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Abstract  

The robust periodic trajectory tracking problem is tackled by employing acceleration 

feedback in a hybrid learning-adaptive controller for n-rigid link robotic manipulators 

subject to parameter uncertainties and unknown periodic dynamics with a known period. 

Learning and adaptive feedforward terms are designed to compensate for periodic and 

aperiodic disturbances. The acceleration feedback is incorporated into both learning and 

adaptive controllers to provide higher stiffness to the system against unknown periodic 

disturbances and robustness to parameter uncertainties. A cascaded high gain observer is 

used to obtain reliable position, velocity and acceleration signals from noisy encoder 

measurements. A closed-loop stability proof is provided where it is shown that all system 

signals remain bounded and the proposed hybrid controller achieves global asymptotic 

position tracking. Results obtained from a high fidelity simulation model demonstrates 

the validity and effectiveness of the developed hybrid controller. 
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1. Introduction 

Learning based controllers have gained remarkable importance for robotic manipulators 

that perform the same task repeatedly. This type of controllers improve system 

performance by utilizing previous error signals into the control input. However, the 

standard learning control algorithms may not reject aperiodic disturbances. This 

motivates the design of hybrid controllers such as adaptive/learning control Dixon et al. 



(2002)-Benosman (2014), adaptive iterative learning control using a fuzzy neural 

network Wang and Chien (2015), adaptive learning PD (AL-PD) control Ouyang and 

Zhang (2004), hybrid control based on Fourier series expansion Vecchio et al. (2003)-

Delibasi et al. (2010), backstepping adaptive iterative learning control Wang et al. (2013). 

Dixon et al. (2002)-Dixon et al. (2003) proposed a hybrid adaptive/learning control 

scheme to achieve global asymptotic link position tracking despite unknown robot 

dynamics with periodic and aperiodic components. The authors applied the saturation 

function to the standard learning control law and solved the boundedness problem by 

showing that the proposed learning feedforward term is bounded for all times. Ngo et al. 

(2012) also designed an adaptive iterative learning control (AILC) of uncertain robot 

manipulators in task space for trajectory tracking. Benosman (2014) concentrated on the 

use of well-known extremum seeking (ES) theory in the learning based adaptivecontrol 

structure. The local integral input-to-state stability(iISS) feedback controller with a 

model-free ES algorithmis combined to obtain a learning-based adaptive controller.Wang 

and Chien (2015) developed an observer-basedadaptive iterative learning control using a 

filtered fuzzy neural network. A state tracking error observer is introduced to design the 

iterative learning controller using only the measurement of joint position. An observation 

error modelis derived based on the state tracking error observer. Then, by introducing 

some auxiliary signals, the iterative learning controller is proposed based on the use of an 

averaging filter. Ouyang and Zhang (2004) developed a new control method called 

adaptive learning PD (AL-PD) control. While PD control acts as a basic feedback control 

part, learning feedforward control is an iteratively updated term to cope with the 

unknown robot dynamics. When the number of iterations increase, AL-PD control 

guarantees the tracking errors converge arbitrarily close to zero. 

Vecchio et al. (2003) proposed a hybrid adaptive learning control scheme to solve the 

periodic tracking problem for single-input, single-output uncertain feedback linearizable 

systems with maximal relative degree and matching unstructured uncertainties, i.e. no 

parametrization is available for uncertain nonlinearities. The authors have developed the 

unknown periodic reference input signal witha known period in Fourier series expansion. 

The proposed controller learns the reference control signal and identifies the Fourier-

coefficients of any truncated approximation. Liuzzo and Tomei (2008) developed the 



input reference signals as Fourier series expansion and designed AL-PD control that 

learns the input reference signals by identifying their Fourier coefficients. When the 

Fourier series expansion of each input reference signal is finite, global asymptotic 

tracking and local exponential tracking of both the input andthe output reference signals 

is obtained. Delibasi et al. (2010) proposed a self tuning, desired compensation 

adaptation law based adaptive controller with disturbance estimation based on Fourier 

Series Expansion. The proposed hybrid controller guarantees global asymptotic link 

tracking. 

Wang et al. (2013)  designed a backstepping adaptive iterative learning control (AILC) 

where the backstepping like procedure is used to design the main structure of the AILC. 

The developed controller has two parts; a fuzzy neural network (FNN) is utilized to 

approximate unknown certainty equivalent controller, and a robust learning term is used 

to compensate for uncertainty from the network approximation error. Thus, the 

boundedness of internal signals is guaranteed. Tracking error asymptotically converges to 

zero. 

In this paper, a new hybrid acceleration based learning-adaptive controller is 

developed to achieve global position tracking for n-rigid link robotic manipulators 

despite the parameter uncertainties and unknown periodic dynamics. It is known that the 

use of acceleration feedback is effective for the disturbance rejection in industrial 

applications such as servo control machines and robot arms which continuously interact 

with the environment and work under different loads. Therefore, acceleration feedback is 

incorporated into both learning and adaptive controllers to improve the robustness of the 

system against periodic and aperiodic disturbances, respectively. Since it is difficult to 

obtain reliable velocity and acceleration signals from noisy encoder measurements, a 

cascaded high gain observer (CHGO) is utilized to estimate reliable position, velocity and 

acceleration feedback signals. The proposed hybrid controller uses these estimated 

signals as feedback in a high fidelity simulation model to achieve periodic trajectory 

tracking for a pan-tilt system. The main contributions are as follows: 

 A new linear parametrization property is introduced where the unknown 

parameter vector includes both actuator moment of inertia and friction parameters 

and the regressor matrix depends not only on link velocities but also 



accelerations. Thus, acceleration feedback is incorporated into the adaptive 

controller to improve the robustness of the system against unknown aperiodic 

disturbances. 

 A hybrid learning based adaptive controller has been developed by integrating 

acceleration based adaptive and learning controllers. The hybrid controller 

increases the robustness of the system against aperiodic and periodic disturbances. 

 Closed-loop stability proof of the proposed hybrid controller is provided to show 

that all system signals remain bounded and global asymptotic position tracking is 

ensured. 

The remainder of this paper is organized as follows:Section II presents encoder 

modeling and a cascadedhigh gain observer (CHGO) to estimate reliable 

position,velocity and acceleration signals. In Section III, a hybridacceleration based 

learning-adaptive controller is developedand the closed-loop stability proof is obtained. 

Section IVdemonstrates simulation results where the performance of the proposed hybrid 

control is shown on a high fidelity pan-tiltmodel. Finally, Section V concludes the paper 

with someimportant remarks. 

2. Link Position, Velocity and acceleration Estimation by A 

Cascaded High Gain Observer 

A cascaded high gain observer is developed to estimate reliable link velocities, 𝑧 𝑜1
, and 

accelerations, 𝑧 𝑜2
, inaddition to link positions, 𝑥 𝑜1

, by utilizing noisy position 

measurements from an encoder. This observer consists of two high gain observers in a 

cascaded structure as depicted in Figure 1. 



 

Figure 1. Block diagram of Cascaded HGO Structure 

The first HGO uses position measurements from an encoder to estimate position and 

velocity signals. The second HGO, on the other hand, utilizes estimated velocities by the 

first HGO to provide estimates of link accelerations. The first HGO is designed as 

𝑥  𝑜1
= 𝑥 𝑜2

+ 𝐿1 𝑦1 − 𝑥 𝑜1
  

𝑥  𝑜2
= 𝐿2 𝑦1 − 𝑥 𝑜1

                                                         (1) 

where 𝑥 𝑜1
∈ ℝ𝑛  and 𝑥 𝑜2

∈ ℝ𝑛  are the estimated link positions and velocities, 𝑥 𝑜 𝑡 =

 𝑥 𝑜1
𝑥 𝑜2 

𝑇 ∈ ℝ2𝑛  denotes the observer state vector, 𝑦1 = 𝑞𝑚 ∈ ℝ𝑛  is the encoder link 

position measurement, and the observer gains are defined as 

𝐿1 =
𝛽1

𝜖1
,       and      𝐿2 =

𝛽2

∈1
2                                          (2) 

for some positive constants 𝛽1, 𝛽2 ∈ ℝ, and 𝜖1 ≪ 1. Similarly, the dynamics of the 

second HGO is given as 

𝑧  𝑜1
= 𝑧 𝑜2

+ 𝐿3 𝑦2 − 𝑧 𝑜1
  

𝑧  𝑜2
= 𝐿4 𝑦2 − 𝑧 𝑜1

                                                         (3) 



where 𝑧 𝑜1
∈ ℝ𝑛  and 𝑧 𝑜2

∈ ℝ𝑛  are the estimated link positions and velocities, 𝑧 𝑜 𝑡 =

 𝑧 𝑜1
𝑧 𝑜2 

𝑇 ∈ ℝ2𝑛  denotes the observer state vector, 𝑦2 = 𝑥 𝑜2
∈ ℝ𝑛  is the estimated 

velocity by the first HGO, and 𝐿3 , 𝐿4 are the observer gains designed as 

𝐿3 =
𝛽3

𝜖2
,       and      𝐿4 =

𝛽4

∈2
2                                          (4) 

for some positive constants 𝛽3, 𝛽4 ∈ ℝ, and 𝜖2 ≪ 1. Those observers are referred as high 

gain observers because larger observer gains, 𝐿1, 𝐿2, 𝐿3 and 𝐿4, are used in order to 

achieve zero estimation errors. High gain observers suffer from a peaking phenomenon 

due to sufficiently small 𝜖1and 𝜖2. This phenomenon is handled by saturating the control 

input. The readers are referred to Khalil and Praly (2014) for the details. 

3. Acceleration Based Hybrid Learning Controller for Robotic 

Manipulators 

This section develops a new hybrid learning based adaptive controller using the 

acceleration feedback to achieve a global position tracking for a n-rigid link robotic 

manipulator (e.g.a pan-tilt system where 𝑛 =  2) as in Figure 2 despite the parameter 

uncertainties and unknown periodic dynamics.The proposed hybrid controller utilizes 

learning based feedforward terms to compensate for periodic disturbances, and adaptive 

based feedforward terms to reject aperiodic disturbances. 

 

Figure 2. Pan-tilt mechanism 



Pan and tilt axes can also be referred as azimuth and elevation axes. The nonlinear model 

of the pan-tilt system based on the Euler-Lagrange formulation is as follows Tao and 

Backlash (1999): 

𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞  𝑞 + 𝐺 𝑞 + 𝐹𝑣𝑞 + 𝐹𝑠𝑠𝑔𝑛 𝑞  = 𝜏                        (5) 

where 

𝑞 =  𝑞1 𝑞2 𝑇 ,     𝜏 =  𝜏1 𝜏2 𝑇 , 

𝑀 𝑞 ≜ 𝐷 𝑞 + 𝐽 =  
𝐷11 𝐷12

𝐷21 𝐷22
 +  

𝐽1 0
0 𝐽2

  

𝐶 𝑞, 𝑞  =  
𝐶11 𝐶12

𝐶21 𝐶22
 ,     𝐺 𝑞 =  0 0.5𝑚2𝑔𝑙2𝑐𝑜𝑠𝑞2 

𝑇  

𝐹𝑣 𝑞  =  𝑣1𝑞 1 𝑣2𝑞 2 
𝑇  

𝐹𝑠 𝑞  =  𝑘1𝑠𝑔𝑛 𝑞 1 𝑘2𝑠𝑔𝑛 𝑞 2  
𝑇  

𝐷11 =
1

2
𝑚1𝑙1

2 + 𝑚2𝑙2
2 + 𝑚2𝑙1𝑙2𝑐𝑜𝑠𝑞2 +

1

3
𝑚2𝑙2

2𝑐𝑜𝑠2𝑞2 

𝐷22 =
1

3
𝑚2𝑙2

2 ,   𝐷12 = 𝐷21 = 0 

𝐶11 = −𝑚2𝑙1𝑙2𝑞 2𝑠𝑖𝑛𝑞2 , 𝐶12 = −
1

3
𝑚2𝑙2

2𝑞 1𝑠𝑖𝑛2𝑞2 

𝐶21 = 𝑞 1  
1

2
𝑚2𝑙1𝑙2𝑠𝑖𝑛𝑞2 +

1

6
𝑚2𝑙2

2𝑠𝑖𝑛2𝑞2  ,     𝐶22 = 0                      (6) 

where 𝑞, 𝑞 , 𝑞 ∈  ℝ2 are the joint angles, velocities and accelerations, 𝑀 𝑞 ∈

 ℝ2×2denotes the symmetric and positive-definite inertia matrix, and 𝐷 𝑞 ∈  ℝ2×2is the 

robot inertia matrix, 𝐽1 ∈ ℝ and 𝐽2 ∈ ℝ are motor inertias, 𝐶 𝑞, 𝑞  ∈  ℝ2×2is the 

centripetal-Coriolis matrix, 𝐺 𝑞 ∈  ℝ2is the gravity vector, 𝐹𝑣 𝑞   and 𝐹𝑠 𝑞  ∈  ℝ2×1 are 

constant, diagonal, positive-definite, viscous and static friction coefficient matrices, 

𝑠𝑔𝑛 𝑞   is the signum function applied to the joint velocities, 𝜏 ∈  ℝ2is the torque control 

input vector. 𝑚1 ∈ ℝ and 𝑚2 ∈ ℝ are the masses of pan and tilt mechanisms, 𝑙1 ∈ ℝ is 

the radius, 𝑙2 ∈ ℝ is the length, 𝑣1 ∈ ℝ and 𝑣2 ∈ ℝ are viscous friction coefficients, and 

𝑘1 ∈ ℝ and 𝑘2 ∈ ℝ are static friction coefficients. 



Some dynamical parameters in (5) can change unpredictably due to variations in the 

environmental conditions.This problem may also occur because the system parameters 

are slowly time-varying. Unmeasurable changes of the process parameters lead to 

unsatisfactory control performance. An adaptive controller adjusts itself to tackle 

unknown parameter uncertainties. Large variations generally occur instatic friction 

coefficients. However, large variations may also occur in motor inertias. This motivates 

us to include both motor moment of inertia terms and static friction coefficients in the 

unknown parameter vector. To this end, a new linear parametrization property is 

introduced. 

For the subsequent control development and stability analysis, the following important 

properties will be utilized. 

Property 1: Symmetric and Positive-Definite InertiaMatrix 

The robot inertia matrix, 𝐷(𝑞), is symmetric and positive-definite, and satisfies the 

following inequality: 

𝛽1 𝜂 
2 ≤ 𝜂𝑇𝐷 𝑞 𝜂 ≤ 𝛽2 𝜂 

2              ∀𝜂 ∈ ℝ                           (7) 

where 𝛽1, 𝛽2 ∈ ℝ are known positive constants,  .   denotes the standard Euclidean norm. 

Property 2: Skew-Symmetry 

The inertia and centripetal-Coriolis matrices satisfy the following skew-symmetric 

relationship: 

𝜂𝑇  
1

2
𝐷  𝑞 − 𝐶 𝑞, 𝑞   𝜂 = 0       ∀𝜂 ∈ ℝ𝑛                           (8) 

where 𝐷  is the time derivative of the inertia matrix. 

Property 3: Bounding Inequalities 

The upper bounds for the norms of the centripetal-Coriolis, gravity, and viscous friction 

terms can be obtained as follows: 



 𝐶 𝑞, 𝑞   𝑖∞ ≤ 𝜎𝑐1 𝑞   ,     𝐺 𝑞  ≤ 𝜎𝑔   ,  𝐹𝑣 𝑖∞ ≤ 𝜎𝑓𝑣                   (9) 

where 𝜎𝑐1, 𝜎𝑔 , 𝜎𝑓𝑣 ∈ ℝ represents known positive constants and  .  𝑖∞  is the induced 

infinity norm of a matrix. 

Property 4: Linearity in the Motor Moment of Inertia and Static Friction 

Parameters 

The motor moment of inertia terms and static friction coefficients in (5) can be linearly 

parameterized as 

𝐽𝑞 + 𝐹𝑠𝑠𝑔𝑛 𝑞  = 𝑊 𝑞, 𝑞  Φ                                            (10) 

where unknown parameter vector, Φ ∈ ℝ2𝑛 , consists of motor moment of inertia terms 

and static friction coefficients. Regression matrix, 𝑊 𝑞, 𝑞  ∈ ℝ𝑛×2𝑛 , includes both 

known velocities and accelerations.  

Using the parametrization property in (10), the robot dynamics given by (5) can be 

rewritten as 

𝐷 𝑞 𝑞 + 𝐶 𝑞, 𝑞  𝑞 + 𝐺 𝑞 + 𝐹𝑣𝑞 + 𝑊 𝑞, 𝑞  Φ = 𝜏                        (11) 

Remark 1: Using the assumptions given in (7)-(9), it can be concluded that the torque 

control input is bounded when all the terms on the left-hand side of (11) are bounded 

provided that 𝑞 𝑡 , 𝑞  𝑡 , 𝑞  𝑡 ∈ ℒ∞ . 

3.1. Controller Design 

The control objective is to design the torque control input signal, 𝜏 𝑡 , such that the robot 

link positions will converge to desired trajectories despite the parameter uncertainties in 

the dynamic model given by (11), i.e. 𝑞 𝑡 ⇒ 𝑞𝑑 𝑡  as 𝑡 ⇒ ∞. To quantify the control 

objective, the position tracking error, denoted by 𝑒 𝑡 ∈ ℝ𝑛 , is defined as follows: 

𝑒 = 𝑞𝑑 − 𝑞                                                         (12) 

where 𝑞𝑑 𝑡 ∈ ℝ
𝑛  is the desired link position. The control objective is based on the 

assumption that 𝑞 𝑡 , 𝑞  𝑡  and 𝑞  𝑡  are measurable, and the desired link positions, 



velocities and accelerations are bounded, periodic functions of time that are defined as 

follows: 

𝑞𝑑 𝑡 = 𝑞𝑑 𝑡 − 𝑇 ,     𝑞 𝑑 𝑡 = 𝑞 𝑑 𝑡 − 𝑇 ,                              (13) 

and 

𝑞 𝑑 𝑡 = 𝑞 𝑑 𝑡 − 𝑇  

with a known period of 𝑇. To facilitate the subsequent control development and stability 

analysis, the order of the robot dynamics in (11) is reduced by defining a filtered tracking 

error variable, 𝑟𝑕 𝑡 ∈ ℝ
𝑛  as follows: 

𝑟𝑕 = 𝑒 + Γ1𝑒 + Γ2  𝑒 𝑑𝑡                                        (14) 

where 𝑒 ∈ ℝ𝑛 is the velocity error, i.e. 𝑒 ≜ 𝑞 𝑑 − 𝑞 , and Γ1, Γ2 ∈ ℝ
𝑛×𝑛  are constant, 

diagonal and positive-definite controller gain matrices. After taking the time derivative of 

(14) and multiplying the resulting expression by the inertia matrix, 𝐷(𝑞), the open loop 

error system is obtained as 

𝐷 𝑞 𝑟 𝑕 = − 𝐶 𝑞, 𝑞  𝑟𝑕 + 𝜗 + 𝜉 + 𝑊 𝑞 , 𝑞  Φ − τ                    (15) 

where the auxiliary expressions 𝜗, 𝜉 ∈ ℝ𝑛  are defined as follows: 

𝜗 = 𝐷 𝑞𝑑 𝑞 𝑑 + 𝐶 𝑞𝑑 , 𝑞 𝑑 + 𝐺 𝑞𝑑 + 𝐹𝑣𝑞 𝑑                            (16) 

and 

𝜉 = 𝐷 𝑞  𝑞 𝑑 + Γ1𝑒 + Γ2𝑒 + 𝐺 𝑞 + 𝐹𝑣𝑞 − 𝜗 + 𝐶 𝑞, 𝑞   𝑞 𝑑 + Γ1𝑒 + Γ2  𝑒 𝑑𝑡    (17) 

Since the real system parameters are not exactly known, the auxiliary signal, 𝜗, as a 

function of desired periodic trajectories, is an unknown periodic signal. In light of (7), (9) 

and (13), it follows that 

 𝜗𝑖 ≤ 𝛼𝑖   for  𝑖 = 1,2, … , 𝑛                                               (18) 

where 𝛼𝑖 =  𝛼1 … 𝛼𝑛 ∈ ℝ𝑛 is a vector of known, positive bounding constants. 

By utilizing (7), (9), (12) and (14), and motivated by the result in Dixon et al. (2003), 

it is obtained that: 

 𝜉 ≤ 𝛿  𝑍   𝑍                                                        (19) 



where the auxiliary signal 𝑍 𝑡 ∈ ℝ3𝑛  is defined as: 

𝑍 𝑡 =  𝑒𝑇 𝑡 𝑟𝑕
𝑇 𝑡 𝑒 𝑇 𝑡  𝑇                                          (20) 

and 𝛿 .  ∈ ℝ is a known and positive bounding function. On the basis of the structure of 

the open-loop error system in (15), the proposed hybrid control law is designed by using 

an adaptive controller along with a learning based feedforward term as follows: 

𝜏 = Λ𝑟𝑕 + 𝜅𝛿2  𝑍  𝑟𝑕 + 𝜗 + 𝜏𝑎                                    (21) 

where 𝜗 ∈ ℝ𝑛  is an estimate of 𝜗 in (16) and generated by incorporating acceleration 

feedback into the standard feedforward term in Dixon et al. (2003): 

𝜗  𝑡 = 𝑠𝑎𝑡𝛼  𝜗  𝑡 − 𝑇  + 𝐾1𝑟𝑕 + 𝐾2𝑒                                (22) 

and the adaptive controller, 𝜏𝑎 , is designed as follows: 

𝜏𝑎 = 𝑊 𝑞 , 𝑞  Φ                                                       (23) 

with the update law given by (24): 

Φ  = Υ𝑕𝑊
𝑇 𝑞 , 𝑞  𝑟𝑕                                                   (24) 

where 𝑒 ∈ ℝ𝑛 is the acceleration error, i.e. 𝑒 ≜ 𝑞 𝑑 − 𝑞 , Λ ∈ ℝ𝑛×𝑛  is a constant, diagonal, 

positive-definite, controller gain matrix, 𝜅 ∈ ℝ is a constant positive gain, 𝐾1, 𝐾2 ∈ ℝ
𝑛×𝑛 , 

Υ𝑕 ∈ ℝ
2𝑛×2𝑛  represent constant, diagonal, positive-definite, learning control and 

adaptation gain matrices. Saturation function is denoted by 𝑠𝑎𝑡𝛼 .   and defined using the 

known, positive bounding constants given by (18): 

𝑠𝑎𝑡𝛼𝑖 𝜁𝑖 =  

𝛼𝑖  , 𝜁𝑖 ≥ 𝛼𝑖
 𝜁𝑖 ,      − 𝛼𝑖 < 𝜁𝑖 < 𝛼𝑖
−𝛼𝑖  ,                𝜁𝑖 ≤ 𝛼𝑖

                                  (25) 

with ∀𝜁𝑖 ∈ ℝ, 𝑖 = 1,2, … , 𝑛. In light of (25), the following inequality will be utilized in 

the subsequent stability analysis: 



 𝜁1𝑖 − 𝜁2𝑖 
2 ≥  𝑠𝑎𝑡𝛼𝑖 𝜁1𝑖 − 𝑠𝑎𝑡𝛼𝑖 𝜁2𝑖  

2

                       (26) 

where ∀ 𝜁1𝑖  ≤ 𝛼𝑖 , 𝜁1𝑖 ∈ ℝ, 𝑖 = 1,2, … , 𝑛.When (21) is substituted into (15), the closed-

loop error system for 𝑟𝑕 𝑡  is obtained as: 

𝐷𝑟 𝑕 = − 𝐶𝑟𝑕 − Λ𝑟𝑕 + 𝑊Φ + 𝜗 + 𝜉 − 𝜅𝛿2  𝑍  𝑟𝑕                (27) 

where the parameter estimation error, denoted by Φ ∈ ℝ2𝑛  is defined as: 

Φ = Φ −Φ                                                        (28) 

and 𝜗 ∈ ℝ𝑛  is the learning estimation error: 

𝜗 = 𝜗 − 𝜗                                                         (29) 

In light of (13), (16), (18) and (25), the following is derived: 

𝜗 𝑡 = 𝑠𝑎𝑡𝛼 𝜗 𝑡  = 𝑠𝑎𝑡𝛼 𝜗 𝑡 − 𝑇                                    (30) 

𝜗  is obtained by substituting (22) and (30) into (29): 

𝜗 = 𝑠𝑎𝑡𝛼 𝜗 𝑡 − 𝑇  − 𝑠𝑎𝑡𝛼  𝜗  𝑡 − 𝑇  − 𝐾1𝑟𝑕 − 𝐾2𝑒                      (31) 

3.2. Closed-Loop Stability Analysis 

Theorem 1: The proposed hybrid controller developed in (21)-(24) can asymptotically 

drive the position error to zero, i.e.; 

lim𝑡→∞ 𝑒 𝑡 = 0                                                        (32) 

where the controller gains Γ1, Γ2, Λ, 𝐾1and 𝐾2 givenin (14), (21) and (22) are selected to 

satisfy the following sufficient condition 

𝑚𝑖𝑛   Γ1 ,  Λ +
𝐾1
𝑇𝐾1

2
 ,  

𝐾2
𝑇𝐾2

2
  >

1

4𝜅
                                   (33) 



where  .   is the 2-norm of a matrix, and there exists a first-order differentiable, positive 

definite function 𝑉1 𝑒, 𝑒 , 𝑒 , 𝑡 ∈ ℝ such that 

𝑉 1 ≤ −𝑒𝑇Γ1𝑒 + 𝑟𝑕
𝑇𝐾1

𝑇𝐾2𝑒 + 𝜗 𝑇𝐾2𝑒 + 𝑟𝑕
𝑇 𝐾1 − 𝐼 𝜗                    (34) 

where 𝐼 ∈ ℝ𝑛×𝑛  is the identity matrix. 

Proof: To prove the conclusion of Theorem 1, a Lyapunov function candidate, 𝑉(𝑡) is 

defined as 

𝑉 = 𝑉1 +
𝑟𝑕
𝑇𝐷𝑟𝑕

2
+
Φ 𝑇Υ𝑕

−1Φ 

2

+
1

2
  𝑠𝑎𝑡𝛼𝜗 𝜙 − 𝑠𝑎𝑡𝛼𝜗  𝜙  

𝑇

 𝑠𝑎𝑡𝛼𝜗 𝜙 − 𝑠𝑎𝑡𝛼𝜗  𝜙  𝑑𝜙      
𝑡

𝑡−𝑇

 

(35)          

Taking the time derivative of (35), and using the Leibniz’s Rule provided in the appendix 

and the assumption given in (34) yields             

𝑉 ≤ −𝑒𝑇Γ1𝑒 + 𝑟𝑕
𝑇𝐾1

𝑇𝐾2𝑒 + 𝜗 𝑇𝐾2𝑒 + 𝑟𝑕
𝑇 𝐾1 − 𝐼 𝜗 + 𝑟𝑕

𝑇𝐷𝑟 𝑕 +
𝑟𝑕
𝑇𝐷 𝑟𝑕

2
− Φ 𝑇𝑊𝑇𝑟𝑕

+
1

2
  𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑠𝑎𝑡𝛼𝜗  𝑡  

𝑇

 𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑠𝑎𝑡𝛼𝜗  𝑡  

−  𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑇 − 𝑠𝑎𝑡𝛼𝜗  𝑡 − 𝑇  
𝑇

 𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑇 − 𝑠𝑎𝑡𝛼𝜗  𝑡 − 𝑇    

(36) 

Using (8) and (27), the following is obtained: 

𝑉 ≤ −𝑒𝑇Γ1𝑒 + 𝑟𝑕
𝑇𝐾1

𝑇𝐾2𝑒 + 𝜗 𝑇𝐾2𝑒 + 𝑟𝑕
𝑇𝐾1𝜗 − 𝑟𝑕

𝑇Λ𝑟𝑕 + 𝑟𝑕
𝑇𝜉 − 𝑟𝑕

𝑇𝜅𝛿2𝑟𝑕

+
1

2
  𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑠𝑎𝑡𝛼𝜗  𝑡   

2

−
1

2
 𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑇 − 𝑠𝑎𝑡𝛼𝜗  𝑡 − 𝑇  

𝑇

 𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑇 − 𝑠𝑎𝑡𝛼𝜗  𝑡 − 𝑇   

(37) 

The expression given in (37) can be rewritten based on (19) and (31) as follows: 



𝑉 ≤ −𝑒𝑇Γ1𝑒 + 𝑟𝑕
𝑇𝐾1

𝑇𝐾2𝑒 + 𝜗 𝑇𝐾2𝑒 + 𝑟𝑕
𝑇𝐾1𝜗 − 𝑟𝑕

𝑇Λ𝑟𝑕 +  𝛿 𝑍  𝑟𝑕 − 𝜅𝛿2 𝑟𝑕 
2 

+
1

2
  𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑠𝑎𝑡𝛼𝜗  𝑡   

2

−
1

2
 𝜗 + 𝐾1𝑟𝑕 + 𝐾2𝑒  

𝑇
 𝜗 + 𝐾1𝑟𝑕 + 𝐾2𝑒   

(38) 

By expanding the last line of (38), and performing cancellations, one obtains 

𝑉 ≤ −𝑒𝑇Γ1𝑒 − 𝑟𝑕
𝑇  Λ +

𝐾1
𝑇𝐾1

2
 𝑟𝑕 − 𝑒 𝑇

𝐾2
𝑇𝐾2

2
𝑒 

+
1

2
  𝑠𝑎𝑡𝛼𝜗 𝑡 − 𝑠𝑎𝑡𝛼𝜗  𝑡  

2
−   𝜗 𝑡 − 𝜗  𝑡  

2
 

+  𝛿 𝑍  𝑟𝑕 − 𝜅𝛿2 𝑟𝑕 
2  

(39) 

By exploiting the property given in (26), completing the square on the bracketed term in 

the last line of (39), and using (20), (39) can be simplified as: 

𝑉 ≤ −  𝑚𝑖𝑛   Γ1 ,  Λ +
𝐾1
𝑇𝐾1

2
 ,  

𝐾2
𝑇𝐾2

2
  −

1

4𝜅
  𝑍 2                      (40) 

where  .   is the 2-norm of a matrix. 

Signal Chasing: When (33) is satisfied, it follows that 𝑉 𝑡 ∈ ℒ∞based on (35) and (40). 

Since the signals in 𝑉 𝑡  must remain bounded, it can be concluded that 𝑟𝑕 𝑡 ,Φ  𝑡 ∈

ℒ∞ . If the sufficient condition in (33) is satisfied, then in light of Lemma 1 given in the 

appendix, it follows that 

 𝑍 =   𝑍2 𝑡  𝑑𝑡
∞

0
< ∞                                          (41) 

which in turn implies that 𝑍 𝑡 ∈ ℒ2. 

Since  𝑍 ∞ = 𝑠𝑢𝑝 𝑍 𝑡  , in light of (41) it follows that  𝑍 ∞ ≤  𝑍 < ∞, and thus 

𝑍 𝑡 ∈ ℒ∞ . Therefore, 𝑍 𝑡 ∈ ℒ2 ∩ ℒ∞ . 

The definition of 𝑍(𝑡) given in (20) implies that 𝑒 𝑡 , 𝑟𝑕 𝑡 , 𝑒  𝑡 ∈ ℒ2 ∩ ℒ∞ . Since 

𝑟𝑕 𝑡 ∈ ℒ∞ , it follows from the definition of 𝑟𝑕 𝑡  in (14) that 𝑒  𝑡 ∈ ℒ∞ . Since 



e 𝑡 , 𝑒  𝑡 ∈ ℒ∞  and𝑒 𝑡 ∈ ℒ2, Barbalat’s Lemma in the appendix implies (32) in 

Theorem 1. 

In light of (12) and (13), and using the boundedness of e 𝑡 , 𝑒  𝑡 , 𝑒 (𝑡), it follows that 

q 𝑡 , 𝑞  𝑡 , 𝑞  𝑡 ∈ ℒ∞ . By exploiting the fact that the learning feedforward term given in 

(22) is composed of a saturation function, and 𝑟 𝑡 , 𝑒 (𝑡) ∈ ℒ∞ , it can be concluded that 

𝜗  𝑡 ∈ ℒ∞ . Since Φ represents bounded static friction coefficients and Φ  𝑡 ∈ ℒ∞ , it 

follows from (28) that Φ  𝑡 ∈ ℒ∞ . It is observed that 𝜏𝑎 𝑡 ∈ ℒ∞  using 

𝑞  𝑡 , 𝑞  𝑡 , Φ  𝑡 ∈ ℒ∞  in (23). Finally, 𝜏𝑎 𝑡 , 𝜗  𝑡 , 𝑟𝑕 𝑡 ∈ ℒ∞  implies 𝜏 𝑡 ∈ ℒ∞based 

on (21). Therefore, all system signals remain bounded. 

4. Simulation Results 

The performance of the developed hybrid learning based adaptive controller given in 

(21)-(24) is evaluated on the pan-tilt platform and compared with the performance of the 

hybrid learning based adaptive controller where acceleration feedback signals are not 

used. The desired trajectories which are presented in Figure 3 are generated based on the 

following periodic functions: 

 
𝑞𝑑1

𝑞𝑑2
 =  

 2 + 0.2𝑠𝑖𝑛 𝑡   𝑠𝑖𝑛 𝑠𝑖𝑛 𝑡    1 + 𝑒−0.6𝑡3
 

 1 + 0.2𝑠𝑖𝑛 𝑡   𝑠𝑖𝑛 𝑠𝑖𝑛 𝑡    1 + 𝑒−0.6𝑡3
 
                     (42) 

with a period of 𝑇 =  6.28 𝑠𝑒𝑐 and the exponential term isused to provide a “smooth-

start” to the system. 

 

Figure 3. Desired Trajectories 

The controller gains are tuned as follows: 



Γ1 =  
20 0
0 14

 , Γ2 =  
20 0
0 20

 , Λ =  
40 0
0 12

                          (43) 

 

K1 =  
30 0
0 10

 , K2 =  
0.01 0

0 0.01
 , Υ𝑕 = 20𝐼4×4                     (44) 

Position and filtered errors reduce after each period of the desired trajectory and globally 

asymptotically converge to zero as depicted in Figures 4 and 5. Peaks occur in the 

position errors due to the integration of discontinuities created by signum functions in the 

static frictions terms of the dynamic model given in (5). 

 

 

Figure 4. Pan axis position error, 𝑒1 𝑡  

 

Figure 5. Tilt axis position error, 𝑒2 𝑡  

Figures 6-9 depict the torque control inputs and the learning feedforward control inputs. 

Due to the desired periodic trajectories, control inputs oscillate to reject the unknown 

periodic disturbances. The proposed controller outperforms the hybrid controller without 

acceleration feedback as shown in Tables 1 and 2. 



 

Figure 6. Pan axis control input, 𝜏1 𝑡  

 

Figure 7. Tilt axis control input, 𝜏2 𝑡  

 

Figure 8. Pan axis learning feedforward control, 𝜗1 𝑡  



 

Figure 9. Tilt axis learning feedforward control, 𝜗2 𝑡  

Table 1. Pan axis performance specification 

Performance  

Criteria 

Proposed  

Control 

Hybrid Control  

without AFB 

Absolute Worst Case Error (𝑑𝑒𝑔) 1.01 1.94 

RMS Position Error (𝑑𝑒𝑔) 0.22 0.42 

RMS Control Input (𝑁.𝑚) 7.49 7.47 

 

Table 2. Tilt axis performance specification 

Performance  

Criteria 

Proposed  

Control 

Hybrid Control  

without AFB 

Absolute Worst Case Error (𝑑𝑒𝑔) 0.63 1.24 

RMS Position Error (𝑑𝑒𝑔) 0.10 0.23 

RMS Control Input (𝑁.𝑚) 2.00 1.80 

 

Static friction coefficients are satisfactorily estimated by the adaptive controller. 

Estimated values of the static friction parameters approximately converge to 3.1 𝑁.𝑚 and 

0.4 𝑁.𝑚as depicted in Figures 10 and 11. Motor moment of inertias are estimated as 

2.7 𝑘𝑔.𝑚2 and 1.5 𝑘𝑔.𝑚2 as shown in Figures 12 and 13. 

 



 

Figure 10. Pan axis estimated friction parameter, 𝑓 𝑠1
 

 

Figure 11.Tilt axis estimated friction parameter, 𝑓 𝑠2
 

 

Figure 12. Pan axis estimated friction parameter, 𝐽 𝑚1
 



 

Figure 13. Pan axis estimated friction parameter, 𝐽 𝑚2
 

5. Conclusion 

A new hybrid control method is developed for the trajectory tracking control of robot 

manipulators where acceleration based learning and adaptive controllers are designed and 

combined. Utilization of acceleration feedback in the learning control provides more 

robustness to the system against unknown periodic disturbances with a known period. 

Adaptive controller, on the other hand, compensates for the uncertainties in the actuator 

moment of inertias and the static friction parameters. For closed-loop stability analysis, a 

filtered error is defined where integral of the position error is also included. A cascaded 

high gain observer is designed to estimate reliable position, velocity and acceleration 

signals from noisy encoder measurements. Lyapunov based stability analysis show that 

all system signals remain bounded, and the proposed controller ensures global asymptotic 

position tracking for a n-rigid link manipulator. The performance of the proposed hybrid 

controller is tested on a high fidelity simulation model of a pan-tilt platform and it has 

been found as quite satisfactory. 

6. Appendix: Leibniz’s Rule and Some Important Lemmas 

Leibniz’s Rule 

Let 𝑓 𝑥, 𝑡  be a function such that both 𝑓 𝑥, 𝑡  and its partial derivative 𝑓𝑥 𝑥, 𝑡  are 

continuous in 𝑥 and 𝑡 in some region of the (𝑥, 𝑡)-plane, including 𝑢 𝑥 ≤ 𝑡 ≤ 𝑣 𝑥  and 

𝑥0 ≤ 𝑥 ≤ 𝑥1. Assuming that the functions 𝑢(𝑥) and 𝑣(𝑥) are both continuous and have 

continuous derivatives for 𝑥0 ≤ 𝑥 ≤ 𝑥1, it follows that 



𝑑

𝑑𝑥
 𝑓 𝑥, 𝑡 
𝑣 𝑥 

𝑢 𝑥 
𝑑𝑡 = 𝑓 𝑣 𝑥  

𝑑𝑣

𝑑𝑥
− 𝑓 𝑢 𝑥  

𝑑𝑢

𝑑𝑥
+  

𝜕

𝜕𝑥
𝑓 𝑥, 𝑡 𝑑𝑡

𝑣 𝑥 

𝑢 𝑥 
        (45) 

Lemma 1 

Given a nonnegative function denoted by 𝑉 𝑡 ∈ ℝ as follows Dixon et al. (2003): 

𝑉 =
1

2
𝑥2                                                             (46) 

with the following time derivative 

𝑉 = −𝑘1𝑥
2                                                         (47) 

then 𝑥(𝑡) ∈ ℝ is square integrable, i.e. 𝑉 𝑡 ∈ ℒ2. 

Proof: If both sides of (47) is integrated, then the following is obtained 

− 𝑉  𝑡 
∞

0
𝑑𝑡 = 𝑘1  𝑥2 𝑡 

∞

0
𝑑𝑡                                         (48) 

and 

𝑘1  𝑥2 𝑡 
∞

0
𝑑𝑡 = 𝑉 0 − 𝑉 ∞                                      (49)    

It is known that 𝑉 0 ≥ 𝑉 ∞ ≥ 0 based on (46) and (47). Therefore, it follows that                      

𝑘1  𝑥2 𝑡 
∞

0
𝑑𝑡 = 𝑉 0 − 𝑉 ∞ ≤ 𝑉 0 < ∞        (50) 

  𝑥2 𝑡 
∞

0
𝑑𝑡 ≤  

𝑉 0 

𝑘1
< ∞                (51) 

Thus, one concludes that 𝑥 𝑡 ∈ ℒ2. 

Barbalat’s Lemma 

Consider a function 𝑓 𝑡 ∶  ℝ+ ⟶𝑅. If 𝑓 𝑡 , 𝑓  𝑡 ∈ ℒ∞ , and 𝑓 𝑡 ∈ ℒ2, then 

lim𝑡→∞ 𝑓 𝑡 = 0                                                           (52) 

This lemma is often referred to as Barbalat’s Lemma Khalil (2002). 
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