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1 Introduction

People have limited cognitive abilities and are prone to various behavioral biases;

this is documented by ample evidence in the literature of marketing, psychology, and

behavioral economics. Thus, it is not surprising that the behavior of individuals may

not be consistent with the standard axioms of rationality.1,2 What shall a planner do if

he/she wants to implement a goal when the relevant information is distributed among

“predictably irrational” individuals?

The present paper provides an analysis of the theory of implementation under incom-

plete information when individuals’ choices do not necessarily comply with the standard

axioms of rationality. That is, our paper is the incomplete information counterpart of

de Clippel (2014), which provides an analysis for the case of complete information. Our

results provide an important leap in behavioral implementation as information asymme-

tries are inescapable in many economic settings.

In particular, we analyze the problem of designing a mechanism under incomplete

information when individuals are allowed to display any type of behavioral biases, such as

falling for an attraction effect, displaying a status-quo bias or revealing cyclic preferences

(as is the case when groups act as an individual), among many others. In doing so, we

focus on full implementation and employ ex-post equilibrium (hereafter, abbreviated to

EPE) as our main concept of equilibrium for the following reasons.

Full implementation of a predetermined social choice rule requires that the set of

equilibrium outcomes of the associated mechanism fully coincide with the given social

choice rule. On the other hand, partial implementation only requires that the prede-

1This is why the recent trend involving the use of behavioral insights in policy-making has been
growing stronger, implying an increased interest in adapting economic models to allow behavioral biases.
In particular, Thaler and Sunstein’s New York Times best-seller book Nudge has been influential guiding
real life policies. For instance, the Behavioral Insights Team, a.k.a. the Nudge Unit, has been established
in 2010 in the United Kingdom. In the United States, President Obama released an executive order
in 2015, emphasizing the importance of behavioral insights to deliver better policy outcomes at lower
costs and at the same time encouraging executive departments and agencies to incorporate these insights
into policy-making. Many countries and international institutions followed, there are now more than
a dozen countries besides EU, OECD, UN agencies, and the World Bank that integrated behavioral
insights into their operations (Afif, 2017). There is such a trend in the academic literature as well, e.g.,
Spiegler (2011) provides a synthesis of efforts to adapt models in industrial organization to bounded
rationality.

2We say that individuals’ choices satisfy the standard axioms of rationality whenever their choices
obey the weak axiom of revealed preferences, which is formalized in Footnote 12. Besides Nudge (Thaler
& Sunstein, 2008), two other New York Times best-seller books documenting various behavioral biases
leading to failure of the standard axioms of rationality are Predictably Irrational (Ariely, 2009) and
Thinking, Fast and Slow (Kahneman, 2011).
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termined social choice rule be sustained by an equilibrium of the mechanism; hence, it

allows for other equilibria associated with outcomes that are not aligned with the social

goal at hand. Even though it is weaker than full implementation, partial implemen-

tation is rather widely used in the rational domain under incomplete information. In

fact, the appeal of partial implementation depends heavily on the revelation principle,

which implies, in the rational domain and under incomplete information, the follow-

ing: if there exists a particular mechanism that partially implements a predetermined

goal, then there exists a direct revelation mechanism that truthfully implements it.3

The undesired equilibria are then often disregarded on the basis of the equilibrium with

truthful revelation being the salient equilibrium. This is pointed out in Postlewaite and

Schmeidler (1986) as follows:

[The partial (direct revelation) implementation] does assure that the re-

sulting outcome will be an equilibrium of some game; however, there may

be others as well. This problem is sometimes dismissed with an argument

that as long as truthful revelation is an equilibrium, it will somehow be the

salient equilibrium even if there are other equilibria as well.

In our environment, we show that the revelation principle fails and the above argu-

ment loses its relevance, implying that partial implementation loses its practical appeal:

One cannot restrict attention to direct revelation mechanisms without a loss of gener-

ality. This is why focusing on full implementation rather than partial implementation

becomes crucial in our setup.

The concept of EPE, the notion of equilibrium of the current paper, is well-suited to

our environment: it is belief-free, does not require any belief updating or any expectation

considerations, and is robust to informational assumptions regarding the environment.

On the other hand, the concept of Bayesian Nash equilibrium is not suited to our

setup. This is because the notion of Bayesian Nash equilibrium employs an aggregation

of individuals’ welfare in different states of the world using the associated probabilities.

At the very least, this necessitates the need for complete and transitive preferences over

the set of certain outcomes in order to obtain a utility representation. However, this

is neither coherent nor consistent in a setting in which individuals’ choices over certain

outcomes (alternatively, degenerate acts) do not necessarily obey the standard axioms

of rationality. Indeed, in our environment, individuals’ choices over certain outcomes

may not even be representable by well-defined preference relations.4

3A direct revelation mechanism is a game-form in which each individual’s actions consist of a report
about his/her own privately observed type.

4Please see Footnote 20 for further details.
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We provide necessary as well as sufficient conditions for ex-post implementation when

individuals’ choices need not satisfy the standard axioms of rationality.

Our first result on necessity, Theorem 1, shows that if a mechanism ex-post imple-

ments a social choice set (SCS, hereafter), then the opportunity sets sustained by this

mechanism form a collection of sets with two desirable properties.5,6 The first of these

implies an ex-post choice monotonicity condition (shown in Proposition 1), while the

second implies a pseudo ex-post incentive compatibility (established in Proposition 2).7

An important implication of our result on necessity is that the revelation principle

holds whenever individuals’ choices satisfy the independence of irrelevant alternatives.

We provide sufficiency results for the case of three or more individuals and the case

of two individuals, separately. With three or more individuals, we present two meth-

ods to strengthen our necessary conditions to deliver sufficiency: The first, presented

in Theorem 2, involves choice incompatibility, a mild condition that requires some level

of disagreement among the individuals at every state, and it performs a similar task

as that done by the economic environment assumption in the rational domain.8 Theo-

rem 3 presents the second method in which we employ a combination of our necessary

conditions and a choice counterpart of the no-veto-power property.

The mechanism we employ in the case of two individuals is novel as it features

differences when compared with its counterparts in the rational domain. Furthermore,

we provide two routes to strengthen the associated necessary conditions into sufficient

conditions. These, presented in Theorems 5 and 6, require either some sort of choice

5The opportunity set of an individual consists of the alternatives that he/she can obtain by changing
his/her messages, while those of the opponents remain the same.

6We refer to such family of sets as the collection of sets consistent with the given SCS under incom-
plete information. Each member of this collection of sets is associated with an individual and a social
choice function (SCF) in the SCS and a type profile of the other individuals with the property that
each such set is independent of the message (in the mechanism) chosen by the individual whom this
set is associated with. Moreover the following hold: (1) Given any individual and any one of his/her
particular types and any SCF in the SCS and any type profile for the other individuals, it must be that
the individual’s choices under the resulting type profile contain the alternative that corresponds to the
outcome of the SCF for the same type profile; and (2) whenever there is a deception that leads to an
outcome that is not compatible with the SCS, there exist an informant state (i.e., a type profile) and
an informant individual such that this individual does not choose at the informant state the alternative
generated by this deception from his/her set given that he/she is as in the informant state while others’
types are identified via their deception from the informant state.

7It is useful to point out that the pseudo ex-post incentive compatibility is a result of item (1) of
Footnote 6, while item (2) of the same footnote implies our ex-post choice monotonicity condition.

8The choice incompatibility required for sufficiency is satisfied when there exist a set of alternatives
and a collection of choice sets described as in the necessity direction with the following two properties:
(1) this set of alternatives contains the union of the collection of choice sets; and (2) for each alternative
in this set, there exist at least two individuals who do not choose that alternative from this set.
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incompatibility or some sort of choice unanimity.

Another contribution of our paper concerns the simplicity of the mechanisms needed

for implementation, a topic of recent interest [see e.g., Li (2017) and Borgers and Li

(2018)]. Naturally, simplicity becomes a bigger concern when dealing with individuals

having cognitive limitations. In Theorem 7, we identify lower bounds on the number of

messages that is required from a mechanism that ex-post implements a given SCS. Our

result, therefore, provides a better understanding of the scope of a well-known criticism

of the mechanism design literature, which involves the argument that, often, mechanisms

employed are complicated and thus do not offer much practical appeal.

In Section 2, we discuss some related literature. Section 3 presents a motivating

example illustrating the difficulties associated with the desired construction. In Section

4, we provide the notation and the definitions. Section 5 contains the necessity and

sufficiency results concerning the case with three or more individuals, while Section 6

contains the same for the case with two individuals. In Section 7, we discuss simple

mechanisms and present lower bounds on the number of messages needed, and Section

8 concludes. Meanwhile, the proofs are presented in the Appendix.

2 Related Literature

Besides de Clippel (2014), our paper is mostly related to Bergemann and Morris

(2008), which analyzes ex-post implementation in the rational domain.9 In a sense, our

paper can be thought of as an envelope of de Clippel (2014) and Bergemann and Morris

(2008). We extend de Clippel (2014)’s analysis to the case of incomplete information

and Bergemann and Morris (2008)’s analysis to the case where individual choices’ need

not satisfy the standard axioms of rationality. A difference of note is that we provide

a novel analysis for the case of two individuals in our setup, whereas Bergemann and

Morris (2008) provides their analysis only for the case of three or more individuals. On

the other hand, de Clippel (2014) discusses a modification of his sufficiency results in

order to obtain sufficiency for the case of two individuals, and it involves the use of an

argument similar to the one from Moore and Repullo (1990).

Another related paper is Jackson (1991), which analyzes Bayesian implementation for

the case of three or more individuals in the rational domain. Jackson (1991) generalizes

the analysis of Maskin (1999) (on Nash implementation under complete information) to

9Some of the other influential work on ex-post implementation and robust mechanism design in the
rational domain include Bergemann and Morris (2005), Jehiel, Meyer-ter Vehn, Moldovanu, and Zame
(2006), Jehiel, Meyer-ter Vehn, and Moldovanu (2008), and Bergemann and Morris (2009).
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the case of incomplete information. In this sense, what Jackson (1991) is to the seminal

work in Maskin (1999), our paper is to de Clippel (2014).10

Hurwicz (1986), Korpela (2012), and Ray (2018) have also investigated the problem

of implementation under complete information when individual choices do not have to

satisfy the standard axioms of rationality. Hurwicz (1986) considers choices that can

be represented by a well-defined preference relation which does not have to be acyclic.

On the other hand, Korpela (2012) shows that when individual choices fail rationality

axioms, independence of irrelevant alternatives, also known as Sen’s α, is key to obtaining

the necessary and sufficient condition synonymous to that of Moore and Repullo (1990)

(the so-called Condition µ) under complete information.

There have been other attempts at investigating the problem of implementation un-

der complete information that allow for “non-rational” behavior of individuals. Eliaz

(2002) provides an analysis of implementation when some of the individuals might be

“faulty” and hence fail to act optimally. An earlier paper of ours, Barlo and Dalkiran

(2009), provides an analysis of implementation for the case of epsilon-Nash equilibrium,

i.e., when individuals are satisfied by getting close to (but not necessarily achieving)

their best responses. Glazer and Rubinstein (2012) provides a mechanism design ap-

proach where the content and the framing of the mechanism affect individuals’ ability

to manipulate their information.11

In the rational domain, Ohashi (2012) provides sufficiency results for ex-post im-

plementation with two individuals in an environment that is economic and has a bad

outcome. Our sufficiency results for the case of two individuals differ with those of

Ohashi (2012) in three dimensions: (i) we allow for non-economic environments, (ii) we

do not require the existence of a bad outcome, and (iii) we allow individuals’ choices to

violate the standard axioms of rationality.

3 Motivating Example

The following example aims to display the intricacies concerning the design of a

mechanism which implements a generalized welfare notion [strict generalized Pareto

optimality due to Bernheim and Rangel (2009)] in EPE with two individuals whose

10Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1987) also provide analyses of full
implementation under incomplete information allowing for different informational assumptions. Indeed,
there is a large literature on implementation, and it would not be possible to mention many interesting
work here. Instead, we refer the interested reader to surveys such as Maskin (1985), Moore (1992),
Jackson (2001), Maskin and Sjöström (2002), Palfrey (2002), and Serrano (2004).

11Some of the other related work include Cabrales and Serrano (2011) and Saran (2011).
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choices do not satisfy the standard axioms of rationality (alternatively, the weak axiom

of revealed preferences abbreviated to WARP henceforth).12 In fact, the individuals’

choices involve three types of well-known behavioral biases: (1) attraction effect, (2)

status-quo bias, and (3) Condorcet cycles. Below, we discuss these biases before going

into the details of the example.

Attraction effect:

One of the commonly observed behavioral aspects implying a violation of the stan-

dard rationality assumptions is the attraction effect :13 Decoy alternatives, alternatives

that are known to be dominated by other alternatives, can cause preference reversals

when they are introduced into the choice set. When an alternative (the decoy) is infe-

rior to a particular alternative in terms of all relevant attributes yet at the same time is

superior in some attributes and inferior in others than another alternative, an individ-

ual facing these alternatives altogether might be inclined to choose the non-dominated

alternative. A relatively well-known real-life example makes it clearer: Consider the fol-

lowing options that were presented for subscription to The Economist Magazine at some

point: Option (A) Internet-only subscription for $59, Option (B) Print-only subscription

for $125, Option (C) Print-and-Internet subscription for $125. One would immediately

realize that Option B is dominated in all relevant attributes by Option C. At first, it

might even seem puzzling to see an alternative like Option B (the decoy), which one

would never expect to be chosen. Yet, it is common sense that anyone who is offered all

three options would be inclined towards Option C.

Herne (1997) demonstrates how the presence of a decoy alternative causes the at-

traction effect in a policy-making context. One of her findings is in part the motivation

behind our example: In September 1993, Finland took the decision to build a new nu-

clear power plant to a parliamentary vote. The majority of the opponents of nuclear

power favored the alternative of decentralized solar power plants. Even though it was

not on the table at all, the supporters of the nuclear power plant used coal power plants

as a point of comparison to nuclear power plants. Nuclear power dominated coal as it

12Sen (1971) shows that a choice correspondence satisfies the WARP (and be represented by a com-
plete and transitive preference relation) if and only if it satisfies independence of irrelevant alternatives
(referred to as IIA or Sen’s α) and an expansion consistency axiom (known as Sen’s β). We refer to
these as the standard axioms of rationality. Formally, we say that the individual choice correspondence
C : X → X satisfies Sen’s α if whenever x ∈ S ⊂ T for some S, T ∈ X , x ∈ C(T ) implies x ∈ C(S).
Meanwhile, we say that the individual choice correspondence C : X → X satisfies Sen’s β if x, y ∈ S ⊂ T
for some S, T ∈ X , and x, y ∈ C(S) implies x ∈ C(T ) if and only if y ∈ C(T ).

13A seminal paper for the attraction effect is Huber, Payne, and Puto (1982). See also Ok, Ortoleva,
and Riella (2015).
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was more environment friendly and more reliable, at the time, in terms of stability and

price. On the other hand, solar power was better for the environment when compared to

both nuclear power and coal. However, the high costs of solar panels and intermittency

made it less appealing than nuclear power and coal in terms of reliability. That is, coal

was dominated by nuclear power in environment and reliability dimensions, but solar

power dominated coal only in the dimension of environment. In this case, the supporters

of nuclear power deliberately used coal as a decoy alternative in the sense that it was not

intended to be implemented but was presented in the consideration set in order to in-

crease the attractiveness of nuclear power. That is, coal was asymmetrically dominated

by nuclear power in the presence of solar power.

Therefore, it was expected by the supporters of the nuclear power plant that nuclear

would be chosen from the grand set {coal, nuclear, solar}, whereas solar would be chosen

from the set {nuclear, solar}. Such a choice violates the WARP, in particular the IIA.14

Status-quo bias:

Another well-documented behavioral aspect that we observe in real life is the status-

quo bias.15 It is well-documented that when individuals face new alternatives to replace

a status-quo they have a tendency to keep the status-quo unless it is fully dominated

by one of the alternatives in all relevant attributes. A hypothetical example of many

developing countries is as follows: Suppose the status-quo source of energy in a country is

coal and the country is considering whether to switch to another type of energy. Suppose

further that the options on the table are nuclear and solar. Since nuclear dominates coal

(the status-quo) in the dimensions of environment and reliability, one might expect the

country to choose nuclear from the grand set {coal, nuclear, solar}, whereas coal might

be chosen from the set {coal, solar} since solar does not dominate coal (the status-quo)

in all relevant dimensions. Such a choice, by itself, does not violate the WARP. Yet

there might not be a clear winner between nuclear and solar when staying with the

status-quo is not an option, i.e., the choice from the set {nuclear, solar} might be both

nuclear and solar. Then, the WARP (in particular, Sen’s β) would not hold.16

Groups as participants (Condorcet cycles):

It is well-known that when more than three options are voted on in a pairwise fashion

by individuals, each of whom has “rational” preference orders, the preferences aggregated

14Please see Footnote 12 in order to see the associated formal definitions.
15A seminal paper for status-quo bias is Samuelson and Zeckhauser (1988), see also Kahneman,

Knetsch, and Thaler (1991), Masatlioglu and Ok (2005), and Dean, Kıbrıs, and Masatlioglu (2017).
16The definition of this axiom is presented in Footnote 12.
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may end up having Condorcet cycles.17 In particular, one might observe nuclear chosen

from the set {coal, nuclear}; coal chosen from the set {coal, solar}; and solar chosen

from the set {nuclear, solar}. Such a choice violates the WARP, as whatever is chosen

from the grand set {coal, nuclear, solar} would lead to a violation of both the IIA and

Sen’s β.

Now we are ready to present the details of our example. Suppose that two individuals,

whom we refer to as Alice and Bob, are to decide what type of energy to employ or jointly

invest in, be it coal energy, nuclear energy, or solar energy.18,19

Suppose that the revealed preferences of Alice and Bob are not necessarily rational.

That is, Alice and Bob’s individual choices from different subsets of the grand set X =

{coal, nuclear, solar} may violate the WARP.

Let the set of all relevant states of the world regarding these individual choices be

given by Θ. We assume that there is incomplete information regarding the true state

of the world θ ∈ Θ. In particular, the true state of the world is distributed knowledge

between Alice and Bob. That is, the set of all relevant states of the world, Θ, has a

product structure, i.e., Θ = ΘA ×ΘB. When the true state of the world is θ = (θA, θB),

Alice is informed only of the θA component of the true state of the world, whereas Bob is

informed only of the θB component of the true state of the world. Suppose that Alice and

Bob have two possible types each, denoted by Θi = {ρi, γi} for i ∈ {A,B}. So the set

of all possible states of the world is given by Θ = {(ρA, ρB), (ρA, γB), (γA, ρB), (γA, γB)}.
The individual choices of Alice and Bob at state θ ∈ Θ are described by the choice

correspondences, Cθ
A : X → X , and Cθ

B : X → X , where X denotes the set of non-empty

subsets of X and Cθ
i (S) ⊆ S for each S ∈ X and i ∈ {A,B}. Table 1 pinpoints the

specific choices to be used in our example with the convention that c stands for coal, n

for nuclear power, and s for solar energy.

Let us elaborate on the individual choices of Alice and Bob at each state:

At state (ρA, ρB), Alice’s choices can be rationalized by the preference relation n �A
c ∼A s, and Bob’s choices can be rationalized by the preference relation s �B n �B c.

The identical choices of Alice and Bob at (ρA, γB) can be explained by the attraction

17Hurwicz (1986) investigates the problem of implementation when individuals represent groups of
rational agents. On the other hand, cyclic or intransitive preferences may also arise when individuals
are regular human beings (Tversky, 1969).

18Alice and Bob can also be interpreted as region A and region B within the same legislation, such
as two states in the U.S. or two countries in the E.U.

19In his Nobel Prize Lecture “Mechanism Design: How to Implement Social Goals” (December 8,
2007), Eric Maskin provides an example in which an energy authority “is charged with choosing the
type of energy to be used by Alice and Bob” in the rational domain under complete information.
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S C
(ρA,ρB)
A C

(ρA,ρB)
B C

(ρA,γB)
A C

(ρA,γB)
B C

(γA,ρB)
A C

(γA,ρB)
B C

(γA,γB)
A C

(γA,γB)
B

{c, n, s} {n} {s} {n} {n} {n} {c} {c, s} {n, s}
{c, n} {n} {n} {n} {n} {n} {c} {n} {c}
{c, s} {c, s} {s} {s} {s} {c} {c} {c} {s}
{n, s} {n} {s} {s} {s} {n, s} {n, s} {s} {s}

Table 1: Individual choices of Alice and Bob.

effect, as discussed above. That is, coal can be thought of as the decoy alternative where

the relevant attributes are environment and reliability. As in the Finland power plant

example, Alice and Bob choose nuclear from the grand set {coal, nuclear, solar} and so-

lar from the set {nuclear, solar}. They also choose nuclear from the set {coal, nuclear}.
This means Alice and Bob individually choose nuclear whenever it is presented with coal,

the decoy option. Yet, whenever coal is not available they choose solar over nuclear.

These also show that at state (ρA, γB), their individual choices cannot be rationalized by

a complete and transitive preference relation, as they violate the IIA.20 We would like to

emphasize that we allow individual choices to be interdependent : between (ρA, ρB) and

(ρA, γB), Alice’s private information (type) does not change; yet, the choice behavior of

Alice is not identical at these states.21

On the other hand, at state (γA, ρB), Bob’s choices can be rationalized by the pref-

erence relation c �B s ∼B n, whereas Alice’s choices feature a status-quo bias where

the status-quo is coal. Similar to the hypothetical status-quo bias example discussed

above, Alice chooses nuclear from the grand set {coal, nuclear, solar} and coal from

the set {coal, solar}. Yet, when faced with the set {nuclear, solar} Alice is indifferent

and chooses both, possibly because nuclear and solar do not dominate each other in all

20In fact, there is no well-defined preference relation representing these choices. We wish to define
what we mean by a choice correspondence being represented by a well-defined preference relation. To
that regard, for any given individual choice correspondence C : X → X , let�C be the induced preference
relation and be defined by: x �C y if and only if there exists S ∈ X with x, y ∈ S and x ∈ C(S). On the
other hand, given a preference relation � on X, the induced normal choice correspondence C� : X → X
is defined by C�(S) = {x ∈ S : x � y for all y ∈ S} for S ∈ X . We say that the individual choice

correspondence C : X → X is represented by a well-defined preference relation �C if C equals C�
C

.
Further, Theorem 9 of Sen (1971) in the current setting says that a choice correspondence can be
represented with a well-defined preference relation (which is not necessarily transitive) if and only if
the choice correspondence satisfies Sen’s α and γ. While Sen’s α is defined in Footnote 12, a choice
correspondence C : X → X satisfies Sen’s γ if x ∈ C(S)∩C(T ) for some S, T ∈ X implies x ∈ C(S∪T ).
It can easily be verified that at state (ρA, γB) the individuals’ choices satisfy neither Sen’s α nor γ.

21We note that even though Alice does not know Bob’s private information (type), she knows the
set of all possible types for Bob. Therefore, Alice might consider what she were to choose contingent
upon each possible type of Bob. This is especially relevant when the information in the hands of Bob
is relevant for Alice’s choices as in the case of a common value auction.
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relevant dimensions. This also proves that Alice’s choices cannot be rationalized by a

complete and transitive preference relation as they violate Sen’s β.22

Finally, at state (γA, γB), neither of the individual choices can be rationalized by a

complete and transitive preference relation because the individual choices of Alice and

Bob violate the IIA and Sen’s β.23 Furthermore, Alice’s choices lead to a Condorcet cycle

as discussed above. In particular, Alice chooses nuclear from the set {coal, nuclear},
coal from the set {coal, solar}, and solar from the set {nuclear, solar}. Such a pattern

may arise when Alice makes her choices by consulting a group of individuals, such as

pairwise voting with her parents, or a parliamentary vote.

Next comes the social choice notion, the generalized welfare criterion developed by

Bernheim and Rangel (2009).24 This welfare criterion provides a choice theoretic foun-

dation for behavioral welfare economics as it is directly based on individual choices.

Following Bernheim and Rangel (2009), we say that an alternative x is strictly unam-

biguously chosen over another alternative z, if z is never chosen whenever x is available.

On the other hand, an alternative x is weakly unambiguously chosen over another al-

ternative z, if whenever they are both available, z is never chosen unless x is chosen as

well. These deliver an intuitive way of extending the notion of Pareto efficiency beyond

the rational domain:

An alternative x is a strict generalized Pareto optimum if there does not exist any

other alternative y, such that y is weakly unambiguously chosen over x for every indi-

vidual, and y is strictly unambiguously chosen over x for some individual(s). We refer

to a strict generalized Pareto optimum alternative as a BR-optimal outcome.

The social planner who faces the individual choices of Alice and Bob does not know

the true state of the world but cares about their welfare according to the welfare notion

of Bernheim and Rangel (2009). Thus, the planner aims to provide Alice and Bob a

state contingent allocation which is BR-optimal at every state.25

When individual choices can be rationalized with a complete and transitive pref-

22Even though Sen’s β fails, Alice’s individual choice correspondence can be represented by a well-
defined (but intransitive) preference relation as both Sen’s α and γ hold. See Footnotes 12 and 20 for
the definitions.

23At this state, neither of the individual’s choices can be represented by a well-defined preference
relation as the IIA is violated for both of the individuals. For more, please see Footnotes 12 and 20.

24Another paper that provides a welfare analysis that is in line with non-rational choices is Rubinstein
and Salant (2011).

25BR-optimal alternatives are defined under certainty. There is not an easy way to generalize this
notion of efficiency to the case of uncertainty as the individual choices of Alice and Bob violate the
standard rationality axioms and hence the expected utility hypothesis. So, the goal of the social planner
can be thought of as obtaining an ex-post strict generalized Pareto optimal state contingent allocation.
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erence relation, the BR-optimal outcomes are the same as the standard strict Pareto

optimal outcomes. Therefore, at (ρA, ρB), the BR-optimal outcomes are nuclear and

solar. On the other hand, at (ρA, γB), since coal is never chosen (except when it is

offered as a singleton), it is easy to see that the BR-optimal outcomes are nuclear and

solar.26 At (γA, ρB), coal is strictly unambiguously chosen over solar by both Alice and

Bob.27 Hence, solar is not BR-optimal at (γA, ρB). Even though coal is also strictly un-

ambiguously chosen over nuclear by Bob at (γA, ρB), coal is not weakly unambiguously

chosen over nuclear by Alice, since Alice chooses nuclear from the set {coal, nuclear} at

(γA, ρB). Thus, the BR-optimal outcomes at (γA, ρB) are coal and nuclear. Finally, at

(γA, γB), solar is strictly unambiguously chosen over nuclear by Alice and it is weakly

unambiguously chosen over nuclear by Bob.28 So, nuclear is not BR-optimal at (γA, γB).

Both coal and solar are BR-optimal at (γA, γB), since from the set {coal, solar} Alice

chooses coal and Bob solar at (γA, γB).

The BR-optimal alternatives contingent on the states are summarized in Table 2.

As in Palfrey and Srivastava (1987), a social choice set (SCS) refers to a selection of

State (ρA, ρB) (ρA, γB) (γA, ρB) (γA, γB)
BR-optimal alternatives {n, s} {n, s} {c, n} {c, s}

Table 2: BR-optimal alternatives.

state contingent allocations. In fact, the BR-optimal alternatives form a collection of

state contingent allocations and we refer to it as the BR-optimal SCS. In what fol-

lows, the planner aims to implement a particular mutually exhaustive selection from the

BR-optimal SCS, which is given by F = {f, f ′}, described in Table 3: F is mutually

State (ρA, ρB) (ρA, γB) (γA, ρB) (γA, γB)
f n n n s
f ′ s s c c

Table 3: The social choice set F .

exhaustive as {f(θ)} ∪ {f ′(θ)} equals the set of BR-optimal outcomes at every θ ∈ Θ.29

26We also note that at (ρA, γB), even though nuclear is strictly unambiguously chosen over solar by
Alice at (ρA, γB), nuclear is not weakly unambiguously chosen over solar by Bob since Bob chooses
solar from the set {nuclear, solar} at (ρA, γB).

27Whenever coal is present, solar is never chosen by both Alice and Bob at (γA, ρB).
28At (γA, γB), Alice never chooses nuclear when solar is available; Bob chooses nuclear only if he

chooses solar as well.
29We note that there is no particular reason other than simplicity for choosing the mutually exhaustive

selection {f, f ′} as the SCS F . In general, the design of a mechanism would depend on the particular
SCS under consideration.
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3.1 The mechanism

A mechanism makes Alice and Bob send individual messages to the social planner

and describes the outcome to be implemented as a function of these messages. We

consider the following mechanism: messages available to Alice and Bob are given by

MA = {U,M,D} and MB = {L,M,R}, respectively; the outcome function that maps

messages to alternatives is represented by g : M → X and is described in Table 4. This

Bob

Alice

L M R
U n c n
M c s c
D n s s

Table 4: The mechanism µ for Alice and Bob.

mechanism is denoted by µ = (M, g), with M = MA ×MB and g : M → X.

In what follows, we show that this mechanism implements the aforementioned goal

of the social planner in EPE. But first, we turn to the Nash equilibrium (NE) outcomes

of µ = (M, g).

de Clippel (2014) points out an intuitive and straightforward extension of the notion

of NE involving individuals’ choices that cannot be rationalized by a complete and tran-

sitive preference relation. The intuition is as follows: for each individual, the equilibrium

outcome should be among the chosen within the set of alternatives he/she can gener-

ate by unilateral deviations. This intuition is aligned with the opportunity criterion of

Sugden (2004) in that the set of alternatives an individual is free to choose from, i.e.,

the opportunity set of an individual, is determined in a mechanism by the messages of

the other individuals.

We follow de Clippel (2014) and denote the opportunity sets of Alice and Bob in our

mechanism by Oµ
A(mB) := {g(mA,mB)|mA ∈ MA} and Oµ

B(mA) := {g(mA,mB)|mB ∈
MB}, respectively. We are now ready to give a formal definition of an NE of our

mechanism at a given state of the world.

We say that m∗ = (m∗A,m
∗
B) is a Nash equilibrium of the mechanism µ = (M, g) at

θ if g(m∗) ∈ Cθ
A(Oµ

A(m∗B)) and g(m∗) ∈ Cθ
B(Oµ

B(m∗A)). Whenever m∗ is an NE of µ at θ,

we refer to g(m∗) as a Nash equilibrium outcome of µ at θ.

Let us exemplify by identifying the NE of our mechanism at state (γA, γB). Please

refer to Table 1 for the individuals’ choices at (γA, γB).

If Alice sends the message U , Bob can unilaterally generate the set {c, n} under the
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mechanism µ, i.e., Oµ
B(U) = {c, n}. Bob chooses c from the set {c, n} at (γA, γB), which

implies that Bob finds it optimal to send the message M . The best response action M

chosen by Bob against Alice’s message U is depicted in Table 5 by a superscript B in

cell (U,M). Similarly, when Alice sends the message M , Bob can unilaterally generate

the set {c, s} under the mechanism µ, i.e., Oµ
B(M) = {c, s}, and Bob chooses s from the

set {c, s} at (γA, γB). Thus, Bob finds it optimal to send the message M against Alice’s

action M . Finally, if Alice sends the message D, Bob can unilaterally generate the set

{n, s} under the mechanism µ, i.e., Oµ
B(D) = {n, s}. Bob chooses s from the set {c, n}

at (γA, γB); hence, both M and R are the best responses for Bob.

On the other hand, when Bob sends the message L, Alice can unilaterally generate

the set {c, n} under the mechanism µ, i.e., Oµ
A(L) = {c, n}. Alice chooses n from the set

{c, n} at (γA, γB). Therefore, her best responses to Bob sending message L consist of

U and D, which are indicated in Table 5 by a superscript A in cells (U,L) and (D,L).

If Bob sends the message M , Alice can unilaterally generate the set {c, s} under the

mechanism µ, i.e., Oµ
A(M) = {c, s}. Alice chooses c from the set {c, s} at (γA, γB).

Finally, when Bob sends the message R, Alice can unilaterally generate the set {c, n, s}
under the mechanism µ, i.e., Oµ

A(R) = {c, n, s}. Alice chooses both c and s from the set

{c, n, s} at (γA, γB).

The resulting best responses are summarized in Table 5, which shows that the NE of

the mechanism µ at state (γA, γB) are the message profiles (U,M) and (D,R). Hence,

the corresponding NE outcomes at (γA, γB) are c and s.

L M R

U An A c B n
M c sB Ac

D An sB A s B

Table 5: The best responses and Nash equilibria of the mechanism at (γA, γB).

Repeating this exercise, one can easily show that the NE and NE outcomes of our

mechanism at other states of the world are as presented in Table 6 (where NE message

profiles are depicted using circles in the corresponding cells).

Going over Tables 2 and 6 reveals that the set of BR-optimal outcomes and the set

of NE outcomes of our mechanism coincide at every state of the world. Therefore, if the

true state of the world were common knowledge between Alice and Bob, our mechanism

would be (fully) implementing the BR-optimal outcomes in NE at every state.
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State: (ρA, ρB) State: (ρA, γB) State: (γA, ρB) State: (γA, γB)

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

NE outcomes: {n, s} NE outcomes: {n, s} NE outcomes: {c, n} NE outcomes: {c, s}

Table 6: Nash equilibria and Nash equilibrium outcomes of the mechanism.

3.2 Ex-post equilibrium outcomes of the mechanism

With incomplete information, the state of the world is distributed knowledge between

Alice and Bob as they can only observe their own types before sending their messages.

Thus, their plans of actions (strategies) can depend only on their own types and not the

whole state of the world.

Therefore, under incomplete information, the strategies of Alice and Bob in the

mechanism µ should be measurable with respect to their private information: a strategy

for Alice and Bob in µ is a function σi : Θi →Mi for i ∈ {A,B}.
There is not a clear way of defining a Bayesian Nash Equilibrium of the mechanism

µ in our example. The main reason is not because we have not specified any beliefs

over Θ, but because the individual choices of Alice and Bob violate standard rationality

axioms concerning certain outcomes: at states (ρA, γB) and (γA, γB), Alice and Bob do

not have a well-defined preference relation on X, while at state (γA, ρB), Alice’s choices

can be represented with a well-defined but intransitive preference relation on X.30 Thus,

Alice and Bob cannot be modeled as (expected) utility maximizers.

Similarly, as there is no clear way to evaluate an individual’s well-being with mixed

strategies in our setup, we restrict our attention to pure strategies in the mechanism µ.

Fortunately, a pure strategy EPE of our mechanism is belief-free and does not require

any expectation considerations. We provide the definition of an EPE of our mechanism:

We say that the strategy profile σ∗ = (σ∗A, σ
∗
B) is an ex-post equilibrium of the

mechanism µ = (M, g) if for all θ ∈ Θ, g(σ∗(θ)) ∈ Cθ
A(Oµ

A(σ∗B(θB))) and g(σ∗(θ)) ∈
Cθ
B(Oµ

B(σ∗A(θA))). In words, an EPE requires that the strategies of Alice and Bob induce

an NE of the mechanism µ at every state of the world and that they are measurable

with respect to their private information.

The following shows that there are three EPE of our mechanism, two of which are

30Please see Footnotes 12, 20, 22, and 23.
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equivalent in terms of the outcomes they generate:

Claim 1. The strategy profiles σ′∗ = (σ′∗A , σ
′∗
B), σ′′∗ = (σ′′∗A , σ

′′∗
B ), and σ′′′∗ = (σ′′∗A , σ

′′′∗
B )

described below are the only EPE of the mechanism µ = (M, g), where the outcomes

generated under σ′′∗ and σ′′′∗ are equivalent (i.e., g(σ′′∗(θ)) = g(σ′′′∗(θ)) for each θ ∈ Θ).

σ′∗ : σ′∗A(ρA) = U σ′∗A(γA) = D and σ′∗B(ρB) = L σ′∗B(γB) = R,

σ′′∗ : σ′′∗A (ρA) = D σ′′∗A (γA) = U and σ′′∗B (ρB) = M σ′′∗B (γB) = M,

σ′′′∗ : σ′′′∗A (ρA) = M σ′′′∗A (γA) = U and σ′′′∗B (ρB) = M σ′′′∗B (γB) = M.

Below we focus on two EPE, σ′∗ and σ′′∗, as σ′′∗ and σ′′′∗ correspond to the same

outcomes under µ. In Table 7, we summarize the EPE outcomes of µ under σ′∗ and

σ′′∗ (where message profiles corresponding to σ′∗ are depicted using circles while those

associated with σ′′∗ are indicated using squares in the corresponding cells).

State: (ρA, ρB) State: (ρA, γB) State: (γA, ρB) State: (γA, γB)

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

EPE outcomes: {n, s} EPE outcomes: {n, s} EPE outcomes: {c, n} EPE outcomes: {c, s}

Table 7: Ex-post equilibria and ex-post equilibrium outcomes of the mechanism.

Tables 2 and 7 show that the set of BR-optimal outcomes and the set of EPE out-

comes of µ coincide. Referring to Table 3 which describes the SCS F , we also observe

that g(σ′∗(θ)) = f(θ) for each θ ∈ Θ, and g(σ′′∗(θ)) = f ′(θ) for each θ ∈ Θ (while

g(σ′′′∗(θ)) = f ′(θ) for all θ ∈ Θ holds trivially). That is, (1) each social choice function

(SCF) in the SCS induces the same outcomes under a particular EPE of the mechanism

µ; and (2) for each EPE of the mechanism µ, there exists a particular SCF in the SCS

that induces the same outcomes state by state. Thus, µ (fully) ex-post implements

the SCS F . Indeed, in Section 7.1 we show that the mechanism µ is the “simplest

mechanism” ex-post implementing the SCS F .

3.3 The revelation principle fails

Now we show that the revelation principle (for partial implementation) fails in our

example. Recall that the revelation principle implies if there exists a mechanism that

partially (ex-post) implements a particular SCF, then there exists a direct revelation

mechanism that truthfully partially (ex-post) implements the same SCF.
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Consider the SCF f given in Table 3, and notice that f(θ) is a BR-optimal alternative

at every θ ∈ Θ. Because σ′∗ is an EPE of µ with g(σ′∗(θ)) = f(θ) for all θ ∈ Θ, the

mechanism µ partially ex-post implements the SCF f . However, the corresponding

direct revelation mechanism, gd : Θ → X, given in Table 8, fails to partially ex-post

implement f truthfully as truthful revelation is not an EPE of gd.31 When the state is

Bob

Alice
ρB γB

ρA n n
γA n s

Table 8: The direct revelation mechanism gd.

(ρA, γB), reporting truthfully delivers n (circled in Table 8). But, the opportunity set of

Alice at state (ρA, γB) is given by {n, s} and n /∈ C(ρA,γB)
A ({n, s}) = {s}.32

Therefore, the revelation principle may fail with individuals whose choices do not

satisfy the standard axioms of rationality. Hence, the argument saying that as long

as truthful revelation is an equilibrium it will be the salient one, even when there are

other equilibria, no longer holds. This, in turn, means partial implementation loses its

practical appeal when individuals’ choices do not comply with the standard axioms of

rationality. In Section 5, we show that the key axiom which guarantees the revelation

principle is the IIA.

To sum up, our motivating example displays that it is possible to have full ex-post

implementation under incomplete information when individuals’ choices do not satisfy

standard rationality axioms. This is one of the most reasonable ways for behavioral

implementation under incomplete information since (i) it is belief free and thus demand-

ing Bayesian considerations are not required, and (ii) the revelation principle might fail

and, hence, partial implementation through direct revelation mechanisms loses its prac-

tical appeal. Below, we provide necessary as well as sufficient conditions for behavioral

(ex-post) implementation under incomplete information. To move forward, we turn to

notation and definitions for the general setup.

31A direct revelation mechanism is one where the message sets equal the type spaces of individuals.
This is why it is enough to specify only an outcome function gd : Θ→ X to describe a direct revelation
mechanism.

32Indeed, misreporting her type as γA (and obtaining s) is Alice’s best response at state (ρA, γB)
when Bob reports truthfully γB .
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4 Notation and Definitions

Consider a set of individuals, denoted by N = {1, . . . , n}, who have to select an

alternative from a non-empty set of alternatives X. Let Θ denote the set of all relevant

states of the world regarding the choices of the individuals from (the subsets of) the set of

alternatives X. We assume that there is incomplete information among the individuals

regarding the true state of the world, and that the true state of the world is distributed

knowledge. That is, Θ has a product structure, i.e., Θ = ×i∈NΘi where θi ∈ Θi denotes

the private information (type) of individual i ∈ N at state θ = (θ1, . . . , θn) ∈ Θ. We also

assume that the choice behavior of individual i at state θ is described by the individual

choice correspondence Cθ
i : X → X , such that the feasibility requirement of Cθ

i (S) ⊆ S

for all S ∈ X holds where X denotes the set of all non-empty subsets of X. Therefore, the

environment we are interested in can be summarized by the tuple 〈N,X,Θ, (Cθ
i )i∈N,θ∈Θ〉.

We assume that the environment, 〈N,X,Θ, (Cθ
i )i∈N,θ∈Θ〉, is common knowledge among

the individuals, and that it is known to the designer. We also note that our setup allows

(but does not depend on) individual choices to be interdependent. That is, individuals

are allowed to choose differently when their own type is fixed but others’ are different.33

An SCF is a function f : Θ → X that specifies a socially optimal alternative—as

evaluated by the planner—for each possible state of the world. In other words, f can be

viewed as a state contingent allocation. As there may be many socially optimal state

contingent allocations that a designer wishes to consider simultaneously, we focus on

social choice sets (SCS) rather than SCFs. An SCS, denoted by F , is simply a set of

SCFs, i.e., F ⊂ {f |f : Θ→ X}.34 F denotes the set of non-empty SCSs.

We denote a mechanism by µ = (M, g) where Mi denotes the non-empty set of

messages available to individual i with M = ×i∈NMi, and g : M → X describes the

outcome function that specifies the alternative to be selected for each message profile.

As in de Clippel (2014), we define the opportunity set of an individual under a

mechanism as the set of alternatives that he/she can generate by unilateral deviations

given the messages of the other individuals: The opportunity set of individual i under

µ = (M, g) for each m−i ∈ M−i is given by Oµ
i (m−i) = {g(mi,m−i) ∈ X : mi ∈ Mi}.

Consequently, an NE of a mechanism at a particular state of the world is defined as

33Please see also Footnote 21.
34We note that it is customary to denote a social choice rule as an SCS rather than a social choice

correspondence under incomplete information. To that regard, we refer to Postlewaite and Schmeidler
(1986), Palfrey and Srivastava (1987), Jackson (1991) and Bergemann and Morris (2008).
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follows:35 A message profile m∗ is a Nash equilibrium of µ = (M, g) at θ if g(m∗) ∈
Cθ
i (Oµ

i (m∗−i)) for all i ∈ N . The intuition is that for each individual, the NE outcome

should be among the chosen alternatives within the set of alternatives the individual

can generate by unilateral deviations.

Next, we turn to the case of incomplete information. We note that the mechanism µ

in our environment induces an incomplete information game-form. Hence, a strategy for

individual i, a contingent plan of actions, has to specify an action for each possible type

of i. We denote a strategy of an individual i by σi : Θi → Mi, under the mechanism

µ = (M, g). As mentioned before, there is no clear way to adopt a Bayesian formulation

and employ mixed strategies in our setup because individuals’ choices may violate the

standard axioms of rationality. So, we restrict attention to pure EPE.

Definition 1. A strategy profile σ∗ : Θ→M is an ex-post equilibrium of µ = (M, g)

if for each θ ∈ Θ, we have g(σ∗(θ)) ∈ Cθ
i (Oµ

i (σ∗−i(θ−i))) for all i ∈ N .

In words, an EPE requires that the outcomes generated by the mechanism be NE at

every state of the world, while individuals’ strategies have to be measurable with respect

to only their own types. This delivers the notion of ex-post implementability:

Definition 2. We say that an SCS F ∈ F is ex-post implementable if there exists

a mechanism µ = (M, g) such that:

(i) For every f ∈ F , there exists an EPE σ∗ of µ = (M, g) that satisfies f = g ◦ σ∗,
i.e., f(θ) = g(σ∗(θ)) for all θ ∈ Θ; and

(ii) For every EPE σ∗ of µ = (M, g), there exists f ∈ F such that g ◦ σ∗ = f , i.e.,

g(σ∗(θ)) = f(θ) for all θ ∈ Θ.

Given an SCS, ex-post implementability demands the existence of a mechanism such

that (i) every SCF in the SCS must be sustained by an EPE strategy profile, and (ii)

every EPE strategy profile of the mechanism must correspond to an SCF in the SCS.

Hence, this is full ex-post implementation. We refer to an SCF f as being partially

ex-post implementable whenever condition (i) in Definition 2 holds.

Any mechanism that ex-post implements an SCS should take into consideration the

private information of the individuals. However, individuals may misreport their private

information. This is why we turn to the concept of deception. We denote a deception by

35Korpela (2012) refers to this concept as behavioral Nash equilibrium while we follow de Clippel
(2014) and designate this notion by NE.
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individual i as αi : Θi → Θi. The interpretation is that αi(θi) is individual i’s reported

type. Therefore, α(θ) := (α1(θ1), α2(θ2), . . . , αn(θn)) is a profile of reported types, which

might be deceptive. We are now ready to move forward with the necessary conditions

for ex-post implementation.

5 Three or More Individuals

In this section, we investigate necessary as well as sufficient conditions for ex-post

implementation when there are three or more individuals.

We employ the following notion of consistency of a collection of sets under incomplete

information in both necessity and sufficiency. As the name evidently suggests, our notion

can be viewed as an incomplete information version of the notion of consistency of de

Clippel (2014). When the meaning is clear, we refer to this notion simply as consistency.

Definition 3. We say that a non-empty collection of sets S := {Si(f, θ−i)|i ∈ N, f ∈
F, θ−i ∈ Θ−i} ⊂ X is consistent with the SCS F ∈ F under incomplete infor-

mation if for every SCF f ∈ F , we have

(i) for all i ∈ N , f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi, and

(ii) for any deception profile α with f ◦ α /∈ F , there exists θ∗ ∈ Θ and i∗ ∈ N such

that f(α(θ∗)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ

∗
−i∗))).

A collection of sets S satisfying consistency with an SCS F under incomplete in-

formation obeys the property that Si(f, θ−i) does not depend on θi for all i ∈ N and

f ∈ F and θ−i ∈ Θ−i and the following hold: (1) Given any i ∈ N and any f ∈ F and

any θ−i ∈ Θ−i, it must be that i’s choices when he/she is of type θ′i at state (θ′i, θ−i)

contains f(θ′i, θ−i) for all θ′i ∈ Θi; and (2) given any f ∈ F , whenever there is a deception

profile α that leads to an outcome not compatible with the SCS, i.e., f ◦ α /∈ F , there

exists an informant state θ∗ and an informant individual i∗ such that i∗ does not choose

at state θ∗ the alternative f(α(θ∗)) (the alternative generated by this deception) from

Si∗(f, α−i∗(θ
∗
−i∗)).

Our first result establishes that consistency with an SCS is a necessary condition for

that SCS to be ex-post implementable, and this result is not restricted to the case of

three or more individuals.

Theorem 1. If an SCS F ∈ F is ex-post implementable, then there exists a non-empty

collection of sets S := {Si(f, θ−i)|i ∈ N, f ∈ F, θ−i ∈ Θ−i} consistent with F under

incomplete information.
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If a mechanism µ ex-post implements an SCS F , then Theorem 1 establishes that

the opportunity sets obtained from the mechanism form a non-empty collection of sets

consistent with F . Moreover, our necessary condition implies analogs of the necessary

conditions in the rational domain à la Bergemann and Morris (2008): an ex-post-choice

monotonicity condition and a quasi-ex-post choice incentive compatibility condition. In

what follows, we prove that both of these conditions are necessary for ex-post imple-

mentation.

Definition 4. An SCS F ∈ F is ex-post choice monotonic if, for every SCF f ∈ F
and deception profile α with f ◦ α /∈ F , there is a state θ∗ ∈ Θ and an individual i∗ ∈ N
and a non-empty set of alternatives S∗ ∈ X such that

(i) f(α(θ∗)) /∈ Cθ∗
i∗ (S∗), and

(ii) f((θ′i∗ , α−i∗(θ
∗
−i∗))) ∈ C

(θ′
i∗ ,α−i∗ (θ∗−i∗ ))

i∗ (S∗) for all θ′i∗ ∈ Θi∗.

Proposition 1. If there exists a non-empty collection of sets consistent with an SCS

F ∈ F under incomplete information, then F is ex-post choice monotonic.

Ex-post choice monotonicity requires that when there is a deception leading to an

outcome not compatible with the state contingent allocations allowed by the SCS, there

exists an informant state and an informant whistle-blower for this state and an infor-

mant reward set for this whistle-blower such that (i) the whistle-blower does not choose

the outcome arising due to going along with the deception from the reward set at the

informant state; and (ii) the whistle-blower does not falsely accuse the other individuals

of deceiving when the outcome is compatible with the SCS at hand.

Definition 5. An SCS F ∈ F is quasi-ex-post choice incentive compatible if, for

every SCF f ∈ F and state θ ∈ Θ and individual i ∈ N , there exists a non-empty subset

of alternatives S ∈ X such that

(i) f(θ) ∈ Cθ
i (S), and

(ii) S ⊇ {f(θ′i, θ−i)|θ′i ∈ Θi}.

Proposition 2. If there exists a non-empty collection of sets consistent with an SCS F ∈
F under incomplete information, then F is quasi-ex-post choice incentive compatible.

The set {f(θ′i, θ−i) : θ′i ∈ Θi} ∈ X specifies the set of alternatives achievable by

individual i under an SCF f given others’ type profile θ−i. Quasi-ex-post choice incentive
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compatibility of an SCS F demands that for every SCF f ∈ F and for every state θ ∈ Θ

and for every individual i ∈ N , there exists a set S from which i chooses f(θ) at θ while

S contains all the alternatives achievable by i under f given θ−i.

Quasi-ex-post choice incentive compatibility describes a necessary condition for par-

tial ex-post implementation of each f ∈ F . However, as we have shown in section 3.3,

the revelation principle does not have to hold in our setup. In fact, when the contain-

ment relation in (ii) of quasi-ex-post choice incentive compatibility holds strictly, the

revelation principle may fail. Consequently, Lemma 1 below identifies a straightforward

necessary and sufficient condition for the revelation principle when individuals’ choices

do not satisfy the standard axioms of rationality.

Lemma 1. An SCF f is partially truthfully (ex-post) implementable in a direct mecha-

nism if and only if for every θ ∈ Θ, i ∈ N , we have f(θ) ∈ Cθ
i ({f(θ′i, θ−i)|θ′i ∈ Θi}).

In general, the condition provided in Lemma 1 neither implies nor is implied by

the quasi-ex-post choice incentive compatibility condition. Yet, it is easy to see that if

the IIA holds, then quasi-ex-post choice incentive compatibility implies the revelation

principle.36

Proposition 3. If individual choices satisfy the IIA, then quasi-ex-post choice incentive

compatibility implies the revelation principle.

In summary, these establish that if a mechanism µ partially ex-post implements an

SCF f and individuals’ choices satisfy the IIA axiom, then there exists a direct revelation

mechanism gd which partially implements the same SCF f in truthful EPE.

Put differently, the revelation principle holds whenever individuals’ choices satisfy

the IIA.37

The failure of the revelation principle when individuals’ choices do not satisfy the

standard axioms of rationality leads us to search for indirect mechanisms, even for partial

implementation. In this context, our results identifying (indirect) mechanisms for full

implementation are also useful as full implementation implies partial implementation.

Next, we identify sufficient conditions for ex-post implementation when there are

at least three individuals. The sufficient conditions for the case of two individuals is

analyzed separately in Section 6.

36Please see Footnote 12 for the definition of the IIA (Sen’s α).
37Saran (2011) studies conditions for revelation principle to hold when individuals have menu-

dependent preferences over interim Anscombe-Aumann acts.
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Ex-post implementation of an SCS F is not feasible when there is no collection of sets

consistent with F . Therefore, the planner should start the design by identifying such

collections and then explore additional requirements to be imposed on these collections

for sufficiency. Below, we present such new conditions:38

Definition 6. We say that a non-empty set of alternatives S ∈ X satisfies the choice

incompatible pair property at state θ if for each alternative x ∈ S there exist indi-

viduals i, j ∈ N such that x /∈ Cθ
i (S) and x /∈ Cθ

j (S).

This condition implies some level of disagreement among individuals regarding the

socially optimal alternatives at a given state of the world. In words, a set satisfies the

choice incompatible pair property at a state, if for each alternative in this set there exists

a pair of individuals who do not choose this alternative from this set at that state. Then,

any alternative in this set can be chosen by at most n− 2 individuals at that particular

state.39

The choice incompatible pair property plays an important role in Theorem 2: This

property coupled with consistency are sufficient for ex-post implementation.

Theorem 2. Let n ≥ 3. If F ∈ F is an SCS for which there exist

(i) a collection of sets S := {Si(f, θ−i) : i ∈ N, f ∈ F, θ−i ∈ Θ−i} consistent with F

under incomplete information, and

(ii) a set of alternatives X̄ ⊆ X with
⋃
S∈S S ⊆ X̄ which satisfies the choice incom-

patible pair property at every state θ ∈ Θ,

then F is ex-post implementable.

In words, Theorem 2 establishes the following when there are three or more individ-

uals who are not in perfect agreement concerning the socially optimal alternatives: If (i)

there exists a collection of sets S consistent with a non-empty SCS F under incomplete

information, and (ii) there exists a set of alternatives X̄ which contains every alternative

that appears in S and satisfies the choice incompatible pair property at every state of

the world, then F is ex-post implementable.40

38We note that there is plenty of room for other sufficient conditions since we do not restrict individual
choices by requiring universal choice axioms. However, it seems neither easy nor practical to close the
gap between the necessary and sufficient conditions.

39The choice incompatible pair property is similar to the economic environment assumption in the
rational domain. Yet, it is weaker in our setup since it is now defined on a particular set.

40Non-emptiness of S and X̄ follow from F ∈ F .
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Theorem 2 identifies conditions that make sure that all EPE of the mechanism de-

scribed in Section A.1 falls under Rule 1 at every state of the world. Below, we provide

another set of sufficient conditions by employing the same mechanism, but this time

allowing for EPE to arise under Rule 2 and Rule 3 as well. To do so, we turn to the

counterpart of the no-veto power property in our environment.

Definition 7. We say that an SCF f satisfies the choice no-veto-power property

on a non-empty set of alternatives S ∈ X at state θ ∈ Θ if x ∈ Cθ
i (S) for all i ∈ N \{j}

for some j ∈ N implies f(θ) = x.

The choice-no-veto power property on a set, at a particular state, requires that if an

alternative is chosen from this set by at least n − 1 individuals at the particular state,

then this alternative must be f -optimal at this particular state.

Our second sufficiency result for the case of three or more individuals employs a

combination of consistency and the choice no-veto-power property. Below, we present

this sufficiency condition followed by the result.41

Definition 8. An SCS F ∈ F satisfies the consistency-no-veto property whenever

there exist

(i) a collection of sets S := {Si(f, θ−i) : i ∈ N, f ∈ F, θ−i ∈ Θ−i} such that for all

f ∈ F and for all i ∈ N , f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi,

(ii) and a set of alternatives X̄ ⊆ X with
⋃
S∈S S ⊆ X̄

such that for any collection of product sets of states {Θ̄f}f ∈F with Θ̄ =
⋃
f∈F Θ̄f ⊂ Θ,

there exists f ∗ ∈ F such that

(iii) f ∗ satisfies choice no-veto-power property on X̄ at every θ ∈ Θ \ Θ̄, and

(iv) if for any f ∈ F and any deception profile α, f(α(θ)) 6= f ∗(θ) for some θ ∈ Θ̄f ,

then there exists i∗ ∈ N and θ∗ ∈ Θ̄f such that f(α(θ∗)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ

∗
−i∗))).

Theorem 3. Let n ≥ 3. If an SCS F ∈ F satisfies the consistency-no-veto property,

then F is ex-post implementable.

Given a non-empty SCS F , the consistency-no-veto property, in words, requires the

existence of a collection of sets S with the property that Si(f, θ−i) does not depend on

θi for all i ∈ N and f ∈ F and θ−i ∈ Θ−i and a set of alternatives X̄ which contains

every alternative that appears in S such that the following hold:

41The set Θ̄ ⊆ Θ is a product set whenever Θ̄ = ×i∈N Θ̄i where Θ̄i ⊆ Θi with the convention that
Θ̄ = ∅ whenever Θ̄i = ∅ for some i ∈ N .
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— Given any i ∈ N and any f ∈ F and any θ−i ∈ Θ−i, it must be that i’s choices

when he/she is of type θ′i at state (θ′i, θ−i) contains f(θ′i, θ−i) for all θ′i ∈ Θi; and

— for any collection of product sets of states {Θ̄f}f ∈F with Θ̄ =
⋃
f∈F Θ̄f ⊂ Θ, there

is an SCF f ∗ in F such that

– if θ ∈ Θ \ Θ̄, then f ∗ obeys the choice no-veto-power property on X̄ at θ, and

– if a deception profile α and an SCF f ∈ F lead to an outcome different than

f ∗(θ) for some θ ∈ Θ̄f , then there exists a whistle-blower i∗ ∈ N and an

informant state θ∗ such that i∗ does not choose at θ∗ the alternative f(α(θ∗))

(the alternative generated by this deception at θ∗) from Si∗(f, α−i∗(θ
∗
−i∗)).

Evidently, the consistency-no-veto property is analogous to the monotonicity-no-

veto condition of Jackson (1991) and the ex post monotonicity no veto property of

Bergemann and Morris (2008). Moreover, our findings are parallel with these papers in

the following sense: Jackson (1991) considers a rational domain with expected utility

maximizing individuals and establishes that monotonicity-no-veto and incentive com-

patibility and a condition called closure are sufficient for the Bayesian implementation

of SCSs. Meanwhile, Bergemann and Morris (2008) providing sufficiency conditions for

ex-post implementation in the rational domain employs ex-post monotonicity no veto

condition and ex-post incentive compatibility, both of which are “ex-post analogs of the

Bayesian implementation” conditions. In our setting, the closure condition is trivially

satisfied as in Bergemann and Morris (2008); by repeating the same arguments presented

in the proof of Proposition 2, one can easily show that quasi-ex-post choice incentive

compatibility is implied by (i) of the consistency-no-veto property.

A due remark concerns the cases when attention is restricted to the behavioral ex-

post implementation of an SCF. Then, the hypothesis of Theorem 3 simplifies to deliver

the following analog of Theorem 3 of Bergemann and Morris (2008):

Corollary 1. Let n ≥ 3. An SCF f : Θ→ X is ex-post implementable whenever there

exists a collection of sets S := {Si(f, θ−i) : i ∈ N, θ−i ∈ Θ−i} such that and for all

individuals i ∈ N , f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi, and there exists a set

of alternatives X̄ ⊆ X with
⋃
S∈S S ⊆ X̄ such that for any product set of states Θ̄ ⊂ Θ,

(i) f satisfies choice no-veto-power property on X̄ at every θ ∈ Θ \ Θ̄, and

(ii) for any deception profile α with f(α(θ)) 6= f(θ) for some θ ∈ Θ̄, there exists i∗ ∈ N
and θ∗ ∈ Θ̄ such that f(α(θ∗)) /∈ Cθ∗

i∗ (Si∗(f, α−i∗(θ
∗
−i∗))).
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6 Two Individuals

We now turn to the case of two individuals. First, we slightly improve the necessary

conditions for the case of two individuals, and then provide sufficient conditions.

In what follows, Theorem 4 establishes that the notion of two-individual consistency

under incomplete information is necessary. This concept is defined below and improves

the notion of consistency—specified in Definition 3—slightly for the case of two individ-

uals. We refer to it as two-individual consistency when the meaning is clear.

Definition 9. We say that collections of sets S1 := {S1(f, θ2)|f ∈ F, θ2 ∈ Θ2} ⊂ X and

S2 := {S2(f, θ1)|f ∈ F, θ1 ∈ Θ1} ⊂ X are two-individual consistent with the SCS

F ∈ F under incomplete information if

(i) for all f ∈ F , f(θ′1, θ2) ∈ C(θ′1,θ2)
1 (S1(f, θ2)) for each θ′1 ∈ Θ1,

(ii) for all f ∈ F , f(θ1, θ
′
2) ∈ C(θ1,θ′2)

2 (S2(f, θ1)) for each θ′2 ∈ Θ2,

(iii) for all f, f ′ ∈ F , S1(f, θ2) ∩ S2(f ′, θ1) 6= ∅ for each θ1 ∈ Θ1 and θ2 ∈ Θ2,

(iv) for all f ∈ F , if f ◦ α /∈ F , then there exists θ∗ = (θ∗1, θ
∗
2) ∈ Θ such that

either f(α(θ∗)) /∈ Cθ∗
1 (S1(f, α2(θ∗2))) or f(α(θ∗)) /∈ Cθ∗

2 (S2(f, α1(θ∗1))).

We wish to emphasize that (i) and (ii) of two-individual consistency is implied by (i)

of consistency while (ii) of consistency implies (iv) of two-individual consistency. That

is why the novel condition of two-individual consistency is (iii): For any given pairs of

SCFs in the SCS, the two collections of sets must be such that each set associated with

individual 1 has a common alternative with each set associated with individual 2.42

Theorem 4. Let n = 2. If an SCS F ∈ F is ex-post implementable, then there exist

collections of sets S1 := {S1(f, θ2)|f ∈ F, θ2 ∈ Θ2} and S2 := {S2(f, θ1)|f ∈ F, θ1 ∈ Θ1}
that are two-individual consistent with F under incomplete information.

Now, we display the practical implications of Theorem 4 pertaining to our motivating

example. We remind the reader that the individual choices of Alice and Bob and the

SCS under consideration are given in Table 1 and Table 3, respectively.

42Item (iii) of two-individual consistency, is similar in spirit to part (i)− (a) of Condition β of Dutta
and Sen (1991), a paper presenting a necessary and sufficient condition for Nash implementation with
two individuals under complete information in the rational domain.
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By employing two-individual consistency, below we investigate the collections of

sets SA = {SA(f, ρB), SA(f, γB), SA(f ′, ρB), SA(f ′, γB)} for Alice and SB = {SB(f, ρA),

SB(f, γA), SB(f ′, ρA), SB(f ′, γA)} for Bob.

In particular, using (i) and (ii) of two-individual consistency, we narrow down the

candidates for each of these sets as follows. Let us start with Alice:

SA(f, ρB): f(ρA, ρB) = n and f(γA, ρB) = n imply n ∈ C
(ρA,ρB)
A (SA(f, ρB)) and n ∈

C
(γA,ρB)
A (SA(f, ρB)). There are four such sets: {c, n, s}, {c, n}, {n, s}, {n}.

SA(f, γB): f(ρA, γB) = n and f(γA, γB) = s imply n ∈ C
(ρA,γB)
A (SA(f, γB)) and s ∈

C
(γA,γB)
A (SA(f, ρB)). There is only one such set: {c, n, s}.

SA(f ′, ρB): f ′(ρA, ρB) = s and f ′(γA, ρB) = c imply s ∈ C
(ρA,ρB)
A (SA(f ′, ρB)) and c ∈

C
(γA,ρB)
A (SA(f ′, ρB)). There is only one such set as well: {c, s}.

SA(f ′, γB): f ′(ρA, γB) = s and f ′(γA, γB) = c imply s ∈ C
(ρA,γB)
A (SA(f ′, ρB)) and c ∈

C
(γA,γB)
A (SA(f ′, ρB)). There is again only one such set: {c, s}.

Next comes Bob:

SB(f, ρA): f(ρA, ρB) = n and f(ρA, γB) = n imply n ∈ C
(ρA,ρB)
B (SB(f, ρA)) and n ∈

C
(ρA,γB)
B (SB(f, ρA)). There are two such sets: {c, n} and {n}.

SB(f, γA): f(γA, ρB) = n and f(γA, γB) = s imply n ∈ C
(γA,ρB)
B (SB(f, γA)) and s ∈

C
(γA,γB)
B (SB(f, γA)). There is again only one such set: {n, s}.

SB(f ′, ρA): f ′(ρA, ρB) = s and f ′(ρA, γB) = s imply s ∈ C
(ρA,ρB)
B (SB(f ′, ρA)) and s ∈

C
(ρA,γB)
B (SB(f ′, ρA)). There are three such sets {c, s} and {n, s} and {s} .

SB(f ′, γA): f ′(γA, ρB) = c and f ′(γA, γB) = c imply c ∈ C
(γA,ρB)
B (SB(f ′, γA)) and c ∈

C
(γA,γB)
B (SB(f ′, γA)). There are two such sets {c, n} and {c}.

Therefore, we conclude that SA(f, γB) = {c, n, s}, SA(f ′, ρB) = {c, s}, SA(f ′, γB) =

{c, s}, and SB(f, γA) = {n, s}.
Furthermore, condition (iii) of two-individual consistency implies that SA(f, θB) ∩

SB(f ′, θA) 6= ∅ and SA(f ′, θB)∩SB(f, θA) 6= ∅ for each θA ∈ {ρA, γA} and θB ∈ {ρB, γB}.
Thus, SA(f ′, ρB) ∩ SB(f, ρA) 6= ∅, and this implies SB(f, ρA) = {c, n}.

These uniquely identify 5 out of 8 of the two-individual consistent collections of sets of

Alice and Bob. In particular, we must have SA = {SA(f, ρB), {c, n, s}, {c, s}} and SB =

{{c, n}, {n, s}, SB(f ′, ρA), SB(f ′, γA)}. It is possible to narrow down SA and SB further

by employing condition (iv) of two-individual consistency. Yet, this would be tedious

since there are many deceptions to consider.43 However, the mechanism given in Table

43There are 15 possible deceptions where either Alice or Bob misrepresents their types. All 15 of
them lead to f ◦ α 6= f and 12 of them lead to f ′ ◦ α 6= f ′. It is useful to note that deceptions are
non-cooperative and hence measurable only with respect to private information. Thus, we cannot have
α(ρA, ρB) = (γA, ρB) and α(ρA, γB) = (ρA, ρB) where Alice lies about her type when her type is ρA
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4 implementing F in our motivating example implies the following collections of sets are

two-individual consistent with F : SA given by SA(f, ρB) = {c, n}, SA(f, γB) = {c, n, s},
SA(f ′, ρB) = {c, s}, SA(f ′, γB) = {c, s} and SB by SB(f, ρA) = {c, n}, SB(f, γA) =

{n, s}, SB(f ′, ρA) = {c, s}, SB(f ′, γA) = {c, n}. In Section 7.1, we show that this is not

the unique pair of two-individual consistent collections of sets with F .44

We proceed with sufficiency conditions for the case of two individuals. Below, we

introduce the additional properties needed to transform the necessary conditions into

sufficient ones concerning ex-post implementation with two individuals.

The first of these concerns choice incompatibility for the case of two individuals.

Definition 10. Given an SCS F ∈ F , we say that F involves choice incompatibility

among a non-empty set of alternatives S ∈ X and non-empty collections of sets S1 :=

{S1(f, θ2)|f ∈ F, θ2 ∈ Θ2} ⊂ X and S2 := {S2(f, θ1)|f ∈ F, θ1 ∈ Θ1} ⊂ X at state θ if

(i) x ∈ Cθ
i (S) implies x /∈ Cθ

j (S), i 6= j; and

(ii) for any T ∈ Si, x ∈ Cθ
i (T ) implies x /∈ Cθ

j (S), i = 1, 2 and i 6= j; and

(iii) for any deception profile α and any f, f ′ ∈ F with f 6= f ′, x ∈ Cθ
i (Si(f, αj(θj)))

implies x /∈ Cθ
j (Sj(f

′, αi(θi))), i = 1, 2 and i 6= j.

Choice incompatibility conditions require that there is sufficiently strong disagree-

ment between the two individuals at a given state. Indeed, the intuition behind choice

incompatibility is as follows: A non-empty SCS F involves choice incompatibility among

a non-empty set of alternatives S and non-empty collections of sets S1 and S2 at state θ

means that the individual choices at θ are not aligned when (i) both individuals make

choices separately from S; and (ii) one individual, i, is making a choice from a set in

Si and the other individual, j, is making a choice from S where i, j = 1, 2 with i 6= j;

and (iii) individual i makes a choice from a set in Si that is associated with a particular

SCF f and the other individual, j, makes a choice from a set in Sj which is associated

with a different SCF f ′ 6= f while f, f ′ ∈ F and i, j = 1, 2 with i 6= j.45

and Bob’s type is ρB but not when her type is ρA and Bob’s type is γB .
44We identify another mechanism ex-post implementing F on page 34 that implies another pair of

two-individual consistent collections of sets with the only difference being SB(f ′, ρA) = {c}.
45Choice incompatibility has some relations with part (iv) of Condition µ2 of Moore and Repullo

(1990) and part (i)−(b) of Condition β of Dutta and Sen (1991); both among the necessary and sufficient
conditions for Nash implementation in the rational domain under complete information. These require
the existence of a common alternative x in the choice sets of the two individuals where the choice set
of the first individual is associated with a preference profile and alternative pair (R, a), while that of
the second with (R′, b) such that x being maximal with respect to some preference profile R′′ for both
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At this stage, we wish to emphasize that we handle cases in which individuals’ choices

are aligned later in the section, when we start discussing choice unanimity.

Theorem 5, below, shows that two-individual consistency coupled with choice incom-

patibility are sufficient for ex-post implementation.

Theorem 5. Let n = 2. If F ∈ F is an SCS for which there exist

(i) collections of sets S1 := {S1(f, θ2)|f ∈ F, θ2 ∈ Θ2} and S2 := {S2(f, θ1)|f ∈ F, θ1 ∈
Θ1} which are two-individual consistent with F under incomplete information, and

(ii) a set of alternatives X̄ ⊆ X with
⋃
S∈ S1∪ S2 S ⊆ X̄ such that F involves choice

incompatibility among X̄ and S1 and S2 at every θ ∈ Θ,

then F is ex-post implementable.

In words, when there are two individuals, Theorem 5 implies that if (i) there exist

individual specific collections of sets S1 and S2 that are two-individual consistent with

F under incomplete information, and (ii) there exists a set of alternatives X̄ which

contains every alternative that appears in S1 and S2 and the afore discussed choice

incompatibility among X̄ and S1 and S2 hold at every state of the world, then F is

ex-post implementable. That is, Theorem 5 demands sufficiently “strong” disagreement

between the two individuals for sufficiency of ex-post implementation.46

A common thread between Theorems 2 and 5 is that their hypotheses enable us

to sustain all EPE of the associated mechanisms under Rule 1 at every state of the

world. As was done in the case of three or more individuals, we provide another set of

sufficient conditions by employing the same mechanism presented in Section A.2, but

allowing EPE to arise under other rules as well. Because no-veto power is “hopelessly

strong” with two individuals (Moore & Repullo, 1990), we turn to the concept of choice

unanimity.

Definition 11. We say that an SCS F ∈ F respects choice unanimity on a non-

empty set of alternatives S ∈ X and non-empty collections of sets S1 := {S1(f, θ2)|f ∈

of the individuals from these choice sets implies x being a member of the social choice correspondence
at R′′. On the other hand, choice incompatibility (akin to the economic environment assumption of
the rational domain with incomplete information) does not allow any alternative to be ranked first
by both individuals even when the two individuals’ choices are represented by complete and transitive
preferences. Thus, choice incompatibility brings about a requirement that is similar in spirit to part
(iv) of Condition µ2 and part (i)− (b) of Condition β.

46Ohashi (2012) presents sufficient conditions for ex-post implementation with two individuals in
the rational domain. Unlike ours, his sufficient conditions require the existence of a bad outcome: an
alternative that is strictly worse than any other in the union of the ranges of the SCFs in the SCS.
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F, θ2 ∈ Θ2} ⊂ X and S2 := {S2(f, θ1)|f ∈ F, θ1 ∈ Θ1} ⊂ X at state θ if there exists

f ∗ ∈ F such that

(i) x ∈ Cθ
1(S) ∩ Cθ

2(S) implies f ∗(θ) = x; and

(ii) for any T ∈ Si, x ∈ Cθ
i (T ) ∩ Cθ

j (S) implies f ∗(θ) = x, for i, j = 1, 2 with i 6= j;

and

(iii) for any deception profile α and f, f ′ ∈ F with f 6= f ′, x ∈ Cθ
i (Si(f, αj(θj))) ∩

Cθ
j (Sj(f

′, αi(θi))) implies f ∗(θ) = x.

The general intuition behind choice unanimity of an SCS F with two individuals is

that if the choices of the individuals (from some particular sets) agree at a given state,

then the SCS must respect this: the chosen alternatives must be achievable with one of

SCFs in the SCS at that state. It is a mild condition as it allows the SCS to accommodate

SCFs that are not restricted to deliver commonly agreed upon alternatives.

Our second sufficiency result for the case of two individuals makes use of the following

combination of consistency and choice unanimity:

Definition 12. Let n = 2. An SCS F ∈ F satisfies the consistency-unanimity

property whenever there exist collections of sets S1 := {S1(f, θ2)|f ∈ F, θ2 ∈ Θ2} ⊂ X
and S2 := {S2(f, θ1)|f ∈ F, θ1 ∈ Θ1} ⊂ X such that

(i) for all f ∈ F , f(θ′1, θ2) ∈ C(θ′1,θ2)
1 (S1(f, θ2)) for each θ′1 ∈ Θ1, and

(ii) for all f ∈ F , f(θ1, θ
′
2) ∈ C(θ1,θ′2)

2 (S2(f, θ1)) for each θ′2 ∈ Θ2, and

(iii) for all f, f ′ ∈ F , S1(f, θ2) ∩ S2(f ′, θ1) 6= ∅ for each θ1 ∈ Θ1 and θ2 ∈ Θ2,

and there is a set of alternatives X̄ ⊆ X with
⋃
S∈S1∪ S2 S ⊆ X̄ such that for any

collection of product sets {Θ̄f}f ∈F with Θ̄ =
⋃
f∈F Θ̄f ⊂ Θ,

(iv) F respects choice unanimity on X̄ and S1 and S2 at every θ ∈ Θ \ Θ̄, and

(v) for all f ∈ F and deception profile α, if f(α(θ)) 6= f ∗(θ) for some θ ∈ Θ̄f where

f ∗ is the SCF that satisfies (i)–(iii) of choice unanimity, then there exists θ∗ ∈ Θ̄f

such that either f(α(θ∗)) /∈ Cθ∗
1 (S1(f, α2(θ∗2))) or f(α(θ∗)) /∈ Cθ∗

2 (S2(f, α1(θ∗1))).

Consistency-unanimity, in words, requires the following:47 Given a non-empty SCS

F , there exist collections of sets Si with the property that Si(f, θj) does not depend on

47Consistency-unanimity entails choice unanimity conditions that are similar in spirit to (iv) of Con-
dition µ2 and (i)− (b) of Condition β. For more on them, please see Footnote 45.
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θi for all i, j = 1, 2 with i 6= j and f ∈ F and θj ∈ Θj and a set of alternatives X̄ which

contains every alternative that appears in S1 ∪ S2 such that the following hold:

— Given any i ∈ {1, 2} and any f ∈ F and any θj ∈ Θj, it must be that i’s choice

when he/she is of type θ′i at state (θ′i, θj) contains f(θ′i, θj) for all θ′i ∈ Θi, with

j = 1, 2 and i 6= j; and

— any set from S1 must have a common element with any set from S2; and

— for any collection of product sets of states {Θ̄f}f ∈F with Θ̄ =
⋃
f∈F Θ̄f ⊂ Θ, there

is an SCF f ∗ in F such that

– F respects choice unanimity on X̄ and S1 and S2 whenever θ ∈ Θ \ Θ̄; and

– for any deception profile α and SCF f ∈ F that lead to an outcome different

than f ∗(θ) for some θ ∈ Θ̄f where f ∗ is the SCF that satisfies the choice

unanimity conditions (i)–(iii), there exists a whistle-blower i∗ ∈ {1, 2} and

an informant state θ∗ ∈ Θ̄f such that i∗ does not choose at θ∗ the alternative

f(α(θ∗)) from Si∗(f, αj(θ
∗
j )) where j ∈ {1, 2} and j 6= i∗.

Below we establish that the consistency-unanimity property is sufficient for ex-post

implementation with two individuals. Indeed, it is a novel two-individual condition which

draws its motivation from three or more individuals sufficiency conditions, consistency-

no-veto of the current paper, monotonicity-no-veto of Jackson (1991), and ex post mono-

tonicity no veto of Bergemann and Morris (2008).

Theorem 6. Let n = 2. If an SCS F ∈ F satisfies the consistency-unanimity property,

then F is ex-post implementable.

We wish to emphasize that when F = {f}, i.e., the case in which the planner is

seeking to implement an SCF in EPE, then, (iii) of choice unanimity holds vacuously.48

This simplifies the hypothesis of Theorem 6 and delivers the following:

Corollary 2. Let n = 2. An SCF f : Θ → X is ex-post implementable whenever there

are collections of sets Si := {Si(f, θj)|θj ∈ Θj} ⊂ X with i, j = 1, 2 and i 6= j such that

(i) f(θ′1, θ2) ∈ C
(θ′1,θ2)
1 (S1(f, θ2)) for each θ′1 ∈ Θ1, and f(θ1, θ

′
2) ∈ C

(θ1,θ′2)
2 (S2(f, θ1))

for each θ′2 ∈ Θ2, and S1(f, θ2) ∩ S2(f, θ1) 6= ∅ for each θ1 ∈ Θ1 and θ2 ∈ Θ2,

48We note that when F = {f}, Rule 3 of the mechanism presented in Section A.2 becomes redundant.
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and there is a set of alternatives X̄ ⊆ X with
⋃
S∈S1∪ S2 S ⊆ X̄ such that for any product

set Θ̄ ⊆ Θ,

(ii) x ∈ Cθ
1(X̄) ∩ Cθ

2(X̄) implies f(θ) = x, x ∈ Cθ
1(T ) ∩ Cθ

2(X̄) with T ∈ S1 implies

f(θ) = x, and x ∈ Cθ
1(X̄) ∩ Cθ

2(T ′) with T ′ ∈ S2 implies f(θ) = x, for each

θ ∈ Θ \ Θ̄, and

(iii) for any deception profile α, if f(α(θ)) 6= f(θ) for some θ ∈ Θ̄, then there exists θ∗ ∈
Θ̄ such that either f(α(θ∗)) /∈ Cθ∗

1 (S1(f, α2(θ∗2))) or f(α(θ∗)) /∈ Cθ∗
2 (S2(f, α1(θ∗1))).

In what follows, we briefly elaborate on the relation of our motivating example to

the sufficiency results we provide for the case of two individuals. The individual choices

of Alice and Bob specified in Table 1 and collections of sets SA and SB satisfying neither

consistency-no-veto nor consistency-unanimity (see Definitions 8 and 12, respectively)

establish that our sufficiency conditions for the case of two individuals are not necessary

in general, as expected. To see why, consider the individual choices of Alice from the

set SA(f, ρB) = {c, n}, and of Bob from the set X̄ = {c, n, s} at state (γA, γB).49 Alice

chooses n from SA(f, ρB), whereas Bob chooses both n and s from the set X̄ at (γA, γB).

As n is chosen by both, choice incompatibility fails at (γA, γB). Thus, we should turn to

choice unanimity to be able to employ the mechanism of Section A.2 to deliver sufficiency.

However, there is no SCF f ∗ ∈ F in the SCS F such that f ∗(γA, γB) = n. Therefore,

choice unanimity as well as choice incompatibility on (X̄, SA) fail and hence we can

employ neither Theorem 5 nor Theorem 6.

To demonstrate the relevance and applicability of our sufficiency results, below, we

show how one of them, Corollary 2, can be employed on an example that is inspired

from Masatlioglu and Ok (2014).50

Suppose that the states of the world regarding the individual choices of Alice and

Bob are given by Θ = {(♦,♦), (♦, c), (c,♦), (c, c)}. That is, ΘA = ΘB = {♦, c}, where

type ♦ stands for not having a status-quo and type c stands for status-quo being coal.

We consider the individual choices of Alice and Bob from (the subsets) of X = {c, n, s}
as specified in Table 9.

49By following the same line of arguments made in the discussions immediately following Theorem
4, one can show that (i)–(iii) of both consistency-no-veto and consistency-unanimity determine five
members of such collections of sets of Alice and Bob: SA must be such that SA(f, γB) = {c, n, s},
SA(f ′, ρB) = {c, s}, and SA(f ′, γB) = {c, s}; and SB must be such that SB(f, ρA) = {c, n}, and
SB(f, γA) = {n, s}. Consequently, X̄ = {c, n, s} because X̄ ⊆ X = {c, n, s}.

50Masatlioglu and Ok (2014) presents a “model of individual decision making when the endowment
of an agent provides a reference point that may influence her choices”.
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S C
(♦,♦)
A C

(♦,♦)
B C

(♦,c)
A C

(♦,c)
B C

(c,♦)
A C

(c,♦)
B C

(c,c)
A C

(c,c)
B

{c, n, s} {s} {s} {s} {n} {n} {s} {n} {n}
{c, n} {n} {n} {n} {n} {n} {n} {n} {n}
{c, s} {s} {s} {s} {c} {c} {s} {c} {c}
{n, s} {s} {s} {s} {s} {s} {s} {n} {n}

Table 9: A two-individual example satisfying consistency-unanimity.

A social planner wants to ex-post implement the SCF f , a particular selection from

the BR-optimal outcomes, described in Table 10: The social planner breaks the tie in

favor of s whenever n and s are both BR-optimal.

State (♦,♦) (♦, c) (c,♦) (c, c)
BR-optimal {s} {n, s} {n, s} {n}
f {s} {s} {s} {n}

Table 10: BR-optimal alternatives and SCF f .

Indeed, the planer can employ the mechanism described in Section A.2 to implement

the SCF f in ex-post equilibrium: In Section C of the Appendix, we show that the

collections SA := {SA(f,♦), SA(f, c)} and SB := {SB(f,♦), SB(f, c)} with SA(f,♦) =

{n, s}, SA(f, c) = {c, n, s} and SB(f,♦) = {n, s}, SB(f, c) = {c, n, s} satisfy conditions

(i), (ii), and (iii) of Corollary 2.51

7 Simple Mechanisms

There has been a recent interest in simple mechanisms in the mechanism design lit-

erature.52 Indeed, dealing with individuals having limited cognitive abilities increases

the relevance and importance of the simplicity of mechanisms. In this section, we elabo-

rate on the simplicity of mechanisms that can be used for ex-post implementation when

individuals’ choices do not necessarily satisfy the standard axioms of rationality.

In our view, given that the individuals under consideration are susceptible to behav-

ioral biases, a designer should choose a consistent collection of sets that gives rise to the

simplest mechanism, one in which the number of messages is as low as possible. The

following analysis provides insights regarding simplicity in this regard.

51We note that Rule 3 of the mechanism described in Section A.2 becomes redundant when ex-post
implementation of an SCF is desired.

52See for example, Li (2017) and Borgers and Li (2018).
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7.1 Motivating example revisited

We start with the mechanism we employ in our motivating example presented in

Section 3.1 in Table 4, which ex-post implements the SCS described in Table 3 for the

individual choices of Alice and Bob as specified in Table 1. In particular, we discuss why

there does not exist any simpler mechanism that implements that SCS in EPE.

To see why, consider the discussion on page 25 and recall that two-individual consis-

tency (see Definition 9) pins down 5 of 8 members of such collections of sets of Alice and

Bob: SA must be such that SA(f, γB) = {c, n, s}, SA(f ′, ρB) = {c, s}, and SA(f ′, γB) =

{c, s}; and SB must be such that SB(f, ρA) = {c, n}, and SB(f, γA) = {n, s}.
Fortunately, it is possible to see that our mechanism, presented in Table 4, is one of

the simplest mechanisms that ex-post implements F without any need to further narrow

down SA and SB by employing condition (iv) of two-individual consistency.

As SA(f, γB) must be {c, n, s}, Alice must have at least three messages to be able

to generate this opportunity set in any mechanism that ex-post implements F . Fur-

thermore, Bob must have at least two messages: one for Alice to be able to gener-

ate {c, n, s} and another for Alice to be able to generate {c, s} since we must have

SA(f ′, ρB) = SA(f ′, γB) = {c, s}. Therefore, the best we can hope for is three messages

for Alice and two messages for Bob.

Below, we explain why we need at least one more message. Suppose that there

exists a mechanism that ex-post implements the SCS F where Alice has three messages

and Bob has two messages. This means we must have SA(f, ρB) = {c, n, s} and both

SB(f ′, ρA) and SB(f ′, γA) must be either {c, n} or {n, s}. Therefore, the collections

SA = {{c, n, s}, {c, s}} and SB = {{c, n}, {n, s}, SB(f ′, ρA), SB(f ′, γA)} hint to us that

the mechanism should look like the game form given in Table 11. In this mechanism,

Bob

Alice

{c, n, s} {c, s}
{c, n} x c
{n, s} y s
{t, z} z t

Table 11: A 3× 2 mechanism proposal for Alice and Bob.

the messages are labeled with the opportunity sets that the other individual should

be able to generate. This is because any message in a mechanism can be thought of

as an opportunity set generated for the other individual. For example, if Bob sends

the message on the left, then Alice should be able to generate the set {c, n, s}. Thus,
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{x, y, z} = {c, n, s} and, hence, x 6= y 6= z. If Bob sends the message on the right, then

Alice should be able to obtain {c, s}, the other set in SA. On the other hand, if Alice

sends the message on top, then Bob should be able to generate {c, n}, and if Alice sends

the message in the middle, Bob should be able to generate {n, s}. Furthermore, each

outcome specified in the mechanism must be in both of the sustained opportunity sets

of each individual. In particular, if Alice sends {c, n} (sustaining the opportunity set

{c, n} ∈ SB for Bob) and Bob sends {c, s} (sustaining the opportunity set {c, s} ∈ SA
for Alice), the outcome must be c as {c, n} ∩ {c, s} = {c}. So, for Bob to be able to

generate {c, n}, the outcome must be n whenever Alice sends {c, n} and Bob {c, n, s}.
Similarly, the outcome must equal s if Alice sends {n, s} and Bob {c, s} and hence the

outcome must equal n whenever Alice sends {n, s} and Bob {c, n, s}. Thus, we must

have x = n = y, a contradiction to x 6= y. Thus, the simplest mechanism cannot have

three messages for Alice and two for Bob. It must have at least one more message. This

makes the mechanism given in Table 4 one of the simplest mechanisms that ex-post

implements the SCS F described in Table 3 . We note this observation as a corollary:

Corollary 3. Given the individual choices of Alice and Bob in Table 1, any mechanism

that ex-post implements the SCS F described in Table 3 must have at least three messages

for Alice and the total number of messages for both players must be at least six. In this

regard, there does not exist any simpler mechanism than the one given in Table 4.

We note that the mechanism given in Table 4 is not the unique simplest mechanism

that works for our motivating example: the mechanism given in Table 12 also ex-post

implements the SCS F for the individual choices as specified in Table 1.53

Bob

Alice

L M R
U n c n
M c c c
D n s s

Table 12: Another simplest mechanism for Alice and Bob.

7.2 Lower bounds on the number of messages

In the proof of Theorem 1, the collection of sets S = {Si(f, θ−i)|f ∈ F, i ∈ N, θ−i ∈
Θ−i} consistent with the SCS F is constructed from the mechanism that ex-post imple-

ments F . When there are multiple such mechanisms, there could be possibly different

53The only difference from the mechanism defined in Table 4 is SB(f ′, ρA) = {c}, instead of {c, s}.
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collections of sets consistent with the same SCS. How many sets there are in a collec-

tion, and how small these sets are, turn out to be important when designing simple

mechanisms.

The observations made in Section 7.1 lead us to lower bounds on the number of

messages needed for behavioral implementation under incomplete information. In fact,

we observe that collections {Si}i∈N that satisfy two-individual consistency formalized in

Definition 9 for the case of two individuals (and consistency specified in Definition 3 for

the case of three or more individuals) provide the key for obtaining these lower bounds.

Let {Sγ}γ∈Γ be the set of all the collections of sets that satisfy consistency (or two-

individual consistency for the case of two individuals) represented by Sγ = {Sγi }i∈N for

each γ ∈ Γ with Sγi = {Sγi (f, θ−i)|f ∈ F, θ−i ∈ Θ−i}. Clearly, the goal of the planner is

to pick up one of these collections and design a mechanism that ex-post implements F .

In our final result, below, we provide lower bounds for the simplicity of mechanisms

that are employed for ex-post implementation:

Theorem 7. In any mechanism that ex-post implements the SCS F ∈ F ,

(i) the minimum number of messages required for individual i is minγ∈Γ maxS∈Sγi #S,

(ii) the minimum number of message profiles required for the individuals other than i

is minγ∈Γ #Sγi , and

(iii) the minimum number of total messages required for all individuals is

max
{

minγ∈Γ maxi∈N [#Sγi + maxS∈Sγi #S],minγ∈Γ

∑
i∈N maxS∈Sγi #S

}
.

The intuition behind Theorem 7 is simple: If the collection Sγ happens to be the

collection of opportunity sets generated by the mechanism that ex-post implements F ,

then individual i is able to generate any set in Sγi . Therefore, individual i must have at

least as many messages as the cardinality of the maximal set in Sγi , which implies (i).

At the same time, for each different set in the collection Sγi , there must exist a

particular message profile of the individuals other than i that should allow individual i

to generate this particular set, which implies (ii).

Therefore, if the collection Sγ happens to be the collection of opportunity sets gener-

ated by the mechanism that ex-post implements F , then the total number of messages

in this mechanism must be at least as much as maxi∈N [#Sγi + maxS∈Sγi #S]. On the

other hand, by (i), the total number of messages required in this mechanism for all the

individuals must be also more than
∑

i∈N maxS∈Sγi #S for the particular collection Sγi .
Combining together, the total number of messages must exceed both minγ∈Γ maxi∈N

[#Sγi + maxS∈Sγi #S] and minγ∈Γ

∑
i∈N maxS∈Sγi #S, which implies (iii).
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8 Concluding Remarks

We investigate the problem of implementation under incomplete information when

individuals’ choices need not satisfy the standard axioms of rationality.

The focus is on full implementation in ex-post equilibrium because (i) the revelation

principle fails for partial implementation and, hence, one cannot restrict attention to

direct revelation mechanisms without a loss of generality; and (ii) the concept of ex-post

equilibrium is belief-free, does not require any expectation considerations or any belief

updating, and is robust to informational assumptions regarding the environment, which

makes it well suited when individuals’ choices fail the standard axioms of rationality.

We provide necessary as well as sufficient conditions for the case of three or more

individuals and for the case of two individuals separately. Even though, the mechanisms

offered in the proofs of our sufficiency theorems can be criticized for not being sufficiently

simple, our necessary conditions provide us with hints regarding the limits of simplicity

for behavioral implementation under incomplete information.

An interesting direction for future research would be to analyze whether practical

and simple mechanisms are available for specific types of behavioral biases. We hope

that our results pave the way for contributions in this direction.
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A Mechanisms

A.1 Mechanism for the case with three or more individuals

The mechanism we construct for the case with three or more individuals has a stan-

dard structure and makes use of the following observations: (i) the outcome should be

f(θ) when there is unanimous agreement between the individuals over f ∈ F and the

true state is θ; (ii) under such a unanimous agreement each individual j should be able

to generate unilaterally the set Sj(f, θ−j), i.e., when all other individuals (all i 6= j)

have unanimously decided on the particular SCF f ∈ F and sending messages as if their

types are θ−j ∈ Θ−j, j should be able to generate Sj(f, θ−j); (iii) whenever there is an

attempt to deceive the designer so that an outcome not compatible with the SCS is to

be implemented, a whistle-blower should be able to alert the designer; (iv) undesirable

EPE should be eliminated according to some procedure, e.g., by a modulo game or an

integer game.54

Consider an SCS F ∈ F for which the collection of sets S := {Si(f, θ−i) : i ∈ N, f ∈
F, θ−i ∈ Θ−i} and X̄ are as specified in Theorem 2 or Theorem 3. For any i ∈ N , f ∈ F ,

θ−i ∈ Θ−i, let x̄(i, f, θ−i) be an arbitrary alternative in Si(f, θ−i).
55

The mechanism µ = (M, g) is defined as follows: The message space of each individual

i ∈ N is Mi = F ×Θi× X̄×N , while a generic message is denoted by mi = (f, θi, xi, ki),

and the outcome function g : M → X is as specified in Table 13.

Rule 1 : g(m) = f(θ) if mi = (f, θi, ·, ·) for all i ∈ N,

Rule 2 : g(m) =

{
xj if xj ∈ Sj(f, θ−j),
x̄(j, f, θ−j) otherwise.

if mi = (f, θi, ·, ·) for all i ∈ N \ {j}
and mj = (f̃, θ̃j, xj, ·) with f̃ 6= f,

Rule 3 : g(m) = xj where j =
∑

i ki (mod n) otherwise.

Table 13: The outcome function of the mechanism with three or more individuals.

In words, each individual is required to send a message that specifies an SCF f ∈ F ,

a type for himself θi ∈ Θi, an alternative xi in X̄, and a number ki ∈ N = {1, 2, . . . , n}.56

54We note that the mechanism we construct has a standard structure in the sense that it is similar
to those that have been widely used for sufficiency proofs in the implementation literature. See for
example, Repullo (1987), Saijo (1988), Moore and Repullo (1990), Jackson (1991), Danilov (1992),
Maskin (1999), Bergemann and Morris (2008), de Clippel (2014), Koray and Yildiz (2018), among many
others. Similar mechanisms are sometimes referred to as augmented mechanisms, integer mechanisms
or canonical mechanisms. Indeed, we are puzzled why there is not a consensus over a specific name in
the literature.

55Such an x̄(i, f, θ−i) exists simply because Si(f, θ−i) must be non-empty due to (i) of consistency.
56We would like to emphasize that since X̄ contains Si(f, θ−i) for each i ∈ N , f ∈ F , θ−i ∈ Θ−i,
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Rule 1 indicates that if there is unanimity among the individuals’ messages regarding

the SCF to be implemented, then the outcome is determined according to this SCF and

the reported type profile in the messages. Rule 2 indicates that if there is agreement

between all the individuals but one regarding the SCF f ∈ F in their messages, then

the outcome is determined according to the alternative proposed by the odd-man-out,

j, only if this alternative is in Sj(f, θ−j), otherwise the outcome is x̄(j, f, θ−j) which

is in Sj(f, θ−j) as well. That is, as desired, when all the other individuals (all i 6= j)

have unanimously decided on the particular SCF f ∈ F and sending messages as if their

types are θ−j ∈ Θ−j, the odd-man-out j is able to generate unilaterally Sj(f, θ−j)—and

nothing else since x̄(i, f, θ−i) ∈ Sj(f, θ−j) as well. Finally, Rule 3 applies when both

Rule 1 and Rule 2 fail, then the outcome is determined only according to the reported

numbers (ki’s) and the outcome xj is implemented where j is the individual
∑

i ki modulo

n. Rule 3 makes sure that there are no undesirable EPE of the mechanism.57

A.2 Mechanism for the case with two individuals

The mechanism we design for the case of two individuals relies on the following

observations: (i) the outcome should be f(θ) when there is agreement between the two

individuals over f ∈ F and the true state is θ; (ii) each individual i should be able to

generate unilaterally the set Si(f, θj) when the other individual j 6= i intends a particular

SCF f ∈ F and sends a message as if his/her type is θj ∈ Θj; (iii) whenever there is

an attempt to deceive the designer so that an undesired outcome is to be implemented,

a whistle-blower should be able to alert the designer; (iv) undesirable EPE should be

eliminated according to a procedure, e.g., a modulo game or an integer game.

Consider any F ∈ F for which S1 := {S1(f, θ2)|f ∈ F, θ2 ∈ Θ2}, S2 := {S2(f, θ1)|f ∈
F, θ1 ∈ Θ1}, and X̄ are as specified in Theorem 5 or Theorem 6.

For any i, j ∈ {1, 2} with i 6= j, f ∈ F , θj ∈ Θj, let x̄(i, f, θj) be an arbitrary

alternative in Si(f, θj).
58

For any f, f ′ ∈ F , θ1 ∈ Θ1, θ2 ∈ Θ2, let x̄(f, f ′, θ1, θ2) be an arbitrary alter-

native in S1(f, θ2) ∩ S2(f ′, θ1). Such an alternative x̄(f, f ′, θ1, θ2) ∈ X̄ exists since

S1(f, θ2)∩S2(f ′, θ1) is non-empty for each θ1 ∈ Θ1 and θ2 ∈ Θ2, by (iii) of two-individual

consistency (see Definition 9).

any alternative that is not in X̄ is non-essential for the design problem. Note that such an alternative
is not going to be in the opportunity set of any individuals and it is never to be implemented.

57We note that we need at least three individuals for our mechanism to be well defined. Otherwise,
Rule 2 in the mechanism becomes ambiguous.

58Such an x̄(i, f, θj) exists as Si(f, θj) is non-empty due to (i) and (ii) of two-individual consistency.
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The mechanism we employ is denoted by µ = (M, g) where the message space of

individual i is Mi = {0, 1} × F × Θi × X̄ × {0, 1} and the outcome function equals

g : M → X. A generic message is denoted by mi = (ni, fi, θi, xi, ki). That is, each

individual message’s first entry and last entry is required to be either 0 or 1, and each

individual i is required to send a message that specifies an SCF f ∈ F , a type θi ∈ Θi,

an alternative xi ∈ X̄.59 The outcome function g is specified in Table 14.

Rule 1 : g(m) = f(θ)
if mi = (0, f, θi, ·, ·)

for both i ∈ {1, 2},

Rule 2.1 : g(m) =

{
x1 if x1 ∈ S1(f2, θ2)
x̄(1, f2, θ2) otherwise,

if m1 = (1, f1, θ1, x1, ·) and
m2 = (0, f2, θ2, x2, ·),

Rule 2.2 : g(m) =

{
x2 if x2 ∈ S2(f1, θ1)
x̄(2, f1, θ1) otherwise,

if m1 = (0, f1, θ1, x1, ·) and
m2 = (1, f2, θ2, x2, ·),

Rule 3 : g(m) = x̄(f1, f2, θ1, θ2)
if m1 = (0, f1, θ1, x1, k1) and
m2 = (0, f2, θ2, x2, k2) with
f1 6= f2,

Rule 4 : g(m) = xj

if m1 = (1, f1, θ1, x1, k1) and
m2 = (1, f2, θ2, x2, k2) with

j =

{
1 if k1 + k2 is odd,
2 if k1 + k2 is even.

Table 14: The outcome function of the two individual mechanism.

Rule 1 indicates that if the first entries of both individuals’ messages are 0 and there

is agreement between the two individuals’ messages regarding the SCF, then the outcome

is determined according to this SCF and the reported type profile in the messages.

Rule 2.1 and Rule 2.2 indicate that if the first entry of the individual messages do not

coincide, then the outcome is the alternative proposed by individual i whose message’s

first entry is 1 whenever this alternative is in Si(fj, θj) where j 6= i is the individual

whose message’s first entry is 0. Otherwise, the outcome is x̄(i, fj, θj), also in Si(fj, θj).

Rule 3.1 and Rule 3.2 indicate that whenever the first entries of both individuals’

messages are 0 but there is no agreement between the individuals’ messages regarding

the SCF, i.e., f1 6= f2, the outcome is x̄(f1, f2, θ1, θ2) ∈ S1(f2, θ2) ∩ S2(f1, θ1), which is

non-empty due to (iii) of two-individual consistency.

59In our mechanism, the first entry of the message of individual i, ni ∈ {0, 1} with i = 1, 2, parallels
with the “flag” or “no flag” choice featured in the mechanism of Dutta and Sen (1991).
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Rule 4 indicates that if the first entries of both individuals’ messages are 1, then the

outcome is determined according to the sum of the last entries of the messages. If this

sum is odd, then the outcome is the alternative proposed by individual 1 and if this sum

is even, the outcome is the alternative proposed by individual 2.

When ex-post implementation of an SCF is desired, i.e., #F = 1, then (iii) of choice

incompatibility holds vacuously while Rule 3 of our mechanism becomes redundant. This

simplifies our proofs by eliminating discussions and arguments about Rule 3.

B Proofs

B.1 Proof of Claim 1

We identify all EPE of µ = (M, g) by a case by case analysis on what Alice plays

when her type is ρA. Let σ∗ be an ex-post equilbirium of µ = (M, g).

Case 1. If σ∗A(ρA) = U : Then, Oµ
B(σ∗A(ρA)) = {c, n}. At (ρA, ρB) and (ρA, γB), Bob

chooses n from the set {c, n}. Thus, σ∗B(ρB) and σ∗B(γB) must be either L or R.

Subcase 1.1. If σ∗B(ρB) = L and σ∗B(γB) = L: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, n}. At (γA, ρB), Alice chooses n from {c, n}
and hence σ∗A(γA) must be either U or D. But, at (γA, γB), Alice chooses c from {c, n}
which implies σ∗A(γA) must be M , a contradiction. Thus, we cannot have σ∗B(ρB) = L

and σ∗B(γB) = L.

Subcase 1.2. If σ∗B(ρB) = L and σ∗B(γB) = R: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = {c, n} and Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Alice chooses n

from {c, n}, which implies σ∗A(γA) must be either U or D. At (γA, γB), Alice chooses c

and s from {c, n, s}, which implies σ∗A(γA) must be M or D. Therefore, we must have

σ∗A(γA) = D.

Indeed the following observations imply that our first EPE is σ′∗ such that σ′∗A(ρA) =

U , σ′∗A(γA) = D, and σ′∗B(ρB) = L, σ′∗B(γB) = R

At (ρA, ρB) : n ∈ C(ρA,ρB)
A ({c, n}) =⇒ g(σ′∗(ρA, ρB)) ∈ C(ρA,ρB)

A (Oµ
A(σ′∗B(ρB))),

n ∈ C(ρA,ρB)
B ({c, n}) =⇒ g(σ′∗(ρA, ρB)) ∈ C(ρA,ρB)

B (Oµ
B(σ′∗A(ρA))).

At (ρA, γB) : n ∈ C(ρA,γB)
A ({c, n, s}) =⇒ g(σ′∗(ρA, γB)) ∈ C(ρA,γB)

A (Oµ
A(σ′∗B(γB))),

n ∈ C(ρA,γB)
B ({c, n}) =⇒ g(σ′∗(ρA, γB)) ∈ C(ρA,γB)

B (Oµ
B(σ′∗A(ρA))).

At (γA, ρB) : n ∈ C(γA,ρB)
A ({c, n}) =⇒ g(σ′∗(γA, ρB)) ∈ C(γA,ρB)

A (Oµ
A(σ′∗B(ρB))),

n ∈ C(γA,ρB)
B ({n, s}) =⇒ g(σ′∗(γA, ρB)) ∈ C(γA,ρB)

B (Oµ
B(σ′∗A(γA))).
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At (γA, γB) : s ∈ C(γA,γB)
A ({c, n, s}) =⇒ g(σ′∗(γA, γB)) ∈ C(γA,γB)

A (Oµ
A(σ′∗B(γB))),

s ∈ C(γA,γB)
B ({n, s}) =⇒ g(σ′∗(γA, γB)) ∈ C(γA,γB)

B (Oµ
B(σ′∗A(γA))).

Subcase 1.3. If σ∗B(ρB) = R and σ∗B(γB) = L: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = {c, n, s} and Oµ

A(σ∗B(γB)) = {c, n}. At (γA, ρB), Alice chooses n

from {c, n, s}, which implies σ∗A(γA) must be U . On the other hand, at (γA, γB), Alice

chooses n from {c, n}, which implies σ∗A(γA) must be U or D. Therefore, we must have

σ∗A(γA) = U . This implies Oµ
B(σ∗A(γA)) = {c, n}. But, at (γA, ρB), Bob chooses c from

{c, n} even though it would be g(σ∗(γA, ρB)) = n. Hence, we cannot have σ∗B(ρB) = R

and σ∗B(γB) = L.

Subcase 1.4. If σ∗B(ρB) = R and σ∗B(γB) = R: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Alice chooses n from

{c, n, s}, which implies σ∗A(γA) must be U . But, at (γA, γB), Alice chooses c and s from

{c, n, s}, which implies σ∗A(γA) must be either M or D, a contradiction. Therefore, we

cannot have σ∗B(ρB) = R and σ∗B(γB) = R.

Case 2. If σ∗A(ρA) = M : Then, Oµ
B(σ∗A(ρA)) = {c, s}. At (ρA, ρB) and (ρA, γB), Bob

chooses s from the set {c, s}. Therefore, σ∗B(ρB) and σ∗B(γB) must both be M . Then,

Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, s}. At (γA, ρB) and (γA, γB) Alice chooses c from the

set {c, s}, which implies it must be that σ∗A(ρA) = U .

Indeed the following observations imply that our second EPE is σ′′′∗ such that

σ′′′∗A (ρA) = M , σ′′′∗A (γA) = U , and σ′′′∗B (ρB) = M , σ′′′∗B (γB) = M

At (ρA, ρB) : s ∈ C(ρA,ρB)
A ({c, s}) =⇒ g(σ′′′∗(ρA, ρB)) ∈ C(ρA,ρB)

A (Oµ
A(σ′′′∗B (ρB))),

s ∈ C(ρA,ρB)
B ({c, s}) =⇒ g(σ′′′∗(ρA, ρB)) ∈ C(ρA,ρB)

B (Oµ
B(σ′′′∗A (ρA))).

At (ρA, γB) : s ∈ C(ρA,γB)
A ({c, s}) =⇒ g(σ′′′∗(ρA, γB)) ∈ C(ρA,γB)

A (Oµ
A(σ′′′∗B (γB))),

s ∈ C(ρA,γB)
B ({c, s}) =⇒ g(σ′′′∗(ρA, γB)) ∈ C(ρA,γB)

B (Oµ
B(σ′′′∗A (ρA))).

At (γA, ρB) : c ∈ C(γA,ρB)
A ({c, s}) =⇒ g(σ′′′∗(γA, ρB)) ∈ C(γA,ρB)

A (Oµ
A(σ′′′∗B (ρB))),

c ∈ C(γA,ρB)
B ({c, n}) =⇒ g(σ′′′∗(γA, ρB)) ∈ C(γA,ρB)

B (Oµ
B(σ′′′∗A (γA))).

At (γA, γB) : c ∈ C(γA,γB)
A ({c, s}) =⇒ g(σ′′′∗(γA, γB)) ∈ C(γA,γB)

A (Oµ
A(σ′′′∗B (γB))),

c ∈ C(γA,γB)
B ({c, n}) =⇒ g(σ′′′∗(γA, γB)) ∈ C(γA,γB)

B (Oµ
B(σ′′′∗A (γA))).

Case 3. If σ∗A(ρA) = D: Then, Oµ
B(σ∗A(ρA)) = {n, s}. At (ρA, ρB) and (ρA, γB), Bob

chooses s from the set {n, s}. Therefore, σ∗B(ρB) and σ∗B(γB) must be either M or R.

Subcase 3.1. If σ∗B(ρB) = M and σ∗B(γB) = M : So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)).
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We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, s}. At (γA, ρB) and (γA, γB), Alice chooses c

from {c, s}, which implies it must be σ∗A(γA) = U .

Indeed the following observations imply that our third EPE is σ′′∗ such that σ′′∗A (ρA) =

D, σ′′∗A (γA) = U , and σ′′∗B (ρB) = M , σ′′∗B (γB) = M .

At (ρA, ρB) : s ∈ C(ρA,ρB)
A ({c, s}) =⇒ g(σ′′′∗(ρA, ρB)) ∈ C(ρA,ρB)

A (Oµ
A(σ′′∗B (ρB))),

s ∈ C(ρA,ρB)
B ({n, s}) =⇒ g(σ′′∗(ρA, ρB)) ∈ C(ρA,ρB)

B (Oµ
B(σ′′∗A (ρA))).

At (ρA, γB) : s ∈ C(ρA,γB)
A ({c, s}) =⇒ g(σ′′∗(ρA, γB)) ∈ C(ρA,γB)

A (Oµ
A(σ′′∗B (γB))),

s ∈ C(ρA,γB)
B ({n, s}) =⇒ g(σ′′∗(ρA, γB)) ∈ C(ρA,γB)

B (Oµ
B(σ′′∗A (ρA))).

At (γA, ρB) : c ∈ C(γA,ρB)
A ({c, s}) =⇒ g(σ′′∗(γA, ρB)) ∈ C(γA,ρB)

A (Oµ
A(σ′′∗B (ρB))),

c ∈ C(γA,ρB)
B ({c, n}) =⇒ g(σ′′∗(γA, ρB)) ∈ C(γA,ρB)

B (Oµ
B(σ′′∗A (γA))).

At (γA, γB) : c ∈ C(γA,γB)
A ({c, s}) =⇒ g(σ′′∗(γA, γB)) ∈ C(γA,γB)

A (Oµ
A(σ′′∗B (γB))),

c ∈ C(γA,γB)
B ({c, n}) =⇒ g(σ′′∗(γA, γB)) ∈ C(γA,γB)

B (Oµ
B(σ′′∗A (γA))).

Subcase 3.2. If σ∗B(ρB) = M and σ∗B(γB) = R: So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = {c, s} and Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Alice chooses

c from {c, s}, which implies σ∗A(γA) must be U . On the other hand, at (γA, γB), Alice

chooses c and s from {c, n, s}, which implies σ∗A(γA) must be M or D, a contradiction.

Hence, we cannot have σ∗B(ρB) = M and σ∗B(γB) = R.

Subcase 3.3. If σ∗B(ρB) = R and σ∗B(γB) = M : So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = {c, n, s} and Oµ

A(σ∗B(γB)) = {c, s}. At (γA, ρB), Alice chooses n

from {c, n, s}, and at (γA, γB), Alice chooses c from {c, n}. They both imply we must

have σ∗A(γA) = U . Thus, Oµ
B(σ∗A(γA)) = {c, n}. But, at (γA, ρB), Bob chooses c from

{c, n} even though it would be g(σ∗(γA, ρB)) = n. So, we cannot have σ∗B(ρB) = R and

σ∗B(γB) = M .

Subcase 3.4. If σ∗B(ρB) = R and σ∗B(γB) = R: So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Alice chooses n from

{c, n, s}, which implies σ∗A(γA) must be U . On the other hand, at (γA, γB), Alice chooses

c, s from {c, n, s}, which implies σ∗A(γA) must be M or D, a contradiction. Thus, we

cannot have σ∗B(ρB) = R and σ∗B(γB) = R as well.

Therefore, there are exactly three EPE of the mechanism µ = (M, g), σ′∗, σ′′∗, and

σ′′′∗, as identified above where g(σ′′∗(θ)) = g(σ′′′∗(θ)) for all θ ∈ Θ: g(σ′′∗(ρA, ρB)) =

g((D,M)) = g((M,M)) = s = g(σ′′′∗(ρA, ρB)); g(σ′′∗(ρA, γB)) = g((D,M)) = g((M,M)) =

s = g(σ′′′∗(ρA, γB)); g(σ′′∗(γA, ρB)) = g((U,M)) = c = g(σ′′′∗(γA, ρB)); and g(σ′′∗(γA, γB)) =

g((U,M)) = c = g(σ′′′∗(γA, γB)).
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B.2 Proof of Theorem 1

Let µ = (M, g) be a mechanism that ex-post implements the non-empty SCS F ∈ F .

Consider any SCF f ∈ F . By (i) of Definition 2, there exists an EPE σf of µ such that

f = g ◦ σf .
By definition of EPE, we have for each θ ∈ Θ, g(σf (θ)) is an element of Cθ

i (Oµ
i (σf−i(θ−i)))

for all i ∈ N . Therefore, for each θ ∈ Θ, f(θ) ∈ Cθ
i (Oµ

i (σf−i(θ−i))) for all i ∈ N . Setting

Si(f, θ−i) := Oµ
i (σf−i(θ−i)), we get for each θ ∈ Θ, f(θ) ∈ Cθ

i (Si(f, θ−i)) for all i ∈ N .

Since f ∈ F is arbitrary, this means for each f ∈ F , i ∈ N , θ−i ∈ Θ−i, there exists

Si(f, θ−i) ⊂ X such that f(θ) ∈ Cθ
i (Si(f, θ−i)) as long as θ is compatible with θ−i, i.e.,

θ = (θ′i, θ−i) for some θ′i ∈ Θi. Therefore, f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi

holds for every set in the collection {Si(f, θ−i)|f ∈ F, i ∈ N, θ−i ∈ Θ−i}.
On the other hand, if a deception profile α is such that f ◦α /∈ F , σf ◦α cannot be an

EPE of µ = (M, g). Otherwise, by (ii) of Definition 2, there exists f̃ ∈ F with f̃ = g◦σf◦
α. But, since f = g ◦σf , we have f̃ = f ◦α ∈ F , a contradiction. Therefore, there exists

θ∗ ∈ Θ, i∗ ∈ N such that g(σf (α(θ∗))) /∈ Cθ∗
i∗ (Oµ

i∗(σ
f
−i∗(α−i∗(θ−i∗)))). Since g◦σf = f and

Oµ
i∗(σ

f
−i∗(α−i∗(θ−i∗))) = Si∗(f, α−i∗(θ−i∗)), we get f(α(θ∗)) /∈ Cθ∗

i∗ (Si∗(f, α−i∗(θ−i∗))).

B.3 Proofs of Propositions 1, 2, and 3 and Lemma 1

Proof of Proposition 1. Let S be a non-empty collection of sets consistent with an SCS

F under incomplete information and let S∗ := Si∗(f, α−i∗(θ−i∗)) ∈ S. Then, condition (i)

of ex-post choice monotonicity follows from condition (ii) of Definition 3 while condition

(ii) of ex-post choice monotonicity follows from (i) of Definition 3.

Proof of Proposition 2. Let S be a non-empty collection of sets consistent with an SCS

F under incomplete information and take any f ∈ F , θ ∈ Θ, i ∈ N and let S :=

Si(f, θ−i) ∈ S. By (i) of Definition 3, f(θ) ∈ Cθ
i (Si(f, θ−i)) implies f(θ) ∈ Cθ

i (S)

establishing condition (i) of quasi-ex-post choice incentive compatibility. Furthermore,

since f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi due to (i) of Definition 3, we

have f(θ′i, θ−i) ∈ S for each θ′i ∈ Θi establishing condition (ii) of quasi-ex-post choice

incentive compatibility.

Proof of Lemma 1. The proof directly follows from the fact that whenever f is partially

truthfully (ex-post) implemented by the direct mechanism gd : Θ→ X, the opportunity

set of any individual i ∈ N under truthtelling is {f(θ′i, θ−i)|θ′i ∈ Θi}, i.e., Ogd

i (θ−i) =

{f(θ′i, θ−i)|θ′i ∈ Θi}.
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Proof of Proposition 3. Suppose the individual choices satisfy the IIA and let f be par-

tially (ex-post) implemented by the mechanism µ. Then, Theorem 1 together with

Proposition 2 implies that f is quasi-ex-post choice incentive compatible. That is, for ev-

ery θ ∈ Θ, i ∈ N there exists S ∈ X such that f(θ) ∈ Cθ
i (S) and {f(θ′i, θ−i)|θ′i ∈ Θi} ⊆ S.

Hence, by the IIA, we must have f(θ) ∈ Cθ
i ({f(θ′i, θ−i)|θ′i ∈ Θi}). Therefore, by Lemma

1, the revelation principle holds.

B.4 Proof of Theorem 2

Consider the mechanism µ = (M, g) constructed in section A.1.

First, we show that for any f ∈ F , there exists an EPE, σf , of µ = (M, g) such that

f = g ◦ σf . This implies that condition (i) of ex-post implementability (see Definition

2) holds: Take any f ∈ F , let σfi (θi) = (f, θi, x, 1) for each i ∈ N and for some arbitrary

x ∈ X̄. By Rule 1, we have g(σf (θ)) = f(θ) for each θ ∈ Θ, i.e., f = g◦σf . Observe that

for any unilateral deviation by individual i from σf , either Rule 1 or Rule 2 applies, i.e.,

Rule 3 is not attainable by any unilateral deviation from σf . If individual i deviates to

mi = (f, θi, x
′, n′) when his/her type is θi, then Rule 1 continues to apply at θ and the

outcome continues to be f(θ), which is in Si(f, θ−i) since, by condition (i) of consistency,

f(θ) ∈ Cθ
i (Si(f, θ−i)). If individual i deviates to mi = (f, θ′i, x

′, n′) with θ′i 6= θi when

his/her type is θi, then Rule 1 continues to apply at θ and the outcome at θ becomes

f(θ′i, θ−i), which is in Si(f, θ−i) as well since f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)), again by

condition (i) of consistency. If individual i deviates to mi = (f ′, θ′i, x
′, n′) with f ′ 6= f

when his/her type is θi, then Rule 2 applies at θ and the outcome at θ becomes x′ if

x′ is in Si(f, θ−i), and otherwise x̄(i, f, θ−i), which is already in Si(f, θ−i) as well. This

means, as Si(f, θ−i) ⊂ X̄ for each θ ∈ Θ, i ∈ N , under σf , at any θ ∈ Θ, by unilateral

deviations, individual i can generate every alternative in Si(f, θ−i) and nothing else.

That is, by construction, Oµ
i (σf−i(θ−i)) = Si(f, θ−i) for each θ ∈ Θ, i ∈ N . Since,

by (i) of consistency, f(θ) ∈ Cθ
i (Si(f, θ−i)) for each i ∈ N , we have for each θ ∈ Θ,

g(σf (θ)) ∈ Cθ
i (Oµ

i (σf−i(θ−i))) for all i ∈ N , i.e., σf is an EPE of µ such that f = g ◦ σf .
Consider now any EPE σ∗ of µ denoted as σ∗i (θi) = (fi(θi), αi(θi), xi(θi), ki(θi)) for

each i ∈ N . That is, fi(θi) denotes the SCF proposed by individual i when his/her

type is θi; αi(θi) denotes the reported type of individual i when his/her type is θi; xi(θi)

denotes the alternative proposed by individual i when his/her type is θi; and ki(θi)

denotes the number proposed by individual i when his/her type is θi.

Next, we show that, under any EPE σ∗ of µ, Rule 1 must apply at each θ ∈ Θ:

Suppose, for contradiction, that either Rule 2 or Rule 3 applies at some θ̃ ∈ Θ under
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σ∗. If Rule 2 applies at θ̃, by construction, we have Oµ
j (σ∗−j(θ̃−j)) = Sj(f, αj(θ̃−j)) for

the odd-man-out j ∈ N and Oµ
i (σ∗−i(θ̃−i)) = X̄ for all i 6= j, i.e., for all the other

n − 1 individuals. On the other hand, if Rule 3 applies at θ̃, we have, by construction,

Oµ
i (σ∗−i(θ̃−i)) = X̄ for all i ∈ N . Therefore, under both Rule 2 and Rule 3, at least

n − 1 individuals have the opportunity set X̄. Since σ∗ is an EPE of µ, it follows

that g(σ∗(θ̃)) ∈ Cθ
i (X̄) for at least n − 1 individuals. But this contradicts the choice

incompatible pair property of X̄ at θ̃. Therefore, under any EPE σ∗ of µ, Rule 1 must

apply at each θ ∈ Θ.

Moreover, under any EPE σ∗ of µ, there is a unique f ∈ F such that fi(θi) = f for all

i ∈ N and for all θi ∈ Θi. To see why, fix an EPE σ∗ of µ, pick an arbitrary θ ∈ Θ, and

as Rule 1 must apply at θ ∈ Θ under σ∗, let fi(θi) = f for all i ∈ N under σ∗. Suppose,

for contradiction, that there exists i0 ∈ N , θi0 ∈ Θi0 such that fi0(θi0) 6= f . Without

loss of generality, suppose i0 = 1 and θ̂1 ∈ Θ1 such that f1(θ̂1) 6= f . But, then, under

the EPE σ∗, Rule 1 cannot apply at state (θ̂1, θ−1) ∈ Θ, as f1(θ̂1) 6= f and fj(θj) = f

for all j 6= 1 under σ∗, a contradiction.

Therefore, for any EPE σ∗ of µ, there exists a unique f ∈ F such that fi(θi) = f

for all i ∈ N and for all θi ∈ Θi. Hence, by Rule 1, g(σ∗(θ)) = f(α(θ)) for each θ ∈ Θ.

That is, g ◦ σ∗ = f ◦ α.

Finally, we show that it must be that f ◦α ∈ F : Since Rule 1 applies at each θ ∈ Θ,

and each i ∈ N reports the type αi(θi) ∈ Θi as the second entry of their messages at

θ ∈ Θ under σ∗, by construction, we have, at each θ ∈ Θ, Oµ
i (σ∗−i(θ−i)) = Si(f, α−i(θ−i))

for all i ∈ N . If f ◦ α /∈ F , then by (ii) of consistency (see Definition 3), there

exists θ∗ ∈ Θ, i∗ ∈ N such that f(α(θ∗)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ−i∗))). But this implies

g(σ∗(θ∗)) /∈ Cθ∗
i∗ (Oµ

i∗(σ
∗
−i∗(θ

∗
−i∗))), a contradiction to σ∗ being an EPE of µ. That is, we

must have f ◦ α ∈ F , as desired. Therefore, g ◦ σ∗ = f ◦ α ∈ F , which implies that

condition (ii) of ex-post implementability holds as well.

B.5 Proof of Theorem 3

Consider the mechanism µ = (M, g) constructed in section A.1.

As shown in the proof of Theorem 2, for any f ∈ F , σfi (θi) = (f, θi, x, 1) for each

i ∈ N (for arbitrary x ∈ X̄) is an EPE of µ such that f = g ◦σf . That is, for any f ∈ F ,

there exists an EPE, σf , of µ such that f = g ◦ σf , which implies that condition (i) of

ex-post implementability (refer to Definition 2) holds.

Now, consider an EPE σ∗ of µ = (M, g) represented as before by σ∗(θi) = (fi(θi),

αi(θi), xi(θi), ki(θi)). For any f ∈ F and i ∈ N , let Θ̄f
i := {θi ∈ Θi|fi(θi) = f}.
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That is, Θ̄f
i ⊂ Θ̄i is the set of types of individual i where the first entry of his/her

message—his/her proposed SCF—is f under σ∗. Let Θ̄f := ×i∈NΘ̄f
i . That is, Θ̄f is the

set of states where all of the individuals propose the SCF f ∈ F under σ∗. Consider

the collection of product sets {Θ̄f}f∈F . Observe that Θ̄ :=
⋃
f∈F Θ̄f describes the set of

states where Rule 1 applies under σ∗.

Thus, at any θ ∈ Θ\ Θ̄, either Rule 2 or Rule 3 applies, which means Oµ
i (σ∗−i(θ−i)) =

X̄ for at least n − 1 individuals for any θ ∈ Θ \ Θ̄. Furthermore, σ∗ being an EPE of

µ implies g(σ∗(θ)) ∈ Cθ
i (X̄) for at least n − 1 individuals. Hence, we have, by (iii) of

consistency-no-veto (see Definition 8), there exists f ∗ ∈ F such that g(σ∗(θ)) = f ∗(θ)

for each θ ∈ Θ \ Θ̄.

Next, we show that it must also be that g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ̄. Suppose not,

for contradiction, then there exists θ̃ ∈ Θ̄f for some f ∈ F such that g(σ∗(θ̃)) 6= f ∗(θ̃).

Since θ̃ ∈ Θ̄f , we have fi(θ̃i) = f for all i ∈ N . Thus, Rule 1 applies at θ̃ under σ∗, and

hence g(σ∗(θ̃)) = f(α(θ̃)) where α is the deception profile induced by σ∗. This means,

as g(σ∗(θ̃)) 6= f ∗(θ̃), we have f(α(θ̃)) 6= f ∗(θ̃). Then, by (iv) of consistency-no-veto,

there exists i∗ ∈ N and θ∗ ∈ Θ̄f such that f(α(θ̃)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ

∗
−i∗))). But, since

Rule 1 applies at θ̃ under σ∗, by construction, Oµ
i∗(σ

∗
−i∗(θ̃−i∗)) = Si∗(f, α−i∗(θ

∗
−i∗)), which

implies g(σ∗(θ̃)) /∈ Oµ
i∗(σ

∗
−i∗(θ̃−i∗)), a contradiction to σ∗ being an EPE of µ.

Therefore, g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ. That is, condition (ii) of ex-post

implementability holds as well.

B.6 Proof of Theorem 4

Let F be ex-post implementable by µ = (M, g). For any f ∈ F , set Si(f, θj) :=

Oµ
i (σfj (θj)) for i 6= j, where σf is the EPE of µ such that f = g ◦ σf , which exists by

(i) of ex-post implementability (see Definition 2). It is also easy to see that (i) and (ii)

follows from (i) of consistency (see Definition 3) and Theorem 1; (iv) follows from (ii)

of consistency and Theorem 1. The only new condition that requires a proof is (iii).

Take any f, f ′ ∈ F , if f = f ′, then, by (i) and (ii), f(θ1, θ2) = f ′(θ1, θ2) ∈ S1(f, θ2)∩
S2(f ′, θ1) for each θ1 ∈ Θ1 and θ2 ∈ Θ2. Suppose f 6= f ′. Recall that S1(f, θ2) :=

O1(σf2 (θ2)) and S2(f ′, θ1) := O2(σf
′

1 (θ1)) where σf and σf
′

are some EPE of µ such

that f = g ◦ σf and f ′ = g ◦ σf ′ . Consider any θ1 ∈ Θ1, θ2 ∈ Θ2 and let m′1 =

σf
′

1 (θ1), m′2 = σf (θ2). Then, it follows from S1(f, θ2) and S2(f ′, θ1) being opportunity

sets as defined above that g(m′1,m
′
2) = g(m′1, σ

f
2 (θ2)) ∈ S1(f, θ2) and g(m′1,m

′
2) =

g(σf
′

1 (θ1),m′2) ∈ S2(f ′, θ1). Therefore, we must have g(m′1,m
′
2) = g(σf

′

1 (θ1), σf2 (θ2)) ∈
S1(f, θ2) ∩ S2(f ′, θ1).

46



B.7 Proof of Theorem 5

Consider the mechanism µ = (M, g) constructed in section A.2.

First, we show that for any f ∈ F , there exists an EPE, σf , of the mechanism

µ = (M, g) such that f = g ◦ σf , which implies condition (i) of ex-post implementation

(see Definition 2): Take any f ∈ F , let σfi (θi) = (0, f, θi, xi, 0) for both i ∈ {1, 2} with

arbitrary xi ∈ X̄ for each i ∈ {1, 2}. Then, Rule 1 applies at each θ under σf . Hence,

we have g(σf (θ)) = f(θ) for each θ ∈ Θ, i.e., f = g ◦ σf . Below, we show that for each

i ∈ {1, 2}, Oi(σ
f
j (θj)) = Si(f, θj) at each θ ∈ Θ with i 6= j.

Without loss of generality, we can focus on individual 1. Observe that f(θ) ∈ S1(f, θ2)

since, by (i) of two-individual consistency, f(θ) ∈ Cθ
1(S1(f, θ2)). That is, if a unilateral

deviation by individual 1 does not change the outcome at θ, the outcome is already in

(S1(f, θ2)). On the other hand, if a unilateral deviation by individual 1 changes the

outcome at θ, then either Rule 1 or Rule 2.1 or Rule 3 applies at θ, i.e., Rule 2.2 and

Rule 4 cannot be attained by a unilateral deviation of individual 1 at any θ since the first

entry of individual 2’s message is 0 at any θ under σf . Therefore, at any θ ∈ Θ, by Rule

2.1, individual 1 can attain any outcome x ∈ S1(f, θ2) by simply changing his message

to (1, f, θ1, x, 0). Therefore, S1(f, θ2) ⊂ O1(σf2 (θ2)) for each θ ∈ Θ. To see that, at any

θ ∈ Θ, individual 1 cannot obtain any other alternative by a unilateral deviation, i.e.,

O1(σf2 (θ2)) ⊂ S1(f, θ2) as well: observe that if Rule 1 continues to apply the outcome

at θ is f(θ′1, θ2) for some θ′1 ∈ Θ1 and f(θ′1, θ2) ∈ S1(f, θ2) as, by (i) of two-individual

consistency, f(θ′1, θ2) ∈ C(θ′1,θ2)
1 (S1(f, θ2)); when the otherwise part of Rule 2.1 implies,

x̄(1, f, θ2) ∈ S1(f, θ2); and when Rule 3 applies, x̄(f ′, f, θ′1, θ2) ∈ S1(f, θ2) for each f ′ ∈ F ,

θ′1 ∈ Θ1 as well because, by construction, x̄(f ′, f, θ′1, θ2) ∈ S1(f, θ2) ∩ S2(f ′, θ′1), a non-

empty set due to (iii) of two-individual consistency. That is, the mechanism is designed

such that, under σf , at any θ, by a unilateral deviation, individual 1 can obtain every

alternative in S1(f, θ2) and nothing else. Due to symmetry, the same line of proof

applies to individual 2 as well. That is, for each θ ∈ Θ, Oi(σ
f
j (θj)) = Si(f, θj) for both

i, j ∈ {1, 2} with i 6= j.

Since, by (i) and (ii) of two-individual consistency, for both i ∈ {1, 2} and for each

θ ∈ Θ we have f(θ) ∈ Cθ
i (Si(f, θj)), we have, for each θ ∈ Θ, g(σf (θ)) ∈ Cθ

i (Oµ
i (σfj (θj)))

for both i ∈ {1, 2}. That is, σf is an EPE of µ such that f = g ◦ σf , as desired.

Next, we show that for any EPE σ∗ of µ, Rule 1 must apply at each θ ∈ Θ. Below,

we show that other rules are ruled out one by one:

Let σ∗ be an EPE of µ denoted as σ∗i (θi) = (ni(θi), fi(θi), αi(θi), xi(θi), ki(θi)), i ∈
{1, 2}. First, consider Rule 2.1 and Rule 2.2; if Rule 2.1 or Rule 2.2 applies at θ, then

47



the opportunity set of individual i, whose message’s first entry is 1, equals Si(f, αj(θj)),

where αj(θj) denotes the reported type of j at θ and fj(θj) = f . On the other hand, the

opportunity set of individual j, whose message’s first entry is 0, is X̄. Hence, if Rule 2.1

or Rule 2.2 applies at θ under σ∗, g(σ∗(θ)) ∈ Cθ
i (S) for some S = Si(f, αj(θj)) ∈ Si and

g(σ∗(θ)) ∈ Cθ
j (X̄). This violates (ii) of choice incompatibility at θ.

Next, let us deal with Rule 3: If Rule 3 applies at θ, the opportunity sets of in-

dividuals i and j are of the form Si(f, αj(θj)) and Sj(f
′, αi(θi)), where f ′ = fi(θi)

and f = fj(θj) are the reported SCFs such that f 6= f ′; αi(θi) and αj(θj) are the

reported types at θ in the messages of i and j, respectively. This is due to the follow-

ing: When Rule 3 applies, g(σ∗(θ)) = x̄(f ′, f, α1(θ1), α2(θ2)) which is in Si(f, αj(θj)) ∩
Sj(f

′, αi(θi)) due to (iii) of two-individual consistency. When individual i deviates to

(1, fi(θi), αi(θi), x̃, ki(θi)) with x̃ ∈ Si(f, αj(θj)), either Rule 2.1 or Rule 2.2 applies and

the outcome is x̃. Thus, Si(f, αj(θj)) ⊂ Oµ
i (σ∗j (θj)). On the other hand, a deviation

of the form (1, fi(θi), αi(θi), x̂, ki(θi)) with x̂ /∈ Si(f, αj(θj)) implies that either Rule 2.1

or Rule 2.2 applies and the outcome is x̄(i, f, αj(θj)) ∈ Si(f, αj(θj)), by construction.

The only possible deviation that leads to another outcome consists of (0, f, θ̃i, ·, ·). But

then, Rule 1 applies and the outcome equals f(θ̃i, αj(θj)) which is again in Si(f, αj(θj))

due to either (i) or (ii) of two-individual consistency. Hence, Oµ
i (σ∗j (θj)) = Si(f, αj(θj)).

Thus, if Rule 3 applies at some θ under σ∗, we must have g(σ∗(θ)) ∈ Cθ
i (Si(f, αj(θj)))

and g(σ∗(θ)) ∈ Cθ
j (Sj(f

′, αi(θi))) with f 6= f ′. But this violates (iii) of choice incom-

patibility at θ.

Finally, whenever Rule 4 applies, the opportunity sets of individual 1 and individual

2 under our mechanism are equal to X̄. Therefore, if Rule 4 applies at some θ under σ∗,

then we must have g(σ∗(θ)) ∈ Cθ
i (X̄) for both i ∈ {1, 2}. But this violates (i) of choice

incompatibility at θ.

Therefore, under any EPE σ∗ of µ, Rule 1 must apply at every θ ∈ Θ.

Now, let σ∗ be an arbitrary EPE of mechanism µ represented by σ∗(θi) = (ni(θi),

fi(θi), αi(θi), xi(θi), ki(θi)). Since Rule 1 applies at every θ ∈ Θ under σ∗, there must

exist a unique f̄ ∈ F such that f1(θ1) = f2(θ2) = f̄ for every θ1 ∈ Θ1 and θ2 ∈ Θ2.

To see why, suppose that for an arbitrary θ = (θ1, θ2) ∈ Θ, as Rule 1 must apply at θ

under σ∗, f1(θ1) = f2(θ2) = f̄ but there also exists i0 ∈ {1, 2} and θi0 ∈ Θi0 such that

fi0(θi0) 6= f̄ . Without loss of generality, suppose it is individual 1 type θ̂1 ∈ Θ1 for whom

we have f1(θ̂1) 6= f̄ . But, then, Rule 1 cannot apply at (θ̂1, θ2) ∈ Θ, as f1(θ̂1) 6= f̄ and

f2(θ2) = f̄ , a contradiction to Rule 1 applying at all θ ∈ Θ under the EPE σ∗.

Since there is a unique f̄ ∈ F such that fi(θi) = f̄ for each θi ∈ Θi and i ∈ {1, 2},
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by Rule 1, g(σ∗(θ)) = f̄(α(θ)) for each θ ∈ Θ. That is, g ◦ σ∗ = f̄ ◦ α.

Furthermore, it must be that f̄ ◦ α ∈ F where α is the deception profile specified by

the EPE σ∗. To see why, observe that at any θ ∈ Θ, each individual i ∈ {1, 2} reports

his/her type as αi(θi) ∈ Θi as part of their messages under σ∗. Since Rule 1 applies

at θ, by construction, we have Oµ
i (σ∗j (αj(θj))) = Si(f̄, αj(θj)) for each i ∈ {1, 2}. If

f̄ ◦α /∈ F , then by (iv) of two-individual consistency, there exists θ∗ ∈ Θ, such that either

f̄(α(θ∗)) /∈ Cθ∗
1 (S1(f̄, α2(θ∗2))) or f̄(α(θ∗)) /∈ Cθ∗

2 (S2(f̄, α1(θ∗1))). Since Rule 1 applies at

θ∗ as well, we have g(σ∗(θ∗)) = f̄(α(θ∗)). Therefore, f̄(α(θ∗)) /∈ Cθ∗
1 (S1(f̄, α2(θ∗2)))

implies g(σ∗(θ∗)) /∈ Cθ∗
1 (Oµ

1 (σ∗2(θ∗2))) while f̄(α(θ∗)) /∈ Cθ∗
2 (S2(f̄, α1(θ∗1))) implies that

g(σ∗(θ∗)) /∈ Cθ∗
2 (Oµ

2 (σ∗1(θ∗1))). Both induce a contradiction to σ∗ being an EPE of µ.

Hence, we must have f̄◦α ∈ F . Therefore, for any EPE σ∗ of µ, there exists f ≡ f̄◦α ∈ F
with g ◦ σ∗ = f , i.e., (ii) of ex-post implementation holds as well.

B.8 Proof of Theorem 6

Consider the mechanism µ = (M, g) constructed in section A.2.

As shown in the proof of Theorem 5, for any f ∈ F , σfi (θi) = (0, f, θi, xi, 0) for both

i ∈ {1, 2} (with arbitrary xi ∈ X̄) is an EPE of µ such that f = g ◦ σf . That is, for any

f ∈ F , there exists an EPE, σf , of µ such that f = g ◦ σf , which implies that condition

(i) of Definition 2 (ex-post implementability) holds.

Consider an EPE σ∗ of µ represented by σ∗(θi) = (ni(θi), fi(θi), αi(θi), xi(θi), ki(θi)).

For any f ∈ F and i ∈ N , let Θ̄f
i := {θi ∈ Θi|ni(θ) = 0, fi(θi) = f} for i ∈ {1, 2}. That

is, Θ̄f
i ⊂ Θ̄i is the set of types of individual i ∈ {1, 2} where the first entry of his/her

message—his/her proposed SCF—is f under σ∗. Let Θ̄f := ×i∈NΘ̄f
i . That is, Θ̄f is

the set of states where both individuals propose the SCF f ∈ F under σ∗. Consider

the collection of product sets {Θ̄f}f∈F . Observe that Θ̄ :=
⋃
f∈F Θ̄f is the set of states

where Rule 1 applies under σ∗.

Hence, at any θ ∈ Θ \ Θ̄, either one of Rule 2.1, Rule 2.2, Rule 3 or Rule 4 applies

under σ∗. For each of these rules, consider the corresponding opportunity sets under µ:

If Rule 2.1 or Rule 2.2 applies at θ, then the opportunity set of the individual i, whose

message’s first entry is 1, equals Si(f, αj(θj)), where αj(θj) denotes the reported type of

j at θ, while the opportunity set of the individual j, whose message’s first entry is 0, is

X̄, i, j = 1, 2 and i 6= j. Thus, if Rule 2.1 or Rule 2.2 applies at θ under σ∗, we must

have g(σ∗(θ)) ∈ Cθ
i (T ) for some T = Si(f, αj(θj)) ∈ Si and g(σ∗(θ)) ∈ Cθ

j (X̄). By (iv)

of consistency-unanimity, there exists f ∗ ∈ F with T ∈ Si such that g(σ∗(θ)) = f ∗(θ)

whenever Rule 2.1 or Rule 2.2 applies at θ.
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If Rule 3 applies at θ, then, as was shown in the proof of Theorem 5, the opportunity

sets of individuals i and j are Si(f, αj(θj)) and Sj(f
′, αi(θi)), where f ′ ∈ F and f ∈ F

with f 6= f ′ are reported SCFs and αi(θi) and αj(θj) are the reported types at θ in the

messages of i and j, respectively, i, j = 1, 2 and i 6= j. Thus, if Rule 3 applies at some θ

under σ∗, we must have g(σ∗(θ)) ∈ Cθ
i (Si(f, αj(θj))) and g(σ∗(θ)) ∈ Cθ

j (Sj(f
′, αi(θi))).

Thus, by (iv) of consistency-unanimity, there exists f ∗ ∈ F such that g(σ∗(θ)) = f ∗(θ)

when Rule 3 applies at θ.

Finally, whenever Rule 4 applies at θ, the opportunity sets of individuals 1 and 2

under our mechanism are both equal to X̄. Therefore, if Rule 4 applies at θ ∈ Θ \ Θ̄

under σ∗, then g(σ∗(θ)) ∈ Cθ
i (X̄) for both i ∈ {1, 2}. By (iv) of consistency-unanimity,

there exists f ∗ ∈ F such that g(σ∗(θ)) = f ∗(θ) whenever Rule 4 applies at θ as well.

To sum up, there exists f ∗ ⊂ F such that g(σ∗(θ)) = f ∗(θ) for every θ ∈ Θ \ Θ̄.

Next, we show that it must also be that g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ̄. Recall that

σ∗(θi) = (ni(θi), fi(θi), αi(θi), xi(θi), ki(θi)), i ∈ {1, 2}: Suppose, for contradiction, that

there exists θ̃ ∈ Θ̄f for some f ∈ F such that g(σ∗(θ̃)) 6= f ∗(θ̃). Since Rule 1 applies

at θ̃ under σ∗ and, hence, g(σ∗(θ̃)) = f(α(θ̃)), we have f(α(θ̃)) 6= f ∗(θ̃) where α is the

deception profile induced by σ∗. Therefore, by (v) of consistency-unanimity, there exists

θ∗ ∈ Θ̄f such that either f(α(θ∗)) /∈ Cθ∗
1 (S1(f, α2(θ∗2))) or f(α(θ∗)) /∈ Cθ∗

2 (S2(f, α1(θ∗1))).

Since θ∗ ∈ Θ̄f , we have fi(θ
∗
i ) = f for both i ∈ {1, 2}. That is, Rule 1 applies at

θ∗ and hence g(σ∗(θ∗)) = f(α(θ∗)). But then, as shown in the proof of Theorem

5, Oµ
1 (σ∗2(θ∗2)) = S1(f, α2(θ∗2)) and Oµ

2 (σ∗1(θ∗1)) = S2(f, α1(θ∗1)). Therefore, f(α(θ∗)) /∈
Cθ∗

1 (Oµ
1 (σ∗2(θ∗2))) implies g(σ∗(θ∗)) /∈ Cθ∗

1 (Oµ
1 (σ∗2(θ∗2))) while f(α(θ∗)) /∈ Cθ∗

2 (Oµ
2 (σ∗1(θ∗1)))

implies g(σ∗(θ∗)) /∈ Cθ∗
2 (Oµ

2 (σ∗1(θ∗1))). In both cases, σ∗ cannot be an EPE of µ, a

contradiction.

Therefore, g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ with f ∗ ∈ F . That is, condition (ii)

ex-post implementability (see Definition 2) holds as well.

B.9 Proof of Theorem 7

The proof is provided as a discussion right after Theorem 7.

C An Illustration of Sufficiency with Two Individuals

We show how one of our sufficiency results, Corollary 2, can be employed on an

example that is inspired from Masatlioglu and Ok (2014).

The individual choices of Alice and Bob in this section are as specified in Table 9. The
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states of the world regarding the individual choices are Θ = {(♦,♦), (♦, c), (c,♦), (c, c)}.
That is, ΘA = ΘB = {♦, c}, where type ♦ stands for not having a status-quo and type

c stands for status-quo being coal. We consider a social planner who wants to ex-post

implement the SCF f described in Table 10—a selection from the BR-optimal outcomes.

In what follows, we show that the collections SA := {SA(f,♦), SA(f, c)} and SB :=

{SB(f,♦), SB(f, c)}, specified below, satisfy conditions (i), (ii), and (iii) of Corollary 2.

SA(f,♦) = {n, s}, SB(f,♦) = {n, s},
SA(f, c) = {c, n, s}, SB(f, c) = {c, n, s}.

Condition (i):

For θB = ♦, we must have f(♦,♦) ∈ C(♦,♦)
A (SA(f,♦)) and f(c,♦) ∈ C(c,♦)

A (SA(f,♦)).

Since f(♦,♦) = s, f(c,♦) = s and s ∈ C(♦,♦)
A ({n, s}), s ∈ C(c,♦)

A ({n, s}), this is satisfied

for SA(f,♦) = {n, s}.
For θB = c, we must have f(♦, c) ∈ C

(♦,c)
A (SA(f, c)) and f(c, c) ∈ C

(c,c)
A (SA(f, c)).

Since f(♦, c) = s, f(c, c) = n and s ∈ C
(♦,c)
A ({c, n, s}), n ∈ C

(c,c)
A ({c, n, s}), this is

satisfied for SA(f, c) = {c, n, s}.
For θA = ♦, we must have f(♦,♦) ∈ C(♦,♦)

B (SB(f,♦)) and f(♦, c) ∈ C(♦,c)
B (SB(f,♦)).

Since f(♦,♦) = s, f(♦, c) = s and s ∈ C(♦,♦)
B ({n, s}), s ∈ C(♦,c)

B ({n, s}), this is satisfied

for SB(f,♦) = {n, s}.
For θA = c, we must have f(c,♦) ∈ C

(c,♦)
B (SB(f, c)) and f(c, c) ∈ C

(c,c)
B (SB(f, c)).

Since f(c,♦) = s, f(c, c) = n and s ∈ C
(c,♦)
B ({c, n, s}), n ∈ C

(c,c)
B ({c, n, s}), this is

satisfied for SB(f, c) = {c, n, s}.
That is, f(θ′A, θB) ∈ C

(θ′A,θB)

A (SA(f, θB)) for each θ′A ∈ {♦, c} while f(θA, θ
′
B) ∈

C
(θA,θ

′
B)

B (SB(f, θA)) for each θ′B ∈ {♦, c}, as desired.

Finally, since both n and s are in every set in the collections SA and SB we have

SA(f, θB) ∩ SB(f, θA) 6= ∅ for each θA, θB ∈ {♦, c} as well.

Therefore, condition (i) of Corollary 2 is satisfied by the collections SA and SB.

Condition (ii):

For any product set Θ̄ ⊆ Θ, we have to consider the individual choices of Alice and

Bob from X̄ and X̄; X̄ and SB(f,♦); X̄ and SB(f, c); SA(f,♦) and X̄; SA(f, c) and

X̄; SA(f,♦) and SB(f,♦); SA(f,♦) and SB(f, c); SA(f, c) and SB(f,♦); SA(f, c) and

SB(f, c) at every state of the world in Θ \ Θ̄, i.e., outside of Θ̄.

Since
⋃
S∈SA∪ SB S ⊆ X̄, we must have X̄ = {c, n, s}. Furthermore, SA(f, c) =

SB(f, c) = {c, n, s} = X̄.

Therefore, for any product set Θ̄ ⊆ Θ, it is enough to check Alice’s choices from
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{c, n, s} and Bob’s choices from {c, n, s}; Alice’s choices from {c, n, s} and Bob’s choices

from {n, s}; Alice’s choices from {n, s} and Bob’s choices from {c, n, s} at every state

of the world in Θ \ Θ̄.

Below, we show that f satisfies choice unanimity whenever the individual choices

from the aforementioned sets overlap at any state of the world. This means condition

(ii) is satisfied for any subset of Θ, in particular, for any product set Θ̄ ⊆ Θ, as desired.

{c, n, s} for Alice, {c, n, s} for Bob: Alice’s and Bob’s choices overlap at (♦,♦) and

(c, c) with s ∈ C(♦,♦)
A ({c, n, s})∩C(♦,♦)

B ({c, n, s}) and n ∈ C(c,c)
A ({c, n, s})∩C(c,c)

B ({c, n, s}).
Since f(♦,♦) = s and f(c, c) = n, choice unanimity for these particular sets is satisfied

at every state of the world.

{c, n, s} for Alice, {n, s} for Bob: Alice’s and Bob’s choices overlap at (♦,♦) and

(♦, c) and (c, c) with s ∈ C
(♦,♦)
A ({c, n, s}) ∩ C(♦,♦)

B ({n, s}) and s ∈ C
(♦,c)
A ({c, n, s}) ∩

C
(♦,c)
B ({n, s}) and n ∈ C(c,c)

A ({c, n, s})∩C(c,c)
B ({n, s}). Since f(♦,♦) = s and f(♦, c) = s

and f(c, c) = n, choice unanimity for these particular sets is also satisfied at every state

of the world.

{n, s} for Alice, {c, n, s} for Bob: Alice’s and Bob’s choices overlap at (♦,♦) and

(c,♦) and (c, c) with s ∈ C
(♦,♦)
A ({n, s}) ∩ C(♦,♦)

B ({c, n, s}) and s ∈ C
(c,♦)
A ({n, s}) ∩

C
(c,♦)
B ({c, n, s})and n ∈ C(c,c)

A ({n, s})∩C(c,c)
B ({c, n, s}). Since f(♦,♦) = s and f(c,♦) = s

and f(c, c) = n, choice unanimity for these particular sets is satisfied at every state of

the world as well.

Therefore, condition (ii) of Corollary 2 is also satisfied by the collections SA and SB.

Condition (iii):

For any Θ̄ ⊂ Θ, we show that if f(α(θ)) 6= f(θ) for some θ ∈ Θ̄, then θ∗ = θ ∈ Θ̄

works as the informant state by a case by case analysis:

If f(α(θ)) 6= f(θ), then (at least) one of the following must be true: (1) θ = (♦,♦) and

hence f(α(♦,♦)) 6= f(♦,♦); (2) θ = (♦, c) and hence f(α(♦, c)) 6= f(♦, c); (3) θ = (c,♦)

and hence f(α(c,♦)) 6= f(c,♦); or (4) θ = (c, c) and hence f(α(c, c)) 6= f(c, c).

Case 1: If θ = (♦,♦), i.e., f(α(♦,♦)) 6= f(♦,♦): Then, f(α(♦,♦)) = n. Hence, we

must have αA(♦) = αB(♦) = c. Then, θ∗ = θ = (♦,♦) and i∗ = A work since

SA(f, α(θB)) = SA(f, c) = {c, n, s} and n /∈ C(♦,♦)
A ({c, n, s}).

Case 2: If θ = (♦, c), i.e., f(α(♦, c)) 6= f(♦, c): Then, f(α(♦, c)) = n. Hence, we

must have αA(♦) = c and αB(c) = c. Then, θ∗ = θ = (♦, c) and i∗ = A work since

SA(f, α(θB)) = SA(f, c) = {c, n, s} and n /∈ C(♦,c)
A ({c, n, s}).

Case 3: If θ = (c,♦), i.e., f(α(c,♦)) 6= f(c,♦): Then, f(α(c,♦)) = n. Hence, we

must have αA(c) = c and αB(♦) = c. Then, θ∗ = θ = (c,♦) and i∗ = B work since
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SB(f, α(θA)) = SB(f, c) = {c, n, s} and n /∈ C(c,♦)
B ({c, n, s}).

Case 4: If θ = (c, c), i.e., f(α(c, c)) 6= f(c, c): Then, f(α(c, c)) = s. Hence, we must

have either αA(c) = ♦ or αB(c) = ♦, or both. We consider each of these three cases

separately:

Subcase 4.1: If αA(c) = ♦ and αB(c) = c: Then, θ∗ = θ = (c, c) and i∗ = A work

since SA(f, α(θB)) = SA(f, c) = {c, n, s} and s /∈ C(c,c)
A ({c, n, s}).

Subcase 4.2: If αA(c) = c and αB(c) = ♦: Then, θ∗ = θ = (c, c) and i∗ = B work

since SB(f, α(θA)) = SB(f, c) = {c, n, s} and s /∈ C(c,c)
B ({c, n, s}).

Subcase 4.3: If αA(c) = ♦ and αB(c) = ♦: Then, θ∗ = θ = (c, c) and i∗ = A work

since SA(f, α(θB)) = SA(f,♦) = {n, s} and s /∈ C(c,c)
A ({n, s}).

Therefore, SA and SB satisfy condition (iii) of Corollary 2 as well.
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