
Enumerator: An Efficient Approach for
Enumerating all Validt-tuples

Hanefi Mercan, Kamer Kaya, and Cemal Yilmaz
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul

{hanefimercan, kaya, cyilmaz}@sabanciuniv.edu

Abstract—In this paper, we present an efficient
approach for enumerating all valid t-tuples for a given
configuration space model, which is an important
task in computing covering arrays. The results of our
experiments suggest that the proposed approach scales
better than existing approaches.

Keywords-Combinatorial interaction testing; cover-
ing arrays; t-tuples; sketches

I. I NTRODUCTION

Covering arrays (CAs) have been extensively
used for testing [1]. Not taking constraints into
account when computing CAs often results in
a waste of testing resources [2]. A challenging
task in the presence of constraints, which can
significantly affect the performance of covering
array constructors, is to enumerate/count all validt-
tuples, where at-tuple is a combination of settings
for t unique configuration options. An efficient
and scalable approach for enumerating/counting
all valid t-tuples is of practical importance; to
verify a configuration set being at-way covering
array efficiently, all validt-tuples (or at least their
number) need to be known. Certain covering array
constructors depend on this information to operate.

In combinatorial testing, constraints are typically
expressed in the form of either logical expressions
or forbidden tuples – combinations of option set-
tings that should not appear in any configuration.
For the latter case, forbidden tuples can directly be
used to determine the validity of a complete config-
uration, which is a configuration where each option
assumes a value. That is, given a configuration, if
any of the forbidden tuples appears in the config-
uration, then the configuration is invalid. However,
the same approach may not be used to determine the

validity of a t-tuple, which can indeed be considered
as a partial configuration, due to the possible pres-
ence of implicit forbidden tuples. An implicit for-
bidden tuple is a forbidden tuple which is inferred
from a given set of forbidden tuples. Consequently,
minimum forbidden tuples[3] may need to be
computed. In a nutshell, a minimum forbidden tuple
is a forbidden tuple of minimum size, which can be
used to determine the validity of not only complete
configurations, but also partial configurations, such
as t-tuples. However, computing minimum forbid-
den tuples, especially in the presence of tangled
constraints can be quite costly (Section III).

When logical expressions are used as constraints,
on the other hand, validt-tuples can be determined
by trivially expressing each possiblet-tuple as a
logical expression and solving it together with all
the other inter-option constraints using an appro-
priate solver [4], such as a SAT or a CSP solver.
However, this process needs to be repeated for
every possiblet-tuple. Since the number oft-tuples
grows exponentially witht and constraint solving
is generally a costly operation, this approach can
also quickly become a bottleneck (Section III).

In this paper, we present an approach for effi-
ciently enumerating/counting all validt-tuples. The
approach is based on a simple observation: A num-
ber of valid configurations can often be generated
randomly at low costs. When this observation is
coupled with the results of many empirical studies,
which strongly suggest that an “enough” number of
randomly generated valid configurations typically
cover a large portion of all validt-tuples, we pro-
pose the following approach: 1) randomly generate
a number of valid configurations; 2) since all thet-

Algorithm 1 ENUMERATEVALID TUPLES

Input: Configuration space modelM = (O,V,Q)
Coverage strengtht
Sketch sizes

Output: Valid t-tuplesR
1: S ← GENERATESKETCH(M,s)
2: R ← DETERMINEVALID TUPLES(M,t,S)

tuples appearing in a valid configuration are valid,
mark all the t-tuples appearing in these configu-
rations as valid; and 3) use a constraint solver to
determine the validity of the remainingt-tuples.

To generate a valid configuration in the first step,
either all the constraints can be expressed as logical
expressions (if they are not already) and solved
together, such that a solution corresponds to a valid
configuration; or a complete configuration can first
be generated randomly and then checked to see
whether it is valid. Without losing the generality
of the proposed approach, we, in this work, use the
latter. In either case, when forbidden tuples are used
as constraints, valid configurations can be generated
without requiring to compute minimum forbidden
tuples. And when logical expressions are used as
constraints, since the constraint solver needs to be
invoked on a per configuration basis, not on a per
t-tuple basis, the number of calls to the constraint
solver is significantly reduced. On the other hand,
we still invoke the constraint solver on a pert-tuple
basis in the third step. However, if a large portion
of the valid t-tuples are covered by the randomly
generated configurations in the second step, this
operation will need to be carried out only for a small
fraction of all t-tuples.

II. A PPROACH

Given a configuration space model
M = (O, V,Q), where O = {o1, · · · , ok} is
a set of configuration options,V={V1, · · · , Vk}
is their domains, such that each optionoi ∈ O

assumes a value from the corresponding finite
domainVi ∈ V , andQ = {q1, · · · , qm} is a set
of constraints specifying the valid configuration
space, we refer to a setS of valid configurations as
a sketch. In general, sketches store a summary of
data in situations where the whole data would be
prohibitively costly to store, process, unknown, etc.

Algorithm 2 GENERATESKETCH

Input: Configuration space modelM = (O,V,Q)
Sketch sizes

Output: A sketchS, where|S| = s

1: S ← ∅
2: while |S| ≤ s do
3: C ← ∅ ⊲ an empty configuration
4: for 1 ≤ i ≤ k do
5: v ∈R Vi ⊲ randomly pick a setting foroi
6: C ← C ∪ {< oi, v >}

7: if C /∈ S and isV alid(C,M) then
8: S ← S ∪ {C}

For this study, we use sketchS as a filter to
reduce the number of times a constraint solver, such
as a CSP solver, is invoked. More specifically, since
all thet-tuples covered byS are valid, the constraint
solver does not need to be invoked for them. In
a sense, all the answers obtained from the sketch
are true-positives. However, the sketch is allowed
to report false-negatives, i.e., validt-tuples that are
missing fromS. Each false-negative is penalized
by an invocation of the solver to determine the
validity of the respectivet-tuple. Consequently, the
effectiveness of a sketch can be measured by the
percentage of validt-tuples it covers; the moret-
tuples a sketch covers, the more effective it is.

Algorithm 1 presents the proposed approach.
First, a sketchS of sizes is computed (line 1) and
then the sketch is used to determine the validt-
tuplesR (line 2). Although the current description
stores all validt-tuples in collectionR, this does not
need to be the case in practice. That is, for example,
instead of maintaining all the validt-tuples in mem-
ory, they can be persisted as they are discovered,
or only the invalidt-tuples can be maintained, or
only the counts can be computed, which can further
improve the scalability of the proposed approach.

One way to randomly generate a valid config-
uration is to express all the constraints as logical
expressions (if they are not already), such that a
solution represents a configuration. For this work,
without losing the generality of the proposed ap-
proach, we experiment with an alternative approach
as described in Algorithm 2. We first generate a
complete configuration by randomly choosing a
settingv ∈ Vi from a uniform distribution for each

Algorithm 3 DETERMINEVALID TUPLES

Input: Configuration space modelM = (O, V,Q)
Coverage strengtht
SketchS

Output: Valid t-tuplesR
1: R ← ∅
2: for each option comb.Z = {oi1 , · · · , oit} do
3: covered← ∅
4: for each C ∈ S do
5: R← t-tuple consisted of optionsZ in C
6: covered← covered ∪ {R}

7: for each possiblet-tuple R consisted of optionsZ do
8: if R ∈ covered then
9: R ← R∪ {R}

10: else
11: if satisfiable(M,R) then
12: R← R∪ {R}

configuration optionoi ∈ O (lines 4-6). We then
check the validity of the generated configuration
(lines 7-8). This process is repeated untils valid
configurations have been generated (lines 2-8).

If forbidden tuples are used as constraints in the
model M , isV alid(C,M) checks to see whether
any of the forbidden tuples appear in the configura-
tionC. SinceC is a complete configuration, this can
be done without computing the implicit forbidden
tuples and/or minimum forbidden tuples. If logical
expressions are used as constraints, the configura-
tion C is first expressed as a logical expression
and then checked to see whether the expression is
satisfiable together with all the constraints inM .
Since this is done on a per selected configuration
basis, rather than on a pert-tuple basis, the number
of calls to the solver is significantly reduced.

Once a sketch is created, Algorithm 3 uses it to
determine all validt-tuplesR. To this end, we enu-
merate all possible combinations oft options (line
2). For each combinationZ = {oi1 , · · · , oit}, we
first mark all thet-tuples consisted of optionsZ ap-
pearing in the sketchS as valid (lines 4-6). For each
of the remainingt-tuples, we then check to see if the
t-tuple is satisfiable together with all the constraints
in the modelM by using a solver (line 11). If so,
the t-tuple is valid (line 12); otherwise, it is invalid.

To further improve the performance of the pro-
posed approach, we have also parallelized it in
a coarse-grain manner via OpenMP. More specif-

ically, Algorithm 2 is parallelized by having each
thread execute a different iteration of the while loop
in line 2, with basic synchronization mechanism for
line 8 to populate the current sketch with a newly
computed configuration. Furthermore, Algorithm 3
is parallelized by having each thread execute a
different iteration of the for loop in line 2, which in
turn requires a synchronization mechanism for lines
9 and 12 to update the set of validt-tuples with a
newly discoveredt-tuple.

III. E XPERIMENTAL RESULTS
In our experiments, we selected a number of

configuration space models from two widely-used
benchmarks obtained from real-world software sys-
tems, calledreal-1 and real-2 [2], [5]. The models
are selected based on the complexity of the config-
uration spaces they specify (Table I). In all of them,
the constraints were expressed as forbidden tuples.
The sketch size was set to25000 and we experi-
mented with three coverage strengthst = {2, 3, 4}.

We compared the performance of the proposed
approach to those of two existing ones, which we
respectively refer to as ALGO1 and ALGO2:
• ALGO1 first computes the minimum forbidden

tuples with the algorithm given in [3]. It then
determines the validt-tuples by checking all
possiblet-tuples against the minimum forbidden
ones. At-tuple is valid, if and only if it does not
contain any of the minimum forbidden tuples.

• ALGO2 enumerates all possible tuples and then
checks them one-by-one by using a constraint
solver. Thus, it can be considered as the proposed
approach with an empty sketch.
All the experiments were carried out on an Intel

Xeon E5-2680 v2 2.80 GHz machine with 256
GB of RAM, running 64-bit CentOS 6.5 as the
operating system. For ALGO2 and the proposed
approach, we used Gecode [6] as the constraint
solver. For each experiment, a2-hour time limit is
used, i.e., we killed the processes after2 hours.

Table I presents the results in seconds. The cases
where the enumeration of validt-tuples could not
be completed within the time limit are marked by
∞. In the table, ENUM represents the proposed
approach with a single thread and ENUM∗ does
the same when 8 threads are used.

TABLE I
THE PROPERTIES OF THE BENCHMARK MODELS USED IN THE EXPERIMENTS (FIRST THREE COLUMNS) AND THE EXECUTION

TIMES (SEC.) OF ALGO1, ALGO2, ENUM, AND ENUM∗ ON THEM FORt ∈ {2, 3, 4}.

#Forbidden t=2 t=3 t=4
Model Size of the space tuplesALGO1 ALGO2 ENUM ENUM∗ ALGO1 ALGO2 ENUM ENUM∗ ALGO1 ALGO2 ENUM ENUM∗

Apache 2
158

3
8
4
4
5
1
6
1 7 0.014 16.72 0.005 0.002 1.288 2037 0.991 0.154 86.77 ∞ 96.52 14.21

Banking2 2
14

4
1 3 0.000 0.021 0.000 0.000 0.001 0.193 0.003 0.002 0.005 1.306 0.023 0.007

CommProtocol 2
10

7
1 128 6804 0.452 0.017 0.007 6774 2.729 0.259 0.066 6768 12.30 1.775 0.403

Gcc 2
189

3
10 40 0.040 69.46 0.015 0.004 3.660 ∞ 3.878 0.589 246 ∞ 561 88.52

Healthcare4 2
13

3
12

4
6
5
2
6
1
7
1 22 0.009 1.232 0.004 0.002 0.050 43.38 0.291 0.070 0.864 1015 12.28 2.399

Insurance 2
6
3
1
5
1
6
2
11

1
13

1
17

1
31

1 0 0.001 0.134 0.000 0.000 0.009 3.608 0.008 0.003 0.179 56.86 1.864 1.591
Storage5 2

5
3
8
5
3
6
2
8
1
9
1
10

2
11

1 151 ∞ 6.466 0.085 0.081 ∞ 192 7.171 2.096 ∞ 4274 322 62.12
Telecom 2

5
3
1
4
2
5
1
6
1 21 0.002 0.068 0.001 0.001 0.002 0.545 0.013 0.016 0.007 2.821 0.120 0.085

We observed that the sketches we generated
cover a large portion of the validt-tuples (on
average 99%). Consequently, ENUM significantly
performed better than ALGO2 with average running
times of 16.6 vs. 368 seconds, respectively. In
three of the models forApache and gcc, while
ALGO2 timed out, ENUM determined all validt-
tuples under561 seconds. Furthermore, paralleliz-
ing the proposed approach greatly increased the
performance; ENUM’s average runtime was42.04
seconds whereas it was7.18 seconds for ENUM∗.

Last but not least, for smaller and less com-
plex configuration spaces, ALGO1 performed only
slightly better than ENUM. For example, whent ∈
{2, 3}, ALGO1 was faster by at most0.241 seconds,
hardly having any practical significance. However,
for larger and more complex configuration spaces,
the proposed approach was significantly better. For
example, forStorage5, although ALGO1 timed
out even fort = 2, ENUM∗ took 0.085, 7.171,
and 322 seconds to enumerate all validt-tuples
for t = 2, 3, and 4, respectively. All these results
strongly suggest that the proposed approach greatly
improved the scalability of the existing approaches.

IV. RELATED WORK
One of the closest work to ours is [4]; however,

the aforementioned approach 1) operates on partial
configurations, which necessitates many more in-
vocations of a solver; 2) depends on a particular
covering array constructor, thus requires an adapta-
tion for different constructors; and 3) determines all
the valid t-tuples only after a valid covering array
is computed. In another work [7], the authors check
the list of t-tuples one by one. While doing that, if
a new forbidden tuple is discovered, thet-tuples
containing this newly found forbidden tuple are

removed from the list. Our approach, on the other
hand, 1) operates on complete configurations; 2) is
agnostic to constructors as all the configurations
in the sketch are randomly selected; and 3) does
not require to compute a CA before the validt-
tuples can be determined as thet-tuples that are
not covered by the sketch are checked via a solver.

V. CONCLUDING REMARKS
We believe that the results of our experiments

are of great practical importance. Therefore, we
will continue to work in this line of research. One
possible avenue for future work is to extend the pro-
posed approach to infer minimum forbidden tuples
regardless of whether the constraints are given as
forbidden tuples or logical expressions.

REFERENCES
[1] C. Nie and H. Leung, “A survey of combinatorial testing,”

ACM Computing Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.
[2] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing

interaction test suites for highly-configurable systems inthe
presence of constraints: A greedy approach,”IEEE Trans.
on Soft. Eng., vol. 34, no. 5, pp. 633–650, 2008.

[3] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn,
“Constraint handling in combinatorial test generation us-
ing forbidden tuples,” in8th IEEE International Confer-
ence on Software Testing Verification and Validation Work-
shop(ICSTW). IEEE, 2015, pp. 1–9.

[4] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and
D. R. Kuhn, “An efficient algorithm for constraint handling
in combinatorial test generation,” in6th IEEE Conf. on
Software Testing, Validation and Verification. IEEE, 2013,
pp. 242–251.

[5] I. Segall, R. Tzoref-Brill, and E. Farchi, “Using binarydeci-
sion diagrams for combinatorial test design,” inProceedings
of the 2011 International Symposium on Software Testing
and Analysis. ACM, 2011, pp. 254–264.

[6] Gecode Team, “Gecode: Generic constraint
development environment,” 2006, available from
http://www.gecode.org.

[7] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi,
“Greedy combinatorial test case generation using unsatisfi-
able cores,” inAutomated Software Engineering (ASE), 2016
31st IEEE/ACM Int. Conf. on. IEEE, 2016, pp. 614–624.

