
Dynamic Content Updates in Heterogeneous
Wireless Networks

Mehdi Salehi Heydar Abad 1, Emre Ozfatura2, Ozgur Ercetin1, and Deniz Gündüz2
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Abstract—Content storage at the network edge is a promising
solution to mitigate excessive content traffic. To this end, cache-
enabled cellular architectures can be utilized to reduce the
network cost. However, content storage strategies should be able
to take into account user satisfaction, which depends on the age of
a dynamic content. The ratio of satisfied users can be increased
with more frequent cache refreshment, albeit at an increased
network cost. In this paper, we introduce a cache refreshment
strategy that strikes a balance between user satisfaction and the
infrastructure cost.

Index Terms—Content caching, content refreshment, Markov
decision process, multi-armed bandit

I. INTRODUCTION

While proactive content caching has received significant
interest in recent years, most existing strategies in the literature
(both with uncoded [1] and coded placement [2]) are based
on known content popularities. Although it is possible to
observe the global popularity of contents in on-demand video
streaming services, such as YouTube, small-cell base stations
(SBSs) usually serve a small geographical area, where the
local content popularity might not be aligned with the global
popularity [3]. This mismatch between the local and global
content popularities requires the design of predictive caching
policies that aim to learn the local content popularity from
user requests. Predictive caching policies can be classified into
two groups, namely predictive caching with unknown content
popularity [4] and predictive caching with time-varying con-
tent popularity [5]. In [4], the authors focus on a single SBS
and model the predictive caching problem as a multi-armed
bandit (MAB) problem, in which the received user requests
are utilized to predict the content popularities, and the optimal
caching strategy is obtained by taking into account the cost of
content replacements. In [6], this approach has been extended
to a cooperative caching framework, where the SBSs fetch
a requested content from neighboring SBSs if it is cached
there. In [5], a cache replacement strategy has been introduced
for time-varying popularity scenario to maximize the local
service rate with a minimum replacement cost, while a more
theoretical approach is taken in [7], which studies the cache
update policy in the case of time-varying content popularities.

This work was in part supported by EC H2020-MSCA-RISE-2015 pro-
gramme under grant number 690893.

Although the predictive caching framework is highly ef-
fective in increasing the efficiency of edge caching, it has
certain limitations. Most of the aforementioned strategies are
designed to predict only the content popularity. However, in
many applications, e.g., news, weather, etc., freshness of the
content is an important factor for user satisfaction. Content
caching and refreshment problem has been previously studied
in [8, 9]. In this paper, we consider a heterogeneous cellular
network with cache-enabled SBSs, and propose a cost-aware
content update policy. We first show that the structure of
the optimal periodic content update policy that minimizes the
network cost for given users’ tolerance to the age of the content
is of threshold type. Then, we formulate the resultant cache-
refreshment problem as a MAB problem, where we learn
users’ tolerance to the age of the content. Accordingly, we
design an online cache refreshment policy to minimize the
overall network cost. To the best of our knowledge, this is the
first work that utilizes a reinforcement learning framework to
analyze user behavior based on content age.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular network with a macro base station
(MBS) and a SBS serving the users in the cell. We assume that
both the MBS and the SBS are equipped with cache memories,
storing a library of N distinct dynamic contents, denoted by
S1, . . . ,SN . Each dynamic content has a different popularity,
i.e., the probability that a user requests content Sn is pn.

Dynamic contents, such as news videos, traffic and weather
updates may change frequently over time. We assume that the
MBS, thanks to its relatively high-bandwidth connection to
the content server in the core network, always has the most
up-to-date contents, whereas the stored contents at the SBS
are less frequently refreshed to reduce the load on its limited-
bandwidth backhaul connection. We consider a discrete time
system model with equal-length time slots. At the beginning
of each time slot the SBS decides on which contents to be
updated. The decision vector at time t is denoted by d(t) =
(d1, . . . ,dN), where we set dn(t) = 1 if content Sn is updated
at the end of time slot t, and dn(t) = 0 otherwise. We denote
by hn(t) the age of content Sn in the SBS cache at time slot t.
We assume a maximum age Tmax at which a content becomes
obsolete. In other words, the age of a content increases until
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Figure 1: User requests are first off-loaded to the SBS;
however, users who are unsatisfied with the freshness of the
content served by the SBS are re-directed to the MBS.

it becomes obsolete. Accordingly, the age of content Sn, n =
1, . . . ,N, evolves over time as follows:

hn(t +1) =max{(1�dn(t))(hn(t)+1),Tmax}. (1)

We denote the length-N vector of ages associated with all the
dynamic contents in the library by h(t).

A. User behavior

Let l (t) denote the number of users that request a content
at time slot t. Whenever a user requests a content, the request
is first off-loaded to the SBS. Users have different tolerance
levels to the age of the contents they receive. Hence, we
consider that, with probability P(n)

redirect(h), a user is not satisfied
with the age h of content Sn; and thus, it places another request
for Sn, which is served directly by the MBS with a fresh
content. Let ln(t) be the number of users that request content
n, n = 1, . . . ,N, in time slot t, i.e., ÂN

n=1 ln(t) = l (t), which is
governed by the popularity profile pn. The users that request
content n are split into two disjoint sets, where the first set con-
sists of lrn(t) users redirected to the MBS, while the second
set consists of lan(t) users satisfied with the content served
by the SBS. Note that lrn(t) and lan(t) are governed by the
random process P(n)

redirect(hn(t)). Let �r(t)= (lr1(t), . . . ,lrN(t))
be the vector associated with the number of redirected users
for each content. Expected values of parameters ln and lrn
are given by:

E[ln|l ] = l pn, and E[lrn|l ,hn] = l pnP(n)
r (hn). (2)

B. Decision model and the problem formulation

Let C(�r(t),d(t)) be the cost associated with serving the
users redirected to the MBS at time t, and the backhaul cost

associated with updating the contents, if there is any. In this
work, we assume that this cost is linear in lrn

1. Hence,

C(�r(t),d(t)) =
N

Â
n=1

Cn(lrn(t),dn(t)). (3)

Similarly, we define the back-haul cost function CBH(d(t))
which is also a linear function.

CBH(d(t)) =
N

Â
n=1

C(n)
BH(dn(t)), (4)

where C(n)
BH(dn(t)) = dn(t)En, with En being the average back-

haul cost of updating content n. If the SBS decides to update
content n (or multiple contents), the age of the content is
updated at the end of the time slot. Hence,

Cn(lrn(t),dn(t)) = bn +anlrn(t)+dn(t)En. (5)

Note that updating a content has an immediate cost which is
larger than not-updating. However, the incurred extra cost in
updating the content enables more users to be served by the
SBS. We aim at minimizing the average total cost as follows:

min
d(t)2{0,1}N

lim
T!•

1
T

T

Â
t=1
E
⇥
C(�r(t),d(t))

⇤
. (6)

III. MDP FORMULATION

Define the state of the system to be h. We denote by
V (h) the differential value function at state h. The differential
Bellman equations can be written as:

V (h)+µ⇤ = min
d

Vd(h), (7)

where µ⇤ is the optimal average cost and Vd(h) is the
differential action-value function defined by:

Vd(h), C̄(h,d)+P(h́|h,d)V (h́), (8)

where P(h́|h,d) is the transition probability from state h into
h́ when action d is taken which is governed by (1), and

C̄(h,d) = Â
⇤

P(�r =⇤)C(�r,d). (9)

The MDP associated with the average cost minimization
problem can be solved by the well known value iteration
algorithm. However, the cardinality of the state (i.e., (Tmax)N)
and action spaces (i.e., 2N) grow exponentially with the
number of contents. Hence, the curse of dimensionality is the
bottleneck for an efficient solution. To bypass this bottleneck,
we note that the cost function in (3) is linear and the transition
probabilities of a content does not affect the others. Hence, we
can separate the value function in (7) into N independent value
functions each representing a distinct content. For each content
n, we have

V (n)(hn)+µ⇤n = min
dn

V (n)
d (hn) (10)

1For example, in OFDMA, a user re-directed to the MBS is assigned a
subcarrier, and the power allocated to that subcarrier adds linearly to the
energy cost.
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V (n)
d (hn) = C̄n(hn,dn)+dnV (n)(0)+(1�dn)V (n)(hn +1).

(11)

We have developed a framework that has enabled distributed
policies with respect to individual contents. We will show that
for each content, there exists a threshold policy on the age of
the content for which it is optimal to update the content. The
following lemma establishes the key property used to prove
the structure of the optimal policy.

Lemma 1. The differential value function V (n)(hn) for all
n = 1, . . . ,N is non-decreasing with respect to the age of the
content, hn.

Proof. We use the value iteration algorithm to prove the
lemma. We start by an arbitrary V (n)

0 (h) differential value
function and obtain the k-step differential value function
V (n)

k (h) as follows:

V (n)
k+1(h) = min

d
(�µ⇤n +C̄n(hn,dn)

+dnV (n)
k (0)+(1�dn)V

(n)
k (h+1)) (12)

Note that limk!• V (n)
k (h) =V (n)(h). The proof is by induction.

For k = 1, V (n)
1 (h) = mindn(�µ⇤n + C̄n(hn,dn) + dnV (n)

0 (0) +
(1� dn)V

(n)
0 (hn + 1)), which is the minimum of two non-

decreasing functions, and thus, itself is a non-decreasing
function in hn. Assume that the lemma holds for k. Then,
according to (12), V (n)

k+1(hn) is also a non-decreasing function
with respect to hn. By letting k! •, we conclude the proof
by showing that V (n)(hn) is also non-decreasing in hn.

Theorem 1. For each content the optimal policy minimizing
the average cost is a threshold policy.

Proof. The monotonicity of the differential value functions
prove the optimality of the threshold policy [10, Chapter 7].
Intuitively, due to the non-decreasing property of the V (n)(hn),
at some age, it would be optimal to update the content. Since
the differential value function is non-decreasing, a larger, or
smaller age would not be able to yield a smaller average cost.

IV. LEARNING CONTENT POPULARITY AND AGE
TOLERANCE

In the previous section, we showed that the problem is
separable and thus, the optimization can be performed for
each content separately. Second, we proved that the policy
minimizing the cost is a threshold policy. Hence, the SBS
by monitoring the age of the contents individually, needs to
optimize according to a single threshold for each content.
Under the threshold policy, the age of a content increases
linearly until it reaches the threshold wherein the content will
be updated and the age will refresh to a value of zero. Thus
the minimum cost associated with content n is the solution of:

µ⇤n = min
Hn

1
Hn +1

✓ Hn

Â
h=0

C̄n(h,0)+En

◆
, (13)

where

C̄n(h,0) = bn +anl pnP(n)
redirect(h). (14)

Considering the linearity of the cost functions, the average
cost optimization becomes:

min
Hn

(
bn +

En +an pn ÂHn
h=0 P(n)

redirect(h)
Hn +1

)
. (15)

The equivalent optimization problem depends on the redirec-
tion probabilities P(n)

redirect(h), that are unknown. Hence, in the
following we resort to reinforcement learning methods to infer
the redirection probabilities.

We consider a sequential learning framework in which the
SBS at each iteration of the learning algorithm faces choosing
a threshold 0  Hn  Tmax. After choosing the threshold, the
SBS will observe a random cost associated with its decision;

Ĉn(Hn) =
En +ÂHn

t=1 Cn(lrn(t),0)
Hn +1

(16)

The learning algorithm should provide the SBS a method to
adjust its strategy by observing the outcomes of its decisions.
This can be formulated as MAB problem, where each action
(i.e., thresholds) has an expected return value, corresponding
to the value of that action. We denote the true value of
action Hn by qn(Hn) =

1
Hn+1

✓
ÂH

hn=0 C̄n(h,0) + En

◆
. If the

SBS knows the q(·) values, it can simply choose the action
with the minimum expected cost. A well-studied algorithm for
learning those values is the e-greedy algorithm [11], which
starts by an arbitrary estimate Qn(·) of the value of the
actions, and interacts with the environment to update its initial
estimates, eventually converging to the true estimates. Two
critical aspects of the e-greedy algorithm are the exploita-
tion and exploration stages. The agent utilizing the estimates
greedily chooses an action, and thus, it exploits what it knows
already. Meanwhile, if it chooses an action completely random
regardless of the estimates we say that it explores. Exploitation
is necessary to act upon the experience while exploration helps
to improve the estimate values and it facilitates convergence
to the true action values. The e-greedy algorithm is presented
in Algorithm 1.

Algorithm 1 e-greedy
1: for i = 1,2, . . . do

2: Hn 
(

argmaxHn Qn(Hn) with probability 1� e,
random action with probability e.

3: Apply Hn and observe Ĉn(Hn)

4: Qn(Hn) (1�z )Qn(Hn)+zĈn(Hn)

V. NUMERICAL RESULTS

In this section, we aim at evaluating the performance of
the e-greedy algorithm in finding the optimal thresholds that
minimize the total cost of the system. Due to the separability,
we consider only one content and we note that the learning
processes for all the contents are the same. The popularity
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Figure 2: Average regret of the e-greedy algorithm for e =
0,0.05,0.1 in a non-stationary environment.

of the contents are modeled by a Zipf distribution with an
exponent of 1.1. We assume that on average a given user
becomes dissatisfied with a content of age h with probability
of e�0.4h. Users arrive at the system according to a Poisson
distribution with rate 100 users per time slot. The cost of
re-directed users to MBS is Cn(lrn(t)) = 10 · lrn(t) and the
backhaul cost is assumed to be 500 initially and then at
time t = 300 the backhaul cost decreases to a value of
400 to simulate a time-varying scenario. We illustrate the
performance of the e-greedy algorithm for e = 0, 0.05, 0.1 by
adopting average regret as the metric. The regret of a learning
algorithm is defined to be the difference between the cost
achieved by the learner and the optimal cost. Here, we obtain
the optimal cost by assuming that Predirect(h) is known, and by
numerically solving (13). Note that the estimates of the action
values, Q(H), is initialized to be 0 for all H = 0, . . . ,Tmax. Note
also that, the greedy algorithm’s (i.e., e = 0) regret converges
to zero initially (t < 300) even if it always exploits. This
is not too surprising considering that the action-values are
initialized opportunistically (i.e., the initial costs are believed
to be zero by the agent). At the beginning, i.e., t = 0, the
greedy algorithm believes that every action returns a value
of zero. However, by trying each action it gets disappointed
in that action and tries the rest. In other words the estimates
are biased. Opportunistic initialization is a simple method to
incentivize exploration. However, it can only happen once and
at the beginning of time. This method quickly fails in non-
stationary environments.

We can see that the greedy algorithm cannot adapt to the
non-stationary (t > 300) environment and it gets stuck in a
sub-optimal threshold. Meanwhile, for 0.05 and 0.1-greedy
algorithm, it is able to adapt to the environment thanks to
their exploration strategy. A large value of e results in more
exploration, and thus, we can see that 0.1-greedy algorithm has
a faster decay in terms of the average regret compared to the
0.05-greedy algorithm. However, note that e-greedy algorithm
is expected to be at least e away from the optimal cost. Thus,

there is a trade-off between the rate of convergence and the
value of convergence.

VI. CONCLUSION

We have considered a cost minimization problem in a dy-
namic content caching setting, and seeked a balance between
the number of unsatisfied users redirected to the MBS, and the
cost of accessing the backhaul link by the SBS to refresh its
dynamic contents. We have formulated the cost minimization
problem as an MDP, and proved that a threshold policy in the
age of the contents is optimal. Subsequently, to identify the
optimal thresholds, we resorted to learning algorithms since
users’ preferences are not known and vary over contents. To
that extend, we represented the problem in MAB framework
and through numerical results, we showed that it is possible to
make the expected regret of the learning algorithm arbitrarily
close to zero. As a future work, we extend the model by
considering non-linear cost functions and the heterogeneous
cellular network architecture with energy harvesting SBSs.
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