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Abstract—In this paper, we present an optimized FPGA
implementation of a novel, fast and highly parallelized NTT-
based polynomial multiplier architecture, which proves to be
effective as an accelerator for lattice-based homomorphic cryp-
tographic schemes. As I/O operations are as time-consuming as
NTT operations during homomorphic computations in a host
processor/accelerator setting, instead of achieving the fastest
NTT implementation possible on the target FPGA, we focus
on a balanced time performance between the NTT and I/O
operations. Even with this goal, we achieved the fastest NTT
implementation in literature, to the best of our knowledge. For
proof of concept, we utilize our architecture in a framework for
Fan-Vercauteren (FV) homomorphic encryption scheme, utilizing
a hardware/software co-design approach, in which polynomial
multiplication operations are offloaded to the accelerator via
PCIe bus while the rest of operations in the FV scheme
are executed in software running on an off-the-shelf desktop
computer. Specifically, our framework is optimized to accelerate
Simple Encrypted Arithmetic Library (SEAL), developed by
the Cryptography Research Group at Microsoft Research [1],
for the FV encryption scheme, where large degree polynomial
multiplications are utilized extensively. The hardware part of the
proposed framework targets Xilinx Virtex-7 FPGA device and
the proposed framework achieves almost 11x latency speedup
for the offloaded operations compared to their pure software
implementations. We achieved a throughput of almost 800K
polynomial multiplications per second, for polynomials of degree
1024 with 32-bit coefficients.

Index Terms—Number Theoretic Transform, Large-Degree
Polynomial Multiplication, Fan-Vercauteren, SEAL, FPGA

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) allows computa-

tions on encrypted data eliminating the need for the access

to plaintext data. FHE schemes provide privacy in various

applications, such as privacy-preserving processing of sen-

sitive data in cloud computing. The idea of FHE was first

introduced in 1978 [2] and it had been an open problem

until Gentry constructed the first functioning FHE scheme

in 2009 [3]. Since then various practical FHE schemes

have been introduced [4], [5], [6]. Despite the tremendous

performance improvement of FHE schemes over the years,

homomorphic computation is not yet quite feasible for many

cloud applications. There is still ongoing research and race to

improve the performance of arithmetic blocks of the working

FHE schemes. Different implementations and constructions

were developed to introduce practical hardware and software

implementations of FHE schemes, such as [7], HElib [8],

NFLlib [9], cuHe [10]. With the motivation of achieving

a practical FHE implementation, we focus on improving

performance of the most time consuming arithmetic block

of many FHE schemes in literature: large degree polynomial

multiplication. For proof of concept, we aim to obtain a

framework to accelerate the Fan-Vercauteren (FV) encryption

scheme for homomorphic operations [5].

There are various software and hardware implementations

of the FV scheme in the literature. Cryptography Research

Group at Microsoft Research developed Simple Encrypted

Arithmetic Library (SEAL) [1], providing a simple and prac-

tical software infrastructure using the FV homomorphic en-

cryption scheme for homomorphic applications [5]. SEAL

already gained recognition in the literature [11], [12], [13].

In our proof of concept framework, we utilize our NTT-based

polynomial multiplier design to accelerate SEAL software by

offloading large degree polynomial multiplication operations

to the hardware accelerator implemented on FPGA board.

In general, implementations of specialized hardware archi-

tectures for specific operations provide significant speed-up

over software implementations. On the other hand, it is neither

effective nor practical to offload all sorts of computation to

hardware accelerators. In most FHE schemes, the most-time

consuming operation is large degree polynomial multiplication

that involves vast number of modular multiplication opera-

tions over integers, majority of which is highly parallelizable.

Nevertheless, software performance is bounded by the number

of integer multipliers existing in CPU architectures limiting

the level of parallelization. Therefore, it makes perfect sense

to execute those operations in a hardware accelerator, which

should be designed to improve the overall performance of soft-

ware implementation of a FHE scheme by taking advantage of

parallelizable operations. Besides, offloading computation to

an accelerator results in overhead due to the time spent in the

network stack in both ends of the communication and actual

transfer of data, which we refer as the input-output (I/O) time.

This overhead can be prohibitively high if the nature and cost

of the offloading are not factored in the accelerator design.

To this end, two crucial design goals are considered in

this work: i) hardware accelerator architecture should be

designed to provide significant levels of speedup over software

implementations and ii) the overhead due to communication



between hardware and software components should be taken

into account as a design parameter or constraint. Most works

in the literature focus solely on the first goal and report

no accurate speedup values subsuming the I/O time. In this

paper, we aim to address this problematic by providing a fully

working prototype of a framework consisting of an FPGA

implementing a highly efficient accelerator and SEAL library

running on a CPU. Our contributions in this paper are listed

as follows:

• We present a novel FPGA implementation of a fast

and highly parallelized NTT-based polynomial multiplier

architecture. We introduce several optimizations for the

Number Theoretic Transform (NTT) operations. For ef-

ficient modular arithmetic, we employ lazy reduction

techniques as explained in [14]. We also slightly modify

the NTT operation loops in order to be able to efficiently

parallelize NTT computations. Since I/O operations are

as important as NTT operations running on the FPGA,

instead of achieving the fastest NTT implementation

possible on the target FPGA, we focus on a balanced

performance between the NTT and I/O operations on

the FPGA. Also, since our implementations are targeting

cryptographic applications, for security NTT hardware is

designed to run in constant time for every possible input

combination.

• We introduce a novel modular multiplier architecture for

any NTT-friendly prime modulus, which provides com-

parable time performance to those using special primes.

• We propose a framework including a high performance

FPGA device, which is connected to a host CPU. Our

proposed framework interfaces the CPU and the FPGA

via a fast PCIe connection, achieving a ∼32 Gbps half-

duplex I/O speed. For proof of concept, we accelerate

polynomial multiplications utilized in the encryption op-

erations of SEAL. Every time an encryption function

is invoked by SEAL, the polynomial multiplications are

offloaded to the FPGA device via the fast PCIe con-

nection. Our design utilizes 1024-degree polynomials to

achieve 128-bit security level. With our approach, latency

of polynomial multiplication is improved by almost 11x

with about a 17% utilization of the VIRTEX-7 resources.

With careful pipelining, I/O operations can be overlapped

with actual polynomial multiplications on hardware and

additional 3x throughput performance can be achieved

for pure polynomial multiplication. As the accelerator

framework provides a simple interface and supports a

range of modulus lengths for polynomial coefficients it

can easily be configured for use with other FHE libraries

relying on ring learning with errors security assumption.

II. BACKGROUND

In this section we give definition of the FV scheme as

presented in [5] and arithmetic operations utilized in this

scheme.

A. FV Homomorphic Encryption Scheme

In [5], the authors present an encryption scheme based

on Ring Learning with Errors (RLWE) problem [15]. The

RLWE problem is simply a ring based version of the LWE

problem [16] and leads to the following encryption scheme as

described in [15].

Let the plaintext and ciphertext spaces taken as Rt and Rq ,

respectively, for some integer t > 1. We remark that neither q
nor t have to be prime, nor that t and q have to be coprime. Let

⌊.⌉ and [.]q represent round to nearest integer and the reduction

by modulo q operations, respectively. Let ∆ and χ be ⌊q/t⌋
and a truncated discrete Gaussian distribution, respectively. Let

a
$
←− S represents that a is uniformly sampled from the set S.

Secret key generation, public key generation, encryption and

decryption operations described in Textbook-FV are shown

below.

• SecretKeyGen: s
$
←− R2.

• PublicKeyGen: a
$
←− Rq and e← χ.

(p0, p1) = ([−(a · s+ e)]q, a)

• Encryption: m ∈ Rt, u
$
←− R2 and e1, e2 ← χ.

(c0, c1) = ([∆ ·m+ p0 · u+ e1]q, [p1 · u+ e2]q)

• Decryption: m ∈ Rt

m = [⌊ t
q
[c0 + c1 · s]q⌉]t

B. Number Theoretic Transform

One of the high level fundamental operations in the FV

scheme is the multiplication of two polynomials of very

large degrees. Recently, there has been many publications in

literature about multiplication of two large degree polynomials

and the NTT-based multiplication schemes which provide the

most suitable algorithms for efficient multiplication of large

degree polynomials. In this work, we utilize the modified

version of iterative NTT scheme [7] shown in Algorithm 1,

which uses the modifications shown in [17]. Inverse NTT

(INTT) operation is performed using the same Algorithm 1

with ω−1 instead of ω.

C. Modular Arithmetic

NTT arithmetic involves a large amount of modular addi-

tion, subtraction and multiplication operations. For efficient

modular arithmetic operations, we employ techniques dis-

cussed in [14]. In this section we present hardware-friendly

constant-time modular arithmetic algorithms. For the rest of

the section, we assume a K-bit modulus q. Our modular arith-

metic operations compute numbers in the range [0, 2K − 1],
instead of [0, q − 1].

1) Modular Addition: A hardware-friendly constant-time

partial modular addition operation is shown in Algorithm 2.

Assume largest values for A and B are 2K − 1, and smallest

value for q is 2K−1 + 1.

Amax +Bmax = (2K − 1) · 2 = 2K+1 − 2 (1)



Algorithm 1 Modified Iterative NTT

Input: Polynomial a(x) ∈ Zq[x] of degree n− 1
Input: primitive n-th root of unity ω ∈ Zq

Input: q ≡ 1 (mod 2n), n = 2l

Output: Polynomial a(x) =NTT(a) ∈ Zq[x]
1: for i from 1 by 1 to l do

2: m = 2l−i

3: for j from 0 by 1 to 2i−1 − 1 do

4: t = 2 · j ·m
5: for k from 0 by 1 to m− 1 do

6: curr ω = ω[2i−1k]
7: U ← a[t+ k]
8: V ← a[t+ k +m]
9: a[t+ k]← U + V

10: a[t+ k +m]← ω · (U − V )
11: end for

12: ω ← ω · ωi

13: end for

14: end for

15: return a

Algorithm 2 Modular Addition Algorithm

Input: A,B, q (K–bit positive integers)

Output: C ≡ A+B (mod q) (K–bit positive integer)

1: T1 = A+B
2: T2 = T1− q
3: T3 = T1− 2 · q
4: if (T2 < 0) then

5: C = T1
6: else if (T3 < 0) then

7: C = T2
8: else

9: C = T3
10: end if

Amax+Bmax−qmin = (2K−1)·2−(2K−1+1) = 3·2K−1−3
(2)

Amax+Bmax−2·qmin = (2K−1)·2−(2K−1+1)·2 = 2K−4
(3)

Results of Eqn. 1 and Eqn. 2 are K + 1-bit numbers, and

result of Eqn. 3 is a K-bit number. This shows that after

an addition operation, at most 2 subtraction operations are

required to reduce the result of the addition operation back to

K bits. Therefore, in Algorithm 2, the result C is guaranteed

to be a K-bit number. As can be seen, Algorithm 2 is built to

be a constant-time operation in terms of hardware perspective.

2) Modular Subtraction: For efficiency, we use partial

modular subtraction operations, instead of full modular sub-

traction. Our algorithm is shown in Algorithm 3. Assume A

is 0, largest value for B is 2K − 1, and smallest value for q is

2K−1 + 1.

Amin −Bmax = 0− (2K − 1) = −2K + 1 (4)

Algorithm 3 Modular Subtraction Algorithm

Input: A,B, q (K-bit positive integers)

Output: C ≡ A−B (mod q)
1: T1 = A−B
2: T2 = T1 + q
3: T3 = T1 + 2 · q
4: if (T2 < 0) then

5: C = T3
6: else if (T1 < 0) then

7: C = T2
8: else

9: C = T1
10: end if

Algorithm 4 Word-Level Montgomery Reduction Algorithm

Input: C = A ·B (a 2K-bit positive integer)

Input: q (a K-bit positive integer)

Input: µ = −q−1 (mod 2w) (w-bit integer, w <= K)

Input: L = ⌈K/w⌉
Output: Res = C ·R−1 (mod q) where R = 2Lw (mod q)

1: T1 = C
2: for i from 0 to L− 1 do

3: T2 = T1 (mod 2w)
4: T3 = (T2 · µ) (mod 2w)
5: T1 = ⌊(T1 + (T3 · q))/2w⌋
6: end for

7: T4 = T1− q
8: if (T4 < 0) then

9: Res = T1
10: else

11: Res = T4
12: end if

Amin−Bmax+qmin = −2K +1+(2K−1+1) = −2K−1+2
(5)

Amin−Bmax+2 ·qmin = −2K +1+2 · (2K−1+1) = 3 (6)

Results of Eqn. 4 and Eqn. 5 are negative numbers, and

result of Eqn. 6 is a K-bit positive number. This shows that

after a subtraction operation, at most 2 addition operations

are required to guarantee a positive result. Therefore, in

Algorithm 3, the result C is guaranteed to be a positive K-bit

number. As can be seen, Algorithm 3 is built to be a constant-

time operation in terms of hardware perspective.

3) Modular Multiplication: For our entire hardware, we

utilized Montgomery Reduction algorithm [18], for reasons

explained in Section IV-A1. Word-level version of the Mont-

gomery reduction algorithm is shown in Algorithm 4. As

can be seen from the algorithm, Montgomery reduction is a

constant-time operation in terms of hardware perspective.

III. SIMPLE ENCRYPTED ARITHMETIC LIBRARY (SEAL)

SEAL, which was developed by Cryptography Research

Group at the Microsoft Research, is a homomorphic encryption

library. It provides an easy-to-use homomorphic encryption



Algorithm 5 Encryption Implementation in SEAL [1]

Input: m ∈ Rn
t , p0, p1 ∈ Rn

q

Output: c0 = [p0u+ e1 +∆ ·m]q, c1 = [p1u+ e2]q

1: u
$
←− R2

2: p0u, p1u = NTT DOUBLE MULTIPLY (u, p0, p1)
3: e1, e2 ← χ
4: c0 = [p0u+ e1 +∆ ·m]q
5: c1 = [p1u+ e2]q
6: return c0, c1
7: function NTT DOUBLE MULTIPLY(u, p0, p1)

8: u =NTT(u)
9: p0u = p0 ⊙ u

10: p1u = p1 ⊙ u
11: p0u =INTT(p0u)
12: p1u =INTT(p1u)
13: return p0u, p1u
14: end function

TABLE I
TIMING OF ENCRYPTION ALGORITHM IN SEAL

Zq [x]/(x1024 + 1), q=27-bit, t=8-bit, 128-bit security

Operation Time (µs) Percentage (%)

u← R2 11.2 7.4 %

NTT DOUBLE MULTIPLY 46.4 30.1 %

e1, e2 ← χ 91.1 60.2 %

Others 3.1 2.3 %

library for people in academia and industry. SEAL uses FV ho-

momorphic encryption scheme for homomorphic operations.

In this paper, the proposed work focuses on accelerating the

encryption operation in SEAL by implementing the polyno-

mial multiplications in encryption operation on FPGA board.

Encryption operation in SEAL is implemented the same as

the encryption operation in Textbook-FV scheme as shown in

Algorithm 5. For the rest of the paper, a variable with a bar

over its name represents a polynomial in NTT domain. For

example, u and u are the same polynomials in polynomial

and NTT domains, respectively. In SEAL, public keys, p0 and

p1, are stored in NTT domain and other polynomials used

in encryption operation are stored in polynomial domain. In

SEAL, polynomials u, e1 and e2 are randomly generated for

each encryption operation. Since encryption operation requires

polynomial multiplications of u and public keys, p0 and p1,

the generated u is transformed into NTT domain using NTT

operation. After the inner multiplication of u and public keys

in NTT domain, inverse NTT operation is applied to transform

the results from NTT domain to polynomial domain. Finally,

necessary polynomial addition operations are performed to

generate ciphertexts, c0 and c1.

Timing breakdown of the encryption operation in SEAL

is shown in Table I. The average time for one encryption

operation in SEAL running on an Intel i9-7900X CPU is

151 µs. The average time for NTT-based large degree poly-

nomial multiplication in one encryption operation is 46.4 µs.

IV. THE PROPOSED DESIGN

In this section, design techniques used for our efficient and

scalable NTT-based polynomial multiplier, the design tech-

niques we used for our entire framework and our optimizations

are explained. For proof of concept design, we chose to im-

plement a 1024-degree polynomial multiplication architecture

targeting a 128-bit security level with 32-bit coefficients. For

the rest of the paper, n denotes the degree of the polynomial,

q denotes the prime used as modulus. Instead of fixing the

modulus size and the modulus, we implemented a scalable

architecture supporting modulus lenghts between 22 and 32

bits. Our techniques can easily be extended and optimized

for fixed-length moduli. Our modular multiplier works for all

NTT-friendly primes with the property q ≡ 1 (mod 2n), as

shown in Algorithm 4.

A. The Proposed Hardware

1) Modular Multiplier: To optimize large polynomial mul-

tiplications for FV scheme, a fast and efficient modular mul-

tiplier needs to be designed and utilized. In this work, we

designed a modular multiplier utilizing Montgomery reduction

techniques with a lazy reduction approach as explained in [14].

Our modular multiplier architecture is optimized for modulus

lengths between 22 and 32 bits.

We designed a 32-bit multiplier with 4 DSP blocks and an

adder tree. Since we are targeting an FPGA architecture, we

used 16-bit core multipliers, because of DSP size limitations.

On Spartan-6 Architectures, DSP slices include 18-bit signed

multipliers and on Virtex-7 Architectures, DSP slices include

18× 25-bit signed multipliers. To follow literature, we chose

to implement our multiplier for both architectures, therefore

we picked a core multiplier length of 16 bits. Our NTT

architecture is fully pipelined, therefore 32-bit multiplier has

pipeline registers between DSP blocks and adder tree. These

pipeline registers do not affect the throughput of the overall

architecture in terms of clock cycles, improving the overall

performance in terms of execution time significantly.

After a 32-bit multiplication operation, the result needs to be

reduced back to the bit-length of the modulus. For a scalable

architecture, we modified Algorithm 4 to achieve a fast and

efficient modular reduction operation. For efficiency, we utilize

the property:

q ≡ 1 (mod 2n) (7)

Any NTT-friendly prime q with this property can be written

as:

q = qH · 2
log22n + 1 (8)

For our proof of concept design, n = 1024 and log22n = 11,

which yields:

q = qH · 2
11 + 1 (9)

For Montgomery Reduction operation, if we select word size

w = 11,

µ = −q−1mod 211 ≡ −1 mod (mod 211) (10)



Algorithm 6 Word-Level Montgomery Reduction Algorithm

modified for NTT-friendly primes

Input: C = A ·B (a 2K-bit positive integer, 22 ≤ K ≤ 32)
Input: q (a K-bit positive integer, q = qH · 2

11 + 1)

Output: Res = C ·R−1 (mod M) where R = 233 (mod q)
1: T1 = C
2: for i from 0 to 2 do

3: T1H = T1 >> 11
4: T1L = T1 (mod 211)
5: T2 = 2′s complement of T1L
6: carry = T2[10] OR T1L[10]
7: T1 = T1H + (qH · T2[10 : 0]) + carry
8: end for

9: T4 = T1− q
10: if (T4 < 0) then

11: Res = T1
12: else

13: Res = T4
14: end if

C[63:11] C[10:0]

Mult
−1

C’[10:0]

11’b1qH[20:0]

C’[10:0]

qH[20:0]*C’[10:0]

X

C[63:11] C[10:0]

+

11’b0R1[53:0]

Fig. 1. Flow of operations for Word-Level Montgomery Reduction algorithm
modified for NTT-friendly primes

Utilizing this property, we rewrite Montgomery Reduction as

shown in Algorithm 6. Flow of operations for Algorithm 6 is

shown in Figure 1.

To guarantee that one subtraction at the end of Algorithm 6

is enough, K < (3 × 11) needs to be satisfied. For K <
(2× 11), 2 iterations are required instead of 3. Our algorithm

can easily be modified to scale for other n. For example, for

n = 2048, w = 12 and for a modulus of length (4 × 12) <
K < (5×12), 5 iterations are required. For n = 4096, w = 13
and for a modulus of length (4 × 13) < K < (5 × 13), 5

iterations are required.

Hardware design for Algorithm 6 is shown in Figure 2.

Complement
2’s

Complement
2’s

Complement
2’s

C’[10:0]

R1[53:0]

C[63:11]

C[63:0]
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C’[10]

C[10]

X

Y

Z

XY+Z

carryin1

q[31:11]

C[10:0]

OR

q[31:11]

R1[53:11]

R1’[10:0]

Y

Z

carryin2
R1’[10]

R1[10]

X
R1[10:0]

OR

q[31:11]

R2[42:11]

R2’[10:0]

Y

Z

carryin3
R2’[10]

R2[10]

X

XY+Z

R2[10:0]

R2[42:0]

XY+Z

Montgomery Reduction

T1[32:0]

X

Y

X−Y

T1[31:0]

T4[31:0]

Res[31:0]

q[31:0]

Fig. 2. Word-Level Montgomery Reduction Hardware for NTT-friendly
primes

XY + Z is a multiply-accumulate operation, which can be

realized using DSP blocks inside the FPGA. Each DSP slice

has an optional output register, which can be utilized as the

pipeline register, eliminating the need to utilize FPGA fabric

registers for pipelining.

2) NTT unit: To achieve optimized performance for NTT

computations, we use the modified version of iterative NTT

algorithm shown in Algorithm 1. It should be noted that this

NTT operation is not a complete NTT operation. The resulting

polynomial coefficients are not in correct order. We need to

do a permutation operation in order to be able to get a correct

NTT result. However, since we are in NTT domain and every

operand that in the NTT domain will have the same scrambled

order, we can leave the result of this operation as it is without

doing the permutation. For polynomial multiplication, two



  

Left[31:0]

W[31:0]

32x32

MultiplierSubtractor

Modular Modular

Reduction

Even[31:0]

Odd[31:0]

q[31:0]

Adder

Modular
Right[31:0]

q[31:0]

NTT Unit

Fig. 3. NTT Unit

polynomials will be converted to NTT domain and their inner

multiplication will be computed. This operation will yield a

result that is still in the same scrambled order.

After inner multiplication of operands in NTT form, we

apply inverse NTT operation to bring the operand back to

its polynomial domain. With slight modifications to inverse

NTT operations, we were able to reverse this scrambling

of NTT operands without any extra permutation operations,

which yielded a lower latency for NTT operations. In order to

realize the most inner loop of the nested for loops shown in

Algorithm 1, we designed an NTT unit, shown in Figure 3.

Latency of this NTT unit is 5 clock cycles.

Since each polynomial has 1024 coefficients, we decided to

utilize 64 of these NTT units and 128 separate BRAMS to hold

these coefficients. Each BRAM holds 8 of the coefficients and

since we are utilizing an in-place NTT algorithm, after reading

a coefficient from a BRAM, we only have 1024/128 = 8 clock

cycles to write back the computed result to its corresponding

place. This requirement forced us to design a datapath with at

most 6 clock cycle latency. The reason we designed a 5 clock

cycle latency datapath is that adding a 6th pipe stage did not

improve frequency.

3) Polynomial Multiplier: Overall design of our hardware

is shown in Figure 4. This hardware employs 64 separate

BRAMs for each precomputed parameter (ω, ω−1, Ψ, Ψ−1,

Modulus) and 128 separate BRAMs for input u. The multiplier

in front of input u is realizing û = u · Ψ operation shown

in Algorithm 7, as the input is being received from the

PCIe link. Therefore, that step of the algorithm does not add

any latency to overall NTT operations. After the hardware

computes the NTT of input u, it realizes inner multiplication

with p0 and performs INTT on the result. After this operation,

the hardware realizes inner multiplication of u with p1 and

performs INTT on the result. After INTT operations, necessary

multiplications are also realized during the output stage of the

overall operation as shown in Algorithm 7.

B. Hardware/Software Co-Design Framework

In order to be able to speed-up encryption operation of the

SEAL library, we designed a proof of concept framework that

includes SEAL and an FPGA-based accelerator. To establish

communication between the software stack and the FPGA, we

utilized RIFFA driver [19], which employs a PCIe connection

between the CPU and the FPGA. Resulting framework is

W

Modulus

P1

P0

Psi
−1

W
−1

NTT

Input

Psi

xMUL INTT

Output

U

Fig. 4. Our Hardware

Algorithm 7 Operation Implemented in Our Design

Input: Polynomial u ∈ Zq[x]/(x
n + 1) of degree n− 1

Input: Public keys (p0, p1)

Input: Primitive 2n-th root of unity Ψ ∈ Zq

Output: Polynomials u · p0, u · p1 ∈ Zq[x]/(x
n + 1)

1: for i from 0 by 1 to n− 1 do

2: û[i] = u[i] ·Ψi

3: end for

4: u =NTT(û)
5: for i from 0 by 1 to n− 1 do

6: u p0[i] = u[i] · p0[i]
7: u p1[i] = u[i] · p1[i]
8: end for

9: ˆu p0 =INTT(u p0)
10: ˆu p1 =INTT(u p1)
11: for i from 0 by 1 to n− 1 do

12: u p0[i] = ˆu p0[i] · (Ψ
−i · n−1)

13: u p1[i] = ˆu p1[i] · (Ψ
−i · n−1)

14: end for

15: return u p0, u p1

shown in Figure 5. Inside SEAL, there is encrypt function

which work as decribed in III. In our modified version of

SEAL, this function sends its input data to the connected

FPGA and once FPGA returns the computed result, it returns

this result to its caller function. One important aspect of this

communication is that, since we utilized Direct Memory Ac-

cess (DMA), necessary data is directly sent from the memory

to the FPGA, instead of bringing it to the CPU first. This way,

cache of the CPU is not trashed and running this function does

not affect the performance of operations running on the CPU.

For this work, we are using Xilinx Virtex-7 FPGA VC707

Evaluation Kit which includes a PCIe x8 Gen2 Edge Con-

nector. This provides a 128-bit interface with a 250 MHz

clock, which provides a 32 Gbps bandwidth. As shown in
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Fig. 5. Hardware/Software Co-Design Framework

TABLE II
COMPARATIVE TABLE

Work LUTs Slice DSP BRAM Per.(ns) Lat.(µs)

[20] * 10801 3176 0 0 5.150 40.988

[20] * 6689 2112 4 8 4.154 33.094

[20] * 2464 915 16 14 4.050 32.282

This 1208 556 14 14 4.727 37.674

* Uses fixed modulus.

Figure 5, separate FIFO structures are utilized for data input

from the RIFFA driver and data output to the RIFFA driver.

This approach is utilized to enable a pipelined architecture

and maximize performance. For our datapath, we are utilizing

a 200 MHz clock to compensate the long critical paths of

our design. Although our design is optimized for 1024-degree

polynomials, it can easily be modified to realize multiplica-

tions for larger degree polynomials.

V. RESULTS AND COMPARISON

In order to be able to present a fair comparison with

the state of art in literature, the proposed NTT multiplier is

first implemented on a Spartan-6 FPGA (XC6SLX100) using

Verilog and implementation results are generated using Xilinx

ISE 14.7 with default synthesis option. This small version of

our NTT multiplier is designed to be as similar as possible

to the one in [20]. Both our work and [20] uses polynomial

degree of 1024 with 32-bit coefficients. The implementation

results are shown in Table II. Per. and Lat. in Table II stand

for clock period and latency, respectively. Our hardware has

latency that is almost identical to their design and our method

requires almost half the area with a comparable clock period.

Therefore, our method can easily be utilized for any design

requiring a generic NTT-friendly prime modulus.

Although SPARTAN-6 family provides fast computations

for polynomial multiplication operations, they lack fast I/O

infrastructure. Therefore, they are not suitable for accelerator

applications requiring high volume of data transfer. From

table II, our hardware achieves 1/37.674µs = 26543 poly-

nomial multiplications per second. A 32-bit coefficient 1024-

degree polynomial occupies 32 Kb memory space. Assuming

we only have to transfer one polynomial per multiplication

to the FPGA, a 829.4 Mbps I/O speed is required, which

achieves almost the same result as the CPU implementation.

In an accelerator setting, multiple polynomial multipliers need

to be instantiated inside the FPGA, which will create a heavy

burden on I/O.

In our accelerator design, we developed the architecture

described in Section IV into Verilog modules and realized

it using Xilinx Vivado 2018.1 tool for the Xilinx Virtex-

7 FPGA VC707 Evaluation Kit (XC7VX485T-2FFG1761).

The proposed work uses 33.8K LUTs (11.2%), 15.7K DFFs

(2.6%), 227.5 BRAMs (22%) and 476 DSPs (17%). There

is a plethora of works reported in the literature about mul-

tiplication of two large degree polynomials using NTT-based

multiplication schemes [21], [22], [20], [23], [24]. Although

some of these works also perform different operations, we only

reported the hardware and performance results for polynomial

multiplication part of these works. The works in the literature

and the work proposed in this paper are reported in Table III.

Although there are other accelerators [25] in the literature

performing RLWE encryption and decryption, these works use

small parameters and they are not designed for homomorphic

operations. Thus, they are not included in the comparison.

Since we target an efficient accelerator design, we imple-

mented our architecture on an FPGA and obtained perfor-

mance numbers on a real CPU-FPGA heterogeneous applica-

tion setting. Our Xilinx VC707 board can achieve a theoretical

32 Gbps I/O speed with a 250MHz clock. At this speed,

sending a polynomial of degree 1024 with 32-bit coefficients

from the CPU to FPGA via DMA takes 1µs (256 clock

cycles). In SEAL software, for encrypt operations, we replaced

polynomial multiplication operations with hardware-based op-

erations. In this setting, a pure software implementation yields

46.4µs, and an accelerator-based implementation, including

I/O operations, yields 1 + 1.3 + 2 = 4.3µs latency per poly-

nomial multiplication, where 1µs, 1.3µs and 2µs are spent

for input, polynomial multiplication and output, respectively.

Compared to software, we achieved a 11x speedup.

Encryption operation in SEAL performs two polynomial

multiplications requiring one NTT, two inner multiplication

and two INTT operations. Then, we modified our hardware to

perform one polynomial multiplication requiring one NTT, one

inner multiplication and one INTT. In this case, polynomial

multiplication takes 1.25µs. With careful pipelining, over-

lapping I/O operations with actual polynomial multiplication

computations, and assuming one of the operands for the poly-

nomial multiplication operation is already inside the FPGA

(a valid assumption for encryption and decryption operations

for homomorphic applications), we achieved a throughput of

almost 800K for degree-1024, 32-bit coefficient polynomial

multiplications per second. Decryption operation in SEAL

performs one polynomial multiplication in 29.3µs. Then,

the software performance is 1/29.3µs = 34129 polynomial

multiplications per second and we achieved an almost 24x

speedup over pure software implementation. Therefore, with

pipelining, overlapping I/O operations with actual decryption

or polynomial multiplication operations, and usng PCIe in

full-duplex, our hardware can provide almost 3x performance

compared to serial implementation.



TABLE III
COMPARATIVE TABLE

Work Scheme Platform n q LUTs/Gate DSP BRAM Freq. Perf. (ms)

[21] * GH-FHE 90-nm TSMC 2048 64-bit 26.7 M – – 666 MHz 7.750

[22] LTV VIRTEX-7 32768 32-bit 219 K 768 193 250 MHz 0.152

[20] * RLWE SPARTAN-6 256 21-bit 2829 4 4 247 MHz 0.006
SHE SPARTAN-6 1024 31-bit 6689 4 8 241 MHz 0.033

[23] * HE SPARTAN-6 1024 17-bit – 3 2 – 0.100

[24] * HE SPARTAN-6 1024 30-bit 1644 1 6.5 200 MHz 0.110

This work FV VIRTEX-7 1024 32-bit 33875 476 227.5 200 MHz 0.00125

* Uses fixed modulus.

VI. CONCLUSION

In this paper, we present an optimized FPGA implementa-

tion of a novel, fast and highly parallelized NTT-based polyno-

mial multiplier architecture, which is shown to be effective as

an accelerator for lattice-based homomorphic schemes. To the

best of our knowledge, our NTT-based polynomial multiplier

has the lowest latency in the literature.

For proof of concept, we utilize our architecture in a

framework for FV homomorphic encryption scheme, adopting

a hardware/software co-design approach, in which NTT oper-

ations are offloaded to the accelerator via PCIe bus while the

rest of operations in the FV scheme are executed in software

running on an off-the-shelf desktop computer. We realized the

framework on an FPGA operating with SEAL software and

the proposed framework accelerates the encryption operation

in SEAL. We used Xilinx VC707 board utilizing a Virtex-

7 FPGA for our implementation. We improved the latency of

NTT-based polynomial multiplications in encryption operation

by almost 11x compared to its pure software implementation.

We achieved a throughput of almost 800K for degree-1024,

32-bit coefficient polynomial multiplications per second.
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