
GREEDY ALGORITHMS FOR DISTANCE-2 GRAPH
COLORING AND BIPARTITE GRAPH PARTIAL

COLORING

by

MUSTAFA KEMAL TAŞ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

July, 2019

© Mustafa Kemal Taş 2019

All Rights Reserved

to my family

İKİ MESAFELİ ÇİZGE BOYAMA VE İKİ PARÇALI ÇİZGE
BOYAMA İÇİN AÇGÖZLÜ ALGORİTMALAR

Mustafa Kemal Taş

Bilgisayar Mühendisliği, Yüksek Lisans Tezi, 2019

Tez Danışmanı: Dr. Ögr. Üyesi Kamer Kaya

Anahtar Kelimeler: 2 uzaklıklı çizge boyama, 2 parçalı çizge boyama,

paralel algoritmalar

Özet

Koşut bir uygulamanın görev etkileşim çizgesi komşu görevlerin farklı

renklerle boyandığında birbirleri ile aynı renkteki görevler aynı anda pahalı

bir senkronizasyon veri yapısı kullanılmadan aynı anda çalıştırılabilmektedir.

Bu tür bir çalıştırmada bir renkteki görevler bitirilmeden, başka bir renk-

teki görev koşut halde işlenemeyeceğinden boyama esnasında kullanılan renk

sayısı koşut uygulamanın çalıştırılması esnasında karşılaşılacak senkroniza-

syon adım sayısını belirtmektedir. Literatürde çizge boyama problemi ”bir

çizgeyi mümkün olan en az sayıda renk kullanarak komşu noktalara farklı

renkler vermek” olarak tanımlanmıştır ve bir optimizasyon problemi olarak

görüldüğünde NP-Hard sınıfındadır.

Çizge boyama probleminin farklı çeşitleri de paralel hesaplama, özellikle

paralel bilimsel hesaplama alanında önemlidir. Problemin yukarıda bahsedilen

v

basit halinde 1-uzaklık kullanılırken, k-uzaklık tanımı da özellikle k = 2 için

pratikte kullanılmaktadır. Bu tezde de bu problem üzerine yoğunlaşılmıştır.

Problemin genel hali ”bir çizgeyi mümkün olan en az sayıda renk kulla-

narak birbirinden k ve daha az uzaklıktaki nokta ikililerine farklı renkler ver-

mek” olarak tanımlanabilir. Literatürde bu problem için az renk kullanan

buluşsal yöntemler önerilmiştir ve bu yöntemler k = 1 için oldukça hızlıdır.

Fakat k = 2 için özellikle büyük çizgelerde bu buluşsal yöntemler dakikalar

mertebesinde zaman alabilmektedirler. çizge boyamanın bir uygulamanın

çalışması için sadece bir ön işlem olduğu düşünüldüğünde bu işlemin getirdiği

ekstra zamanın mümkün olduğu kadar az olması işlemin uygulanabilirliği

için önemlidir. Bu tezde 2-uzaklık çizge boyama ve bu problemin farklı

bir türü olan iki parçalı çizge boyama problemleri için iyimser ve açgözlü

buluşsal yöntemler önerilmiştir. Bu yöntemler çok çekirdekli işlemcilerde ve

Grafik İşleme Ünitelerinde koşut olarak gerçeklenmiş, ve ölçeklenebilirlikleri

analiz edilmiştir. Yapılan deneylerde önerilen yöntemlerin ölçeklenebilir ve

16 çekirdek kullanıldığında literatürdeki yöntemlerden ortalama 25 kat hızlı

oldukları görülmüş, özellikle sosyal ağ karakteri taşıyan çizgeler için büyük

performans artışı sağladığı saptanmıştır.

Yine bu tez çerçevesinde aynı renge sahip nokta kümelerinin eleman

sayılarının birbirine yakın olması üzerine de çalışılmıştır. Bu tür dengeli

dağılımlı bir boyama, uygulamanın çok çekirdekli işlemciler ve özellikle GİÜ’ler

üzerinde çalışması esnasında her senkronizasyon adımında bütün çekirdekleri

doyuracak kadar iş yükü olmasını sağlayacağından yüksek performans için

önemli olabilmektedir. Bu tezde neredeyse hiç ekstra külfet getirmeden bunu

sağlayabilecek iki yöntem önerilmiştir. Yapılan deneylerde bu yöntemlerin

başarılı olduğu sonucuna varılmıştır.

vi

GREEDY ALGORITHMS FOR DISTANCE-2 GRAPH
COLORING AND BIPARTITE GRAPH PARTIAL

COLORING

Mustafa Kemal Taş

Computer Science and Engineering, Master’s Thesis, 2019

Thesis Supervisors: Asst. Prof. Kamer Kaya

Keywords: distance-2 graph coloring, bipartite graph partial coloring,

balanced coloring, parallel algorithms

Abstract

In parallel computing, a valid graph coloring yields a lock-free processing

of the colored tasks, data points, etc., without expensive synchronization

mechanisms. However, the coloring stage is not free and the overhead can be

significant. In particular, for distance-2 graph coloring (D2GC) and bipartite

graph partial coloring (BGPC) problems, which have various use-cases within

the scientific computing and numerical optimization domains, the coloring

overhead can be in the order of minutes with a single thread for many real-life

graphs, having millions and billions of vertices and edges.

In this thesis, we propose a novel greedy algorithm for the distance-2

graph coloring problem on shared-memory architectures. We then extend the

algorithm to bipartite graph partial coloring problem, which is structurally

vii

very similar to D2GC. The proposed algorithms yield a better parallel col-

oring performance compared to the existing shared-memory parallel coloring

algorithms, by employing greedier and more optimistic techniques. In partic-

ular, when compared to the state-of-the-art, the proposed algorithms obtain

25× speedup with 16 cores, without decreasing the coloring quality. More-

over, we extend the existing distance-2 graph coloring algorithm to manycore

architectures. Due to architectural limitations, the multicore algorithm can

not easily be extended to manycore. Thus several optimizations and modi-

fications are proposed to overcome such obstacles. In addition to multi and

manycore implementations, we also offer novel optimizations for both D2GC

and BGPC on social network graphs. Exploiting the structural properties

of social graphs, we propose faster heuristics to increase the performance

without decreasing the coloring quality. Finally, we propose two costless

balancing heuristics that can be applied to both BGPC and D2GC, which

would yield a better color-based parallelization performance with a better

load-balancing, especially on manycore architectures.

viii

Contents

1 INTRODUCTION 1

2 BACKGROUND AND NOTATION 5

2.1 Speculative Coloring . 5

2.2 Compute Unified Device Architecture 7

3 EXISTING ALGORITHMS 11

4 PARALLEL GRAPH COLORING 13

4.1 Parallel Algorithms for Distance Two Graph Coloring 13

4.2 Parallel Algorithms for Bipartite Graph Partial Coloring . . . 20

4.3 Proposed Algorithms . 23

4.4 Manycore Implementation for GPUs 24

4.5 Optimizations for Social Networks 29

4.6 Balanced Coloring . 31

5 DATASETS 34

5.1 Graphs from Literature . 34

5.2 Social Network Graphs . 34

5.3 Random Graphs . 36

ix

6 RESULTS 37

6.1 Multicore Experiments . 37

6.2 Manycore Experiments . 58

6.3 Social Network Experiments 64

6.4 Experiments on Balancing . 68

7 CONCLUSION 70

x

List of Figures

2.1 Overall GPU architecture . 9

2.2 Memory hierarchy for GPUs 10

4.1 Coalesced memory access for a single warp 28

4.2 Execution timess (in seconds) of the net-based (blue) and

vertex-based (orange) phases for a single thread, where i con-

secutive net-based calls are executed with e increase factor on

coPapersDBLP graph. 30

6.1 The execution times for the multicore algorithms on the graphs

taken from coloring literature. The y-axis denotes the time in

seconds and the x-axis denotes the number of threads. The

algorithms are denoted above the bars. Red color shows the

execution time of the coloring phase and the blue color shows

the execution time of the conflict resolution phase. 39

6.2 The execution times for the multicore algorithms on the graphs

taken from coloring literature. The y-axis denotes the time in

seconds and the x-axis denotes the number of threads. The

algorithms are denoted above the bars. Red color shows the

execution time of the coloring phase and the blue color shows

the execution time of the conflict resolution phase. 40

xi

6.3 The execution times for the multicore algorithms on the graphs

taken from coloring literature. The y-axis denotes the time in

seconds and the x-axis denotes the number of threads. The

algorithms are denoted above the bars. Red color shows the

execution time of the coloring phase and the blue color shows

the execution time of the conflict resolution phase. 41

6.4 The execution times for the multicore algorithms on the graphs

taken from coloring literature. The y-axis denotes the time in

seconds and the x-axis denotes the number of threads. The

algorithms are denoted above the bars. Red color shows the

execution time of the coloring phase and the blue color shows

the execution time of the conflict resolution phase. 42

6.5 The speedup values for the multicore algorithms over the se-

quential VV algorithm on the matrices taken from coloring

literature. The y-axis denotes the speedup values and the x-

axis denotes the number of threads. 43

6.6 The speedup values for the multicore algorithms over the se-

quential VV algorithm on the matrices taken from coloring

literature. The y-axis denotes the speedup values and the x-

axis denotes the number of threads. 44

6.7 The speedup values for the multicore algorithms over the se-

quential VV algorithm on the matrices taken from coloring

literature. The y-axis denotes the speedup values and the x-

axis denotes the number of threads. 45

6.8 The execution times for the multicore algorithms on random

graphs. The y-axis denotes the time in seconds and the x-axis

denotes the number of threads. The algorithms are denoted

above the bars. Red color shows the execution time of the

coloring phase and the blue color shows the execution time of

the conflict resolution phase. 47

xii

6.9 The execution times for the multicore algorithms on random

graphs. The y-axis denotes the time in seconds and the x-axis

denotes the number of threads. The algorithms are denoted

above the bars. Red color shows the execution time of the

coloring phase and the blue color shows the execution time of

the conflict resolution phase. 48

6.10 The execution times for the multicore algorithms on random

graphs. the y-axis denotes the time in seconds and the x-axis

denotes the number of threads. The algorithms are denoted

above the bars. Red color shows the execution time of the

coloring phase and the blue color shows the execution time of

the conflict resolution phase. 49

6.11 The speedup values for the multicore algorithms over the se-

quential VV algorithm on random graphs. The y-axis denotes

the speedup values and the x-axis denotes the number of threads. 50

6.12 The speedup values for the multicore algorithms over the se-

quential VV algorithm on random graphs. The y-axis denotes

the speedup values and the x-axis denotes the number of threads. 51

6.13 The speedup values for the multicore algorithms over the se-

quential VV algorithm on random graphs. The y-axis de-

notes the speedup values and the x-axis denotes the number

of threads. 52

6.14 The execution times for the multicore algorithms on social

network graphs. The y-axis denotes the time in seconds and

the x-axis denotes the number of threads. The algorithms are

denoted above the bars. Red color shows the execution time

of the coloring phase and the blue color shows the execution

time of the conflict resolution phase. 54

xiii

6.15 The execution times for the multicore algorithms on social

network graphs. The y-axis denotes the time in seconds and

the x-axis denotes the number of threads. The algorithms are

denoted above the bars. Red color shows the execution time

of the coloring phase and the blue color shows the execution

time of the conflict resolution phase. 55

6.16 The speedup values for the multicore algorithms over the se-

quential VV algorithm on social network graphs. The y-axis

denotes the speedup values and the x-axis denotes the number

of threads. 56

6.17 The speedup values for all the algorithms over the sequential

VV algorithm. The y-axis denotes the speedup values and the

x-axis denotes the number of threads. 57

6.18 The execution times for manycore algorithms on random graphs,

side-by-side with their multicore counterparts. Y-axis denotes

the time in seconds and x-axis denotes the algorithms executed

with t = 16 threads. Red color shows the execution time of

the coloring phase and the blue color shows the execution time

of the conflict resolution phase. 59

6.19 The execution times for manycore algorithms on random graphs,

side-by-side with their multicore counterparts. The y-axis de-

notes the time in seconds and the x-axis denotes the algorithms

executed with t = 16 threads. Red color shows the execution

time of the coloring phase and the blue color shows the exe-

cution time of the conflict resolution phase. 60

6.20 The execution times for manycore algorithms on random graphs,

side-by-side with their multicore counterparts. The y-axis de-

notes the time in seconds and the x-axis denotes the algorithms

executed with t = 16 threads. Red color shows the execution

time of the coloring phase and the blue color shows the exe-

cution time of the conflict resolution phase. 61

xiv

6.21 The execution times for manycore algorithms on social net-

work graphs, side-by-side with their multicore counterparts.

The y-axis denotes the time in seconds and the x-axis denotes

the algorithms executed with t = 16. Red color shows the

execution time of the coloring phase and the blue color shows

the execution time of the conflict resolution phase. 62

6.22 The execution times for manycore algorithms on social net-

work graphs, side-by-side with their multicore counterparts.

The y-axis denotes the time in seconds and the x-axis denotes

the algorithms executed with t = 16. Red color shows the

execution time of the coloring phase and the blue color shows

the execution time of the conflict resolution phase. 63

6.23 The execution times for social network experiments with i ∈
{2, 3, 4} consecutive net-based calls are executed with e ∈
{50, 100, 200} increase factor and 16 threads. The numbers

above the bars show i, the number of consecutive net-based

calls, and the numbers below the chart show e, the increase

factor. 66

6.24 The execution times for social network experiments with i ∈
{2, 3, 4} consecutive net-based calls are executed with e ∈
{50, 100, 200} increase factor and 16 threads. The numbers

above the bars show i, the number of consecutive net-based

calls, and the numbers below the chart show e, the increase

factor. 67

6.25 Impact of balancing heuristics, B1 and B2, on the color set car-

dinalities and the number of color sets for D2GC algorithms

parallel VN2 (left) and N1N2 (right) on 16-threads for coPa-

persDBLP. 69

xv

List of Tables

4.1 The number of uncolored (remaining) vertices after the first

iteration for two graphs, obtained from matrices bone010 and

coPapersDBLP, when Algorithms 6 and 7 are used on 16 threads. 19

5.1 Properties of the graphs/matrices used in the experiments,

taken from the literature . 35

5.2 Properties of the graphs used in the social network experiments. 35

5.3 RMATs and RGGs used for Random Graph experiments. . . 36

6.1 Average speedup of the multicore algorithms on graphs taken

from the coloring literature for number of threads t ∈ {2, 4, 8, 16}
calculated by taking the geometric mean and the average change

in the total number of colors for graphs taken from coloring

literature. The maximum speedup for each column and the

minimum color change for each column is shown in bold. The

color changes that are within 1% margin of the minimum are

also shown in bold. 38

6.2 Average speedup of the multicore algorithms on random graphs

for number of threads t ∈ {2, 4, 8, 16} calculated by taking the

geometric mean and the average change in the total number of

colors for random graphs. The maximum speedup for each col-

umn and the minimum color change for each column is shown

in bold. The color changes that are within 1% margin of the

minimum are also shown in bold. 46

xvi

6.3 Average speedup of the multicore algorithms for number of

threads t ∈ {2, 4, 8, 16} on social network graphs, calculated

by taking the geometric mean and the average change in the

total number of colors for social network graphs. The maxi-

mum speedup for each column and the minimum color change

for each column is shown in bold. The color changes that are

within 1% margin of the minimum are also shown in bold. . . 53

6.4 Average speedup of social network experiments over sequential

VV algorithm where i ∈ {2, 3, 4} consecutive net-based color-

ing calls are executed with e ∈ {50, 100, 200} increase factor

on τ ∈ {2, 4, 8, 16} threads. 64

6.5 Average increase in the number of colors (%) for social net-

work experiments over sequential VV algorithm where i ∈
{2, 3, 4} consecutive net-based coloring calls are executed with

e ∈ {50, 100, 200} increase factor on τ ∈ {2, 4, 8, 16} threads. . 65

6.6 Average speedup and color change (%) for social network ex-

periments over N1N2 algorithm where i ∈ {2, 3, 4} consecutive

net-based coloring calls are executed with e ∈ {50, 100, 200}
increase factor. Both algorithms are executed on 16 threads. . 65

6.7 Impact of balancing heuristics, B1 and B2, on the color set

cardinalities and the number of color sets for parallel D2GC

algorithms VN2 and N1N2 on 16 threads. Results are nor-

malized with the original unbalanced algorithms denoted with

-U. 68

xvii

Chapter 1

INTRODUCTION

A coloring on a graph G = (V,E) with vertex set V and edge set E, explicitly

partitions the vertices in V into a number of disjoint subsets such that two

vertices u, v ∈ V that are in the same color set are independent from each

other, i.e., (u, v) /∈ E. Graphs have been frequently used to model data, e.g.,

matrices and tensors, as well as computations. In these models, two neighbor

vertices, i.e., an edge, usually imply a potential race-condition in a parallel

execution. On the other hand, given a valid coloring on V , each color set,

formed by independent vertices, can be simultaneously processed in a lock-

free manner and without a synchronization overhead. The total number of

colors is equal to the number of synchronization points, hence minimizing

the number of colors yields a better parallel performance. Unfortunately,

the distance-1 graph coloring problem (D1GC), i.e., coloring a graph with

the minimum number of colors such that all adjacent vertices have different

colors, is NP-Complete and hard to approximate [Matula, 1968, Zuckerman,

2007].

The traditional adjacency-based neighborhood is not sufficient for nu-

merous applications such as efficient computation of Hessians and Jacobians

or channel assignment problem. Instead, the problem can be modeled as a

bipartite graph partial-coloring (BGPC) problem. In BGPC, given a bipar-

tite graph G = (VA ∪ VB, E), one wants to color the vertices in VA with a

minimum number of colors, such that all vertex pairs that are adjacent to

1

at least one common VB vertex have different colors. A similar problem is

distance-2 graph coloring (D2GC), where a graph is colored in a way that the

color of each vertex is different than the colors of the vertices in its distance-2

neighborhood, which is defined as the set of vertices that can be reached in

at most two hops. For more details on the applications of BGPC and D2PC

as well as the parallel algorithms to solve these problems on shared-memory

and distributed-memory architectures, we refer the reader to [Gebremedhin

et al., 2013, Coleman and More, 1983, Bozdağ et al., 2005, Bozdağ et al.,

2010, Gebremedhin et al., 2005, Gebremedhin et al., 2002].

From the parallel computing perspective, another desirable property of

a good coloring is the balance on the color set cardinalities [Lu et al., 2015,

Meyer, 1973, Hajnal and Szemeredi, 1970, Robert K. Gjertsen et al., 1996].

A balanced coloring can improve the convergence speed and the value of

the final objective function for some iterative algorithms. However, a tight

balance is not required if shared-memory parallelism is the only concern; if

all the color set cardinalities are above a certain threshold, that depends on

the number of processors/cores available and the task heterogeneities, the

parallel performance will not be disrupted by the remaining imbalance since

there will be enough work to feed all the available cores/processors.

Good colorings, that use less number of colors, are not free and their gen-

eration adds an overhead for parallelization. Furthermore, the impact of this

overhead increases if the coloring is performed sequentially and the actual

job is executed on a large number of cores. This is why parallelization of

graph coloring algorithms have been extensively studied for all the problems

above, e.g., [Gebremedhin et al., 2013, Bozdağ et al., 2010, Çatalyürek et al.,

2012, Deveci et al., 2016]. The results in the literature show that the exe-

cution time of a sequential D1GC algorithm is less than a second for many

real-life graphs. However, for D2GC and BGPC, the overhead can be in the

order of minutes.

In our previous work we proposed an algorithm for both D2GC and

BGPC [Taş et al., 2017]. The proposed algorithm outperformed the state-of-

the-art algorithms by applying a greedier heuristic on CPU threads. In this

thesis we extend that algorithm to work on GPU threads as well as CPU

2

threads to increase the efficiency even further. Unfortunately, the algorithm

can not be directly and efficiently adapted to GPU threads due to the archi-

tectural limitations such as the shared memory size. Moreover, the nature of

the algorithm does not allow too much parallelism since it decreases the solu-

tion quality at intermediate steps leading to a worse overall execution time.

Thus, a new approach is needed for utilizing GPU threads. In this thesis we

also propose optimizations for coloring social network graphs, which exploit

the structural properties of such graphs.

In this thesis, we first propose greedier algorithms for both D2GC and

BGPC problems. The proposed algorithms outperform the state-of-the-art

algorithms by applying a greedier heuristic on multicore architectures. Com-

pared to an existing parallel coloring tool, the proposed algorithm runs 25×
faster on average when executed with 16 threads. All of the algorithms are

tested with same parameters, meaning that the speedup comes solely from

the proposed heuristics.

Second, we adapt the existing parallel D2GC algorithm to manycore ar-

chitectures. Due to architectural limitations, a straightforward adaptation is

not possible. Moreover, the nature of the algorithm does not allow further

parallelism, as it increases the race conditions at intermediate steps leading

to a worse overall execution time. Thus, we propose several optimization

tricks to overcome these obstacles. Compared to the multicore counterpart,

the proposed implementation runs 4× faster on average.

Third, we focus on a special type of graphs: Social Network Graphs.

As social networks get more and more popular, they provide the scientific

computing community with many useful datasets. Generally, such graphs

have many low-degree nodes and a few high-degree, i.e., central, nodes. As

we will discuss further in later sections, the quality of the coloring is strongly

dependent on the maximum degree of the graph. This allows us to employ

an even greedier algorithm, which relaxes the coloring criteria for low-degree

nodes for better performance. This relaxation does not affect the overall

coloring quality, since the overall quality is decided by the maximum degree

of the graph. With the proposed heuristic, the coloring can be done 60×
faster on average without decreasing the coloring quality on social network

3

graphs.

Last, to obtain a balanced coloring, we propose two online balancing

heuristics. The first heuristic aims not to increase the total number of col-

ors, whereas the second heuristic aggressively improves the balance by using

more colors. Both heuristics are integrated on top of the proposed D2GC

algorithm. The standard deviation of the color cardinalities decrease 1.44×
for the first heuristic and 4.00× for the second one. Moreover, applying these

heuristics is almost free, i.e., there is no computational overhead.

To summarize, the contribution of this paper is four-fold: 1) We propose

greedy algorithms for D2GC and BGPC in multicore setting. 2) We extend

the parallel D2GC algorithm to work on manycore architectures and discuss

implementation challenges. 3) We propose several optimizations for social

network graphs that can be applied to both D2GC and BGPC. 4) We inte-

grate two costless balancing heuristics to obtain a more balanced coloring.

For the multicore experiments, we compare our results to the algorithms

proposed in ColPack, an open source graph coloring library that provides

D2GC and BPGC implementations. The selection is based on the rationale

that it is the only publicly available distance coloring library to the best

of our knowledge, and almost all the literature use algorithms which are

less optimistic than the ones proposed in this work. In order to have a fair

comparison, we have implemented the algorithms proposed in ColPack from

the scratch so that both algorithms share the same codebase. We even fine-

tuned the performance of existing less-optimistic variants for fairness. For

the manycore experiments, we compare our results to the above-mentioned

implementation, again to share the same codebase.

The rest of the paper is organized as follows: Chapter 2 introduces the

notation and background on parallel coloring and describes the state-of-the-

art. A literature survey and related work are presented in Chapter 3. The

proposed algorithms as well as the optimization techniques are described in

detail in Chapter 4. Chapter 5 introduces the datasets used in experiments.

In Chapter 6 the experimental setup is described and the results are pre-

sented. Finally, Chapter 7 concludes the thesis.

4

Chapter 2

BACKGROUND AND

NOTATION

2.1 Speculative Coloring

Most of the recent coloring algorithms use a speculative, iterative approach

which first colors the vertices optimistically in parallel hoping that a valid

coloring will be generated, e.g., [Gebremedhin et al., 2013, Çatalyürek et al.,

2012, Deveci et al., 2016, Sarıyüce et al., 2012]. The validity of the coloring

is then verified in a conflict removal step; if a conflict, i.e., a pair of neighbor

vertices with the same color, is detected, one of the vertices is tagged to be

colored in the next iteration. Let G = (V,E) be a graph and let Vcolor ⊆ V

be the vertices that need to be colored. Let nbor(v) ⊂ Vcolor define set of

v’s neighbor vertices that need to be colored. Throughout the text, non-

negative integers will be used as colors and -1 is the color of an uncolored

vertex. A pseudocode of the greedy optimistic graph coloring approach is

given in Algorithms 1, 2 and 3.

5

Algorithm 1 GreedyGraphColoring
Input: G = (V,E), Vcolor ⊆ V : vertices to be colored, nbor(.): the neighborhood
function for the vertices in Vcolor.
Output: c[.]: a valid coloring array for Vcolor

1: W ← Vcolor

2: c[v]← −1, ∀v ∈ Vcolor

3: while W is not empty do
4: c← ColorWorkQueue(G, W , c)
5: W ←RemoveConflicts(G, W , c)

Algorithm 2 ColorWorkQueue
Input: G = (V,E), W : vertices to color, nbor(.): the neighborhood function, c[.]:
an incomplete coloring with no conflicts.
Output: c[.]: an optimistic coloring.

1: for each w ∈W in parallel do
2: F ← ∅ . thread private forbidden color set for w
3: for each u ∈ nbor(w) do
4: if c[u] 6= −1 then
5: F ← F ∪ {c[u]}
6: col← 0 . first-fit coloring policy
7: while col ∈ F do
8: col← col + 1

9: c[w]← col

As the algorithms show, at each iteration, a set of vertices in W are

optimistically colored. A conflict removal phase is then performed to check

if they are conflicting with the other vertices in Vcolor. When conflicts are

detected, the conflicting vertices are added to the next iteration’s vertex

queue and the procedure is repeated. This greedy and optimistic approach

can be used for almost all the coloring variants and the definitions of Vcolor

and nbor(.) change with respect to the problem. For D2GC, Vcolor = V

and nbor(u) is the set of vertices in V whose shortest-path distances to u

are less than or equal to two. For the BGPC problem, on a bipartite graph

G = (V,E) where V = VA ∪ VB has two parts, Vcolor = VA and for each

u ∈ VA, nbor(u) is defined as {v ∈ VA \ {u} : ∃w ∈ VB s.t. (u,w) ∈ E and

(v, w) ∈ E}.
The BGPC problem can be considered as a hypergraph coloring prob-

lem [Bozdağ et al., 2010] where the elements of VA correspond to the pins

6

Algorithm 3 RemoveConflicts
Input: G = (V,E): the graph to color, W : vertices to color, nbor(.): the neigh-
borhood function, c[.]: an optimistic coloring.
Output: Wnext: the work queue for next iteration, c[.]: a (probably incomplete)
coloring with no conflicts.

1: Wnext ← ∅ . a shared queue for the next iter.
2: for each w ∈W in parallel do
3: for each u ∈ nbor(w) do
4: if c[u] = c[w] and w > u then
5: Wnext ←Wnext ∪ {w} : atomic
6: break

to be colored, and the ones in VB correspond to the nets in the hypergraph

which define the neighborhood. Based on this analogy, for clarity, while de-

scribing our algorithms we will use the terms vertex and net to denote a VA

and VB vertex, respectively, in the bipartite graph. Similarly, for a vertex

u ∈ VA (v ∈ VB), nets(u) (vtxs(v)) will denote the set of VB (VA) vertices

adjacent to u (v).

Lastly, for the D2GC problem, the value 1+maxv∈V (|nbor(v)|) is a trivial

lower bound on the number of colors required for a valid coloring since all

vertices in a distance-2 neighbourhood need to be colored with distinct colors.

The counterpart of this bound in BGPC variant is maxv∈VB
(|vtxs(v)|).

2.2 Compute Unified Device Architecture

One of the most commonly used manycore architectures used today in sci-

entific computing are graphical processing units (GPUs). Compute Unified

Device Architecture (CUDA) is a parallel computing platform developed by

NVIDIA for general computing on GPUs. For manycore implementations,

we have used CUDA to leverage the high performance computing potential of

thousands of GPU cores. Here we present the terminology on CUDA. For the

rest of the paper we will use the term device to refer GPU and host to refer

CPU.

• Kernel: A kernel is an application or a program that runs on the

device. Typically, kernels are defined as functions and executed on

7

device threads.

• Thread: A thread is the smallest computation unit with the finest

granularity on which the kernels are executed. Each thread has its own

registers and private memory.

• Block: A block is a group of threads. The main advantage of having

threads grouped into blocks is that they can share a common memory

to perform related tasks together.

• Grid: A grid is the topmost container which contains a group of blocks

in it. It can be used as a three dimensional arrangement of blocks.

• Warp: Each block is split into groups of threads called warps. All

the threads in a single warp execute concurrently and are controlled by

the same program counter. Hence, the threads in a single warp always

perform the same instruction, possibly on different data.

• Global memory: The main memory of GPU devices that can be

accessed by both the host and device.

• Shared memory: Block-private memory that have lower latency com-

pared to the global memory. A shared memory region is shared between

the threads in the same block but can not be accessed by other blocks.

In Figure 2.1, an overall GPU architecture is shown. In Figure 2.2, the

memory hierarchy on GPUs is presented. Clearly, the memory units closer

to the processors have lower latency.

8

Figure 2.1: Overall GPU architecture

9

Figure 2.2: Memory hierarchy for GPUs

10

Chapter 3

EXISTING ALGORITHMS

Coloring has mostly been investigated for distance-1 coloring, but most of

the ideas can be ported to other variants. Since graph coloring is NP-

Complete [Matula, 1968] and hard to approximate [Zuckerman, 2007] in most

of its variants, the vertices are greedily colored one after another, and the

lowest available color for a vertex is selected. Such an algorithm produces a

coloring with less than 1+∆ colors for the distance-1 variant of the problem.

Though to avoid the worst case, it is common to carefully choose the order

in which the vertices are processed [Gebremedhin et al., 2005] using either a

static [Matula and Beck, 1983, Welsh and Powell, 1967] or dynamic [Brélaz,

1979] ordering.

Earlier coloring algorithms [Allwright et al., 1994, Jones and Plassmann,

1993, Gjertsen Jr. et al., 1996] are based on generating maximum indepen-

dent sets in parallel via algorithms such as [Luby, 1986]. Recent techniques

optimistically color the vertices in parallel assuming that a valid coloring

will be generated and then verify the validity of the coloring. In case of an

invalid coloring, one of the neighbor vertices that are of the same color is

tagged to be colored again in the next iteration of the algorithm. This tech-

nique was successfully applied on distributed memory machine [Boman et al.,

2005, Bozdağ et al., 2008, Sarıyüce et al., 2011, Sarıyüce et al., 2014], includ-

ing for BGPC and D2GC [Bozdağ et al., 2005, Bozdağ et al., 2010]. The

algorithm was investigated also on shared memory, multicore and manycore

architectures [Çatalyürek et al., 2012, Gebremedhin and Manne, 1999, Pat-

11

wary et al., 2011, Gebremedhin et al., 2002, Deveci et al., 2016] and on

hybrid MPI + OpenMP systems [Sarıyüce et al., 2012]. One common point

of [Bozdağ et al., 2005, Bozdağ et al., 2010] and the proposed work is that the

conflict removal phase of D2GC has been performed around middle vertices

which is similar to the net-based conflict removal. Nevertheless, the authors

studied D2GC in the distributed setting and applied the approach for all

iterations.

Parallel algorithms tend to obtain a higher color count than their sequen-

tial counterparts because a strict vertex ordering is not enforced and conflicts

can cause vertices to be colored completely out of order. Culberson proposed

a post optimization technique [Culberson, 1992] that iteratively recolors ver-

tices in an order depending on the color they were given in the previous

iteration. This was successfully applied on shared-memory systems [Ge-

bremedhin and Manne, 1999] and distributed memory systems [Sarıyüce

et al., 2011, Sarıyüce et al., 2014]. In this work, for BGPC and D2GC, we did

not observe a significant increase on the number of colors with paralleliza-

tion compared to the sequential execution. However, such post-optimization

techniques can be employed to further reduce the color counts in our algo-

rithms.

12

Chapter 4

PARALLEL GRAPH
COLORING

The state-of-the-art algorithms for a parallel D2GC and BGPC have a quadratic

complexity for both coloring and conflict resolution phases. This complexity

comes from the distance-2 traversal that is carried out at each iteration to

detect used colors, and in fact it is the bottleneck of the algorithm. However,

based on the rationale that for every vertex v, all the vertices in nbor(v) are

distance-2 connected through v, we propose greedier algorithms that yield

linear complexity by letting v distribute colors among its neighbors.

4.1 Parallel Algorithms for Distance Two Graph

Coloring

The traditional implementation of a parallel distance-2 graph coloring is a

straightforward extension of the speculative distance-1 coloring algorithm. In

the coloring phase, each vertex traverses its distance-2 neighbourhood and

records all the used colors as forbidden, then selects a suitable color accord-

ingly. Similarly, in the conflict resolution phase, each vertex again traverses

the distance-2 neighbourhood and clears itself if a conflict is encountered.

These phases alternate until a valid coloring is obtained. For the rest of the

thesis, we will refer to these algorithms as vertex-based algorithms since each

thread is responsible for a single vertex.

The pseudocode for the vertex-based coloring and conflict removal phases

13

are given in Algorithm 4 and Algorithm 5. In lines 3-8 of Algorithm 4,

the forbidden colors are stored in a fixed-size, thread-private array. After

that, the first non-forbidden color, i.e., a color that is not in the forbidden

colors array, is assigned to the corresponding vertex. For Algorithm 5, the

only difference from its distance-1 counterpart is that both distance-1 and

distance-2 neighbours are traversed to find a conflicting neighbour.

For both algorithms, the threads traverse only the most recent work

queue. Thus, the early iterations are the most time consuming ones. As

the algorithm proceeds to later iterations, the work queue gets drastically

smaller thus the execution time decreases.

Algorithm 4 D2GC-ColorWorkQueue-Vertex
Input: G = (V,E): a graph, c[.]: an incomplete coloring, W : vertices to color
Output: c[.]: the (most) optimistic coloring array.

1: for each v ∈W in parallel do
2: F ← ∅ : thread private forbidden color set for v
3: for each u ∈ nbor(v) do
4: if c[u] 6= −1 and c[u] /∈ F then
5: F ← F ∪ {c[u]}
6: for each w ∈ nbor(u) do
7: if c[w] 6= −1 and c[w] /∈ F then
8: F ← F ∪ {c[w]}
9: col← 0 . first-fit coloring policy

10: while col ∈ F do
11: col← col + 1

12: c[w]← col

The time complexity of both algorithms is quadratic in terms of the size

of the graph. For both algorithms, each vertex traverses its distance-2 neigh-

borhood. Namely, for each vertex v, all the vertices adjacent to v are visited.

Then for each vertex u which are adjacent to v, the neighbors of u is visited.

Thus the time complexity of an iteration is

O
(∑

v∈V
∑

u∈nbor(v) |nbor(u)|
)

.

For the conflict removal phase, there might be early terminations (line 6 in

Alg. 3). However, this worst-case bound is tight; if the optimistic coloring is

valid then the whole neighborhood should be traversed.

14

Algorithm 5 D2GC-RemoveConflicts-Vertex
Input: G = (V,E): a graph c[.]: an optimistic coloring, W : most recent work
queue
Output: Wnext: the work queue for next iteration, c[.]: an incomplete coloring.

1: Wnext ← ∅
2: for each v ∈W in parallel do
3: for each u ∈ nbor(v) do
4: if c[v] = c[u] and v > u then
5: Wnext ←Wnext ∪ {v} : atomic
6: break
7: for each w ∈ nbor(u) do
8: if c[v] = c[w] and v > w then
9: Wnext ←Wnext ∪ {v} : atomic

10: break

As mentioned above, the traditional approach traverses the most recent

work queue at each iteration. Numerous experiments have shown that the

size of the work queue decrease drastically after the early iterations, meaning

that the most time consuming part of the execution is the early iterations.

Empirically, 78% of the runtime is observed to be used on the first iteration.

That number goes up to 89% for the first two iterations. In this work we pro-

pose a greedier and more optimistic method to attack these early iterations.

After the early iterations, both algorithms switch back to their vertex-based

counterparts.

Instead of having all the vertices traverse their distance-2 neighbourhood,

the proposed algorithm attacks the most time consuming early iterations by

having all the vertices traversing their distance-1 neighbourhood and assign-

ing different colors to each neighbour. The rationale behind this idea is the

fact that for a vertex v, any two vertices are distance-2 neighbours if they

are both in nbor(v), connected by v, thus they should be assigned different

colors. The same idea is also applied to the conflict removal phase; all the ver-

tices traverse their distance-1 neighborhood and resolve conflicts amongst the

vertices in that neighborhood. The proposed coloring and conflict removal

algorithms are given in Algorithm 6 and Algorithm 8. For the rest of the

thesis, these algorithms will be referred as net-based algorithms. The term

net is taken from the hypergraph terminology since each vertex is treated

15

similar to a net in a hypergraph.

The coloring algorithm (Algorithm 6) starts with traversing the distance-

1 neighborhood and assigning colors in a first-fit manner to uncolored or

conflicting neighbours (line 5). If the visited neighbour already has a valid

color, then its color is marked as forbidden (line 9). This is done by keeping a

thread-private, fixed-size array F for each thread. The algorithm terminates

when the whole distance-1 neighbourhood is traversed.

This algorithm is an order of magnitude faster than its vertex-based coun-

terpart, namely, it is linear in terms of the size of the graph (|V | + |E|).
However, while coloring, each thread only checks local conflicts within the

distance-1 neighbourhood of the current net; this is the optimism. Since

most of the vertices are members of many distance-1 neighbourhoods, most

of them are assigned to conflicting colors due to race conditions. This is the

most optimistic net-based coloring since threads “hope” that the assigned

colors in earlier positions will not appear in the same neighbourhood. Unfor-

tunately, our preliminary experiments have shown that this level of optimism

is maleficent due to the large number of conflicts it incurs. To keep the color-

ing process in the right track by reducing the number of conflicts, we propose

Algorithm 7, which is a modified version of Algorithm 6. In this algorithm,

two main modifications are made.

First, instead of a first-fit coloring strategy, a reverse first-fit strategy is

used. The main source of conflicts is multiple threads assigning the same

color to vertices in the same neighbourhood. Since all threads use 0 as the

initial color for the first-fit strategy, the same small colors are more frequently

used and cause conflicts. The straightforward idea would be assigning differ-

ent initial colors for each thread, however a randomized approach would not

guarantee maintaining solution quality, i.e., it might increase the total num-

ber of colors since it doesn’t take into account any lower or upper bounds.

However the reverse first-fit strategy assigns |nbor(v)| to each thread as the

initial color, and goes backwards looking for the largest possible color at each

iteration. The advantage of this strategy is that, it prioritizes different colors

for each net instead of using the same small colors for each neighbourhood,

thus decreases the possibility of having conflicts. Moreover, since |nbor(v)| is

16

an obvious lower bound on the total number of colors used, we do not expect

a large increase in the final number of colors. Also, for the same reason this

approach is guaranteed to use non-negative colors whatsoever.

The second modification is having an additional traverse of the distance-1

neighbourhood to mark the forbidden colors, at the beginning of the algo-

rithm. In Algorithm 6, a single pass is done over the distance-1 neighbour-

hood and vertices are recolored if they are conflicting with any of the pre-

viously colored vertices. As previously mentioned, since threads are obliv-

ious about the colors of unvisited neighbours it is highly probable that a

thread assigns a color that is already claimed by another vertex in the same

neighbourhood. In such cases, the latter vertex is recolored, leading to an

avalanche of conflicts. With our proposed modification, first the whole neigh-

bourhood is traversed and forbidden colors are stored in F , a thread-private

fixed-size array. While doing so, any uncolored vertex or any vertex that

causes a conflict (due to the actions of other threads) is added to a local

work queue Wlocal, again a thread-private array. After this traversal is done,

only the vertices in Wlocal are colored using the proposed reverse first-fit

strategy. The pseudocode of the modified version of the net-based coloring

algorithm is given in Algorithm 7.

Algorithm 6 D2GC-ColorWorkQueue-Net-Naive
Input: G = (V,E): a graph, c[.]: an incomplete coloring.
Output: c[.]: the (most) optimistic coloring array.

1: for each v ∈ V in parallel do
2: F ← ∅ : thread private forbidden color set for v
3: col← 0 . first-fit coloring
4: for each u ∈ nbor(v) do
5: if c[u] = −1 and c[u] ∈ F then
6: while col ∈ F do
7: col← col + 1

8: c[u]← col

9: F ← F ∪ {c[u]}

To demonstrate the benefits of these two modifications, in Table 4.1, we

present the number of uncolored (remaining) vertices after the first iteration

of the algorithm on two randomly selected graphs. The results for different

17

Algorithm 7 D2GC-ColorWorkQueue-Net
Input: G = (V,E): a graph, c[.]: an incomplete coloring.
Output: c[.]: the (most) optimistic coloring array.

1: for each v ∈ V in parallel do
2: F ← ∅ : thread private forbidden color set for v
3: Wlocal ← ∅ : thread private vertices to be colored
4: if c[v] 6= −1 then
5: F ← F ∪ {c[v]}
6: else
7: Wlocal ←Wlocal ∪ {v}
8: for each u ∈ nbor(v) do
9: if c[u] 6= −1 and c[u] /∈ F then

10: F ← F ∪ {c[u]}
11: else
12: Wlocal ←Wlocal ∪ {u}
13: col← |nbor(v)| . reverse first-fit coloring
14: for each u ∈Wlocal do
15: while col ∈ F do
16: col← col − 1

17: c[u]← col
18: col← col − 1

18

Remaining |Wnext| after the first iteration
Matrix-Graph |V | Alg. 6 Alg. 6 + reverse Alg. 7
bone010 986,703 863,785 806,264 610,924
coPapersDBLP 540,486 409,621 303,152 133,874

Table 4.1: The number of uncolored (remaining) vertices after the first iter-
ation for two graphs, obtained from matrices bone010 and coPapersDBLP,
when Algorithms 6 and 7 are used on 16 threads.

graphs are similar to those presented, so only two of them are presented. The

performance results for all the graphs will be presented in Chapter 6

The conflict resolution phase is relatively simpler. Similar to the coloring

phase, the conflict resolution phase also populates a forbidden colors array

F by traversing the distance-1 neighbourhood. If a color is encountered for

the first time, it is added to F . If it has already been added to F in previous

iterations then the color of that vertex is cleared, thus the conflict is resolved.

Also, the conflicting vertex is added to Wnext, the work queue of the next

iteration. The pseudocode of the net-based conflict resolution algorithm is

presented in Algorithm 8

Algorithm 8 D2GC-RemoveConflicts-Net
Input: G = (V,E): a graph to color, c[.]: an optimistic coloring.
Output:Wnext: the work queue for next iteration c[.]: an incomplete coloring.

1: Wnext ← ∅
2: for each v ∈ V in parallel do
3: F ← ∅ : thread private forbidden color set for v
4: if c[v] 6= −1 then
5: F ← F ∪ {c[v]}
6: for each u ∈ nbor(v) do
7: if c[u] 6= −1 then
8: if c[u] ∈ F then
9: Wnext ←Wnext ∪ {u}

10: else
11: F ← F ∪ {c[u]}

Since the net-based algorithms traverse only distance-1 neighborhood in-

stead of the full distance-2 neighborhood, the proposed algorithms are ex-

pected to be significantly faster than their traditional counterparts. In other

19

words, for each vertex v, only the distance-1 neighbors are visited and the

complexity is O
(∑

v∈V |nbor(v)|
)

which is linear in terms of the size of the

graph.

However, despite being faster than their vertex-based counterparts, net-

based algorithms require a traversal over the whole graph. On the other

hand, vertex-based approaches operate only on the most recent work queue.

Since after the early iterations the work queue gets drastically smaller, net-

based algorithms become suboptimal. Thus, they are only preferred when

the work queue is sufficiently large, and we switch to vertex-based algorithms

for later iterations.

4.2 Parallel Algorithms for Bipartite Graph

Partial Coloring

Intuitively, BGPC problem is very similar to D2GC with only one difference:

the neighborhood is defined differently. In BGPC, given a bipartite graph

G = (VA ∪ VB, E), a valid coloring is obtained by assigning colors to vertices

in VA such that all vertex pairs that are adjacent to at least one vertex in VB

have different colors.

The traditional approach again employs the vertex-based algorithms.

Each thread is responsible for one vertex in VA and traverses the correspond-

ing neighborhood. For clarity concerns, for a vertex v in VA we will refer its

neighbors in VB as nets(v) and for a vertex u in VB we will refer its neighbors

in VA as vtxs(u). The vertex-based coloring and conflict removal algorithms

are given in Algorithm 9 and Algorithm 10.

Similar to the D2GC problem, the vertex-based algorithms have a quadratic

complexity. First, each net v ∈ VB is visited |vtxs(v)| times and for each

visit, all |vtxs(v)| will be processed. Hence the complexity of the neighbor-

hood traversal of an iteration is O
(∑

v∈VB
|vtxs(v)|2

)
. Note that, for the

conflict removal phase there can be early terminations, however the given

worst-case is tight.

For BGPC, we employ the same net-based idea used in D2GC for both

coloring and conflict removal phases. The net-based coloring algorithm pro-

20

Algorithm 9 BGPC-ColorWorkQueue-Vertex
Input: G = (VA ∪ VB, E): a bipartite graph, W : vertices to color, c[.]: an
incomplete coloring with no conflicts.
Output: c[.]: an optimistic coloring.

1: for each v ∈W in parallel do
2: F ← ∅ : thread private forbidden color set for w
3: for each v ∈ nets(w) do
4: for each u ∈ vtxs(v) \{w} do
5: if c[u] 6= −1 then
6: F ← F ∪ {c[u]}
7: first-fit coloring (lines 6-9 in Alg. 2)

Algorithm 10 BGPC-RemoveConflicts-Vertex
Input: G = (VA ∪ VB, E), W : vertices to color, nbor(.): the neighborhood func-
tion, c[.]: an optimistic coloring.
Output: Wnext: the work queue for next iteration, c[.]: a (probably incomplete)
coloring with no conflicts.

1: Wnext ← ∅ : a shared queue for the next iter.
2: for each w ∈W in parallel do
3: for each v ∈ nets(w) do
4: for each u ∈ vtxs(v) \{w} do
5: detect conflicts (lines 4-6 in Alg. 3)

21

cesses the vertices in VB, i.e., the nets, in parallel and colors their corre-

sponding adjacency lists. That is achieved by again keeping a thread private

forbidden colors array. Each color encountered during the traversal is added

to the array if it has not been added before. If a vertex has no colors or the

color of a vertex is already forbidden, then the vertex is marked to be recol-

ored in that iteration. This way, an online conflict removal is also carried out

during the coloring phase. After the whole neighborhood is traversed, the

vertices marked to be recolored are colored using the reverse first-fit strategy

mentioned in previous sections.

Similarly, the net-based conflict removal algorithm performs a net-based

traversal and marks the conflicting vertices to be colored in the next iter-

ation, again with the help of a thread-private forbidden colors array. The

pseudocodes for net-based coloring and conflict removal phases are given in

Algorithm 11 and Algorithm 12.

Algorithm 11 BGPC-ColorWorkQueue-Net
Input: G = (VA ∪ VB, E): a bipartite graph, c[.]: an incomplete coloring.
Output: c[.]: an optimistic coloring array.

1: for each v ∈ VB in parallel do
2: F ← ∅ : thread private forbidden color set for v
3: Wlocal ← ∅ : thread private vertices to be colored
4: for each u ∈ vtxs(v) do
5: if c[u] 6= −1 and c[u] /∈ F then
6: F ← F ∪ {c[u]}
7: else
8: Wlocal ←Wlocal ∪ {u}
9: col← |vtxs(v)| − 1 . reverse first-fit coloring

10: for each u ∈Wlocal do
11: while col ∈ F do
12: col← col − 1

13: c[u]← col
14: col← col − 1

The complexity of each iteration of net-based algorithms are linear in

terms of the size of the graph (|VA ∪ VB|+ |E|). As in the net-based D2GC

algorithms, since each net v ∈ VB traverses only vtxs(v), the complexity is

O
(∑

v∈VB
|vtxs(v)|

)
.

22

Algorithm 12 BGPC-RemoveConflicts-Net
Input: G = (VA ∪ VB, E): a bipartite graph to color, c[.]: an optimistic coloring.
Output: c[.]: an incomplete coloring.

1: for each v ∈ VB in parallel do
2: F ← ∅ : thread private forbidden color set for v
3: for each u ∈ vtxs(v) do
4: if c[u] 6= −1 then
5: if c[u] ∈ F then
6: c[u]← −1
7: else
8: F ← F ∪ {c[u]}

4.3 Proposed Algorithms

As mentioned above, the proposed net-based algorithms for coloring and

conflict resolution are an order of magnitude faster than their vertex-based

counterparts. However since they require a traversal over the whole graph,

they become inefficient compared to their vertex-based counterparts when

the work queue gets smaller and smaller. Experimental results indicate that

89% of the execution time is spent on the first two iterations on average.

Thus, attacking these two iterations results in a significant speedup. Here

we propose several algorithms that are obtained by using different net-based

and vertex-based algorithm combinations.

• VV: Vertex-based coloring with first-fit policy and vertex-based con-

flict removal for all iterations. This is the traditional approach and is

used as a baseline for all other algorithms.

• VN1: Vertex-based coloring with net-based conflict removal for just

the first iteration.

• VN2: Vertex-based coloring with net-based conflict removal for the

first two iterations. Empirical results suggest that using net-based con-

flict removal for the first two iterations is the best configuration. Thus

it is adapted for the rest of the algorithms.

• N1N2: Net-based coloring for the first iteration with net-based conflict

removal for the first two iterations.

23

• N2N2: Net-based coloring for the first two iterations with net-based

conflict removal for the first two iterations.

These algorithms are applied to both D2GC and BGPC. Thus in total

there are 10 algorithms. The experimental results presented and algorithms

are compared in terms of performance in Chapter 6.

4.4 Manycore Implementation for GPUs

The existing literature on D2GC and BGPC focuses on multicore implemen-

tations and are limited to vertex-based approaches mentioned in the previous

section. The reason is, intuitively both problems as well as the aboveme-

tioned algorithms are hard to adapt to manycore architectures. Here we dis-

cuss several technical obstacles that make a straightforward adaptation from

the multicore implementations infeasible, then propose solutions to overcome

such obstacles.

Parallelism: The parallel speculative coloring algorithm iteratively tries

obtaining a valid coloring and resolves the conflicts if there are any. Intu-

itively, at any iteration, the time spent on coloring depends on the number

of uncolored vertices, i.e., number of conflicts, at the previous iteration. In

other words, number of conflicts obtained at intermediate steps of the exe-

cution has a direct impact on the execution time. Thus, an algorithm that

generates minimal conflicts at intermediate steps terminates faster.

The conflicts occur when multiple threads assign different colors to the

same vertex. Clearly, the possibility of a conflict occurring increases as the

number of threads increase [Gebremedhin and Manne, 1999]. This creates a

paradox: as the number of threads increases an intermediate coloring phase

is executed faster, however the resulting intermediate coloring has more con-

flicts, thus the overall time increases. So, parallelism is a useful way to speed

up coloring but too much parallelism hurts.

In the case of GPU implementation, a straightforward adaptation of the

CPU algorithm fails as the number of threads on GPU can go up to thousands

compared to tens of threads on CPU. Despite being significantly faster than

24

the CPU implementation for a single iteration, this method generates too

many conflicts and the algorithm takes too long to converge.

We propose an approach that lowers the vertex-level parallelism while

still utilizing the execution power of GPUs. The proposed method assigns a

group of GPU threads called warps to each vertex, hence its corresponding

neighborhood, instead of assigning a single thread to each vertex. This way,

the number of vertices that are processed at a given time is decreased while

the total number of GPU threads being used remains the same. Specifically,

each thread in a warp traverses different parts of the neighborhood of the

same vertex and populate a common forbidden colors array. This array

is held in the shared memory of each CUDA block as I/O operations are

much faster compared to the global memory. After the forbidden colors are

detected, threads cumulatively search the forbidden colors array and find a

suitable color. Then the warp skips to the next vertex in the work queue

until there are no more vertices left in the queue.

Memory Limitations: As described in previous sections, the first step

of both coloring and conflict resolution phases is to determine which colors

are already being used in the neighbourhood. This information needs to be

stored in order to either select an available color or to resolve conflicts. In

the CPU implementations, in order to avoid dynamic memory allocations

and deallocations, a two dimensional matrix with t rows and |V | columns is

created where t is the number of threads and each row is a thread-private

array. When a color is encountered in the neighbourhood of a vertex, the cor-

responding entry in that thread-private array is marked to indicate that color

is forbidden. Apparently, the memory complexity of the forbidden colors ar-

ray is O(t|V |) for t threads and |V | vertices. The memory requirements can

be lowered by using maxv∈V (|nbor(v)|) columns instead of |V | columns, but

that would increase the computation complexity since it requires a smarter

forbidden color marking technique, hence it is not preferred. More specifi-

cally, once the memory requirements are lowered, a more sophisticated search

mechanism would be needed to find an available color for a vertex. More-

over, O(t|V |) is an acceptable memory complexity for modern architectures,

even for graphs with billions of vertices. However, the same idea can not be

25

applied to the GPUs for two reasons: 1) GPUs have much less fast shared

memory compared to CPUs. 2) GPUs have many more threads compared

to CPUs. Clearly, keeping a thread-private array for each thread or warp is

not an option.

A possible solution is using the global memory of the GPU device to store

the forbidden colors array. Today, the global memory a GPU has 2-20 GBs

of global memory. While this approach allows using much more space, based

on our preliminary experiments, the latency of reading and writing on global

memory is too much compared to the CPU latencies. In fact, this approach

works significantly slower than the CPU implementations and also generates

more conflicts due to the reasons discussed in the previous section.

To overcome the memory limitations, we propose using minimal warp-

private arrays that represent only a small portion of the color space. The

proposed implementation only considers the colors in a given interval and

ignores the others. Empirical results have shown that for most of the vertices

in many graphs, the selected limit (which is fine-tuned as 3072) is sufficient

to cover the neighborhood. The benefit of this approach is that, the arrays

can be small enough to fit into the shared-memory of the CUDA blocks which

is much faster in terms of I/O latency compared to the global memory. Also,

since only membership queries will be executed on this array, we allow race

conditions. Thus, there is no synchronization overhead.

In Algorithm 13, the warp level GPU implementation of the vertex-based

algorithm is given. For this pseudocode, the keyword next(.) is used to denote

fetching the next member from a set. Note that, all the memory accesses are

coalesced to combine multiple memory accesses into a single operation.

The algorithm starts with an empty, warp-private forbidden colors array

of size k which is stored in the shared memory (line 2). Then, each warp

fetches a vertex from the work queue. For the fetched vertex, the threads in

a single warp traverse the neighborhood; threads visit the distance-1 neigh-

bors in a coalesced manner and each thread is responsible for the distance-1

neighborhood of the corresponding neighbor which incurs a burden for high

performance. The coalesced memory access pattern is given in Figure 4.1.

For each iteration, the array needs to be cleared for reuse. In order to get

26

Algorithm 13 D2GC-ColorWorkQueue-Warp
Input: G = (V,E): a graph, c[.]: an incomplete coloring, W : vertices to color, k:
mask size
Output: c[.]: the (most) optimistic coloring array.

1: while W 6= ∅ do
2: F ← ∅ : warp private, shared set of size k
3: v ← next(Q) . Fetch the next vertex from work queue
4: for each thread t ∈ warp do in parallel
5: u← next(nbor(v))
6: if c[u] 6= −1 and c[u] < k then
7: F ← F ∪ {c[u]}
8: for each w ∈ nbor(u) do
9: if c[w] 6= −1 and c[w] < k then

10: F ← F ∪ {c[w]}
11: cumulative first-fit coloring

rid of the clearing overhead the forbidden colors are marked with the corre-

sponding vertex id.

The advantage of employing coalesced memory access is, multiple mem-

ory accesses can be combined into a single transaction. Since consecutive

threads access consecutive memory locations, every successive 128 bytes can

be accessed by a warp in a single transaction. In Figure 4.1, in the first

transaction first 32 neighbors are loaded from the memory (yellow). After

all the threads in a warp finish their execution, next 32 neighbors are loaded

(blue).

As mentioned above, to keep track of the forbidden colors, a small array

is used which can fit into the shared memory of GPU blocks. Thus, not all

colors can be stored in the forbidden colors array. Instead, only the colors

smaller than k, the size of the array, are stored (lines 6 and 9). Despite

causing additional conflicts, the performance gained from utilizing the shared

memory compensates the time lost for additional conflicts.

Finally, a cumulative first-fit coloring is applied. Each thread in a warp

starts from a different color index and searches the color space until a valid

color is found. Namely, a thread ti starts the search from the index
(
i× k

32

)
.

When a valid color is found, all threads terminate with the help of a shared

flag. Again, there is no synchronization overhead as race conditions are

27

Figure 4.1: Coalesced memory access for a single warp

allowed at this phase.

Unfortunately, a net-based implementation on manycore architectures

could not be easily implemented due to high memory requirements and race

conditions. Since there is only vertex-based implementations for manycore

architectures, two approaches have been adapted.

• VertexGPU: Vertex-based coloring on GPU for the first iteration,

followed by vertex-based coloring on CPU for the rest of the execution

and net-based conflict resolution on CPU for the first two iterations

followed by vertex-based conflict resolution on CPU for the rest of the

execution.

• HybridGPU: Net-based coloring on CPU for the first iteration, fol-

lowed by vertex-based coloring on GPU for one iteration and vertex-

based coloring on CPU for the rest of the execution. Net-based conflict

resolution on CPU for the first iteration and vertex-based conflict res-

olution for the rest of the execution.

Compared to the CPU implementations, VertexGPU and HybridGPU

are the manycore counterparts of VN2 and N1N2 described in the previous

section.

28

4.5 Optimizations for Social Networks

For D2GC and BGPC problems, the maximum degree is a trivial lower

bound for a valid coloring. In other words, a valid coloring must use at

least max (|nbor(v)|) colors. This requirement proposes an opportunity for

social network graphs.

From the structural point of view, social network graphs have a few cen-

tral vertices with high degrees and many vertices with low degrees [Scott,

1988]. For such graphs, the number of colors to use is determined by a few

vertices whereas the low-degree vertices have no impact to the solution qual-

ity. Inspired by this observation, the requirements for low-degree vertices can

be relaxed to decrease the conflicts observed at intermediate steps, thus the

overall execution time. In other words, low-degree vertices can assign more

colors to their distance-1 neighborhood without disturbing the final solution

quality.

For both D2GC and BGPC, the proposed net-based coloring method em-

ploys a reverse first-fit coloring strategy in which each vertex v ∈ V starts

the coloring process with |nbor(v)|. However as mentioned, this initial num-

ber can be increased as long as it does not exceed the maximum degree. We

propose a heuristic, that takes advantage of this observation to decrease the

conflicts at intermediate steps and increase the overall performance. Note

that this heuristic is built on top of the net-based coloring described in pre-

vious sections.

The proposed heuristic attacks the first, net-based iteration by performing

multiple coloring calls before the conflict removal phase. At each call, the

initial color for the reverse first-fit coloring strategy is increased by a factor e.

For example, for an initial color c, when e = 50% the second iteration starts

with an initial color c′ = 1.5 × c and when e = 100% the second iteration

starts with an initial color c′ = 2 × c. In the cases where this initial color

exceeds the maximum degree, it is set back to the maximum degree so the

overall color count is not increased. In Figure 4.2, the impact of this heuristic

is demonstrated on a social network graph, coPapersDBLP.

29

0

0.5

1

1.5

2

2.5

3

3.5

4

i = 2 i = 3 i = 4 i = 2 i = 3 i = 4 i = 2 i = 3 i = 4

Seq e = 50% e = 100% e =200%

Net Vertex

Figure 4.2: Execution timess (in seconds) of the net-based (blue) and vertex-
based (orange) phases for a single thread, where i consecutive net-based calls
are executed with e increase factor on coPapersDBLP graph.

30

4.6 Balanced Coloring

As mentioned before, graph coloring has been frequently used to parallelize

a large task with many sub-tasks. In our preliminary experiments, the (re-

verse) first-fit policy generated a few large color sets (of small colors) and

thousands of color sets with less than 2 elements for a real-life optimization

problem. This result is in concordant with a comprehensive recent study fo-

cusing solely on balancing, parallel balancing heuristics, and their practical

impacts on parallel computing [Lu et al., 2015]. In fact, on a single multicore

CPU socket, the performance reduction (in FLOPS) may not hurt too much

since most of the vertices, with small colors, can still be processed in parallel.

However, the impact of the imbalance increases with the number of proces-

sors/cores. Furthermore, in most of the iterative algorithms, processing only

a few vertices and updating the current solution can be harmful from the

optimization perspective since this restricts the dimensions of the moves in

the search space performed to reach a better solution.

In this work, we experimented on cost-free and unsupervised balancing

heuristics within the BGPC and D2GC algorithms proposed above. The

straightforward choice would be keeping color set cardinalities dynamically

throughout the execution; but this is expensive especially for large number of

cores. Instead, we propose two heuristics: the first heuristic tries to keep the

number of colors the same as much as possible and the second one aggres-

sively applies balancing hence increases the number of colors (only around

10% on average). The heuristics are given in Algorithms 14 and 15 for the

vertex-based approach. The net-based variants are also similar.

In the first balancing heuristic B1, each thread keeps track of the maxi-

mum color it uses (colmax at line 1). The threads employ the first-fit policy for

the odd-numbered vertices (or nets) and otherwise, they employ the reverse

first-fit policy starting from colmax. Unlike the original BGPC and D2GC al-

gorithms, starting from colmax, instead of |nbor(w)|−1, necessitates a safety

check (line 8). If this is the case, the heuristic initiates a first-fit starting

from colmax +1. By performing alternating policies w.r.t. the vertex (or net)

id, B1 hopes to distribute the colors evenly in the interval [0, colmax]. If there

31

Algorithm 14 ColorWorkQueue-B1
Input: G = (V,E), W : vertices to color, nbor(.): the neighborhood, c[.]: an
incomplete coloring with no conflicts.
Output: c[.]: an optimistic coloring.

1: colmax ← 0 : thread private
2: for each w ∈W in parallel do
3: lines 2-6 of Alg. 2
4: if w mod 2 = 0 then
5: col← colmax

6: while col ∈ F do
7: col← col − 1

8: if col = −1 then
9: col← colmax + 1

10: while col ∈ F do
11: col← col + 1

12: else
13: col← 0
14: while col ∈ F do
15: col← col + 1

16: c[w]← col
17: colmax = max(colmax, col)

32

is no color between this interval, it extends the size of the interval.

The second heuristic B2, given in Algorithm 15, keeps a variable colnext

in addition to colmax to start from for the color search. The idea is the same:

the heuristic wants to distribute the colors in between [0, colmax] but incre-

ments the color to start by one for each vertex/net. To aggressively favor

large color numbers and focus the later colors in the interval more, the min-

imum color to start is set to colmax/3 + 1 (the last line of Alg. 15). However,

filling these color sets with more vertices increases the probability of them

being in a forbidden-color array. Thus, more colors are expected to appear

during the course of execution due to the conflicting nature of balancing and

using less number of colors.

Algorithm 15 ColorWorkQueue-B2
Input: G = (V,E), W : vertices to color, nbor(.): the neighborhood, c[.]: an
incomplete coloring with no conflicts.
Output: c[.]: an optimistic coloring.

1: colmax ← 0 : thread private
2: colnext ← 0 : thread private
3: for each w ∈W in parallel do
4: lines 2-6 of Alg. 2
5: col← colnext
6: while col ∈ F do
7: col← col + 1

8: if col > colmax then
9: col← 0

10: while col ∈ F do
11: col← col + 1

12: c[w]← col
13: colmax = max(colmax, col)
14: colnext = min(col + 1, colmax/3 + 1)

33

Chapter 5

DATASETS

The algorithms that have been presented in this thesis have different strengths

and weaknesses depending on the structures of the input graphs. To fairly

present the quality of the algorithms and minimize the bias that can be

caused by input graph selection we have selected three sets of input graphs.

These sets vary in terms of size, average degree and maximum degree.

5.1 Graphs from Literature

In Table 5.1, the properties of the graphs taken from the coloring litera-

ture are presented. The graphs are generated from their corresponding UFL

matrices. Duplicate edges and self loops are removed to guarantee a valid

coloring. The table presents the basic properties such as number of rows and

columns as well as the number of non-zeros. Also, the maximum and the

average degree are shown as well as the variance of degree distribution, since

they are closely related to the coloring quality and the execution time. Also

for each graph, the source is notated by a reference. The graphs are selected

with the purpose of increasing variety and demonstrating the flexibility of

the algorithms.

5.2 Social Network Graphs

In addition to the graphs taken from the coloring literature, we carried out

numerous experiments on social network graphs as well. By definition, so-

34

Properties Column deg.
Matrix #rows #cols #edges max. Avg.

af shell [Patwary et al., 2011] 1,508,065 1,508,065 27,090,195 34 33.92
audikw 1 943,695 943,695 39,297,771 344 81.28
Bump 2911 2,911,419 2,911,419 124,818,480 194 42.87
cage15 5,154,859 5,154,859 99,199,551 46 18.24
channel [Lu et al., 2015] 4,802,000 4,802,000 42,681,372 18 17.77
europe osm 50,912,018 50,912,018 54,054,660 13 2.12
hollywood-2009 1,139,905 1,139,905 57,515,616 11,467 98.91
indochina-2004 7,414,866 7,414,866 194,109,311 256,425 40.72
kron g500 1,048,576 1,048,576 44,620,272 131,503 85.1
nlpkkt120 3,542,400 3,542,400 50,194,096 27 26.33
nlpkkt240 27,993,600 27,993,600 401,232,976 27 26.66
Queen 4147 41,471,10 41,47,110 166,823,197 80 78.45

Table 5.1: Properties of the graphs/matrices used in the experiments, taken
from the literature

cial network graphs have several large degree vertices and many small degree

vertices. Since execution time and the total number of colors are directly af-

fected by the maximum degree, social network graphs are intuitively harder

to color. Also, the structure of such graphs yield an imbalance over the work-

loads of threads, making it even harder to have an efficient parallelization. In

Table 5.2, the social network graphs used in the experiments are presented,

again with basic structural properties.

Properties Column deg.
Matrix #rows #cols #edges max. Avg.

coPapersDBLP [Lu et al., 2015] 540,486 540,486 15,245,729 3,299 66.23
soc-LiveJournal1 4,847,571 48,47,571 68,993,773 20,333 17.67
soc-pokec-relationships 1,632,803 1,632,803 30,622,564 14,854 27.31
soc-Slashdot0902 82,168 82,168 948,464 2,552 12.27
wikipedia-20051105 1,634,989 1,634,989 19,753,078 75,757 22.67
wiki-topcats 1,791,489 1,791,489 28,511,807 238,342 28.40

Table 5.2: Properties of the graphs used in the social network experiments.

35

5.3 Random Graphs

In order to fully represent a wide spectrum of graphs, we also have exper-

imented on synthetically generated graphs. The graphs are generated using

R-MAT graph generator [Chakrabarti and Faloutsos, 2006]. The R-MAT

generator generates a graph by recursively dividing the adjacency matrix

into four quadrants and placing |E| edges to corresponding quadrants with

given probabilities : (a, b, c, d).

We have generated RMATs, using the parameters used in the litera-

ture [Çatalyürek et al., 2012]: (0.25, 0.25, 0.25, 0.25), (0.45, 0.15, 0.15, 0.25),

(0.55, 0.15, 0.15, 0.15). We adopt the naming conventions suggested by Çatalyürek

et al. and name these graphs rmat-er, rmat-g and rmat-b, respectively. To

test the scalability, two sets of graphs have been generated with 224 and 225

vertices respectively, both having 227 edges.

In addition to RMATs, three Random Geometric Graphs(RGG) are also

used for the experiments on random graphs. RGGs are undirected graphs

that are generated by randomly placing N vertices in a geometric space and

connecting two nodes with edges if their distance is within a given range.

In this work we use graphs with N ∈ {222, 223, 224}. In Table 5.3 generated

random graphs are presented with their structural properties.

Properties Column deg.
Graph #rows #cols #edges max. Avg.

rmat-b 16,777,216 16,777,216 134,217,654 47,060 16.00
rmat-er 16,777,216 16,777,216 134,217,654 42 16.00
rmat-g 16,777,216 16,777,216 134,217,654 1244 16.00
rmat-b2 33,554,432 33,554,432 134,217,654 70,419 16.00
rmat-er2 33,554,432 33,554,432 134,217,654 42 16.00
rmat-g2 33,554,432 33,554,432 134,217,654 1504 16.00
rgg n 2 22 4,194,304 4,194,304 30,359,198 36 14.74
rgg n 2 23 8,388,608 8,388,608 63,501,393 40 15.13
rgg n 2 24 16,777,216 16,777,216 132,557,200 40 15.80

Table 5.3: RMATs and RGGs used for Random Graph experiments.

36

Chapter 6

RESULTS

All the experiments in the paper are performed on a single machine running

on 64 bit CentOS 6.5 equipped with 64GB RAM and a quad-socket Intel

Xeon E7-4870 v2 clocked at 2.30 GHz where each socket has 15 cores (60

in total). For the multicore implementations, we used OpenMP and all the

codes are compiled with gcc 4.9.2 with the -O3 optimization flag enabled.

For the GPU implementations, we used CUDA 7.5 on a Tesla K40C machine

with 15 multiprocessors and 192 CUDA cores per processor (2880 in total)

clocked at 0.75 GHz.

The experiments are presented in four sections: (1) Multicore Experi-

ments, (2) Manycore Experiments, (3) Social Network Graph Experiments,

(4) Balanced Coloring Experiments.

For all experiments, the sequential V V algorithm is used as the baseline.

For the evaluation of the algorithms, we used two parameters: the execution

time and the total number of colors, i.e., the quality of the coloring. Also,

for the balancing algorithms the variance of the cardinality of color sets is

also considered as an indicator of the balance of the coloring.

6.1 Multicore Experiments

The execution times of D2GC algorithms for the graphs taken from the color-

ing literature are given in Figures 6.1- 6.4. The algorithms are shown above

the charts. The coloring (red) and the conflict resolution (blue) phases are

37

color coded for a more clear visualization. Corresponding speedup values

over the sequential VV algorithm are presented in Figures 6.5-6.7. The ex-

perimental results show that for the aforementioned graphs, a maximum of

401× speedup can be obtained and on average 25× speedup is obtained with

the best algorithm on 16 threads with around 1% increase on the number of

colors on average. The geometric mean of the speedups over a sequential VV

algorithm is shown in Table 6.1.

Speedup over seq. VV Color Change(%)
Number of Threads Number of Threads

Algorithm t = 2 t = 4 t = 8 t = 16 t = 2 t = 4 t = 8 t = 16
VV 1.86 3.38 5.79 10.36 7.25 12.07 14.47 14.02
VN1 3.13 5.47 9.39 16.39 6.39 11.57 16.43 13.75
VN2 3.13 5.33 8.97 15.51 6.98 12.40 14.40 14.25
N1N2 4.34 8.27 15.27 24.74 8.16 10.14 10.72 10.62
N2N2 3.03 4.97 8.90 14.14 7.94 9.85 10.37 11.03

Table 6.1: Average speedup of the multicore algorithms on graphs taken
from the coloring literature for number of threads t ∈ {2, 4, 8, 16} calculated
by taking the geometric mean and the average change in the total number
of colors for graphs taken from coloring literature. The maximum speedup
for each column and the minimum color change for each column is shown in
bold. The color changes that are within 1% margin of the minimum are also
shown in bold.

38

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

2

4

T
im

e(
s)

afshell

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

5

10

15

20

T
im

e(
s)

audikw_1

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

5

10

15

T
im

e(
s)

bone010

Figure 6.1: The execution times for the multicore algorithms on the graphs
taken from coloring literature. The y-axis denotes the time in seconds and
the x-axis denotes the number of threads. The algorithms are denoted above
the bars. Red color shows the execution time of the coloring phase and the
blue color shows the execution time of the conflict resolution phase.

39

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

5

10

15

T
im

e(
s)

bump_2911

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

2

4

6

8

T
im

e(
s)

cage15

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

1

2

3

4

5

T
im

e(
s)

channel

Figure 6.2: The execution times for the multicore algorithms on the graphs
taken from coloring literature. The y-axis denotes the time in seconds and
the x-axis denotes the number of threads. The algorithms are denoted above
the bars. Red color shows the execution time of the coloring phase and the
blue color shows the execution time of the conflict resolution phase.

40

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

2

4

6

T
im

e(
s)

europe_osm

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

100

200

300

T
im

e(
s)

hollywood−2009

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

500

1000

1500

2000

T
im

e(
s)

indochina−2004

Figure 6.3: The execution times for the multicore algorithms on the graphs
taken from coloring literature. The y-axis denotes the time in seconds and
the x-axis denotes the number of threads. The algorithms are denoted above
the bars. Red color shows the execution time of the coloring phase and the
blue color shows the execution time of the conflict resolution phase.

41

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

1000

2000

3000

T
im

e(
s)

kron_g500−logn20

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

2

4

6

T
im

e(
s)

nlpkkt120

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

20

40

60

T
im

e(
s)

nlpkkt240

Figure 6.4: The execution times for the multicore algorithms on the graphs
taken from coloring literature. The y-axis denotes the time in seconds and
the x-axis denotes the number of threads. The algorithms are denoted above
the bars. Red color shows the execution time of the coloring phase and the
blue color shows the execution time of the conflict resolution phase.

42

2

4

8

16

32

2 4 8 16
Threads

S
pe

ed
up

afshell

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

audikw_1

2

4

8

16

32

2 4 8 16
Threads

S
pe

ed
up

bone010

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

bump_2911

VV VN1 VN2 N1N2 N2N2

Figure 6.5: The speedup values for the multicore algorithms over the sequen-
tial VV algorithm on the matrices taken from coloring literature. The y-axis
denotes the speedup values and the x-axis denotes the number of threads.

43

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

cage15

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

channel

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

europe_osm

2

4

8

2 4 8 16
Threads

S
pe

ed
up

hollywood−2009

VV VN1 VN2 N1N2 N2N2

Figure 6.6: The speedup values for the multicore algorithms over the sequen-
tial VV algorithm on the matrices taken from coloring literature. The y-axis
denotes the speedup values and the x-axis denotes the number of threads.

44

8

64

512

2 4 8 16
Threads

S
pe

ed
up

indochina−2004

4

16

64

2 4 8 16
Threads

S
pe

ed
up

kron_g500−logn20

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

nlpkkt120

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

nlpkkt240

VV VN1 VN2 N1N2 N2N2

Figure 6.7: The speedup values for the multicore algorithms over the sequen-
tial VV algorithm on the matrices taken from coloring literature. The y-axis
denotes the speedup values and the x-axis denotes the number of threads.

45

In Figures 6.8-6.10, the execution times for all the algorithms on random

graphs are given. The x-axis is the number of threads and y-axis is the

execution time in seconds. The coloring and conflict detection phases are

color coded. The corresponding speedup values are presented in Figures 6.11-

6.13. The geometric mean of the speedup of each algorithm is presented in

Table 6.2

Speedup over seq. VV Color Change(%)
Number of Threads Number of Threads

Algorithm t = 2 t = 4 t = 8 t = 16 t = 2 t = 4 t = 8 t = 16
VV 1.54 2.67 4.24 6.88 0.02 0.91 0.66 1.83
VN1 2.45 3.78 6.82 11.09 0.24 0.75 0.49 1.83
VN2 2.45 3.85 6.69 10.77 0.39 0.75 0.64 1.83
N1N2 3.92 6.13 11.32 19.24 3.20 4.11 2.88 3.31
N2N2 2.65 4.29 7.77 13.02 3.58 2.63 2.33 3.03

Table 6.2: Average speedup of the multicore algorithms on random graphs for
number of threads t ∈ {2, 4, 8, 16} calculated by taking the geometric mean
and the average change in the total number of colors for random graphs. The
maximum speedup for each column and the minimum color change for each
column is shown in bold. The color changes that are within 1% margin of
the minimum are also shown in bold.

46

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

2

4

6

T
im

e(
s)

rgg_n_2_22_s0

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

5

10

15

T
im

e(
s)

rgg_n_2_23_s0

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

10

20

30

T
im

e(
s)

rgg_n_2_24_s0

Figure 6.8: The execution times for the multicore algorithms on random
graphs. The y-axis denotes the time in seconds and the x-axis denotes the
number of threads. The algorithms are denoted above the bars. Red color
shows the execution time of the coloring phase and the blue color shows the
execution time of the conflict resolution phase.

47

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

500

1000

1500

T
im

e(
s)

rmat−b

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

100

200

300

T
im

e(
s)

rmat−g

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

100

200

T
im

e(
s)

rmat−er

Figure 6.9: The execution times for the multicore algorithms on random
graphs. The y-axis denotes the time in seconds and the x-axis denotes the
number of threads. The algorithms are denoted above the bars. Red color
shows the execution time of the coloring phase and the blue color shows the
execution time of the conflict resolution phase.

48

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

100

200

300

T
im

e(
s)

rmat−g2

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

2000

4000

6000

8000

T
im

e(
s)

rmat−b2

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

200

400

600

800

T
im

e(
s)

rmat−er2

Figure 6.10: The execution times for the multicore algorithms on random
graphs. the y-axis denotes the time in seconds and the x-axis denotes the
number of threads. The algorithms are denoted above the bars. Red color
shows the execution time of the coloring phase and the blue color shows the
execution time of the conflict resolution phase.

49

2

4

8

16

32

2 4 8 16
Threads

S
pe

ed
up

rgg_n_2_22_s0

2

4

8

16

32

2 4 8 16
Threads

S
pe

ed
up

rgg_n_2_23_s0

2

4

8

16

32

2 4 8 16
Threads

S
pe

ed
up

rgg_n_2_24_s0

2

4

8

2 4 8 16
Threads

S
pe

ed
up

rmat−b

VV VN1 VN2 N1N2 N2N2

Figure 6.11: The speedup values for the multicore algorithms over the se-
quential VV algorithm on random graphs. The y-axis denotes the speedup
values and the x-axis denotes the number of threads.

50

1

2

4

8

2 4 8 16
Threads

S
pe

ed
up

rmat−g

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

rmat−er

2

4

8

2 4 8 16
Threads

S
pe

ed
up

rmat−g2

1

2

4

8

2 4 8 16
Threads

S
pe

ed
up

rmat−b2

VV VN1 VN2 N1N2 N2N2

Figure 6.12: The speedup values for the multicore algorithms over the se-
quential VV algorithm on random graphs. The y-axis denotes the speedup
values and the x-axis denotes the number of threads.

51

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

rmat−er2

VV VN1 VN2 N1N2 N2N2

Figure 6.13: The speedup values for the multicore algorithms over the se-
quential VV algorithm on random graphs. The y-axis denotes the speedup
values and the x-axis denotes the number of threads.

52

Last, the execution times of all the algorithms on social network graphs

are presented in Figures 6.14-6.15 and the corresponding speedup values are

shown in Figures 6.16-6.17. Table 6.3 summarizes the average speedup and

increase in number of colors for social network graphs.

Speedup over seq. VV Color Change(%)
Number of Threads Number of Threads

Algorithm t = 2 t = 4 t = 8 t = 16 t = 2 t = 4 t = 8 t = 16
VV 1.26 1.65 2.26 3.48 0.03 0.02 0.01 0.02
VN1 2.01 2.62 3.61 5.37 -0.07 -0.04 -0.01 0.16
VN2 2.06 2.57 3.63 5.52 -0.06 -0.06 -0.02 0.16
N1N2 6.64 10.31 18.42 25.25 1.09 0.76 0.96 0.84
N2N2 4.46 6.23 9.91 18.17 0.49 0.71 0.45 0.37

Table 6.3: Average speedup of the multicore algorithms for number of threads
t ∈ {2, 4, 8, 16} on social network graphs, calculated by taking the geometric
mean and the average change in the total number of colors for social network
graphs. The maximum speedup for each column and the minimum color
change for each column is shown in bold. The color changes that are within
1% margin of the minimum are also shown in bold.

53

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

3

6

9

T
im

e(
s)

coPapersDBLP

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

20

40

60

80

T
im

e(
s)

soc−LiveJournal1

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0.0

0.1

0.2

0.3

0.4

T
im

e(
s)

soc−Slashdot0902

Figure 6.14: The execution times for the multicore algorithms on social net-
work graphs. The y-axis denotes the time in seconds and the x-axis denotes
the number of threads. The algorithms are denoted above the bars. Red color
shows the execution time of the coloring phase and the blue color shows the
execution time of the conflict resolution phase.

54

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

10

20

30

T
im

e(
s)

soc−pokec−relationships

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

200

400

600

T
im

e(
s)

wiki−topcats

VV VN1 VN2 N1N2 N2N2

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

100

200

300

T
im

e(
s)

wikipedia−20051105

Figure 6.15: The execution times for the multicore algorithms on social net-
work graphs. The y-axis denotes the time in seconds and the x-axis denotes
the number of threads. The algorithms are denoted above the bars. Red color
shows the execution time of the coloring phase and the blue color shows the
execution time of the conflict resolution phase.

55

1

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

coPapersDBLP

1

2

4

8

2 4 8 16
Threads

S
pe

ed
up

soc−LiveJournal1

1

2

4

8

2 4 8 16
Threads

S
pe

ed
up

soc−Slashdot0902

1

2

4

8

16

2 4 8 16
Threads

S
pe

ed
up

soc−pokec−relationships

VV VN1 VN2 N1N2 N2N2

Figure 6.16: The speedup values for the multicore algorithms over the se-
quential VV algorithm on social network graphs. The y-axis denotes the
speedup values and the x-axis denotes the number of threads.

56

4

16

64

2 4 8 16
Threads

S
pe

ed
up

wiki−Talk

4

16

64

2 4 8 16
Threads

S
pe

ed
up

wiki−topcats

2

8

32

2 4 8 16
Threads

S
pe

ed
up

wikipedia−20051105

VV VN1 VN2 N1N2 N2N2

Figure 6.17: The speedup values for all the algorithms over the sequential
VV algorithm. The y-axis denotes the speedup values and the x-axis denotes
the number of threads.

57

6.2 Manycore Experiments

As explained before, we propose two algorithms for manycore architectures:

VertexGPU and HybridGPU. These algorithms are implemented on top

of V N2 and N1N2 respectively, with the first vertex-based coloring carried

out on GPU thus the baseline is selected as V N2 and N1N2, respectively.

Note that for all multicore baselines t = 16 is used. The execution times

of manycore experiments are given in Figures 6.18-6.22 for 16 threads. The

coloring (red) and the conflict resolution (blue) phases are color coded.

The experimental results show that manycore algorithms are not suitable

for all the graphs. Since manycore algorithms require high degrees and large

graphs to utilize the large number of threads, the graphs taken from the col-

oring literature can not fully utilize the computation power of GPUs. In such

cases, the GPU execution takes longer than its CPU counterpart. However,

for graphs showing social network characteristics, i.e., smallworld structure

and power-law degree distribution, proposed algorithms obtain a maximu of

4.00× and 5.84× speedup over their multicore counterparts. On average,

manycore algorithms are 1.50× and 1.32× faster than their multicore coun-

terparts without any change in the number of total colors. Despite being

significantly faster than their multicore counterparts per iteration, manycore

algorithms can still generate more conflicts because of higher parallelism,

which increases the total execution time.

58

0.0

0.2

0.4

0.6

0.8

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rgg_n_2_22_s0

0.0

0.5

1.0

1.5

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rgg_n_2_23_s0

0

1

2

3

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rgg_n_2_24_s0

Figure 6.18: The execution times for manycore algorithms on random graphs,
side-by-side with their multicore counterparts. Y-axis denotes the time in
seconds and x-axis denotes the algorithms executed with t = 16 threads.
Red color shows the execution time of the coloring phase and the blue color
shows the execution time of the conflict resolution phase.

59

0

100

200

300

400

500

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rmat−b

0

10

20

30

40

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rmat−g

0

5

10

15

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rmat−er

Figure 6.19: The execution times for manycore algorithms on random graphs,
side-by-side with their multicore counterparts. The y-axis denotes the time in
seconds and the x-axis denotes the algorithms executed with t = 16 threads.
Red color shows the execution time of the coloring phase and the blue color
shows the execution time of the conflict resolution phase.

60

0

20

40

60

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rmat−g2

0

1000

2000

3000

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rmat−b2

0

10

20

30

40

50

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

rmat−er2

Figure 6.20: The execution times for manycore algorithms on random graphs,
side-by-side with their multicore counterparts. The y-axis denotes the time in
seconds and the x-axis denotes the algorithms executed with t = 16 threads.
Red color shows the execution time of the coloring phase and the blue color
shows the execution time of the conflict resolution phase.

61

0.00

0.25

0.50

0.75

1.00

1.25

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

coPapersDBLP

0

5

10

15

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

soc−LiveJournal1

0.00

0.03

0.06

0.09

0.12

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

soc−Slashdot0902

Figure 6.21: The execution times for manycore algorithms on social network
graphs, side-by-side with their multicore counterparts. The y-axis denotes
the time in seconds and the x-axis denotes the algorithms executed with
t = 16. Red color shows the execution time of the coloring phase and the
blue color shows the execution time of the conflict resolution phase.

62

0

1

2

3

4

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

soc−pokec−relationships

0

50

100

150

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

wiki−topcats

0

20

40

60

80

VN2 VertexGPU N1N2 HybridGPU

T
im

e(
s)

wikipedia−20051105

Figure 6.22: The execution times for manycore algorithms on social network
graphs, side-by-side with their multicore counterparts. The y-axis denotes
the time in seconds and the x-axis denotes the algorithms executed with
t = 16. Red color shows the execution time of the coloring phase and the
blue color shows the execution time of the conflict resolution phase.

63

6.3 Social Network Experiments

The social network optimization experiments are only carried out on the

social network dataset. The experiments are carried out with i ∈ {2, 3, 4}
consecutive net-based coloring calls and e ∈ {50, 100, 200} increase factor

with t = 16 threads. The baseline is selected as the N1N2 algorithm since

the proposed optimizations are implemented on top of that algorithm. The

speedup over the sequential V V algorithm is also presented to demonstrate

the overall impact. The execution times of social network experiments are

given in Figures 6.23-6.24 for 16 threads. In each chart the first bar shows

the baseline execution. The experimental results show that for social network

graphs, a maximum of 174× speedup can be obtained and on average 60×
speedup is obtained with the best algorithm on 16 threads over the sequential

V V algorithm with 1.56% increase on the number of colors. The geometric

mean of the speedups over a sequential V V algorithm is shown in Table 6.4

and the average change in the total number of colors is shown in Table 6.5.

i = 2 i = 3 i = 4
τ e = 50 e = 100 e = 200 e = 50 e = 100 e = 200 e = 50 e = 100 e = 200
2 7.62 8.57 11.74 10.57 15.44 20.03 17.69 19.79 22.53
4 13.02 12.55 15.21 14.05 23.60 22.66 18.02 22.99 30.66
8 15.94 19.03 21.39 22.95 28.82 35.35 27.77 33.56 35.33
16 25.07 38.17 35.32 36.38 44.30 59.99 40.79 49.81 45.91

Table 6.4: Average speedup of social network experiments over sequential
VV algorithm where i ∈ {2, 3, 4} consecutive net-based coloring calls are
executed with e ∈ {50, 100, 200} increase factor on τ ∈ {2, 4, 8, 16} threads.

64

i = 2 i = 3 i = 4
τ e = 50 e = 100 e = 200 e = 50 e = 100 e = 200 e = 50 e = 100 e = 200
2 11.19 10.92 7.94 8.40 6.06 5.10 4.79 5.24 4.64
4 6.14 7.97 7.05 8.53 3.84 7.11 8.74 7.97 3.64
8 8.24 6.76 8.55 6.07 7.01 5.18 6.56 8.94 9.54
16 4.92 2.50 5.17 4.15 5.08 1.56 6.49 10.42 10.70

Table 6.5: Average increase in the number of colors (%) for social network
experiments over sequential VV algorithm where i ∈ {2, 3, 4} consecutive
net-based coloring calls are executed with e ∈ {50, 100, 200} increase factor
on τ ∈ {2, 4, 8, 16} threads.

i = 2 i = 3 i = 4
e = 50 e = 100 e = 200 e = 50 e = 100 e = 200 e = 50 e = 100 e = 200

Speedup 1.26 1.90 1.97 1.95 2.71 3.91 2.58 3.65 3.40
Col. Change 0.08 -0.42 0.09 -0.09 -0.48 -0.29 -0.06 -0.12 -0.03

Table 6.6: Average speedup and color change (%) for social network experi-
ments over N1N2 algorithm where i ∈ {2, 3, 4} consecutive net-based coloring
calls are executed with e ∈ {50, 100, 200} increase factor. Both algorithms
are executed on 16 threads.

65

1 2 3 4

0 50 100 200 50 100 200 50 100 200

0.0

0.2

0.4

0.6

T
im

e(
s)

coPapersDBLP

1 2 3 4

0 50 100 200 50 100 200 50 100 200

0

2

4

6

T
im

e(
s)

soc−LiveJournal1

1 2 3 4

0 50 100 200 50 100 200 50 100 200

0.00

0.01

0.02

0.03

0.04

T
im

e(
s)

soc−Slashdot0902

Figure 6.23: The execution times for social network experiments with i ∈
{2, 3, 4} consecutive net-based calls are executed with e ∈ {50, 100, 200}
increase factor and 16 threads. The numbers above the bars show i, the
number of consecutive net-based calls, and the numbers below the chart
show e, the increase factor.

66

1 2 3 4

0 50 100 200 50 100 200 50 100 200

0.0

0.5

1.0

1.5

2.0

T
im

e(
s)

soc−pokec−relationships

1 2 3 4

0 50 100 200 50 100 200 50 100 200

0

20

40

60

T
im

e(
s)

wiki−topcats

1 2 3 4

0 50 100 200 50 100 200 50 100 200

0

2

4

6

T
im

e(
s)

wikipedia−20051105

Figure 6.24: The execution times for social network experiments with i ∈
{2, 3, 4} consecutive net-based calls are executed with e ∈ {50, 100, 200}
increase factor and 16 threads. The numbers above the bars show i, the
number of consecutive net-based calls, and the numbers below the chart
show e, the increase factor.

67

6.4 Experiments on Balancing

The balanced coloring experiments are carried out with B1 and B2 balanc-

ing heuristics on top of V N2 and N1N2 algorithms, respectively. Thus, the

baseline for these experiments are selected as V N2 and N1N2. The bal-

ance is measured as the standard deviation of the cardinalities of color sets.

The impact of balancing heuristics B1 and B2 are presented in Table 6.7

for D2GC experiments. The heuristics are applied to VN2 and N1N2 and

the results are compared with their original implementation. Experimental

results show that, applying these heuristics is for free, i.e., there is no com-

putational overhead as expected. For B1, the standard deviation of the color

cardinalities decreases to 0.69× and 0.84× of the initial result when applied

to VN2 and N1N2, respectively, on the expense of 4% color increase. For

B2, which aggressively tries to reduce the number of colors, the standard

deviation decreases 0.25× and 0.62× with around 9% and 13% increase on

the number of colors for V-N2 and N1-N2, respectively. To better visualize

the impact of these balancing heuristics, Figure 6.25 shows the distribution

of color set cardinalities for the original and balanced executions of VN2 and

N1N2 on coPapersDBLP.

Normalized w.r.t. X-N2
Coloring #Color Average Std.

Algorithm time sets card. Dev.
V-N2-U 1.00 1.00 1.00 1.00
V-N2-B1 0.95 1.04 0.96 0.69
V-N2-B2 0.95 1.13 0.89 0.25
N1-N2-U 1.00 1.00 1.00 1.00
N1-N2-B1 0.99 1.04 0.96 0.84
N1-N2-B2 0.99 1.09 0.91 0.62

Table 6.7: Impact of balancing heuristics, B1 and B2, on the color set cardi-
nalities and the number of color sets for parallel D2GC algorithms VN2 and
N1N2 on 16 threads. Results are normalized with the original unbalanced
algorithms denoted with -U.

68

1	

10	

100	

1000	

10000	

100000	

1	 15
9	

31
7	

47
5	

63
3	

79
1	

94
9	

11
07
	

12
65
	

14
23
	

15
81
	

17
39
	

18
97
	

20
55
	

22
13
	

23
71
	

25
29
	

26
87
	

28
45
	

30
03
	

31
61
	

33
19
	

#v
er
%c
es
	in
	th

e	
co
lo
r	s
et
	(l
og
	sc

al
e)
	

Color	set	(sorted	w.r.t.	cardinality)	

V-N2-U	

V-N2-B2	
V-N2-B1	

(a) Balancing coPapersDBLP for VN2

1	

10	

100	

1000	

10000	

1	 15
9	

31
7	

47
5	

63
3	

79
1	

94
9	

11
07
	

12
65
	

14
23
	

15
81
	

17
39
	

18
97
	

20
55
	

22
13
	

23
71
	

25
29
	

26
87
	

28
45
	

30
03
	

31
61
	

33
19
	

#v
er
%c
es
	in
	th

e	
co
lo
r	s
et
	(l
og
	sc

al
e)
	

Color	set	(sorted	w.r.t.	cardinality)	

N1-N2-U	

N1-N2-B2	
N1-N2-B1	

(b) Balancing coPapersDBLP for N1N2

Figure 6.25: Impact of balancing heuristics, B1 and B2, on the color set cardi-
nalities and the number of color sets for D2GC algorithms parallel VN2 (left)
and N1N2 (right) on 16-threads for coPapersDBLP.

69

Chapter 7

CONCLUSION

In this thesis, we propose novel, greedier and more optimistic parallel algo-

rithms for parallel BGPC and D2GC on multicore architectures. Proposed

algorithms outperform the state-of-the-art algorithms without decreasing the

solution quality, i.e., increasing the number of colors too much. Namely, a

maximum of 401× and an average of 25× speedup can be obtained with the

proposed algorithms with just 1% increase on the total number of colors. To

demonstrate that the efficiency of the proposed algorithms is not dependent

on the structure of the graphs, we have gathered three datasets with different

structural properties.

We then extended our work to manycore architectures and presented

number of challenges that make manycore implementations hard as well as

the solutions to overcome these challenges. Proposed manycore algorithms

yield a maximum of 5.84 and an average of 1.50 speedup over the best mul-

ticore algorithms. Experimental results indicate that, manycore algorithms

are suitable for large graphs containing high-degree nodes.

We also propose several optimization heuristics for social network graphs

to further increase the performance. Proposed heuristics take advantage of

the structural properties of social network graphs to obtain a maximum of

174× and an average of 60x speedup for social network graphs with just

1.56% increase on the total number of colors.

Finally, we propose two costless balancing heuristics that can be applied

to both BGPC and D2GC, as well as other coloring variants, to balance

70

the color set cardinalities and improve the impact of the coloring on the real

application to be parallelized. The results show that the proposed techniques

are useful in practice and improves the performance and the goodness of the

coloring.

The proposed techniques are suitable for Intel Xeon Phi architecture

which will be considered in future works. which can be a comfort while

parallelizing the coloring algorithms on manycore architectures. We also be-

lieve that a better net-based coloring and a better cost-free, self-balancing

heuristic are worth investigating since experimental results indicate that their

impact will be significant. Lastly, the optimistic techniques for BGPC and

D2GC can be extended to the distance-k graph coloring problem and further

performance improvements can be investigated.

71

Bibliography

[Allwright et al., 1994] Allwright, J., Bordawekar, R., Coddington, P. D.,

Dincer, K., and Martin, C. (1994). A comparison of parallel graph coloring

algorithms. Technical Report SCCS-666, Northeast Parallel Architectures

Center at Syracuse University (NPAC).

[Boman et al., 2005] Boman, E., Bozdağ, D., Çatalyürek, Ü., Gebremedhin,

A., and Manne, F. (2005). A scalable parallel graph coloring algorithm for

distributed memory computers. In Proc. of 11th Int’l. Euro-Par Conf. on

Parallel Processing, pages 241–251.

[Bozdağ et al., 2005] Bozdağ, D., Çatalyürek, Ü., Gebremedhin, A., Manne,

F., Boman, E., and Özgüner, F. (2005). A parallel distance-2 graph col-

oring algorithm for distributed memory computers. In Proc. of 1st Int’l.

Conf. on High Performance Computing and Communications, pages 796–

806. Springer.

[Bozdağ et al., 2010] Bozdağ, D., Çatalyürek, Ü., Gebremedhin, A., Manne,

F., Boman, E., and Özgüner, F. (2010). Distributed-memory parallel al-

gorithms for distance-2 coloring and related problems in derivative com-

putation. SIAM Journal of Scientific Computing, 32(4):2418–2446.

[Bozdağ et al., 2008] Bozdağ, D., Gebremedhin, A., Manne, F., Boman, E.,

and Çatalyürek, Ü. (2008). A framework for scalable greedy coloring on

distributed memory parallel computers. Journal of Parallel and Distributed

Computing, 68(4):515–535.

[Brélaz, 1979] Brélaz, D. (1979). New methods to color the vertices of a

graph. Commun. ACM, 22:251–256.

[Çatalyürek et al., 2012] Çatalyürek, Ü. V., Feo, J., Gebremedhin, A. H.,

Halappanavar, M., and Pothen, A. (2012). Graph coloring algorithms for

72

multi-core and massively multithreaded architectures. Parallel Computing,

38(10-11):576–594.

[Çatalyürek et al., 2012] Çatalyürek, Ü. V., Feo, J., Gebremedhin, A. H.,

Halappanavar, M., and Pothen, A. (2012). Graph coloring algorithms for

multi-core and massively multithreaded architectures. Parallel Computing,

38(10):576 – 594.

[Chakrabarti and Faloutsos, 2006] Chakrabarti, D. and Faloutsos, C. (2006).

Graph mining: Laws, generators, and algorithms. ACM Comput. Surv.,

38(1).

[Coleman and More, 1983] Coleman, T. F. and More, J. J. (1983). Esti-

mation of sparse Jacobian matrices and graph coloring problems. SIAM

Journal on Numerical Analysis, 1(20):187–209.

[Culberson, 1992] Culberson, J. C. (1992). Iterated greedy graph coloring

and the difficulty landscape. Technical Report TR 92-07, University of

Alberta.

[Deveci et al., 2016] Deveci, M., Boman, E. G., Devine, K. D., and Raja-

manickam, S. (2016). Parallel graph coloring for manycore architectures.

In 2016 IEEE Parallel and Distributed Processing Symposium (IPDPS),

pages 892–901.

[Gebremedhin and Manne, 1999] Gebremedhin, A. H. and Manne, F. (1999).

Parallel graph coloring algorithms using OpenMP (extended abstract). In

In First European Workshop on OpenMP, pages 10–18.

[Gebremedhin et al., 2002] Gebremedhin, A. H., Manne, F., and Pothen, A.

(2002). Parallel distance-k coloring algorithms for numerical optimization.

In Euro-Par 2002 Parallel Processing - 8th International Conference, pages

912–921.

[Gebremedhin et al., 2005] Gebremedhin, A. H., Manne, F., and Pothen, A.

(2005). What color is your jacobian? Graph coloring for computing deriva-

tives. SIAM Review, 47(4):629–705.

[Gebremedhin et al., 2013] Gebremedhin, A. H., Nguyen, D., Patwary, M.

M. A., and Pothen, A. (2013). ColPack: Software for graph coloring

and related problems in scientific computing. ACM Trans. Math. Softw.,

40(1):1:1–1:31.

73

[Gjertsen Jr. et al., 1996] Gjertsen Jr., R. K., Jones, M. T., and Plassmann,

P. (1996). Parallel heuristics for improved, balanced graph colorings. Jour-

nal on Parallel and Dist. Computing, 37:171–186.

[Hajnal and Szemeredi, 1970] Hajnal, A. and Szemeredi, E. (1970). Proof of

a conjecture of p. erdos. London: North-Holland, pages 601–623.

[Jones and Plassmann, 1993] Jones, M. and Plassmann, P. (1993). A par-

allel graph coloring heuristic. SIAM Journal on Scientific Computing,

14(3):654–669.

[Lu et al., 2015] Lu, H., Halappanavar, M., Chavarr-a-Miranda, D., Ge-

bremedhin, A., and Kalyanaraman, A. (2015). Balanced coloring for

parallel computing applications. In Parallel and Distributed Processing

Symposium (IPDPS), 2015 IEEE, pages 7–16.

[Luby, 1986] Luby, M. (1986). A simple parallel algorithm for the maximal

independent set problem. SIAM Journal on Computing, 15(4):1036–1053.

[Matula, 1968] Matula, D. W. (1968). A min-max theorem for graphs with

application to graph coloring. SIAM Review, 10:481–482.

[Matula and Beck, 1983] Matula, D. W. and Beck, L. L. (1983). Smallest-

last ordering and clustering and graph coloring algorithms. J. ACM,

30:417–427.

[Meyer, 1973] Meyer, W. (1973). Equitable coloring. Amer. Math. Monthly,

80:920–922.

[Patwary et al., 2011] Patwary, M., Gebremedhin, A., and Pothen, A.

(2011). New multithreaded ordering and coloring algorithms for multicore

architectures. In Euro-Par 2011 Parallel Processing - 17th International

Conference, pages 250–262.

[Robert K. Gjertsen et al., 1996] Robert K. Gjertsen, J., Jones, M. T., and

Plassmann, P. E. (1996). Parallel heuristics for improved, balanced graph

colorings. Journal of Parallel and Distributed Computing, 37(2):171–186.

[Sarıyüce et al., 2011] Sarıyüce, A. E., Saule, E., and Catalyurek, U. V.

(2011). Improving graph coloring on distributed memory parallel com-

puters. In 18th Annual Int. Conf. on High Performance Comp.

[Sarıyüce et al., 2012] Sarıyüce, A. E., Saule, E., and Catalyurek, U. V.

(2012). Scalable hybrid implementation of graph coloring using MPI and

74

OpenMP. In IPDPSW, Workshop on Parallel Computing and Optimiza-

tion (PCO).

[Sarıyüce et al., 2014] Sarıyüce, A. E., Saule, E., and Çatalyürek, Ü. V.

(2014). On distributed graph coloring with iterative recoloring. Technical

Report arXiv:1407.6745, ArXiv.

[Scott, 1988] Scott, J. (1988). Social network analysis. Sociology, 22(1):109–

127.

[Taş et al., 2017] Taş, M. K., Kaya, K., and Saule, E. (2017). Greed is good:

Parallel algorithms for bipartite-graph partial coloring on multicore archi-

tectures. In Parallel Processing (ICPP), 2017 46th International Confer-

ence on, pages 503–512. IEEE.

[Welsh and Powell, 1967] Welsh, D. J. A. and Powell, M. B. (1967). An

upper bound for the chromatic number of a graph and its application to

timetabling problems. The Comp. Journal, 10:85–86.

[Zuckerman, 2007] Zuckerman, D. (2007). Linear degree extractors and the

inapproximability of max clique and chromatic number. Theory of Com-

puting, 3:103–128.

75

