
PLACEMENT GENERATION AND HYBRID PLANNING FOR
ROBOTIC REARRANGEMENT ON CLUTTERED SURFACES

by
ABDUL RAHMAN DABBOUR

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2019

PLACEI\{ENT GENERATION AND HYBRID PLANNING FOR
ROBOTIC REARRANGEN'{ENT ON CLUTTERED SURFACES

Approved by:

Assoc. Prof. Dr. Volkan Patoflu
(Thesis Advisor)

Assoc. Prof. Dr. Esra Erdem Pato{lu
(Thesis Co-Advisor)

Assoc. Prof. Dr. Glilhi Krzrltaq $endur

Asst. Prof. Dr. Oznrir Tagtan

Prof. Dr. Qagatay Baqdogan
(Kog University)

Date of approval: 19 July 2019

h

ABDUL RAHMAN DABBOUR 2019 ©

All Rights Reserved

ABSTRACT

PLACEMENT GENERATION AND HYBRID PLANNING FOR
ROBOTIC REARRANGEMENT ON CLUTTERED SURFACES

ABDUL RAHMAN DABBOUR

MECHATRONICS ENGINEERING
MSc. THESIS

JULY 2019

Thesis Advisor: Assoc. Prof. Dr. Volkan Patoğlu
Thesis Co-Advisor: Assoc. Prof. Dr. Esra Erdem Patoğlu

Keywords: Placement generation, rearrangement planning of multiple movable
objects, hybrid planning, service robotics.

Rearranging multiple moving objects across surfaces, e.g. from a table to kitchen
shelves as it arises in the context of service robotics, is a challenging problem. The
rearrangement problem consists of two subproblems: placement generation and rear-
rangement planning. Firstly, the collision-free goal poses of the objects to be moved
need to be determined subject to the arbitrary geometries of the objects and the
state of the surface that already includes movable objects (clutter) and immovable
obstacles on it. Secondly, after the goal poses of all objects have been determined, a
plan of physical actions must be computed to achieve these goal poses. Computation
of such a rearrangement plan is difficult in that it necessitates not only high-level
task planning, but also low-level feasibility checks to be integrated with this task
plan to ensure that each step of the plan is collision-free.

In this thesis, we propose a general solution to the rearrangement of multiple
arbitrarily-shaped objects on a cluttered flat surface with multiple movable ob-
jects and obstacles. In particular, we introduce a novel method to solve the object
placement problem, utilizing nested local searches guided by intelligent heuristics
to efficiently perform multi-objective optimizations. The solutions computed by our

iii

method satisfy the collision-freeness constraint, and involves minimal movements of
the clutter. Based on such a solution, we introduce a hybrid method to generate
an optimal feasible rearrangement plan, by integrating ASP-based high-level task
planning with low-level feasibility checks. Our hybrid planner is capable of solving
challenging non-monotone rearrangement planning instances that cannot be solved
by the existing geometric rearrangement approaches.

The proposed algorithms have been systematically evaluated in terms of computa-
tional efficiency, solution quality, success rate, and scalability. Furthermore, several
challenging benchmark instances have been introduced that demonstrate the capa-
bilities of these methods. The real-life applicability of the proposed approaches have
also been verified through physical implementation using a Baxter robot.

iv

ÖZET

DAĞINIK YÜZEYLERDE ROBOTİK DÜZENLEME
İÇİN YERLEŞİM OLUŞTURMA VE HİBRİT PLANLAMA

ABDUL RAHMAN DABBOUR

MEKATRONİK MÜHENDİSLİĞİ
YÜKSEK LİSANS TEZİ

TEMMUZ 2019

Tez Danışmanı: Doç. Dr. Volkan Patoğlu
Tez Eş Danışmanı: Doç. Dr. Esra Erdem Patoğlu

Anahtar Kelimeler: Yerleşim oluşturma, hareketli nesneleri yeniden düzenleme,
hibrit planlama, hizmet robotlar.

Hareket ettirilebilen pek çok nesnenin farklı yüzeyler üzerinde yeniden düzenlenmesi
zor bir problemdir. Örneğin, servis robotiği bağlamında, nesnelerin bir masadan
kalabalık mutfak raflarına taşınması bu tür bir problemdir. Yeniden düzenleme
problemi iki alt problemden oluşmaktadır: yerleşim oluşturma ve düzenleme planı
oluşturma. İlk olarak, hareket ettirilecek (kalabalık) nesnelerle geometrilerine ve
yüzeyin üzerinde bulunan hareket ettirilebilen ve hareket ettirilemeyen (engel) nes-
neler arasında çarpışmalarla sonuçlanmayacak konumlar ve yönelimler belirlenmelidir.
İkinci olarak, nesnelerin hedef durumları belirlendikten sonra, bu hedef durumlara
ulaşmak için gerekli eylem planı hesaplanmalıdır. Böyle bir planın hesaplanması
güçtür, çünkü sadece yüksek seviye planlama yeterli değildir, aynı zamanda planın
her bir adımının çarpışma içermemesini sağlamak için düşük seviyede uygulanabilir-
lik kontrolü yapılması gereklidir.

Bu tezde, farklı şekillere sahip nesneleri ve engellerin dağınık bir yüzey üzerinde
yeniden düzenlemesi için genel bir çözüm önermekteyiz. Öncelikle, nesne yerleştirme
problemini sezgisel yöntemler ile yönlendirilen iç içe yerel aramalar kullanan birçok

v

kriterli optimazasyon problemi olarak çözmekteyiz. Metodumuzla hesaplanan çözümler
yüzey üzerinde halıhazırda var olan nesnelerin hareketlerini en aza indirip çarpışmasızlık
kısıtı sağlamaktadır. Bu çözüme dayanarak, optimum ve fiziksel olarak uygulan-
abilen bir düzenleme planı hesaplamak için, ASP-tabanlı yüksek seviye eylem plan-
lama ile düşük seviye uygulanabilirlik kontrolünü entegre ederek hibrit bir metod
önermekteyiz. Hibrit planlama yaklaşımımız, mevcut geometrik düzenleme yaklaşımları
ile çözülemeyen, monoton nitelikte olmayan zor planlama problemlerini çözebilmektedir.

Önerilen yöntemler hesaplama verimliliği, çözüm kalitesi, başarı oranı ve ölçeklenebilirlik
açılarından sistematik olarak değerlendirilmiştir. Ayrıca, bu yöntemlerin yetkinlik-
lerini gösteren birkaç zor test problemi de sunulmuştur. Önerilen yaklaşımların
gerçek hayatta uygulanabilirliği bir Baxter robot kullanarak gerçekleştirilen bir
fiziksel uygulama ile doğrulanmıştır.

vi

ACKNOWLEDGEMENTS

For their continuous guidance, support, and encouragement, I would like to express
my deepest gratitude to my advisors, Assoc. Prof. Dr. Volkan Patoğlu and Assoc.
Prof. Dr. Esra Erdem Patoğlu, who taught me the principles of research, and gave
me all the freedom in my work while directing me with sound advice throughout.

For their unconditional and unrelenting love and support throughout this journey,
I would like to convey my thanks to my father, mother, and three siblings.

For always providing much needed relief in stressful times and widening my horizons
– academic or otherwise – and for making my Sabancı experience that much more
colorful, I would like to express my gratitude to my friends.

For their thought-provoking discussions, feedback, and friendship, I would like to
convey my thanks to the members of the Cognitive Robotics Lab, robots included.

For sharing with me, and the general public, high-quality tools and deep knowledge
free of charge, I would like to extend my appreciation to the open-source community.

For their time and feedback, I would like to express my regards to the jury members.

When I first entered Sabancı University in the winter of 2017, I could not imagine
the amount of knowledge and experience that I would be able to acquire in such a
short time. This work would not be possible if not for the collaboration of numerous
anonymous parties working to my – and other students’ – advantage. Thank you.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 2
1.3 Challenges . 3
1.4 Contributions . 4
1.5 Thesis Outline . 5

2 Related Work 6
2.1 Placement Generation . 6
2.2 Rearrangement Planning . 8

3 Preliminaries 11
3.1 Search . 11
3.2 Answer Set Programming . 13
3.3 Collision Resolution . 15

4 Placement Generation 17
4.1 Problem Definition . 17
4.2 Methods . 18

4.2.1 Penetration Minimization . 18
4.2.2 Collision Minimization . 19
4.2.3 Rearrangement Minimization . 21

5 Rearrangement Planning 25
5.1 Problem Definition . 25
5.2 Methods . 25

5.2.1 Configuration Discretization . 26
5.2.2 High-Level Planning . 28
5.2.3 Low-Level Feasibility Check . 29

6 Experimental Evaluation 32

viii

6.1 Placement Generation . 32
6.1.1 Benchmark Instances . 38

6.2 Rearrangement Planning . 40
6.2.1 Benchmark Instances . 45
6.2.2 Comparison of Hybrid Planning Approaches 46

6.3 Physical Implementation . 47

7 Conclusion 51

Bibliography 51

A Detailed Results 57

ix

List of Figures

3.1 Petersen graph initial coloring. 14
3.2 Petersen graph final coloring. 14

4.1 A sample problem instance and a possible solution. 18
4.2 Intermediate local search algorithm . 22
4.3 Outermost local search algorithm progression 24

5.1 An example of configuration discretization. 27

6.1 Plots summarizing the results of Experiment 1. 34
6.2 Plots summarizing the results of Experiment 2. 35
6.3 Plots summarizing the results of Experiment 3. 36
6.4 Confined Placement Scenario. 38
6.5 Tight placement scenario. 39
6.6 Elongated objects scenario. 39
6.7 The tight L-shapes scenario with concavity across the x-y plane. . . . 40
6.8 The tight L-shapes scenario with concavity across the z-y plane. . . . 40
6.9 Plots summarizing the planning scalability based on Experiments 4-6. 41
6.10 Plots summarizing the results of Experiment 4. 42
6.11 Plots summarizing the results of Experiment 5. 43
6.12 Plots summarizing the results of Experiment 6. 44
6.13 Enforced Swaps Scenario. 45
6.14 Tight Placement Scenario. 46
6.15 Plots summarizing the results of Experiment 7. 47
6.16 Baxter executing a plan with placement generated using Outer. . . 48
6.17 Baxter executing a plan with placement generated using Intermediate. 49
6.18 Baxter executing a nonmonotone plan with a forced swap. 50

x

List of Tables

2.1 Comparison of selected related works for placement generation. 8
2.2 Comparison of selected related works for rearrangement planning. . . 10

A.1 Experiments 1, 2, and 3 results: placement generation performance. . 58
A.2 Experiment 4, 5, and 6 results: effect of placement generation algo-

rithm on rearrangement planning performance. 59

xi

List of Algorithms

1 hillClimbing . 12
2 innermostSearch . 19
3 intermediateSearch . 21
4 outermostSearch . 23
5 naiveDiscretizer . 26
6 isCollision . 29
7 feasiblitySearch . 30
8 propagate . 31

xii

Chapter 1

Introduction

1.1 Motivation

For useful integration of robotic systems into everyday life, they must be capable
of performing high-complexity real-life tasks efficiently. For instance, typical hu-
man environments, such as table tops, kitchen shelves, or office desks, are usually
cluttered; and manipulating the environment to deal with such clutter is integral to
performing everyday chores in social environments, whether that means rearranging
objects upon a surface or across multiple surfaces.

Geometric rearrangement of multiple movable objects on a surface is a difficult
problem, because it requires the manipulation of existing objects on the surface,
as well as the placement of new objects to be put on the surface. The order of
manipulation actions carried out is also relevant, e.g. an elongated object might
need to be rotated or moved away first before another object can take its place.

Generally, solving such a problem requires task planning to decide for the order
of manipulation actions (e.g., when to pick, place, move objects), and feasibility
checks are required to check the execution of each manipulation action against geo-
metric/kinematic constraints (e.g., to avoid collisions). These requirements usually
lead to hybrid planning solutions that combine high-level task planning and low-level
feasibility checks.

However, before attempting to solve such a planning problem for the rearrangement
of objects in a clutter, one needs to know the goal configuration (i.e., how the objects
are arranged on the surface at the end of the plan). But, in real life scenarios,
this information is not available most of the time, especially for heavily-cluttered or
tightly-packed scenarios. Therefore, it is crucial to determine a geometrically feasible
goal configuration of objects on the surface before planning for rearrangements.

1

Placement generation, generating such a goal configuration, is an understudied prob-
lem, especially in the robotics domain. To the best of the author’s knowledge, outside
of [1], there exists no work considering the problem of generating a goal state for
the placement of multiple movable objects on top of a continuous surface that is
already cluttered with other multiple movable and immovable objects. While this
is briefly mentioned in [1], the method is not explained in detail, and there are no
quantitative evaluations offered.

On the contrary, rearrangement planning has enjoyed attention within the robotics
research community. However, as is discussed in Chapter 2, methods that generalize
to non-monotonic planners are rare, and methods that further generalize to using
any point on the entire continuous surface for buffer poses – poses to use for non-
monotonic plan steps – are even rarer.

With this motivation, we study:

• the placement generation problem: given a surface cluttered with (unmov-
able) obstacles and a set of existing movable objects on it, and a set of new
objects to be placed on the surface, the goal is to find a collision-free placement
of all objects on the surface while minimizing the total number and amount
of displacements of the existing movable objects.

• the rearrangement planning problem: given an initial placement of obsta-
cles and movable objects, and a final placement of obstacles, movable objects,
and new objects, the goal is to find the minimum set of actions to be taken by
a robot to transform the initial placement to the final placement.

1.2 Approach

The overall approach is as follows:

1. The placement generation finds a collision-free final configuration for all
objects (all the new objects together with all other objects in the clutter) while
also trying to minimize the number of object relocations, and the amount of
movement each object is relocated. At this stage, the number, type, order,
and feasibility of the move actions required to achieve this goal configuration
are not considered.

2. The rearrangement planning is divided into two stages:

(a) The discrete placement stage takes, as input, the initial configurations
and the final configurations of all objects on the cluttered surface, and

2

divides the surface into a minimum number of non-uniform grid cells.
During gridization of the continuous plane, an object is allowed to span
multiple grid cells as long as each grid cell contains the centroid of a single
object only.

(b) The hybrid planning stage aims to find a sequence of collision-free steps
through feasible move actions (i.e. pick-and-place actions) to achieve the
final placement of the objects in the clutter from their initial discrete
placement, while simultaneously minimizing the number of actions.

1.3 Challenges

Generating a goal placement and a rearrangement plan introduces tough challenges:

• The curse of dimensionality: In the context of the problems we have mo-
tivated, there is no upper bound on the number of objects for which we are
attempting to find a placement for, or trying to plan for the rearrangement
of. Even after fixing the plane of contact between the objects and surface,
searching for a placement for each object is still equivalent to searching for a
pose vector of 2 translational and a rotational dimension per object. Since the
curse of dimensionality is a specially difficult problem to attack from a plan-
ning perspective, it is imperative that a solution developed for the placement
generation is both scalable and capable of reducing the strain on the following
planning algorithm.

• Arbitrary Geometry: Unlike some industrial environments, we cannot make
assumptions about the geometry of objects in service robotics scenarios. This
means that our algorithms must be able to deal with multiple heterogeneous
objects of any size, orientation, or shape. Concave and elongated geometries
especially introduce difficulties by constraining the poses of other objects in
challenging ways.

• Continuous Domain: In the interest of generalization, we tackle the problem
in its real-life domain, continuous in all dimensions. Note that while our
algorithms use discretizations as heuristics during placement and planning,
the final step is always based on a continuous surface.

3

1.4 Contributions

Robotic rearrangement of objects on cluttered surfaces has two main challenges:
(i) goal generation, i.e., computing a collision-free placement of objects and (ii)
planning, i.e., computing a sequence of feasible manipulation actions to realise the
generated goal. In light of these challenges associated with the problems, we sum-
marize our contributions as follows:

• We have introduced a novel, efficient nested local search algorithm for gen-
erating a collision-free placement of multiple arbitrarily-shaped objects on a
flat but otherwise arbitrarily-shaped, crowded surface with multiple movable
objects and static obstacles.

• We have introduced a hybrid method for planning for the actions of the robot
rearranging the objects on the cluttered surface to reach a collision-free place-
ment computed by our nested local search algorithm. In this method, we
discretize the continuous rearrangement problem, and combine high-level task
planning with low-level feasibility checks. In particular, for ensuring connec-
tivity of actions executed one after another we introduce a novel feasibility
check based on local search.

• We have designed and generated a set of object placement problem benchmarks
to experimentally evaluate our object placement algorithm. These benchmarks
include randomly generated problem instances with non-convex objects, ex-
tremely confined surfaces, and where the solutions are confined to very specific
regions.

• We have systematically evaluated our object placement algorithm to show the
usefulness of each local search layer, from the perspectives of computational
efficiency, success rate, and solution quality.

• We have designed and generated a set of rearrangement planning benchmarks
to experimentally evaluate our hybrid method. The benchmark problems re-
quire multiple and circular swaps of objects.

• We have evaluated our hybrid planning algorithm to investigate its scalability
in terms of computation time. We have also investigated the effect of using
object placements generated by the outermost layer of our placement algorithm
against those generated by the intermediate layer to better understand the
usefulness of minimizing the number of rearranged objects during placement.

• We have implemented the object placement and rearrangement planning algo-
rithms in Python: https://github.com/ardabbour/rearrangement.

4

https://github.com/ardabbour/rearrangement

• We have shown the applicability of our methods with a physical implemen-
tation using a Baxter robot. We have considered several scenarios where
different shaped objects are placed on a cluttered surface. The Baxter robot
has autonomously identified the objects in the clutter using the cameras em-
bedded in its arm and computed a collision-free placement of the objects in
the clutter, found a hybrid plan to reach it, and executed it.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 discusses related works. this section is divided into two: works relating
to placement generation and works relating to rearrangement planning. After each
discussion, a table summarizing the related works and comparing them to this thesis
is presented.

Chapter 3 introduces the main concepts upon which this thesis is built and provides
examples to aid the reader in understanding the main use cases, then focuses on
more relevant elements of these concepts.

Chapter 4 explains the placement generation algorithms, which constitute the major
novelty of this thesis.

Chapter 5 describes how the rearrangement planning is accomplished in light of the
hybrid planning framework.

Chapter 6 highlights the results achieved using the methods described in Chapters
4–5 and discusses them in detail.

Finally, Chapter 7 recaps the thesis and discusses future works.

5

Chapter 2

Related Work

Rearrangement of multiple movable objects, a challenging problem that involves
planning, manipulation and geometric reasoning, has received much attention in
robotics. In particular, planning for geometric rearrangement with multiple mov-
able objects and its variations, such as navigation among movable obstacles [2], [3],
have been studied using various approaches. Since even a simplified variant the
rearrangement problem with only one movable obstacle has been proved to be NP-
hard [4], [5], most studies introduce several important restrictions to the problem,
like monotonicity of plans [6]–[10], where each object can be moved at most once.
Recent work has focused on generating non-monotonic plans [1], [11]–[15]. How-
ever, in most of these studies [6]–[9], [11]–[14], [16], [17], it is assumed that the goal
configuration is known. Finding suitable arrangements for objects on a cluttered
surface has received relatively less attention.

Tables 2.1 and 2.2 show a comparison of selected related works with this thesis.

2.1 Placement Generation

Cosgun et al. [10] propose an algorithm that searches for a suitable placement for a
single object on a cluttered surface by discretizing the possible orientations of the
object, convolving object pixels with the ones on the table, and identifying candi-
date regions for the object placement that result in minimal penetration with other
objects. A placement is then produced by sampling these regions; however, this
placement may not be collision-free. Then, they plan for a sequence of linear push
actions to rearrange the clutter and clear space for the new object such that this
placement becomes collision-free. Note that there are several limitations in this ap-
proach; multiple new objects are not considered, the surface and object orientations

6

are discretized, and the final configuration is not necessarily collision-free.

Yu et al. [18] aim to find sensible placements for furniture by initially generating a
random arrangement, then rearranging it to minimize a cost function that measures
the difference between the current arrangement and several positive examples pro-
vided by the user. Kang et al. [15] also follow on this idea, and modify the algorithm
so it becomes more suitable for robotic applications. Neither study considers heavily
cluttered scenes or utilizes high resolution collision checks. In [15], the task is to re-
arrange objects currently available in the scene to achieve a more tidy arrangement;
no new objects are added and there exists no constraints that force a certain set
of objects to be on certain surfaces. Furthermore, in these studies, even the initial
state is a feasible (collision-free) configuration, and the goal is to improve it in terms
of a measure of tidiness.

Jiang et al. [19]–[21] extract object-to-object and object-to-human features from
databases of 3D environments and learn semantic/geometric preferences for object
surface pairs. Then, they discretize the surfaces’ point cloud into placing areas by
random sampling and solve an maximum matching problem to assign each object’s
pose to a suitable placing area. This approach only considers placements to a pre-
determined set of discrete configurations and does not address the more challenging
continuous version of the problem.

In [1], a placement generation algorithm based on a local search guided with heuris-
tics and random restarts is proposed. This work significantly extends this earlier
study by introducing an innermost search layer that uses established collision res-
olution methods, as well as two nested local searches wrapped around this basic
search algorithm, to improve upon the efficiency and quality of solutions, as well as
the success rate. The results in chapter 6.1 indicate orders of magnitude difference
in terms of CPU time and success rate in cluttered scenarios.

A closely related problem to placement generation, studied in computer graphics and
operations research, is the packing problem (also known as the knapsack problem),
where the goal is to place as many objects as possible in a non-overlapping configu-
ration within a given empty container. The packing problem is NP-hard [22]. It has
been widely studied in 2D context (cf. the survey [23]). It has been also studied in
3D under various conditions/restrictions [24]–[26] (e.g., packing a set of polyhedrons
into a fixed size polyhedron without considering rotations [27], orthogonal packing
of tetris-like items into rectangular bins [28], [29]).

However, the placement generation problem is quite different from these packing
problems. First of all, since the placement generation problem is motivated by the
geometric rearrangement of objects on a cluttered surface, the surface does not have

7

Reference Placement Problem Tackled Placement Goals

Domain DOF New
Objects Stacking Surfaces Collisions Arrangement

Cosgun et al., 2011 Discrete 6 Single No Single Avoid then resolve
at motion planning Avoid rearrangements

Jiang et al., 2012 Discrete 6 Multiple Yes Multiple Avoid using cost fn Relative to
positive examples

Jiang et al., 2012 Discrete 6 Multiple Yes Multiple Avoid using cost fn Relative to
positive examples

Jiang et al., 2013 Discrete 6 Multiple Yes Multiple Avoid using cost fn Relative to
positive examples

Yu et al., 2011 Continuous 3 Multiple Yes Single Avoid using cost fn Relative to
positive examples

Kang et al., 2018 Continuous 3 None Yes Multiple No Relative to
positive examples

Havur et al., 2014 Continuous 3 Multiple No Multiple Resolve using guided
re-placements

Avoid rearrangements
implicitly

This Thesis Continuous 3 Multiple No Multiple

Resolve using guided
re-placements and
collision resolution

methods

Reduce rearranged objects
and their movement

Table 2.1: Comparison of selected related works for placement generation.

to be empty and contains movable objects. The packing problem, on the other
hand, assumes that the fixed size container is empty. Also the objective function
for the placement generation problem is different: the goal is to find a collision-
free configuration of all objects, so as to minimize the total number and amount
of displacements of the existing objects on the surface. The packing problem, on
the other hand, aims to find a collision-free configuration of some objects, so as
to maximize the coverage rate (i.e., the total volume of the objects packed in the
container). Along these lines, the packing problem and the placement problem are
different computational problems with different optimization goals. The methods to
attack these problems are significantly different from each other and do not allow
for direct comparisons.

In this thesis, we focus on finding collision-free configurations for two specific sets
of objects, objects on the surface and objects to be added onto the surface, taking
into account the continuous nature of the domain.

2.2 Rearrangement Planning

A rearrangement planning algorithm proposed [1], upon which this work is based.
This algorithm is executed sequentially as follows (i) first, a discrete representation
of the initial and goal configurations is obtained by dividing the surface into the
minimum number of non-uniform grids, where each grid cannot contain more than
one object centroid, using an Answer Set Programming formulation, (ii) a plan is
computed on this discrete representation using the hybrid planning paradigm [30],
[31], where the high-level planner finds a discretely-feasible plan step, utilizing low-

8

level checks to verify the continuous feasibility of each step, and (iii), a local search
algorithm is used to ensure collision-free configurations for all steps.

A hybrid planning paradigm is also employed by Dantam et al. [17], [32], where they
utilize a SAT solver as their high-level task planner, and integrate it with low level
motion planners. As in [1], the motion planner is able to add or remove constraints
to the task planner to contract or expand the search space iteratively, depending
on the feasibility of the actions queried by the task planner. Crucially, they prove
their method to be probabilistically complete, when coupled with a probabilistically
complete motion planner such as RRT-Connect [33]–[35]. Unlike in [30], [31], it is
important to note that they do not claim the ability to deal with non-monotone
plans. Non-monotone plans may be computed only if an additional buffer poses are
introduced. Due to the method of discretization, the motion planner is allowed to
inform the task planner of the infeasibility of a query placement, but has no way of
informing the task planner of an alternative feasible placement in the region around
the queried placement.

Han et al. [14] consider the problem of planning for the rearrangement of objects
using only overhead grasps. They first discretize the surface into a set of points made
of the initial and final centroid positions of the objects, as well as several buffer points
to place objects for non-monotone scenarios. A graph is then constructed using these
points as vertices, with the shortest line between them forming edges. They then
reduce the Euclidean Traveling Salesperson Problem [36] – if the rearrangement
plan is monotonic – or the Feedback Vertex Problem [37] to their own graph-based
problem definition. This allows them to use highly efficient methods previously
established in the literature to acquire a rearrangement plan. Importantly, the
planner here provides no interaction between the high-level task plan and the low-
level motion plan, since all tasks considered by the task planner are known to be
feasible.

King et al. [38] introduce a planner based on a Monte-Carlo Tree Search (MCTS) [39]
to create plans for the rearrangement of a single movable objects using non-prehensile
actions, such as pushing. In this framework, the search is to find a sequence of
actions whose probability of success (measured as expected value) is maximized.
Using noisy physics simulations as black-box successor state generators, a tree is
built where each node represents a sequence of actions; this tree is traversed using 3
policies: random, demonstration-based, and subsearch-based. The demonstration-
based policy uses a machine learning algorithm based on human choices, whereas
the subsearch-based policy searches through a discretized and simplified space of the
problem, starting from the current node to the goal, for the optimal action. Note
that this method is only tested in scenarios where clutter is minimal (i.e., surface

9

Reference Action
Space

Object
Type

Non-Monotone
Plans Approach Collision

Resolution

Han et al., 2017 Discrete Uniform Yes, given
buffer poses

Reduce to
TSP or FVSP,
solve with ILP

No

King et al., 2017 Discrete Arbitrary Not
Applicable MCTS Not

Applicable

Dantam et al., 2018 Discrete Arbitrary Yes, given
buffer poses

PDDL with
feasibility

checks
No

Zagoruyko et al., 2019 Discrete Arbitrary Yes
MCTS with

neural
network

Rudementary

Havur et al., 2014 Continuous Arbitrary Yes
Guided

replanning
with ASP

Yes

This Thesis Continuous Arbitrary Yes

ASP with
integrated
feasibility
checker

Yes

Table 2.2: Comparison of selected related works for rearrangement planning.

coverage is less than 50%). As a planner that uses a non-prehensile action set, it is
capable of handling non-monotone instances.

Zagoruyko et al. [16] also use an MCTS to create a plan from a pre-defined set of
discrete actions. While searching, a multilayer perceptron [40] that is trained in
simulation is used to predict values of actions to guide the exploration of the tree,
which the authors claim maintains the scalability of their approach to be better
than others, with the downside of having to train a different network for every
different number of objects to be rearranged. This framework also allows solving
non-monotone instances.

This thesis extends the approach introduced in [1] by integrating the final local
search algorithm into the hybrid planner and introducing improvements to result in
significant computational speed ups. In this regard, it describes a generic planner ca-
pable of utilizing any set of robot actions to solve both monotone and non-monotone
scenarios rearrangmenet scenarios. Unlike the planners described in [14], [16], [17],
[38], our planner is capable of identifying multiple buffer poses on its own due to
the approaches taken in discretization and task-motion planning.

10

Chapter 3

Preliminaries

3.1 Search

Search is one of the cornerstone ideas used in artificial intelligence [41] used for a
very wide range of problems.

Usually, classical search is used when a sequence of locations and transitions (rep-
resented as states and actions) are required for defining a solution [41]. Commonly,
the problem domain is fully observable, deterministic, and known, e.g., the traveling
salesperson problem [42].

A classical search problem can be defined as a 7-tuple ⟨S,A,T,G,C,P, s0⟩ where:

• S is the set of all states,

• A is the set of all actions,

• T ∶ S ×A→ S is the transition model that maps a state-action tuple ⟨s1, a1⟩
to a consequent state s2,

• G ∶ S → {0,1} is the goal test to determine whether a state is a goal state,

• C ∶ S ×A × S → R+ is the step cost of transitioning from state s1 to state s2

using action a,

• P ∶ L → R+ is the path cost that sums the step costs of the sequence of
state-action-state triplets L, and

• s0 is the initial state.

Once the problem is defined, a search algorithm is chosen with suitable properties,
such as completeness, optimality, and domain type to attack it.

11

Local search is a variant of search where the assumptions made earlier about
the search space, such as observability and determinism, are relaxed, and where a
solution does not include the path to find it [41]. The primary difference between
local search and classical search is the lack of a goal test, step cost, and a path
cost. Instead, a local search employs an objective function that determines the
value of the state, making it an optimization framework. Note that while a local
search problem does not keep track of the path, or the path cost, it can still be
used to tackle planning problems by modeling a state as a sequence of transitions
between configurations. Formally, we can define a local search problem as a 5-tuple
⟨S,A,T,O, s0⟩, where O ∶ S → R is the objective function.

The most basic approach towards local search, described in [41], is given in Algo-
rithm 1, where the algorithm attempts to find higher-valued neighbors of a given
state, using the transition model T , until it no higher-valued neighbor can be found.
This approach is prone to result in suboptimal solutions because it has no way
of escaping local minima, and is therefore highly dependent on the proximity and
reachability – in terms of the transition model – between the initial and goal states.

One of the simplest ways to mitigate this is to use random restarts; i.e., rather than
stopping the search, a random state is generated if no higher valued state exists,
and the search is restarted.

Integrating this stochasticisty into to hill-climbing by associating a probability distri-
bution with the set of successors is another option. Higher state values correspond to
higher probabilities of being chosen as successors. This way, some ‘downhill’ moves
are allowed which could result in exploring more regions of the search space, at the
cost of slower conversion to some solution. One such popular stochastic hill-climbing
method is known as simulated annealing, where the variance of the probability dis-
tribution decreased with time. The ratio of exploitation to exploration increases
with time, and the rate at which it does so becomes a parameter.

Algorithm 1 hillClimbing
Input: problem
Output: a state that is a local maximum.

1: current← problem.INITIAL
2: loop
3: neighbor ← a highest-valued successor of current
4: if Value(neighbor) ≤ Value(current) then
5: return current
6: end if
7: current← neighbor
8: end loop

12

3.2 Answer Set Programming

Answer Set Programming, hereafter referred to as ASP, is a declarative program-
ming paradigm [43]–[47] primarily used to solve difficult, often NP-hard, search
problems. With ASP, a problem is represented as a finite set of rules, called a
program P whose answer set corresponds to a solution. The answer sets for a
program can be computed by ASP solvers. This thesis makes use of the ASP solvers
Clingo [48] and dlvhex [49].

In this thesis, we consider programs that consist of rules of the form

α1 ∨⋯ ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm.

where k ≥ 0, n ≥ 0, m ≥ n, each αi is a propositional atom, and each βj is a
propositional atom or an external atom. α1, . . . , αk is the head of the rule, and
β1, . . . , βn, not βn+1, . . . , not βm is the body of the rule. A headless body is called a
constraint, and a bodyless head is called a fact.

An external atom is an expression of the form

&g[Y1, . . . , Yn](X1, . . . ,Xm).

Here, g is a function defined outside the ASP program that takes the inputs Y1, . . . , Yn

and returns the outputs X1, . . . ,Xm. This is especially useful for integrating com-
putations of functions in continuous domains into the ASP program.

ASP supports two types of constraints:

• Hard constraints, or integrity constraints, are rules of the form

← β1, . . . , βn, not βn+1, . . . , not βm.

Intuitively, this means the body must not hold.

• Weak constraints are rules of the form

¢ β1, . . . , βn, not βn+1, . . . , not βm. [w@p, t1, . . . , tn]

Intuitively, this means that we prefer the body not to hold, and we add a
cost w at the priority level p when the body holds for the terms t1, . . . , tn.
Different weak constraints can have different priority levels, allowing for very
powerful multi-objective optimization.

13

ASP allows aggregates to express properties on a specific set of elements. They
are expressions of the form

s1 ≺1 α{t1, . . . , tn ∶ L1, . . . , Lm} ≺2 s2

Here ti are terms, Li are atoms, α denotes an aggregate function, (e.g., #count,
#max, and #sum). ≺1 and ≺2 are comparison operators (e.g., =, >, <), and s1 and
s2 are terms.

Consider for instance the problem of finding the chromatic number of a graph. Recall
that the chromatic number of a graph is the minimum number of colors needed to
color the vertices such that no two adjacent vertices share the same color. We
represent this problem in ASP and present it to clingo (using the notation described
in [50]) as follows:

1 % Generate
2 { v e r t e x c o l o r (X,C) : c o l o r (C) } = 1 :− ver tex (X) .
3 % Test
4 :− edge (X,Y) , v e r t e x c o l o r (X,C) , v e r t e x c o l o r (Y,C) .
5 % Optimize
6 : ˜ v e r t e x c o l o r (X,C) . [1@1,C]
7 % Display
8 #show v e r t e x c o l o r /2 .

This ASP program consists of four parts: generate (line 2), test (line 4), optimize
(line 6), and display (line 8). In line 2, all colorings are generated; in line 4 the
colorings where adjacent vertices have the same color are eliminated. Line 6 mini-
mizes the number of different vertex colors available on the graph. Line 8 displays
an answer set.

Fig. 3.1. Petersen graph initial coloring. Fig. 3.2. Petersen graph final coloring.

14

We describe a problem instance, like the Petersen graph , as follows:
1 % V er t i c e s
2 ver tex (1 . . 1 0) .
3 % (Directed) Edges
4 edge (1 , (2 ; 4 ; 6)) . edge (2 , (1 ; 3 ; 7)) . edge (3 , (2 ; 5 ; 9)) .
5 edge (4 , (1 ; 8 ; 9)) . edge (5 , (3 ; 6 ; 8)) . edge (6 , (1 ; 5 ; 1 0)) .
6 edge (7 , (2 ; 8 ; 1 0)) . edge (8 , (4 ; 5 ; 7)) . edge (9 , (3 ; 4 ; 1 0)) .
7 edge (1 0 , (6 ; 7 ; 9)) .
8 % Make graph und i rec ted
9 edge (X,Y) :− edge (Y,X) .

10 % Colors
11 c o l o r (1 . . 1 0) .

A solution to this instance can be found by clingo as follows:
Answer : 1
v e r t e x c o l o r (2 , 8) v e r t e x c o l o r (1 , 10) v e r t e x c o l o r (4 , 9) v e r t e x c o l o r (6 , 9)
v e r t e x c o l o r (3 , 10) v e r t e x c o l o r (7 , 9) v e r t e x c o l o r (5 , 8) v e r t e x c o l o r (9 , 8)
v e r t e x c o l o r (8 , 10) v e r t e x c o l o r (10 ,10)
Optimizat ion : 3
OPTIMUM FOUND

This output describes which vertex carries which color, what the chromatic number
found at the point of termination was, and whether the global optimum was found.

3.3 Collision Resolution

When simulating objects, it is crucial to handle situations where they collide. The
handling of such situations consists of two stages: detecting the collision, i.e., calcu-
lating if there exists an overlap of the object pair geometries, and responding to the
collisions in a realistic way, i.e., predicting the resulting dynamics of the simulated
system after the collision accurately [51].

Much research has been done in this line of work, primarily with interests in realistic
computer simulation and animation. We restrict this brief review to the work done
on calculating the dynamic response to the collisions of rigid bodies. Most of the
literature regarding collision resolution in rigid body systems can be categorised as
analytic, penalty or impulse methods [52].

Analytic methods retract the simulation to the point just before any penetrations
were detected. Then, for every contact point, constraint equations are generated.
Once all the constraint equations have been defined, solving them results in very

15

accurate reactionary forces and impulses for every contact point [53]. This method
is accepted to be the slowest, but most accurate [52], [54].

Penalty-based methods model a virtual spring-damper between every pair of collid-
ing objects at each time-step to penalize the collision [54], then the system dynamics
are calculated as a set of optimization problems [52]. This is computationally in-
expensive and easy to implement, but requires the setting of the spring stiffness
and damping as parameters [52], [54]. This method suffers from lacking a straight-
forward way of dealing with objects of large inertia coming to contact, which can
lead to instability in the simulation due to very large forces being created [52], [54].

Impulse-based methods are some of the earliest [55], and are based on simulating infi-
nite forces occurring in an infinitesimally small time-step between contact points [56],
[57]. This method is both computationally inexpensive and accurate [52], [54]. Un-
like penalty-based methods, impulse-based methods do not need the specification of
stiffness or damping parameters, and unlike both analytic and penalty-based meth-
ods, impulse-based methods can handle each collision locally, enabling significant
computational advantages through parallelization [52].

Most modern physics engines such as Bullet [58], V-REP [59], ODE [60], and Mu-
JoCo [61], use a combination of these methods intelligently, depending on factors
such as the object pair contact type, shapes, velocities, etc. In the context of this
thesis, the underlying physics of these methods can be considered as a black-box
function that resolves collisions until the system reaches a static equilibrium.

16

Chapter 4

Placement Generation

As described earlier in section 1.2, the first step of our approach is to generate a
goal placement for the rearrangement problem. Two criteria are considered:

• the number and intensity collisions, and

• the number of original objects moved and by how much.

4.1 Problem Definition

The placement generation (PG) problem is defined by

• a surface S and its geometric model g(S) that details its size and shape,

• the sets OO and OC of non-movable (obstacles) and movable (clutter) objects
on the surface S and the sets g(OO) and g(OC) of their geometric models,

• the set ON of new objects to be placed on the surface S and the set g(ON) of
their geometric models,

• a set W of continuous placement constraints on objects (e.g., a monitor may
be forced to be in the corner of the table), and

• an initial collision-free configuration CI of all objects in OC∪OO on the surface
S relative to g(S).

A solution for a placement generation problem ⟨g(S), OO, g(OO), OC , g(OC), ON ,
g(ON), CI , W ⟩ is a collision-free final configuration CF of all objects ON ∪OC on
the surface S relative to g(S).

Figure 4.1 presents a sample problem instance: initially in Figure 4.1(a), a cylindrical
obstacle (yellow), and four geometrically different movable objects (red) are placed

17

on a surface (green); the goal is to find a collision-free configuration of these objects
and some more new objects (blue), like in Figure 4.1(c).

4.2 Methods

We propose a 3-layer deep nested local search algorithm (Algorithm 4) to compute
a solution for a placement generation problem. Intuitively; the innermost search
applies a collision resolution method using a physics engine, with the goal of mini-
mizing the total penetration depth of objects, the intermediate local search further
aims to minimize the number of collisions by allowing re-placements of objects, and
the outermost local search further tries to minimize the number and amount of
displacements of movable objects with respect to their initial configurations.

4.2.1 Penetration Minimization

The innermost layer is a local search employing a dynamic simulator that uses any
of the methods described in section 3.3 as its transition model. The search starts
with a configuration Ccurrent obtained from CI by randomly placing the new objects
ON on the surface S, with zero velocities. It searches over configurations of all
objects OO ∪OC ∪ON on the surface S, with the goal of minimizing the objective
optimization function costp defined as the sum of maximum penetration depth [62]
of pairs of objects in collisions. The physics engine returns a configuration Cnext of
all objects, minimizing costp(Cnext).

In particular, the chosen collision resolution method is applied by passing Ccurrent

to a physics engine. For each simulation time-step, this typically generates a pair
of forces between every object pair in collision along the contact normal until the
system converges to a static equilibrium.

In the simulation, we only regard the force component parallel to the surface, con-
straining objects to moving along the surface plane only. We also employ position

(a) (b) (c)

Fig. 4.1. A sample problem instance and a possible solution.

18

constraints on the centroids of objects, forcing them to be on top of the surface.
Additionally, when required, we simulate immovable walls to force all object meshes
to be constrained within the surface area, which can be arbitrarily shaped.

For instance, consider the initial configuration CI of obstacles (yellow) and movable
objects (red) shown in Figure 4.1(a). A configuration Ccurrent of objects obtained
by randomly placing all the new objects (blue) on the surface can be seen in Fig-
ure 4.1(b). Note that there are many collisions in Ccurrent , and objects penetrate
with each other. By applying this innermost search, the configuration shown in
Figure 4.1(c) may be generated, where the total penetration is zero.

The only action that the physics engine can perform (due to the nature of the
collision resolution methods) is to push objects in collision outside of each other; so,
for instance, it cannot swap locations of two objects. This may lead to local minima
where the objects can no longer be pushed, and there may be still some collisions
in Cnext . This motivates us towards the intermediate local search algorithm that
utilizes some heuristics to re-place all the objects in collision.

Algorithm 2 innermostSearch
Input: PG problem P = ⟨g(S), OO, g(OO), OC , g(OC), ON , g(ON), CI , W ⟩;
placement constraints V ; and, if provided, a configuration Ccurrent of all objects
OO ∪OC ∪ON on the surface S (Ccurrent is obtained from Ccurrent in intermediate-
Search).
Output: A configuration of all objects ON ∪OC on the surface S.

// costp: cost function characterizes the total amount of penetration depth of
pairs of objects in collisions considering the placement constraints V .

1: Ccurrent ← if not provided, generate a configuration of all objects OO ∪OC ∪ON

on the surface S obtained from CI by randomly placing ON on S.
// Load the problem P to the dynamic simulator according to Ccurrent .

2: load(P,Ccurrent);
// Call the dynamic simulator to reduce the total penetration depth.

3: loop
4: Cnext ← step(V);
5: if costp(Ccurrent) ≤ costp(Cnext) then
6: return Ccurrent ;
7: else
8: Ccurrent=Cnext ;
9: end if

10: end loop

4.2.2 Collision Minimization

The intermediate local search algorithm (Algorithm 3) utilizes heuristically-guided
re-placements to avoid local minima. Intuitively, for each object o in collision,

19

the heuristic suggests (i) dividing the surface S into cells and (ii) re-initiating the
placement of the object o into the center one of the cells that is unoccupied (i.e.,
has no other object centroids); the heuristics is used to guide generation of new
configurations. For (i), the heuristic imposes a grid on the surface S. If a grid cell
has no object centroids in it, it is marked as free. If no free cell exists, a new refined
grid is imposed on S with smaller but more numerous cells. This refinement process
continues until there is at least one free cell in the imposed grid.

The intermediate local search algorithm also starts with a configuration Ccurrent of
all objects OO∪OC ∪ON on the surface S obtained from CI by randomly placing the
new objects ON on the surface S. It calls the innermost search algorithm described
above to find a better configuration, but starting with the configurations obtained
from Ccurrent as suggested by the heuristics. The goal is to minimize the objective
optimization function costc defined as a tuple ⟨#col, costp⟩, where #col is the total
number of collisions and costp is the total amount of penetration depth of pairs of
objects in collisions. Here, lexicographic ordering is used to find the minimum of
two tuples: ⟨a, b⟩ ≺ ⟨a′, b′⟩ if either (a ≺ a′) or (a = a′ and b ≺ b′). In this way, priority
is given to #col and then to costp: among multiple configurations of all objects
with the same minimum number of collisions, the configuration Cnext with the least
cumulative penetration depth is returned.

An example is presented in Figure 4.2 to illustrate the usefulness of the heuristics
in the intermediate local search algorithm. The search starts with a configuration
Ccurrent , where #col(Ccurrent) = 24 and costp(Ccurrent) = 1.75. Note that the inner-
most search alone cannot find a better configuration with less value of costp: the
physics engine gets stuck, as it can no longer push objects on the right half of the
surface. First, the heuristic is utilized to re-place the cyan-colored object, which
is in collision with some other object, in Ccurrent . For that, a grid is imposed over
the surface with two free cells, labelled A and B, that do not contain any object
centroids. Then, two new configurations, CA and CB, are obtained from Ccurrent

by randomly re-placing the cyan-colored object in A and in B, respectively. Here,
costc(CA) = ⟨19,1.43⟩ and costc(CB) = ⟨20,1.37⟩. At this point, the intermediate
local search algorithm calls the innermost search algorithm for each of these two
configurations.

The intermediate local search algorithm with heuristically-guided re-placements is
useful for minimizing the number of collisions on a surface, but the objects in OC

may end up being displaced and rotated too much with respect to their original
configurations in CI . This is undesirable from the perspective of rearrangement
planning, because it will require more number of manipulation actions to rearrange
such objects. This motivates us towards the outermost local search algorithm, which

20

Algorithm 3 intermediateSearch
Input: PG problem P = ⟨g(S), OO, g(OO), OC , g(OC), ON , g(ON), CI , W ⟩;
placement constraints V ; and, if provided, a configuration Ccurrent of all objects
OO∪OC∪ON on the surface S (Ccurrent is obtained from CI in outermostSearch)
Output: A configuration of all objects ON ∪OC on the surface S.

// H: a set of free cells, suggested re-placements of objects o ∈ OC in collision
// costc: cost function characterizes the total number of collisions (#col) and
the total amount of penetration depth of pairs of objects in collisions (costp)
considering the placement constraints V

1: Ccurrent ← if not provided, generate a configuration of all objects OO ∪OC ∪ON

on the surface S obtained from CI by randomly placing the new objects ON on
the surface S
// Call the dynamic simulator to reduce the total penetration depth, and check
if it also decreases the number of collisions

2: Cnext ← innermostSearch(P,V,Ccurrent);
3: if costc(Cnext) ≺ costc(Ccurrent) then
4: Ccurrent=Cnext ;
5: end if

// Re-place objects in collisions and call the dynamic simulator until no better
configuration can be found

6: Cbest=Ccurrent ;
7: loop
8: H ← refine discretization, identify free cells
9: for o ∈ OC ∪ON in collision do

10: for every free cell e in H do
11: Co ← re-place o in Ccurrent in e
12: Cx ← innermostSearch(P,Vo,Co);
13: if costc(Cx) ≺ costc(Cbest) then
14: Cbest=Cx;
15: end if
16: end for
17: end for
18: if costc(Ccurrent) ⪯ costc(Cbest) then
19: return Ccurrent ;
20: else
21: Ccurrent=Cbest ;
22: end if
23: end loop

utilizes some constraints on the placements of objects to limit their movements.

4.2.3 Rearrangement Minimization

The outermost local search algorithm (Algorithm 4) utilizes placement constraints
to minimize displacements. Intuitively, the amount of displacement of a movable

21

Parent

costc = <15, 1.45> costc = <9, 1.10>

A B

C

D

costc = <10, 1.22>

Child A Child C

A B

C

D

A B

C

D

Fig. 4.2. Intermediate local search algorithm

object o ∈ OC is constrained to a ball whose centroid is the object’s centroid in the
given initial configuration in CI . Initially, radiuso is set to 0; if the outermost local
search algorithm cannot find a better configuration under these constraints, then
radiuso is increased slightly.

The outermost local search algorithm starts with a configuration Ccurrent of all ob-
jects OO ∪ OC ∪ ON on the surface S obtained from CI by randomly placing the
new objects ON on the surface S. It calls the intermediate local search algorithm
described above to find a better configuration, but with respect to the given set
V of placement constraints. The goal is to minimize the objective optimization
function costr defined as a triple ⟨#col,#move, costd⟩, where #col is the total num-
ber of collisions, #move is the total number of moves of objects in OC from their
original places, and costd is the total amount of change in configurations of objects
in OC with respect to CI . Here, costd for a configuration Cx is computed as the
sum of the total amount of displacements of objects in OC (i.e., ∑o∈OC

disto(CX),
where disto(CX) is the distance between the centroid of o in CI and the centroid
of o in Cx) and the total amount of change in orientations of objects in OC (i.e.,
∑o∈OC

arco(CX), where arco(CX) is the arc length due to the change of configuration
of o from CI to Cx). The outermost local search algorithm also uses lexicographic
ordering to find the minimum of two triples. In this way, priority is given first to
#col, then to #move, and then to costd.

An example is presented in Figure 4.3 to illustrate the usefulness of the placement
constraints in the outermost local search algorithm. The search starts with a con-

22

Algorithm 4 outermostSearch
Input: PG problem P = ⟨g(S), OO, g(OO), OC , g(OC), ON , g(ON), CI , W ⟩.
Output: A configuration of all objects ON ∪OC on the surface S.

// V : a set of placement constraints for every object o ∈ OC , specifying radiuso

of the balls where o can be placed in
// costr: cost function characterizes the total amount of changes of object poses
with respect to CI

1: Ccurrent ← a configuration of all objects OO ∪OC ∪ON on the surface S obtained
from CI by randomly placing the new objects ON on the surface S;

2: V ← for every o ∈ OC , radiuso=0
// Call the intermediate local search to reduce number of collisions and check if
it also decreases the total pose changes

3: Cnext ← intermediateSearch(P,V,Ccurrent);
4: if costr(Cnext) ≺ costr(Ccurrent) then
5: Ccurrent=Cnext ;
6: end if

// Relax the placement constraints and call the intermediate local search until
no better configuration can be found

7: Cbest=Ccurrent ;
8: loop
9: for o ∈ OC where radiuso<1 do

10: radiuso ← increase the radius slightly;
11: Vo ← update V with radiuso;
12: Co ← intermediateSearch(P,Vo,Ccurrent);
13: if costr(Co) ≺ costr(Cbest) then
14: Cbest=Co;
15: end if
16: end for
17: if costr(Ccurrent) ⪯ costr(Cbest) then
18: return Ccurrent ;
19: else
20: Ccurrent=Cbest ;
21: end if
22: end loop

figuration Ccurrent , where #col(Ccurrent) = 4, #move(Ccurrent) = costd(Ccurrent) = 0.
Initially, the radius of the placement balls for every object that is initially on the ta-
ble is zero. With these placements constraints, the intermediate local search cannot
find a better configuration to optimize costr. Then, for each object, the outermost
local search algorithm relaxes its placement constraints by increasing the radius of its
placement ball by a certain percentage, and calls the intermediate local search again.
With such relaxed constraints, the intermediate local search algorithm returns better
configurations with less costs. For example, when it is allowed to place the cuboid
object within a small circle around its initial configuration, the intermediate lo-
cal search algorithm returns a configuration Ccuboid with costr(Ccuboid) = ⟨2,1,2.82⟩;

23

(a)

cost
r
= < 4, 0, 0 >

cost = < 5, 1, 2.91 >cost = < 2, 1, 2.82 > cost = < 1, 1, 1.97 > cost = < 0, 1, 1.76 >

(b)

cost = < 1, 2, 4.9 > cost = < 1, 2, 6.28 > cost = < 1, 2, 3.68 > cost = < 0, 1, 3.64 >

cost
r
= < 0, 1, 1.76 >

radiuscuboid+=0.25(maxd(cuboid))

radiussphere+=0.25(maxd(sphere))

radiuscube+=0.25(maxd(cube))

radiuscylinder+=0.25(maxd(cylinder))

radiuscuboid+=0.25(maxd(cuboid))

radiussphere+=0.25(maxd(sphere))

radiuscube+=0.25(maxd(cube))

radiuscylinder+=0.25(maxd(cylinder))

Fig. 4.3. Outermost local search algorithm progression

whereas, when it is allowed to place the cylindrical object by a small amount, it
returns a configuration Ccyl with costr(Ccyl) = ⟨0,1,1.76⟩ (Figure 4.3(a)). The out-
ermost local search algorithm continues search from Ccyl , with even more relaxed
placement constraints, but cannot find a better configuration with less cost; so the
outermost search stops (Figure 4.3(b)).

24

Chapter 5

Rearrangement Planning

In Chapter 4, we discussed methods used to acquire a feasible goal placement, where
the configuration is collision-free, and the number of original objects moved, as well
as their total displacement, is minimized. In this chapter, we detail the hybrid
planning framework used to arrive to a feasible rearrangement plan by which a
robot can achieve the goal placement computed earlier.

5.1 Problem Definition

The rearrangement planning (RP) problem is defined by

• a grid of non-uniform cells, where each cell contains at most the centroid of a
single object.

• a unique grid cell identifier for each object in OC ∪ON w.r.t. CI and CF

• a set H of high level task planning constraints on manipulation of objects in
the clutter.

A solution to a RP problem is an optimal task plan P ∗ with the minimum number
of manipulation actions that rearranges objects from CI to CF .

5.2 Methods

To find such a rearrangement plan, we first discretize the continuous domain utilizing
the solution provided by our goal placement method. Then, we use the hybrid
planning framework of [31], [63] to embed low-level feasibility checks into a high-

25

level representation of actions, such that a rearrangement plan that is physically
feasible can be computed.

5.2.1 Configuration Discretization

We begin the discretization step by pre-processing the solution of placement gener-
ation such that the centroid of each object is occupied by a single cell in the grid.
The cells of the grid are non-uniform, and it is important to determine the minimum
number of cells required to represent such a grid, as this greatly improves the perfor-
mance of plan computation. The discretization step is performed in two steps: first,
a naive discretization is computed by inteoducing horizontal and vertical lines amon
object centroids as detailed in Algorithm 5. Second, an optimization is performed
on the naive discretization to compute the grid with minimum number of cells. In
particular, we define the minimization as a problem declaratively in ASP, and use
the efficient ASP solver Clasp to find the global minimum.

Figure 5.1 presents the progression of configuration discretization: (a) shows the
solution computed by the placement generation algorithm, (b) shows the grid pro-
duced by Algorithm 5, resulting in 729 cells, and (c) shows the grid optimized using
ASP, resulting in 64 cells. Note that while there are 25 objects, the discrete domain
contains 29 centroids because it considers the final centroid locations of OO∪OC∪ON ,
shown in (a), as well as the initial centroid locations of OO ∪OC , colored yellow in
(b) and (c).

While we include ON in Algorithm 5, it is important to note that for configurations
where each object has the same cross-sectional area across the axis perpendicular
to the surface, we can completely omit ON from the discretization and planning

Algorithm 5 naiveDiscretizer
Input: A configuration C of all objects ON ∪OC ∪OO on the surface S.
Output: Sets of horizontal lines H and vertical lines V , together describing a grid.

// Get ordered lists of the x and y coordinates of ON ∪OC ∪OO

1: X,Y ← sortAscending(getCentersOfMass(C));
2: H ← ∅;
3: for i ∈ {0, . . . , ∣X ∣ − 2} do
4: V ← V ∪ {1

2(X[i] +X[i + 1])}
5: end for
6: V ← ∅;
7: for i ∈ {0, . . . , ∣Y ∣ − 2} do
8: H ←H ∪ {1

2(Y [i] + Y [i + 1])}
9: end for

10: return H,V ;

26

altogether, since it is sufficient to rearrange the original objects to their goal poses as
the new objects can be simply placed to their goal locations after this re-arrangement
is performed.

After a naive discretization of the domain, we represent the optimization problem
to ASP format by, first, defining the set of horizontal and vertical grid lines, where
each line is represented by the atoms hline(i) and vline(i)

hline(0). hline(m). vline(0). vline(n).
{hline(y) ∶ 0 ≤ y ≤m}. {vline(x) ∶ 0 ≤ x ≤ n}.

and where m = ∣V ∣ and n = ∣H ∣, with V and H following their definitions in Algo-
rithm 5. Then, the grid cells can be defined as follows

cell(x1, y1, x2, y2) ←
hline(y1), hline(y2), vline(x1), vline(x2),
{hline(y) ∶ y1 < y < y2}0, {vline(x) ∶ x1 < x < x2}0.

where 0 ≤ x1, x2 ≤ n and 0 ≤ y1, y2 ≤ m. We define object centroids by atoms of the
form obj(x1, y1, x2, y2). Next, we introduce a constraint that prevents more than
one distinct object centroid from being located in the same cell:

← cell(x1, y1, x2, y2),
2{obj(x3, y3, x4, y4) ∶ x1 ≤ x3, x2 ≥ x4, y1 ≤ y3, y2 ≥ y4}.

Finally, we define weak constraints to minimize the number of grid lines:

¢ hline(y). [1@1, y]
¢ vline(x). [1@1, x]

6 4 2 0 2 4 6

(a)

(b)

(c)

Fig. 5.1. An example of configuration discretization.

27

5.2.2 High-Level Planning

After an optimal non-uniform grid for discretization of object configurations is found,
a rearrangement plan is computed using ASP. The planning domain is described as
follows.

The fluent loc(o, c, t) is used to represent the location of the object o to be in the grid
cell c at timestep t, and the fluent moveTo(o, c, t) is used to represent the movement
of object o from its current grid cell to grid cell c at timestep t.

The preconditions of moveTo(o, c, t) action are defined as follows:

←moveTo(o, c, t), obj(o), obs(o), cell(c), time(t).
←moveTo(o, c, t), obj(o), cell(c), time(t), loc(o, c, t).

←moveTo(o, c, t), obj(o), obj(o1), o ≠ o1, cell(c), time(t), loc(o1, c, t).

where the first precondition prevents the movement of obstacles (obs(o) indicates
that the object o is an obstacle), the second precondition prevents the movement of
an object into its current cell, and the third precondition prevents the movement of
an object into an occupied cell.

The direct effect of moveTo(o, c, t) action is defined as follows:

loc(o, c, t1) ←moveTo(o, c, t), obj(o), time(t), t1 = t + 1, cell(c).

This rule describes the direct changes that happen to the state as a result of the
moveTo action; in particular, the location of object o becomes cell c in the timestep
t1, which is the timestep that follows the one the action is executed.

The ramification of moveTo(o, c, t) action is defined as follows:

−loc(o, c, t1) ←
loc(o, c, t), loc(o, c1, t1),
obj(o), cell(c), cell(c1), c ≠ c1, time(t), t1 = t + 1.

This describes the indirect changes that occur as a result of the moveTo action; in
particular, since the location of object o becomes cell c1 in the next timestep t1, it
is explicitly defined as not being in its previous cell c during t1.

Finally, since the high-level planner relies on a a discretized state representation
based on object centroids, it is necessary to make use of an external atom to perform

28

collision checks of each action of the plan to ensure feasibility.

← &isCollision[loc]().

The input to the external atom is the loc predicate with all its extensions at all
timesteps. That is, the external computation inputs the discrete location, in cell
index, of every object at each timestep. The external computation returns true if
there exists a collision among objects at any timestep – otherwise, it returns false.

This external atom must be implemented carefully to ensure the continuity of the
domain, including orientation, when checking for collisions. The next Subsection
details this feasibility check.

5.2.3 Low-Level Feasibility Check

As explained in Section 3.2, an external atom calls a function that is defined outside
the ASP solver. In this case, the &isCollision external atom calls a function that
first attempts to naively determine feasibility by, for every step of the plan, com-
pletely constraining the non-moving objects between the two configurations before
and after the step, and constraining the moving object of the step to within its grid
cells. Then, Algorithm 3 is called to find a solution for this step with these con-
straints. This process is repeated for each step, using information from the previous
step to retain continuity, except for the final, since it is already collision-free.

If a solution for an earlier step prevents a solution from being found for a later step,
this naive method fails, making it especially susceptible to non-monotone instances.

Algorithm 6 isCollision
Input: loc, the sequence of discrete configurations queried by the planner.
Output: success or failure.

// D: the configuration discretization
// P : the placement generation problem
// CI : the initial configuration.
// CG: the goal configuration

1: load P,D,CI , and CG from memory
2: Efeasible ← feasiblitySearch(loc,P,D,CI ,CG)
3: if costf(Efeasible) = ⟨0,0,0⟩ then
4: save plan based on Efeasible to memory
5: return success
6: else
7: return failure
8: end if

29

This is similar to the implementation described in [1], where continuous information
between each consecutive pair of steps is not retained. Instead each step is checked
for independently, which neccesitates succeeding the hybrid planning step with a
layer to adjust the plan steps to overall plan consistency. Note that this layer may
fail to find a consistent plan, which will require calling the hybrid planner again
with new task-level constraints.

We propose retaining the continuous information when checking between each con-
secutive pair of steps by checking the plan in its entirety, rather than one step at a
time. When the naive method fails, we propose using a local search based on the
placement generation intermediate layer to act as a sophisticated feasibility checker.

Algorithm 7 feasiblitySearch
Input: loc, the sequence of discrete configurations queried by the planner; D, the
configuration discretization; P , the placement problem; CI and CG, the initial and
goal configurations.
Output: A sequence of configurations and their constraints

1: Ecurrent ← createState(loc,P,D,CI ,CG)
2: Ebest ← Ecurrent
3: loop
4: for ⟨Ci, Vi⟩ ∈ Ecurrent do
5: Co ← intermediateSearch(P,Vi,Ci)
6: Eo ← propagate(Ecurrent ,Co)
7: if costf(Eo) ≺ costf(Ebest) then
8: Ebest=Eo;
9: end if

10: end for
11: if costf(Ecurrent) ⪯ costf(Ebest) then
12: return Ecurrent ;
13: else
14: Ecurrent=Ebest ;
15: end if
16: end loop

Consider the definitions established earlier in Chapter 4.1 and Section 5.1. We define
the state for our sophisticated feasibility checker as the n-tuple

E = ⟨⟨C0, V0⟩, ⟨C1, V1⟩, . . . , ⟨Cn, Vn⟩⟩

where n = ∣P ∗∣ + 1 is the number of configurations that will be seen while executing
plan P ∗. Then we can define the cost as

costf(E) = ⟨
n

∑
i=1

col(Ci),
n

∑
i=1

#col(Ci),
n

∑
i=1

costp(Ci)⟩

30

where col(Ci) returns 1 or 0 describing the presence or absence of a collision in Ci.

The search begins with an initial state E0, generated using the naive method de-
scribed earlier. The constraints V0, . . . , Vn for each configuration are defined such
that the objects that are in their initial or goal grid cells are completely constrained
to their initial or goal continuous poses, repectively, and objects in buffer cells are
constrained to their corresponding grid cells.

The transition between a state Ei and its successor Ei+1 is detailed in Algorithm 7,
which uses Algorithm 3 to solve collisions in a configuration Cj with constraints Vj.
The pose changes resulting from this are then propagated across all other configu-
rations {C0, . . . ,Cj−1} ∪ {Cj+1, . . . ,Cn}, as detailed in Algorithm 8.

Algorithm 8 propagate
Input: Ecurr , the current sequence of configurations and their constraints; Cref , the
configuration we would like to propagate and its constraints Vref .
Output: A new sequence of configurations and their constraints, where the effect
of modifying Cref is propagated.

1: Oref
M ← OC ∪ON from Cref

2: for o ∈ Oref
M do

// Forward propagation
3: for i ∈ ⟨j, j + 1, . . . , ∣Ecurr ∣⟩ do

// Acquire the object o as it is defined in configuration Ci
4: b← getObject(o,Ci)

// Propagate the pose if the constraints acting on objects o and b are equal.
5: if getConstraint(b, Vi) = getConstraint(o, Vref) then
6: b.pose← o.pose

// Exit the loop once a constraint change is detected – this means the cell
definition has changed and we should no longer propagate forward.

7: else
8: break
9: end if

10: end for
// Backward propagation

11: for i ∈ ⟨j − 1, j − 2, . . . ,0⟩ do
12: b← getObject(o,Ci)
13: if getConstraint(b, Vi) = getConstraint(o, Vref) then
14: b.pose← o.pose
15: else
16: break
17: end if
18: end for
19: end for
20: return Ecurr

31

Chapter 6

Experimental Evaluation

6.1 Placement Generation

The success the methods described in Chapter 4 is evaluated with quantitative
and qualitative assessments. Quantitatively, we attempt to get an understanding
of the scalability of the algorithms by solving problems with varying numbers of
obstacle, original, and new objects. Qualitatively, we test our method’s ability to
solve particularly difficult instances with non-convex objects and highly confined
spaces, some introduced in the literature and others introduced in this thesis.

We have conducted three sets of experiments to evaluate and compare performance
of each search level of our goal generation algorithm. All simulations were executed
on workstation with an Intel Xeon W-2155 CPU running at 3.30 GHz using a single
thread and 32 GB RAM. All algorithms were implemented in Python, with Bul-
let [58] as the back-end physics engine. Each instance of each experiment was run
60 times to allow for averaging of the results. A timeout of 300 s per trial was
imposed.

Experiment 1 started with the initial configuration depicted in Figure 4.1(a), where
4 objects and an obstacle were on a surface. The number of new objects to be added
to the table was the control variable in this condition. The number of new objects
was increased from 4 to 36, such that the total footprint area covered by all objects
and the obstacle were gradually increased up to 95% of the total surface area.

Experiment 2 involved an obstacle and 4 new objects to be placed on the table. The
number of movable objects that were initially on the table was the control variable
in this condition. The number of movable objects on the table was increased from
4 to 36, such that the total footprint area covered by all objects and the obstacle
were gradually increased up to 95% of the total surface area.

32

Experiment 3 involved 4 initial objects randomly placed on the surface in collision-
free configurations and 4 new objects to be added to the surface. The number of
obstacles on the table was the control variable in this condition. The number of
obstacles was increased from 4 to 32, such that the total footprint area covered by
all objects and obstacles was gradually increased up to 95% of the total surface area.

Six algorithms were compared, where three of them correspond to the different levels
of our nested local search:

• innermost search (Inner) based on collision resolution methods,

• intermediate local search (Intermediate) wrapped around Inner, and

• the outermost local search (Outer) wrapped around Intermediate.

Remaining three algorithms are taken as baselines to demonstrate effectiveness of
our approach with respect to naive implementations and earlier methods presented
in the literature. In particular,

• to highlight the benefits of using the innermost search, we have tested Random
Sample approach, which randomly samples new configurations for objects with
uniform distribution until a collision-free placement is found.

• To highlight the benefits of using our intermediate local search, we have tested
Random Restart which is implemented as the innermost search Inner with
random restarts.

• To highlight the differences between the placement generation algorithm in-
troduced in this thesis and the one introduced in [1], we have evaluted its
performance under the label Havur.

The performance of the algorithms were compared based on three metrics:

• efficiency, measured by the average CPU time spend to calculate a solution,

• quality, measured by the average number of objects moved that were initially
on the table and their total movement, and

• success rate, measured by percentage of trials that converge to a collision-free
final configuration before a time-out is reached.

Efficiency and quality metrics are computed for partial solutions of unsuccessful
trials that return configurations with collision(s).

Figures 6.1–6.3 graphically summarizes the data collected from Experiments 1–3,
respectively. In each figure, the left column represent the quality of the solution,

33

20 30 40 50 60 70 80 90
Surface Coverage (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
u
m

b
e
r

o
f

O
ri

g
in

a
l
O

b
je

ct
s

M
o
v
e
d

Experiment Set 1
Number of New Objects Varying

19.9 29.0 38.1 47.3 56.4 65.6 74.7 83.8 93.0
Surface Coverage (%)

0

20

40

60

80

100

S
u
cc

e
ss

fu
l
T
ri

a
ls

 (
%

)

Experiment Set 1
Number of New Objects Varying

20 30 40 50 60 70 80 90
Surface Coverage (%)

0

50

100

150

200

250

300

T
im

e
 (

s)

Experiment Set 1
Number of New Objects Varying

Timeout

Inner

Intermediate

Outer

Random Sample

Random Restarts

Havur

Fig. 6.1. Plots summarizing the results of Experiment 1.

while the right column shows the CPU time and success rate metrics. These results
are also detailed in Table A.1.

We can observe the effect of increasing the number of new objects to be put on the
table from Figure 6.1.

• In terms of average CPU time, Inner outperforms Random Sample, while
Intermediate consistently outperforms all other algorithms, including Random
Restart. While Outer is in general slower than Random Restart for problems
with surface coverage less than 75%, Outer outperforms Random Restart in
highly cluttered environments, since it relies on Intermediate when stuck at
local minima. Havur is observed to perform very well up until about 60%
surface coverage, after which it is outperformed by even the Random Restart
baseline.

• In terms of solution quality, Inner and Intermediate perform quite similarly
and move more objects as the table gets more cluttered, while Outer performs
significantly better than both. In particular, up to 30% surface coverage,
Outer could find solutions that do not require any movements of the objects

34

20 30 40 50 60 70 80 90
Surface Coverage (%)

0

5

10

15

20

25

30

35
N

u
m

b
e
r

o
f

O
ri

g
in

a
l
O

b
je

ct
s

M
o
v
e
d

Experiment Set 2
Number of Original Objects Varying

20 30 40 50 60 70 80 90
Surface Coverage (%)

0

50

100

150

200

250

300

T
im

e
 (

s)

Timeout

Inner

Intermediate

Outer

Random Sample

Random Restarts

Havur

Experiment Set 2
Number of Original Objects Varying

19.9 29.0 38.1 47.3 56.4 65.6 74.7 83.8 93.0
Surface Coverage (%)

0

20

40

60

80

100

S
u
cc

e
ss

fu
l
T
ri

a
ls

 (
%

)

Experiment Set 2
Number of Original Objects Varying

Fig. 6.2. Plots summarizing the results of Experiment 2.

initially on the table. As the clutter increases, it becomes necessary to move
some of these objects, but the number of moved objects stays significantly
less than those in the solutions computed by Inner and Intermediate. It is
important to note that the baseline algorithms, Random Sample and Random
Restart, consistently result in low solution quality, even when compared to
algorithms that do not distinguish between original and new objects, such as
Intermediate. Havur produces marginally better quality solutions than Outer
until 60% surface coverage, after which the quality becomes worse.

• In terms of success rate, we note that Intermediate and Outer can solve al-
most all problems up to 85%, and are the only algorithms capable of solving
problems more cluttered than 85%, although the success rate drops to about
40%. While Random Sample outperforms Inner for simple problems where
the surface coverage is less than 30%, Inner can solve some problems of up
to 75% surface coverage, unlike Havur which fails completely after 65%, while
Random Sample cannot solve any problems that has more than 40% surface
coverage.

35

30 40 50 60 70 80 90
Surface Coverage (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
u
m

b
e
r

o
f

O
ri

g
in

a
l
O

b
je

ct
s

M
o
v
e
d

Experiment Set 3
Number of Obstacle Objects Varying

Timeout

Inner

Intermediate

Outer

Random Sample

Random Restarts

Havur

30 40 50 60 70 80 90
Surface Coverage (%)

0

50

100

150

200

250

300

T
im

e
 (

s)

Experiment Set 3
Number of Obstacle Objects Varying

27.4 36.6 45.7 54.8 64.0 73.1 82.3 91.4
Surface Coverage (%)

0

20

40

60

80

100

S
u
cc

e
ss

fu
l
T
ri

a
ls

 (
%

)

Experiment Set 3
Number of Obstacle Objects Varying

Fig. 6.3. Plots summarizing the results of Experiment 3.

We can observe the effect of increasing the number of original objects on the table
from Figure 6.2. Note that these objects can be moved but are desired not to
be relocated; hence, the quality of solutions becomes more emphasized in these
experiments.

• In terms of average CPU time, once again, Inner outperforms the Random
Sample, and Intermediate outperforms Random Restart. From these experi-
ments, we can observe how increasing the number of original objects affects
Outer, causing it to have a sharp increase in computation time at about
50% surface coverage. Havur has a time efficiency profile similar to Random
Restart, and is outperformed by Intermediate.

• The trend observed from the first set of experiments regarding solution quality
can again be seen here. As Outer and Havur are the only two algorithms that
attempt to improve solution quality, they consistently move fewer original
objects across all surface coverage levels.

• The success rate of Outer varies over surface coverage levels, but is always
worse than Intermediate and Havur. In particular, given that Outer aims to

36

solve a more constrained version of the problem solved by Intermediate, it is
not surprising that it fails more often. In this experiment set, Intermediate is
the only algorithm that is capable of solving a significant portion of problems
with 95% surface coverage.

We can observe the effect of increasing the number of obstacles on the table from
Figure 6.3. Note that since obstacles cannot be moved, these instances prove to be
much harder than the previous experiments, as the percentage of surface coverage
increases.

• In terms of average CPU time, Random Restart, Intermediate, and Outer
perform similarly up to 65% clutter, after which Random Restart baseline
falls behind in computation time. The computation time for Outer, Havur,
and Intermediate display great similarity until about 85%, after which no
algorithm can solve even a single instance. Note that as the obstacles increase,
the problem become highly constrained and objects initially located on the
table are trapped; hence, object movements are much less in this experiment.

• In terms of solution quality, Random Sample and Random Restart baselines
perform quite similarly and move almost all objects initially on the table, while
Outer and Intermediate perform slightly better than both baselines. Inner and
Havur perform the best in terms of solution quality, but this is mainly due to
the constrained nature of the problem mentioned earlier.

• Inner and Intermediate display significantly different trends in terms of success
rate. In particular Inner starts failing quite early and can only solve about 30%
of instances at 55% clutter, while Intermediate, Havur, and Outer consistently
find over 80% of the solutions up to 85% clutter, after which all approaches
fail.

The results of these experiments indicate the usefulness of all three nested local
searches proposed by our method. Outer significantly improves solution quality
by minimizing movements of objects on the table, Intermediate improves success
rate by allowing replacements when stuck in local optima, and Inner improves the
CPU time over Random Sampling especially for cluttered scenarios. It is important
to highlight that Havur fails in all experiment sets once the surface coverage goes
over 80%, and it is especially susceptible to failure if the number of new objects to
be placed is high. The reason for both these failures is that Havur places objects
sequentially, which can constrain the algorithm’s ability once the surface coverage
and the number of new objects is too high.

37

(a)

(b) (c)

(a)

(b) (c)

Fig. 6.4. Confined Placement Scenario.

6.1.1 Benchmark Instances

To demonstrate the ability of our local search approach to solve a large variety of
placement problems, we have also tested it with several difficult benchmark sce-
narios. These benchmarks have been engineered to result in difficult instances, by
introduction of non-convex objects, confined surfaces, and very specific configura-
tions that result in feasible placements.

Confined Placement Scenario

In this scenario, we have 4 original objects, and a very large number of randomly
placed obstacles, all clones of the same 4 basic shapes we have seen in Figure 4.1.
The goal is to place 4 more of these objects. We show this to demonstrate the ability
of our algorithm to handle highly restricted spaces. Figure 6.4 shows our problem
with two solutions: one found using Intermediate, and the other using Outer.

Tight Placement Scenario

We test our algorithms ability to deal with concave shapes with the tight placement
scenario introduced in [1] as seen in Figure 6.5. The solution found is similar to the
original problem; indeed, the problem’s difficulty lies in that all possible solutions
would be similar, with the ellipse fitting into the circle’s hole and having been pushed

38

(a)

(b) (c)

Fig. 6.5. Tight placement scenario.

x11

(a)

(b) (c)

Fig. 6.6. Elongated objects scenario.

to the top of the surface, and the rectangular box lying horizontally at the bottom of
the surface. Notably, our algorithm is able to find a solution in a matter of minutes,
which is a significant improvement over the previous work.

Elongated Objects Scenario

In the elongated object benchmark, the length of slender objects are designed to
pose a challenge, as shown in Figure 6.6(a). In particular, one of the objects is
selected to have a length greater than the width of the square surface, while 11
other slender objects are set to have a length that is equal to the half the width
of the square surface. This benchmark is difficult, as the placement of the longest
object introduces unusable space on the square surface, rendering convergence to
a solution significantly more difficult. Figure 6.6(b) depicts a random placement
for this problem, demonstrating the unusable area introduced by the long object.
Figure 6.6(c) presents the solution computed by our algorithm.

Tight L-Shapes Scenarios

L-shapes are a popular method of demonstrating the capabilities of a placement
algorithm. Here we present two variations. In the first, our L-shapes are uniform
along the z-axis, and the emphasis is to show that our algorithm is able to handle
such a common benchmark. In the second, the uniformity is in the x and y axes, to
demonstrate our algorithm’s ability to deal with problems in 3D.

These problems are defined such that the total contact area of the L-shapes with the
surface is equivalent to the total surface area of the surface, so the range of possible
solutions is very limited. Our solutions can be seen in Figures 6.7 and 6.8.

39

(a)

(c)(b)

Fig. 6.7. The tight L-shapes scenario
with concavity across the x-y plane.

x4

x4

(a)

(b) (c)

Fig. 6.8. The tight L-shapes scenario
with concavity across the z-y plane.

6.2 Rearrangement Planning

The methods described in Chapter 5 are evaluated with quantitative and qualitative
assessments. Quantitatively, we analyze the scalability of the planning algorithm
by solving problems with varying numbers of original objects on several ranges of
surface coverage. In particular, we investigate the effect of using our outermost local
search on the planning stage. Qualitatively, we test our method’s ability to solve
particularly difficult instances of non-monotone plans that involve multiple enforced
swaps.

An Intel Xeon W-2155 CPU running at 3.30 GHz using a single thread and 32 GB
RAM was used for this analysis, with all algorithms implemented in Python, and
Bullet [58] as the back-end physics engine. For discretization, and high-level plan-
ning, Clingo and dlvhex, respectively, are used and connected to our Python
implementation via external atoms.

To evaluate the effect of minimizing the number of rearranged objects on the surface
for the planner, experiments 4-6 are presented. Each instance was run 20 times and
no timeout was imposed.

Experiment 4 uses a single obstacle and 12 new objects which are all random clones
of the objects shown in Figure 4.1. The number of original objects is controlled and
incremented from 1 to 9 to study the performance of the algorithms in environments
with low surface coverage.

Experiments 5 and 6 use the same setting as Experiment 4, but utilize 20 and 28 new
objects to study the performance of the algorithms in environments with moderate
and high surface coverage, respectively.

40

0 2 4 6 8
Number of Rearranged Objects

0

100

101

102

103

104

P
la

n
n
in

g
 T

im
e
 (

s)

0 2 4 6 8
Number of Rearranged Objects

0

2

4

6

8
N

u
m

b
e
r

o
f

R
e
a
rr

a
n
g
e
m

e
n
t

P
la

n
 S

te
p

s

Planning Scalability

Fig. 6.9. Plots summarizing the planning scalability based on Experiments 4-6.

To evaluate the difference in performance between using interleaved and discon-
nected feasibility checks for hybrid planning, experiment 7 is presented. Experiment
7 uses a set of instances with enforced swaps in tight spaces to force the feasbility
checker to activate. Each instance was run 60 times and no timeout was imposed.

Two placement algorithms are compared, corresponding to different levels of the
overall placement generation nested local search:

• intermediate local search (Intermediate) wrapped around Inner, and

• the outermost local search (Outer) wrapped around Intermediate.

The performance of hybrid planning method based on the solutions produced by
these algorithms as compared based on two metrics:

• computational efficiency, measured by the mean CPU time spent calculating
a solution, and

• quality, measured by the number of steps in the resulting minimal plan.

Comparing the effect of using Intermediate and Outer on the resulting planning
process is the main focus of these experiment sets. Figures 6.10-6.12 show the
results of Experiments 4-6, respectively, where the mean plan length, placement
time, planning time, and the total time are illustrated. Note that the mean plan
length includes the number of placement steps, and not just the rearrangement steps.
These results are further detailed in Table A.2.

The overall planner performance in terms of computational efficiency and solution
length can be seen in Figure 6.9:

• The planner is able to consistently find monotone (and therefore minimal)
plans. This is mostly due to the similarity in sizes of the objects being consid-

41

1 2 3 4 5 6 7 8 9
Number of Original Objects

0

100

101

102

103

P
la

n
n
in

g
 T

im
e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

0

100

101

102

103

T
o
ta

l
T
im

e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

0

100

101

P
la

ce
m

e
n
t

T
im

e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

12

13

14

15

16

17

18

19

20

N
u
m

b
e
r

o
f

P
la

n
S

te
p

s

Experiment Set 4
12 New Objects

Intermediate

Outer

Fig. 6.10. Plots summarizing the results of Experiment 4.

ered, but can also be partially attributed to using collision resolution methods
for placement generation; since objects are pushed out of collision to find a
solution, a swap between similarily-sized is very rarely neccessitated.

• The planning time increases exponentially with the number of rearranged ob-
jects, which reinforces our motivation to minimize the number of rearranged
objects in the placement stage.

The effect of using Intermediate and Outer to generate a goal placement for configu-
rations with a low surface coverage (approx. 30% - 50%) is illustrated in Figure 6.10:

• There is no clear difference in terms of the overall computational efficiency
between Intermediate or Outer for simpler problems where the number of
original objects is less than 7. However, it can be argued that given the
difference in the plan lengths, the overall effieciency of Outer is higher due to
the robot execution time.

• When the number of original objects is greater than 6, Intermediate shows
better computational efficiency in computing placement solutions, but Outer
outperforms it in terms of the overall effiency by reducing the number of

42

1 2 3 4 5 6 7 8 9
Number of Original Objects

100

101

102

P
la

ce
m

e
n
t

T
im

e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

0

100

101

102

103

P
la

n
n
in

g
 T

im
e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

100

101

102

103

T
o
ta

l
T
im

e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

20

22

24

26

28
N

u
m

b
e
r

o
f

P
la

n
S

te
p

s

Experiment Set 5
20 New Objects

Intermediate

Outer

Fig. 6.11. Plots summarizing the results of Experiment 5.

rearranged objects significantly, and thus giving the planner a simpler problem.

• The number of plan steps required to compute a solution using Intermedi-
ate increases almost linearly with respect to the original objects, whereas the
solution computed using Outer results in much shorter plans.

The effect of using Intermediate and Outer to generate a goal placement for con-
figurations with a moderate surface coverage (approx. 50% - 70%) is illustrated in
Figure 6.11:

• Using Intermediate to compute a placement solution for problems with a small
number of original objects (< 4) is somewhat advantageous, but the difference
might prove too little to mitigate the amount of time the robot would spend
executing the plan.

• When the number of original objects is greater than 3, using Outer for place-
ment generation results in approximately 1.5 times improvement in the plan-
ning time, but the overall efficiency improvement is more modest.

• As expected, the number of plan steps is consistently lower when using the
solution provided by Outer, which is significant in terms of place execution.

43

1 2 3 4 5 6 7 8 9
Number of Original Objects

101

102

103

P
la

ce
m

e
n
t

T
im

e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

0

100

101

102

103

104

P
la

n
n
in

g
 T

im
e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

101

102

103

104

T
o
ta

l
T
im

e
 (

s)

1 2 3 4 5 6 7 8 9
Number of Original Objects

28

30

32

34

36
N

u
m

b
e
r

o
f

P
la

n
S

te
p

s

Experiment Set 6
28 New Objects

Intermediate

Outer

Fig. 6.12. Plots summarizing the results of Experiment 6.

The effect of using Intermediate and Outer to generate a goal placement for configu-
rations with a high surface coverage (approx. 70% - 85%) is illustrated in Figure 6.12:

• Unlike the previous cases, Intermediate shows a significantly better overall
efficiency when compared to Outer, except for the case where there are 9
original objects.

• Even with a high surface coverage rate, Outer is able to reduce the number of
moved objects, and therefore the number of plan steps, significantly.

• In such highly cluttered environments, the difference between placement times
of Outer and Intermediate is approximately an order of magintude, and the
difference in planning time is not enough to consistently offset this difference.
Hence, selection of the proper approach can be decided based on the potential
gain, during execution of the plan.

44

6.2.1 Benchmark Instances

Experiments 4-6 demonstrate the ability of our planner to solve monotone plan-
ning instances. To demonstrate its ability with non-monotone problems, we have
also tested it with several difficult benchmark scenarios based on enforced swaps.
Importantly, the planner does not use explicitly defined buffer poses, which is how
planners in [11]–[15] relax the main challenge of this problem. Instead, our planner
suggests regions of placement, based on the minimal discretization, and the low-level
feasibility checker locally searches within those regions for appropriate buffer poses.

Enforced Swaps Scenario

The enforced swap benchmark is used to show the ability of the planner to han-
dle non-monotone planning instances with multiple swaps, which require moving
multiple objects to buffer poses. Note that, since the planner aims to optimize the
number of plan steps, it may require the use of multiple buffer poses, which would
be difficult to define before running the experiment. In this benchmark, shown in
Figure 6.13, we demonstrate our planner’s ability to compute and utilize multiple
buffer poses for multiple swaps.

(b
)

x5

Problem Solution
1

3

2

4

5

7 8

6

Fig. 6.13. Enforced Swaps Scenario.

Tight Placement Scenario

The tight placement benchmark introduced in [1] is used to show the ability of the
planner to handle non-monotone plans in very confined spaces. Note that in this
benchmark, even defining the buffer poses beforehand manually is not a trivial task.

45

In this benchmark, shown in Figure 6.14, we demonstrate our planner’s ability to
compute buffer poses in highly constrained continuous spaces.

Solution

Problem

1 2 3 4 5

Fig. 6.14. Tight Placement Scenario.

6.2.2 Comparison of Hybrid Planning Approaches

Given that our method embeds all the feasibility checks into the high-level planner
directly using external atoms (interleaved computation), it is expected to be more
efficient in terms of computation time than the methods introduced in [1], which
relies on guided replanning.

To that end, we introduce several benchmarks as in Figure 6.15 that specifically
target the feasibility checker. In particular, we introduced low-dimensional problems
from the high-level planner’s perspective, but require the objects to compute feasible
solutions.

In Figure 6.15, the red objects are movable, the black objects are immovable, and all
objects are allowed to overhang from the surface, provided their center of mass lies
on top of the surface. In all of these instances, our rearrangement planning method
is evaluated to be faster by a significant margin ranging from 10%-50%. which is
consistent with the observations in [64].

46

1

1
2

2

3

3

4

4

1

12

2

1

12

2

3

3

1

1
2

2

1

2 1

2

This thesis Havur et al., 20140

5

10

15

20

P
la

n
n
in

g
 T

im
e
 (

s)

This thesis Havur et al., 20140

250

500

750

1000

P
la

n
n
in

g
 T

im
e
 (

s)

This thesis Havur et al., 20140

10

20

30

P
la

n
n
in

g
 T

im
e
 (

s)

This thesis Havur et al., 20140

20

40

60

P
la

n
n
in

g
 T

im
e
 (

s)

PerformancePlanning Problem

This thesis Havur et al., 20140

50

100

150

P
la

n
n
in

g
 T

im
e
 (

s)

Fig. 6.15. Plots summarizing the results of Experiment 7.

6.3 Physical Implementation

To verify the applicability of our methods in real-life situations, we use a Baxter
robot to rearrange objects that of arbitrary shapes. Using the camera embedded into
the robot’s end effector, a simple visual servoing algorithm with color thresholding
is used to detect and localize objects in its surroundings. A single arm of the robot
is used for the rearrangement with overhand grasps. Three instances are explored:

47

1 2

3 4

Fig. 6.16. Baxter executing a plan with placement generated using Outer.

1. Figure 6.17 shows the execution of a monotone plan, whose goal state was
calculated using Intermediate.

2. Figure 6.16 shows the execution of a monotone plan, whose goal state was
calculated using Outer.

3. Figure 6.18 shows the execution of a non-monotone plan with forced swaps.

In all instances, the red-white objects are convex movable objects, the blue-white
objects are non-convex movable objects, and the yellow-black objects are obstacles.

In Figures 6.17 and 6.16, the same instance is used. Timestamps are included to
highlight the cost of rearranging objects. In particular, minimizing the number
of rearranged objects by using Outer at the placement stage resulted in no rear-
rangements, so the entire operation took approximately 20 seconds, whereas using
Intermediate resulting in a plan that involved two rearrangements and took approx-
imately 30 seconds.

In Figure 6.18, a nonmonotone instance is given where a red-white and a blue-white
object must swap positions. Note, in particular, the tightness of the configurations
shown at steps 4-5. Generating such a plan requires a continuous feasibility check.

48

1 2

3 4

5 6

7 8

Fig. 6.17. Baxter executing a plan with placement generated using Intermediate.

49

1 2

3 4

5 6

7 8

Fig. 6.18. Baxter executing a nonmonotone plan with a forced swap.

50

Chapter 7

Conclusion

Given a surface cluttered with (immovable) obstacles and movable objects, and a
new set of objects, the object placement problem asks for a collision-free placement
of all the objects on the surface. We have introduced a novel algorithm to solve this
problem, utilizing nested local search algorithms with multi-objective optimizations:
the innermost search tries to minimize the total penetration depths of objects, the
intermediate local search further tries to minimize the number of collisions, and the
outermost local search further tries to minimize the changes in object poses. Each
level of the search is guided by heuristics: the innermost search utilizes a potential
field method over a physics-based engine, the intermediate local search gradually
utilizes re-placements of objects to avoid local minima, and the outermost local
search gradually relaxes the constraints that specify how far objects can be displaced.
In that sense, our method introduces novel mathematical search models with nested
multi-objective optimizations, and algorithms that further utilize heuristics to avoid
local minima. On the other hand, due to local searches, our algorithm is more
about local optimization and is likely not to reach the global optima. Comprehensive
experimental evaluations demonstrate high computational efficiency and success rate
of our method, as well as good quality of solutions. Furthermore, difficult benchmark
scenarios that include non-convex objects, confined surfaces, and very small solution
spaces can also be solved with our method.

Our placement generation method is shown to improve planning times while using
the hybrid planning framework. Furthermore, improvements to hybrid rearrange-
ment planning are also introduced by integrating a more sophisticated feasibility
checker based on object placement that also ensures plan connectivity. We demon-
strate the applicability of our methods by testing them with simulated benchmark
scenarios and with real-life executions using a Baxter robot.

51

Bibliography

[1] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric rearrange-
ment of multiple movable objects on cluttered surfaces: A hybrid reasoning
approach,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on, IEEE, 2014, pp. 445–452.

[2] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles: Real-
time reasoning in complex environments,” International Journal of Humanoid
Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[3] M. Stilman and J. Kuffner, “Planning among movable obstacles with artificial
constraints,” The International Journal of Robotics Research, vol. 27, no. 11-
12, pp. 1295–1307, 2008.

[4] G. Wilfong, “Motion planning in the presence of movable obstacles,” Annals
of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 131–150, 1991.

[5] E. D. Demaine, M. L. Demaine, M. Hoffmann, and J. O’Rourke, “Pushing
blocks is hard,” Computational Geometry, vol. 26, no. 1, pp. 21–36, 2003.

[6] K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue, “Environment ma-
nipulation planner for humanoid robots using task graph that generates action
sequence,” in Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, IEEE, vol. 2, 2004, pp. 1174–
1179.

[7] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation plan-
ning among movable obstacles.,” Georgia Institute of Technology, 2007.

[8] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-prehensile
manipulation under clutter and uncertainty,” Autonomous Robots, vol. 33,
no. 3, pp. 217–236, 2012.

[9] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation with
multiple action types,” in Experimental Robotics, Springer, 2013, pp. 531–545.

[10] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning for ob-
ject placement on cluttered table surfaces,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, IEEE, 2011, pp. 4627–
4632.

[11] A. Krontiris, R. Shome, A. Dobson, A. Kimmel, and K. Bekris, “Rearranging
similar objects with a manipulator using pebble graphs,” in Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference on, IEEE, 2014,
pp. 1081–1087.

52

[12] A. Krontiris and K. E. Bekris, “Dealing with difficult instances of object rear-
rangement.,” in Robotics: Science and Systems, 2015.

[13] ——, “Efficiently solving general rearrangement tasks: A fast extension prim-
itive for an incremental sampling-based planner,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on, IEEE, 2016, pp. 3924–3931.

[14] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu, “High-quality
tabletop rearrangement with overhand grasps: Hardness results and fast meth-
ods,” in Proceedings of Robotics: Science and Systems, 2017.

[15] M. Kang, Y. Kwon, and S.-E. Yoon, “Automated task planning using object
arrangement optimization,” in 2018 15th International Conference on Ubiqui-
tous Robots (UR), IEEE, 2018, pp. 334–341.

[16] S. Zagoruyko, Y. Labbé, I. Kalevatykh, I. Laptev, J. Carpentier, M. Aubry, and
J. Sivic, “Monte-carlo tree search for efficient visually guided rearrangement
planning,” arXiv preprint arXiv:1904.10348, 2019.

[17] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An in-
cremental constraint-based framework for task and motion planning,” The
International Journal of Robotics Research, vol. 37, no. 10, pp. 1134–1151,
2018.

[18] L. F. Yu, S. K. Yeung, C. K. Tang, D. Terzopoulos, T. F. Chan, and S. J.
Osher, “Make it home: Automatic optimization of furniture arrangement,”
2011.

[19] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new objects
in a scene,” The International Journal of Robotics Research, vol. 31, no. 9,
pp. 1021–1043, 2012.

[20] Y. Jiang, M. Lim, and A. Saxena, “Learning object arrangements in 3d scenes
using human context,” in Proceedings of the 29th International Coference on
International Conference on Machine Learning, Omnipress, 2012, pp. 907–914.

[21] Y. Jiang and A. Saxena, “Hallucinating humans for learning robotic placement
of objects,” in Experimental Robotics, Springer, 2013, pp. 921–937.

[22] B. Chazelle, H. Edelsbrunner, and L. J. Guibas, “The complexity of cutting
complexes,” Discrete & Computational Geometry, vol. 4, no. 2, pp. 139–181,
1989.

[23] H. Dyckhoff, “A typology of cutting and packing problems,” European Journal
of Operational Research, vol. 44, no. 2, pp. 145–159, 1990.

[24] X. Liu, J.-m. Liu, A.-x. Cao, and Z.-l. Yao, “Hape3d—a new constructive al-
gorithm for the 3d irregular packing problem,” Frontiers of Information Tech-
nology & Electronic Engineering, vol. 16, no. 5, pp. 380–390, 2015.

[25] T. Romanova, J. Bennell, Y. Stoyan, and A. Pankratov, “Packing of concave
polyhedra with continuous rotations using nonlinear optimisation,” European
Journal of Operational Research, vol. 268, no. 1, pp. 37–53, 2018.

[26] Y. Ma, Z. Chen, W. Hu, and W. Wang, “Packing irregular objects in 3d space
via hybrid optimization,” Computer Graphics Forum, vol. 37, no. 5, pp. 49–59,
2018.

53

[27] J. Egeblad, B. K. Nielsen, and M. Brazil, “Translational packing of arbitrary
polytopes,” Computational Geometry, vol. 42, no. 4, pp. 269–288, 2009.

[28] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin packing
problem,” Operations Research, vol. 48, no. 2, pp. 256–267, 2000.

[29] G. Fasano, “A global optimization point of view to handle non-standard object
packing problems,” Journal of Global Optimization, vol. 55, no. 2, pp. 279–299,
2013.

[30] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras, “Combin-
ing high-level causal reasoning with low-level geometric reasoning and motion
planning for robotic manipulation,” in 2011 IEEE International Conference
on Robotics and Automation, IEEE, 2011, pp. 4575–4581.

[31] E. Erdem, E. Aker, and V. Patoglu, “Answer set programming for collaborative
housekeeping robotics: Representation, reasoning, and execution,” Intelligent
Service Robotics, vol. 5, no. 4, pp. 275–291, 2012.

[32] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incremental
task and motion planning: A constraint-based approach..”

[33] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” 1998.

[34] J. J. Kuffner Jr and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in ICRA, vol. 2, 2000.

[35] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The
international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.

[36] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-complete,”
Theoretical computer science, vol. 4, no. 3, pp. 237–244, 1977.

[37] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of
computer computations, Springer, 1972, pp. 85–103.

[38] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Unobservable monte carlo
planning for nonprehensile rearrangement tasks,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on, IEEE, 2017, pp. 4681–4688.

[39] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree
search,” in International conference on computers and games, Springer, 2006,
pp. 72–83.

[40] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer per-
ceptron)—a review of applications in the atmospheric sciences,” Atmospheric
environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[41] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[42] E. L. Lawler, J. K. Lenstra, A. R. Kan, D. B. Shmoys, et al., The traveling
salesman problem: a guided tour of combinatorial optimization, vol. 3.

[43] V. Lifschitz, “Answer set programming and plan generation,” Artif. Intell.,
vol. 138, no. 1-2, pp. 39–54, 2002.

[44] G. Brewka, T. Eiter, and M. Truszczynski, “Answer set programming at a
glance,” Commun. ACM, vol. 54, no. 12, pp. 92–103, 2011.

54

[45] M. Gelfond and V. Lifschitz, “Classical negation in logic programs and dis-
junctive databases,” New Generation Comput., vol. 9, no. 3/4, pp. 365–386,
1991.

[46] M. Gelfond and Y. Kahl, Knowledge Representation, Reasoning, and the De-
sign of Intelligent Agents: The Answer-Set Programming Approach. New York,
NY, USA: Cambridge University Press, 2014.

[47] V. Lifschitz, “What is answer set programming?” In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illi-
nois, USA, July 13-17, 2008, 2008, pp. 1594–1597.

[48] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Clingo = ASP +
control: Preliminary report,” CoRR, vol. abs/1405.3694, 2014.

[49] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits, “Dlvhex: A prover for
semantic-web reasoning under the answer-set semantics,” in 2006 IEEE / WIC
/ ACM International Conference on Web Intelligence (WI 2006 Main Confer-
ence Proceedings)(WI’06), IEEE, 2006, pp. 1073–1074.

[50] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M.
Schneider, “Potassco: The potsdam answer set solving collection,” Ai Com-
munications, vol. 24, no. 2, pp. 107–124, 2011.

[51] M. Moore and J. Wilhelms, “Collision detection and response for computer an-
imation,” in ACM Siggraph Computer Graphics, ACM, vol. 22, 1988, pp. 289–
298.

[52] X. Tang, A. Paluszny, and R. Zimmerman, “Energy conservative property
of impulse-based methods for collision resolution,” International Journal for
Numerical Methods in Engineering, vol. 95, no. 6, pp. 529–540, 2013.

[53] D. Baraff, “Analytical methods for dynamic simulation of non-penetrating
rigid bodies,” in ACM SIGGRAPH Computer Graphics, ACM, vol. 23, 1989,
pp. 223–232.

[54] A. Seth, J. M. Vance, and J. H. Oliver, “Virtual reality for assembly methods
prototyping: A review,” Virtual reality, vol. 15, no. 1, pp. 5–20, 2011.

[55] J. K. Hahn, “Realistic animation of rigid bodies,” in Acm Siggraph Computer
Graphics, ACM, vol. 22, 1988, pp. 299–308.

[56] B. Mirtich and J. Canny, “Impulse-based simulation of rigid bodies,” in Pro-
ceedings of the 1995 symposium on Interactive 3D graphics, ACM, 1995, 181–
ff.

[57] B. Mirtich and J. Canny, “Hybrid simulation: Combining constraints and im-
pulses,” in Proceedings of First Workshop on Simulation and Interaction in
Virtual Environments, 1996.

[58] E. Coumans et al., “Bullet physics library,” Open source: bulletphysics. org,
vol. 15, no. 49, p. 5, 2013.

[59] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable robot
simulation framework,” in 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems, IEEE, 2013, pp. 1321–1326.

[60] R. Smith et al., “Open dynamics engine,” 2005.

55

[61] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2012, pp. 5026–5033.

[62] V. Patoglu and R. B. Gillespie, “A feedback stabilized minimum distance
maintenance for convex parametric surfaces,” IEEE Transactions on Robotics,
vol. 25, no. 5, 2005.

[63] E. Aker, V. Patoglu, and E. Erdem, “Answer set programming for reason-
ing with semantic knowledge in collaborative housekeeping robotics,” IFAC
Proceedings Volumes, vol. 45, no. 22, pp. 77–83, 2012.

[64] E. Erdem, V. Patoglu, and P. Schüller, “A systematic analysis of levels of
integration between high-level task planning and low-level feasibility checks,”
AI Communications, vol. 29, no. 2, pp. 319–349, 2016.

56

Appendix A

Detailed Results

57

Surface
Coverage

(%)

Random Sample Inner Random Restart Intermediate Outer Havur
Time
(s)

Rearranged
Objects

Success
(%)

Time
(s)

Rearranged
Objects

Success
(%)

Time
(s)

Rearranged
Objects

Success
(%)

Time
(s)

Rearranged
Objects

Success
(%)

Time
(s)

Rearranged
Objects

Success
(%)

Time
(s)

Rearranged
Objects

Success
(%)

Experiment set 1: controlling surface coverage by varying the number of new objects
19.85 0.03 3.73 100.00 20.04 1.18 0.00 0.04 1.25 100.00 0.02 1.32 100.00 0.13 0.00 100.00 0.01 0.00 100.00
29.00 7.56 4.00 100.00 30.09 2.07 0.00 0.10 2.83 100.00 0.09 1.95 100.00 0.41 0.00 100.00 0.04 0.00 100.00
38.14 295.63 4.00 0.00 35.14 2.80 0.00 0.28 4.00 100.00 0.19 2.77 100.00 1.88 0.65 100.00 0.11 0.00 100.00
47.28 300.00 4.00 0.00 75.25 2.97 0.00 0.59 4.00 100.00 0.53 3.25 100.00 4.36 0.82 100.00 0.38 0.00 100.00
56.42 300.00 4.00 0.00 80.36 3.50 0.00 1.81 4.00 100.00 0.94 3.42 100.00 8.29 0.93 100.00 3.04 0.02 100.00
65.56 300.00 3.98 0.00 300.00 3.67 0.00 7.76 4.00 100.00 2.95 3.77 100.00 23.68 1.10 100.00 126.82 2.55 0.00
74.70 300.00 4.00 0.00 300.00 3.83 0.00 36.49 4.00 100.00 12.57 3.93 100.00 73.13 1.60 100.00 300.00 1.23 0.00
83.85 300.00 4.00 0.00 300.00 3.85 0.00 215.40 4.00 0.00 54.99 3.97 0.00 168.78 2.43 0.00 300.00 1.48 0.00
92.99 300.00 4.00 0.00 300.00 3.98 0.00 300.00 4.00 0.00 239.28 4.00 0.00 276.75 2.13 0.00 300.00 1.28 0.00

Experiment set 2: controlling surface coverage by varying the number of original objects
19.85 0.03 3.67 100.00 5.02 2.87 0.00 0.04 3.17 100.00 0.03 3.15 100.00 0.17 0.48 100.00 0.02 0.00 100.00
29.00 7.87 8.00 100.00 10.04 5.00 0.00 0.11 6.85 100.00 0.12 5.35 100.00 2.59 3.05 100.00 0.04 0.00 100.00
38.14 297.38 11.98 0.00 50.08 7.50 0.00 0.29 12.00 100.00 0.29 7.87 100.00 22.60 3.50 100.00 0.07 0.00 100.00
47.28 300.00 15.98 0.00 75.19 11.97 0.00 0.67 16.00 100.00 0.78 12.48 100.00 67.59 8.12 100.00 0.12 0.00 100.00
56.42 300.00 19.98 0.00 85.24 14.98 0.00 1.82 20.00 100.00 1.35 15.20 100.00 122.78 9.75 0.00 0.20 0.00 100.00
65.56 300.00 23.97 0.00 300.00 19.47 0.00 9.10 24.00 100.00 3.13 20.00 100.00 243.89 10.97 0.00 0.86 0.00 100.00
74.70 300.00 27.97 0.00 300.00 21.35 0.00 37.00 28.00 100.00 11.11 23.82 100.00 292.47 7.18 0.00 24.03 1.00 0.00
83.85 300.00 31.97 0.00 300.00 27.10 0.00 224.82 31.98 0.00 69.98 30.65 0.00 300.00 6.83 0.00 286.49 3.95 0.00
92.99 300.00 35.98 0.00 300.00 31.58 0.00 299.21 35.98 0.00 210.80 35.72 0.00 300.00 6.48 0.00 300.00 4.53 0.00

Experiment set 3: controlling surface coverage by varying the number of obstacle objects
27.42 0.37 4.00 100.00 40.03 1.53 0.00 0.08 2.52 100.00 0.11 1.73 100.00 1.19 1.62 100.00 0.03 0.00 100.00
36.57 22.00 3.98 100.00 45.04 1.53 0.00 0.16 3.78 100.00 0.20 1.60 100.00 2.03 1.67 100.00 0.04 0.00 100.00
45.71 218.12 4.00 0.00 60.07 1.60 0.00 0.41 4.00 100.00 0.49 1.62 100.00 4.49 1.97 100.00 0.05 0.00 100.00
54.85 294.39 4.00 0.00 80.07 1.50 0.00 1.56 3.98 100.00 0.69 1.77 100.00 6.29 2.05 100.00 0.11 0.00 100.00
63.99 300.00 4.00 0.00 95.10 1.58 0.00 8.76 3.98 100.00 1.08 1.70 100.00 12.09 1.83 100.00 0.40 0.00 100.00
73.13 300.00 4.00 0.00 300.00 1.53 0.00 135.49 3.95 0.00 5.59 2.40 100.00 19.12 1.93 100.00 3.80 0.02 100.00
82.27 300.00 4.00 0.00 300.00 1.73 0.00 300.00 3.98 0.00 93.04 3.68 0.00 52.17 2.73 100.00 237.69 0.12 0.00
91.42 300.00 3.98 0.00 300.00 1.58 0.00 300.00 3.98 0.00 300.00 4.00 0.00 300.00 2.03 0.00 300.00 0.00 0.00

Table A.1: Experiments 1, 2, and 3 results: placement generation performance.

58

Original
Objects

Surface
Coverage

(%)

Intermediate Outer
Rearranged

Objects
Plan
Steps

Placement
Time (s)

Planning
Time (s)

Total
Time (s)

Rearranged
Objects

Plan
Steps

Placement
Time (s)

Planning
Time (s)

Total
Time (s)

Experiment set 4: low surface coverage levels.
1 31.00 0.40 12.40 0.20 0.45 0.65 0.00 12.00 0.28 0.00 0.28
2 35.00 1.15 13.15 0.21 1.00 1.22 0.10 12.10 1.09 0.12 1.21
3 36.57 2.50 14.50 0.27 1.81 2.10 0.15 12.15 1.25 0.18 1.44
4 38.14 3.05 15.05 0.42 3.67 4.12 0.35 12.35 2.77 0.35 3.13
5 40.14 3.80 15.80 0.38 5.33 5.76 0.80 12.80 6.08 2.46 8.55
6 44.14 4.65 16.65 0.47 6.22 6.78 0.35 12.35 7.66 0.44 8.11
7 45.71 5.90 17.90 0.40 68.15 68.76 0.90 12.90 19.39 1.16 20.58
8 47.28 6.80 18.80 0.89 54.41 55.80 1.15 13.15 14.33 4.32 18.70
9 49.28 7.650 19.65 0.70 579.96 581.75 1.65 13.65 24.10 2.93 27.13

Experiment set 5: moderate surface coverage levels.
1 49.28 0.70 20.70 0.20 0.36 0.79 0.05 20.05 0.65 0.03 0.68
2 53.28 1.90 21.90 0.21 0.58 1.38 0.25 20.25 2.58 0.11 2.69
3 54.85 2.50 22.50 0.27 1.05 1.86 0.10 20.10 4.68 0.06 4.74
4 56.42 3.45 23.45 0.42 3.04 5.86 0.55 20.55 4.01 0.20 4.21
5 58.42 4.25 24.25 0.38 14.70 15.75 0.65 20.65 9.04 0.34 9.39
6 62.42 5.45 25.45 0.47 29.87 33.21 0.70 20.70 21.72 0.69 22.42
7 63.99 6.65 26.65 0.40 116.02 120.11 1.65 21.65 57.29 1.27 58.61
8 65.56 7.80 27.80 0.89 219.98 222.79 2.50 22.50 101.67 3.17 104.94
9 67.56 8.30 28.30 0.70 944.94 950.55 2.70 22.70 248.79 13.05 262.04

Experiment set 6: high surface coverage levels.
1 67.56 0.90 28.90 3.73 0.46 4.21 0.00 28.00 6.79 0.00 6.79
2 71.56 2.00 30.00 18.30 0.58 18.90 0.30 28.30 13.07 0.12 13.19
3 73.13 2.90 30.90 3.47 1.03 4.52 0.60 28.60 29.70 0.24 29.95
4 74.70 3.90 31.90 12.76 4.81 17.61 1.25 29.25 68.59 0.55 69.16
5 76.70 4.95 32.95 18.73 32.57 51.37 1.25 29.25 138.17 0.66 138.85
6 80.70 5.95 33.95 25.28 51.66 77.07 1.20 29.20 320.27 0.73 321.03
7 82.27 7.00 35.00 34.30 105.85 140.41 2.30 30.30 484.38 15.97 500.42
8 83.85 8.00 36.00 67.32 438.47 506.47 3.60 31.60 732.87 16.98 750.03
9 85.85 8.95 36.95 60.94 5958.91 6021.38 4.35 32.35 1331.17 23.54 1355.02

Table A.2: Experiment 4, 5, and 6 results: effect of placement generation algorithm on rearrangement planning performance.

59

	Introduction
	Motivation
	Approach
	Challenges
	Contributions
	Thesis Outline

	Related Work
	Placement Generation
	Rearrangement Planning

	Preliminaries
	Search
	Answer Set Programming
	Collision Resolution

	Placement Generation
	Problem Definition
	Methods
	Penetration Minimization
	Collision Minimization
	Rearrangement Minimization

	Rearrangement Planning
	Problem Definition
	Methods
	Configuration Discretization
	High-Level Planning
	Low-Level Feasibility Check

	Experimental Evaluation
	Placement Generation
	Benchmark Instances

	Rearrangement Planning
	Benchmark Instances
	Comparison of Hybrid Planning Approaches

	Physical Implementation

	Conclusion
	Bibliography
	Detailed Results

