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Production rate of wheat, an important food source worldwide, is significantly limited by 

both biotic and abiotic stress factors. Development of stress resistant cultivars are highly 

dependent on the understanding of the molecular mechanisms and structural elements in 

wheat and/or wheat interacting species. The huge and complex genome of bread wheat 

(BBAADD genome) has stood as a vital obstruction for understanding the molecular 

mechanisms until the recent availability of wheat reference genome. In this study, we 

provided improved and/or novel methodologies to reveal structural elements in plants. 

These methodologies include miRNA identification, manual curation of lncRNAs, 

identification of lncRNAs using wheat specific prediction models and a comparative 

analysis of WES data analysis tools. Using these techniques, we here focused on the 

uncovering of structural genomic contents of wheat.  

 

With an improved identification methodologies and manual annotation of lncRNAs, we 

revealed several miRNAs and lncRNAs in Triticum turgidum species and Wheat stem 

sawfly (WSS), a major pest of wheat. We provided a comprehensive transcriptome 
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analysis of tetraploid wheat varieties and revealed drought responsive transcripts. 

Additionally, we presented the first clues of miRNA mobility between WSS larva and 

hexaploid wheat. Thereby, besides enrichment of the genetic information available for 

wheat species, this study provides important elements driving both abiotic and biotic 

stress responses in wheat. In this study, we also applied machine learning approaches for 

the fast and accurate prediction of lncRNAs in wheat species. With annotated genomes 

of hexaploid and tetraploid wheats, we provided better accuracy scores (99.81%) over the 

most popular tools available. Finally, we conducted a comparative analysis of the tools 

used for variant discovery. Among eight aligners and three callers, we chose the best 

combination for the variant calling in wheat. Later, we performed variant calling in 48 

lines of elite wheat cultivars using the best tool sets. Overall, this study focused on the 

improvements on the identification of miRNAs, lncRNAs and structural variations in 

wheat. 
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Dünya genelinde önemli bir gıda olan buğdayın üretim hızı çeşitli stress faktörleri 

tarafından kısıtlanmaktadır. Strese dayanıklı kültürlerin geliştirilmesi ise buğday ve/veya 

buğday ile etkileşimde olan türlerin moleküler mekanizmalarının ve yapısal 

elementlerinin anlaşılmasıyla sağlanabilir. Günümüzdeki referans genomunun 

yayınlanmasına kadar, buğdayın büyük ve karmaşık genom yapısı bu moleküler 

mekanizmaların anlaşılmasını zorlaştırıyordu. Bu çalışmada, bitkilerin yapısal 

parçalarının anlaşılmasını sağlayacak methodlar oluşturmaya, olan methodlarıysa 

geliştirmeye çalıştık. Bahsi geçen methodlar; miRNA belirleme, tüm özelliklerine 

bakarak elle lncRNA belirleme, yapay zeka kullanarak buğday genomuna özel lncRNA 

tanımlama and WES data analizlerinde kullanılan programların karşılaştırılması. Tüm bu 

methodları kullanarak, buğday genomunun yapısal elementlerini bu çalışmada ortaya 

çıkartmaya çalıştık. 
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Geliştirilen tanılama methodları ve lncRNA moleküllerinin manuel belirlenmesi ile 

durum buğdağı ve ekmeklik buğdayın önemli bir böceği olan ekin sap arısında birçok 

miRNA ve lncRNA molekülleri ortaya çıkardık. Tetraploid buğday türlerinde kapsamplı 

bir transkriptom analizi gerçekleştirdik ve kuraklığa duyarlı transcriptleri ortaya çıkardık. 

Ayrıca, sap arısı larvası ile buğday arasındaki miRNA geçişine yönelik bulguları gösteren 

ilk çalışmayı sunduk. Böylece, buğday türlerine ait bilinen genetik bilgileri artırmanın 

dışında, bu çalışma buğdayın biotik ve abyotik stress tepkilerini çalıştıran önemli 

elementleri de ortaya çıkarmaktadır. Bu çalışmada, aynı zamanda, buğday lncRNA 

moleküllerinin doğru ve hızlı tanımlayabilmek için yapay zeka kullanılmıştır. 

Anotasyonları yapılmış hexaploid ve tetraploid buğdağ genomlarını da kullanarak, en sık 

kullanılan programların üzerinde bir doğruluk payı (%99.81) sağladık. Son olarak, 

varyant tanımlama için kullanılan programların karşılaştırmalı değerlendirmesini yaptık. 

Sekiz eşleştirici ve üç tarayıcı arasından buğday için en etkili kombinasyonu seçtik. 

Sonrasında, bu en iyi kombinasyonu kullanarak, 48 farklı elit buğday kültüründeki 

varyantları ortaya çıkardık. Genel olarak, bu çalışmada buğday bitkilerindeki yapısal 

değişkenler, miRNA ve lncRNA molekülleri ortaya çıkarılmıştır. 
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1. GENERAL INTRODUCTION 

 

 

 

Wheat (Triticum ssp.) is one of the major sources of continuously increasing food 

demand, ranking second in crop production worldwide (Food and Agriculture 

Organization of the United Nations 2019). Domestication and cultivation efforts of 

agricultural practices resulted in an increased yield (Marcussen et al. 2014) with the 

approximate global production of 700 million tons per year distributed over 200 million 

hectares (Food and Agriculture Organization of the United Nations 2019). Despite this 

spread distribution, obtained rate of yield is not sufficient to meet world food demand 

since production rate is significantly limited by biotic and abiotic stress factors (Budak, 

Hussain, et al. 2015). Drought is one of the major abiotic stress factors worldwide, 

causing decrease in grain quality and yield loss through all cereals, including wheat (Bala 

Ani Akpinar, Lucas, and Budak 2013). Recent studies have suggested a substantial 

increase in drought caused by climate change and global warming (Fang and Xiong 

2015). In order to maintain sufficient amount of yield with an improved nutritional 

quality, development of new wheat varieties with an increased drought tolerance is 

urgently needed toward future challenges.  

 

Wheat Stem Sawfly (WSS), Cephus Cinctus Norton (Hymenoptera: Cephidae)  is, on the 

other hand, stated as the most damaging pest of wheat in Northern Great Plains, causing 

crop devastations in Montana region each year (Beres et al., 2011). Female WSS choose 

the internodes of actively elongating fresh wheat stems to lay their eggs. By tearing the 

stem with their sharp ovipositors, eggs are placed into the stem where the larvae form 

after 4-7 days of incubation (Cárcamo et al. 2011). Since the larvae are cannibalistic, only 

one larva can survive in the stem although there are more eggs deposited. Larva stays and 

develops in the wheat stem during the growing season, feeding on parenchyma and 

vascular tissues and, eventually, it moves toward the bottom of the stem to cut a notch, 

causing plant to lodge in order to overwinter there until the pupation occurs. Stem cutting 
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cause a dramatic reduction in yield, and even uncut infested plants have low yield due to 

decreased head weight by 17% (Delaney et al., 2010). However, there are still no effective 

control method over WSS damage in wheat. Usage of chemicals is limited by the long 

emergence period of females and the wheat stem protecting the eggs and the larva feeding 

inside (Knodel et al. 2009). The introduction of solid-stemmed wheat instead of hollow-

stemmed wheat maintained a more powerful control on the infestations. Yet, the solid-

stemmed cultivars are not preferred by producers because of its low yield and protein 

content compared to hollow-stemmed cultivars (B. Beres et al. 2011). 

 

With the advances in high-throughput sequencing technologies, vast number of 

transcripts have been discovered in many different species, including mammals, plants, 

vertebrates etc. (Mercer et al. 2011; Szymański and Barciszewski 2002; (IWGSC) et al. 

2018; Claverie 2005). Transcriptomics and genomics studies revealed majority of these 

transcripts are not coding for functional proteins although their lengths were greater than 

200 nucleotides (Pennisi 2012). Such transcripts were called long non-coding RNAs 

(lncRNAs). The lack of functional studies and evolutionary conservation raised the 

concerns about the importance of lncRNAs (Struhl 2007) where these concerns have been 

answered by the functional characterization of lncRNAs in important biological processes 

(i.e. COOLAIR/COLDAIR) (Jae Bok Heo and Sung 2011). Studies in the last decade 

have revealed diverse regulatory functions of lncRNAs as their interactions range from 

lncRNA:RNA to lncRNA:chromatin interactions (Chekanova 2015). The list of plant 

lncRNAs with best-studied functions involves several important biological processes, 

including vernalization (Swiezewski et al. 2009), photo morphogenesis (Y. Wang et al. 

2014), reproduction (Ding et al. 2012), nodulation (Campalans 2004) and environmental 

stress adaptation (J. Liu et al. 2012). 

 

Furthermore, lncRNAs tend to have tissue specific expression and conservation in 

functionality rather than sequence (Ulitsky et al. 2011; Cabili et al. 2011). Although 

sequence conservation is almost always accounted for the functionality of the sequence, 

vice versa is not always true (Shannon et al. 2003). Diverse functions of lncRNAs might 

support the different constraints that might drive conservation of different RNAs, such as 

mRNAs, miRNA and lncRNAs (Hezroni et al. 2015). Instead of full-length sequence 

conservation, small binding sites for their interacting partners could be conserved. These 

lncRNAs could be conserved at structural level to maintain functional interactions with 
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proteins or other DNA/RNAs (Militti et al. 2014). 

 

Bioinformatics approaches are applied to differentiate lncRNAs from other noncoding 

RNAs and mRNAs. Due to their considerable lengths (usually >200nt), lncRNAs can 

easily differentiated from small noncoding RNAs. However, the most challenging aspect 

of lncRNA identification is that lncRNAs are loosely defined; in fact, lncRNAs are mostly 

defined with the lack of certain properties. A general definition of lncRNAs is long 

transcripts without a complete ORF.  

 

Current lncRNA studies are focused on; only ORF size and sequence similarity to known 

protein sequences; machine learning algorithms, such as support vector machines (SVM); 

or combination of these and several other features. Several features can be used as 

selection criteria to distinguish lncRNAs from mRNAs: (1) transcript length; (2) ORF 

length; (3) homology with known proteins; (4) homology with protein domains; (5) 

intron-exon structure; (6) genomic location; (7) machine learning techniques (J. Liu et al. 

2012; T.-Z. Wang et al. 2015; Boerner and McGinnis 2012; L. Li et al. 2014; Jinhui Chen, 

Quan, and Zhang 2015). The use of machine learning techniques alone has increased the 

accuracy of coding potential calculations to over 90% (Kong et al. 2007; Sun et al. 2013; 

Hoff and Stanke 2013). However, the precise identification of lncRNAs seems impossible 

due to transcripts that are short and protein coding, and transcripts that are noncoding 

with long ORFs. Even some lncRNAs are derived from protein coding loci. Using 

combination of filters can adress some of the challenges in sensitive lncRNA 

identification; though a volatile solution is to cluster transcripts into two categories as 

high-confidence lncRNAs and low confidence lncRNAs (L. Li et al. 2014). 

 

These in silico predictions revealed plenty of lncRNAs whose expression need to be 

corfirmed. qRT-PCR allows detection and quantifiation of the expression in real time; 

therefore, widely used technique to verify expression of in silico predicted lncRNAs 

(Shuai et al. 2014). Functional annotation of lncRNAs has been carried on in terms of co-

expression patterns and/or interaction networks. An expression based functional 

prediction can be performed to predict functions of lncRNAs based on co-expressed 

protein-coding genes (Liao et al. 2011; Guttman et al. 2009). For example, the two 

lncRNAs, COOLAIR and COLDAIR, are expressed in the FLC loci and control the 

expression of FLC gene that loci (J. B. Heo and Sung 2011). Moreover, lncRNAs can 
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serve as sRNA targets, where those lncRNAs prevent interaction between the sRNA and 

its protein-coding target, thereby enhance the function of a particular protein-coding gene 

(Shuai et al. 2014; Britton et al. 2014). These interaction network between lncRNA, 

miRNA and mRNAs could reveal the functions of lncRNAs as endogenous Target 

Mimics (eTMs) (Jie Chen et al. 2013; Franco-Zorrilla et al. 2007). Moreover, lncRNAs 

can serve as sRNA precursors, where the downstream patterns of the corresponding 

sRNA could reveal the functioning of lncRNAs in different molecular pathways (Matzke 

and Mosher 2014; Ariel et al. 2015).  

 

sRNAs, on the other hand, are double stranded RNAs (dsRNAs) with 20-30nt in length 

and non-coding regulatory elements of genome. They regulate both genome and 

transcriptome by targeting both chromatin and the transcripts. sRNAs have a tendency to 

bind with Argonaute (AGO) family proteins, forming RNA-induced silencing complex 

(RISC). Upon formation, RISC proteins directs mature sRNAs to their target mRNA. This 

sRNA-mediated gene silencing is mostly known as RNA interference (RNAi). RNAi is a 

sequence-specific gene silencing mechanism induced by sRNAs. sRNAs comprises of 

many subgroups like miRNAs, siRNAs, piwi-interacting RNAs (piRNAs) based on their 

characteristic hairpin structures, homology to coding sequence or for piRNAs, conserved 

5’ motif sequence (Britton et al. 2014).  

 

miRNAs are ~22nt in length and processed from endogenous single-stranded hairpin 

precursors (Guleria et al. 2011). Primary miRNAs are generated by RNA pol II and 

processed inside the nucleus to produce mature miRNA. Length of mature miRNAs 

ranges from 21-24 depending on which DCL family member processes (Budak and 

Akpinar 2015). Mature miRNA has 2 strands miRNA and miRNA* that has an additional 

2nt overhang at 3’end. The miRNA duplex is methylated inside the nucleus to protect 

miRNA from 3’-exonuclease degradation and 3’-uridylation (Guleria et al. 2011; Budak 

and Akpinar 2015). The methylated miRNA duplex is exported into the cytosol where a 

helicase unwinds the duplex and exposes the mature miRNA to RISC. Upon binding 

RISC, miRNA directs RISC towards the target sequence leading either mRNA 

degradation in case of full complementarity or translational repression in case of partial 

complementarity (S. J. Lucas and Budak 2012). A near-perfect complementarity is 

required for the functioning of miRNAs indicating that miRNAs might have been evolved 

from the duplicated copies of their targets therefore exhibiting homology to their targets. 
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Other sources of miRNA formation comprise of transposable elements (TEs), random 

unstructured sequences, and non-canonical processing. New miRNAs are prone to be lost 

quickly if complementary sequences do not exist or they exhibit improper processing. 

Once a miRNA is generated, miRNA families are formed by tandem or segmental 

duplications. 

 

Genomic variations in coding regions are important factors leading to genome diversity 

where currently several structural variations are associated with phenotypic traits (Henry 

et al. 2014). Even certain molecular markers determined for economical physical traits in 

plants (Zanke et al. 2014). Moreover, these genomic variations are reliable sources for 

the identification of complex traits as they are not affected by environmental conditions 

(Hussain et al. 2017).  

 

Until recently, identification of coding and non-coding RNAs was studied via 

construction of a complementary (cDNA) library and cloning randomly to generate 

expressed sequence tags (ESTs) (Adams et al. 1991), which are time-consuming and 

labor-intensive processes (Hennebert et al. 2015; Budak and Akpinar 2015). However, 

with the recent techniques i.e. chromosome sorting, even individual chromosomes of 

large complex organisms can be studied (S. J. Lucas and Budak 2012). For the complex 

genomes like wheat identification of alleles associated with phenotypic traits is not as 

smooth as crops like Arabidopsis (Cao et al. 2011). However, this complexity can be 

decreased by exome capture sequencing (Winfield et al. 2012). These techniques fasten 

the genome studies on complex organisms like wheat and these genomic sequences can 

be used in many aspects i.e. identification small RNAs, lncRNAs and structural 

variations.  

 

Therefore, with the advent of NGS technologies, identification of structural elements can 

be studied in silico in both model and non-model organisms. The process is based on 

distinctive features of RNAs such as characteristics folding patterns, conservation among 

known plant RNA molecules and homology to coding sequence. Besides, interrogation 

of functions or mechnisms of these structural elements is highly dependent on high-

quality transcript models where increased throughput and methodological advances are 

continously improving identification processes.  
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In this study, we focused on implementation of currently available tools to improve their 

performances in order to uncover structural genomic contents of wheat. With the recent 

releases and availability of the wheat reference genome, mining of wheat genome for 

structural elements with regulatory functions has become more available. Given reference 

genome annotation and several advance bioinformatics tools, the question has become 

how to choose the best tools.  

 

In Chapter 2, the general materials and methods section,  we introduced an improved 

pipeline for in silico identification of plant miRNAs. We used this miRNA identification 

pipeline in the following chapter 3 and 4.  Both in chapter 3 and 4, we performed 

identification of lncRNAs through manual annotation of transcripts. In Chapter 3, we 

identified both coding and lncRNAs that might drive drought resistance in Triticum 

turgidum species and compare three cultivars with varying drought tolerance levels under 

drought and control conditions. In Chapter 4, we identified lncRNAs in WSS (wheat stem 

sawfly) and presented possible interactions of RNAs between larvae and wheat seeds 

during larval feeding. In Chapter 5, we presented a novel lncRNA prediction model 

trained on wheat which performs lncRNA prediction in minutes where manual annotation 

took months during work presented in chapter 3 and 4. Finally, in chapter 6, we performed 

a comparative analysis of whole exome sequencing data analysis tools. Overall, this study 

focused on the improvements on the identification of miRNAs, lncRNAs and structural 

variations in wheat.  
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2. GENERAL MATERIALS AND METHODS 

 

 

 

 SUmir Pipeline 

 

 

SUmir pipeline were initiated by Lucas et. al. at 2012 (S. J. Lucas and Budak 2012). 

SUmirFind performed homology screening against a given miRNA query. It uses blastn 

with parameters optimized for small RNA screenings without any mismatches allowed. 

Later, SUmirFold evaluates secondary structure of predicted precursor sequences using 

UNAFold. Afterwards, putative miRNAs were selected manually, which was time 

consuming lasting ~30 days for large genomes like wheat. We implemented 

SUmirScreen, a python script which evaluates candidate miRNAs eliminating manual 

inspection. Additionally, we introduced SUmirLocate, python script, to extract statistics 

on genomic distribution of predicted miRNAs. Altogether, we made this SUmir pipeline 

fully automated and error prone from human mistakes.  

 

SUmir pipeline were used in both chapter 3 and chapter 4 in this thesis. Additionally, 

other studies used this pipeline include the annotation of wheat reference genome (Appels 

et al. 2018). The scripts were released on GitHub with the following links: 

 

https://github.com/hikmetbudak/miRNA-annotation/blob/master/SUmirScreen_v2.py 

https://github.com/hikmetbudak/miRNA-annotation/blob/master/SUmirLocate_v2.py 

 

In general, high confidence mature miRNA sequences of were retrieved from miRBase 

database (v21, June 2016) (Kozomara and Griffiths-Jones 2011). In silico miRNA 

prediction was performed based on homology and secondary structure predictions. De 

novo assembled transcriptome was subjected to homology screening to predict putative 

mature miRNA sequences, allowing at most 1 base mismatch using SUmirFind. Predicted 
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mature miRNA sequences were extended from both ends to predict pre-miRNA 

sequences after when they can be subjected to UNAFold (Markham and Zuker 2008) to 

simulate RNA folding. Secondary structure predictions evaluate characteristics of hairpin 

structure to differentiate miRNAs from other ssRNAs by several parameters including 

MFEI and GC content using SUmirFold.  

 

Later, final evaluations were performed based on strict criteria of correct folding: (1) max 

number of mismatches allowed are 4 for miRNA and 6 for miRNA* sequences; (2) no 

mismatches allowed at Dicer-Like enzyme cut sites; (3) multi-loop structures are not 

allowed between miRNA and miRNA*; (4) miRNA or miRNA* sequences cannot be 

involved in the head part of the hairpin, using SUmirScreen. 
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3. RNA SEQUENCING and CO-EXPRESSED LONG NON-CODING RNA 

IN MODERN AND WILD WHEATS 

 

 

 

 Introduction 

 

 

Wild plants evolved sophisticated stress tolerance and adaptation mechanisms to drought 

where the domestication of modern wheat varieties has led to the loss of these valuable 

genes in the process of domestication (Alptekin and Budak 2016). Introgression of the 

valuable elements from wild relatives has been an attractive approach for agronomical 

improvement of modern wheat varieties for decades (Merchuk-Ovnat et al. 2016), due to 

their rich gene pool for the resistance to many different stress factors. Tetraploid emmer 

wheat (T. turdigum ssp. dicoccoides, 2n=28, AABB) is the wild progenitor of the 

allohexaploid bread wheat (T. aestivum, 6n=42, AABBDD) and the domesticated 

tetraploid durum wheat (T. turgidum ssp. durum, 4n=24, AABB) (Marcussen et al. 2014). 

Recent studies on tetraploid wheat varieties revealed contrasting drought tolerance in 

tetraploid wild emmer wheat varieties and domesticated tetraploid durum wheat (Bala 

Ani Akpinar, Kantar, and Budak 2015; Ergen and Budak 2009). Ergen and colleagues 

surveyed drought response of several genotypes of wild and domesticated tetraploid 

wheat varieties; they were able to show that wild emmer wheat, genotype TR39477, 

exhibits the highest drought tolerance while TTD-22 genotype has the lowest tolerance 

under drought stress. On the other hand, durum wheat variety Kiziltan showed a moderate 

tolerance in response to slow drought imposition (Ergen and Budak 2009); however, 

complete mechanism of these drought responses remains elusive. A better understanding 

of the genomic background and the molecular mechanisms of drought responses in wild 

progenitors of wheat might reveal such favorable regulatory elements lost during 

domestication and cultivation processes.  
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In recent years, technological advances have made road into the reduction in the cost of 

sequencing experiments and availability of several genomic and transcriptomic data from 

bread wheat and its relatives/progenitors (The International Wheat Genome Sequencing 

Consortium 2014; Budak and Kantar 2015). Particularly, transcriptomic studies shed light 

into the differential expression and regulation of several transcripts under biotic and 

abiotic stress conditions, which further provide insights about the molecular mechanism 

associated with stress tolerance (Bala Ani Akpinar, Lucas, and Budak 2013; Budak, 

Kantar, et al. 2015; Budak, Khan, and Kantar 2015). Total transcriptome sequencing and 

annotation possess a potential for detection of protein coding transcripts, differentially 

regulated under stress conditions, together with their non-coding interacting partners 

which is associated with a large portion of transcriptomes (Griffiths-Jones 2007). The 

content and the amount of the non-coding RNAs (ncRNAs) in the genome show an 

increased correspondence with the genome complexity which further supports their 

regulatory roles (Guleria et al. 2011; Budak et al. 2016). Over the last decades, extensive 

studies in both animals and plants have shed light into the functions and mechanisms of 

ncRNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) in the 

transcriptional and post-transcriptional regulation of gene expression (Budak and Akpinar 

2015; Bala A. Akpinar and Budak 2016). While the miRNAs and siRNAs are referred as 

small RNAs (sRNAs) based on their small length ranging between 18 to 24 nucleotides, 

another type of ncRNAs longer than 200 nucleotides has been recently defined as long 

non-coding RNAs (lncRNAs) (Chekanova 2015; J. Liu et al. 2012). LncRNAs resemble 

messenger RNAs (mRNAs) in their structure and biogenesis process, i.e., they are mainly 

transcribed by RNA Pol II and poly-adenylated, as though mRNAs (J. Liu et al. 2012). 

Additionally, they might possess multiple exons and are subjected to alternative splicing. 

The major factor distinguishing lncRNAs from mRNAs is the lack of discernable coding 

potential of lncRNAs (Quinn and Chang 2015). Besides, lncRNAs are composed of ~3 

exons on average as opposed to ~11 exons in mRNAs and exhibit a more tissue-specific 

expression pattern compared to mRNAs where their expression is also relatively less than 

mRNAs in a given tissue (Quinn and Chang 2015). 

 

Emerging evidence has suggested that lncRNAs have regulatory roles in the major 

biological processes such as development, vernalization, nodulation and environmental 

stress adaptation both in direct and indirect manner (J. Liu et al. 2012). As an example, 

two lncRNAs, the long antisense intragenic RNA (COOLAIR) and the intronic noncoding 
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RNA (COLDAIR), have been detected as mediating the flowering process in Arabidopsis  

through silencing and epigenetic repression of Flowering Locus C (FLC) (Swiezewski et 

al. 2009). Additionally, several studies evinced the functions of lncRNAs in the 

biogenesis and targeting process of small-noncoding RNAs by possessing miRNA-

siRNA precursor potential and sRNA target mimicry (Chekanova 2015). RNA-dependent 

DNA Methylation (RdDM) in plants, for example, utilizes lncRNAs acting as precursors 

of siRNAs which later target lncRNAs acting as scaffold RNAs recruiting siRNA-AGO4 

complex together with RDM1 (RNA-directed DNA Methylation 1) to a target genomic 

loci for DNA methylation-mediated silencing (Lai and Shiekhattar 2014). In another 

example, lncRNA IPS1 has been shown to inhibit miR399-mediated cleavage of PHO2 

as a competitor for PHO2 mRNA (Shin et al. 2006). LncRNAs have also been identified 

as differentially expressed under several stress conditions and their regulation on both 

mRNA and sRNA pool detected as critical for stress tolerance and maintenance of vitality 

(X. Lu et al. 2016); however, not that much effort has been done in drought responsive 

lncRNAs and their association with coding and other non-coding RNA species, 

particularly in cereals. Here, we present a detailed analysis of drought responsive mRNAs 

and lncRNAs along with their particular interaction with each other in three different 

tetraploid wheat varieties. Results revealed the presence of more than 200 putative stress 

responsive lncRNAs per cultivar which provided insights about drought tolerance 

mechanism in ancestor of modern wheat. Additionally, this study presents a brief method 

for precise identification and detailed characterization of lncRNAs for plants lacking both 

an annotated genome and a reference genome. 

 

 

 Materials and Methods 

 

 

3.2.1. Total transcriptome sequencing, assembly and identification of differentially 

expressed transcripts 

 

In a previous study of our group, a number of wild wheat varieties were subjected to slow 

drought imposition where two wild emmer wheat (T. turgidum ssp. dicoccoides) varieties, 

TR39477 and TTD-22, exhibited contrasting responses as the most tolerant and the most 

sensitive compared to the cultivated durum wheat (T. turgidum ssp. durum) variety 
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Kiziltan with moderate response (Bala Ani Akpinar, Kantar, and Budak 2015). Total 

RNA isolation from a pool of three biological replicates of the root samples of control 

and drought-stressed modern durum wheat, Kiziltan, and wild emmer wheats, TR39477 

and TTD-22, conducted with TRI Reagent (Molecular Research Center, Cincinnati, OH, 

USA) following the manufacturer’s recommendations and RNA integrity was controlled 

using Agilent Bioanalyzer 2100 RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, 

CA, USA) (Bala Ani Akpinar, Kantar, and Budak 2015). Following, high-throughput 

sequencing with Illumina HiSeq 2000 were performed with the libraries prepared by 

using TruSeq RNA Sample Prep Kit v2 (Bala Ani Akpinar, Kantar, and Budak 2015). 

Illumina HiSeq 2000 paired end reads can be accessible at ENA database with the run ID: 

ERR1987529.  

 

Raw paired-end reads from RNA sequencing of these six samples (three genotypes x two 

conditions) were quality trimmed using Trimmomatic (v0.32) with default parameters 

(LEADING:5, TRAILING:5, MINLEN:36) (Bolger, Lohse, and Usadel 2014). De novo 

assembly for each genotype was generated by Trinity platform (Haas et al. 2013) (release 

2014-07-17) from combination of paired-end Illumina reads of control and drought-

stressed samples. Assembled transcripts were aligned back to the raw reads using bowtie 

aligner and the abundance estimation of all transcripts was quantified as FPKM with 

utilization of RSEM under Trinity pipeline. Individual assembly files for each control and 

drought-stressed samples were separated based on their corresponding abundance 

estimates for further analysis. Differential expression analysis was conducted using 

EdgeR pipeline (Robinson, McCarthy, and Smyth 2010) with the default threshold 

parameters of p-value=0,001 and log2(fold_change)=2.  

 

 

3.2.2. Annotation of transcripts and identification of long non-coding RNAs  

 

Following transcriptome assembly, annotation of transcripts and identification of 

lncRNAs were performed through following rigorous criteria: exclusion of contaminants, 

open reading frame (ORF) size prediction, ab initio predictions and homology screenings. 

As the first layer of analyses, transcripts were excluded from the assemblies if defined as 

contaminants after blast screenings against Triticum turgidum non-coding RNAs 

deposited at NCBI and ENA databases (1E-05, -pident 95, -length 30); rRNA, tRNA, 
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snoRNA, snRNA sequences of Triticum families deposited in NCBI database (1E-05, -

pident 95, -length 30); Triticum aestivum mitochondrion complete genome 

(NC_007579.1) and Triticum turgidum organellar RNAs deposited at NCBI and ENA 

databases (1E-15, -pident 95, -length 30). Remaining analyses evaluated the coding 

potential of transcripts and aid to determine either lncRNAs or coding transcripts.  

 

Subsequent to contaminant analysis, the ORF size prediction for each assembly was 

conducted in order to differentiate between protein coding and non-coding transcripts. 

Since many transposons have similar ORFs to host genes which may corrupt the coding 

gene annotation, all assemblies were subjected to repeat-masking prior to ORF content 

predictions, against the repeat library of MIPS Repeat Element Database v9.3 p for 

Poaceae (ftp://ftp.mips.helmholz-muenchen.de/plants/REdat/) (Nussbaumer et al. 2013) 

using RepeatMasker v4.0.5 software (Tarailo-Graovac and Chen 2009). Ability of repeat-

masked transcripts to construct a full-length protein was evaluated by employing two 

different software, Transdecoder (-m 80) and EMBOSS:getorf (Rice, Longden, and 

Bleasby 2000)]. Transcripts with a continuous ORF >240 nucleotide in length were 

accepted as possess a functional ORF. Coding potentials of transcripts were predicted 

with several ab initio methods; CPC online tool (options: reverse strand mode was 

included) (Kong et al. 2007), CNCI (version 2 , options: -m pl) (Sun et al. 2013)  and 

AUGUSTUS online tool (Hoff and Stanke 2013) with the pre-established system trained 

for Triticum/wheat. Transcripts identified as ‘coding’ by at least one of these tools satisfy 

the ab initio prediction criterion.  

 

In order to identify homolog coding transcripts with other species, assemblies were 

aligned to a dataset of coding sequences using Blast tool kit (version 31) (Camacho et al. 

2009). All transcripts were initially blasted against several datasets; Uniprot/Swissprot 

database (http://web.expasy.org/docs/swiss-prot_guideline.html) (parameters: -evalue 

1E-05, -pident 80, -length 30); Triticum aestivum UniGenes 

(https://www.ncbi.nlm.nih.gov/unigene, build#63) (parameters: -evalue 1E-30, -pident 

98, -length 90, -max-target-seqs 1); Triticum turgidum ESTs and coding sequences 

deposited at NCBI (https://www.ncbi.nlm.nih.gov/) and ENA (http://www.ebi.ac.uk/ena) 

databases (parameters: -evalue 1E-05, -pident 95, -length 30) together with fully 

annotated proteins from Brachypodium distachyon (v1.2, http://mips.helmholtz-

muenchen.de/plant/brachypodium) (Initiative 2010), Oryza sativa (IRGSP-1.0, 
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http://rapdb.dna.affrc.go.jp(download/irgsp1.html) (Tanaka et al. 2008), Sorghum bicolor 

(v1.4, http://mips.helmholtz-muenchen.de/plant/sorghum) (Paterson et al. 2009), high 

confidence proteins from Hordeum vulgare (http://mips.helmholtz-

muenchen.de/plant/barley/) (Mayer et al. 2012), and Triticum UniProt sequences 

(144,397 entries, http://uniprot.org/) (parameters: -evalue 1E-05, -pident 95, -length 30). 

Additionally, Transdecoder (-m 30) predicted peptide sequences of each transcript were 

screened using against Swissprot entries (parameters: -blastp, -evalue 1E-05, -pident 80, 

-length 30). Conserved protein domains preserved in these peptides were also controlled 

with Hmmer (v.3.1b1) against Pfam domains (-evalue 1E-05) (Z. Zhang and Wood 2003). 

Transcripts with homology evidence from any of these screenings were accepted as 

satisfy homology-based prediction criterion. 

 

 

Figure 3.1. The pipeline for the identification and annotation of both coding transcripts 

and lncRNAs. 

 

As described in Figure 3.1, after exclusion of contaminants, transcripts qualifying 

remaining criteria were defined as coding transcripts where transcripts with no evidence 

of coding in ORF size predictions, ab initio predictions and homology screenings were 

defined as lncRNAs. Final functional annotation of coding transcripts were carried out 

using Blast2GO software (Conesa and Götz 2008) with the initial blast screen run locally 

against all Viridiplantae (taxid: 33090) proteins from the NCBI database (parameters: 

blastx, -evalue 1E-5, -outfmt 5, -max_target_seq 1).  
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3.2.3. Genome mapping and splicing 

 

Wild emmer wheat genome was obtained from WEWseq consortium 

(Zavitan_v2_pseudomolecule: http://wewseq.wixsite.com/consortium (Avni et al. 

2017)). Transcripts were mapped to Zavitan genome using GMAP (version 2016-07-11, 

with all parameters set to default except –min-identity=90 –cross-species -f 2). Obtained 

GFF files were converted into GTF format using gffread. GTF files were submitted to 

ASTALAVISTA database at default settings to identify alternative splicing events. 

 

 

3.2.4. Quantitative Real Time PCR (QRT-PCR) analysis for miRNA, mRNA and 

lncRNA transcripts 

 

In order to show the accordance of differential expression analysis based on RNA 

sequencing with wet lab, quantitative Real Time PCR (qRT-PCR) experiment was 

performed. Prior to experiment, a subset of lncRNAs and mRNAs were selected. The 

differentially expressed transcript across Kiziltan, TR39477 and TTD-22 were compared 

via blast analysis and transcript sequences showing similarity with 80% identity and 

query coverage between whole samples was defined as ‘common’. Between common 

transcripts, 2 mRNA (Kiz_mRNA_c17408_g1_i1, Kiz_ mRNA_c55246_g1_i1) and 2 

lncRNA sequences (Kiz_lncRNA_c118446_g1_i1 and Kiz_lncRNA_c47700_g1_i1) 

were chosen randomly and qRT-PCR primers were designed (Appendix A - 

Supplementary Table 1). Kiziltan seed were surface sterilized in 4% sodium hypochlorite 

and grown in tall plastic jars for 15 days at 23°C with adequate amount of water. At the 

end of two weeks, plant seedlings reached the four-leaf stage were dehydration shocked 

for 4 hours by removing them from plastic jars and leaving on paper towels under the 

same lighting conditions, while control plants were immediately fast frozen in liquid 

nitrogen. Both root and whole seedling tissues were collected and stored at -80°C. Total 

RNA isolation from whole collected tissues from control and drought treated samples was 

performed with TRI Reagent (Molecular Research Center, Cincinnati, OH, USA) 

following the manufacturer’s recommendations. First strand cDNA synthesis was 

performed on 1µg of total RNA using RevertAid H Minus Reverse Transcriptase 

(QuantiTect Reverse Transcription Kit, Qiagen) according to manufacturer’s protocols. 

For quantification of mRNA and lncRNAs transcripts from control/ drought stressed 
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root/whole seedling samples, the reaction mix containing 3µl of 5X diluted of cDNA, 1µl 

of forward primers, 1 µl of reverse primer and 5 µl of iTaqTM Universal SYBR® Green 

Supermix (Bio-Rad) incubated in Bio-Rad CFX 96 Thermal Cycler with following 

conditions: 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s, 60 °C for 1 min and 

then 95 °C for 15 s. The constitutive gene of Triticum aestivum Actin (TaActin) (Yue et 

al. 2015) was used as internal standard to normalize the transcripts using a gene-specific 

primer (Appendix A - Supplementary Table 1). The 2-ΔCt method was used to calculate 

the difference in expression of chosen genes (Livak and Schmittgen 2001). 

 

For validation of mRNA, miRNA and lncRNAs, miR1436-1 and miR1436-4 were chosen 

and validated together with their mRNA and lncRNA targets. For qRT-PCR analysis of 

mRNA and lncRNAs, the same method was utilized described in above. In order to obtain 

cDNA belonging to mature miRNAs, miRNA-specific stem–loop reverse transcription 

reactions were performed using RevertAid H Minus Reverse Transcriptase with iScriptTM 

Select cDNA Synthesis Kit (BioRad) following the manufacturer’s recommendations 

with slight modifications. Prior to cDNA synthesis, a mix of 500 ng of DNAase treated 

RNA and 1 µl of miRNA-specific stem loop PCR was incubated at 65 °C. After 

incubation, 2 µl of GSP enhancer solution, 4 µl of 5x iScript select reaction mix and 1 µl 

of iScript reverse transcriptase were added and reaction mix (10 µl) was incubated at 42 

°C for 1 hour followed by 5 minutes of 85°C incubation to heat-inactivate the reverse 

transcriptase. For validation of miRNA expression, the reaction mix containing 3µl of 5X 

diluted of cDNA, 1µl of forward primers, 1 µl of universal reverse primer and 5 µl of 

iTaqTM Universal SYBR® Green Supermix (Bio-Rad) incubated in Bio-Rad CFX 96 

Thermal Cycler with following conditions: 95°C for 5 min, followed by 35–45 cycles of 

95°C for 5 s, 60°C for 10 s, and 72°C for 1 s. For melting curve analysis, samples were 

denaturated at 95°C, then cool to 65°C at 20°C per second. The fluorescence signals were 

collected at 530 nm wavelength continuously from 65°C to 95°C at 0.2°C per second. 

The constitutive gene of Triticum aestivum rRNA26 homolog (Tenea et al. 2011)was used 

as internal standard to normalize the miRNA expression (Appendix A - Supplementary 

Table 1). For internal control, several control genes including TaU6 were attempted and 

the rRNA26 was chosen because of its expressional stability under different conditions 

and tissues. The 2-ΔCt method was used to calculate the difference in expression of 

chosen miRNAs. 
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3.2.5. Construction of mRNA-lncRNA-miRNA networks  

 

High confidence and/or experimentally identified mature miRNA sequences from 72 

Viridiplantae species were collected from miRBase (v21, June 2014) (Kozomara and 

Griffiths-Jones 2011), suggesting a dataset of 1,404 non-redundant mature miRNA 

sequences. SUmir pipeline (2. General Materials and Methods) was run using this miRNA 

dataset as query for in silico prediction of miRNAs. Following, a list of lncRNA 

transcripts and a list of coding transcripts are retrieved as target datasets for each 

transcriptome. These datasets were screened for relative gene targets of miRNAs, 

predicted from the assemblies, using psRNAtarget web-tool, with user-defined query and 

target options at default parameters (http://plantgrn.noble.org/psRNATarget/) (Dai and 

Zhao 2011). lncRNAs functioning as coding-target mimics were evaluated based on the 

complementary pairs between miRNA-to-coding transcript targets and miRNAs-to-

lncRNA targets. Cytoscape 3.3.0 (Shannon et al. 2003) was used for the visualization of 

lncRNA-miRNA-mRNA interaction networks.  

 

 

 Results 

 

 

3.3.1. De novo assembly of transcriptomes 

 

In our previous study, two wild emmer wheat genotypes, T. turgidum ssp. dicoccoides 

TR39477 and TTD-22 showed marked differences in tolerance to drought stress when 

compared to the modern durum wheat, T. turgidum ssp. durum var. Kiziltan. Upon slow 

drought treatment, Kiziltan exhibited a moderate reaction whereas TR39477 and TTD-22 

exhibited the most and the least tolerance, respectively (Ergen and Budak 2009). High-

throughput sequencing of root samples from control and drought-stressed Kiziltan, 

TR39477 and TTD-22 led to more than 27,000,000 raw sequence reads (Bala Ani 

Akpinar, Kantar, and Budak 2015). In order to remove adaptor sequences and perform 

the quality trimming, Trimmomatic (Bolger, Lohse, and Usadel 2014) analysis evaluated 

and more than 95% of raw reads were cleaned after initial processing with Trimmomatic 

(Table 3.1). The clean reads were assembled using Trinity software (Haas et al. 2013) 

yielding a total of 243,670, 211,709 and 203,230 transcripts for Kiziltan, TR39477 and 
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TTD-22, respectively. The average contig lengths detected as altering between 666 and 

779 nucleotides long where the total transcriptome size ranges between 99.7 to 146.6 Mb 

(Table 3.1). 

 

Table 3.1. Statistics about quality trimming and assembly construction for the 

transcriptome assemblies. 

The quality trimming of samples 

Samples Kiziltan 

Control 

Kiziltan 

Drought 

TR39477 

Control 

TR39477 

Drought 

TTD-22 

Control 

TTD-22 

Drought 

Before 

trimming 

35463556 36944980 35212424 30670932 27505294 32690630 

After 

trimming 

33772655 35171816 33698813 29223580 26200743 31249427 

Assembly statistics for the samples 

Samples Kiziltan 

Control 

Kiziltan 

Drought 

TR39477 

Control 

TR39477 

Drought 

TTD-22 

Control 

TTD-22 

Drought 

Number of 

transcripts 

204128 18817 169762 159940 168314 155170 

Median 

contig 

length (b) 

482 516 478 483 468 494 

Average 

contig 

666.67 779.58 731.65 741.67 726.12 752.61 

Total length 

(Mb) 

99.78 146.69 129.32 125.24 122.22 116.78 

GC% 49.72 49.45 49.98 49.92 50.63 50.25 

N50 1024 1082 1001 1108 1004 1056 

 

 

3.3.2. Functional annotation of transcriptomes 

 

Gene content of each transcriptome assembly was evaluated through four layers of 

analyses as described in Figure 3.1. All transcripts were initially screened against known 
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small non-coding RNA sequences and mitochondria/chloroplast originated sequences of 

Triticum families with Blast tool kit (Camacho et al. 2009). Overall, less than %1 of 

transcripts with significant hits in these screenings were considered as contaminants and 

excluded from the Kiziltan, TR39477 and TTD-22 transcriptome assemblies. Subsequent 

to contaminant analysis, open reading frame (ORF) content of the remaining transcripts 

was analyzed and transcripts possess  ORFs longer than 80 aa were further evaluated for 

their coding potential through ab initio techniques; CPC (Kong et al. 2007), CNCI (Sun 

et al. 2013) and AUGUSTUS (Hoff and Stanke 2013). Totally, 60% of Kiziltan, 62% of 

TR39477 and 64% of TTD-22 transcriptome showed coding potential evidence, 

respectively. These transcripts were further evaluated for detection of their homology to 

known protein sequences and/or presence of functional protein domains. Ultimately, a 

total of 84,288, 75,996 and 78,456 putative protein-coding transcripts were identified 

from Kiziltan, TR39477 and TTD-22, which corresponded to 35%, 37% and 39% of the 

assemblies, respectively.  

 

Although the assemblies were constructed with the utilization of data from pooled 

samples of three different biological replicate for each variety, assembled contigs might 

show none-to-very low expression level; thus, identification of actively-expressed 

transcripts is necessary for further characterization of transcriptomic data. To determine 

expression levels of transcripts, transcript abundances were quantified in terms of 

Fragment Per Kilobase Million mapped reads (FPKM) using RSEM package under 

Trinity software. Expression activity of protein-coding transcripts was evaluated based 

on the normalized FPKM. Percent of transcripts that failed to satisfy FPKM cutoffs in 

both control and drought stressed samples were plotted over a range of FPKM thresholds 

(Appendix A – Supplementary Figure 1). Overall, 1% change observed between five cut-

offs from 0.1 to 0.5 FPKM; however, a sudden 1% change occurred thereafter. The point, 

0.5 FPKM, was chosen arbitrarily as this was the point where the slope of the curve 

changes, indicating the significance of this point, thereby suggesting it as a potential 

threshold. With this threshold, 95% of each transcriptome were found to be actively-

expressed transcripts, indicating the quality of the transcriptome assemblies and good 

coverage of the sequencing. In total, 81,168 (96%), 73,465 (97%) and 75,861 (97%) 

actively-expressed protein-coding transcripts (called coding transcript from this point) 

were identified in Kiziltan, TR39477 and TTD-22, respectively. 
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The actively-expressed coding transcripts were inspected for their expression patterns in 

control and drought treated samples. All three T. turgidum varieties represented a high 

portion of common transcripts between controlled and stressed samples where more than 

70% of transcripts were detected as common (60,520; 57,012 and 56,164 transcripts for 

Kiziltan, TR39477 and TTD-22, respectively). Sample specific transcripts were most 

abundant in control samples, where 14,595, 10,865 and 14,204 transcripts expressed from 

solely controlled Kiziltan, TR39477 and TTD-22 varieties, respectively, as opposed to 

that of 7% of transcripts (6,053; 5,588 and 5,493 transcripts for Kiziltan, TR39477 and 

TTD-22, respectively) expressed only drought-stressed samples. Blast alignments of 

drought-specific transcripts revealed that 1,034 homologous transcripts (>80% of query 

identity and coverage) expressed in both tolerant and susceptible varieties. Drought-

tolerant TR39477 revealed 36 different transcripts which does not have any similarity to 

transcripts from drought-susceptible TTD-22 while 4 of the TTD-22 transcripts were 

detected as TTD-specific (Appendix A - Supplementary Table 2). These transcripts were 

remarked as effective on the different drought stress tolerance and adaptation mechanism 

of these wheat varieties.  

 

 

Figure 3.2. Homology pattern between T. turgidum proteins and other plants. (A) The pie 

chart shows the distribution of top-ten plants which showed the highest homology to T. 

turgidum proteins. (B) Pie chart shows the distribution of e-values for different blast hits. 

 

Functional annotation of all coding transcripts was conducted by Gene Ontology (GO) 
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term assignment followed with KEGG pathway and COG analysis via Blast2GO software 

(Conesa and Götz 2008). In total, 860,446 GO terms were assigned to 157,013 (68% of 

all coding transcripts) transcripts. Assigned GO annotations were clustered in three main 

categories; Molecular Function (MF), Cellular Component (CC) and Biological Process 

(BP), based on the blast hits from the NCBI non-redundant (nr) Viridiplantae protein 

database with an e-value cutoff of 1E-5. Across all GO annotations, ‘ATP binding’, 

‘membrane’ and ‘protein phosphorylation’ were predominant in the MF, CC and BP 

categories, respectively. Since these included coding transcripts from both treated and 

untreated samples in the three varieties, the categories most represented by transcripts 

could be considered as representatives of housekeeping genes. These sequences were 

further inspected in terms of the blast hit distribution through different plants which 

revealed the homology pattern of coding transcripts of T. turgidum varieties (Figure 3.2). 

Blast hit distributions showed that T. turgidum coding sequences possess the highest 

homology with Aegilops tauschii sequences where 26% of transcript revealed as identical 

to proteins from this species, followed by Triticum Urartu (24%) and Hordeum vulgare 

ssp. vulgare (24%) (Figure 3.2A). Additionally, e-value distribution of blast top hits 

indicated the general quality of the assembled coding transcripts where more than 50% 

of the hits have e-values smaller than 1e-110 (Figure 3.2B). Following Blast2GO 

annotations, mapping against KEGG database were performed to retain relative 

biological pathways of the coding transcripts (Ogata et al. 1999). In total, 50,250 

transcripts were assigned to a total of 133 pathways in KEGG database. KEGG pathways 

the most represented by transcripts were purine metabolism (7,799 transcripts, 15.5%), 

thiamine metabolism (6,302 transcripts, 12.5%) and biosynthesis of antibiotics (3,147 

transcripts, 6.3%) across all transcripts.  Additionally, Cluster of Orthologous Groups 

(COG) screenings were performed using EggNog database, under Blast2GO software 

(Jensen et al. 2008) and coding transcripts sharing similar functions were classified into 

23 functional groups. The largest group represented by transcripts had functions defined 

as ‘unknown’ (5,935 transcripts, 23.5%) followed by ‘posttranslational modification, 

protein turnover and chaperones’ (2,545 transcripts, 10.1%), ‘signal transduction 

mechanisms’ (2,397 transcripts, 9.5%), ‘intracellular trafficking, secretion and vesicular 

transport’ (1,600 transcripts, 6.3%) and ‘translation, ribosomal structure and biogenesis’ 

(1,506 transcripts, 6%). 

 

The functions of differentially expressed transcripts were further analyzed after the 
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annotation of all transcripts. In all the three plants, ‘oxidation-reduction’ and ‘protein 

phosphorylation’ were the most represented BP terms in transcripts exhibited differential 

expression in response to drought stress (Figure 3.3). Interestingly, drought-susceptible 

TTD-22 revealed an increased number of upregulated genes which were categorized in 

‘response to stress’ group regarding to BP assessment of Blast2GO (from 17 to 37 

transcripts) while this category represented less number of associate transcripts in 

Kiziltan (from 24 to 13 transcripts) and TR39477 (from 37 to 4 transcripts) under drought 

stress. 

 

 

Figure 3.3. Heatmap for top 20 biological processes represented by stress-responsive 

coding transcripts in each sample. Several biological processed were detected as 

enhanced under drought stress (Graph legend: Kiz: Kiziltan, TR: TR39477, TTD: TTD-

22; CK: control conditions, DS: drought stressed). 

 

The orthologous groups of drought specific transcripts were also analyzed to determine 

their functional importance. The most representative COG id by all the drought specific 

transcripts, KOG0987, was associated with a DNA helicase which is functional in cell 

cycle control and cell division. Another important one, COG0507, connected with 

‘exodeoxyribonuclease v alpha’ protein involving in replication and recombination. In 

order to further understand the drought tolerance of TR39477, the unique transcripts 

which are specifically expressed under drought stress, 36 transcripts which do not show 

any resemblance to TTD-22 transcripts, were analyzed in regard to their associated 
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KEGG pathway. Mostly, pathways associated with secondary metabolite synthesis were 

detected as enriched by these unique transcripts such as ‘Glutathione, Sphingolipid and 

Thiamine metabolism’. Also, ‘Glycosaminoglycan and glycan degradation pathways’ 

were enhanced by unique transcripts of TR39477. Accordingly, identification and 

annotation of all such transcripts provided insides regarding drought-responsive 

metabolomic changes in durum wheat together with their transcript partners.  

 

 

3.3.3. Putative lncRNAs and their expression pattern under drought stress 

 

Identification of long-noncoding RNAs was performed by following the pipeline 

illustrated in Figure 3.1. Totally; 26% (63,773 transcripts), 29% (61,823 transcripts) and 

22% (43,932 transcripts) of the transcriptome assemblies from Kiziltan, TR39477 and 

TTD-22 varieties, respectively, were associated with lncRNAs. Subsequent to 

identification, the actively-expressed putative lncRNAs were inspected based on 

normalized FPKM value obtained from transcripts abundance estimation analysis and 

total of 59,110 (93%), 57,944 (94%) and 40,858 (93%) putative lncRNAs were identified 

as actively-expressed putative lncRNAs (called lncRNAs from now on) from Kiziltan, 

TR39477 and TTD-22 varieties, respectively. The slightly lower ratio of active 

expression in lncRNAs (93-94%) compared to coding transcripts (96-97%) might arise 

from the tendency of lower expression of lncRNAs. Additionally, inspection of the 

expression patterns of transcripts in each control and drought-stressed samples revealed 

a similar distribution of the expressions of the lncRNA and coding transcripts between 

the three biological replicates only with little systematic biases (Figure 3.4). Error plots 

showed lower expression levels of lncRNAs compared to coding transcripts across all 

three plants which is also supported by literature (Quinn and Chang 2015). Moreover, 

overall expression pattern of lncRNAs were not altered by drought treatment, except a 

few transcripts. 
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Figure 3.4. Expression pattern of coding transcript and lncRNAs in three different T. 

turgidum samples. (A) Kiziltan variety which exhibit moderate performance under 

drought conditions, (B) drought tolerant TR39477 variety, (C) drought susceptible TTD-

22 variety. 

 

 

Figure 3.5. Common and drought specific lncRNAs from different T. turgidum varieties. 

Venn diagrams show the show common and specific differentially expressed lncRNAs 

between control (CK) and drought-stressed (DS) samples of Kiziltan, TR39477 and TTD-

22. 
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Several lncRNAs from three different plants showed differential expression under 

drought treatment. These lncRNAs were identified with edgeR software with a p-value 

smaller than 0,001 and log2 (fold change) greater than 2  (Robinson, McCarthy, and 

Smyth 2010). Based on these cut-offs, 200 (3% of all lncRNAs), 424 (6% of all lncRNAs) 

and 277 (4% of all lncRNAs) were detected as ‘drought-responsive’ from Kiziltan, 

TR39477 and TTD-22, respectively. Differentially expressed lncRNAs were further 

evaluated for their sample specific expressions. Most of the differentially expressed 

lncRNAs showed tendency to exhibit sample specific expressions, indicating distinct 

molecular functions they might perform. Intriguingly, 66, 52 and 77% of differentially 

expressed lncRNAs exhibited sample specific expressions in Kiziltan, TR39477 and 

TTD-22 samples, respectively (Figure 3.5). From 64 to 202 differentially expressed 

lncRNAs were detected as common between control and drought treated samples of the 

three T. turgidum plants. In Kiziltan, 35% of stress-responsive lncRNAs were common 

whereas 48% and 23% stress drought-responsive lncRNAs were common between 

control and drought treated samples of TR39477 and TTD-22 respectively. These results 

indicate that common transcripts were more abundant in differentially-expressed 

lncRNAs from TR39477, with the most tolerant profile, than Kiziltan, with moderate 

reaction, and TTD-22, with the least tolerance. However, further characterizations are 

required for a complete understanding of the lncRNAs functions under drought stress. 

 

Differential expression of mRNAs and lncRNAs were also confirmed with Quantitative 

Real Time (qRT-PCR) experiment. Common mRNA and lncRNAs transcripts; defined 

with %80 identity and query coverage across whole samples; were analyzed and a group 

of differentially expressed ‘common’ transcripts was chosen for experimental 

conformation. From this pool, expression of randomly chosen 2 mRNA and 2 lncRNA 

transcripts were quantified followed by 4 hours of shock drought treatment with 2-week-

old root and whole seedling tissues of Kiziltan genotype. The quantification results with 

QRT-PCR experiment showed accordance with RNA sequencing differential expression 

data analysis both for lncRNAs and mRNAs (Figure 3.6). In addition, experimental 

results showed harmony between root and whole seedling tissues for lncRNAs and 

mRNAs. 
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Figure 3.6. Relative normalized expression analysis results for common differentially 

expressed mRNA and lncRNAs samples. The quantification of transcript expression was 

performed with both root and whole-seedling tissue. The error bars were constructed 

based on standard deviation across three replicates of each sample. 

 

 

3.3.4. Characteristics of actively expressed lncRNAs 

 

All actively expressed lncRNAs were blasted against lncRNAs in A. thaliana from 

NONCODE database (Zhao et al. 2016). We identified 32, 24 and 15 lncRNAs that were 
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homologous to those lncRNAs in A. thaliana, suggesting the weak conservation of 

lncRNAs between A. thaliana and T. turgidum species. Actively expressed lncRNAs were 

further analyzed for their structural features in wild relatives of wheat. To that end, the 

length distribution and GC content of expressed lncRNAs and coding transcripts were 

analyzed and compared. The average length of T. turgidum lncRNAs was 327 nucleotides 

long whereas that of coding transcripts was 1,198 nucleotides. Lengths of those lncRNAs 

ranged from 201 to 2,686 nt, 2,857 nt and 2,540 nt in Kiziltan, TR39477 and TTD-22, 

respectively. In general, the majority of lncRNAs were relatively short while almost half 

(47-50 %) of coding transcripts were longer than 1,000 nt in all the T. turgidum varieties 

(Appendix A - Supplementary Figure 2). The average GC content for lncRNAs was 

detected as ranging 43% to 45% and across all three varieties, the highest ratio of GC 

content was observed as 82%. Interestingly, highest GC content of lncRNAs was detected 

in shorter lncRNAs, generally shorter than 1,000 nt which suggest an association between 

GC content and lncRNAs length (Appendix A - Supplementary Figure 3). On the other 

hand, the average GC content of coding transcripts was detected as relatively higher than 

lncRNAs in all three varieties with 52%. Connection between GC content and length 

distribution was also observed in coding transcripts (Appendix A - Supplementary Figure 

3). While the length of the coding transcripts is increasing, the GC content was detected 

as narrowing around 50%. Overall, these results indicate that lncRNAs as well as coding 

transcripts share similar structural features in different T. turgidum species; yet, lncRNAs 

slightly differ from coding transcripts in gene structure in terms of structural 

characteristics. 

 

Tetraploid durum wheat and wild emmer wheat genomes are derived from hybridization 

of A and B sub-genomes, each contributing to the composition of coding and lncRNA 

transcripts equally. Since reference genomes for Kiziltan, TR39477 and TTD-22 varieties 

are not available yet, we analyzed composition of coding and lncRNA transcripts from 

the recently published assembly of Zavitan (T. dicoccoides variety) genome(Avni et al. 

2017). Using GMAP, we were able to map 89% of the lncRNA transcripts and 97% of 

coding transcripts to Zavitan genome. As Zavitan is a different cultivar from our three 

genotypes, we can expect cultivar dependent lncRNAs, resulting in the slight lower ratio 

of mapped transcripts of lncRNAs. Among these alignments, 2% of coding and 3% of 

lncRNA transcripts were mapped to uncharacterized scaffolds. On average, 50 and 48% 

of coding transcripts and 47 and 50% of lncRNA transcripts were mapped to A and B 
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sub-genomes, respectively. 48, 53 and 49% of coding transcripts and 46, 50 and 45% of 

lncRNA transcripts were mapped to A sub-genome whereas 50, 45 and 50% of coding 

transcripts and 51, 48 and 52% of lncRNA transcripts were mapped to B sub-genome in 

Kiziltan, TR39477 and TTD-22 varieties, respectively. The results showed enrichment of 

both coding and lncRNA transcripts in A sub-genome in TR39477 varieties and in B sub-

genomes in Kiziltan and TTD-22 varieties. Both coding and lncRNA transcripts were 

similarly distributed over each chromosome at frequencies varied between 6 to 9%. These 

transcripts were most abundant at 2A chromosome for TR39477 and at 2B chromosome 

for Kiziltan and TTD-22 varieties. The results showed each sub-genome and chromosome 

of tetraploid wheat genome contributed in composition of lncRNAs as in case of coding 

transcripts.  

 

One transcript can be derived from different loci and from opposite directions on the 

genome. The results showed similar distribution of coding and lncRNA transcripts on 

sense and antisense strands. Nearly 24% of all transcripts were shown to be transcribed 

from both directions whereas remaining alignments were distributed equally on sense and 

antisense strands. Consistent with previous studies on plants(Tang et al. 2016), most of 

the lncRNAs (80%) were single-exon transcripts and 6% of lncRNAs could be transcribed 

as both single-exon and multi-exons transcripts from different loci. On the other hand, 

coding transcripts tended to have more exons where 76% of coding transcripts transcribed 

with multi-exons. lncRNA transcripts showed smaller number of exons where maximum 

exon number can reach up to 16 in a lncRNA transcript as opposed to that of 68 for coding 

transcripts. 

 

Similar to protein coding transcripts, lncRNAs are also exposed to alternative splicing 

with a lower rate compared to mRNAs (Xiao et al. 2015). Trinity-constructed isoforms 

of each gene were accounted for the spliced isoforms and were used to determine 

alternative splicing ratios of lncRNAs. In Kiziltan, 18% (10,369) of actively expressed 

lncRNAs were exposed to alternatively splicing where this ratio was detected as 64% 

(51,634) for that of coding transcripts. Similarly, alternatively spliced lncRNAs were 

counted as 18% (10,611) and 16% (6,906) of total lncRNAs where that of 60% (45,138) 

and 59% (44,221) of coding transcripts were identified as alternatively spliced, in 

TR39477 and TTD-22, respectively. Furthermore, alternative splicing (AS) events were 

identified from all mapped transcripts to Zavitan genome. AS events occurred in ~14% 
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of all actively expressed transcripts in each genome. Among the AS events, intron 

retention with 38% of the events is the predominant over remaining splicing events, 

followed by 29% to other events, 15% to alternative acceptor, 10% to alternative donor 

and 8% to exon skipping. Among the transcripts, 25, 22 and 21% of coding transcripts 

and 5, 5, 4% of lncRNA transcripts were involved in an AS event in Kiziltan, TR39477 

and TTD-22 varieties, respectively. Consistent alternative splicing patterns in different T. 

turgidum varieties suggested that alternative splicing is not as prevalent in lncRNAs as it 

is in coding transcripts. 

 

Among the lncRNAs of trinity-constructed isoforms, the ones with the most abundant 

splicing events were further inspected. For example, the two lncRNAs, 

Kiz_both_c65078_g3_i12 and Kiz_both_c65078_g3_i4, were detected as the isoforms of 

the same gene, Kiz_c65078_g3 which possessed 23 alternatively spliced isoforms in 

Kiziltan transcriptome. It was also noted that 8 isoforms of this gene showed sample 

specific expression, where one (Kiz_CK_c65078_g3_i21) of them identified as ‘coding 

transcript’ in the control sample. In TR39477 transcriptome, maximum number of gene 

isoforms was observed as 27 for the gene TR_c63034_g2. Among these isoforms, six of 

them were detected as actively expressed lncRNAs where only two of these lncRNAs 

showed differential expression during drought treatment. For TTD-22 transcriptome, the 

gene TTD_c62818_g1 had the most splicing events with 24 isoforms where six and three 

of them were identified as lncRNAs and coding transcripts, respectively. None of these 

isoforms showed differential expression during drought treatment. Yet, all lncRNA 

isoforms exhibited sample specific expressions where none of them were in common 

between control and drought treated samples. Since expression levels and significance in 

p-values were low (FPKM between 0.6 and 4), these sample specific expressions were 

not defined as differential expression. Regarding to observed alternative splicing patterns, 

it is tempting to speculate that each alternatively spliced isoform has different expression 

profiles and might have differential functions during stress response.  

 

Repeat-masking of stress-responsive lncRNAs against known Poaceae repeat elements 

revealed that 37% to 64% of stress-responsive lncRNA sequences contain repetitive 

elements in three of the replicates. The difference in the repeat content of stress-

responsive lncRNAs stem from repeat elements from small RNAs found in T. dicoccoides 

varieties. Once small RNAs excluded from repeat library, percent of stress-responsive 
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lncRNAs containing repeat elements were decreased to 33-34% in both TR39477 and 

TTD-22 varieties. 

 

 

Figure 3.7. Repeat content of stress-responsive lncRNAs. Stress responsive lncRNAs 

were associated with both DNA transposons and retrotransposons. Each variety was 

represented with a different color (blue: Kiziltan, pink: TR39477 and orange: TTD-22). 

 

Interestingly, lncRNAs which were from small RNA sequences, made up 34% or 61% of 

all repeats (Figure 3.7), were detected in T.  dicoccoides samples, TR39477 and TTD-22 

whereas no siRNAs were detected in Kiziltan. These small RNA repeats were from 

closely related species including Zea mays, Triticum aestivum and Oryza sativa. The most 

common small RNA sequences found in both TR39477 and TTD-22 samples was 

ZRSiRGRR00000035, following ZRSiRGRR00000042 and TRSiRGRR00000062. 

These observations indicate that some lncRNAs involved in stress response may act as 

siRNA precursors. Besides, their corresponding siRNAs were, therefore, regulated in a 

stress dependent manner. Excluding small RNAs from repeat content, stress-responsive 

lncRNAs which were from DNA transposons were marked in all three samples in almost 

half percent of repeats.  

 

 

3.3.5. miRNA-related functions of lncRNAs 

 

miRNAs can regulate gene expression at the post-transcriptional level by interacting with 

the complementary binding sites on target sequences, resulting in cleavage, decoy, or 
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translation repression (Kurtoglu, Kantar, and Budak 2014; Bala Ani Akpinar, Kantar, and 

Budak 2015; Budak, Khan, and Kantar 2015). Several studies have suggested that 

lncRNAs might have functions associated with miRNAs being either their targets or 

precursors (Chekanova 2015). To explore such functional roles of lncRNAs, in silico 

miRNA prediction was performed from all of three varieties by utilizing a list of 1,404 

high confidence and/or experimentally verified plant miRNAs subtracted from miRBase 

release 21 (Kozomara and Griffiths-Jones 2014). In silico miRNA identification process 

led to the identification of 54, 58 and 46 lncRNAs in Kiziltan, TR39477 and TTD-22, 

respectively, as putative precursors of miRNAs belonging to 38 miRNA families. 

Interestingly, only one of the precursor lncRNAs in each assembly exhibited differential 

expression during drought treatment. In TR39477 and TTD-22, the stress responsive 

lncRNAs TR_c65168_g7_i1 and TTD_c34631_g1_i1 were detected as the precursors of 

miR1127 which do not have any determined target in these transcriptome assemblies. On 

the other hand, in Kiziltan, the stress-responsive lncRNA, Kiz_c66393_g4_i7, was 

identified as the putative precursor of the two miRNAs, with 1 or 2 nt changes in mature 

miRNA sequences of Triticum aestivum miRNAs; miR1117 and miR1127a. LncRNAs 

which have ability to generate miRNA sequences might perform an indirect regulatory 

function through lncRNAs generated miRNA sequence.  In order to determine this 

indirect regulatory path, target transcripts of lncRNAs-derived miRNAs were analyzed 

and only targets of miR1117 were identified. miR1117 was associated with one coding; 

Kiz_c69869_g4_i1: a coding transcript expressed in both control and drought-treated 

samples without any change in expression; and two noncoding RNA targets; drought-

specific Kiz_c106327_g1_i1  and control specific Kiz_c85253_g1_i1.This indicates that 

lncRNAs-derived miRNAs can perform multiple targeting potential which includes both 

coding and noncoding transcripts indicating a complex regulatory mechanisms through 

noncoding RNA performance even though the underlying regulatory network is not 

completely understood. Moreover, differential expression of precursor transcripts might 

result in the differential expression of corresponding mature miRNAs, leading to an 

increased regulation of expression; however, analysis of mature miRNAs at small RNA 

level is necessary for further validation of differential miRNA expression.  

 

In order to provide more insight into miRNA-lncRNA association, functions of lncRNAs 

were analyzed in the sense of acting as miRNA targets using psRNATarget webtool at 

the default settings. It was shown that 1,276 lncRNAs were targeted by 33 miRNAs in 
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Kiziltan where 1,124 lncRNAs targeted by 24 miRNAs in TR39477 and 560 lncRNAs 

by 26 miRNAs in TTD-22. In Kiziltan, 9 of the lncRNAs targeted by miRNAs, further 

suggesting 13 stress-responsive miRNA-lncRNA target pairs, detected as differentially 

expressed in drought condition (Appendix A - Supplementary Table 3). In TR39477, 15 

stress-responsive lncRNAs were detected as putative miRNA targets, building 27 unique 

miRNA-lncRNA target pairs. Yet, only 4 of the target lncRNA transcripts that established 

7 miRNA-lncRNA target pairs in TTD-22 showed differential expression between 

drought-stressed and control samples.  

 

Intriguingly, miRNAs targetting stress-responsive lncRNAs were mostly dominated by 

miR1436 and miR1439, where miR1118, miR1122, miR1130, miR1137 and miR1139 

possessed putative lncRNA targets in TR39477 samples only, and miR1133 and miR1136 

targeted lncRNAs in Kiziltan and TR39477, moderate to high tolerant samples. 

Additionally, it was shown that, in accordance with drought tolerance profiles of the 

samples, miR1436 and miR1439 mediated 8, 16 and 5 miRNA-lncRNA target pairs in 

Kiziltan, TR39477 and TTD-22 samples, respectively. These results suggested that gene 

regulation of miRNAs on stress-responsive lncRNAs are well corralated with the stress-

tolerance profiles of the three genotypes such that stress-responsive miRNA-lncRNA 

target pairs were prevalent at most in TR39477, the most tolerant genotype and vice versa 

in TTD-22, the most sensitive genotype to drought. Moreover, the diversity of target 

lncRNAs in the most tolerant variety, TR39477, might be an indicator of additional 

regulatory mechanisms mediated by these lncRNAs. Thus, functional characterization of 

these target lncRNAs may shed light onto the drought tolerance mechanisms in T. 

turgidum species.  

 

 

3.3.6. Functional characterization of lncRNAs through lncRNA-miRNA-mRNA 

networks 

 

lncRNAs may interrupt miRNA-based regulation of gene expression by target mimicry 

where miRNAs bind to lncRNAs instead of their actual mRNA targets (Franco-Zorrilla 

et al. 2007). Thus, lncRNAs may indirectly enhance functioning of particular coding 

transcripts by preventing negative regulation of their translation by miRNAs. To explore 

stress specific association of miRNAs, lncRNAs and mRNAs, stress-responsive lncRNAs 
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and their miRNA-mRNA network was particularly analyzed. lncRNAs-miRNA-mRNA 

networks were observed in all three varieties with different levels of complexities (Figure 

3.8).  

 

 

Figure 3.8. miRNA regulated networks between lncRNAs and coding transcripts. 

miRNA-lncRNA and mRNA networks were represented for each variety, Kiziltan (A), 

TR39477 (B) and TTD-22 (C). miRNA nodes were presented as rectangle and colored 

by miRNA family names. lncRNAs and coding transcripts were presented as triangles 

and circles, respectively. Transcripts that were upregulated by drought were colored as 

red and downregulated transcripts were colored green. 

 

 

Figure 3.9. Distribution of Gene Ontology mapping results of coding targets of putative 

miRNAs. Targets from each variety was represented with a different color; blue: Kiziltan, 

red:TR39477, green: TTD-22. GO terms histogram was prepared through WEGO online 

tool. 
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The most complex interaction networks were established by miR1436 and miR1439. 

Intriguingly, these two miRNAs were detected as sharing similar target transcripts in all 

samples, indicating a dual-regulation of gene expression. Besides it was shown that 

miR437 and miR1135; miR1120, miR1122, miR1128 and miR1130; and miR1120 and 

miR1128 were also contributing to the interaction circuitry of miR1436 and miR1439 in 

Kiziltan, TR39477 and TTD-22 samples, respectively, suggesting additional players in 

these complex networks. Among these, interactions through miR1120 and miR1128 were 

conserved at the interspecies level.  

 

The putative functions of coding transcripts were elucidated through GO mapping 

annotations. Intriguingly, antioxidant, electron carrier and molecular transducer 

molecular functions and growth biological process were highly enriched in Kiziltan and 

TR39477 varieties, but no evidence was found in TTD-22 varieties (Figure 3.9). These 

results suggested that increased regulation in these functions might be involved in drought 

stress response in T. turgidum varieties.  

 

 

Figure 3.10. Relative normalized expression analysis results for miRNA-mRNA-lncRNA 

networks involved differentially expressed transcripts. The quantification of transcript 

expression was performed with both root and whole-seedling tissue. The error bars were 

constructed based on standard deviation across three replicates of each sample. 
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Among the interaction networks, expression profiles of miRNAs (mir1436-1 and 

miR1436-4) and their corresponding lncRNA (c70772_g2_i1 and c90557_g1_i1) and 

mRNA (c69036_g1_i1 and c9653_g1_i2) targets were shown in Figure 3.10. The 

expression of mRNA and lncRNAs molecules were concordant with the RNA-Seq data 

where both mRNAs and lncRNAs are upregulated under drought stress. Additionally, Q-

RT-PCR results proved the drought specific expression of lncRNA c90557_g1_i1 where 

no expression for this lncRNAs was detected under control condition in variety Kiziltan. 

 

 

 Discussion 

 

 

The increased effects of drought stress, caused by climate change, compel the 

improvement of major crop species such as wheat. However, complex genome of 

hexaploid wheat, combined from three different sub-genomes, A, B and D, becloud the 

understanding of gene regulations and molecular pathways underlying stress adaptation 

mechanisms, which is essential for establishing better crop performance. Alternatively, 

tetraploid wheat species, possessing a less complex genomic organization, stand as good 

candidates to pave the way for a deeper understanding of such mechanisms in wheat. 

Several varieties of wild tetraploid wheat have already been shown to exhibit differential 

drought tolerance, which might enhance our understanding of the drought-tolerance 

mechanisms in bread wheat (Ergen and Budak 2009). With the aim of providing further 

insights to drought response mechanisms and associated stress tolerance profiles of 

tetraploid wheat, transcriptomic changes in the roots of three different T. turgidum 

samples under slow drought imposition were analyzed at both coding and non-coding 

levels. Overall, this study showed the differential regulation of both coding and non-

coding transcripts in response to drought stress, which might further be used for a better 

crop performance under drought conditions.  

 

Sequenced reads from both control and drought-treated samples were assembled together 

and analyzed in the sense of differentially expressed coding transcripts and lncRNAs. A 

stringent filtering of transcripts (Figure 3.1) enabled the identification of 35, 36 and 39% 

of actively-expressed coding transcripts over all actively-expressed transcripts besides 

26, 29 and 21% of actively-expressed lncRNAs over all actively-expressed transcripts in 
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Kiziltan, TR39477 and TTD-22 varieties, respectively (Appendix A - Supplementary 

Table 4). Overall, 2 mRNA and 2 lncRNA transcripts were validated with qRT-PCR 

experiment and the expression trend of transcript showed a similar sense with RNA-Seq 

data analysis even though the fold changes are different. Since the shock drought stress 

treatment was used for validation of presence of these transcripts, this is an expected 

result; particularly for lncRNAs, which the expression is highly dependent on condition. 

In the RNA-Seq analysis, interestingly, the number of transcripts was detected as 

decreased in all three varieties, regardless of their stress tolerance (Table 3.1).  The stress-

induced protein breakdown is a known phenomenon in plants where the accumulated 

amino acids support the osmotic balances in cells (Krasensky and Jonak 2012). Thus, it 

might be possible that the number of transcripts which leads to translation of several 

proteins may decrease to further support this breakage and osmotic balance. Additionally, 

it was noted that although having the highest percent of coding transcripts, the 

transcriptome of TTD-22, the most sensitive genotype, contained the lowest percent of 

lncRNAs. As several studies have provided evidence of the functional importance of 

lncRNAs for drought stress response (Muthusamy et al. 2015; Qi et al. 2013), the low 

abundance of lncRNAs in TTD-22 might be associated with its low drought tolerance; 

however, further characterization of stress responsive lncRNAs, particularly from 

drought tolerant variety TR39477, is essential to fully understand the role of lncRNAs in 

drought response.  

 

To understand the function of differentially expressed genes under drought stress, the 

functional annotation was conducted via BlastX and Blast2GO. Analysis of homology 

patterns in T. turgidum proteins revealed a scattered homology of proteins across different 

Poaceae members. Although a high homology of T. urartu proteins is expected because 

of heritage of tetraploid wheat, high homology with A. tauchii stands as unexpected and 

further examination of these homolog proteins might provide insight into evolution of T. 

turgidum. The conservation of different coding transcripts was also observed between 

different accessions of T. turgidum. Additionally, more than 70% of transcripts were 

detected as common under control and drought-treated samples. Since plant cells tries to 

keep basal reaction rate for cellular maintenance, it is normal for high conservation of 

proteins under drought treatment (Kantar, Lucas, and Budak 2011). Moreover, even 

though a small portion of transcripts was differentially expressed under drought stress, 

they might have serious effect on other proteins.  
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Drought specific transcripts from TR39477 and TTD-22 were further analyzed in regards 

to their function to further understand the differences in the drought tolerance. 

Comparison of these transcripts from two varieties revealed that only approximately 20% 

of these transcripts are conserved. These common transcripts, expressed in response to 

drought regardless of the degree of drought tolerance, might be associated with general 

proteins which are expressed in the stress conditions such as ABA-responsive 

transcription factors of ROS scavengers (Krasensky and Jonak 2012). On the other hand, 

TR39477 revealed 36 transcripts which are specific to this cultivar and do not possess 

any degree of homology to TTD-22 transcripts. These transcripts related to several 

osmolytes and secondary metabolite such as ‘Glutathione’ and ‘Thiamine’ metabolisms 

regarding to KEGG maps. For instance, glutathione metabolism was associated with 

proline production, which is an important osmolytes accumulated in drought stress (Liang 

et al. 2013). Thiamine is an important molecule which involves in to phenylpropanoid 

pathway and this pathway cause the generation of several secondary metabolites which 

enhance the  performance of plants under drought stress (Boubakri et al. 2013; Krasensky 

and Jonak 2012). Thus, it is tempting to speculate that TR39477 utilize these transcripts 

to regulate osmolytes production together with secondary metabolites to survive under 

drought stress. Further characterization of these transcripts may provide more insights 

into the molecular mechanisms of these events.  

 

Besides the stress responsive transcripts, lncRNAs exclusive to drought stress and their 

relation with miRNAs and mRNAs provided further insight to the molecular mechanism 

of drought tolerance. The most complex networks were detected for miR1436 and 

miR1439, which indicates their important function in drought stress response. Among 

these, miR1439 was detected as targeting an aquaporins proteins which is conserved in 

wheat, rice and Brachypodium (Su et al. 2014). Under drought stress, lncRNAs might 

embed the inhibition of aquaporin translation, via target mimicry to miR1439 family 

members, and enhance the function of this protein for further transport of water from 

roots. Interestingly, miR1120 and miR1128 detected as conserved at interspecies level 

suggesting its important function. In another study, Yao and colleagues also detected 

ubiquitous expression pattern of miR1128 (misnamed as miR504 in the publication) even 

though no information about the targets of these miRNAs again not suggested (Yao et al. 

2007). Computational inspection and experimental validation of targets of these miRNAs 
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might shed light onto their presence in these networks. Here, with Q-RT-PCR, we 

validated expression of miRNA1436-1 and miR1436-4 and their corresponding targets, 

supporting the existence of lncRNA-miRNA-mRNA networks (Figure 3.10). 

 

Gene regulation is not limited to protein-coding genes where most of the genes 

transcribed in complex organisms are in fact non-protein-coding genes with important 

regulatory functions. Increasing number of studies has showed that both sRNAs and 

lncRNAs are important players of gene regulation in various vital biological processes, 

including stress responses in plants. Drought is a major stress factor to crops, causing 

serious yield losses to wheat (Triticum ssp.), and an important food source worldwide. 

On top of being an important limiting factor to the yield already, the effect of drought has 

been expected to increase by climate changes. Improved crop varieties that are tolerant to 

drought could sustain increased yield and quality of crops. In order to obtain improved 

varieties with enhanced productivity and stress tolerance, introgression of favorable 

elements into domesticated crop varieties has been suggested as a viable approach for 

decades. However, understanding of the molecular mechanisms behind drought response 

is crucial in determining these elements. The current study provides a comprehensive 

transcriptome analysis of tetraploid wild wheat varieties with diverse stress tolerance 

profiles, revealing drought-responsive genes and lncRNAs, thereby enriching the genetic 

information available for T. turgidum varieties. Further in silico predictions of miRNAs 

and their target interactions exploited the putative functional roles of lncRNAs. Besides, 

identification and characterization of lncRNAs in the present study expands the current 

knowledge of lncRNAs and their regulatory roles in drought response in plants in general. 
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4. ASSEMBLY AND ANNOTATION OF TRANSCRIPTOME PROVIDED 

EVIDENCE OF MIRNA MOBILITY BETWEEN WHEAT AND WHEAT STEM 

SAWFLY 

 

 

 

 Introduction 

 

 

Wheat Stem Sawfly (WSS), Cephus Cinctus Norton (Hymenoptera: Cephidae)  is stated 

as the most damaging pest of wheat in Northern Great Plains, causing crop devastations 

in Montana region each year (Beres et al., 2011). Female WSS choose the internodes of 

actively elongating fresh wheat stems to lay their eggs. By tearing the stem with their 

sharp ovipositors, eggs are placed into the stem where the larvae form after 4-7 days of 

incubation (Cárcamo et al. 2011). Since the larvae are cannibalistic, only one larva can 

survive in the stem although there are more eggs deposited. Larva stays and develops in 

the wheat stem during the growing season, feeding on parenchyma and vascular tissues 

and, eventually, it moves toward the bottom of the stem to cut a notch, causing plant to 

lodge in order to overwinter there until the pupation occurs. Stem cutting cause a dramatic 

reduction in yield, and even uncut infested plants have low yield due to decreased head 

weight by 17% (Delaney et al., 2010). However, there are still no effective control method 

over WSS damage in wheat. Usage of chemicals is limited by the long emergence period 

of females and the wheat stem protecting the eggs and the larva feeding inside (Knodel 

et al. 2009). The introduction of solid-stemmed wheat instead of hollow-stemmed wheat 

maintained a more powerful control on the infestations. Yet, the solid-stemmed cultivars 

are not preferred by producers because of its low yield and protein content compared to 

hollow-stemmed cultivars (B. Beres et al. 2011). 

 

Advances in next-generation sequencing technologies have revealed that most of the 

genomes of higher eukaryotes is transcribed, of which only a small percent corresponds 



46 

 

to protein-coding genes. Until recent years, non-coding RNAs (ncRNAs) had been 

overshadowed by the interest on protein-coding RNAs and their pathways. As 

bioinformatics tools and experimental technologies brought new aspects in our 

understanding of RNA world, the structures and regulatory functions of ncRNAs came to 

light and most of the recent studies extended their focuses on microRNAs (miRNAs) and 

long non-coding RNAs (lncRNAs) (Charon et al. 2010; S. J. Lucas and Budak 2012; 

Alptekin, Akpinar, and Budak 2016). Discovery and functional characterization of the 

remaining ncRNAs is yet in its infancy.  

 

Both plant and animal miRNAs are ~22 nucleotide-long molecules and are derived from 

transcripts that fold on themselves to form stem-loop structures. In animals, the primary 

sequences transcribed by RNA polymerase II are processed by Drosha and Dicer-1 

enzymes to produce pre-miRNAs and finally, mature miRNA/miRNA* duplexes (Bartel 

2009). In plants, both processes are performed by Dicer-like protein (DCL) since plants 

lack Drosha enzyme (Budak and Akpinar 2015). Upon unwinding of the duplex, mature 

miRNA is exposed to RNA-Induced Silencing Complex (RISC) to recruit them towards 

its target (Budak and Akpinar 2015). miRNAs can bind their target mRNAs from either 

3’ or 5’ UTR regions, with an imperfect complementarity (Bartel 2009; Budak and 

Akpinar 2015), resulting in transitional repression or degradation of the target (Alptekin 

et al., 2016b). The interactions between mature miRNAs and their target mRNAs provide 

an additional control on gene expression regulation. The first miRNA reported, lin-4, was 

shown to regulate timing of development through targeting lin-14 mRNA in 

Caenorhabditis elegans (Alvarez-Garcia and Miska 2005; He and Hannon 2004). Since 

then, distinct roles have been characterized for a vast number of miRNAs from animals 

and plants. Functional characterization of miRNAs in insect species have revealed the 

importance of miRNAs in several regulatory processes, including metabolism (K. Lucas 

and Raikhel 2013), growth and development (Bilak, Uyetake, and Su 2014), survival 

(Jones et al. 2013). miRNAs from one specie may function at interspecies level, targeting 

genes or genomes of organisms which they have physical contact. Very recently, 

independent studies have been reported several examples of trans-kingdom delivery of 

sRNAs from; plant to virion (Iqbal et al. 2017), oomycetes to plant (Jia et al. 2017), plant 

to nematodes (Tian et al. 2016). Similar to what these studies suggested, miRNAs might 

also be effective in regulating insect-host interactions at WSS larval stages once larva 

gets into the stem of the host plant. 
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As being another important class of ncRNAs, lncRNAs draw attention with their mRNA-

like structural features and biogenesis processes. Like mRNAs, they are expected to be 

longer than 200 nucleotide, subjected to alternative splicing and 5’ capping, and mainly 

transcribed by RNA polymerase II (Legeai and Derrien 2015). None-to-very low coding-

potential of lncRNAs is the major factor to differentiate lncRNAs from mRNAs. Several 

remarkable features of lncRNAs include the tendency to exhibit tissue and sample 

specific expressions (reviewed in Quinn and Chang, 2015), which can be speculated to 

the importance of lncRNAs in regulatory mechanisms. It has been shown that lncRNAs 

are indeed involved in key regulatory mechanisms across diverse biological processes, 

such as dosage compensation (Militti et al. 2014), developmental- and epigenetic- 

regulation (Schmitz, Grote, and Herrmann 2016) in various species. For example, a 

yellow-achaete intergenic RNA (yar) was found to be an effective component of the sleep 

behavior in D. melanogaster (Soshnev et al. 2011). Drosophila melanogaster, as a model 

organism, has been extensively investigated for its lncRNA genes (M. Li et al. 2012; 

Soshnev et al. 2011), although functions of the majority of lncRNAs in flies remain 

unknown (Xiao et al. 2015). 

 

The interactions between miRNAs and lncRNAs are also critical for the regulation of 

gene expression since lncRNAs might act as miRNA precursors or miRNA targets. By 

binding on the complementary sites on the target lncRNAs, miRNAs decrease the 

stability of the target, controlling their abundance and regulatory function in the cell (J.-

H. Yoon, Abdelmohsen, and Gorospe 2014). miRNAs and lncRNAs are both known to 

form decoys, titrating the transcription factors from the environment (Banks et al. 2012; 

K. Wang and Chang 2011). Moreover, lncRNAs can function as endogenous Target 

mimics (eTMs) of miRNAs (Franco-Zorrilla et al. 2007) or competing endogenous RNAs 

(ceRNAs) (Salmena et al. 2011) of mRNAs where the target lncRNA titrates the miRNA 

to inhibit its pairing with the target mRNA.  

 

In this study, transcriptome data from eight WSS samples were utilized to generate the 

assembly and, later, to identify miRNA, lncRNA and mRNA molecules from larvae, 

female and male WSS. In total, we obtained 11 miRNA families, 40,185 coding 

transcripts and 59,676 lncRNA transcripts from the WSS transcriptome. Additionally, we 

constructed differential expression library of WSS transcripts to compare expression 
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profiles of larva and adult WSS samples. Annotations and the expression profiles of 

transcripts will be useful resources in the understanding of the molecular mechanisms of 

WSS. Considering the effect of WSS larvae on wheat, we have focused on the action 

mechanisms of RNAs in larvae and their targets in wheat and compared them with female 

and male adult data. Understanding the role of RNAs in infestation of wheat crop fields 

by WSS will give insight for future strategies in fighting with the pests and increasing the 

wheat yield. 

 

 

 Materials and Methods 

 

 

4.2.1. De novo assembly and differential expression of transcripts 

 

RNA-Sequencing (RNA-Seq) of eight WSS samples (larvae, antennae, female and male) 

from infected wheats using Illumina HiSeq 2000 Sequencer was obtained from NCBI SR 

database (Appendix B – Supplementary Table 1; Sequence Read Archive (SRA) 

accession number SRP067708). Trimmomatic (v0.32) with default parameters 

(LEADING:5, TRAILING:5, MINLEN:36) was used for adaptor trimming and quality 

trimming of reads (Bolger, Lohse, and Usadel 2014). A single assembly containing reads 

from all eight WSS samples was generated de novo using Trinity software (release 2014-

07-17) (Grabherr, Brian J. Haas, Moran Yassour Joshua Z. Levin, Dawn A. Thompson, 

Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, Zehua 

Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind, Federica di Palma, 

Bruce W., and Friedman 2013). All transcripts were restricted to be >200 bp in length. 

Trimmed raw reads were aligned back to the assembled transcripts using Bowtie 

assembler and abundance estimates of transcripts were quantified as Fragment Per 

Kilobase Million mapped reads (FPKM) using RSEM (version 3.2) (B. Li and Dewey 

2011) under Trinity pipeline.  Differential expression analysis was performed using 

EdgeR (Robinson, McCarthy, and Smyth 2010) pipeline with the default threshold 

parameters of p-value=0,001 and log2 (fold_change)=2. Assembly files of larvae, female 

and male pooled whole samples were separated based on their corresponding abundance 

estimates for further analyses. 
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4.2.2. Annotation of transcripts and lncRNAs  

 

Annotation of transcripts were performed by analyzing the reads in a four-step process; 

eliminating contaminants, separation by ORF size criteria, coding potential calculations 

and homology-based predictions. All assembled transcripts were aligned with known 

small non-coding RNA sequences of all hexapoda species deposited in NCBI (1711 

sequences) using blastn (-evalue 1E-05). Since the focus was on the coding and lncRNA 

sequences, transcripts with homology to small non-coding RNAs were defined as 

contaminants and eliminated. The abilities of transcripts to code for a full-length protein 

was evaluated using Transdecoder under Trinity software. Transcripts with predicted 

open reading frames (ORFs) longer than 100 amino acids passed the ORF size criteria for 

annotation process. Coding potentials of the transcripts were calculated using two 

prediction techniques; CPC (online version, reverse strand included, 2016) (Kong et al. 

2007) and CNCI (-s ve) (Sun et al. 2013). Transcripts predicted as ‘coding’ by at least 

one of these tools were accepted to be satisfied the coding potential prediction criteria. 

Homology-based predictions were performed through homology screenings against 

functional coding sequences using Blast (version 2.2.26) and against known protein 

domains with Pfam identification using Hmmer (v.3.1b1) (Z. Zhang and Wood 2003). 

All assembled transcripts were screened for homology to known mRNA sequences of 

WSS, protein sequences of Cephus, Apis, Hymenoptera families and Swissprot entries 

(all deposited at NCBI) using blast (-e-value 1E-05, -length 90, -identity 80). Peptide 

sequences of assembled transcripts with an ORF size longer than 30 amino acids were 

predicted using Transdecoder. These peptide sequences were further screened using 

blastp against Swissprot entries (1E-05, -length 30, -identity 80) and using Hmmer 

(v.3.1b1) against Pfam domains (1E-05). Transcripts with a homology to functional 

sequences or a predicted Pfam domain passed the homology-based prediction criteria. 

 

Following this multi-layered analysis, putative coding transcripts were identified by 

excluding contaminant transcripts and selecting transcripts that passed ORF size, coding 

potential prediction and homology-based prediction analyses. On the other hand, knowing 

that lncRNAs do not possess open reading frames or protein-coding potentials, transcripts 

which failed in all homology-based, coding potential and ORF size prediction analyses 

were identified as putative lncRNAs. Actively-expressed transcripts were extracted 
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according to the fpkm threshold of 0.5. Differential-expression analysis was performed 

through pair-wise comparison of sample-specific expressions of each transcript using 

edgeR software with p-value of 0.001 and fold-change of 4 thresholds. Actively-

expressed mRNA and lncRNA transcripts were provided in Supplementary Data 1 and 2 

(Cagirici, Biyiklioglu, and Budak 2017). 

 

 

4.2.3. Identification and annotation of miRNAs and tRNAs 

 

High confidence mature miRNA sequences of hexapoda species were retrieved from 

miRBase database (v21, June 2016) (Kozomara and Griffiths-Jones 2011). In silico 

miRNA prediction was performed using SUmir pipeline (2. General Materials and 

Methods) with this set of 562 mature miRNA sequences as query. The genes encoding 

tRNA species were extracted using the local version of tRNAscan-SE software (Lowe 

and Eddy 1996) with the default parameters for eukaryotic genomes. 

 

 

4.2.4. Prediction of miRNA targets 

 

Target transcripts of newly identified miRNAs were predicted using two algorithms, 

RNAhybrid (Krüger and Rehmsmeier 2006) and miRanda (Enright et al. 2003). Filtering 

criteria were applied to each prediction as follows: RNAhybrid: p-value adjusted to 

3utr_fly, mfe<=-25 kcal/mol; miRanda: total score >=140, total energy<=-25 kcal/mol. 

Putative target transcripts were accepted from those predicted by the two software. The 

resulting putative mRNA targets were aligned to NCBI non-redundant (nr) protein 

database (blastx, -evalue 10-5, -outfmt 5) where blast top hits were functionally annotated 

using Blast2GO software. A list of target transcripts from lncRNAs and mRNAs targeted 

by the same mature miRNA sequences was gathered together to construct an interaction 

network between lncRNAs, miRNAs and mRNAs, which was visualized using Cytoscape 

3.3.0 (Shannon et al. 2003).  

 

Identified larval mature miRNA sequences of WSS were further evaluated for their 

putative mRNA targets within wheat coding sequences by using psRNATarget webtool 

(Dai and Zhao 2011). Functional annotation of the target sequences was performed using 
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Blast2GO software following homology screening against protein sequences of 72 

Viridiplantae species (blastx, -evalue 10-5, -outfmt 5, -max_target_seq 1). 

 

 

 Results 

 

 

4.3.1. De novo assembly of WSS transcriptome 

 

RNA-sequencing data from eight WSS samples, including larvae, antennae, females and 

males, from infected plants were retrieved from NCBI database (Sequence Read Archive 

(SRA) accession number SRP067708). Initially, all reads were subjected to adaptor and 

quality trimming using Trimmomatic, revealing a total of 28.799 Gbp clean reads. 

Despite reducing the number of reads, this step improved the quality and the process time 

of the assembly.  

 

Table 4.1. Summary statistics of sequencing and combined de novo transcriptome 

assembly of WSS 

Read processing 

Reads before trimming 50.248 Gb 

Reads after trimming 28.799 Gb 

Assembly statistics 

Number of ‘genes’ 116560 

Number of transcripts 165284 

Percent GC 40.65 

N50 (bp) 3304 

Median contig length 523 

Average contig 1380.63 

Total assembled bases 228196136 

 

All trimmed reads were then assembled into one assembly using Trinity de novo 

assembler, resulting in 165,284 transcripts with a N50 length of 3,304 bases (Table 4.1), 

indicating the high-quality of the transcripts that could construct full-length protein 
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sequences. GC content of the assembly was 40.65 %, which is similar to the GC content 

of the raw reads (39-43 %). A detailed summary of the assembly statistics can be found 

in Table 4.1. Clean raw reads were aligned back to the assembly to determine the 

expression levels of each transcript, which were scaled to fragment per kilobase million 

(fpkm). Based on the normalized fpkm values greater than 0.5 in at least one of the eight 

WSS samples, 143,483 (86.8%) transcripts were defined as actively-expressed WSS 

transcripts.  

 

 

4.3.2. Annotation of WSS transcriptome 

 

To elucidate interactions of noncoding RNAs (lncRNAs and miRNAs) with protein-

coding sequence content of WSS, all actively expressed transcripts were subjected to a 

selection process, following the transcriptome assembly. Transcripts satisfying the 

criteria of having homology to known coding sequences, a predicted coding potential and 

an ORF region that is at least 100 amino acid-long were defined as candidate mRNA 

transcripts (called mRNA transcripts from now on). Thus, 40,185 mRNA transcripts were 

identified, of which 38,934 (96.86%) of them showed significant resemblance to known 

WSS mRNAs with 80% or more identity, indicating 1,251 novel mRNAs were identified. 

These novel mRNAs were screened through NCBI non-redundant (nr) protein database 

for similarity to a known protein from other organisms, thereby revealing potential 

functions of transcripts. Functions of proteins with significant hits included tRNA ligases, 

histone proteins, kinases and more (Cagirici, Biyiklioglu, and Budak 2017).  

 

Although all novel mRNAs showed significant homology to at least one known protein, 

only 868 of them were mapped to 15,947 Gene Ontology (GO) terms. These GO terms 

represented molecular functions (MF) of newly identified mRNAs as binding, catalytic 

activity and structural molecule activity where their biological processes (BP) were 

predicted as metabolic, cellular or single-organism processes at level 2. At a multi-level 

classification, ion binding and biosynthetic process were the most predominant 

annotations in the MF and BP categories, respectively. 

 

Varying sets of expressed mRNA transcripts showed differential expression between 

larva and adult WSS samples, reflecting the effect of developmental stage on the WSS 
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transcriptome. Differential-expression analysis performed through pair-wise comparison 

of sample-specific expressions of each transcript revealed 16,291 and 16,928 mRNAs 

that were differentially-expressed between larva-adult male and larva-adult female 

samples, respectively, where 12,453 of them were common in both comparison pairs, 

totaling 20,766 mRNAs differentially expressed between larva and male or female 

samples. 

 

A list of differentially expressed transcripts has been compiled combining ten transcripts 

with the highest levels of expression from each of the larva, male and female samples. 

Three of the top 10 highly expressed transcripts of female and male samples coincided, 

totaling 27 differentially expressed transcripts with the top 10 highest levels of expression 

in one of the three samples (Figure 4.1). 

 

 

 

 

 

 

Figure 4.1. Comparison of the expressions of transcripts. Top 10 

differentially expressed transcripts with the highest expressions were 

collected from pooled larva, male and female samples, totaling 27 non-

redundant list of transcripts. Expressions were presented in terms of 

log10(fpkm) from red to green, representing high to low expression. 

Transcripts having low-to-none expressions (<2fpkm) were 

highlighted with the boxes. 
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Figure 4.2. Blast2GO term distribution over differentially expressed transcripts. 

Transcripts with sample specific expressions were shown. 

 

Comparative functional annotation of mRNA transcripts revealed that 2,732, 2,083 and 

1,710 transcripts were exclusively expressed in larva, male and female samples, 

respectively. These mRNA transcripts were composed of proteins known to be involved 

in various biological processes (Figure 4.2), which exclusively were in immune system 

process and reproduction in larva, and developmental process and growth in males. 

Besides, antioxidant and translation regulation molecular functions were identified only 

in larva samples. Unfortunately, hypothetical, predicted and unknown proteins made up 

to 25% of these transcripts, which points out to that there might be many additional 

pathways that these differentially expressed transcripts play roles in. 

 

 

4.3.3. Identification of lncRNAs 

 

The analyses for lncRNA identification yielded a total of 71,220 putative lncRNAs, which 

corresponded to 4.09% of all transcripts of the Trinity-assembled transcriptome of WSS. 

Based on normalized fpkm which was greater than 0.5 in at least one of the eight WSS 

samples, actively-expressed lncRNA transcripts (named as lncRNAs from this point) 

were identified for further analyses. The results showed that 83.79% (59,676) of lncRNAs 
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passed the threshold of active expression as opposed to 92.21% (40,185 out of 43,581) of 

annotated transcripts, illustrating the tendency of lncRNAs to exhibit lower expressions.  

All lncRNAs were further examined in terms of expression patterns in larva and adult 

WSS samples to discover larva-specific and adult-specific lncRNAs in WSS. Among a 

total of 59,676 actively-expressed lncRNA transcripts, 55,946 (56.88%) of them 

possessed a normalized fpkm greater than 0.5 in at least one of the larva, male or female 

WSS samples. It appeared that lncRNAs were the most abundant in larva followed by 

male and female WSS transcriptomes. 16,965 (34%) of 49,943 actively-expressed larva 

transcripts were defined as lncRNAs as opposed to 17,554 (27%) of 63,837 male 

transcripts and 9,110 (19%) of 47,042 female transcripts (Figure 4.3A). Moreover, most 

of the larva and male lncRNAs were sample-specific whereas most of the female 

lncRNAs were common in either one of the samples. This comparison of lncRNA content 

of the three samples indicated that larva showed the highest and female the lowest, 

transcriptional diversity and specificity. These results suggested the abundance of 

lncRNAs in larvae compared to adult WS, indicating the functional importance of 

lncRNAs in different levels of WSS life cycle, especially in the larval stages.  

 

 

Figure 4.3. Structural features of coding and non-coding elements in WSS transcriptome. 

(A) Venn diagram shows the numbers of common and specific elements in larva, male 

and female WSS samples. The numbers of mRNAs, lncRNAs and unknown transcripts 

were written in orange, green and gray colors, respectively. (B) The expression patterns 

of mRNAs and lncRNAs in larva, male and female samples. (C) Length distribution of 
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the transcripts expressed in any WSS samples. 

 

mRNA transcripts, on the other hand, showed less sample-specific expressions than 

lncRNA transcripts. In fact, 88.77% (35,671) of actively-expressed mRNA transcripts 

exhibited expression evidence in at least two of the larva, male and female samples as 

opposed to 56.88% of actively-expressed lncRNA transcripts (Figure 4.3A). Besides, 

31.83% of these mRNAs were common in all three WSS samples and 66.62% of them 

were shared by more than one samples whereas that of 2.63% of common lncRNAs and 

14.68% of shared lncRNAs. Further examination of expression levels of lncRNA and 

mRNA transcripts showed lower levels of lncRNA expression in all three WSS samples 

(Figure 4.3B). These results indicated sample-specific expression patterns as well as 

lower expression levels of lncRNAs than of mRNAs. 

 

To determine lncRNAs that were either upregulated, downregulated or showed no 

differential expression between different WSS samples, a pairwise differential expression 

analysis was performed using edgeR package under Trinity software. It was found that 

1,893 of the lncRNAs were differentially expressed between larva and adult WSS 

samples. 728 of those differentially expressed lncRNAs were upregulated in larva 

samples whereas 686 and 1,059 of them showed upregulation in female and male adult 

samples when compared to larva. Although there were more sample specific lncRNAs 

identified, these differentially expressed lncRNAs were the ones that passed the strict 

criteria. 

 

 

4.3.4. Characteristics of lncRNAs and mRNAs 

 

We analyzed structural features of all actively-expressed lncRNA transcripts and 

compared with the ones for mRNA transcripts in WSS. The lengths of the lncRNAs 

ranged from 201 to 6,465 bp. Most of the lncRNAs, however, had shorter transcripts such 

that 93.6% of the lncRNAs were shorter than 1,000 bp (Figure 4.3C). On the other hand, 

mRNA transcripts were remarked by longer sequences such that longest mRNA 

transcripts contained 27,058 nt and half of them were longer than 2,990 nt. Average 

transcript length of lncRNAs was 444 bp as opposed to that of 3614 bp for mRNA 

transcripts. In addition, GC contents were ranging between 8 and 70% for lncRNAs and 
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26 to 72% for mRNA transcript, the majority of which (83% and 91% for lncRNA and 

mRNA transcripts, respectively) were around 30 to 50% (Appendix B - Supplementary 

Figure 1). Average GC content for lncRNA and mRNA transcripts were 39% and 42%, 

respectively. The longest transcripts, of both lncRNAs and mRNAs, were the ones with 

average GC content. We could not detect any significant correlation between length and 

GC content of both mRNA and lncRNA transcripts.  

 

Alternative splicing is one of the common features between lncRNAs and mRNAs 

although lncRNAs have lower splicing ratio than protein-coding genes in mammals. 

Consistent with their counterparts in the mammals, WSS lncRNAs showed less splicing 

than annotated transcripts. Alternatively-spliced isoforms were identified for only 11% 

(6,376) of the lncRNA transcripts in this assembly, which is significantly lower than 83% 

(33,537) of the ratio observed in annotated transcripts. Among the lncRNAs having 

alternatively spliced isoforms, 20% (1,286) of them shared at least 4 isoforms, which is 

less than one third the ratio of 69% (23,079) for mRNA transcripts having alternatively 

spliced isoforms. Such low levels of splicing events in lncRNA transcripts indicated that 

it is not as common as in mRNA transcripts of WSS. As an exception, 76 of the putative 

lncRNAs showed high splicing events with at least twelve isoforms. The maximum 

number of alternative splicing in lncRNAs was 23, observed in the gene, c49416_g1. 5 

isoforms of this gene were identified as putative lncRNAs. Two of these lncRNAs failed 

to pass expression threshold in larva, male, female WSS samples. Remaining lncRNAs 

exhibited sample specific expressions where c49416_g1_i22 expressed only in male, and 

c49416_g1_i23 and c49416_g1_i6 expressed only in larva samples. These estimated 

abundances of transcripts over different samples revealed the unique expression profiles 

of the alternatively spliced isoforms in the different stages of WSS life cycle.  

 

 

4.3.5. tRNA annotation 

 

The analysis of tRNA gene content of WSS transcriptome revealed that the majority of 

tRNA gene families were represented by more than a single copy in the WSS 

transcriptome. A total of 159 putative tRNA genes were identified, 41 and 50 of which 

were encoded by actively-expressed mRNA and lncRNA transcripts, respectively (Figure 

4.4). These tRNA genes correspond to 21 putative tRNA gene families with a specificity 
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for 45 anticodons. With a total of 18 loci, tRNA:Met-CAT was marked as the most 

abundant tRNA species among all WSS transcriptome as well as among mRNA (8) and 

lncRNA (7) transcripts. The codon it decodes, AUG, is the most common canonical start 

codon. Moreover, several tRNA species were encoded by only mRNAs or lncRNAs but 

not by any other transcripts. 8 and 14 tRNA species were found to be either mRNA or 

lncRNA specific, respectively. For the remaining tRNA species, we could not detect any 

correlation between mRNA and lncRNA transcripts.  

 

 

Figure 4.4. tRNA content of mRNA, lncRNA and the remaining transcripts in the WSS 

transcriptome. tRNA species sorted by their abundance in lncRNAs, mRNAs and others 

in order. 

 

 

4.3.6. In silico miRNA prediction 

 

Using 562 high confidence mature miRNA sequences from hexapoda species deposited 

at miRbase, a total of 18 mature miRNA sequences referring to 11 miRNA families were 

identified from the assembly of WSS transcriptome. Among these miRNA families, four 

miRNA families, miR-281 (4), miR-8 (3), miR-10 (2) and miR-14 (2), were represented 

with more than one stem-loops (Supp. Table 4). Predicted mature miRNA and pre-

miRNA sequences were ranging between 21-23 nt and 94-125 nt, respectively. Average 

length of all putative mature miRNA sequences was 22 nt where that of 99 nt for their 

respective pre-miRNA sequences. These values are consistent with the 80-100 nt mean 

sequence length of animal miRNAs (Greenberg et al. 2012). 
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Figure 4.5. Venn diagram representing sample specific expression of WSS miRNAs. The 

four miRNAs listed outside the venn were identified from WSS samples other than pooled 

larva, male and female samples. 

 

Pre-miRNA sequences were also examined in terms of the direction and the location on 

the transcriptome where one stem-loop might arise from different locations on the 

transcriptome. 38 transcripts were identified indeed as putative precursors of 18 mature 

miRNAs (Cagirici, Biyiklioglu, and Budak 2017). While 22 of them stemmed from sense 

strand, 16 of them were found in antisense strand. Among putative miRNAs, only 

miRNAs from miR-184 and miR-281 families were identified from both sense and 

antisense strands. Since expression of the precursor transcripts in different WSS samples 

might reveal sample-specific miRNAs, all precursor transcripts were discriminated by the 

evidence of expression in larva and pooled adult WSS samples. 12 mature miRNAs 

belonging to 7 miRNA families were identified in either larva, male or female samples. 

Among them, only one mature miRNA was found in female as opposed to that of 9 mature 

miRNA sequences (4 miRNA families) in male and 10 mature miRNA sequences (6 

miRNA families) in larva (Figure 4.5). The results showed that miR-184 was expressed 

in all three samples, whereas miR-14 was male-specific; and miR-87, bantam and miR-

277 were larva-specific miRNAs. miR-10 and miR-281, on the other hand, were 

identified in both larva and male samples. 

 

Further examination on sources of putative miRNAs suggested six lncRNA transcripts as 

putative precursors of miRNAs belonging to six miRNA families; miR-10, miR-14, miR-

2, miR-279, miR-71 and miR-8. These lncRNAs were the only precursors identified for 

the respective miRNAs in WSS transcriptome. Among them, the lncRNA transcript, 

c46526_g1_i1, was identified as the precursor of miR-10 in both male and larva samples 

where c106582_g1_i1 was identified as the precursor of miR-14 in male sample only. 
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Nevertheless, none of the lncRNA transcripts in female samples were identified as 

miRNA precursors. Expressions of remaining precursor lncRNA transcripts were 

detected in at least one of the remaining five WSS samples, supporting the expression of 

respective miRNAs at a sample specific level in WSS. These results also point out the 

functional importance of lncRNAs as being miRNA precursors.  

 

 

4.3.7. Putative targets of WSS miRNAs 

 

miRNAs regulate gene expression at the post-transcriptional level by interrupting 

expression through binding to the complementary sites on the target sequences. For 18 

mature miRNAs, 32,149 and 6,458 miRNA-mRNA pairs were predicted using 

RNAhybrid and miRanda, respectively. A total of 5,070 unique mature miRNA-mRNA 

pairs, predicted by both algorithms were selected as reliable interaction pairs. From the 

larva miRNAs, miR-281 involved in the highest number of interactions with mRNAs 

(1,654), where bantam miRNA contributed in 70 interactions which was the lowest 

number between larval miRNAs (Cagirici, Biyiklioglu, and Budak 2017). ~282 mRNA 

targets were assigned per mature miRNA sequence on average. These large set of putative 

mRNA targets indicated the extend of the functional roles of miRNAs in WSS. Homology 

screenings against NCBI non-redundant (nr) protein database revealed sequence 

similarity of target mRNAs to the genes involved in several important molecular 

functions including binding, catalytic, molecular transducer, transporter and structural 

molecule. The most abundant term in biological process category was cellular and 

metabolic processes followed by biological regulation.  

 

Other targets of putative mature miRNAs involved lncRNA transcripts. RNAhybrid 

predicted 20,788 mature miRNA-lncRNA pairs and miRanda predicted 1,075 miRNA-

lncRNA pairs. 774 lncRNA transcripts suggesting 965 unique mature miRNA-lncRNA 

pairs predicted by the two algorithms. While the highest number of interactions was made 

by miR-184 within the larval miRNAs, miR-87 was involved in the least number of 

interactions with lncRNAs. ~54 lncRNA targets were estimated per mature miRNA, 

indicating potential functions of lncRNAs as being miRNA targets although target 

mRNAs were shown to be more prevalent in WSS. 
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4.3.8. lncRNA - miRNA - mRNA network in WSS 

 

lncRNAs might involve in miRNA-mediated gene regulation through an indirect 

protection of target mRNAs, which called as target mimicry. By mimicking the binding 

site on the target mRNA sequence, lncRNAs might recruit miRNAs to enhance the 

expression of respective mRNAs. To have a broader aspect about these regulatory 

mechanisms, interaction networks between miRNA, lncRNA and mRNAs were 

established combining miRNAs and their lncRNA and mRNA targets predicted here.  

 

 

Figure 4.6. miRNA-mediated lncRNA and mRNA interaction networks. Networks 

constructed using; all WSS miRNAs (A), male miRNAs (B), female miRNAs (C) and 

larval miRNAs (D). lncRNA transcripts were represented as pink triangles whereas pale 

blue circles were denoted to mRNA transcripts. miRNAs were shaped as squares and 

colored based on the color scale shown at right. 

 

Remarkable, all miRNA families had both mRNAs and lncRNAs as interacting partners. 

Figure 4.6 illustrated that lncRNAs differentially expressed between larva and adult WSS 

samples were involved in one complex interaction network with miRNAs and mRNAs. 

All miRNAs identified from each growth stage of WSS contributed to the interaction 

network constructed in its respective stage. Functional annotation of mRNAs involved in 



62 

 

any part of these networks was performed using Blast2GO to elucidate potential functions 

of lncRNAs as competing endogenous RNAs (ceRNAs). All mRNA and lncRNA targets 

of miRNAs were included in the combined network which build up one large and 

complex network. The results indicated that response to stimulus biological process was 

highly enriched in larva whereas structural molecule and transporter molecular functions 

in male. No enrichment was detected in female samples as all female miRNAs shared by 

larva and male. Overall, the interaction networks between miRNA, lncRNA and mRNAs 

suggest putative roles of lncRNAs to increase regulation in variety of molecular processes 

through target mimicry for miRNAs.  

 

 

4.3.9. Bidirectional mobility of miRNA in wheat and WSS 

 

WSS larva accommodates in wheat stem and feeds from there until pupae stage of its life 

cycle (Delaney, Weaver, and Peterson 2010). Given the evidence of cross-kingdom 

regulation by miRNAs (L. Zhang et al. 2012; Jia et al. 2017; Tian et al. 2016), the 

interaction between intracellular molecules of WSS larvae and wheat cannot be 

underestimated due to these two organisms being in contact and trying to defeat each 

other. To assess possible effects of larval miRNAs on wheat gene expression and its 

response to WSS pathogen, target analysis for larval miRNAs was performed against T. 

aestivum coding sequences deposited at ensemble plant database using psRNAtarget tool. 

We identified 10 putative wheat targets for 3 miRNAs expressed at larvae.  

 

As shown in Table 4.2, a larva specific miRNA, miR-277, specifically targets several 

transcripts on the three sub-genomes of chromosome 3. Among the chromosome 3 

targets, three transcripts were from chromosome 3B which was characterized with the 

wheat stem solidness (Nilsen et al. 2016). Blast screening of these chromosome 3 targets 

revealed similarity to methyltransferase PMT11 and ankyrin-like proteins (Table 4.2). 

Another larva specific miRNA, miR-87, has shown to have putative targets on 

chromosome 5BL and the only target for the male and larva shared miRNA, miR-281, 

was a transcript from chromosome 2AL of wheat. These 2A and 5B chromosomes were 

associated before with larval mortality. Although the predicted targets of miR-281 does 

not share homology with a protein with known function, targets of miR-87 was defined 

as vacuolar protein sorting-associated protein 22 homolog 1 (Table 4.2). Overall, these 



63 

 

findings suggested that putative wheat targets of larval miRNAs were likely to be 

involved in defence mechanisms of wheat against insects. 

 

Table 4.2. Wheat coding targets of WSS larval miRNAs.  

Source Mirna Acc. Wheat_target_Acc. Target Annotation 

Larva miR-277 TRIAE_CS42_3AL_TGACv

1_193846_AA0620850.1 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-277 TRIAE_CS42_3AL_TGACv

1_193846_AA0620850.2 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-277 TRIAE_CS42_3B_TGACv1

_224524_AA0797630.1 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-277 TRIAE_CS42_3B_TGACv1

_224524_AA0797630.2 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-277 TRIAE_CS42_3B_TGACv1

_224524_AA0797630.3 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-277 TRIAE_CS42_3DL_TGACv

1_251571_AA0882620.1 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-277 TRIAE_CS42_3DL_TGACv

1_251571_AA0882620.2 

methyltransferase PMT11 & 

ankyrin-like protein 

Larva miR-87 TRIAE_CS42_5BL_TGACv

1_408620_AA1363930.1 

vacuolar protein sorting-

associated protein 22 

Larva miR-87 TRIAE_CS42_5BL_TGACv

1_408620_AA1363930.2 

vacuolar protein sorting-

associated protein 22 

Larva, 

Male 

miR-281 TRIAE_CS42_2AL_TGACv

1_094608_AA0300450.1 

hypothetical protein F775_10692 

[Aegilops tauschii] 

 

miRNAs might pass from wheat to larva during their close contact. To assess putative 

larva targets, wheat mature miRNA sequences (119 entries) were retrieved from miRbase 

database.   Using miRanda and RNAhybrid tools in combination, we identified 12,535 

larval coding transcripts as putative targets of wheat miRNAs. The number of predicted 

targets varied widely between miRNAs, ranging from 2 to 6,174. Homology screening of 

the putative targets were performed based on blast hits from the NCBI non-redundant (nr) 

protein database with an e-value cutoff of 1E-5. Blast hits suggested that the genes 

targeted by wheat-derived miRNAs were likely to be involved in several functions such 

as kinases, helicases and transcription initiation factors. Among them, the two proteins 
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with known functions targeted by more than 10 miRNAs were “Endothelin-converting 

enzyme 1-like isoform X1” and “N-acetylglucosamine-6-phosphate deacetylase”. 

Besides, digestive enzymes, i.e., lipases and glycogen synthases, were among the putative 

targets of wheat miRNAs.  

 

 

 Discussion 

 

 

Wheat production is severely limited by the a/biotic stress factors and biotic stress can 

account for up to 20% yield loss in wheat. Wheat Stem Sawfly (WSS; Cephus cinctus 

Norton) is the most harmful pest of wheat in North America (B. Beres et al. 2011), due 

to larval mining inside the plant stem. Although understanding their mechanisms of action 

is critical to fight effectively with WSS infestations and help farmers to reduce the 

devastation, very little is known on the genetic information and molecular mechanisms 

of WSS. To expand our knowledge, a detailed noncoding RNAs and their interactions 

with transcriptome has been conducted for WSS larvae and adults.  Here we utilized a 

different method which is combining all reads from all tissues/samples. As many non-

coding elements tend to show tissue specific expressions (Quinn and Chang 2015), 

combining raw reads from different samples is important for the richness of the genetic 

elements available and the completeness of the transcriptome. Here, transcriptome-

guided mRNA, lncRNA and miRNA identification was performed with a focus on larvae 

transcriptomics and differential expression of transcripts between larvae and, female and 

male samples since most of the damage is caused from the larvae growing and feeding 

inside the wheat stem. Furthermore, the network between these RNA molecules besides 

the potential passage of WSS miRNA molecules towards wheat cells to target wheat 

coding sequences and to regulate the gene expression there as a part of its damaging effect 

has been disclosed. 

 

With a stringent filtering of 165,284 transcripts in the de novo assembled WSS 

transcriptome, we identified 40,185 (24%) actively expressed protein-coding sequences. 

Of these transcripts, 1,251 transcripts were selected as novel mRNA candidates with lack 

of homology to known WSS mRNAs. To provide a broader aspect of their functions with 
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non-coding RNA, these novel mRNA transcripts were classified in three GO categories, 

molecular function, biological process and cellular function. The functional annotations 

revealed proteins from many different molecular pathways, reflecting the complexity of 

eukaryotic cells. A significant number of these annotated proteins were ribosomal 

subunits, transcription and translation initiation factors, kinases, histone proteins which 

have important roles in the basic cellular mechanisms for the survival of the cell. In 

addition, six transcripts were identified as chemo-response-related proteins which might 

function in olfactory pathways that is important in sexual and social interactions of insects 

as discovered in honeybees (Pelosi et al. 2017; Benton 2006). Another protein affecting 

insect behavior was longitudinals lacking (lola) protein which had three isoforms in WSS 

transcriptome assembly. This protein was found to be important in neuronal system 

development by maintaining proper axon guidance (Kuzin et al. 2005) and mutation 

studies in Drosophila melanogaster resulted in aggressive behaviors on the insects 

(Edwards et al. 2006). These novel findings shed light on the undiscovered mechanisms 

in the cells of WSS and the organism being a social insect and reflected a potential to 

manipulate the developmental pathways of WSS in order to find more effective ways to 

cope with the infestations.  

 

Dynamic changes in gene expression reflect the response of an organism to intrinsic and 

environmental signals. Thus, expression of genes varies over the course of a species’ life 

cycle; between stages of growth and development and between different sexual 

categories. Here, a total of 20,766 differentially expressed mRNAs were identified 

through pair-wise comparison of female and male samples to larva (Supp. Table 2). 

Intriguingly, one fourth (6,525) of these transcripts showed sample specific expressions, 

indicating the distinct patterns of regulation between larva and adult developmental stages 

of WSS. While 6,019 of these differentially expressed transcripts were upregulated in 

larva when compared to adults, 14,824 of them were upregulated in adults, which could 

be a sign of a more complex cellular system in the adult stage of WSS life cycle. The 

cellular activity in larval stages of insect species was found to be less complex than it is 

in adults (Python and Stocker 2002), which might have caused from the lack of complex 

behaviors in the larval stage while adult individuals are more motile and they involve in 

social interactions more often. The transcripts that showed a great differential expression 

between larva and both adult samples also emphasized the distinct cellular activities 

between larva and adults. Comparison of the expression levels of these transcripts in each 



66 

 

sample revealed similar patterns of expression between male and female transcripts when 

compared to larva. Figure 4.1 showed that transcripts upregulated in male compared to 

larva were also likely to be upregulated in female, although the level of regulation may 

differ. Intriguingly, most of these transcripts (16 out of 27) that showed the top 10 highest 

expression in one of the samples exhibited low-to-none expression (<2 fpkm) in any other 

samples, indicating the abundance of distinct regulatory mechanisms in different WSS 

life stages, thereby pointing out the functional importance of sample specific expressions 

of transcripts. We also included functional annotations of differentially expressed 

transcripts between larva and adult samples. Among them, allatostatin-A-receptor was 

one of the proteins that were encoded from the transcripts upregulated in larva. 

Allatostatin-A proteins were discovered to inhibit juvenile hormones in cockroach and 

criket (Hergarden, Tayler, and Anderson 2012) which preserve the larval characteristics 

(Riddiford 2012). Therefore, the upregulation of allatostatin-A-receptor might be a part 

of the passage through adult stage by contributing the inhibition of juvenile hormones. A 

number of transcripts upregulated in larva were encoding proteins related to circulatory 

system and central nervous system (CNS) development. Neurofibromin was one of the 

proteins annotated from two upregulated transcripts form larva, which was identified with 

its role in body size determination during larval development of Drosophila melanogaster 

(Lee et al. 2013). In addition, chitinase was also encoded by 13 transcripts that were 

upregulated in larva. As an insect larva grows to form an adult individual, chitin 

molecules within the cuticle surrounding its body should be degraded by chitinases and 

synthesized again (Khajuria et al. 2010). Therefore, together with this information, it can 

be concluded that the cellular metabolism of the larva is focused on growth and formation 

of critical body systems leading to a complete adult development. 

 

mRNAs are not the only players of molecular mechanisms where non-coding elements 

such as long non-coding RNAs (lncRNAs) were involved in various biological processes, 

including cell fate decision, developmental processes, sex-specific functions and growth 

(Keniry et al. 2012; Militti et al. 2014; M. Li et al. 2012). With the advent of high-

throughput sequencing technologies, RNA-seq has boosted the identification and 

characterization of lncRNAs in several species. Despite the extensive studies on the 

functions of lncRNAs in Drosophila (Ecker et al. 2012; Soshnev et al. 2011; M. Li et al. 

2012), little is known about characteristics and functions of lncRNAs in other flies (Xiao 

et al. 2015), including WSS. Major challenge in the identification of lncRNAs were that 
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lncRNAs are not conserved between species. In fact, these are the non-conserved long 

transcripts that are not able to construct a full-length protein (Yan and Wang 2012). A 

total of 59,676 novel lncRNAs were identified in this study that will likely be useful for 

further genomics research. Analysis for sample-specific expression profiles of lncRNAs 

showed the transcriptional diversity of lncRNAs between larva, female and male WSS, 

supporting the evidence of the transcriptional diversity and specificity of lncRNAs in 

several species provided by recent studies (Cesana et al. 2011; Quinn and Chang 2015). 

Interestingly, the results revealed that lncRNAs were much more abundant in larva than 

the adults (Figure 4.3A). This high abundancy of lncRNAs coincides with the high 

activity of developmental processes of larval stage of WSS life cycle. Thus, the results of 

this study supported the previous findings that the transcriptional diversity of lncRNAs 

could be related to developmental processes and sex-specific functions, even though 

further experiments are required to validate this conclusion. Notably, only 774 (1.3%) 

lncRNAs were common in all eight samples whereas 31,556 (52.9%) lncRNAs exhibited 

sample specific expressions. Thus, it is likely that a number of lncRNAs with tissue- or 

condition- specific expression exist and will be discovered through additional RNA-seq 

analyses at larger scales. In addition, the expression levels of lncRNAs are significantly 

lower when compared to the expression levels of protein-coding transcripts (Z. Wu et al. 

2014). The comparison of expression levels of WSS mRNAs and lncRNAs revealed that 

mRNAs from larva and adult stages were expressed relatively higher than the lncRNA 

molecules (Figure 4.3B), supporting the previous observations. 

 

The major factor discriminating lncRNAs from mRNAs is lack of a discernable coding 

potential. Our tRNA analysis revealed that tRNA gene with anticodon CAT (tRNA-Met-

CAT) decoding AUG start codon was found for both lncRNAs and mRNAs. Therefore, 

we identified that lncRNAs might do encode translation start codon, indicating the 

initiation of translation into proteins, as mRNAs do. 14% of tRNAs in lncRNAs 

corresponded to anticodon CAT (tRNA:Met-CAT) as opposed to that of 20% for mRNAs 

(Figure 4.4). With the highest abundance in each group, we could not correlate the 

initiation of translation with the potential of protein coding; however, distribution of 

remaining tRNA-anticodons differs broadly between mRNA and lncRNA transcripts. 

Content of the remaining tRNA species might regulate construction of the full-length and 

functional proteins.  
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Functions of lncRNAs can be inferred from their association with other non-coding 

elements. Several lncRNAs have shown to generate miRNAs, such as H19 lincRNA 

functioning as the precursor of miR-675 which in turn suppresses the growth promoting 

Insulin-like growth factor 1 receptor (Igf1r) (Keniry et al. 2012). Here, six lncRNA 

transcripts were identified as the only precursors of the six miRNAs; miR-10, miR-14, 

miR-2, miR279, miR-71 and miR-8. Besides being miRNA precursors, some lncRNAs 

act as miRNA targets. Through direct targeting, miRNAs might regulate the abundance 

of lncRNAs which are involved in different cell functions (J.-H. Yoon, Abdelmohsen, 

and Gorospe 2014). Several lncRNAs targeted by miRNAs have been uncovered recently, 

such as lincRNA-p21 (J. H. Yoon et al. 2012) and H19 (Kallen et al. 2013). The 

assessment of the possible miRNA-lncRNA target interactions identified 54 putative 

lncRNA targets per miRNA agents. Having the miRNA binding site, lncRNAs might 

enhance the functioning of miRNA target genes by titrating shared miRNAs from 

environment. As lncRNAs targeted by miRNAs could be involved in a regulatory 

circuitry between lncRNAs, miRNAs and mRNAs, we investigated putative target 

mimicry functions of these lncRNAs. The first evidences of target mimicry were 

discovered in plants (Franco-Zorrilla et al. 2007). Later, several examples were identified 

in mammals in the name of competing endogenous RNAs (ceRNAs) of miRNA targets 

(Karreth et al. 2011; Kallen et al. 2013; Cesana et al. 2011). Here, we also constructed a 

putative interaction network between lncRNAs, miRNAs and mRNAs in WSS to identify 

putative lncRNAs acting as ceRNAs (Figure 4.6). Experimental validation of target 

lncRNAs might shed light of the regulatory functions of these networks. We believe that 

importance of lncRNAs and such regulatory networks will emerge further. 

 

The journey through understanding the functions of miRNAs has started with the 

discovery of lin-4 and its role in larval development in C. elegans. Lin-4 miRNA was 

upregulated in C. elegans larvae in one of the four larval stages, targeting lin-14 mRNA, 

suggesting that it has a regulatory role in larval development (He and Hannon 2004; 

Alvarez-Garcia and Miska 2005). The importance of miRNAs in developmental-timing 

of larvae was also shown in vertebrates in several studies. Here, we identified three 

miRNAs specifically expressed at larval stages of WSS; miR-87, bantam and miR-277. 

miR-87 was suggested as a regulator of the immune responses of mosquitoes against viral 

infections (Y. Liu et al. 2015). Later, its expression was identified in the nematode, 

Meloidogyne incognita (Y. Zhang et al. 2016); however, its function in insects remains 
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elusive. Functions of putative targets of miR-87 includes transferase activity, 

topoisomerase activity, binding and extracellular matrix structural constituent, suggesting 

its structural and functional importance. Both of miR-277 and bantam miRNA were 

associated with anti-apoptotic activities in insects (Jones et al. 2013; Bilak, Uyetake, and 

Su 2014). Although direct targets and function of miR-277 requires further evidence, 

miRNA bantam was linked directly to protective functions ensuring cell proliferation 

(Bilak, Uyetake, and Su 2014). As the larval stages of WSS are the most stressed periods 

in WSS stages, increased regulation through bantam miRNA and miR-277 in the larva 

samples supported its anti-apoptotic activities. On the other hand, miR-14, the only adult 

male-specific miRNA identified is expressed greatly in testicular tissues of immature and 

fully-mature adult B. dorsalis flies, and its target was putatively identified as β2-tubulin 

(Tariq et al. 2015). The function of β2-tubulin was first revealed in D. melanogaster as 

maintaining the mobility of sperms (Zimowska, Nirmala, and Handler 2009). These 

findings support the idea that miR-14 is a male-specific miRNA functioning in WSS adult 

male testes.  

 

Plants have evolved mechanisms to protect themselves from herbivorous feeding. In the 

case of an insect attack, defense mechanisms in plants are triggered by signals such as 

touch, oviposition, tissue damage and molecules coming from the insect (Chung et al. 

2013). On the other hand, insects use effector molecules to suppress or manipulate 

defense response in host plant (Erb, Meldau, and Howe 2012; Hogenhout and Bos 2011). 

For example, a recent study showed that small RNA molecules of a fungi species, B. 

cinerea, inhibiting the RNAi machinery and silencing the genes for plant immunity 

through binding to AGO1 protein of its host plant Arabidopsis (Weiberg et al. 2013). 

Another study showed that host target sequences of P. parasitica sRNAs were transcribed 

at the low or undetectable levels (Jia et al. 2017). In the light of these findings, we 

considered larval miRNAs affecting host wheat plants to regulate gene expression in 

favor of larval survival. Target prediction analysis of larvae miRNAs brought out the 

possible interactions with wheat protein-coding sequences, which may result in the 

blockage of resistance to larval feeding. Intriguingly, miR-277 was shown to target 

several loci on chromosome 3B, which has been associated with the stem solidness 

feature of wheat. Predicted wheat targets of these transcripts showed significant similarity 

to methyltransferases and Ankyrin-like proteins. Ankyrin, a repeat domain, is important 

for several protein-protein interactions (Becerra et al. 2004). One of the best-studied 
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functions of Ankyrin-like proteins is pathogen resistance through regulation of salicylic 

acid-induced gene expression (H. Lu et al. 2003; Despres et al. 2000). Thus, it is tempting 

to speculate on the interactions between larval miR-277 and plant RNAs, potentially 

affecting stem solidness and plant defense, thus decreasing resistance to larval feeding 

inside the stem. 

 

Since WSS larvae eat plant tissues for survival, it is very likely that plant miRNAs are 

taken inside of the insect body within their dietary consumptions. Several studies have 

provided evidence of trans-kingdom transfer of sRNAs from plant to other species which 

are in close contact; plant to virion (Iqbal et al. 2017), plant to nematodes (Tian et al. 

2016), and plant to animal during feeding (L. Zhang et al. 2012). Wheat miRNAs might 

also act as the regulators of insect metabolism. Here, we showed potential larval targets 

of wheat miRNAs. However, these initial findings are needed to be validated to conclude 

on cross-kingdom miRNA regulation between WSS and wheat species. 

  



71 

 

 

 

 

 

5. CONSTRUCTION OF LONG NON-CODING RNA IDENTIFICATION 

MODEL SPECIFIC FOR WHEAT SPECIES USING MACHINE LEARNING 

APPROACHES 

 

 

 

 Introduction 

 

 

Long non-coding RNAs (lncRNAs) can be easily distinguished from small noncoding 

RNAs, like miRNAs, snoRNAs and sRNAs, by the size of transcripts. However, although 

there are certain structural and functional differences between lncRNAs and mRNAs, 

they both are long transcripts and share similar splicing and poly-A tailed structure 

(Ulitsky and Bartel 2013). Therefore, it is hard to distinguish them through sequencing as 

they are sequenced together with the current sequencing techniques. Besides, lncRNA 

transcripts could not be identified by homology as lncRNA sequences appear less 

conserved than protein-coding genes (Pang, Frith, and Mattick 2006).  

 

Another difficulty is the presence of open reading frames in lncRNAs. There are growing 

evidence showing lncRNAs coding for short functional peptides. The best-known 

example is the RNA called early nodulin 40 (ENOD40) (Campalans 2004), whose 

conserved nucleotide sequence at the 5’ end encodes two short peptides with 12 and 24 

amino acids in length (Rohrig et al. 2002). Recently, proteogenomic and mass 

spectrometry have been carried on to identify peptides identified from small ORFs (Zhu 

et al. 2018; Andrews and Rothnagel 2014). Nevertheless, molecular functions and 

biological significance of most lncRNAs is far from clear comparing with coding RNAs 

as correct identification of them remains a challenge at the first place. 

 

In recent years, several predictive tools have been developed to distinguish between 

lncRNAs and coding RNAs using different features and different algorithms. The popular 
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tools, Coding Potential Calculator (CPC) (Kong et al. 2007), Coding Non-Coding Index 

(CNCI) (Sun et al. 2013) and Coding Potential Assessment Tool (CPAT) (L. Wang et al. 

2013), are among the ones most accurate and informative.  

 

CPC uses support vector machine (SVM) with a standard radial basis function kernel to 

differentiate coding RNAs from ncRNAs based on three ORF related and three sequence 

alignment related features (Kong et al. 2007). CPC has been updated to an alignment-free 

CPC2 in 2017 (Kang et al. 2017) which became much more faster and accurate in the 

identification of ncRNAs. The selected features were evolved in CPC2 to ORF length, 

ORF integrity, isoelectric point and Fickett score adapted from CPAT. Fickett score refers 

the asymmetrical distribution of each base favored in a sequence (L. Wang et al. 2013).  

 

CPAT evaluates coding potential using an alignment-free logistic regression model (L. 

Wang et al. 2013). Its features include ORF length, Fickett score and Hexamer score. 

Hexamer score captures the score for the codon usage bias of adjacent amino acids in a 

sequence (L. Wang et al. 2013). CPAT has an advantage over CPC2 as it allows users to 

create a model with their own data.  

 

CNCI is another alignment-free tool using SVM with radial basis function kernel. It 

differentiates coding RNAs and ncRNAs based on the intrinsic composition of the 

sequence (Sun et al. 2013). Similar to hexamer score in CPAT, CNCI estimates the codon 

bias using unequal distribution of adjoining nucleotide triplets (ANTs) with a sliding 

window approach. The most likely coding domain sequence (MLCDS) is selected after 

scanning a sequence for six times for each potential reading frames. Although having 

similarities with hexamer score, ANT approach conducts more comprehensive 

downstream analysis to handle the classification of partial transcripts (Han et al. 2016).  

 

There are also several other tools exist each using different prediction models and 

different feature sets; PLEK, lncRNA-ID, DeepLNC etc. In short, PLEK facilitates 

support vector machine using k-mer based features to distinguish lncRNAs from coding 

RNAs (A. Li, Zhang, and Zhou 2014). BASINET uses decision tree algorithms trained 

with alignment-free features (Ito et al. 2018). DeepLNC facilitates deep-learning 

(Tripathi et al. 2016) whereas LncRNA-ID uses random forest (Achawanantakun et al. 

2015). Even some tools construct an ensemble of models such as gradient boosting and 
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random forest are utilized by Simopoulos et al. for the prediction of plant lncRNAs 

(Simopoulos, Weretilnyk, and Golding 2018). 

 

Although current computational methods have yielded encouraging results, they are 

facing certain limitations. The predictions are highly dependent on the training data. 

These tools aim to achieve high overall accuracy in several species from human to plants. 

Although some of them allow specification to plants, recent studies have showed that 

species-specific predictions perform best on its own data or on closely related species 

(Singh et al. 2017). Singh et al. showed that the model built for monocots achieved higher 

accuracy in predictions of lncRNAs in monocots rather than dicots and vice versa. 

 

Here we developed a lncRNA prediction model specific to wheat species. Wheat is one 

of the major crops ranking second in human consumption worldwide (Food and 

Agriculture Organization of the United Nations 2019). To accurately identify both 

lncRNA transcripts and coding transcripts, we developed an alignment free prediction 

model specific for wheat. This model takes several features proposed by popular tools 

along with basic statistics like length, GC content and k-mer (1-3) distribution of 

nucleotides as feature set. Using these feature set and a comprehensive training data, we 

first evaluated prediction accuracies of ten different algorithms including popular ones 

like support vector machine, logistic regression and random forests. Of the ten algorithms, 

eight provided prediction accuracy over 99% with a 100-fold cross validation. After 

selecting best performing algorithms, we also compared our models with the popular 

tools. 

 

 

 Materials and Methods 

 

 

5.2.1. Datasets 

 

Training and validation datasets were collected from GrainGenes database which 

provides direct links to latest genome annotations of small grains, serving as their central 

data repository (Blake et al. 2016). A comprehensive annotation of hexaploid common 

wheat genome has become available almost three years after the sequencing of IWGSC 
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wheat genome reference sequence ((IWGSC) et al. 2018). We compiled a list of 87,511 

lncRNA sequences and 137,056 high confidence coding domain sequences available 

through IWGSC refseq annotation v1.0 for the training of the prediction model specific 

for wheat species. For performance evaluation, we utilized lncRNAs and high confidence 

CDS available by the recent release of tetraploid durum wheat cultivar Svevo reference 

genome (Maccaferri et al. 2019). A total of 115,437 lncRNA and 196,153 high confidence 

cds sequences were retrieved from Svevo annotation. 

 

 

5.2.2. Feature extraction 

 

We extracted 92 features based on sequence intrinsic properties to use in prediction model 

construction. We executed known software for 6 of the features. Transdecoder (m -30) 

was executed for the prediction of longest putative ORF. The features used in the 

prediction models, CPAT and CPC2, were also included in the feature set. Final feature 

set was prepared based on sequence nucleotide composition using custom python scripts.  

 

1         ORF length 

2         ORF coverage 

3         sequence length 

4         GC% 

5-8      k-mer (k=1) frequencies; monomer frequencies of the four nucleotides 

9-24    k-mer (k=2) frequencies; dimer frequencies of the four nucleotides 

25-88  k-mer (k=3) frequencies; trimer frequencies of the four nucleotides 

89       Fickett score 

90       Hexamer score 

91       ORF integrity 

92       isoelectric point 

 

The features 1 and 2 were derived from the longest ORF predicted by Transdecoder. 

Features 89 and 90 were generated using CPAT and features 91 and 92 using CPC2.  

 

 

5.2.3. Model construction 
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All data preprocessing, machine learning, and prediction evaluation of models were 

performed using python scikit-learn library. Data was preprocessed before starting 

training or validation by scaling. Scaling was performed to standardize features to avoid 

breaking the sparsity since many algorithms assume that all features are centered around 

0 with a variance in the same order.  

 

A total of ten machine learning algorithms were initiated and compared for accuracy in 

these predictive models. These algorithms include: (1) LogisticRegression, (2) 

RandomForest, (3) neural networks (NeuralNet), (4) NearestNeighbors, (5) support 

vector machine with linear kernel (linearSVM), (6) support vector machine with radial 

basis kernel (rbfSVM), (7) DecisionTree, (8) gaussion naive bayes (NaiveBayes), (9) 

AdaBoost, and (10) quadric discriminant analysis (QDA).  

 

 

5.2.4. Model evaluation 

 

For evaluation of the prediction accuracy of all ten machine learning algorithms, a 100-

fold cross validation was conducted using cross_val_score function in the 

model_selection package. Cross validation works by selection of different test and train 

set in each run. Prediction performance was assessed by the mean and the standard 

deviations of the accuracy scores in these runs.  

 

We proceeded to validation with the models with top three performing algorithms. The 

prediction models created using hexaploid wheat data as training were validated using 

tetraploid wheat data for the top three performing algorithms.  

 

The classification performance was evaluated based on the statistic metrics; accuracy 

(ACC), precision (PRE), sensitivity (SN), specificity (SP) and Fscore which are defined 

as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 



76 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

TP: true positive, TN: true negative, FP: false positive, FN: false negative. 

 

For comparison of the prediction performances with other tools, we utilized CPC2, CPAT 

and CNCI. CPC2 were run at its default settings using pre-built training model. CNCI 

were run at its plant mode and using 20 threads. CPAT were trained with hexaploid wheat 

data. The cutoff for the identification of coding and noncoding transcripts were identified 

as described in its manual (L. Wang et al. 2013).  

 

 

 Results 

 

 

5.3.1. Experimental setup and model construction 

 

We constructed list of features including basic characteristics like length and GC content, 

k-mer patterns, and the features proposed by CPC2 and CPAT. As a preprocessing step, 

these features were scaled prior to construction of prediction models.  

 

Table 5.1. Description of datasets used in training and validation of the wheat lncRNA 

prediction model 

Dataset Source Reference Transcript Size 
Max 

length 

Min 

length 

Mean 

length 

Training 
Hexaploid 

wheat 

(IWGSC) 

et al., 2018 

mRNA 137,056 16,080 96 1,122 

lncRNA 87,511 5,508 200 355 

Validation 
Tetraploid 

wheat 

Maccaferri 

et al., 2019 

mRNA 196,153 16,083 192 1,161 

lncRNA 115,437 4,407 72 245 

 

To test the performance of prediction models, we selected the data for two wheat genomes 

recently released; hexaploid common wheat, Chinese Spring and tetraploid durum wheat, 

Svevo (Table 5.1). As training data, we used the data for hexaploid wheat which 

comprised of 137,056 coding transcripts and 87,511 lncRNA transcripts. For the 
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validation data, tetraploid wheat annotation containing 196,153 coding transcripts and 

4,407 lncRNA transcripts was used. The training set was used to train the prediction 

models and the validation set was used to test the actual prediction capability of the 

models. 

 

Table 5.2. Performance of prediction models using training data with 100-fold cross 

validation 

Algorithm Training Accuracy (%) Std (%) 

LinearSVM 99.94 +/- 0.11 

LogisticRegression 99.89 +/- 0.14 

NeuralNet 99.84 +/- 0.23 

rbfSVM 99.57 +/- 0.41 

RandomForest 99.36 +/- 0.44 

AdaBoost 99.32 +/- 0.48 

DecisionTree 99.23 +/- 0.44 

QDA 98.81 +/- 1.00 

NaiveBayes 96.80 +/- 2.16 

NearestNeighbors 93.91 +/- 3.52 

 

As different algorithms were suggested as the best fit for the classification of lncRNAs 

by different studies, we compared classification accuracies of ten machine learning 

algorithms. Most of the algorithms resulted in over 99% accuracy (Table 5.2) indicating 

the good fit of the selected features in the prediction models. We selected top three 

algorithms for validation of prediction models, which are SVM with linear kernel, logistic 

regression and neural networks.  

 

 

5.3.2. Performance evaluation on tetraploid wheat data  

 

We compared the performance of top three prediction models with popular coding 

potential prediction tools: CPC2, CPAT and CNCI. We retrained the classification model 

in CPAT for hexaploid wheat data. CNCI was run with its plant mode. As CPC2 don’t 

provide training option, we used its pre-built model.  
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Table 5.3. Performance comparison of prediction models on tetraploid wheat data 

Model ACC PRE SN SP F-score 

LinearSVM 99.77 99.46 99.90 99.68 99.68 

LogisticRegression 99.81 99.62 99.86 99.78 99.74 

NeuralNet 99.72 99.41 99.85 99.65 99.63 

CPC2 97.35 93.36 99.97 95.81 96.55 

CPAT 99.70 99.69 99.50 99.82 99.60 

CNCI 96.54 91.47 100.00 94.51 95.54 

Abbreviations are as follows; ACC: accuracy, PRE: precision, SN: sensitivity, SP: specificity. 

Highest values of the metrics were shown in bold.  

 

Table 5.3 shows the performance comparison of the prediction models on tetraploid 

wheat data. The model created by logistic regression resulted in the best accuracy and F-

score. CNCI had the highest sensitivity where among 115,437 lncRNAs, only three were 

classified falsely. Although providing the best sensitivity to lncRNA identification, CNCI 

provides the lowest values of the remaining metrics. Its accuracy in prediction of coding 

transcripts (specificity) were only 94.51% while the highest value for this metrics was 

99.82% in CPAT. CPAT also provides the best precision although the values for precision 

were pretty close between logistic regression model (99.62) and CPAT (99.69) as well as 

the values for specificity; 99.78 and 99.82 for logistic regression model and CPAT, 

respectively.  

 

Although all three proposed models were performed well, we selected the model created 

by logistic regression for further use as it provides the best results in general. Figure 5.1 

shows detailed results for the classification predictions of the selected logistic regression 

model and the three popular tools, CPC2, CPAT and CNCI.  

 

All models performed well in the classification of non-coding transcripts. Only a small 

percent of non-coding transcripts noticeable were misclassified as coding transcripts by 

CPAT. For the classification of coding transcripts, our model and CPAT outperformed 

CNCI and CPC2. Overall, our logistic regression model performed well in both coding 

and noncoding transcript predictions, whereas other tools favor one. 
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Figure 5.1. Accuracy of prediction models on coding and non-coding transcripts 

separately on tetraploid wheat data. Above figure showed the percentage of non-coding 

transcripts classified as coding (blue) and non-coding (orange). Below figure showed the 

percentage of coding transcripts classified as coding (blue) and non-coding (orange).  

 

 

5.3.3. Feature importances 

 

We further investigated feature importance in our prediction model. Scaling of the data 

prior to analyses makes the features comparable; therefore, relative feature ranking 

indicates their contribution to prediction accuracies. We extracted feature ranking using 

coef_ attribute in logistic regression classifier.  

 

 

Figure 5.2. Feature ranking of wheat specific prediction model based on logistic 

regression. Relative feature ranking indicates the coefficient of the features in the decision 

function. 
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Among the top 20 features (Figure 5.2), 14 are trimer percentages, 2 are dimer 

percentages, 1 is monomer distribution (A nucleotide composition), and the remaining 

features are ORF length, ORF coverage and length of the transcripts. Interestingly, neither 

of features from CPAT and CPC2 was among the top 20 features.  

 

 

 Discussion 

 

 

The performance of machine learning models highly depends on the training data and the 

features used. Several features proposed by different studies have been shown to be 

informative in the classification of coding and noncoding transcripts. These features 

include k-mers, basic structural features like length and GC content, Fickett score, 

hexamer score, ORF integrity and isoelectric point.  

 

In this study, we proposed an accurate model for lncRNA and mRNA identification in 

wheat species. As training data, we used the comprehensive annotation of wheat reference 

genome. As for the feature set, we incorporated all these features listed to achieve better 

prediction accuracies. With a comprehensive training data and substantial list of features, 

we compared 10 different algorithms for their prediction performances using the same 

training data and the same feature sets. Interestingly, training accuracies were over 99% 

in eight of the algorithms (Table 5.2), indicating importance of training data and feature 

sets over prediction algorithm. Among these algorithms, logistic regression, support 

vector machine with linear kernel and neural network performed best in the prediction of 

wheat lncRNAs.  

 

Comparison of the top three algorithms and popular tools like CPAT, CPC2 and CNCI 

revealed that our model created based on logistic regression classifier had the best 

performance overall. Among all the tools, CNCI and CPC2 showed the worst 

performance with the lowest accuracy and the lowest precisions. We found only CPAT 

as competitor whereas our model provides better results for all metrices except for 

specificity and precision, which had very close results in our model (Table 5.3).  

 

We found that other tools might provide better sensitivity but with a cost of lowest 



81 

 

precision (Table 5.3). For example, similar to CPC2, CNCI provide 100% sensitivity in 

the prediction of lncRNAs; however, its precision was only 91.47%. On the contrary, our 

model provided 99.86% of sensitivity together with a 99.62% of precision. Therefore, our 

model is consistent with both lncRNA and coding transcripts. 

 

Although we performed these analyses on wheat data, the same model with the defined 

features can be used in other plant and mammalian data. Creating a feature set based on 

sequence intrinsic composition should allow accurate prediction in other datasets too, 

although that is not in the scope of this work. 
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6. COMPARATIVE ANALYSIS OF WHOLE EXOME SEQUENCING 

(WES) TOOLS IN WHEAT 

 

 

 

 Introduction 

 

 

It is currently a very exciting time for wheat genomics study. With the recent releases and 

availability of the wheat reference genomes ((IWGSC) et al. 2018), the mining of the 

wheat exome for the variants responsible for important traits of interest is becoming ever 

more readily available. However, as with all analysis, there is a need to ensure that results 

are both reliable and reproducible. Although calling for variants is relatively 

straightforward with two major steps; read alignment and variant calling, choice of the 

best tools at each stage of the analysis is not. There have been concerns raised in the 

literature regarding that impact of method choice on these ever-important metrics of result 

quality (Cornish and Guda 2015).  

  

In response, research has been conducted to better characterize such impacts in organisms 

including human (Abecasis et al. 2010), where exome sequencing plays a large role in the 

clinic settings, and Arabidopsis (Cao et al. 2011). However, such attention has yet to be 

turned to wheat; an organism that relies still on the mining of exome data to characterize 

underlying variation. As such, there is therefore a need to better characterize and 

understand how different methods affect the analysis of whole exome capture and 

sequencing in common bread wheat (Triticum aestivum).   

  

This study aims to meet these requirements by assessing the outcome of various methods 

at all stages in a whole exome sequencing (WES) analysis pipeline. We sequenced exome 

of 48 elite wheat cultivars, analysed and compared different tools. This WES data from 
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hexaploid wheats to compare the bioinformatics pipelines with the help of IWGSC 

RefSeq V1.  

 

 

 Materials and Methods 

 

 

6.2.1. Preparation of wheat exome capture libraries 

 

The exome regions were captured with the SeqCap EZ Developer Reagents (Roche). The 

libraries for 48 Montana elite wheat cultivars were quantitated by qPCR and sequenced 

on one lane for 101 cycles from each end of the fragments on a HiSeq 4000 using a HiSeq 

4000 sequencing kit version 1. Generated fastq files were demultiplexed with the 

bcl2fastq v2.17.1.14 which removes adaptors from the 3'-end of the reads. 

 

FastQC returned supporting evidence on its quality. No need for additional trimming 

(from either adaptors and low-quality regions). 

 

 

6.2.2. Alignment parameters 

 

Figure 6.1 shows the overall pipeline starting from raw fastq files and ending with filtered 

vcf files. After quality controls, WES reads for 48 wheat cultivars were aligned to wheat 

reference genome separately using 8 different aligners. Aligners included were bowtie2 

(Langmead 2010), bowtie2 --local (bowtie2local), bwa –sampe (bwa) (H. Li and Durbin 

2010), bwa –mem (bwamem), gsnap (T. D. Wu and Nacu 2010), hisat2 (Pertea et al. 

2016), STAR (Dobin et al. 2013) and novoalign . These aligners converted fastq files into 

raw SAM files. All parameters were set to defaults. Multiple threads were used where 

available. Versions of aligners used: 

 

bwa-0.7.17-gcc-8.2.0-o6zcgoi 

bowtie2-2.3.4.1-gcc-7.2.0-hp2vf2y 

gmap-gsnap-2018-03-25-gcc-7.2.0-tj6cfa7 

hisat2-2.1.0-gcc-7.2.0-bradwj6 
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star-2.6.1a-gcc-8.2.0-stezqss 

novoalign-v3.09.00 

 

The choice of aligner and command line arguments to run alignments were as follows: 

 

1. bowtie2 -x ../wheat_bowtie2_db -p 20 -1 $read1 -2 $read2 -S $filename.bowtie2.sam 

2. bowtie2 --local -x ../wheat_bowtie2_db -p 20 -1 $read1 -2 $read2 -S 

$filename.bowtie2local.sam 

3. bwa aln -t 20 -q 20 $genomefasta $read1 > $filename.bwa1.sam 

bwa aln -t 20 -q 20 $genomefasta $read2 > $filename.bwa2.sam 

samtools index $filename.bwa1.sam > $filename.bwa1.sai 

samtools index $filename.bwa2.sam > $filename.bwa2.sai 

bwa sampe -a 200 $genomefasta $filename.bwa1.sam $filename.bwa2.sam $read1 

$read2 > $filename.bwa.sam 

4. bwa mem -M -t 20 $genomefasta $read1 $read2 > $filename.bwamem.sam 

5. gsnapl -A sam -d wheat_gsnap_db -D ../gsnapindex -t 20 $read1 $read2 > 

$filename.gsnap.sam 

6. hisat2 -x ../wheat_hisat2_db -p 20 -1 $read1 -2 $read2 -S $filename.hisat2.sam 

7. STAR --genomeDir ../index --readFilesIn $read1 $read2 --runThreadN 20 > 

$filename.star.sai 

8. novoalign -d wheat_novoindex_db.ndx -f $read1 $read2 -o SAM > 

$filename_novoalign.sam  

 

Alignments were processed further before variant calling to prepare a sorted and clean 

bam file. To do so, duplicates were removed first from each SAM file using SAMblaster 

v0.1.24 (Faust and Hall 2014). Clean SAM file converted into BAM file and sorted using 

samtools v1.9 (H. Li et al. 2009). Finally, group IDs were inserted according to file names.  

 

 

6.2.3. Variant calling 

 

Three variant calling methods were executed for each alignment (48 samples * 8 

aligners): freebayes v1.2.0 (Garrison and Marth 2012), bcftools call (bcftools) v1.8  and 

varscan v2.4.2 (Koboldt et al. 2009). We performed variant calling separately, as 

freebayes and varscan returned memory error for a merged file, indicating 240 GB of 
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memory is not sufficient to perform variant calling for a merged file for 48 samples. All 

parameters were set to defaults except for freebayes -p 6 -0; bcftools mpileup --redo-

BAQ; bcftools call -m. Multiple threads were used where available.  

The choice of aligner and command line arguments to run alignments were as follows: 

 

1. Freebayes (parameters -p 6 (ploidy=6) -0): 

freebayes -f $genomefasta -p 6 -0 $filename.$aligner_RG.bam > 

$filename.$aligner.free.vcf 

2. Varscan: 

samtools mpileup -f $genomefasta $filename.$aligner_RG.bam | varscan 

mpileup2snp --output-vcf 1 > $filename.$aligner.varscan.vcf 

3. Bcftools (parameters: --redo-BAQ, call -m) 

bcftools mpileup --redo-BAQ -f $genomefasta $filename.$aligner_RG.bam | 

bcftools call -m -o $filename.$aligner.bcftools_rm.vcf -O v -v  
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Figure 6.1. Schematic of the variant calling pipeline used. Only one of the read aligners 

and one of the variant callers used for one pipeline, totaling twenty-four different 

pipelines (8 aligners x 3 callers). 

 

We performed merging of variant for 48 samples for 24 combinations of tools (8 aligners 

* 3 callers). Using bcftools, we zipped, indexed and merged variant files for all samples. 

Later, we performed variant postprocessing; we filtered variations at the target exon sites 

using bed files provided by reference genome annotation (refseq v1.1) of wheat;  We 

extracted only SNPs from these variants using bcftools view (-v snps). Finally, variants 

were filtered using varFilter at default settings.  

Comparison of Variants to Wheat HAPMAP data

varscan compare

Variant Post-processing (filtered vcf files)

selection of variants (on target/coding regions) Variant filtering (varFilter)

Variant Calling (vcf files)

freeBayes bcftools mpileup | call samtools mpileup | varscan

Alignment Post-processing (sorted bam files)

Duplicate removal (SamBlaster) Sorting and bam file conversion (samtools)

Read Alignment (sam files)

bowtie2
bowtie2 -

-local
bwa -

sampe
bwa -
mem

gsnap hisat2 STAR novoalign

Filtered Raw Reads (fastq files)

Quality check (FastQC)
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Although there is not any complete haplotype map of wheat, we used wheat HAPMAP 

data as the gold standard genotype data. We compared newly identified variants to wheat 

HAPMAP data to find out which the pipeline identifies most of the known structural 

variants. However, this data is not complete and could not provide us even near complete 

map. Therefore, we used the terms ‘shared’ and ‘unique’ variations when compared to 

HAPMAP data, instead of ‘true positives’ and ‘false positives’. snpEff used to annotate 

variants based on wheat refseq annotation. 

 

 

 Results 

 

 

6.3.1. Datasets and pipelines evaluated 

 

To reduce bias introduced by samples and conduct a more complete haplotype map, we 

included whole exome capture data for 48 wheat cultivars. Using eight aligners and three 

variant callers (Figure 6.1), 24 pipelines were assessed in terms of detecting variations 

from WES data. The aligners include both older and newest version of bwa; bwa sampe 

and bwa mem, which from this point will be names as bwa and bwamem, respectively. 

Both options of bowtie2; bowtie2 and bowtie2 --local were also included. Remaining 

aligners were hisat2, gsnap, STAR and novoalign. For variant calling, we included three 

tools (freebayes, varscan and bcftools).    

 

Although freebayes and varscan contains some default filters, bcftools call function does 

not apply a default filtering. As a result, total number of variations at the target site varies 

as much as 23 folds. Running varFilter at default settings compensate this inequity. 

varFilter default options include min mapping quality of 10, min depth of 2, min number 

of alternate bases of 2 etc. These options only indicate a soft filtering where several 

studies prefer filtering options like 30 mapping quality and 10 read depth.  

 

Run time is highly divergent among aligners while being highly similar among callers. 

As run time for callers did not exceed half a day and similar to each other, we did not 

perform a run time comparison of callers. Table 6.1 illustrates the average time spent 

running each aligner. 
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Table 6.1. Average run time of aligners. 

Aligner Average Run Time # of threads 

star 00-00:22:17 20 

hisat2 00-00:24:36 20 

bwamem 00-01:10:26 20 

bowtie2 00-01:29:16 20 

bowtie2local 00-01:39:30 20 

bwa 00-04:50:49 20 

gsnap 05-05:36:37 20 

novoalign 14-16:30:00 1 

Run time: days-hours:minutes:seconds 

 

Novoalign supports multiple threads too but only in payed versions. Without payment, 

we were able to run novoalign on single threads which increased run time a lot more. If 

multiple threads available, similar to bowtie2local, we expect an average run time of ~2 

hours. Star and hisat2 were the fastest aligners, completed in less than half an hour for all 

samples. Assuming running novoalign with 20 threads, bwamem, bowtie2, bowtie2local 

and novoalign provided similar computational complexity. However, novoalign is not 

suitable without multiple threads due to its run time with single thread. Gsnap, on the 

other hand, lasted ~5 days on average with 20 threads which is not even comparable with 

the remaining aligners. 

 

 

6.3.2. Filtering of variants 

 

We included results both for raw vcf files and targeted vcf files in Table 6.2. While those 

off-target reads (raw vcf files) are also highly valuable, we filtered them to evaluate 

performance of variant calling pipelines rather than the targeting efficiency of sequencing 

platforms. The number of SNPs identified decreased at least 5-fold by filtering for coding 

regions, resulting in ~870,000 SNPs per pipeline on average (Table 6.2).  

 

Noticable, the number of unique variations in either raw or targeted data is a lot higher 

than the number of shared variations (Table 6.2), which is mostly due to the 
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incompleteness of the HAPMAP data. As the complete haplotype map for wheat is not 

available yet, we used the terms ‘shared’ and ‘unique’ variations compared to HAPMAP 

data available, instead of ‘true positives’ and ‘false positives’.  

 

Table 6.2. Variant statistics for all 24 pipelines, including raw and target specific variants. 

The best pipelines were colored by red. 

  Raw Targeted 

Aligner Caller Unique Shared Total Unique Shared Total 

hisat2 varscan 870 890 113 536 984 426 129 413 18 914 148 327 

bwamem varscan 2 045 196 156 588 2 201 784 250 604 25 244 275 848 

novoalign varscan 1 453 292 142 508 1 595 800 250 716 24 279 274 995 

star varscan 1 888 143 158 815 2 046 958 313 425 27 440 340 865 

gsnap varscan 1 720 189 147 939 1 868 128 301 326 26 028 327 354 

bowtie2- 

local varscan 2 185 316 157 326 2 342 642 314 006 26 611 340 617 

bowtie2- 

local bcftools 9 681 921 282 928 9 964 849 505 035 41 752 546 787 

bwa varscan 1 527 162 147 957 1 675 119 341 912 27 126 369 038 

bowtie2 varscan 1 930 915 154 350 2 085 265 358 231 27 234 385 465 

bowtie2 bcftools 18 976 316 267 761 19 244 077 517 771 38 854 556 625 

hisat2 bcftools 18 976 316 267 761 19 244 077 517 771 38 854 556 625 

star bcftools 10 148 130 301 127 10 449 257 692 755 47 284 740 039 

bwa bcftools 17 323 257 304 225 17 627 482 723 058 47 465 770 523 

bowtie2- 

local freebayes 3 891 690 114 415 4 006 105 196 136 11 371 207 507 

bowtie2 freebayes 4 686 479 137 713 4 824 192 296 725 16 667 313 392 

novoalign bcftools 27 621 517 312 976 27 934 493 1 103 083 49 260 1 152 343 

bwamem bcftools 27 713 219 314 608 28 027 827 1 122 459 49 570 1 172 029 

gsnap bcftools 43 107 654 345 910 43 453 564 1 811 226 55 477 1 866 703 

novoalign freebayes 17 921 696 273 072 18 194 768 1 503 327 42 067 1 545 394 

bwa freebayes 14 591 569 251 208 14 842 777 1 312 765 36 671 1 349 436 

hisat2 freebayes 21 932 016 259 341 22 191 357 1 552 361 38 657 1 591 018 

bwamem freebayes 21 164 838 279 046 21 443 884 1 763 897 42 937 1 806 834 

star freebayes 24 872 748 287 906 25 160 654 1 866 353 44 786 1 911 139 

gsnap freebayes 33 162 705 303 252 33 465 957 2 372 777 47 780 2 420 557 

 Average 13 724 716 228 428 13 953 143 838 214 35 514 873 728 

 Std 12 029 744 76 883 12 097 637 662 944 11 964 671 806 
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6.3.3. Comparison of aligners and callers on identification efficacy 

 

Total number of SNPs identified, from targeted sites, using different combination of 

aligners and callers were shown in Table 6.3. As can be seen from standard deviations, 

aligners tend to deviate a lot more compared to callers. For example, hisat2 provided 

765,323 SNPs on average but its standard deviation was also 743,643. The scores were 

similar between aligners indicating that aligners were not the limiting factor in variant 

calling.  

 

On the other hand, standard deviations were almost half of the average numbers in 

bcftools and freebayes and were almost one quarter in varscan (Table 6.3). The results 

showed that varscan provided similar number of SNPs with all eight aligners, possible 

due to its high default filtering parameters. Average number SNPs identified were 

~1,300,000 by freebayes whereas it was around only ~300,000.  

 

Table 6.3. Total number of variations identified on the targeted site using different 

aligners and callers. The lowest and the highest total number of variations indicated by 

orange and green, respectively. 

 bcftools freebayes varscan AVERAGE STDEV 

bowtie2 556625 313392 340617 403545 133268 

bowtie2local 546787 207507 385465 379920 169708 

bwamem 770523 1349436 275848 798602 537345 

bwa 1172029 1806834 369038 1115967 720536 

gsnap 1866703 2420557 327354 1538205 1084577 

hisat2 556625 1591018 148327 765323 743643 

novoalign 1152343 1545394 274995 990911 650403 

Star 740039 1911139 340865 997348 816147 

AVERAGE 920209 1393160 307814 873728 
 

STDEV 458546 768196 75464 
 

671806 

 

Among aligners, gsnap and among callers, freebayes provided highest number of 

variations. As expected, highest number of SNPs were also identified using gsnap-

freebayes pipeline. However, interestingly, although the lowest number of SNPs were 

identified using bowtie2local or bowtie2 as aligner, hisat2-varscan pipeline resulted in 
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the lowest number of SNPs. These results indicated that combination of tools also affect 

the results (although callers have more influence on the results). 

 

 

6.3.4. Comparison of filtered results against wheat HAPMAP data 

 

We compared targeted variations against wheat HAPMAP data to determine the best 

pipeline. The motivation behind this comparison was to select the pipelines which 

identify the highest number of known structural variations with lowest number of total 

variations since we could not make sure of the validity of unique variations at this point.  

 

 

Figure 6.2. Comparison between the number of unique SNPs identified and the number 

of shared SNPs with wheat HAPMAP data. (a) Distribution of aligners, (b) distribution 

of callers. The best pipelines selected (by <1200000 unique snps and >32000 shared snps) 

shown by red circles. 

 

Figure 6.2 shows distribution of unique and shared variations with wheat HAPMAP data. 

Unlike callers’ graph, unique variations over shared variations graphs for aligners does 

not indicate any clustering but rather a random distribution of aligners (Figure 6.2). These 
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results also suggest that variant discovery is highly dependent on the caller rather than the 

aligner. Interestingly, two freebayes pipelines, bowtie2 and bowtie2local, were outside of 

the freebayes cluster, with the lowest numbers of shared SNPs.  

 

 

Figure 6.3. Distribution of SNPs identified by all 24 pipelines. SNPs identified by all 24 

pipelines were colored as blue, remaining SNPs identified by more than 4 pipelines were 

colored in orange, remaining SNPs identified by at least 2 pipelines were colored in gray 

and the novel SNPs identified were colored in yellow. In addition to the total number of 

SNPs, the SNPs shared with HAPMAP data were included for representative purposes 

(colored by dark blue). The pipelines were sorted by the number of SNPs shared among 

more than four pipelines. 

 

It should also be noted that although providing the lowest number of variations, bowtie2-

freebayes and bowtie2local-freebayes pipelines suggested 4785 and 10901 novel SNPs, 

respectively. Median number of novel SNPs identified by each pipeline was 6512. All 

varscan predictions together with bowtie2-bcftools (0) and hisat2-bcftools (0) pipelines 
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were resulted in lower number of novel predictions. These results suggest that freebayes 

tend to call novel variations irrespective of total number of variations identified, which 

might be an indicator of unreliability of freebayes in WES data. 

 

Variant calling using varscan resulted in almost the same SNPs in all pipelines. In fact, 

varscan provided highest percent of variations shared with wheat HAPMAP data. If we 

define sensitivity as the percent of shared variations over all predicted variations, we 

achieved 12.8% of sensitivity at most among 24 pipelines (8 aligners * 3 callers). The 

pipelines using varscan as caller together with bowtie2local-bcftools pipelines were the 

ones with the highest sensitivity, which were over 7%. However, these pipelines, except 

bowtie2local-bcftools pipeline, provided the lowest number of shared SNPs.  

 

It can be noticed that varscan filters low confidence variations based on depth, quality 

etc. to achieve highest sensitivity but at the cost of elimination of known SNPs.  We can 

suggest using varscan as caller only if you are interested in limited number of high 

confidence variations. The choice of aligner does not interfere with the results as varscan 

filtering results in shared variations only (Figure 6.3). 

 

 

Figure 6.4. Distribution of number of SNPs called using bcftools call function as caller. 

The selected seven pipeline were separated from remaining gsnap-bcftools pipeline. 

‘Shared with HAPMAP’ is additional to the total number of SNPs. 

 

On the other hand, both bcftools call function and freebayes returned diverse set of 

variations (Figure 6.2). However, the use of bcftools call function instead of freebayes 

significantly enhanced prediction accuracies by decreasing the number of unique snps 
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while increasing the number of shared snps (bwamem, novoalign, bwa, gsnap, star, 

hisat2). For the remaining two aligners (bowtie2 and bowtie2local), the use of bcftools 

call function over freebayes greatly increased total number of shared SNPs with a slight 

increase in the number of unique SNPs. 

 

As we determine quality of our predictions based on the similarities to the wheat 

HAPMAP data, the best pipelines were limited to five pipelines using bcftools call 

function (Figure 6.4). The cut-offs were applied as unique variations <1.200.000 and 

shared variations >32.000 in targeted regions to determine the best pipeline.  The best 

pipelines can also be noticeable by red color in Table 6.2.  

 

 

6.3.5. Variations identified using bcftools-bwamem pipeline 

 

Total number of SNPs identified by bwamem-bcftools pipeline was 1209440, where 

47465 of them were common with wheat HAPMAP data. Total number of SNPs and SNP 

density over wheat chromosomes were shown in Table 6.4. Average SNP density was 

highest in 2B, 2D and 2A chromosomes and lowest in 3B, 4D and 4B chromosomes 

(Table 6.4).  

 

Average SNP density was 4,5% where 10 chromosomes had SNP densities between 4 

and 5. Total variant rate was 12,028 meaning that there were 1 variant for every 12,028 

bases. SNPs identified by bwamem-bcftools resulted in a missense-to-silent mutation rate 

of 1,05 and in a transitions (Ts) over transversions (Tv) ratio (ts/tv) of 1.89. 
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Table 6.4. Distribution of SNPs across the wheat chromosomes following bwamem-

bcftools pipeline 

Chromosome Length Variants Variants rate Variants percentage 

1A 594 102 056 58 789 10,105 5,170 

1B 689 851 870 73 997 9,322 6,507 

1D 495 453 186 56 389 8,786 4,959 

2A 780 798 557 80 097 9,748 7,043 

2B 801 256 715 117 275 6,832 10,313 

2D 651 852 609 80 760 8,071 7,102 

3A 750 843 639 51 379 14,613 4,518 

3B 830 829 764 72, 327 11,487 0,006 

3D 615 552 423 58 069 10,600 5,106 

4A 744 588 157 54 501 13,661 4,793 

4B 673 617 499 20 351 33,099 1,790 

4D 509 857 067 8 771 58,129 0,771 

5A 709 773 743 28 988 24,485 2,549 

5B 713 149 757 46 293 15,405 4,071 

5D 566 080 677 30 525 18,544 2,684 

6A 618 079 260 50 986 12,122 4,484 

6B 720 988 478 74 833 9,634 6,581 

6D 473 592 718 44 380 10,671 3,903 

7A 736 706 236 64 419 11,436 5,665 

7B 750 620 385 51 357 14,615 4,516 

7D 638 686 055 49 440 12,918 4,348 

Un 480 980 714 35 514 13,543 3,123 

Total 14 547 261 565 1 209 440 12,028 100,000 

 

 

 

 Discussion 

 

 

WES tends to produce large portion of off-target reads, including intronic and intergenic 

reads, although being a sequencing method targeting exon regions. Wheat genome studies 

revealed that ~85% of wheat genome is composed of repeat elements. Besides, wheat 
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chromosomes share high sequence similarity. Both repeat content and homologous 

chromosomes might drive off-target sequencing of exone regions. Additionally, filtering 

of variations as in varscan (at least 2 supporting reads at variant site, min 15 base quality, 

at least 8 read depth) decreased off-target effect (5 to 8 folds), indicating low quality of 

the variations at the off-target sites. 

 

Another posibility is that the sequencing performed at the late 2017s. At that time 

reference genome sequence was not published yet. They might used probes for the older 

version of wheat genome during sequencing. Therefore, some regions might be involved 

unintentionally.  

 

Our initial screening suggest that the choice of variant caller has more influence on the 

results than the aligner (Figure 6.2). Therefore, this study can be extended by including a 

few more callers to widen our comparative analysis of WES analysis pipelines. Besides, 

our results pointed out the importance of the sample size, as the best tool combinations 

differ by each single sample. Sample size is important for concrete conclusions. Given 

the less influence, the aligners having long run times and/or not supporting multiple 

threads can be eliminated for future analysis. 

  

We believe this study will provide benefits to all plant scientist, especially to the wheat 

and barley community. So far, our recommendation is the use of bcftools call function as 

variant caller with bwamem or novoalign as aligner. The pipelines hisat2-bcftools and 

bowtie2-bcftools can be used to limit results to high confidence variations as those did 

not returned any novel variations but still kept number of variations shared with 

HAPMAP data at highest. For the identification of novel variants, one can prefer using 

freebayes.  
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8. APPENDIX A 

 

 

 

Supplementary Information 

 

Supplementary Figure 1. The distribution of percent change of the number of transcripts 

over a set of FPKM cutoffs. Plot of percent change over 0 to 2 FPKM cutoffs (A). 

Closer look at the graph between the cutoffs of 0 to 1 (B). 

Supplementary Figure 2. Length distribution of lncRNAs and coding transcripts from 

each T. turgidum variety. (Graph legend: Kiz: Kiziltan, TR: TR39477, TTD: TTD-

22; CK: control conditions, DS: drought stressed) 

Supplementary Figure 3. Association between GC% content and length of lncRNAs 

from each T. turgidum variety.  

 

Supplementary Table 1. QRT-PCR primers for common DE transcripts from Kiziltan. 

Supplementary Table 2. TR39477 and TTD-22 specific transcripts expressed under 

drought stress. (A) and (B) Drought specific transcripts of TR39477 and TTD-22 

were blasted and the transcripts which do not exhibit any similarity to each other 

were listed in below. (C) KEGG maps for TR39477 specific transcripts which are 

expressed in response to drought stress are listed. 

Supplementary Table 3. miRNAs which targets the lncRNAs from variety Kiziltan (A) 

TR39477(B) and TTD-22(C). 

Supplementary Table 4. Number of transcripts across the three T. turgidum varieties. 

Number of transcripts listed either without filtering or with a filtering of >0.5 FPKM. 
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Supplementary Figures 

 

 

Supplementary Figure 1. The distribution of percent change of the number of transcripts 

over a set of FPKM cutoffs. Plot of percent change over 0 to 2 FPKM cutoffs (A). Closer 

look at the graph between the cutoffs of 0 to 1 (B). 

 

 

 

Supplementary Figure 2. Length distribution of lncRNAs and coding transcripts from 

each T. turgidum variety. (Graph legend: Kiz: Kiziltan, TR: TR39477, TTD: TTD-22; 

CK: control conditions, DS: drought stressed) 
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Supplementary Figure 3. Association between GC% content and length of lncRNAs 

from each T. turgidum variety. 
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Supplementary Tables 

 

Supplementary Table 1. QRT-PCR primers for common DE transcripts from Kiziltan. 

lncRNA ID lncRNA 

Length 

Sequence Primer 

Start 

Site in 

Target 

Primer 

End 

Site in 

Target 

Len GC

% 

Amplicon 

Length 

lncRNA_c118

446_g1_i1-

Forward 

341  TCTCTGGC

CTAAGCAA

CTTTAC  

100 122 22 45.5 127 

lncRNA_c118

446_g1_i1-

Reverse 

341  GCTTTCCC

AAAGCCCT

GATA  

207 227 20 50 127 

lncRNA_c477

00_g1_i1-

Forward 

472  GGAACAGC

GACAGTAC

AGTAAG 

188 210 22 50 139 

lncRNA_c477

00_g1_i1-

Reverse 

472  TGTGTGAC

TGTGAGAG

AGAGATA 

304 327 23 43.5 139 

mRNA_c174

08_g1_i1-

Forward 

879  CTCAGACC

TTCGATCA

AAGACG 

110 132 22 50 97 

mRNA_c174

08_g1_i1-

Reverse 

879  TCCATGTA

CGTCCACC

TAGAG 

186 207 21 52.4 97 

mRNA_c552

46_g1_i1-

Forward 

1734  CGACGTGT

AAGCATCA

GAGAA 

154 175 21 47.6 105 

mRNA_c552

46_g1_i1-

Reverse 

1734  AGCCTATG

CACTTCCCT

AAATC 

237 259 22 45.5 105 
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Supplementary Table 2. TR39477 and TTD-22 specific transcripts expressed under 

drought stress (A and B). KEGG map for TR39477 specific transcripts expressed under 

drought (C). 

(A) Transcript IDs for drought specific coding transcripts of TR39477 which do not 

exhibit any similarity to TTD-22 transcripts 

TR_DS_c100335_g1_i1,TR_DS_c100721_g1_i1,TR_DS_c10663_g1_i1,TR_DS_c111097_g

1_i1,TR_DS_c112175_g1_i1,TR_DS_c115342_g1_i1,TR_DS_c118586_g1_i1,TR_DS_c119

351_g1_i1,TR_DS_c121962_g1_i1,TR_DS_c122655_g1_i1,TR_DS_c124109_g1_i1,TR_DS

_c133829_g1_i1,TR_DS_c139001_g1_i1,TR_DS_c13972_g1_i1,TR_DS_c18086_g1_i1,TR

_DS_c23531_g1_i1,TR_DS_c32200_g1_i2,TR_DS_c5817_g1_i1,TR_DS_c59003_g1_i2,TR

_DS_c68118_g1_i1,TR_DS_c7239_g1_i1,TR_DS_c76507_g1_i1,TR_DS_c77362_g1_i1,TR

_DS_c77721_g1_i1,TR_DS_c79749_g1_i1,TR_DS_c81581_g1_i1,TR_DS_c83024_g1_i1,T

R_DS_c83819_g1_i1,TR_DS_c84249_g1_i1,TR_DS_c86337_g1_i1,TR_DS_c87167_g1_i1,

TR_DS_c87458_g1_i1,TR_DS_c87491_g1_i1,TR_DS_c93476_g1_i1,TR_DS_c94439_g1_i

1,TR_DS_c9969_g1_i1 

(B) Transcript IDs for drought specific coding transcripts of TTD-22 which do not 

exhibit any similarity to TR39477 transcripts 

TTD_DS_c115797_g1_i1,TTD_DS_c53857_g1_i1,TTD_DS_c54409_g1_i4,TTD_DS_c869

80_g1_i1 

(C) KEGG maps for TR39744 specific transcripts (expressed only under drought) 

and their description 

map00190 oxidative phosphorylation 

map00480 Glutathione metabolism 

map00230 Purine metabolism 

map00600 Sphingolipid metabolism 

map00240 Pyrimidine metabolism 

map00730 Thiamine metabolism 

map00604 Glycosphingolipid biosynthesis - ganglio series 

map00531 Glycosaminoglycan degradation 

map00511 Other glycan degradation 

map00052 Galactose metabolism 
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Supplementary Table 3. miRNAs which targets the lncRNAs from variety Kiziltan (A) 

TR39477(B) and TTD-22(C). 

 (A) miRNAs and their lncRNAs targets from Kiziltan variety 

miRNA 

ID 

lncRNA ID Target 

Start 

Target 

End 

Aligned Target Fragment Target 

Inhibition 

Mode 

miR1436 Kiz_both_c123

855_g1_i1 

150 169 CUUCUUCCAUCCCAUGA

UUG 

Cleavage 

miR1136 Kiz_both_c380

21_g1_i1 

3 26 UAGAUACAUCCAUUUCU

GCGAUGA 

Cleavage or 

Translation 

repression 

miR854 Kiz_both_c501

49_g1_i1 

577 597 CUUCUUCUUCCUCUUCU

UCUU 

Cleavage 

miR1135 Kiz_CK_c5094

4_g2_i1 

496 519 UCCUUUCCAAAUUACUU

GUCGUGG 

Cleavage 

miR1439 Kiz_CK_c5094

4_g2_i1 

488 507 CUACUCCCUCCUUUCCAA

AU 

Translation 

repression 

miR1133 Kiz_DS_c6812

0_g9_i2 

120 141 UUAGGAACGGAGGGAGU

AGGUC 

Cleavage 

miR1436 Kiz_both_c707

72_g2_i1 

132 151 ACUCCCUCCGUUCC-

UAAAUA 

Cleavage 

miR1439 Kiz_both_c707

72_g2_i1 

130 149 CUACUCCCUCCGUUCCUA

AA 

Cleavage 

miR1439 Kiz_DS_c7967

9_g1_i1 

201 221 [A]CUACUCCCUCCGUUCC

GAAU 

Cleavage 

miR1436 Kiz_DS_c9055

7_g1_i1 

361 381 ACUCCCUCCGUUCCUUUA

UGU 

Cleavage 

miR1436 Kiz_both_c961

95_g1_i1 

262 282 ACUCCCUUUGUUCCAGA

AUAA 

Cleavage 

miR1439 Kiz_both_c961

95_g1_i1 

259 279 UUUACUCCCUUUGUUCC

AGAA 

Cleavage 

miR437 Kiz_both_c961

95_g1_i1 

304 324 AACUCAAUCUUGUUUAA

GUUU 

Translation 

repression 
 

(B) miRNAs and their lncRNAs targets from TR39477 variety 

miRNA 

ID 

lncRNA ID Target 

Start 

Target 

End 

Aligned Target Fragment Target 

Inhibition 

Mode 

miR1137 TR_both_c118

135_g1_i1 

189 209 AGUGUCUCAAAUUUUGU

ACUA 

Translation 

repression 
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miR1436 TR_both_c118

135_g1_i1 

169 189 ACUACCUCCGUCCUAAA

AUAA 

Cleavage 

miR1439 TR_both_c118

135_g1_i1 

140 160 GAUACUCCCUCCGUCUU

AAAA 

Cleavage 

miR1439 TR_both_c118

135_g1_i1 

167 186 UUACUACCUCCGUCCUA

AAA 

Cleavage 

miR1436 TR_CK_c1238

5_g1_i1 

275 295 ACUCCCUUUGUCUUAAA

AUGA 

Cleavage 

miR1120 TR_DS_c3432

0_g1_i1 

121 143 UCCGUUUCAUAAUAUAA

CAGCGU 

Cleavage 

miR1436 TR_DS_c3432

0_g1_i1 

115 135 [A]CUUCAUCCGUUUCAU

AAUAU 

Cleavage 

miR1439 TR_DS_c3432

0_g1_i1 

113 132 GUACUUCAUCCGUUUCA

UAA 

Cleavage 

miR1128 TR_DS_c4426

0_g1_i1 

328 348 UUAGGGACGGAGGGAGU

AGUU 

Cleavage 

miR1128 TR_both_c567

81_g1_i5 

1266 1285 UUUAUAUGGAGGGAGUA

UUU 

Cleavage 

miR1133 TR_both_c567

81_g1_i1 

1266 1286 UUUAUAUGGAGGGAGUA

UUUA 

Cleavage 

miR1436 TR_DS_c5889

0_g4_i2 

448 467 CUCCCUCCCUCUUUUAAU

AU 

Cleavage 

miR1139 TR_both_c607

84_g1_i5 

461 480 GUUACUAG-

CUAAGUUACUCC 

Cleavage 

miR1128 TR_CK_c6165

8_g1_i1 

4 24 UUCGGAACGGAGGGAGU

AGUA 

Cleavage 

miR1436 TR_both_c630

34_g2_i23 

24 44 ACUUCCUCGGUUCCAAA

AUUC 

Cleavage 

miR1439 TR_both_c630

34_g2_i23 

22 41 CUACUUCCUCGGUUCCA

AAA 

Translation 

repression 

miR1122 TR_DS_c6303

4_g2_i3 

744 763 UCUAAAUGCGGAUGUAU

CUA 

Cleavage 

miR1436 TR_DS_c6303

4_g2_i3 

709 729 ACUCCCUCCGUCUCAAAA

UUC 

Cleavage or 

Translation 

repression 

miR1439 TR_DS_c6303

4_g2_i3 

706 726 [A]GUACUCCCUCCGUCUC

AAAA 

Cleavage 

miR1118 TR_DS_c6327

1_g2_i1 

831 853 UCCCUCCAUUCCAAAAU

AUAGCG 

Cleavage 
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miR1436 TR_DS_c6327

1_g2_i1 

829 849 [A]CUCCCUCCAUUCCAAA

AUAU 

Cleavage 

miR1439 TR_DS_c6327

1_g2_i1 

826 846 [C]UUACUCCCUCCAUUCC

AAAA 

Cleavage or 

Translation 

repression 

miR1136 TR_DS_c6363

1_g1_i7 

662 681 AACAUUCAUAUGUGUGA

CAU 

Cleavage 

miR1436 TR_DS_c6508

2_g1_i1 

244 264 ACUCCCUCCGUUCCUUUA

UAU 

Cleavage 

miR1439 TR_CK_c6747

4_g1_i1 

401 421 ACUGCUCCCUCCGUUUCU

AAA 

Cleavage 

miR1130 TR_both_c945

90_g1_i1 

210 232 [AU]UCUUAUAUUAUGGG

ACGGAGG 

Cleavage or 

Translation 

repression 

miR1436 TR_both_c945

90_g1_i1 

188 207 ACUCCUUCUGUCCC-

UAAUGC 

Cleavage 

(C) miRNAs and their lncRNAs targets from TTD-22 variety 

miRNA 

ID 

lncRNA ID Target 

Start 

Target 

End 

Aligned Target Fragment Target 

Inhibition 

Mode 

miR1436 TTD_DS_c589

70_g2_i3 

225 245 [A]CUCCCUCCGUUCCAAA

AUAG 

Cleavage 

miR1439 TTD_DS_c589

70_g2_i3 

223 242 [G]UACUCCCUCCGUUCCA

AAA 

Cleavage 

miR1128 TTD_DS_c607

22_g1_i1 

4 24 UUUGGGACGGAGGGAGU

ACUA 

Cleavage 

miR1120 TTD_CK_c621

54_g1_i2 

682 705 CUCCGUCCCAUAAUAUA

ACAGCGU 

Cleavage 

miR1436 TTD_CK_c621

54_g1_i2 

677 697 [A]UUCCCUCCGUCCCAUA

AUAU 

Cleavage or 

Translation 

repression 

miR1436 TTD_DS_c646

40_g2_i1 

2490 2510 ACUCCCUCCGUCCCAAAA

UUC 

Cleavage 

miR1439 TTD_DS_c646

40_g2_i1 

2487 2507 [A]CUACUCCCUCCGUCCC

AAAA 

Cleavage 
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Supplementary Table 4. Number of transcripts across the three T. turgidum varieties. 

Number of transcripts listed either without filtering or with a filtering of >0.5 FPKM. 

 

The number of Kiziltan TR39477 TTD-22 
W

it
h

o
u
t 

fi
lt

er
in

g
 All transcripts 243670 211709 203230 

Coding transcripts 84288 75996 78456 

lncRNA 

transcripts 
63773 61823 43932 

A
ct

iv
el

y
-e

x
p
re

ss
ed

 

All transcripts 230359 201499 193087 

Coding transcripts 81168 73465 75861 

lncRNA 

transcripts 
59110 57944 40858 
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9. APPENDIX B 

 

 

 

Supplementary Information 

 

 

Supplementary Table 1. Sequence Read Archieve (SRA) run table. Instrument for all 

data was Illumina HiSeq 2000. 

Samples # of 

spots 

# of 

bases 

Layout Run Accession SRA 

pooled whole 

larvae 

35M 7G paired SRR3051777 SRX1497658 SRS1219310 

pooled adult 

males 

44.9M 9G paired SRR3052012 SRX1497656 SRS1219308 

pooled adult male 

antennae 

43.1M 8.6G paired SRR3052016 SRX1497648 SRS1219305 

pooled adult 

females 

38.5M 7.7G paired SRR3052013 SRX1497638 SRS1219289 

pooled adult 

female antennae 

45.3M 9.1G paired SRR3052011 SRX1497613 SRS1219281 

single whole larva 21.2M 4.2G paired SRR3051636 SRX1497599 SRS1219265 

pooled adult 

whole males 

17.8M 3.6G paired SRR3048775 SRX1497595 SRS1219261 

pooled adult 

whole females 

17.7M 3.5G paired SRR3048750 SRX1497594 SRS1219258 

 

  



128 

 

Supplementary Figures 

 

 

Supplementary Figure 1. Correlation between length and GC content in lncRNA and 

mRNA transcripts. (A) GC content distribution of mRNA and lncRNA transcripts. (B, C) 

Association between length and GC content in lncRNA and mRNA transcripts. 

 


