
Construction and Visualization of Concept Prerequisite Graphs for

E-Learning

by

Mehmet Cem Aytekin

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfilment of

the requirements for the degree of

Master of Science

Sabancı University

July 2019

© Mehmet Cem Aytekin 2019

All Rights Reserved

Acknowledgements

This thesis would not be possible without the support of some important people in

my life. It also cannot be finalized without expressing my gratitude to them.

Firstly, I would like to express my sincere gratitude to my thesis advisor, Prof.

Dr. Yücel Saygın for his support throughout my graduate studies. His clever,

practical and effective solutions to the seemingly complex and hard problems gave

me confidence not only in my research but also in my other studies at the university.

Without his guidance and careful supervision this thesis would not be where it is

now. I also owe a debt of gratitude to all instructors in CS department for imparting

their knowledge to me.

Last, but not the least, I would also like to thank to my parents who have been

around at every step of my life to motivate me. They lived all ups and downs of my

academic journey and shared my excitement with me.

iv

CONSTRUCTION AND VISUALIZATION OF CONCEPT PREREQUISITE

GRAPHS FOR E-LEARNING

Mehmet Cem Aytekin

Computer Science and Engineering, Master’s Thesis, 2019

Thesis Supervisor: Yücel SAYGIN

Keywords: e-learning, concept maps, prerequisite relations, prerequisite graphs

for online learning, wikipedia articles, machine learning in online education.

Abstract

The growth of internet technologies in the last decade allowed the knowledge to

spread out very fast across the globe. Users began educating themselves with huge

amounts of online material on the internet. Today many academic institutions offer

publicly available courses where students all around the world can join and benefit

from them.

The abundance of online material from many different resources created an unor-

ganized content in which it is likely for the learners to get lost. Furthermore, some

concepts may require knowledge from other concepts and the learner may not be

aware of those prerequisite relations between the concepts, therefore, she may have

difficulties in understanding them.

In our work, we propose a methodology for calculating prerequisite scores among

text-based educational material. We choose Wikipedia articles to work with since

it is a large encyclopedia containing huge amounts of information on lots of differ-

ent concepts. Furthermore, from a given set of concepts with their corresponding

Wikipedia articles, we calculate each concept’s prerequisite score towards other con-

cepts and build a prerequisite concept graph for the learner. We believe that our

graph model will guide the students in their studies and enhance their learning

experience.

ÇEVRİMİÇİ EĞİTİM İÇİN KAVRAM ÖNKOŞUL HARİTALARININ

OLUŞTURULMASI VE GÖRSELLEŞTİRİLMESİ

Mehmet Cem Aytekin

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2019

Tez danışmanı: Yücel SAYGIN

Anahtar Kelimeler: online eğitim, kavram haritasi, önkoşul ilişkisi ,önkoşul

haritalari ,Wikipedia makaleleri, online eğitimde makine öğrenmesi

Özet

Son on yılda internet teknolojilerinin hızlı gelişimi bilginin dünyanın her yerine

çok kolay bir şekilde yayılmasına izin vermiştir. İnternet ortamındaki bilgi bolluğu

sayesinde kullanıcılar kendilerini geliştirmeye fırsat bulmuştur. Günümüzde bir çok

akademik kurum herkesin kullanımına açık dersler sunmaya başlamış ve dünyanın

bir çok yerinden öğrenciler bunlara katılıp yararlanma imkanı elde etmiştir.

Neredeyse her konuyla ilgili bir çok farklı kaynaktan yapılan paylaşımlar her ne

kadar öğrenciler için bir avantaj gibi gözükse de tüm bu bilgi yığını, öğrenilmek iste-

nilen konunun internette düzensiz ve karmaşık bir şekilde sunulmasına yol açmıştır.

Bu yüzden öğrencinin ilgili olduğu konuyu öğrenmeye çalışırken tüm bu karmaşa

içinde kaybolması olasıdır. Daha da önemlisi, öğrenilmek istenen konu bir çok

teknik kavram gerektirebilir ve bu kavramlardan bazıları, diğer kavramları anlamak

için ön koşul olabilir. Bu durumda öğrenci konuyu öğrenmeye hangi kavramlardan

başlamalı bilemeyebilir ve dolayısıyla bütün konuyu kavramakta zorluk yaşar.

Bu temel problemden yola çıkarak çalışmamızda, öncelikli olarak iki farklı kavramı

anlatan yazılı akademik dökümanın arasında olabilmesi muhtemel önkoşul ilişkisini

sayısal olarak ifade etmeye çalışıyoruz. Kavramlarla ilgili yazılı dökümanları hemen

hemen her konudan bilgi içeren ve çok büyük bir çevrimci ansiklopedi olan Wikipedia’dan

makale olarak alıyoruz. Bununla beraber, konuyla ilgili öğrenilmek istenilen kavram-

lar, Wikipedia makale karşılıkları ile verilirse tüm bu kavramların birbiri ile olan

önkoşul ilişkilerini hesaplayıp bunlardan bir önkoşul kavram haritası oluşturarak

öğrenciye sunuyoruz. Oluşturduğumuz haritanın yeni bir konuyu çevrimci öğrenmek

isteyen bir kimseye öğrenme sürecinde faydalı olmasını umuyoruz.

vii

Table of Contents

Acknowledgements iv

Abstract v

Özet vi

1 Introduction 1
1.1 Overview of the Methodology and Contributions 3

2 Related Work 6

3 Methodology and Problem Definition 11
3.1 Prerequisite Score Calculation . 12

3.1.1 Definition of the Score Function 12
3.1.2 Input Format and Feature Selection 12
3.1.3 Weight Learning . 14
3.1.4 Testing the Scoring Function 15

3.2 Graph Formation . 17
3.2.1 Prerequisite Matrix . 17
3.2.2 Matrix Filtering and Graph Building 17

3.3 Different Levels of Generalizations in the Graph 21

4 Implementation, Experiments, and Evaluation 24
4.1 Prerequisite Score Accuracy . 24
4.2 Graph Formation . 27

4.2.1 Complexity of the Algorithm 27
4.2.2 Physics data-sets . 28
4.2.3 Database Management System Concepts 31

4.3 Graph Generalization . 32

5 Conclusion and Future Work 37

A Tabular results of evaluations on each data-set 39

Bibliography 41

viii

List of Figures

3.1 Weight Learning of our Score Function 16

3.2 Forming the Graph Model . 19

4.1 General View of the Graph . 28

4.2 View of Cluster 1 and Cluster 2 . 29

4.3 View of Cluster 3 and Cluster 4 . 30

4.4 General View of the Graph . 31

4.5 Second Level Physics Graph . 34

4.6 Second Level Alternative Physics Graph 36

ix

List of Tables

4.1 Prerequisite Scores . 32

A.1 Evaluations on physics data-set with a threshold value of 0.8. 39

A.2 Evaluations on physics data-set with a threshold value of 0.8. 40

A.3 Evaluations on database management systems data-set with a thresh-

old value of 0.5. 41

x

Chapter 1

Introduction

Online learning has grown exponentially during the first decade of the twenty-first

century due to the rapid advancements in internet technologies. Many large colleges

and universities began putting their course materials on the internet and making

it publicly available to everyone who is interested in learning a particular subject.

There are also a number of growing online encyclopedias, especially Wikipedia which

is the largest and most popular general reference work on the World Wide Web with

more than 300.000 active users and thousands of contributors from all around the

world [1].

The abundance of online technical material on the internet accelerated the process

of reaching out to specific information. However, this simplicity has also brought

certain disadvantages along with it.

The major challenge for the learner is to be able to choose the right resources among

a huge amount of online materials. The particular concept she is trying to learn

may require some background knowledge, in that case, the learner should be able to

identify the other concepts that are necessary to understand that particular concept

and start studying them first.

Another challenge is the lack of a generalization mechanism in the huge concept

pool. The concepts may belong to very specific areas and may contain very detailed

information which in return prevents the learner from being able to look at those

concepts at a broader level. It is always helpful for the learner when the discussed

content is presented in an organized way. For instance, in a book, we have chapters,

1

sections, and sub-sections so whenever we refer to a specific concept in a book, we

have an idea of where we are in the global context.

The last difficulty is the variety in the learning process itself. Even if two different

learners have the same level of background, their learning styles may be different.

Some people may learn better with visual material whereas some may learn better

with text-based material. Hence the learner also needs to be able to recognize her

learning style and choose the right kind of online resource accordingly.

What should one know first before trying to learn a new concept? The answer to that

question relies on the notion prerequisite. As defined in the Cambridge dictionary

[2], a prerequisite is something that must exist or happen before something else

can exist or happen. In this thesis, a prerequisite defines a relationship among

two concepts A and B. We define it as a score between [-1 and 1] where the sign

indicates the direction of this relationship and the score gives us the strength of the

prerequisite.

Our work aims to build a complete weighted graph structure out of all the pre-

requisite scores between concept pairs. More technically, given a set of concepts

C = {C1, C2, ..., Ck} we want to build a score matrix S

S =

s11 · · · s1k
...

...
...

sk1 · · · skk

where sij is the prerequisite score between the ith and jth concept.

Using the concept list C and the score matrix S, we construct our graph where nodes

in the graph represent the concepts in the list C and the elements of the matrix S

represent the directed weighted edges among nodes.

The constructed graph is then presented to the learner where she sees all the concepts

and their degree of prerequisite relations with each other by looking at the nodes

and the directed edges of the graph. If the learner wants to master a specific target

topic ct but she is not sure whether that topic ct requires some knowledge from the

other concepts in the concept list C, she can first look at the prerequisite concepts

2

for the target topic by following the incoming edges to ct in the graph and master

them first in order to completely understand the concept ct. If these concepts are

also not familiar to her, then the learner can go back once more and repeat the

above procedure recursively until arriving at the concepts in the graph that she

feels hundred percent confident about. Beginning from those known concepts, the

learner can this time go forward and start studying the prerequisite concepts along

the way until she reaches the target concept ct. Finally, with enough knowledge

gained along the way, the learner can master the concept ct and move on.

Furthermore, when we analyze the constructed graph, we observe natural clusters

within the structure. It is expected to have this sort of disconnected components in

the graph since any unrelated concept pair will likely to have zero prerequisite score

in between. It is also possible to conclude that the concepts in the naturally formed

clusters are related to each other to some degree, therefore, we have a grouping.

These clusters can be thought of as first level generalizations of the concepts in

the given concept set. Treating each cluster as a one level generalized concept, their

inter-prerequisite scores can again be calculated which yields second level generalized

clusters. This procedure can go on until we are left with one cluster which represents

the highest level of generalization.

1.1 Overview of the Methodology and Contribu-

tions

Calculating a score for a prerequisite relationship between two concepts is not a

straightforward task. In general, an online educational material revolves around the

main concept and is presented to the user in various forms such as text, audio, image

or a video. In this thesis, a concept is represented by a Wikipedia article, which

may be considered as a text-based online educational material. When we refer

to concepts A and B, we need to fetch the corresponding articles A and B from

Wikipedia. Since Wikipedia is a vast encyclopedia, it is often possible to find the

corresponding articles easily. Furthermore, Wikipedia offers its Wikipedia library

to developers which makes it easy to query any article and get detailed information

3

about it.

Our initial work starts by exploring which properties of the two Wikipedia articles A

and B can give us information about the prerequisite relationship between them and

we determine several important features that we will explain in detail in Chapter 3.1.

Moreover, after discovering the relevant features, we apply a standard supervised

machine learning technique to determine the weights of these discovered features.

The data-set that is used in the weight learning process is the famous university

course data-set first introduced by Liang et al. 2017 in [3] where 1008 Computer

Science topics are listed and labeled according to their prerequisite relation by the

domain experts.

After having learned the features and their corresponding weights, our model be-

comes ready to assess the prerequisite relation of a concept pair A and B, and gives

a score to them between -1 and 1 where -1 means A is a complete prerequisite of B

and 1 means B is a complete prerequisite of A and anything in between shows the

degree of their relationship.

Although the score prediction part of the system makes our approach a regression

type of solution, it is also possible to use the system as a classifier such that if the

score of a pair A and B is above 0, then concept B is a prerequisite of A, if 0, then

there is no prerequisite relation and if below 0, then A is a prerequisite of B.

To test the performance of our system, we make use of the classification property of

our system and ask it to classify the different concept pair instances from different

labeled data sets and report the classification accuracies. We also choose prerequisite

pairs from different domains and show that although our method is trained with

computer science topics, it performs still well in other fields as well.

Finally, on the same data-set, we perform two other prerequisite calculation meth-

ods which are similar to ours and make comparisons of our approach with those

approaches.

In Chapter 3, we look at the idea of the concept maps which attempt to capture

the concepts and their relationships among them in a given educational material.

Elaborating on this idea, we specialize our focus on a specific type of relationship,

4

namely the prerequisite relationship and discuss the ways to identify it by giving

references to the existing literature. In Chapter 3, we explain how we calculate

the prerequisite relationships and build a graph from the given concepts in detail.

We also discuss the ways to generalize the given concepts and rebuilding graphs in

different hierarchical levels. In Chapter 4 we analyze the performance of our system

on different data-sets from different domains and report the results in detail. We

also try to understand the weak and strong sides of our algorithm. In Chapter 5

we describe the limits of our algorithm and we suggest possible ways to overcome

them. We explain how the students can benefit from our system and how it can be

further developed for online learning.

5

Chapter 2

Related Work

The search for a visual representation of knowledge has long been an occupation for

the researchers in computer science. One of the successfully adapted and widely used

technique for this task is concept mapping [4]. It attempts to capture the subjects

in the context as concepts, draws them with a special symbol, tries to name their

inter-relationships and links them one to another with arrows. Concept maps are

especially useful in the field of education and facilitate the learning process of the

students.

The idea of a concept map comes with its challenges and part of those challenges have

been an inspiration for our work. The main challenge is the need for an expert when

building a concept map. In theory, the expert should be able to list all the relevant

concepts and be able to define their relationships with each other in a given context.

However, the context may be complex and the relation between the concepts may

not be obvious. Moreover, each context requires a different concept map and no

expert in the world has enough knowledge to combine those maps together to build

a universal concept map. This major problem then raises the question: Can it be

possible to automate the process of concept map creation?

The first challenge in the automation process is the extraction of subjects or namely

concepts in the given context. The second challenge is to define the relationship

between the two concepts. Considering the relationship as an interaction between

two subjects, there may be huge amounts of possible relations between a concept pair

(A,B) such that concept A can be a part of concept B, or it can be a prerequisite

6

of B or it can simply be the detailed version of B, etc. These two major difficulties

have been the focus points of the researchers who wanted to build automatic or

semi-automatic concept maps.

In the search for a semi automatic concept map creation, one tool that grabbed

the attention in the area is TextStorm and its extension Clouds [5], [6]. When the

context is given as a text document, TextStorm identifies the subject, object, and

verb by parsing each sentence in the document. The subject becomes the first con-

cept; the object becomes the second concept, and the verb defines their relationship.

From there on, TextStorm takes the candidate concepts and relationships and feeds

them into Clouds. After getting input from TextStorm, Clouds asks questions to

domain expert about the concept-verb-concept structures it formed and it attempts

to generalize its knowledge by using inductive logic and outputs a concept map in

the end. One good example to understand the generalization process is given in the

paper as follows [7]: If it is observed that: produce (apple tree; apple) produce (pear

tree; pear) and from the domain knowledge, it is known that isa (pear tree; tree)

isa (apple tree; tree) isa (pear; fruit) isa (apple; fruit) a generalization is deduced

produce (tree; fruit).

Other approaches to capture relevant concepts are based on converting the text

documents into vector representations by using standard approaches such as Bag of

Words and TFIDF weighting [8], [9]. After turning documents into vectors, the term-

document matrix is constructed where the rows correspond to terms and columns

correspond to documents. Then by applying Latent semantic analysis technique, it

is possible to cluster the documents that share similar words [10]. One can then

look at the most referenced word in each document cluster and come up with a

list of words representing the main concepts in all the documents. If the context

is considered as a set of documents then the above approach is one way of doing

concept extraction in a large textual resource. However, these series of techniques

do not solve the problem of defining the relationships among the concepts. They

only attempt to provide a solution for the first challenge mentioned at the beginning

of this chapter.

The string-searching algorithms such as AhoCorasick algorithm [11] use pre-defined

7

dictionaries to deal with concept extraction problem. Given a specific context, the

expert can predetermine the necessary concepts and build a dictionary out of them

so that whenever the system receives a text resource about that particular con-

text, it can quickly identify the relevant concepts in it by looking at the dictionary.

Having concepts in advance, several association measures from information theory

and statistics such as pointwise mutual information [12] are proposed in the litera-

ture to quantify the relatedness of the relevant concepts appearing in the same text

resource.

Om P. Damani took Pointwise Mutual Information (PMI) technique as a base and

then developed the significant co-occurence idea to discover the meaningful associ-

ations among concepts both at document and corpus level [13] [14]. The main idea

in PMI is that to have a meaningful association score, the probability of observing

concepts A and B together should be high and the probability of observing them

individually should be low in a given text. A new probability function is defined for

calculating the joint probabilities of concept A and B appearing in close ranges and

the results of these probabilities are used to determine whether their co-occurence

shows any statistical significance or not.

It is important to state that although co-occurence indicates a relatedness between

two concepts, it does not imply causality and still it does not define what type of

relationship exists between two concepts.

In this thesis, we concentrate on a specific type of relationship, namely the pre-

requisite relationship between two concepts. Moreover, we also assumed that the

concepts are pre-defined by the expert.

Tseng et al. proposed an interesting way of automatic concept map creation in 2005

by considering the prerequisite relationships among concepts [15]. They proposed

a Two-Phase Concept Map Construction (TP-CMC) algorithm to automatically

construct a concept map of a course by historical testing records. The test record

contents were known in advance and the authors assumed that concepts asked in

some test A are prerequisites of some other concepts in test B, if lots of students

have either high or low scores in both tests. By matching a group of concepts as the

prerequisites of other concepts, they formed a concept map where the nodes are the

8

individual concepts and the weighted directed edges are the prerequisite strengths

together with the prerequisite directions. A similar approach is used by Yang et

al. where they analyzed course prerequisites from different university databases to

learn a directed universal concept graph, and they used the induced graph to predict

unobserved prerequisite relations among a broader range of courses [16].

The other idea for determining a prerequisite relationship is to treat each concept

as a possible Wikipedia article and calculate prerequisite scores for the articles. To

the best of our knowledge, this idea was first mentioned by Talukdar and W. Cohen

[17]. They mention the nice properties of Wikipedia in textual analysis such as

the densely linked structure of the site, its standardized format, and information

available about how documents are used by the Wikipedia community.

The idea of using Wikipedia articles for determining prerequisite relation between

concepts is further analyzed by Liang et al.[18]. They defined a metric called ref-

erence distance (RefD) which takes two Wikipedia articles as inputs and outputs

a prerequisite score between 1 and -1 where the sign indicates the direction of the

prerequisite and the score demonstrates the strength of the prerequisite.

The articles in Wikipedia have hyperlinks. The domain specific terms that are

important in understanding the article are underlined with blue color by the editors.

Whenever the reader is unfamiliar with the underlined term, she can move to the

article that explains it by clicking on it.

These hyperlinks that are in some article A, are considered as related to A. Chen

Liang et al. called these hyperlinks inside A, as the concept space of A [18]. The

observation is that given two articles A and B, if most of the concepts in concept

space of A refer to article B, this may indicate B is a prerequisite of A since in order

to understand the related concepts of A we have to know concept B in advance.

The vica versa is also valid.

The reference distance calculation is based on this above observation. Given two

articles A and B, the ratio of concepts referring to B to the number of concepts in

concept space A yields a score between 0 and 1. This score can be interpreted as

how much B is a prerequisite of A. Applying the same logic, the ratio of concepts

9

referring to A to the number of concepts in concept space B again yields a score

between 0 and 1. This second score can be interpreted as how much A is a pre-

requisite of B. Finally, the difference between these two scores gives us a number

between -1 and 1 which constitutes the reference distance score.

Elaborating on this method, we discovered that it is possible to add more fea-

tures to RefD formula due to the abundant information available for the articles in

Wikipedia.

We observed that only considering the concept spaces of articles A and B are not

enough and we should also consider the references in the articles themselves. More-

over, it is also important how many times A itself referenced B or vica versa. These

considerations are not taken into account in plain RefD calculation.

It is also possible to read the summary of the articles in Wikipedia. We concluded

that if the concept A refers to the concept B in its summary, then this concept of B

must be valuable for A since the summaries are short and only the most important

aspects of the concepts are presented to the user. Therefore we also included the

summary reference count into the refD formula.

Furthermore, we know that not every feature about an article is at the same impor-

tance when calculating a prerequisite score, so with the help of the existing labeled

prerequisite data-sets, we approximated the weights of those features by applying

machine learning techniques. Details of these techniques and the stages of the whole

procedure are discussed in Chapter 3.

10

Chapter 3

Methodology and Problem

Definition

In this chapter, we explain and discuss in detail how we construct the prerequisite

graph from a given set of concepts. Our algorithm has three main stages:

• Stage 1: Prerequisite score calculation between two concepts,

• Stage 2: Building a graph out of the prerequisite scores calculated in the first

stage

• Stage 3: Clustering and generalizing the given concepts by using the hierar-

chical property of our graph.

The process in the first stage has four major steps. We first start by defining our

score function and objective then we move to the data preparation part and explain

which type of data we use and how we determine the relevant features. After that, we

reach to learning part where we determine the weights of the features by supervised

learning. We finally interpret our results on the test data and finish the first stage in

our algorithm. The second stage has two major steps. At the first step we calculate

each concept’s prerequisite score with the other concepts in the list and we build a

prerequisite score matrix. At the second step we make simplifications on the score

matrix and then turn it into a graph model. Finally, in the third stage, we show

different levels of concept generalizations on the graph.

11

3.1 Prerequisite Score Calculation

In order to give a score for given concepts, we should define a mathematical function

f and describe all its properties in detail.

3.1.1 Definition of the Score Function

The arguments: Our function takes two concept names as inputs. In order for these

arguments to be valid, these two concepts should have their corresponding articles

in Wikipedia with the same name.

The output: Function outputs a score between -1 and 1.

Asymmetry: Given concept names A and B, f(A,B) + f(B,A) = 0.

Irreflexivity:f(A,A) = 0.

3.1.2 Input Format and Feature Selection

Having found the corresponding Wikipedia articles for the concepts A and B, three

features are analyzed by our function. The first feature is RefD score for the articles

A and B. (Detail about RefD score is in Related Work). This score computes how

much of the neighbour concepts of A refer to concept B. If most of the neighbours of

concept A refer to B, this indicates a possible prerequisite relationship from B to A.

The second feature is the number of reference different count in the articles A and

B themselves. For example, if the concept A itself refers to B 15 times in its article

and concept B refers to concept A 3 times in its own article then the number of

reference different count is +12 which again indicates a possible strong prerequisite

relationship from B to A. The last feature is the summary reference difference count

which is the same procedure as in the second feature calculation case but this time

instead of analyzing the articles themselves, we analyze their summaries and come

up with a third feature score.

Let’s symbolize RefD score of articles A and B as f1, reference difference count of

the article themselves as f2 and summary reference difference count as f3.

12

Note again that features f1, f2 and f3 for the concepts A and B are calculated as

follows:

let nrAB be the number of references to A in article B and let nrBA be the number

of references to B in article A.

let snrAB be the number of references to A in summary of the article B and let

snrBA be the number of references to B in summary of the article A.

f1 = number of neighbour concepts that refer to B
number of neighbour concepts of A

f2 = nrBA− nrAB

f3 = snrBA− snrAB

Each of these features also has some undetermined weights in prerequisite score

calculation w1, w2, w3 and we have a threshold w0.

To be able to fulfill the desired properties of the prerequisite function that we defined

above, we first define a new variable p1 which indicates how much of a concept B

is prerequisite of the concept A as follows:

p1 =
ew0+w1∗f1+w2∗f2+w3∗f3

1 + ew0+w1∗f1+w2∗f2+w3∗f3

By taking advantage of the property of the sigmoid function we guarantee that p1

is in the range of 0 and 1.

To be able to indicate how much of a concept A is a prerequisite of B, we use the

same features and weights but this time the features are calculated as follows:

f1′ = number of neighbour concepts that refer to A
number of neighbour concepts of B

f2 = nrAB − nrBA

f3 = snrAB − snrBA

We then define a second variable p2 which is:

p2 =
ew0+w1∗f1′+w2∗f2′+w3∗f3′

1 + ew0+w1∗f1′+w2∗f2′+w3∗f3′

By again taking advantage of the property of the sigmoid function we guarantee

that p2 is also in the range of 0 and 1.

13

Finally, we define the output of our function as p1 − p2 which is guaranteed to be

between -1 and 1. The function also has the asymmetry and irreflexivity properties

which ensure that when the arguments are given in reverse order, the score is the

same but negative and when the two same arguments are given, the score is zero.

3.1.3 Weight Learning

We apply supervised learning to determine the weights of the features. For the

training, we use the university course data-set where 1008 Computer Science topics

are listed and labeled according to their prerequisite relation by the domain experts

[3].

Our algorithm first calculates a score indicating how much concept B is a prerequisite

of A and outputs a score between 0 and 1, then it calculates a second score indicating

how much concept B is a prerequisite of A where it again outputs a score between

0 and 1 and finally it gives the difference.

Initially, each concept pair (A,B) in the existing training data is listed in a format

where concept B is a prerequisite of A. We label this information as 1. However,

since A is not a prerequisite of B, we should also label this information as 0. Ideally,

for each concept pair (A,B) our algorithm should give 1 for how much B is a

prerequisite of A and it should give 0 for how much A is a prerequisite of B and it

should output a positive score of 1 in the end by taking the difference between these

two scores. Therefore each concept pair (A,B) in the training data is actually two

instances for the learner where one instance is prerequisite information from B to A

which should be labeled as 1 and the second instance is a prerequisite information

from A to B which should be labeled as 0. The visual demonstration of the training

data can be seen in the Figure 3.1.

For each prerequisite direction either from A to B or B to A, we are given three

features and we need to make a prediction between 0 and 1. A suitable machine

learning approach for this task is logistic regression, therefore, we apply it to come

up with the best weights that would describe the prerequisite relations for all the

pairs in the training data.

14

It is important to note that our classification accuracy and the training/test accuracy

in logistic regression is different. To clarify this explanation it is best to look at a

particular example:

Imagine that for a given concept pair (A,B) in the training data, the prerequisite

relation from B to A is calculated as 0.4. Logistic regression classifies this as class

0 since it is less than 0.5 (more probable class) and it looks like we have a wrong

classification because its true label is 1. Imagine also the prerequisite relation from

A to B is calculated as 0.3. It is classified as 0 and it is the true label. It seems like

out of 2 examples we have only labeled one of them correctly but our classifier sees

the (A,B) pair as a single example and it calculates the difference of the two scores

and in that case, it is 0.4 - 0.3 = 0.1. Since 0.1 is a positive score it concludes that

B is a prerequisite of A therefore we have a correct classification for the concept

pair (A,B).

After training our logistic regression model according to our training data, we deter-

mine our weights to be: w1=0.8778, w2=0.0536 w3=0.9713 and w0=-0.1541. This

finding suggests that the most important feature in the prerequisite calculation is

the summary reference count, second is the RefD score and the last one is the article

reference count. w0 can be thought of as a threshold value and it is found to be

-0.1541 by our model.

The final structure of our prerequisite function f is as follows:

3.1.4 Testing the Scoring Function

The prerequisite score function that we formulated can be used either as a regressor

or a classifier. When used as a regressor, it predicts the strength of the prerequisite

relation between the concepts A and B by outputting a score between -1 and 1

and when used as a classifier, it simply interprets the positive values as B being a

prerequisite of A and the negative values as A being a prerequisite of B.

To test the performance, we use the function as a classifier to determine the accuracy

in the test data.

We use 3 different test sets. We also test by using refD as a single feature and

15

Figure 3.1: Weight Learning of our Score Function

Algorithm 1 Working principle of the score function f .

1: Input: Two concepts A and B each represented as three dimensional feature

vectors.

2: Output: Prerequisite score between -1 and 1.

3: function scorePreqFunction(A, B)

4: f1, f2, f3← getFeaturesforA(A,B) . we need information from concept B

as well to determine the features of A.

5: f1′, f2′, f3′ ← getFeaturesforB(A,B) . we need information from concept

A as well to determine the features of B.

6: raw score 1 ← 0.8778 ∗ f1 + 0.0536 ∗ f2 + 0.9713 ∗ f3− 0.1541

7: p1 ← math.exp(raw score 1)/(math.exp(raw score 1)+1)

8: raw score 2 ← 0.8778 ∗ f1′ + 0.0536 ∗ f2′ + 0.9713 ∗ f3′ − 0.1541

9: score ← p1− p2

10: return score

11: end function

16

make comparisons. The results obtained for this part will be explained in detail in

Chapter 4.

3.2 Graph Formation

Now that it is possible to calculate a prerequisite score for any concept A and B

which have their corresponding articles in Wikipedia, we can go back to our initial

goal of determining the prerequisite relations for a given set of concepts and then

visualize this information by forming a graph out of it.

3.2.1 Prerequisite Matrix

Given a set of concepts C = {C1, C2, ..., Ck}We calculate each concept’s prerequisite

score with respect to the rest of the concepts and form the score matrix S.

S =

s11 · · · s1k
...

...
...

sk1 · · · skk

where sij is the prerequisite score between the ith and jth concept.

Diagonal elements of the matrix are zero since the concept’s prerequisite relationship

with itself is zero. Moreover sij = −sji because of the asymmetric property of our

function.

3.2.2 Matrix Filtering and Graph Building

The constructed score matrix needs to be turned into a graph for a visual represen-

tation to the user and we explain the process in this subsection.

We use a graph database to store the concepts and their prerequisite information.

A graph database is a database that uses graph structures for semantic queries with

nodes, edges, and properties to represent and store data [19]. We choose Neo4j as

the graph database management system which is developed by Neo4 Inc. According

17

to DB-Engines ranking [20], it is the most popular graph database. It has its own

querying language called Cypher Query Language which is easy to understand and

use and which also makes it possible to do complex graph operations in a few lines

of codes. Moreover, any software written in any computer programming language

can query the database using the Cypher Query Language through a transactional

HTTP endpoint, or through the binary ”bolt” protocol [21].

In our work, we treat each concept as a node in the graph and when we get the

concept set C, we construct a node for every element in C. Then to be able to

define the directed weighted edges we use the score matrix S.

Initially, the process seems rather straightforward and one can draw a weighted edge

from concept i to j if there is a positive score sij and from j to i if there is a negative

score sij. However, there are some issues to consider. The first issue is the possible

cycles in the graph. If concept A is a prerequisite of B, if concept B is a prerequisite

of C and if concept C is a prerequisite of A then the learner will be stuck in a loop

in the graph and never proceed to the other concepts. To overcome this issue, we

propose the following sparsification method:

For every concept ci in the concept list C, we look at the highest absolute value

score sij∗ by examining the i’th row of the score matrix S. This score demonstrates

the most powerful prerequisite relation for the concept ci. We only draw an edge

from the concept ci to concept cj∗ or vica versa according to the sign of the score

and discard the other scores in the i’th row of the matrix. We repeat the same

procedure until there are no more concepts left in the concept list C.

This approach ensures an acyclic property in the graph. To prove this let’s analyze

a simple case with three concepts A, B, and C with the random scores x, y, z.

Imagine a score matrix S as follows:

S =

0 x z

−x 0 y

−z −y 0

In order for a cycle, there has to be an edge from A to B meaning |x| > |z|, from B

18

to C meaning |y| > |x| and from C to A meaning |z| > |y|.

However, since |z| > |y| and |y| > |x|, the statement |z| > |x| should also be true.

This contradicts with the assumption of |x| > |z| in the beginning so we are sure

that we don’t have any cycles in the graph.

We should note that this algorithm only prevents cycle formation in the graph and

other cases such as one concept being a prerequisite for multiple concepts or multiple

concepts being prerequisite for a single concept is still possible.

Figure 3.2: Forming the Graph Model

19

Algorithm 2 Graph construction algorithm

1: Input: List of concepts L

2: Output: Prerequisite concept graph G.

3: function buildScoreMatrix(L)

4: S ← createEmptyMatrix(size(L)) . creating an empty matrix with size

LXL

5: i← size(L)

6: j ← size(L)

7: for iteration 0 to i do

8: for iteration 0 to j do

9: S[i][j]← scorePreqFunction(L(i),L(j)) . filling the score matrix

10: end for

11: end for

12: return S

13: end function

14: function buildGraph(L,S)

15: for concept c in L do

16: createNode(c) . Create a node in the graph database

17: end for

18: i← size(L)

19: j ← size(L)

20: for iteration 0 to i do

21: temp← createEmptyList(size(L))

22: for iteration 0 to j do

23: temp← S[i][j] . assign the scores in the same row to the list temp.

24: end for

25: value, index← getHighestAbsoluteValue(temp) . consider only the

concept which has the highest absolute prerequisite score.

26: createEdge(L(i),L(index),value) . Create a weighted directed

edge between these two nodes. Direction is decided according to the sign of the

value.

27: end for

28: end function

20

3.3 Different Levels of Generalizations in the Graph

Often times we observe disconnected components in the graph since not every con-

cept is a prerequisite of another concept or some prerequisite relations are simply

eliminated since they are not the strongest relations for that particular concept.

These disconnected components are the natural clusters within the graph which may

be seen as the higher level representations of the detailed content-specific concepts.

One observation that we make from the high-school physics data-set is that concepts

such as Velocity, Acceleration and Angular Velocity form one cluster in the graph

which in fact belong to the topic of motion at a higher level.

Treating each cluster as a single node that generalizes some concepts at a higher

level, we can in fact again use our algorithm to calculate a new score matrix S

and construct a new graph which contains higher level concepts. The procedure for

doing that is rather straightforward and performed as follows:

21

Algorithm 3 Graph generalization algorithm

1: Input: Graph G and Score matrix S.

2: Output: New graph G′ which is the one level higher version of the old graph

G .

3: Clusters← findClustersInGraph(G) . Clusters is a two dimensional list

where each element contains the concept names that are in the same cluster.

4: function clusterLevelPrerequisiteScore(G1, G2)

5: sum← 0.

6: i← size(G1) . G1 is a list containing concepts in same cluster.

7: j ← size(G2) . G2 is a list containing concepts in same cluster.

8: for iteration 0 to i do

9: temp← empty list.

10: for iteration 0 to j do

11: weight← getWeight(G1(i),G2(j))

12: temp← weight

13: end for

14: value← getHighestAbsoluteValue(temp)

15: sum← sum + value

16: end for

17: return sum/size(G1)

18: end function

19: L′ ← assignLabels(Clusters) . Each cluster is in new list L′.

20: function buildHighLevelScoreMatrix(L′)

21: S ′ ← createEmptyMatrix(size(L′)) . Empty matrix with size L′XL′

22: i, j ← size(L′)

23: for iteration 0 to i do

24: for iteration 0 to j do

25: S ′[i][j]← clusterLevelPrerequisiteScore(L′(i),L′(j))

26: end for

27: end for

28: return S ′

29: end function

30: G′ ← buildGraph(L′,S ′) . The graph building function in Section 3.2.2

22

We have step by step explained our algorithms in three stages. In Chapter 4 we go

over them once more by giving various examples from different stages and report

our results in detail. We will be also analyzing our model’s performance on different

data-sets and discuss its weak and strong aspects.

23

Chapter 4

Implementation, Experiments, and

Evaluation

In this chapter, we talk about experimental results performed to test our method-

ology. We explain our methodology in three stages just like we did in Chapter 3

and we support our algorithm’s capabilities and efficiency at each stage by show-

ing results obtained from different data-sets. There are three main different test

data-sets:

1. An existing data-set that contains computer science topics labeled according

to their prerequisite relationship.

2. A custom prepared data-set that includes database management system con-

cepts.

3. High school physics concepts data-set that is again formed by us with the help

of the existing online materials on the internet.

4.1 Prerequisite Score Accuracy

We first start our algorithm by constructing a function which computes a prerequisite

score between -1 and 1 for two given concepts. The working principle of this function

was explained in detail in Chapter 3 but it is important to make some remarks again

so that what we are evaluating in this section becomes clear. Our function can both

24

serve as a classifier and as a regressor. In this section, we demonstrate its power in

classification on various data-sets. Given two concepts A and B it can give either

a positive or a negative score where positive means B is a prerequisite of A and

negative means A is a prerequisite of B. If the score is exactly 0 then they are

classified as NONE.

Before moving into the results, it is important to talk about the data-set format

as well. The first test data-set is taken from [3]. It contains 154 pairs of computer

science topics. All these concepts have corresponding articles in Wikipedia. For each

pair (A,B) we are given the knowledge that A is a prerequisite of B. If our function

outputs a positive score it means it correctly classifies the given instance and if it

gives a negative score it means it misclassifies the given instance. Moreover, since we

also know the scores of our function for the test data-set, it is possible to calculate

the error margin in the classification. In theory, we assume all the instances in the

test data-sets are a full prerequisite of each other meaning that they should have a

score of 1 if they are listed in a format of B is a prerequisite of A and -1 if they

are listed as A is a prerequisite of B. We use the word in theory because in reality

a concept is not always absolutely a prerequisite for another concept and rather it

has a certain degree of prerequisite relation with it.

There is also another question on our mind before running the experiment on this

data-sets. Since the function is trained with concepts from computer science, we

want to know whether the domain similarity in the first data-sets adds any advantage

to our function.

The function’s classification performance is also compared with the sole refD func-

tion developed by Chen Liang and his team in 2015 [18]. This refD function as

we described earlier, was the starting point for us in determining a score function

and we improved its performance by adding two new features and by learning the

weights of these features with logistic regression on an existing training data.

Out of 154 concept pair instances, 126 of them are correctly classified, and we

obtained an accuracy of % 81 in the first data-sets. We then tested the sole refD

method on the same test data but this time only 97 concept pair instances are

correctly classified and the classification accuracy remained at % 63. Our method

25

outperformed refD by labeling % 18 more of the instances correctly. We analyzed

the misclassified examples after the experiment and tried to identify the cause of

this wrong classifications. One example pair from the first data-sets is Robotics

and Robots. Our function states that robotics is a prerequisite for understanding

robots but it is labeled other way around in the data-sets. This is rather an arguable

instance and one can say to understand the robots we should study robotics or one

can again say we should have knowledge about the term robot to study robotics. The

other issue is the difference in the level of the concepts, for instance, if one concept is

programming language and the other concept is C++, since C++ is a programming

language it is not very accurate to look for a prerequisite relationship among these

concepts because they rather have an isa relationship which is something different

than what we are interested in..

By keeping the controversial instances in mind, we prepare our own data-sets which

we believe is clearer than the other existing prerequisite data-sets. We first choose

the domain to be high school physics concepts. There are two main reasons for

choosing this domain. One is that like we stated above, we wanted to have a

different area than computer science and secondly; it seemed easy to capture the

prerequisite relations in physics. For instance, if we look at the definition of the

concept Acceleration: the rate of change of velocity of an object with respect to

time [22], one can easily understand that she has to first understand the concept

Velocity. It is also possible to look at the formulas for certain concepts in physics

and state that the components of the formula for the given concept may be the

prerequisites of it.

Our custom high school physics data-sets contains 82 concept pair instances. Out

of 82 instances, 60 of them are labeled correctly with our function by reaching an

accuracy of %73 while with the refD method only 46 of them are labeled correctly

with an accuracy of %56.

Lastly, we move to our final data-sets which contains concepts from the database

management system course. It is again a custom data-sets that is prepared by us.

There are two main motives for choosing this course. Firstly in the former computer

science topics data-sets, the concepts are not domain-specific and rather in general.

26

In this data-sets, we want to see the performance of the classifier when the concepts

are in micro-level meaning that they are content-specific and short. Secondly, we are

familiar with the course since my thesis advisor Yücel Saygın is the professor of this

course in our university and his expertise contributed to the data-sets preparation.

Out of 50 database concept pairs, 33 of them are classified correctly with %66

accuracy and with refD method 27 of them are classified correctly with an accuracy

of %54. The accuracy decreased but this was expected since there is a limited

amount of information in Wikipedia about these detailed micro concepts.

4.2 Graph Formation

This is the second stage of our algorithm. Now for a given set of concepts C with

length k, we are interested in forming n×n score matrix S where an element of the

matrix sij is the prerequisite score between the concept i and concept j.

After forming score matrix S we are interested in turning this matrix into a graph

structure in Neo4j where nodes in the graph represent the concepts and the directed

weighted edges represent the strength and the direction of the prerequisite relations

between concepts.

4.2.1 Complexity of the Algorithm

For a given set C with length n, we have to calculate each concept’s prerequisite

score with the other concepts in the set, therefore, constructing the score matrix

requires n2 operations. This complexity can be reduced to half by knowing the fact

that sij = −sji and sii = 0 in the score matrix S.

The main bottleneck for the algorithm is not the complexity of the calculations but

rather the requests sent back and forth to the Wikipedia API. Each prerequisite

score calculation for a concept pair (A,B) approximately takes 10 - 15 seconds

because of the connection overhead. There may be several approaches to overcome

this problem one is to parallelize the requests with multi-threaded programming.

Another approach is to dump Wikipedia articles into the local machine in advance

27

to speed up the matrix formation process. Our length of the concept sets never

exceeded 100, so we did not have much trouble because of this overhead.

4.2.2 Physics data-sets

We first start with a set of 30 physics concepts and build their prerequisite graph.

Figure 4.1: General View of the Graph

The Figure 4.1 is the general view of the graph. We see four different clusters

indicating those 30 concepts can be gathered around in four different categories.

In the following figures, we zoom into the clusters and look at some individual

prerequisite relationships found between concepts.

We see four concepts in the first cluster. We observe that Velocity is a prerequisite

28

(a) Cluster 1 (b) Cluster 2

Figure 4.2: View of Cluster 1 and Cluster 2

for Acceleration and Angular velocity, and Acceleration is a prerequisite for Circular

motion. Although not shown in Figure 4.2, it is possible to click the edges in the

graph database and see the weights of each edge. The concepts in this cluster belong

to a topic of motion at a higher level.

The second cluster has nine concepts inside. We observe that Mass becomes a

prerequisite for Energy and Momentum. It makes sense as both of these concepts

include mass in their formulas and if one does not know what mass is then she can

not understand those concepts as well. Electromagnetic radiation requires knowledge

of the concepts Wave, Frequency, and Energy. These concepts in this cluster may

belong to a topic of electromagnetic waves at a higher level.

In cluster 3, we see that Force is at the core of all concepts. Almost every concept

requires knowledge from Force. Gravity, Friction, Weight and Pressure has the

strongest prerequisite relationships with Force than the other concepts in the cluster.

29

(a) Cluster 3 (b) Cluster 4

Figure 4.3: View of Cluster 3 and Cluster 4

We should note that although for a given concept ci we only draw an edge to its

strongest prerequisite (or from its prerequisite to ci), we still don’t put a universal

threshold for the concepts in the graph. For example, an irrelevant concept may

have a prerequisite relation to some concept of A with weight 0.01 in the list and it

may have zero prerequisite relationship with the others. In that case, that concept’s

strongest prerequisite relation score is still 0.01 and we draw an edge for that relation.

Our graph database provides an interface to any application-level service, therefore,

it is possible to query the prerequisite scores of any concept pair in the graph.

Furthermore, applications using our graph database can put their own thresholds if

they want to filter out the weak prerequisite relations in the graph. For instance,

application A can state that the prerequisite scores below 0.5 will not be considered

as meaningful relations or application B can take this threshold up to 0.8 etc. If the

graph were to be constructed by a human expert, she would separate the concepts

Voltage, Electrical current and Electrical resistance but our algorithm found a bridge

concept Work which connects these clusters together. Indeed the definition of the

30

change in voltage is equal to the work per unit charge [23] and one should be

familiar with concept Work before studying concept Voltage. The last cluster has

three concepts inside and we see that concept Heat is a prerequisite for the concepts

Convection and Thermal conduction which is an expected result.

4.2.3 Database Management System Concepts

In the second experiment, we give a set of 45 database management system concepts

to our system. The general overview of the graph is presented in Figure 4.4

Figure 4.4: General View of the Graph

We observe again that similar concepts are gathered in the same clusters. There

are six clusters, representing the topics of relational databases, concurrency control,

data structures, database normalization, database recovery, and database indexing.

We test some individual concept pair’s prerequisite scores by sending queries to our

graph database to see if our graph is giving correct information or not.

31

MATCH (n)−[r : i sPreq]−>(m) where n . t i t l e =”Primary key ”

and m. t i t l e =”Fore ign key ”

re turn r . weight as weight

We get a return value as : ”weight” 0.999759287115

Indeed concept Primary key is a prerequisite of Foreign key and we get a value

very close to 1. It is important to note that weights are always positive and we

understand the direction of the prerequisite by looking at the direction of the arrow

or if we are writing a query, we specify it in the MATCH statement with the symbols

(n)− [r : isPreq]− > (m) where n and m are the concepts we are questioning, r is

the type of the relation and − > symbol is the direction of this relation.

Here are some strong prerequisite relationships captured by our methodology in the

graph :

Table 4.1: Prerequisite Scores

Concept A Concept B Weight Direction

Primary Key Foreign Key 0.99 − >

Concurrency Control Conflict Serializability 0.85 − >

3NF BCNF 0.80 − >

SQL Query Language 0.74 < −

Hash Table Linear Hashing 0.97 − >

We hope that this graph becomes a helpful tool for the students who are interested

in learning database management course. Although not implemented in this experi-

ment, the Wikipedia links of the corresponding articles can easily be inserted inside

the nodes so that the learner can immediately find the article and start studying.

4.3 Graph Generalization

In this section we refer again to the physics data-sets that is explained in Section

4.2.2. When we formed our graph for the 30 high school physics concepts, we ob-

32

served four different clusters each representing a different topic in the given context.

We denote each cluster with the Ca, Cb, Cc, and Cd. Ca has the concepts regarding

the topics of Heat and Heat transfer, Cb has the concepts regarding the topic of

Motion Cc has the concepts of Energy and Electromagnetic waves, and Cd has the

concepts of Force and Electricity. Below you can see each cluster with its concepts

:

Cluster a = {Heat, Convection, Thermal conduction}

Cluster b = {Circular motion,Angular velocity, V elocity, Acceleration}

Cluster c = {Kinetic energy,Radio Wave,Momentum,X–ray, Energy,Wave,

Frequency, Electromagnetic radiation,Mass}

Cluster d = {Trigonometry, Electrical resistance,Newton′s laws of motion, Force,

V ector calculus, Friction, Pressure,Weight, Centripetal force, Free fall, V oltage,

Electric current,Gravity,Work}

According to the algorithm provided in Section 3.3 we should calculate each cluster’s

prerequisite relation with other cluster and form the new prerequisite matrix S ′.

After the calculations we find the new matrix S ′ to be :

S ′ =

0 0.014 0.989 0.460

−0.005 0 −0.210 0.080

−0.184 0.263 0 −0.170

−0.150 0.312 0.148 0

Where the rows and the columns of the matrix are aligned according to order Ca,

Cb, Cc, and Cd.

One thing to note is that in the new matrix S ′ we don’t have the s′ij = −s′ji property

anymore because each cluster’s score with the other cluster is divided into its cluster

size. In order to state a valid prerequisite relationship between any cluster i and

j, we seek the condition that if s′ij > 0 then s′ji < 0 or vica versa meaning that

both clusters should agree about the direction of the prerequisite relationship or

else they will be discarded. Assuming that a cluster pair agrees on the direction

33

of the relationship, to be able to calculate their score we perform the operation

‖(s′ij − s′ji)‖/2 to come up with the final weight score.

Continuing with our example, we analyze the new score matrix S ′ and at each row,

we pick the highest absolute value.

For the cluster Ca, the highest absolute value in its row is 0.989, therefore, Cc is a

prerequisite of Ca and we should draw an edge from Cc to Ca. For the cluster Cb, the

highest value in its row is -0.21 hence Cb is a prerequisite of Cc and we should draw

an edge from Cb to Cc. For the third row, we observe that Cc’s strongest prerequisite

is Cb and we again draw an edge from Cb to Cc. For the last row we observe that Cb

should be a prerequisite of Cd with the highest value being s′db = 0.312. However,

s′bd = 0.08 is also positive meaning that there is not a clear agreement between the

direction of the prerequisite relationship, therefore, we leave cluster d out.

We calculate the weights as: :

‖(−0.210− (0.263))‖/2 = 0.473 for the edge Ebc.

‖(0.989− (−0.184))‖/2 = 0.586 for the edge Eca

Now the second level graph is formed as shown in Figure 4.5 :

Figure 4.5: Second Level Physics Graph

Observing Figure 4.5 we conclude that topic speed and motion (Cb) is a prerequi-

site for the topic energy and electromagnetic waves (Cc) and the topic energy and

electromagnetic waves is a prerequisite for understanding the topic heat and heat

transfer (Ca).

34

Now the second graph can be further divided into two new clusters C1 and C2. In

C1 there are former clusters Ca, Cb, Cc and in C2 there is only Cd. It is possible

to re-do the procedure above to determine if there is any prerequisite relationship

between the clusters by observing the matrix S’. Since C1 has only the topic Cd,

the element with the largest absolute value in the last row of S’ will determine the

prerequisite score from C2 to C1 which is 0.312. For calculating a score from C1

to C2, we consider each elements (Ca, Cb, Cc) prerequisite score with Cd which are

0.460, 0.08 and -0.17 respectively. Summing these values up and dividing them to

the size of C2 yields a score of 0.123. Since both of these scores are positive we

conclude that they do not agree on the direction of the prerequisite relationship and

we do not assign a prerequisite relation between the clusters.

Although not considered in our methodology, if the user wants to force prerequisite

relationships between clusters and does not want to see any left out clusters in the

graph she can do the following: If cluster ci and cj have both negative scores sij and

sji, it implies that cluster ci is a prerequisite of cj and cluster cj is a prerequisite

of ci. In that case, we can simply pick the cluster which has the score with the

maximum absolute value and draw an edge from that cluster to the other cluster.

We can calculate the weight score as ‖(s′ij − s′ji)‖/2. If cluster ci and cj have both

positive scores sij and sji, this time it implies that cluster cj is a prerequisite for

cluster ci and cluster ci is a prerequisite for cluster cj. In that case, we can pick

the cluster which has the score with the maximum absolute value and draw an edge

from that cluster to the other cluster. The weight determination is same in both

cases with the operation ‖(s′ij− s′ji)‖/2. This approach creates an alternative graph

that does not contain any disconnected components.

When we perform this alternative algorithm to our example in the second level

graph, Cb is a prerequisite for Cd with a score of 0.312 and cluster Cd is a prerequisite

for Cb with a score of 0.08. We consider the score with the highest absolute value

which is 0.312, therefore, we conclude that Cb is a prerequisite for cluster Cd. We

calculate the weight as ‖(0.312 − 0.08))‖/2 = 0.116 and we conclude that Cb is a

prerequisite for cluster Cd with a prerequisite score of 0.116. Our alternative second

level graph is shown in Figure 4.6.

35

Figure 4.6: Second Level Alternative Physics Graph

In our alternative graph, the learner can have two preferences. If she wants to

master concepts regarding heat and heat transfer (Ca) she first needs to master the

concepts of motion (Cb) and then master the concepts of energy and electromagnetic

waves (Cc) and then start learning topic Ca. Alternatively, if the learner wants to

master the whole context (all of the topics in high school physics) she should start

with topic Cb, then she can study topics Cc and Cd and then she can study the topic

Ca to finish the given graph.

The constructed graph is aimed to serve the learner as a tool to facilitate her learning

process. The graph can be enriched in many ways and we believe it has the potential

to increase student performance in lots of different courses. These ideas and possible

future applications of these prerequisite concept graphs are discussed in Chapter 5.

36

Chapter 5

Conclusion and Future Work

In the quest of finding an organized representation of the huge unstructured on-

line learning materials, we believe that the concept prerequisite graphs constructed

through our methodology will guide the learners in their learning process. We also

provide an extendable framework on top of which many more innovative ideas can

be developed.

The prerequisite score calculations are currently based on the articles on Wikipedia.

We use three main features in prerequisite score calculation but there can be other

important features that may contribute to prerequisite scores as well. For instance,

one can also include the reference position of the concept in the article as a new

feature or one can consider the size of the article when calculating the reference

feature and so on. With the addition of the right features, we think the classification

performance of our system may be further increased.

We choose to seek the concepts in Wikipedia because of its useful properties that

we mentioned throughout the thesis but it is also possible to incorporate knowledge

from other resources to calculate prerequisite scores. Those resources can be video

as well as text-based.

In the graph construction algorithm, we always include a concept’s strongest pre-

requisite in order to avoid possible cycle formations. However, there may be an

alternative algorithm where not only the strongest prerequisite but also multiple

strongest prerequisites may be used while still preserving the acyclic property of

the graph. In Section 4.2.2 we mention a universal threshold that each prerequisite

37

score needs to pass. In our work, we don’t have this kind of threshold. However,

with various experiments on large data-sets it may be helpful to come up with such

a threshold which can guarantee that there are no weak prerequisite relations in the

graph.

Besides the algorithmic part, if we go back to our initial objective of enhancing

student learning experience there can be several components in the graph that may

help the students. For example, a questioning component may be added to the

graph. Each node in the graph may be enriched with multiple questions regarding

its concept. If the student wants to move on to another concept that the current

concept is a prerequisite of, she may have to correctly answer the questions of that

concept so that we understand that the student fully grasped the content in that

topic. Since each node is, in fact, a Wikipedia article, the nodes can also include links

to these articles. Furthermore, for the same topic there can be multiple different

resources so that if a student does not understand the article, she may move to the

alternative resources.

Once the graph is formed, it is stored in a graph database and it can be implemented

as a web service to other systems. An intelligent adaptive learning management

system may use this database to present learning paths to students according to

their objectives. By keeping track of each student’s profile and the past data, the

intelligent system can change the weights of the edges if it thinks there are other

alternative prerequisite relations based on the student data it has.

The domain invariant property of the algorithm makes the system a useful learning

tool not just for computer science, and physics courses but for other courses from

other domains. We believe that especially the students studying courses that require

lots of reading and domain- specific terminologies such as biology or literature will

benefit most from our system.

38

Appendix A

Tabular results of evaluations on

each data-set

Table A.1: Evaluations on physics data-set with a threshold value of 0.8.

Concept1 Concept2 Prerequisite Score

Mass Energy -0.991872536275

Mass Momentum -0.948114245534

Mass Kinetic energy -0.963246383255

Mass Convection -0.971735686337

Velocity Force -0.982055478863

Velocity Acceleration -0.975253748977

Velocity Momentum -0.911654216016

Velocity Circular motion -0.855230213027

Velocity Angular velocity -0.999999999054

Velocity Work (physics) -0.850958772409

Force Gravity -0.998362023493

Force Weight -0.999834071543

Force Friction -0.999844596391

Force Circular motion -0.906887422963

Force Centripetal force -0.999723106557

Force Newtons laws of motion -0.992735971457

39

Table A.2: Evaluations on physics data-set with a threshold value of 0.8.

Concept1 Concept2 Prerequisite Score

Force Work (physics) -0.999915440679

Force Free fall -0.954538589358

Force Pressure -0.988458568502

Acceleration Circular motion -0.972457410798

Energy Friction -0.99901259911

Energy Heat -0.999996465462

Energy Thermal conduction -0.997922157957

Energy Kinetic energy -0.99999601306

Energy Electromagnetic radiation -0.99999728113

Energy X-ray -0.921038883094

Energy Wave -0.916567809217

Gravity Free fall -0.938609274061

Friction Work (physics) 0.800898909263

Friction Kinetic energy 0.88966442389

Heat Thermal conduction -0.999998584781

Heat Work (physics) 0.999889373899

Heat Convection -0.999999795139

Frequency Electromagnetic radiation -0.999920774246

Work (physics) Voltage -0.821566035606

Electromagnetic radiation Wave 0.995985341382

40

Table A.3: Evaluations on database management systems data-set with a threshold

value of 0.5.

Concept1 Concept2 Prerequisite Score

Entity relationship model Relational database 0.574905971913

Database design Foreign key -0.917743478419

Database design Database normalization -0.810222201105

Primary key Foreign key -0.999759287115

Primary key Weak entity -0.99643657114

Foreign key SQL 0.933692406412

Foreign key Weak entity -0.821307950347

Foreign key Stored procedure 0.529595722782

SQL Query language 0.74519392494

SQL Stored procedure -0.846331854774

1NF Relational database 0.808997494714

3NF BCNF -0.801929651851

ACID Database transaction -0.515820232241

Atomicity (database systems) Write ahead logging -0.530019702361

BCNF Functional dependency 0.794670233574

Concurrency control Conflict serializability -0.852474283314

Concurrency control Multiversion concurrency control -0.978476116184

Concurrency control Optimistic concurrency control -0.989795078295

Concurrency control Timestamp-based concurrency control -0.822766390581

Concurrency control Two phase locking -0.555309700087

Database normalization Functional dependency -0.538208598348

Database normalization Relational database 0.557931828985

Functional dependency Relational database 0.523605637531

Hash table Linear hashing -0.975295097481

Weak entity Relational database 0.558951593337

41

Bibliography

[1] “Company — about - wikipedia about,” https://en.wikipedia.org/wiki/

Wikipedia, accessed: 2019-05-30.

[2] “Prerequisite definition,” https://dictionary.cambridge.org/dictionary/

english/prerequisite, accessed: 2019-06-22.

[3] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles, “Recovering concept pre-

requisite relations from university course dependencies.” pp. 4786–4791, 2017.

[4] “Concept map,” https://en.wikipedia.org/wiki/Joseph D. Novak#Concept

mapping, accessed: 2019-06-22.

[5] A. Oliveira and F. Pereira, “Automatic reading and learning from text,” 04

2002.

[6] A. C. O. Francisco Cmara Pereira and A. Cardoso, “Extracting concept maps

with clouds,” 2000.

[7] B. N. Wafula, “Automatic construction of concept maps,” 05 2016.

[8] “Bag of words,” https://en.wikipedia.org/wiki/Bag-of-words model, accessed:

2019-06-22.

[9] “Document classification,” https://en.wikipedia.org/wiki/Document

classification#Automatic document classification (ADC), accessed: 2019-

06-22.

[10] “Latent semantic analysis,” https://en.wikipedia.org/wiki/Latent semantic

analysis#Applications, accessed: 2019-06-22.

42

https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Wikipedia
https://dictionary.cambridge.org/dictionary/english/prerequisite
https://dictionary.cambridge.org/dictionary/english/prerequisite
https://en.wikipedia.org/wiki/Joseph_D._Novak#Concept_mapping
https://en.wikipedia.org/wiki/Joseph_D._Novak#Concept_mapping
https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Document_classification#Automatic_document_classification_(ADC)
https://en.wikipedia.org/wiki/Document_classification#Automatic_document_classification_(ADC)
https://en.wikipedia.org/wiki/Latent_semantic_analysis#Applications
https://en.wikipedia.org/wiki/Latent_semantic_analysis#Applications

[11] “Aho corasick algorithm,” https://en.wikipedia.org/wiki/Aho-Corasick

algorithm, accessed: 2019-06-22.

[12] “Pmi,” https://en.wikipedia.org/wiki/Pointwise mutual information, accessed:

2019-06-22.

[13] O. P. Damani, “Improving pointwise mutual information (pmi) by incorporat-

ing significant co-occurrence,” 08 2013.

[14] S. L. Om P. Damani, Dipak L. Chaudhari, “Lexical co-occurrence, statistical

significance, andword association,” 07 2011.

[15] J.-M. S. J.-F. W. W.-N. T. Shian-Shyong Tseng, Pei-Chi Sue, “A new approach

for constructing the concept map,” 08 2005.

[16] J. C. W. M. Yiming Yang, Hanxiao Liu, “Concept graph learning from educa-

tional data,” 02 2015.

[17] W. W. C. Partha Pratim Talukdar, “Crowdsourced comprehension: Predicting

prerequisite structure in wikipedia,” 2012.

[18] W. H. C. L. G. Chen Liang, ZhaohuiWu, “Measuring prerequisite relations

among concepts,” 09 2015.

[19] “Graph database,” https://en.wikipedia.org/wiki/Graph database, accessed:

2019-06-26.

[20] “Db-engines ranking of graph dbms,” https://db-engines.com/en/ranking/

graph+dbms, accessed: 2019-06-26.

[21] “Neo4j,” https://en.wikipedia.org/wiki/Neo4j#cite note-DB-Engines-5, ac-

cessed: 2019-06-26.

[22] “Acceleration,” https://en.wikipedia.org/wiki/Acceleration, accessed: 2019-

06-26.

[23] “Work done by electric field,” , http://hyperphysics.phy-

astr.gsu.edu/hbase/electric/elewor.html.

43

https://en.wikipedia.org/wiki/Aho-Corasick_algorithm
https://en.wikipedia.org/wiki/Aho-Corasick_algorithm
https://en.wikipedia.org/wiki/Pointwise_mutual_information
https://en.wikipedia.org/wiki/Graph_database
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://en.wikipedia.org/wiki/Neo4j#cite_note-DB-Engines-5
https://en.wikipedia.org/wiki/Acceleration

	Acknowledgements
	Abstract
	Özet
	Introduction
	Overview of the Methodology and Contributions

	Related Work
	Methodology and Problem Definition
	Prerequisite Score Calculation
	Definition of the Score Function
	Input Format and Feature Selection
	Weight Learning
	Testing the Scoring Function

	Graph Formation
	Prerequisite Matrix
	Matrix Filtering and Graph Building

	Different Levels of Generalizations in the Graph

	Implementation, Experiments, and Evaluation
	Prerequisite Score Accuracy
	Graph Formation
	Complexity of the Algorithm
	Physics data-sets
	Database Management System Concepts

	Graph Generalization

	Conclusion and Future Work
	Tabular results of evaluations on each data-set
	Bibliography

