Enumerator: An Efficient Approach for
Enumerating all Valid-tuples

Hanefi Mercan, Kamer Kaya, and Cemal Yilmaz
Faculty of Engineering and Natural Sciences, Sabanci Usitye Istanbul
{hanefimercan, kaya, cyilmp@sabanciuniv.edu

Abstract—In this paper, we present an efficient validity of at-tuple, which can indeed be considered
approach for enumerating all valid ¢-tuples for a given as a partial configuration, due to the possible pres-
configuration space model, which is an important ence of implicit forbidden tuples. An implicit for-
task in computing covering arrays. The results of our bidden tuple i forbidden tupl hich is inf d
experiments suggest that the proposed approach scales?'dU€N WPIE IS a forbidden tuple which IS interre
better than existing approaches. from a given set of forbidden tuples. Consequently,
minimum forbidden tuple§3] may need to be
computed. In a nutshell, a minimum forbidden tuple
is a forbidden tuple of minimum size, which can be

I. INTRODUCTION used to determine the validity of not only complete

Covering arrays (CAs) have been extensivelgonfigurations, but also partial configurations, such
used for testing [1]. Not taking constraints intoas¢-tuples. However, computing minimum forbid-
account when computing CAs often results inlen tuples, especially in the presence of tangled
a waste of testing resources [2]. A challengingonstraints can be quite costly (Section IlI).
task in the presence of constraints, which can When logical expressions are used as constraints,
significantly affect the performance of coveringon the other hand, validtuples can be determined
array constructors, is to enumerate/count all valid by trivially expressing each possibletuple as a
tuples, where a-tuple is a combination of settingslogical expression and solving it together with all
for ¢ unique configuration options. An efficientthe other inter-option constraints using an appro-
and scalable approach for enumerating/countiqgiate solver [4], such as a SAT or a CSP solver.
all valid ¢-tuples is of practical importance; toHowever, this process needs to be repeated for
verify a configuration set being &way covering every possiblé-tuple. Since the number @ftuples
array efficiently, all validt-tuples (or at least their grows exponentially witht and constraint solving
number) need to be known. Certain covering arrag generally a costly operation, this approach can
constructors depend on this information to operatalso quickly become a bottleneck (Section Il1).

In combinatorial testing, constraints are typically In this paper, we present an approach for effi-
expressed in the form of either logical expressionsently enumerating/counting all validtuples. The
or forbidden tuples — combinations of option setapproach is based on a simple observation: A num-
tings that should not appear in any configuratiorber of valid configurations can often be generated
For the latter case, forbidden tuples can directly bmndomly at low costs. When this observation is
used to determine the validity of a complete configeoupled with the results of many empirical studies,
uration, which is a configuration where each optiowhich strongly suggest that an “enough” number of
assumes a value. That is, given a configuration, itndomly generated valid configurations typically
any of the forbidden tuples appears in the configover a large portion of all valid-tuples, we pro-
uration, then the configuration is invalid. Howeverpose the following approach: 1) randomly generate
the same approach may not be used to determine tn@aumber of valid configurations; 2) since all the

Keywords-Combinatorial interaction testing; cover-
ing arrays; t-tuples; sketches

Algorithm 1 ENUMERATEVALID TUPLES Algorithm 2 GENERATESKETCH

Input: Configuration space modéll = (O, V, Q) Input: Configuration space modéll = (O, V, Q)
Coverage strength Sketch sizes
Sketch sizes Output: A sketchS, where|S| = s
Output: Valid ¢-tuples R 1: S« 0
1: S <~ GENERATESKETCH(M,s) 2: while |S| < s do
2. R + DETERMINEVALID TUPLEYM,t, S) 3: C+0 > an empty configuration
4 for 1 <:<kdo
5: vER Vi > randomly pick a setting foo,
6: C+ CU{<o;,v>}

tuples appearing in a valid configuration are valid,7: if C ¢ S and isValid(C, M) then
mark all the¢-tuples appearing in these configu-& S« Su{d}

rations as valid; and 3) use a constraint solver to

determine the validity of the remainingtuples.

To generate a valid configuration in the first step, For this study, we use sketci as a filter to
either all the constraints can be expressed as logi¢aluce the number of times a constraint solver, such
expressions (if they are not already) and solvegs a CSP solver, is invoked. More specifically, since
together, such that a solution corresponds to a valig the¢-tuples covered by are valid, the constraint
configuration; or a complete configuration can firs§olver does not need to be invoked for them. In
be generated randomly and then checked to sgesense, all the answers obtained from the sketch
whether it is valid. Without losing the generalityare true-positives. However, the sketch is allowed
of the proposed approach, we, in this work, use thg report false-negatives, i.e., valiuples that are
latter. In either case, when forbidden tuples are usegissing fromS. Each false-negative is penalized
as constraints, valid configurations can be generatgg an invocation of the solver to determine the
without requiring to compute minimum forbiddenyalidity of the respective-tuple. Consequently, the
tuples. And when logical expressions are used @$ectiveness of a sketch can be measured by the
constraints, since the constraint solver needs to Bgrcentage of valid-tuples it covers; the more
invoked on a per configuration basis, not on a pefiples a sketch covers, the more effective it is.
t-tuple basis, the number of calls to the constraint p|gorithm 1 presents the proposed approach.
solver is significantly reduced. On the other hanq:irst, a sketchS of size s is computed (line 1) and
we still invoke the constraint solver on a petuple then the sketch is used to determine the vatid
basis in the third step. However, if a large portioples (line 2). Although the current description
of the valid ¢-tuples are covered by the randomlystores all valid-tuples in collectiorR, this does not
generated configurations in the second step, tiged to be the case in practice. That is, for example,
operation will need to be carried out only for a smallystead of maintaining all the valigtuples in mem-

fraction of all ¢-tuples. ory, they can be persisted as they are discovered,
1. APPROACH or only the invalid¢-tuples can be maintained, or

Given a configuration space modepnly the counts can be computed, which can further
M =(0,V,Q), where O = {o1,---,0;} is improve the scalability of the proposed approach.
a set of configuration optionsy’={Vy,---,V,} One way to randomly generate a valid config-

is their domains, such that each option € O uration is to express all the constraints as logical
assumes a value from the corresponding finitexpressions (if they are not already), such that a
domainV; € V, and@ = {q1, - - ,qm} IS a set solution represents a configuration. For this work,
of constraints specifying the valid configuratiorwithout losing the generality of the proposed ap-
space, we refer to a sétof valid configurations as proach, we experiment with an alternative approach
a sketch In general, sketches store a summary afs described in Algorithm 2. We first generate a
data in situations where the whole data would beomplete configuration by randomly choosing a
prohibitively costly to store, process, unknown, etcsettingv € V; from a uniform distribution for each

Algorithm 3 DETERMINEVALID TUPLES ically, Algorithm 2 is parallelized by having each

Input: Configuration space modél/ = (O, V,Q) thread execute a different iteration of the while loop
(S:lf;’gﬁge strength in line 2, with basic synchronization mechanism for

Output: Valid ¢-tuplesR line 8 to populate the current sketch with a newly

LR+ computed configuration. Furthermore, Algorithm 3

2: for each option comb.Z = {o;;,--- ,0;,} do is parallelized by having each thread execute a

3 covered + () L.

4 foreachC e S do different iteration of the for loop in line 2, which in

5 R + t-tuple consisted of optiong in C turn requires a synchronization mechanism for lines

6: covered + coveredU {R} . 9 and 12 to update the set of validuples with a

; for ﬁa;hep(;s)ilgizttjhpéﬁ R consisted of optionsZ do newly discovered-tuple.

1%._ elsgzeRu{R} I1l. EXPERIMENTAL RESULTS

11 it satis fiable(M, R) then In. our gxperlments, we selected a pumber of

12: R « RU{R} configuration space models from two widely-used

benchmarks obtained from real-world software sys-
tems, calledeal-1 andreal-2 [2], [5]. The models

)))) are selected based on the complexity of the config-
configuration optiono; € O (lines 4-6). We then ation spaces they specify (Table I). In all of them,
check the validity of the generated configuratiogye constraints were expressed as forbidden tuples.
(lines 7-8). This process is repeated untivalid The sketch size was set #5000 and we experi-
configurations have been generated (lines 2-8). anted with three coverage strengths {2, 3,4}.

If forbidden tuples are used as constraints in the e compared the performance of the proposed
model M, isValid(C, M) checks to see whetherapproach to those of two existing ones, which we
any of the forbidden tuples appear in the configurgespectively refer to as X601 and ALGo2:
tion C. SinceC'is a complete configuration, this can, A co1 first computes the minimum forbidden
be done without computing the implicit forbidden yples with the algorithm given in [3]. It then
tuples and/or minimum forbidden tuples. If logical getermines the valict-tuples by checking all
expressions are used as constraints, the configurapossiblet-tuples against the minimum forbidden
tion C'is first expressed as a logical expression gnes. At-tuple is valid, if and only if it does not
and then checked to see whether the expression igontain any of the minimum forbidden tuples.
SatiSfiable together W|th a.” the ConStraintS M e ALGO2 enumerates a" possib|e tup'es and then
Since this is done on a per selected configurationchecks them one-by-one by using a constraint
basis, rather than on a petuple basis, the number solver. Thus, it can be considered as the proposed
of calls to the solver is significantly reduced. approach with an empty sketch.

Once a sketch is created, Algorithm 3 uses it to All the experiments were carried out on an Intel
determine all valid-tuples’R. To this end, we enu- Xeon E5-2680 v2 2.80 GHz machine with 256
merate all possible combinations obptions (line GB of RAM, running 64-bit CentOS 6.5 as the
2). For each combinatio® = {o;,, - ,0;}, We operating system. For 102 and the proposed
first mark all thet-tuples consisted of optiorﬁ ap- approach, we used Gecode [6] as the constraint
pearing in the sketch as valid (lines 4-6). For each solver. For each experiment,2ahour time limit is
of the remaining-tuples, we then check to see if theysed, i.e., we killed the processes afteours.
t-tuple is satisfiable together with all the constraints Taple | presents the results in seconds. The cases
in the modelM by using a solver (line 11). If so, where the enumeration of validtuples could not
thet-tuple is valid (line 12); otherwise, it is invalid. pe completed within the time limit are marked by

To further improve the performance of the proso. In the table, ENUM represents the proposed
posed approach, we have also parallelized it @pproach with a single thread and ENWMoes
a coarse-grain manner via OpenMP. More specifhe same when 8 threads are used.

TABLE |
THE PROPERTIES OF THE BENCHMARK MODELS USED IN THE EXPERIMENSFIRST THREE COLUMNS AND THE EXECUTION
TIMES (SEC.) OF ALGO1, ALGO2, ENUM,AND ENUM* ON THEM FORt € {2, 3,4}.

#Forbidden t=2 t=3 t=4
Model Size of the spage tuplegALcol ALGo2 ENUM ENUM*|ALcol ALco2 ENUM ENUM*|ALGol ALco2 ENUM ENUM*
Apache 2158 38 41 5T 6T 7| 0.014 16.72 0.005 0.007 1.288 2037 0.991 0.154 86.77 oo 96.52 14.21
Banki ng2 214 4t 3/ 0.000 0.021 0.000 0.00Q 0.001 0.193 0.003 0.003 0.005 1.306 0.023 0.007
ConmPr ot ocol 210 71 128 6804 0.452 0.017 0.007 6774 2.729 0.259 0.06 6768 12.30 1.775 0.403
Gee 2189 310 40| 0.040 69.46 0.015 0.004 3.660 oo 3.878 0.589| 246 oo 561 88.52
Heal t hcar e4 213 312 46 52 g1 71 22/ 0.009 1.232 0.004 0.004 0.050 43.38 0.291 0.07Q 0.864 1015 12.28 2.399
Insurance [2° 3! 5% 62 11! 13! 17! 31! 0l 0.001 0.134 0.000 0.00Q 0.009 3.608 0.008 0.003 0.179 56.86 1.864 1.591
St or age5 2% 3% 5% 62 8' 9' 102 11! 151 oo 6.466 0.085 0.081 oo 192 7.171 2.096| oo 4274 322 6212
Tel ecom 2° 3! 42 5! 6! 21/ 0.002 0.068 0.001 0.00] 0.002 0.545 0.013 0.014 0.007 2.821 0.120 0.089

We observed that the sketches we generateeimoved from the list. Our approach, on the other
cover a large portion of the valid-tuples (on hand, 1) operates on complete configurations; 2) is
average 9%). Consequently, ENUM significantly agnostic to constructors as all the configurations
performed better than IA502 with average running in the sketch are randomly selected; and 3) does
times of 16.6 vs. 368 seconds, respectively. Innot require to compute a CA before the vatid
three of the models foApache andgcc, while tuples can be determined as théuples that are
ALGO?2 timed out, ENUM determined all valit not covered by the sketch are checked via a solver.
tuples unde61 seconds. Furthermore, paralleliz- V. CONCLUDING REMARKS

ing the proposed approach greatly increased the\ye pejieve that the results of our experiments

performance; ENUM's average runtime wés04 510 of great practical importance. Therefore, we
seconds whereas it wasl8 seconds for ENUM. i continue to work in this line of research. One

Last but not least, for smaller and less comysqgsiple avenue for future work is to extend the pro-
plex configuration spaces, 801 performed only sed approach to infer minimum forbidden tuples

slightly better than ENUM. For example, whe® eqargless of whether the constraints are given as
{2,3}, ALGol was faster by at most241 seconds, forhidden tuples or logical expressions.

hardly having any practical significance. However,

for larger and more complex configuration spaces, _ REFERENCES e o
h d h ianifi tlv bett F[)ll] C. Nie and H. Leung, “A survey of combinatorial testing,
the proposed approach was significantly better. ACM Computing Surveys (CSURDI. 43, no. 2, p. 11, 2011.

example, forSt or age5, although AGol timed [2] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing

. * interaction test suites for highly-configurable systemthin
out even fort = 2, ENUM" took 0'085'. 7171, presence of constraints: A greedy approad&EE Trans.
and 322 seconds to enumerate all validtuples on Soft. Eng.vol. 34, no. 5, pp. 633—650, 2008.

_ ; [3] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn,
for t =2, 3, and4, respectively. All these results “Constraint handling in combinatorial test generation us-

strongly suggest that the proposed approach greatly ing forbidden tuples,” in8th IEEE International Confer-
i il it ence on Software Testing Verification and Validation Work-
improved the scalability of the existing approaches. shop(ICSTW) IEEE. 2015, pp. 1.9,
[4] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and
IV. 'RELATED WORK . . D. R. Kuhn, “An efficient algorithm for constraint handling
One of the closest work to ours is [4]; however, in combinatorial test generation,” ith IEEE Conf. on

the aforementioned approach 1) operates on partial Software Testing, Validation and VerificationlEEE, 2013,
. pp. 242-251.
configurations, which necessitates many more ifl | Segall, R. Tzoref-Brill, and E. Farchi, “Using binadeci-

vocations of a solver; 2) depends on a particular sion diagrams for combinatorial test design, Hroceedings

: : of the 2011 International Symposium on Software Testing
c_overlng_array constructor, thus requires an_adapta- and Analysis ACM, 2011, pp. 254—264.
tion for different constructors; and 3) determines alb] Gecode = Team, “Gecode: Generic constraint
the valid t-tuples only after a valid covering array ﬂf‘t’ep"??r}“e”t gzgvggjgngi”gt' 2006, available from
is computed. In another work [7], the authors check] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi
the list of t-tuples one by one. While doing that. if “Greedy combinatorial test case generation using unsatisfi

. g . able cores,” ilAutomated Software Engineering (ASE), 2016
a new forbidden tuple is discovered, tiduples 31st IEEE/ACM Int. Conf. an IEEE, 2016, pp. 614—624.

containing this newly found forbidden tuple are

