. To the best of my knowledge, 

the presented bidirectional CC (so-called multifunctional chip) achieved the best 

positively sloped gain-bandwidth performance with low power consumption in a compact 

area. Moreover, the recent results show that the presented 4-bit of phase and amplitude 

control can be improved due to having low RMS phase and amplitude errors, respectively. 
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 Low Noise Amplifier (LNA) and Medium Power Amplifier (MPA) 

 

 

LNA and Medium Power Amplifier (MPA) are the two unidirectional front-end 

amplification blocks of the presented wideband core-chip. LNA dominates the gain and 

NF of the RX, while MPA is responsible for the gain and output power of the TX. The 

prior aim of both amplifiers is to have a wide operating frequency. Therefore, some of 

the remaining features are relaxed for succeeding the desired RF performance, such as 

output power.  

 

 

2.7.1. The Design Procedure of a Wideband LNA 

 

Various methodologies can be applied to improve the bandwidth of an amplifier. 

As mentioned in the section. 2. 3, distributed amplifiers can be considered as one 

approach to enhance the BW by sacrificing the area and power consumption. A resistive 

feedback mechanism can also be preferred for wide operation bandwidth with the expense 

of increased NF and decreased gain (Saha et al 2012, Chen et al 2010). The wideband 

T/R core-chip includes lossy and noisy PS and Attenuator blocks. Hence, LNA should 

have high gain throughout the bandwidth to tolerate their effects. As a result, the resistive 

feedback approach is not an appropriate design method for the desired LNA. A non-

resistive feedback mechanism demonstrated in (Hu et al 2004), but it suffers from 

mismatched input terminal and high NF. The conventional noise-and-power matching 

technique can be favored, but it results in a narrow bandwidth. When a single band of 

operation is concerned, LNA designs that have NF between 1.2 - 1.4 dB is presented at 

X-Band (Kuo et al 2006, Kanar et al 2014). Regarding the limits of the mentioned works 

in the literature, a new LNA design methodology should be applied for achieving wide 

bandwidth without sacrificing the gain and NF. 

 

The generally favored simultaneous noise-and-power matching technique depends 

on utilizing an emitter degeneration inductor and a series base inductor. The bias point of 

the HBT is chosen for the lowest minimum NF (NFmin) condition, where their sizes are 

selected to match the optimum source resistance to 50 Ω  as shown in (13). When the  
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Figure 2. 35 The effect of the Lb on (a) NFmin and Imag {Zin,1}, (b) S11 of a 

conventional amplifier, (with various Q-factors). 

𝐹 = 𝐹min +
𝑅𝑛

𝐺𝑆
[(𝐺𝑆 − 𝐺𝑆,𝑜𝑝𝑡)

2
+ (𝐵𝑆 − 𝐵𝑆,𝑜𝑝𝑡)

2
]                                    (13) 

𝑍𝑖𝑛,1 =
𝑔𝑚𝐿𝑒

𝐶𝜋
+ 𝑗𝜔𝐿𝑒 +

1

𝑗𝜔𝐶𝜋
                                                                                     (14) 

 

amplifier’s input impedance (Zin,1) in (14) is analyzed, its real part is can be determined 

by an emitter degeneration inductor; gm stands for the transconductance of the HBT and 

a capacitive effect is assumed for Zπ. The imaginary part of the Zin,1 and the susceptance 

(Bs) of the F is neutralized by the series base inductor (Lb), which is the reason for 

mentioning this method as simultaneous noise-and-power matching technique. 

Unfortunately, this approach highly depends on the Q-factor of the on-chip inductors. 

Figure 2. 35 (a) and (b) present the impact of the Lb’s Q-factor on NFmin, Imag {Zin,1} and 

S11 of the amplifier. As shown, non-ideal Lb deteriorates NF and wideband performances 

of the amplifier. More importantly, the design performance is being limited to a single 

band of operation which conflicts with the expectations of the presented core-chip. 

 

The large-sized transistors, which are chosen considering the noise match, create 

low impedance between the base and collector terminals of the HBT in a CE amplification 

stage. As a result, the input and output impedances of the stage can be matched 

simultaneously by the emitter degeneration inductor and an output matching network. 

The described methodology improves the bandwidth due to the removal of a frequency 

dependent component, Lb. This is also verified through calculations by utilizing the small-

signal model in Figure 2. 36 (a). The analyses are done for a CE amplifier because the 
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Figure 2. 36 (a) The small signal model of a CE amplifier. (b) The input impedance 

comparison of the three different amplifier topologies and calculated Zin,2. 

 

cascode topology cancels the Miller effect (so Zµ). Zµ is assumed to be capacitive (Cµ) 

taking the size of the devices (low rπ) into account. Additionally, Ze and Zp are considered 

as inductive, where Zs is capacitive. These assumptions are done by regarding an emitter 

degeneration inductor and a basic LC-tank circuit for the output terminal. The new design 

method’s input impedance (Zin,2) is presented in (15). As shown, the impedance can be 

matched to 50 Ω by selecting LP and CS properly. LP should be chosen as high as possible 

to dominate the R2CS term, which suppresses the negative imaginary. (15) can be 

simplified by considering the frequency of interest as (16) and (17), to calculate the 

component values easily. The analyses are also verified through simulations. Figure 2. 36 

(b) compares the described method with conventional cascode and conventional CE 

amplifiers. As proved, the presented design procedure improves the BW of an amplifier. 

 

The mentioned design procedure also enhances the noise performance of the 

amplifier. The thermal noise factors of the described method (F1) and conventional CE  

 

𝑍𝑖𝑛,2 ≅
𝑔𝑚𝐿𝑒

𝐶𝜋
(1 −

𝐶𝜇

𝐶𝜋
) −

𝑔𝑚𝐶𝜇(𝑅2𝐶𝑆−𝐿𝑃)

𝜔2𝐿𝑃𝐶𝑆𝐶𝜋
2   

+
1

𝑗𝜔𝐶𝜋
[1 +

𝜔2𝑔𝑚
2 𝐶𝜇𝐿𝑒(𝐿𝑒+

𝑅2𝐶𝑆−𝐿𝑃
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)
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] + 𝑗𝜔𝐿𝑒                                         (15) 

𝐶𝑆 ≅ 𝑔𝑚𝐶𝜇ℜ{𝑍𝑖𝑛,1}                                                                         (16) 

ℜ{𝑍𝑖𝑛,2} ≅ ℜ{𝑍𝑖𝑛,1} (1 −
𝐶𝜇

𝐶𝜋
)                                                                                  (17) 
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Figure 2. 37 Small signal model of the CE amplifier with noise sources. 

 
Figure 2. 38 Calculated F1 and F2 in (5) and (6) for various Zµ values. 

𝐹1(𝜔) ≅ 1 +
𝑟𝑏

𝑅𝑆
+

𝑅𝑒

𝑅𝑆
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𝑍𝜋+𝑍𝑒+𝑔𝑚𝑍𝜋(𝑍𝑒−𝑍𝜇)
]

2

  

+
𝑅𝑃(𝑍𝜇

2(𝑅𝑠+𝑟𝑏)2+(𝑟𝑏+𝑅𝑠+𝑍𝜇)
2

[(𝑔𝑚𝑍𝜋+1)𝑍𝑒+𝑍𝜋]2)

𝑍𝑃
2𝑅𝑠[𝑍𝜋+𝑍𝑒+𝑔𝑚𝑍𝜋(𝑍𝑒−𝑍𝜇)]

2                                                           (18) 

 

𝐹2(𝜔) ≅ 1 +
𝑅𝑏

𝑅𝑆
+

𝑅𝑒

𝑅𝑆
+

𝑅𝑃[𝑔𝑚𝑍𝜋𝑍𝑒+𝑍𝑒+𝑍𝜋+𝑍𝑏+𝑅𝑆]2

(𝑔𝑚
2 𝑍𝜋

2𝑅𝑆)𝑍𝑃
2                                          (19) 

 

amplifier (F2) are calculated as in (18) and (19) respectively, by utilizing the small-signal 

in Figure 2. 37. The shot noise effects are excluded due to being uncorrelated with the 

thermal noise sources. In the conventional approach, the series base resistance is a 

consequence of the summation of the Lb’s parasitic resistance (rLb) and HBT’s base 

resistance (rb). The noise of the CE amplifier is going to be lower by favoring the 

described design technique, due to the removal of the Lb. Figure 2. 38 compares the 

calculated F1 and F2, and it is verified that the noise performance is improved by 

excluding the resistive effect. Cµ can also be optimized for lower noise performance. 
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Figure 2. 39 The design flows for the described and conventional methods.  

 

The design flow for the described approach and the conventional method is 

summarized in Figure 2. 39. As in the conventional design procedure, the bias conditions 

and the size of the devices are determined by considering the noise performance. The 

largely sized HBTs are going to create a high Cµ, which enables an impedance matching 

without requiring Lb. The output matching for the CE amplifier is done, where the CS is 

determined by Cµ as in (16). The load impedance should satisfy the LP > R2CS condition 

to minimize the imaginary part of Zin,2. Le is decided by considering Cµ and Cµ. After the 

design of LP, an optimization between Step-3 and Step-5 might be required due to the low 

impedance node between the amplifier terminals. When the desired level of impedance 

matching is achieved, the design of the second stage (Step-6) can be done. It is designed 

by following the conventional steps for the cascode amplifier. If wideband performance 

is desired a higher-order matching network is utilized for the output terminal.  

  

 

2.7.2. The Measurements of the Sub-1dB and Wideband LNA 

 

Two different amplifiers are designed to demonstrate the impact of the new design 

procedure on various aspects; one optimized for a low noise performance (sub-1dB 

LNA), while the other one targets wideband performance (wideband LNA). They favored 

two-stage amplification for a higher gain profile. The first stage (CE stage) is designed 

by the explained design procedure, where the second stage favored the conventional 

cascode design for higher gain and stability. Both sub-1dB and wideband LNAs in Figure 

2. 40 are designed by following the same design steps. The high-order matching network 

of the wideband LNA is the difference between two amplifiers. To the best of my 

knowledge, the measured sub-1dB LNA achieved the best NF and gain performances 

(shown in Figure 2. 41 (a) and (b)) in SiGe BiCMOS technology. Similarly, the wideband  
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Figure 2. 40 The schematic views of (a) the sub-1dB, and (b) the wideband LNAs. 

 
Figure 2. 41 The sub-1dB LNA’s (a) S-parameters, (b) NFmin and NF. 

 
Figure 2. 42 The wideband LNA’s (a) S-parameters, (b) NFmin and NF. 

LNA realized the lowest NF in the literature that targets similar bandwidth and gain. 

Figure 2. 42 (a) and (b) presents the simulated-measured S-parameters and NF of the 

wideband LNA, respectively. A wideband amplifier should provide an almost flat output 

power for the defined bandwidth. Figure 2. 43 shows the input-referred compression point 

(IP1dB) and input-referred third-order intercept point (IIP3) of the wideband amplifier. 

As presented, the wideband LNA provides 5-to-8 dBm of OP1dB performance  
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Figure 2. 43 The wideband LNA’s measured IIP3 and IP1dB performances. 

Table 2. 4 Comparison of the Sub-1dB LNA with similar works in the literature 

 

Table 2. 5 Comparison of the wideband LNA with similar works in the literature 

* max. NF for defined range are presented. ⸸Actual RL BW is between 8-to-35 GHz. † area excluding pads 

 

between 7-to-18 GHz, which confirm its compatibility with wideband systems. Table 2. 

4 and Table 2. 5 presents a comparison of the mentioned designs with similar works in 

the literature. The presented results are published as a journal in “Transactions on Circuits 

and Systems I: Regular Papers”, named as “Sub-1-dB and Wideband SiGe BiCMOS 

Low-Noise Amplifiers for X-Band Applications”. The first stage (CE amplifier) is also 

 Tech. Freq. 

[GHz] 

NF 

[dB] 

Gain 

[dB] 

IP1dB 

[dBm] 

Power 

[mW] 

Area 

[mm2] 
FOM 

Sub-1dB 

LNA 

0.13µ 

SiGe 
8.5 0.98 26 -17.3 62 0.795 0.20 

(Manohar 

et al 2014) 

0.15µ 

pHEMT 
10 1 28 -20 80 - 0.12 

(Yau et al 

1994) 

0.25µ 

GaAs 
10 1.1 17 - - 9.362 - 

(Kuo et al 

2006) 

0.13µ 

SiGe 
10 1.36 19.5 -10 15 0.526 1.71 

(Lohmiller 

et al 2017) 

0.18µ 

SiGe 
10 1.25 24.2 -19 32.8 0.458 0.18 

(VIPER-

RF 2015) 

pHEMT 

GaAs 
9 1 23 -7.5 240 1.5 0.36 

(Sayginer 

et al 2016) 
0.1µ InP 9.8 1.4(min.) 9 - 0.6 1.8 - 

 Tech. Freq. 

[GHz] 

NF* 

[dB] 

Gain 

[dB] 

BW3dB 

[GHz] 

BWRL 

[GHz] 

Gain Var./BW 

[dB/GHz] 

IP1dB 

[dBm] 

Power 

[mW] 

Area 

[mm2] 

WB 

LNA 

0.13µ 

SiGe 
8 - 20 3 14 4 12⸸ 0.7 -7.5 48.5 0.69 

(Saha et 

al 2012) 

0.13µ 

SiGe 
3 - 26 6.5 9 23 20 0.04 -5.6 33 0.48 

(Chen et 

al 2010) 

0.2µ 

GaN 
1 - 25 4.6 13 24 23 0.125 4.5 900 1.44 

(Inanlou 

et al 

2014) 

0.13µ 

SiGe 
10 - 22 4.4 15.5 12 5 0.25 -37.5 4 0.68 

(Howard 

et al 

2012) 

0.13µ 

SiGe 
8 - 18 6 16 6.5 3.5 0.5 -25 37.4 0.1† 

(Jeong 

2018) 

0.18µ 

SiGe 
8 - 16 8.1 17.8 3 9 1.56 -11.7 42 1.17 
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published (Early Access) as a letter in “Transactions on Circuits and Systems II: Express 

Briefs” as “Ultra Low Noise Amplifier for X-Band SiGe BiCMOS Phased Array 

Applications”. 

 

 

2.7.3. The Simulation Results of the Wideband LNA 

 

The described design procedure is implemented and the measurements verified its 

wideband and low noise performances. However, the designs are realized considering X-

Band applications, where the upper limit is favored as 20 GHz. Therefore, the presented 

works should be redesigned considering the targets of the dissertation. The measured 

wideband and sub-1dB LNAs are one of the significant motivation sources of the 

implemented wideband core-chip design. 

 

The wideband core-chip targeted mean 5 dB of NF and close to 20 dB of gain for 

RX. The LNA that is mentioned in the previous section can be favored in the wideband 

core-chip. When the performance of the CC is considered, the wideband LNA's gain 

should be 7 dB higher. Otherwise, the RX would exceed the 5 dB mean NF target. 

Therefore, a new wideband two-stage amplifier is designed as presented in Figure 2. 44. 

It is designed by following the design procedure stated in this section. The bias point of 

the CE amplifier is updated for an improved gain at higher frequencies. Additionally, the 

second stage is designed considering the slope of the CC and stability of the block. 

 

The simulation results of the new LNA are presented in Figure 2. 45, which are 

obtained by utilizing the ideal lumped components except for the HBTs; estimated series 

parasitic effects for the lumped components are included. The wideband LNA achieved 

20 dB of gain at 16 GHz with a low noise profile and an adequate level of impedance 

matching. The block dissipates 56.77 mW of power during small-signal operation. The 

design’s output power simulations are summarized in Figure 2. 46 (a) and (b). The block's 

OP1dB point at +10.55 dBm at 15 GHz. As shown in Figure 2. 46 (b), the variation of 

the OP1dB point over frequency is in the range of ± 2.5 dB. The presented LNA has a 

sharp negative gain slope, which is going to be compensated by the positive gain slope of 

the CC. When the simulation-measurement coherency of the presented blocks is 
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Figure 2. 44 The schematic view of the new wideband two-stage LNA. 

 
Figure 2. 45 a) The S21, (b) Input-output matching and NF of  the LNA. 

 
Figure 2. 46 OP1dB of the LNA (a) at 15 GHz, (b) at various frequencies.  

 

considered, the wideband LNA is compatible with the wideband core-chip expectations. 

 

The presented wideband LNA targets high gain in two-stage amplification. The first 

stage is a CE amplifier, which has a mismatched input impedance (unnaturalized 

imaginary part). Hence, stability analyses should be done carefully. When the S- 
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Figure 2. 47 The S11 of the CE stage and wideband LNA at low frequencies. 

 

parameter simulations of the wideband LNA are extended to lower frequencies, a peak 

that extends above 0 dB, is observed for the S11 as in Figure 2. 47. This can be named as 

a stability problem. At the final two-stage design case, S11 exceed the 0-dB limit up to 

5.2 GHz. This is a result of having a high gain and inappropriate terminal matching 

simultaneously. The S11 and S22 should be lower than 0 dB at all frequencies for 

unconditional stability. However, these results do not mean that the wideband LNA is 

unstable. It is still stable, but not unconditionally. Because of the mentioned concern, the 

design steps should be followed carefully. The problem can be solved by preferring a 

lower gain for the CE stage and higher NF (same for the core-chip). It should be also 

noted that the design includes several ideal components, such as inductors, which are 

going to be replaced with EM simulated custom-designed equivalents. This might 

suppress the described effect. The measured LNAs presented in section 2. 7. 2 also aimed 

for high gain, and both are unconditionally stable.  

 

 

2.7.4. The Simulation Results of the Wideband MPA 

 

The MPA has similar specifications with the LNA except for the output power. It 

should provide adequate performance for the core-chip, and its output power should not 

differ much in the operating frequency range. The impedance at the output terminal 

affects the maximum output power that an amplifier can achieve, which can be calculated 

by utilizing Load-Pull analysis. However, the impedance for maximum output power may 
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not be 50 Ω, which creates a trade-off between the frequency range and the output power. 

Hence, it is sacrificed to obtain a wideband-matched MPA with flat output power. (Harir 

et al 2014) presented 27 dBm of output power by using 0.18 µm SiGe HBTs and 

transformers with a poor impedance matching. The MPA of SÜMER group integrated a 

transformer to improve the matching performance and operating bandwidth throughout 

the X-Band by sacrificing area (Çalışkan et al 2016). When the measured performances 

provided in section 2. 7. 2 are considered, the wideband LNA is also appropriate for the 

MPA design, due to having an acceptable level of OP1dB flatness. The LNA’s simulated 

output power can be improved further by updating design considerations from NF to 

output power. It should be also noted that if the presented core-chip will be cascaded with 

a GaN-based RF front-end, the MPA's output power should be close to 15 dBm. It is 

required to drive a PA that succeeds about 40 dBm output power with approximately 25 

dB gain of linear gain. The simulations of the LNA are also utilized as the MPA to realize 

the presented core-chip.  

 

 

 8-to-24 GHz Low Noise Bidirectional Core-Chip 

 

 

In this section, the X-to-K band core chip's simulation results are provided. The 

block diagram of the design is presented in Figure 2. 48 (a). The simulations are done by 

regarding the possible performance variations, such as added parasitic resistive and 

capacitive effects, for the blocks that are not measured yet. These variations created 

different scenarios, which cause degraded gain, gain slope, NF and OP1dB of the 

wideband core-chip. 

 

 

2.8.1. The RX Performance with New and Former LNA 

 

The sub-blocks are designed by considering the wideband, low noise and 

compactness targets, to realize the wideband core-chip presented in Figure 2. 48 (a). The 

design procedures for the BDA and LNA are verified through measurements, where the 

attenuator, PS and CC sections are submitted for the fabrication. As mentioned in section 

2. 7. 3, the LNA is redesigned in the schematic level, considering the operating range of  
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Figure 2. 48 (a) The block diagram of the X-to-K Band T/R module core chip. (b) RX 

gain and NF with Former and New LNA. 

 

the wideband core-chip. It is also utilized as the MPA for the TX, to give an insight into 

the core-chip's output power. The measurement and simulation coherency of the 

measured wideband LNA (“Former LNA”) guarantees the performance of the newly 

designed schematic level LNA (“New LNA”). The effect of both LNAs on RX’s gain and 

NF performances are presented in Figure 2. 48 (b). The core-chip has a positive gain 

slope, which results in a lower gain at X-Band if Former LNA is favored. The CC has 

high loss and NF, especially at X-Band. This leads to a more than 10 dB NF for a core-

chip scenario with the Former LNA. However, the core-chip with a maximum of 5 dB 

RX NF can be realized by utilizing the New LNA, without sacrificing from the power 

consumption and area. The simulated-measured gain difference of the Former LNA is 

added as a parameter to the New LNA (named as “Amp” in the results). 

 

 

2.8.2. The Performance with Possible Scenarios 

 

The performance of the core-chip may differ during the measurements, due to 

unintended parasitic effects. They can affect the gain, gain slope, NF and OP1dB 

performances of the design. Therefore, these various effects are defined and added to the 

post-layout simulations of the core-chip. In this section, the possible core-chip 

performance scenarios are presented, regarding the specified parasitic effects. 
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Figure 2. 49 (a) Attenuator, (b) PS, (c) SPDT and TRLine losses with added effects. 

 

The iNMOS devices with various dimensions are utilized for the SPDT, attenuator 

and the PS. As mentioned in related sections, a series of parasitic resistance (“Rpar”) 

added to the terminals of the iNMOS transistors considering previous measurements. The 

iNMOS devices of the 0.13 µm SiGe BiCMOS technology have not been measured yet 

during the period of this dissertation. Therefore, it is not easy to estimate the possible 

performance variation for the blocks and also for the wideband core-chip. However, 

various performance scenarios can be simulated. Similar to the Rpar, the parasitic 

capacitance of an iNMOS might also vary. A possible loss slope can be calculated and 

added to the simulations. For this purpose, the X-Band SPDT (shown in section 1. 3. 1) 

switch’s loss slope (- 0.0625 dB/GHz) is added to the block simulations, which are named 

as “Rpar + Slope” in the related results. The loss slope is calculated considering the 

number of iNMOSs and their sizes. Figure 2. 49 demonstrates the described scenarios for 

the SPDT, attenuator, and the PS compared to the "no calculated parasitic" case 

(“NoRpar”). These effects are also valid as a parameter in the core-chip simulations. 

Figure 2. 49 (c) also presents the total loss of the guided microstrip transmission lines’ 

(TRLines) insertion loss utilized in the wideband core-chip.  

 

The gain and NF of the RX are presented in Figure 2. 50 (a) and (b) respectively 

for the defined scenarios. These simulations are done in the reference phase and 

attenuation states of the core-chip. The best-case simulation (“NoPar”) includes 

simulated post-layout block performances, except LNA. The worst-case (“Rpar + Amp + 

Slope”) takes all of the possible parasitic effects into account. It should be noted that the 

calculated effects might be pessimistic. The gain-slope effects of iNMOS devices are 

extracted from the 0.25 µm technology of the same foundry. As shown, the RX gain and 

its slope drops because of the added effects. However, the chain can still perform 8 dB 

gain at 8 GHz with a positive slope until 18 GHz, in the worst case. The gain drop also  
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Figure 2. 50 RX (a) gain, and (b) NF for the defined parasitic effect scenarios. 

 
Figure 2. 51 (a) TX gain for different added parasitic scenarios. (b) TX and RX OP1B 

performance for the simulated and measured BDA. 

 

affected the NF performance especially at X-Band and resulted in about 5.5 dB of mean 

NF in the worst-case scenario. As shown, the design can satisfy the wideband core-chip 

expectations even in the worst case. The TX gain is similar to the RX chain, due to 

including the same blocks as shown in Figure 2. 51 (a); the only difference is the signal 

path direction. 

 

Similar to the reference mode gains of the RX and TX chains, the OP1dB of the 

core-chip is calculated as demonstrated in Figure 2. 51 (b). Two different scenarios are 

considered during the OP1dB simulations; the simulated (“Sim - BDA”) and the measured 

(“Meas - BDA”) BDA. These cases analyzed due to the deviated BDA OP1dB 

performance during measurements. It is simulated as 3.8 ± 0.52 dBm and measured as -

2.38 ± 1.32 dBm. The BDA has a flat OP1dB over frequency, but the simulation-
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measurement difference is close to 6 dB. As a result, the output power of the BDA is 

limited, especially at low frequencies. If the BDA is updated to have an OP1dB as 

simulated, the core-chip can provide a TX OP1dB up to + 10 dBm, as shown in Figure 2. 

51 (b). As mentioned, the LNA is also utilized as the MPA to give insight into the TX 

performance. The output power of the TX drop is related to both the LNA and BDA. If 

LNA is replaced with a proper MPA, the TX OP1dB might be improved.  

 

The OP1dB of the RX chain is presented in Figure 2. 51 (b), for the same defined 

cases. The behavior of the RX OP1dB is similar to its gain characteristic; the IP1dB would 

be almost flat as expected. Different than the TX, the OP1dB of the RX is degraded due 

to the high output power of the LNA. At 15 GHz, the LNA can provide up to about 10 

dBm of output power. When the loss of the SPDT and Att-1 is considered, the first BDA-

1 would saturate due to high RF power. Additionally, the output power of a BDA might 

be high for the next BDA although the CC includes multiple passive blocks. As a result 

of the mentioned cases, the output power of the RX is limited. If the Att-1 is switched 

with PS-Stage2, the input power for the BDA-1 would drop. This can improve the OP1dB 

by about 4.2 dB, with the expense of a deteriorated NF by 5.8 dB at 15 GHz. The CC 

block ordering is determined by considering the core-chip expectations, where the NF has 

a higher priority on RX output power. Hence, the BDA dynamic range might be improved 

as for the TX, instead of changing the core-chip's floorplan. 

 

 

2.8.3. The Performance Summary of the Core-Chip 

 

The gain and impedance matching performances of the simulated wideband core-

chip are summarized in Figure 2. 52 for the reference phase and attenuation states, besides 

the possible parasitic effect scenarios stated in the previous sub-sections. The “Rpar” 

takes possible LNA and iNMOS performance degradation into account. The CC is 

designed by regarding the added Rpar resistance to iNMOS devices. When the 

simulations with Rpar effects are considered, the core-chip promised 31.5 dB and 32 dB 

gain for RX and TX at 16 GHz, respectively. The peak RX gain is obtained at 18.7 GHz 

as 33.85 dB, while it is 34.36 dB at 19.4 GHz for the TX. Both chains promise positive 

gain slope until about 20 GHz, which are + 2.1 dB/GHz and + 2.15 dB/GHz respectively. 

These results are at an adequate level to support wide bandwidth requirements of a phased  
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Figure 2. 52 The reference mode (a) gain, and (b) return loss for RX and TX. 

 
Figure 2. 53 (a) The RMS phase and amplitude errors of the core-chip during amplitude 

and phase control, (b) RX NF and TX OP1dB during reference mode of operation. 

 

array T/R module. The difference between chains (especially at the higher end of the BW) 

is because of the forward-and-reverse mode variations and transmission line routing. The 

gain drop after 20 GHz is due to the BDAs as addressed in section 2. 3. 2. Figure 2. 52 

(b) demonstrates the matching performance of the core-chip. The impedance terminations 

are independent of the iNMOS devices (so the Rpar), due to being determined by SiGe 

HBT based blocks. This reflected as a single possible scenario for the impedance 

terminations. As shown, they satisfy the wideband requirement of the design.  

 

Figure 2. 53 (a) summarizes the RMS phase and amplitude errors of the core-chip 

during phase and amplitude control. The design can provide 4-bit of phase and amplitude 

resolution with a lower than 5.60 and 0.8 dB of RMS phase and amplitude error, 

respectively. These results present that the core-chip can be still improved for a higher 
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phase and amplitude resolution. The wideband core-chip achieved less than 5 dB of NF 

between 8-to-24 GHz, as shown in Figure 2. 53 (b). This demonstrates that the core-chip 

can satisfy the NF expectation, even if its peak gain is dropped by about 15 dB. 

Additionally, the design has about 6 ± 2.5 dBm of OP1dB as in Figure 2. 53 (b), and it 

can be enhanced by updating the BDA and MPA designs. The wideband core-chip 

successes these results while dissipating about 112 mW of power; a level that is lower 

than the similar works in literature. The Former LNA consumes about 0.69 mm2 of area, 

including pads. Therefore, the total area of the MPA and LNA can be assumed as 1.6 

mm2 including the possible gap between blocks. According to this assumption, the core-

chip might cover about 5.5 mm2, which is almost 30% of the X-Band core-chip.  

 

The realized core-chip targeted an X-to-K band performance with a low noise 

profile and low power consumption in a compact area. As presented in this section, the 

core-chip achieved lower than 5 dB mean NF with a positively sloped gain in simulations. 

These performances are remarkable for a wideband radar system. Its RMS phase and 

amplitude errors guarantee a 4-bit of phase and amplitude resolution, which can be even 

improved further. Even if the output power of the core-chip might need an update for 

enhanced performance, it confirms the desired targets can be achieved in SiGe BiCMOS 

technology with the realized design approaches. Moreover, the mentioned features are 

achieved without sacrificing from power consumption and area. Therefore, the presented 

design satisfies the cost, weight, compactness, and high-performance expectations of the 

next generation T/R module systems. 
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3. CONCLUSION 

 

 

 

In this dissertation, a wideband low noise SiGe BiCMOS T/R module core-chip is 

realized by utilizing a bidirectional CC. The next-generation phased array systems require 

wide operational bandwidth for improving system integrity and functionality. The T/R 

module core-chips are one of the most significant elements of the system, due to 

determining the main RF features. The system expectations can be satisfied by utilizing 

III-V technology. Besides their superior wideband RF performances, III-V based core-

chips are expensive and cover a large area compared to Si-based designs. Moreover, the 

Si-based T/R module core-chips are capable of implementing various circuits on a single 

substrate without performance degradation.  

 

 This work demonstrates an 8-to-24 GHz low noise T/R module core-chip in SiGe 

BiCMOS technology. The bandwidth limitations of the SiGe technology is surpassed by 

implementing a bidirectional common-chain. Additionally, the bidirectionality of the 

design improved the compactness, with the expense of increased complexity. The 

presented work is composed of an SPDT switch, BDAs, attenuator, PS, LNA, and MPA. 

The BDA integrated an IMN and a filter to produce a positively sloped gain in the defined 

frequency range. It has a measured 11.2 peak gain with a + 0.58 dB/GHz slope. Its OP1dB 

is -2.38 dBm, which is flat throughout the bandwidth. Similarly, it has a low GD variation 

(± 9.1 psec), which is a critical metric for the time-delay based systems. The block 

dissipates 13.8 mW of power in an 0.42 mm2 of area (including pads). The measured 

features validate the BDA's suitability to the wideband core-chip. The LNA utilizes a 

novel design approach to satisfy the low noise requirement of the core-chip. The two 

prototypes have measured sub-1dB NF and 12 GHz bandwidth performances. The design 

procedure is applied to a new LNA design to match the core-chip's center frequency. LNA 

is also utilized as an MPA for the TX, due to providing a low OP1dB variation around + 

10 dBm. The CC of the core-chip has a bidirectional 4-bit phase and amplitude control 
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with a 30 dB of attenuation range. The attenuator and PS are divided into sections, whose 

noise is suppressed by the utilization of multiple BDAs. The CC has 17.91 dB simulated 

(post-layout) peak gain and 2.71 dB/GHz of a slope in 3.88 mm2 of an area including 

pads.  

 

 The wideband core-chip is simulated after verifying the performance of the blocks 

through their measurements and post-layout simulations. The RX and TX have 33.85 dB 

and 34.36 dB of simulated peak gain while dissipating 112 mW of power. The gain 

characteristics of both chains are positively sloped, which are critical for improving 3 dB 

gain-bandwidth of the system (+ 2.1 dB/GHz for RX, and + 2.15 dB/GHz for TX).  The 

4-bit core-chip's RMS phase and amplitude errors are lower than 5.60 and 0.8 dB, 

respectively. The core-chip has 6 + 2.5 dBm of OP1dB and a maximum 5 dB NF between 

8-to-24 GHz in a 5.5 mm2 area. To the best of my knowledge, the core-chip promises the 

best noise and positively sloped gain features with low power consumption in a compact 

area. In light of foregoing, the realized core-chip demonstrated the wideband phased array 

expectations can be satisfied in SiGe BiCMOS technology and be a significant candidate 

for the system instead of the III-V based designs. 

 

 

 Future Works 

 

 

The block-level performances demonstrated that the bidirectional common-chain 

succeeded wide bandwidth in a compact area. The 8-to-24 GHz core-chip is a proof of 

concept design and validated its potential usage in phased array systems. When the recent 

results are considered, some new functionalities can be added to the core-chip to improve 

its features further in terms of gain, output power, phase/amplitude resolution, and area. 

 

 The BDA has a critical impact on the wideband core-chip in terms of not only 

gain and NF, but also area and power consumption. As mentioned, the transmission lines' 

return path utilizes multiple stacked metals for proper ground distribution in the core-

chip. This caused an increased shunt capacitive parasitic and degraded performance of 

the blocks, especially BDA. The non-linear gain drop of the BDA above 20 GHz can be 

improved by utilizing only Metal-3 as the return path. It should be noted that improper 
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Figure 3. 1 The block diagram of the BVGA 

 

ground distribution might also produce a similar response. Therefore, a trade-off exists 

between return path metal and ground distribution. The impedance termination of the 

BDA can be also enhanced, which would smooth the phase and attenuation fluctuations. 

 

 The output power of the core-chip is one of the points that need to be enhanced. 

The weakness of the design is a consequence of measuring a deteriorated BDA OP1dB. 

The OP1dB of the TX can be improved by increasing the BDA’s gain, especially for X-

Band. This approach would not be a burden for the core-chip, which is dissipating low 

power. A similar statement can be done for the RX, due to the BDA's limited input-

referred P1dB, as declared in section 2. 8. 2. 

 

 The 4-bit wideband core-chip presented low RMS phase and amplitude errors 

while utilizing four BDA. When the measured gain, phase, and delay ranges of the BDA 

are considered, a controlling mechanism can be added to the design as new functionality. 

This can be obtained by introducing current-steering iNMOS devices as in Figure 3. 1. 

When the Bidirectional Gain Control Unit (BGCU) is turned on, the main current of the 

branch (iTOTAL) will be divided into iN and iS, which determines the phase or attenuation 

difference. As an advantage of this method, the impedance termination of the amplifier 

might not differ much during the phase/gain control. The described functionality is going 
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to convert the BDA into a Bidirectional Variable Gain/Phase Amplifier (BVGA/BVPA). 

The measurements in Figure 2. 12 verify the possible usage of this method. Each BDA 

can be assigned to generate a new LSB for phase, amplitude or even delay control. They 

can be also utilized to correct the errors of the related blocks. However, the iNMOSs' 

effect on the cascode amplifiers is not considered during measurements. Therefore, the 

size of the BGCU might be the limiting factor for the BVGA or BVPA. As a solution for 

the mentioned problem, a single LSB (such as 0.5 dB of attenuation) can be assigned to 

multiple BDAs for a reduced iNMOS parasitic. Besides, the core-chip might target for 5-

bit or 6-bit of phase and amplitude resolution by introducing the specified method, 

without sacrificing from area and power.  

 

 The wideband core-chip's area is calculated by regarding the "Former LNA". 

Some of its inductors are as in Figure 2. 3 (a) and (b). Additionally, the block is designed 

without an area specification. Therefore, the core-chip's area can be improved further. 

Similarly, the BDA has an area of 0.42 mm2, which is small for a single-stage amplifier. 

However, the block covers at least 40 % of the CC area, due to utilizing four BDAs. 

Hence, improving its gain might result in the removal of a BDA, so lower NF, lower 

power dissipation and a smaller area for the core-chip. 

 

 The wideband systems may require TTD units instead of phase shifters, as 

mentioned before. It is shown that the sub-blocks are compatible with the delay-based 

architecture. Generally, the TTD blocks have a high and negatively sloped loss. When the 

results are considered, the side effects of the TTD can be suppressed with the presented 

wideband core-chip.  
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